Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *	PCI Bus Services, see include/linux/pci.h for further explanation.
   3 *
   4 *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   5 *	David Mosberger-Tang
   6 *
   7 *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   8 */
   9
 
  10#include <linux/kernel.h>
  11#include <linux/delay.h>
 
  12#include <linux/init.h>
 
 
  13#include <linux/pci.h>
  14#include <linux/pm.h>
  15#include <linux/slab.h>
  16#include <linux/module.h>
  17#include <linux/spinlock.h>
  18#include <linux/string.h>
  19#include <linux/log2.h>
  20#include <linux/pci-aspm.h>
  21#include <linux/pm_wakeup.h>
  22#include <linux/interrupt.h>
  23#include <linux/device.h>
  24#include <linux/pm_runtime.h>
  25#include <asm/setup.h>
 
 
 
 
  26#include "pci.h"
  27
 
 
  28const char *pci_power_names[] = {
  29	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  30};
  31EXPORT_SYMBOL_GPL(pci_power_names);
  32
 
  33int isa_dma_bridge_buggy;
  34EXPORT_SYMBOL(isa_dma_bridge_buggy);
 
  35
  36int pci_pci_problems;
  37EXPORT_SYMBOL(pci_pci_problems);
  38
  39unsigned int pci_pm_d3_delay;
  40
  41static void pci_pme_list_scan(struct work_struct *work);
  42
  43static LIST_HEAD(pci_pme_list);
  44static DEFINE_MUTEX(pci_pme_list_mutex);
  45static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  46
  47struct pci_pme_device {
  48	struct list_head list;
  49	struct pci_dev *dev;
  50};
  51
  52#define PME_TIMEOUT 1000 /* How long between PME checks */
  53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54static void pci_dev_d3_sleep(struct pci_dev *dev)
  55{
  56	unsigned int delay = dev->d3_delay;
 
  57
  58	if (delay < pci_pm_d3_delay)
  59		delay = pci_pm_d3_delay;
 
 
 
 
 
  60
  61	msleep(delay);
 
 
  62}
  63
  64#ifdef CONFIG_PCI_DOMAINS
  65int pci_domains_supported = 1;
  66#endif
  67
  68#define DEFAULT_CARDBUS_IO_SIZE		(256)
  69#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
  70/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  71unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  72unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  73
  74#define DEFAULT_HOTPLUG_IO_SIZE		(256)
  75#define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
  76/* pci=hpmemsize=nnM,hpiosize=nn can override this */
 
  77unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  78unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
 
 
 
 
 
 
 
 
 
  79
 
 
 
  80enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
 
 
 
 
 
 
 
 
 
  81
  82/*
  83 * The default CLS is used if arch didn't set CLS explicitly and not
  84 * all pci devices agree on the same value.  Arch can override either
  85 * the dfl or actual value as it sees fit.  Don't forget this is
  86 * measured in 32-bit words, not bytes.
  87 */
  88u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
  89u8 pci_cache_line_size;
  90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91/**
  92 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
  93 * @bus: pointer to PCI bus structure to search
  94 *
  95 * Given a PCI bus, returns the highest PCI bus number present in the set
  96 * including the given PCI bus and its list of child PCI buses.
  97 */
  98unsigned char pci_bus_max_busnr(struct pci_bus* bus)
  99{
 100	struct list_head *tmp;
 101	unsigned char max, n;
 102
 103	max = bus->subordinate;
 104	list_for_each(tmp, &bus->children) {
 105		n = pci_bus_max_busnr(pci_bus_b(tmp));
 106		if(n > max)
 107			max = n;
 108	}
 109	return max;
 110}
 111EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113#ifdef CONFIG_HAS_IOMEM
 114void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 
 115{
 
 
 
 
 116	/*
 117	 * Make sure the BAR is actually a memory resource, not an IO resource
 118	 */
 119	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 120		WARN_ON(1);
 121		return NULL;
 122	}
 123	return ioremap_nocache(pci_resource_start(pdev, bar),
 124				     pci_resource_len(pdev, bar));
 
 
 
 
 
 
 
 
 125}
 126EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 
 
 
 
 
 
 127#endif
 128
 129#if 0
 130/**
 131 * pci_max_busnr - returns maximum PCI bus number
 
 
 
 
 
 
 
 
 
 
 
 
 
 132 *
 133 * Returns the highest PCI bus number present in the system global list of
 134 * PCI buses.
 135 */
 136unsigned char __devinit
 137pci_max_busnr(void)
 138{
 139	struct pci_bus *bus = NULL;
 140	unsigned char max, n;
 
 
 141
 142	max = 0;
 143	while ((bus = pci_find_next_bus(bus)) != NULL) {
 144		n = pci_bus_max_busnr(bus);
 145		if(n > max)
 146			max = n;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147	}
 148	return max;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149}
 150
 151#endif  /*  0  */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152
 153#define PCI_FIND_CAP_TTL	48
 
 
 
 154
 155static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 156				   u8 pos, int cap, int *ttl)
 157{
 158	u8 id;
 
 
 
 159
 160	while ((*ttl)--) {
 161		pci_bus_read_config_byte(bus, devfn, pos, &pos);
 162		if (pos < 0x40)
 163			break;
 164		pos &= ~3;
 165		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
 166					 &id);
 
 167		if (id == 0xff)
 168			break;
 169		if (id == cap)
 170			return pos;
 171		pos += PCI_CAP_LIST_NEXT;
 172	}
 173	return 0;
 174}
 175
 176static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 177			       u8 pos, int cap)
 178{
 179	int ttl = PCI_FIND_CAP_TTL;
 180
 181	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 182}
 183
 184int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 185{
 186	return __pci_find_next_cap(dev->bus, dev->devfn,
 187				   pos + PCI_CAP_LIST_NEXT, cap);
 188}
 189EXPORT_SYMBOL_GPL(pci_find_next_capability);
 190
 191static int __pci_bus_find_cap_start(struct pci_bus *bus,
 192				    unsigned int devfn, u8 hdr_type)
 193{
 194	u16 status;
 195
 196	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 197	if (!(status & PCI_STATUS_CAP_LIST))
 198		return 0;
 199
 200	switch (hdr_type) {
 201	case PCI_HEADER_TYPE_NORMAL:
 202	case PCI_HEADER_TYPE_BRIDGE:
 203		return PCI_CAPABILITY_LIST;
 204	case PCI_HEADER_TYPE_CARDBUS:
 205		return PCI_CB_CAPABILITY_LIST;
 206	default:
 207		return 0;
 208	}
 209
 210	return 0;
 211}
 212
 213/**
 214 * pci_find_capability - query for devices' capabilities 
 215 * @dev: PCI device to query
 216 * @cap: capability code
 217 *
 218 * Tell if a device supports a given PCI capability.
 219 * Returns the address of the requested capability structure within the
 220 * device's PCI configuration space or 0 in case the device does not
 221 * support it.  Possible values for @cap:
 222 *
 223 *  %PCI_CAP_ID_PM           Power Management 
 224 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port 
 225 *  %PCI_CAP_ID_VPD          Vital Product Data 
 226 *  %PCI_CAP_ID_SLOTID       Slot Identification 
 227 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 228 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap 
 229 *  %PCI_CAP_ID_PCIX         PCI-X
 230 *  %PCI_CAP_ID_EXP          PCI Express
 231 */
 232int pci_find_capability(struct pci_dev *dev, int cap)
 233{
 234	int pos;
 235
 236	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 237	if (pos)
 238		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 239
 240	return pos;
 241}
 
 242
 243/**
 244 * pci_bus_find_capability - query for devices' capabilities 
 245 * @bus:   the PCI bus to query
 246 * @devfn: PCI device to query
 247 * @cap:   capability code
 248 *
 249 * Like pci_find_capability() but works for pci devices that do not have a
 250 * pci_dev structure set up yet. 
 251 *
 252 * Returns the address of the requested capability structure within the
 253 * device's PCI configuration space or 0 in case the device does not
 254 * support it.
 255 */
 256int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 257{
 258	int pos;
 259	u8 hdr_type;
 260
 261	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 262
 263	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 264	if (pos)
 265		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 266
 267	return pos;
 268}
 
 269
 270/**
 271 * pci_find_ext_capability - Find an extended capability
 272 * @dev: PCI device to query
 
 273 * @cap: capability code
 274 *
 275 * Returns the address of the requested extended capability structure
 276 * within the device's PCI configuration space or 0 if the device does
 277 * not support it.  Possible values for @cap:
 278 *
 279 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 280 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 281 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 282 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 283 */
 284int pci_find_ext_capability(struct pci_dev *dev, int cap)
 285{
 286	u32 header;
 287	int ttl;
 288	int pos = PCI_CFG_SPACE_SIZE;
 289
 290	/* minimum 8 bytes per capability */
 291	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 292
 293	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 294		return 0;
 295
 
 
 
 296	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 297		return 0;
 298
 299	/*
 300	 * If we have no capabilities, this is indicated by cap ID,
 301	 * cap version and next pointer all being 0.
 302	 */
 303	if (header == 0)
 304		return 0;
 305
 306	while (ttl-- > 0) {
 307		if (PCI_EXT_CAP_ID(header) == cap)
 308			return pos;
 309
 310		pos = PCI_EXT_CAP_NEXT(header);
 311		if (pos < PCI_CFG_SPACE_SIZE)
 312			break;
 313
 314		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 315			break;
 316	}
 317
 318	return 0;
 319}
 320EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 321
 322/**
 323 * pci_bus_find_ext_capability - find an extended capability
 324 * @bus:   the PCI bus to query
 325 * @devfn: PCI device to query
 326 * @cap:   capability code
 327 *
 328 * Like pci_find_ext_capability() but works for pci devices that do not have a
 329 * pci_dev structure set up yet.
 
 330 *
 331 * Returns the address of the requested capability structure within the
 332 * device's PCI configuration space or 0 in case the device does not
 333 * support it.
 
 334 */
 335int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
 336				int cap)
 337{
 338	u32 header;
 339	int ttl;
 340	int pos = PCI_CFG_SPACE_SIZE;
 341
 342	/* minimum 8 bytes per capability */
 343	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 
 
 
 
 
 
 
 
 
 
 
 
 344
 345	if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
 346		return 0;
 347	if (header == 0xffffffff || header == 0)
 348		return 0;
 349
 350	while (ttl-- > 0) {
 351		if (PCI_EXT_CAP_ID(header) == cap)
 352			return pos;
 353
 354		pos = PCI_EXT_CAP_NEXT(header);
 355		if (pos < PCI_CFG_SPACE_SIZE)
 356			break;
 357
 358		if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
 359			break;
 360	}
 361
 362	return 0;
 363}
 
 364
 365static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 366{
 367	int rc, ttl = PCI_FIND_CAP_TTL;
 368	u8 cap, mask;
 369
 370	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 371		mask = HT_3BIT_CAP_MASK;
 372	else
 373		mask = HT_5BIT_CAP_MASK;
 374
 375	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 376				      PCI_CAP_ID_HT, &ttl);
 377	while (pos) {
 378		rc = pci_read_config_byte(dev, pos + 3, &cap);
 379		if (rc != PCIBIOS_SUCCESSFUL)
 380			return 0;
 381
 382		if ((cap & mask) == ht_cap)
 383			return pos;
 384
 385		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 386					      pos + PCI_CAP_LIST_NEXT,
 387					      PCI_CAP_ID_HT, &ttl);
 388	}
 389
 390	return 0;
 391}
 
 392/**
 393 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 394 * @dev: PCI device to query
 395 * @pos: Position from which to continue searching
 396 * @ht_cap: Hypertransport capability code
 397 *
 398 * To be used in conjunction with pci_find_ht_capability() to search for
 399 * all capabilities matching @ht_cap. @pos should always be a value returned
 400 * from pci_find_ht_capability().
 401 *
 402 * NB. To be 100% safe against broken PCI devices, the caller should take
 403 * steps to avoid an infinite loop.
 404 */
 405int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 406{
 407	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 408}
 409EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 410
 411/**
 412 * pci_find_ht_capability - query a device's Hypertransport capabilities
 413 * @dev: PCI device to query
 414 * @ht_cap: Hypertransport capability code
 415 *
 416 * Tell if a device supports a given Hypertransport capability.
 417 * Returns an address within the device's PCI configuration space
 418 * or 0 in case the device does not support the request capability.
 419 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 420 * which has a Hypertransport capability matching @ht_cap.
 421 */
 422int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 423{
 424	int pos;
 425
 426	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 427	if (pos)
 428		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 429
 430	return pos;
 431}
 432EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 433
 434/**
 435 * pci_find_parent_resource - return resource region of parent bus of given region
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436 * @dev: PCI device structure contains resources to be searched
 437 * @res: child resource record for which parent is sought
 438 *
 439 *  For given resource region of given device, return the resource
 440 *  region of parent bus the given region is contained in or where
 441 *  it should be allocated from.
 442 */
 443struct resource *
 444pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
 445{
 446	const struct pci_bus *bus = dev->bus;
 447	int i;
 448	struct resource *best = NULL, *r;
 449
 450	pci_bus_for_each_resource(bus, r, i) {
 451		if (!r)
 452			continue;
 453		if (res->start && !(res->start >= r->start && res->end <= r->end))
 454			continue;	/* Not contained */
 455		if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
 456			continue;	/* Wrong type */
 457		if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
 458			return r;	/* Exact match */
 459		/* We can't insert a non-prefetch resource inside a prefetchable parent .. */
 460		if (r->flags & IORESOURCE_PREFETCH)
 461			continue;
 462		/* .. but we can put a prefetchable resource inside a non-prefetchable one */
 463		if (!best)
 464			best = r;
 
 
 
 
 
 
 
 
 465	}
 466	return best;
 467}
 
 468
 469/**
 470 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
 471 * @dev: PCI device to have its BARs restored
 
 472 *
 473 * Restore the BAR values for a given device, so as to make it
 474 * accessible by its driver.
 
 475 */
 476static void
 477pci_restore_bars(struct pci_dev *dev)
 478{
 479	int i;
 480
 481	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 482		pci_update_resource(dev, i);
 483}
 
 
 
 484
 485static struct pci_platform_pm_ops *pci_platform_pm;
 
 
 486
 487int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
 
 
 
 
 
 
 
 488{
 489	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
 490	    || !ops->sleep_wake || !ops->can_wakeup)
 491		return -EINVAL;
 492	pci_platform_pm = ops;
 493	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494}
 495
 496static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 
 
 
 
 
 
 
 
 497{
 498	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 499}
 500
 501static inline int platform_pci_set_power_state(struct pci_dev *dev,
 502                                                pci_power_t t)
 
 
 
 
 503{
 504	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 505}
 506
 507static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 
 
 
 
 
 
 
 
 508{
 509	return pci_platform_pm ?
 510			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 511}
 512
 513static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
 
 
 
 
 514{
 515	return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516}
 517
 518static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
 
 
 
 
 519{
 520	return pci_platform_pm ?
 521			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522}
 523
 524static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
 
 
 
 
 
 
 
 
 
 
 
 525{
 526	return pci_platform_pm ?
 527			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
 
 
 
 
 
 
 
 
 
 
 528}
 
 529
 530/**
 531 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 532 *                           given PCI device
 533 * @dev: PCI device to handle.
 534 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 535 *
 536 * RETURN VALUE:
 537 * -EINVAL if the requested state is invalid.
 538 * -EIO if device does not support PCI PM or its PM capabilities register has a
 539 * wrong version, or device doesn't support the requested state.
 540 * 0 if device already is in the requested state.
 541 * 0 if device's power state has been successfully changed.
 542 */
 543static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 544{
 545	u16 pmcsr;
 546	bool need_restore = false;
 547
 548	/* Check if we're already there */
 549	if (dev->current_state == state)
 550		return 0;
 551
 552	if (!dev->pm_cap)
 553		return -EIO;
 
 
 554
 555	if (state < PCI_D0 || state > PCI_D3hot)
 556		return -EINVAL;
 557
 558	/* Validate current state:
 559	 * Can enter D0 from any state, but if we can only go deeper 
 560	 * to sleep if we're already in a low power state
 561	 */
 562	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 563	    && dev->current_state > state) {
 564		dev_err(&dev->dev, "invalid power transition "
 565			"(from state %d to %d)\n", dev->current_state, state);
 566		return -EINVAL;
 567	}
 568
 569	/* check if this device supports the desired state */
 570	if ((state == PCI_D1 && !dev->d1_support)
 571	   || (state == PCI_D2 && !dev->d2_support))
 572		return -EIO;
 573
 574	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 
 
 
 575
 576	/* If we're (effectively) in D3, force entire word to 0.
 577	 * This doesn't affect PME_Status, disables PME_En, and
 578	 * sets PowerState to 0.
 579	 */
 580	switch (dev->current_state) {
 581	case PCI_D0:
 582	case PCI_D1:
 583	case PCI_D2:
 584		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 585		pmcsr |= state;
 586		break;
 587	case PCI_D3hot:
 588	case PCI_D3cold:
 589	case PCI_UNKNOWN: /* Boot-up */
 590		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 591		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 592			need_restore = true;
 593		/* Fall-through: force to D0 */
 594	default:
 595		pmcsr = 0;
 596		break;
 597	}
 598
 599	/* enter specified state */
 600	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 
 
 
 601
 602	/* Mandatory power management transition delays */
 603	/* see PCI PM 1.1 5.6.1 table 18 */
 604	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 605		pci_dev_d3_sleep(dev);
 606	else if (state == PCI_D2 || dev->current_state == PCI_D2)
 607		udelay(PCI_PM_D2_DELAY);
 608
 609	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 610	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 611	if (dev->current_state != state && printk_ratelimit())
 612		dev_info(&dev->dev, "Refused to change power state, "
 613			"currently in D%d\n", dev->current_state);
 614
 615	/* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 616	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 617	 * from D3hot to D0 _may_ perform an internal reset, thereby
 618	 * going to "D0 Uninitialized" rather than "D0 Initialized".
 619	 * For example, at least some versions of the 3c905B and the
 620	 * 3c556B exhibit this behaviour.
 621	 *
 622	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 623	 * devices in a D3hot state at boot.  Consequently, we need to
 624	 * restore at least the BARs so that the device will be
 625	 * accessible to its driver.
 626	 */
 627	if (need_restore)
 628		pci_restore_bars(dev);
 629
 630	if (dev->bus->self)
 631		pcie_aspm_pm_state_change(dev->bus->self);
 
 
 632
 633	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 634}
 635
 636/**
 637 * pci_update_current_state - Read PCI power state of given device from its
 638 *                            PCI PM registers and cache it
 639 * @dev: PCI device to handle.
 640 * @state: State to cache in case the device doesn't have the PM capability
 
 
 
 
 
 
 
 641 */
 642void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 643{
 644	if (dev->pm_cap) {
 
 
 645		u16 pmcsr;
 646
 647		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 648		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 
 
 
 
 649	} else {
 650		dev->current_state = state;
 651	}
 652}
 653
 654/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 655 * pci_platform_power_transition - Use platform to change device power state
 656 * @dev: PCI device to handle.
 657 * @state: State to put the device into.
 658 */
 659static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 660{
 661	int error;
 662
 663	if (platform_pci_power_manageable(dev)) {
 664		error = platform_pci_set_power_state(dev, state);
 665		if (!error)
 666			pci_update_current_state(dev, state);
 667	} else {
 668		error = -ENODEV;
 669		/* Fall back to PCI_D0 if native PM is not supported */
 670		if (!dev->pm_cap)
 671			dev->current_state = PCI_D0;
 672	}
 673
 674	return error;
 675}
 
 
 
 
 
 
 
 676
 677/**
 678 * __pci_start_power_transition - Start power transition of a PCI device
 679 * @dev: PCI device to handle.
 680 * @state: State to put the device into.
 681 */
 682static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
 683{
 684	if (state == PCI_D0)
 685		pci_platform_power_transition(dev, PCI_D0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686}
 687
 688/**
 689 * __pci_complete_power_transition - Complete power transition of a PCI device
 690 * @dev: PCI device to handle.
 691 * @state: State to put the device into.
 692 *
 693 * This function should not be called directly by device drivers.
 
 
 
 
 
 694 */
 695int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
 696{
 697	return state >= PCI_D0 ?
 698			pci_platform_power_transition(dev, state) : -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699}
 700EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
 701
 702/**
 703 * pci_set_power_state - Set the power state of a PCI device
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 704 * @dev: PCI device to handle.
 705 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 
 706 *
 707 * Transition a device to a new power state, using the platform firmware and/or
 708 * the device's PCI PM registers.
 709 *
 710 * RETURN VALUE:
 711 * -EINVAL if the requested state is invalid.
 712 * -EIO if device does not support PCI PM or its PM capabilities register has a
 713 * wrong version, or device doesn't support the requested state.
 714 * 0 if device already is in the requested state.
 715 * 0 if device's power state has been successfully changed.
 716 */
 717int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718{
 719	int error;
 720
 721	/* bound the state we're entering */
 722	if (state > PCI_D3hot)
 723		state = PCI_D3hot;
 724	else if (state < PCI_D0)
 725		state = PCI_D0;
 726	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
 
 727		/*
 728		 * If the device or the parent bridge do not support PCI PM,
 729		 * ignore the request if we're doing anything other than putting
 730		 * it into D0 (which would only happen on boot).
 
 731		 */
 732		return 0;
 733
 734	__pci_start_power_transition(dev, state);
 735
 736	/* This device is quirked not to be put into D3, so
 737	   don't put it in D3 */
 738	if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
 739		return 0;
 740
 741	error = pci_raw_set_power_state(dev, state);
 
 742
 743	if (!__pci_complete_power_transition(dev, state))
 744		error = 0;
 745	/*
 746	 * When aspm_policy is "powersave" this call ensures
 747	 * that ASPM is configured.
 748	 */
 749	if (!error && dev->bus->self)
 750		pcie_aspm_powersave_config_link(dev->bus->self);
 751
 752	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 753}
 754
 755/**
 756 * pci_choose_state - Choose the power state of a PCI device
 757 * @dev: PCI device to be suspended
 758 * @state: target sleep state for the whole system. This is the value
 759 *	that is passed to suspend() function.
 760 *
 761 * Returns PCI power state suitable for given device and given system
 762 * message.
 
 
 
 
 
 
 
 
 
 763 */
 
 
 
 
 
 764
 765pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
 766{
 767	pci_power_t ret;
 768
 769	if (!pci_find_capability(dev, PCI_CAP_ID_PM))
 770		return PCI_D0;
 
 771
 772	ret = platform_pci_choose_state(dev);
 773	if (ret != PCI_POWER_ERROR)
 774		return ret;
 775
 776	switch (state.event) {
 777	case PM_EVENT_ON:
 778		return PCI_D0;
 779	case PM_EVENT_FREEZE:
 780	case PM_EVENT_PRETHAW:
 781		/* REVISIT both freeze and pre-thaw "should" use D0 */
 782	case PM_EVENT_SUSPEND:
 783	case PM_EVENT_HIBERNATE:
 784		return PCI_D3hot;
 785	default:
 786		dev_info(&dev->dev, "unrecognized suspend event %d\n",
 787			 state.event);
 788		BUG();
 789	}
 790	return PCI_D0;
 791}
 792
 793EXPORT_SYMBOL(pci_choose_state);
 794
 795#define PCI_EXP_SAVE_REGS	7
 
 796
 797#define pcie_cap_has_devctl(type, flags)	1
 798#define pcie_cap_has_lnkctl(type, flags)		\
 799		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
 800		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
 801		  type == PCI_EXP_TYPE_ENDPOINT ||	\
 802		  type == PCI_EXP_TYPE_LEG_END))
 803#define pcie_cap_has_sltctl(type, flags)		\
 804		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
 805		 ((type == PCI_EXP_TYPE_ROOT_PORT) ||	\
 806		  (type == PCI_EXP_TYPE_DOWNSTREAM &&	\
 807		   (flags & PCI_EXP_FLAGS_SLOT))))
 808#define pcie_cap_has_rtctl(type, flags)			\
 809		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
 810		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
 811		  type == PCI_EXP_TYPE_RC_EC))
 812#define pcie_cap_has_devctl2(type, flags)		\
 813		((flags & PCI_EXP_FLAGS_VERS) > 1)
 814#define pcie_cap_has_lnkctl2(type, flags)		\
 815		((flags & PCI_EXP_FLAGS_VERS) > 1)
 816#define pcie_cap_has_sltctl2(type, flags)		\
 817		((flags & PCI_EXP_FLAGS_VERS) > 1)
 818
 819static int pci_save_pcie_state(struct pci_dev *dev)
 820{
 821	int pos, i = 0;
 822	struct pci_cap_saved_state *save_state;
 823	u16 *cap;
 824	u16 flags;
 825
 826	pos = pci_pcie_cap(dev);
 827	if (!pos)
 828		return 0;
 829
 830	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 831	if (!save_state) {
 832		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 833		return -ENOMEM;
 834	}
 835	cap = (u16 *)&save_state->cap.data[0];
 836
 837	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
 
 
 
 
 
 
 
 838
 839	if (pcie_cap_has_devctl(dev->pcie_type, flags))
 840		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
 841	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
 842		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
 843	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
 844		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
 845	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
 846		pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
 847	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
 848		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
 849	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
 850		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
 851	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
 852		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
 853
 854	return 0;
 855}
 856
 857static void pci_restore_pcie_state(struct pci_dev *dev)
 858{
 859	int i = 0, pos;
 860	struct pci_cap_saved_state *save_state;
 861	u16 *cap;
 862	u16 flags;
 
 
 
 
 
 
 863
 864	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 865	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
 866	if (!save_state || pos <= 0)
 867		return;
 868	cap = (u16 *)&save_state->cap.data[0];
 869
 870	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
 
 
 
 
 
 871
 872	if (pcie_cap_has_devctl(dev->pcie_type, flags))
 873		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
 874	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
 875		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
 876	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
 877		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
 878	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
 879		pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
 880	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
 881		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
 882	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
 883		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
 884	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
 885		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
 886}
 887
 888
 889static int pci_save_pcix_state(struct pci_dev *dev)
 890{
 891	int pos;
 892	struct pci_cap_saved_state *save_state;
 893
 894	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 895	if (pos <= 0)
 896		return 0;
 897
 898	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 899	if (!save_state) {
 900		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 901		return -ENOMEM;
 902	}
 903
 904	pci_read_config_word(dev, pos + PCI_X_CMD,
 905			     (u16 *)save_state->cap.data);
 906
 907	return 0;
 908}
 909
 910static void pci_restore_pcix_state(struct pci_dev *dev)
 911{
 912	int i = 0, pos;
 913	struct pci_cap_saved_state *save_state;
 914	u16 *cap;
 915
 916	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 917	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 918	if (!save_state || pos <= 0)
 919		return;
 920	cap = (u16 *)&save_state->cap.data[0];
 921
 922	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
 923}
 924
 925
 926/**
 927 * pci_save_state - save the PCI configuration space of a device before suspending
 928 * @dev: - PCI device that we're dealing with
 
 929 */
 930int
 931pci_save_state(struct pci_dev *dev)
 932{
 933	int i;
 934	/* XXX: 100% dword access ok here? */
 935	for (i = 0; i < 16; i++)
 936		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
 
 
 
 937	dev->state_saved = true;
 938	if ((i = pci_save_pcie_state(dev)) != 0)
 
 
 939		return i;
 940	if ((i = pci_save_pcix_state(dev)) != 0)
 
 
 941		return i;
 942	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943}
 944
 945/** 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 946 * pci_restore_state - Restore the saved state of a PCI device
 947 * @dev: - PCI device that we're dealing with
 948 */
 949void pci_restore_state(struct pci_dev *dev)
 950{
 951	int i;
 952	u32 val;
 953
 954	if (!dev->state_saved)
 955		return;
 956
 957	/* PCI Express register must be restored first */
 958	pci_restore_pcie_state(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 959
 960	/*
 961	 * The Base Address register should be programmed before the command
 962	 * register(s)
 963	 */
 964	for (i = 15; i >= 0; i--) {
 965		pci_read_config_dword(dev, i * 4, &val);
 966		if (val != dev->saved_config_space[i]) {
 967			dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
 968				"space at offset %#x (was %#x, writing %#x)\n",
 969				i, val, (int)dev->saved_config_space[i]);
 970			pci_write_config_dword(dev,i * 4,
 971				dev->saved_config_space[i]);
 972		}
 973	}
 974	pci_restore_pcix_state(dev);
 975	pci_restore_msi_state(dev);
 
 
 
 976	pci_restore_iov_state(dev);
 977
 978	dev->state_saved = false;
 979}
 
 980
 981struct pci_saved_state {
 982	u32 config_space[16];
 983	struct pci_cap_saved_data cap[0];
 984};
 985
 986/**
 987 * pci_store_saved_state - Allocate and return an opaque struct containing
 988 *			   the device saved state.
 989 * @dev: PCI device that we're dealing with
 990 *
 991 * Rerturn NULL if no state or error.
 992 */
 993struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
 994{
 995	struct pci_saved_state *state;
 996	struct pci_cap_saved_state *tmp;
 997	struct pci_cap_saved_data *cap;
 998	struct hlist_node *pos;
 999	size_t size;
1000
1001	if (!dev->state_saved)
1002		return NULL;
1003
1004	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1005
1006	hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next)
1007		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1008
1009	state = kzalloc(size, GFP_KERNEL);
1010	if (!state)
1011		return NULL;
1012
1013	memcpy(state->config_space, dev->saved_config_space,
1014	       sizeof(state->config_space));
1015
1016	cap = state->cap;
1017	hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) {
1018		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1019		memcpy(cap, &tmp->cap, len);
1020		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1021	}
1022	/* Empty cap_save terminates list */
1023
1024	return state;
1025}
1026EXPORT_SYMBOL_GPL(pci_store_saved_state);
1027
1028/**
1029 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1030 * @dev: PCI device that we're dealing with
1031 * @state: Saved state returned from pci_store_saved_state()
1032 */
1033int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
 
1034{
1035	struct pci_cap_saved_data *cap;
1036
1037	dev->state_saved = false;
1038
1039	if (!state)
1040		return 0;
1041
1042	memcpy(dev->saved_config_space, state->config_space,
1043	       sizeof(state->config_space));
1044
1045	cap = state->cap;
1046	while (cap->size) {
1047		struct pci_cap_saved_state *tmp;
1048
1049		tmp = pci_find_saved_cap(dev, cap->cap_nr);
1050		if (!tmp || tmp->cap.size != cap->size)
1051			return -EINVAL;
1052
1053		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1054		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1055		       sizeof(struct pci_cap_saved_data) + cap->size);
1056	}
1057
1058	dev->state_saved = true;
1059	return 0;
1060}
1061EXPORT_SYMBOL_GPL(pci_load_saved_state);
1062
1063/**
1064 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1065 *				   and free the memory allocated for it.
1066 * @dev: PCI device that we're dealing with
1067 * @state: Pointer to saved state returned from pci_store_saved_state()
1068 */
1069int pci_load_and_free_saved_state(struct pci_dev *dev,
1070				  struct pci_saved_state **state)
1071{
1072	int ret = pci_load_saved_state(dev, *state);
1073	kfree(*state);
1074	*state = NULL;
1075	return ret;
1076}
1077EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1078
 
 
 
 
 
1079static int do_pci_enable_device(struct pci_dev *dev, int bars)
1080{
1081	int err;
 
 
 
1082
1083	err = pci_set_power_state(dev, PCI_D0);
1084	if (err < 0 && err != -EIO)
1085		return err;
 
 
 
 
 
1086	err = pcibios_enable_device(dev, bars);
1087	if (err < 0)
1088		return err;
1089	pci_fixup_device(pci_fixup_enable, dev);
1090
 
 
 
 
 
 
 
 
 
 
 
1091	return 0;
1092}
1093
1094/**
1095 * pci_reenable_device - Resume abandoned device
1096 * @dev: PCI device to be resumed
1097 *
1098 *  Note this function is a backend of pci_default_resume and is not supposed
1099 *  to be called by normal code, write proper resume handler and use it instead.
1100 */
1101int pci_reenable_device(struct pci_dev *dev)
1102{
1103	if (pci_is_enabled(dev))
1104		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1105	return 0;
1106}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107
1108static int __pci_enable_device_flags(struct pci_dev *dev,
1109				     resource_size_t flags)
1110{
 
1111	int err;
1112	int i, bars = 0;
1113
1114	/*
1115	 * Power state could be unknown at this point, either due to a fresh
1116	 * boot or a device removal call.  So get the current power state
1117	 * so that things like MSI message writing will behave as expected
1118	 * (e.g. if the device really is in D0 at enable time).
1119	 */
1120	if (dev->pm_cap) {
1121		u16 pmcsr;
1122		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1123		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1124	}
1125
1126	if (atomic_add_return(1, &dev->enable_cnt) > 1)
1127		return 0;		/* already enabled */
1128
1129	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
 
 
 
 
 
 
 
 
1130		if (dev->resource[i].flags & flags)
1131			bars |= (1 << i);
1132
1133	err = do_pci_enable_device(dev, bars);
1134	if (err < 0)
1135		atomic_dec(&dev->enable_cnt);
1136	return err;
1137}
1138
1139/**
1140 * pci_enable_device_io - Initialize a device for use with IO space
1141 * @dev: PCI device to be initialized
1142 *
1143 *  Initialize device before it's used by a driver. Ask low-level code
1144 *  to enable I/O resources. Wake up the device if it was suspended.
1145 *  Beware, this function can fail.
1146 */
1147int pci_enable_device_io(struct pci_dev *dev)
1148{
1149	return __pci_enable_device_flags(dev, IORESOURCE_IO);
1150}
 
1151
1152/**
1153 * pci_enable_device_mem - Initialize a device for use with Memory space
1154 * @dev: PCI device to be initialized
1155 *
1156 *  Initialize device before it's used by a driver. Ask low-level code
1157 *  to enable Memory resources. Wake up the device if it was suspended.
1158 *  Beware, this function can fail.
1159 */
1160int pci_enable_device_mem(struct pci_dev *dev)
1161{
1162	return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1163}
 
1164
1165/**
1166 * pci_enable_device - Initialize device before it's used by a driver.
1167 * @dev: PCI device to be initialized
1168 *
1169 *  Initialize device before it's used by a driver. Ask low-level code
1170 *  to enable I/O and memory. Wake up the device if it was suspended.
1171 *  Beware, this function can fail.
1172 *
1173 *  Note we don't actually enable the device many times if we call
1174 *  this function repeatedly (we just increment the count).
1175 */
1176int pci_enable_device(struct pci_dev *dev)
1177{
1178	return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1179}
 
1180
1181/*
1182 * Managed PCI resources.  This manages device on/off, intx/msi/msix
1183 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1184 * there's no need to track it separately.  pci_devres is initialized
1185 * when a device is enabled using managed PCI device enable interface.
1186 */
1187struct pci_devres {
1188	unsigned int enabled:1;
1189	unsigned int pinned:1;
1190	unsigned int orig_intx:1;
1191	unsigned int restore_intx:1;
1192	u32 region_mask;
1193};
1194
1195static void pcim_release(struct device *gendev, void *res)
1196{
1197	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1198	struct pci_devres *this = res;
1199	int i;
1200
1201	if (dev->msi_enabled)
1202		pci_disable_msi(dev);
1203	if (dev->msix_enabled)
1204		pci_disable_msix(dev);
1205
1206	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1207		if (this->region_mask & (1 << i))
1208			pci_release_region(dev, i);
1209
1210	if (this->restore_intx)
1211		pci_intx(dev, this->orig_intx);
1212
1213	if (this->enabled && !this->pinned)
1214		pci_disable_device(dev);
1215}
1216
1217static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1218{
1219	struct pci_devres *dr, *new_dr;
1220
1221	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1222	if (dr)
1223		return dr;
1224
1225	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1226	if (!new_dr)
1227		return NULL;
1228	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1229}
1230
1231static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1232{
1233	if (pci_is_managed(pdev))
1234		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1235	return NULL;
1236}
1237
1238/**
1239 * pcim_enable_device - Managed pci_enable_device()
1240 * @pdev: PCI device to be initialized
1241 *
1242 * Managed pci_enable_device().
 
 
1243 */
1244int pcim_enable_device(struct pci_dev *pdev)
1245{
1246	struct pci_devres *dr;
1247	int rc;
1248
1249	dr = get_pci_dr(pdev);
1250	if (unlikely(!dr))
1251		return -ENOMEM;
1252	if (dr->enabled)
1253		return 0;
1254
1255	rc = pci_enable_device(pdev);
1256	if (!rc) {
1257		pdev->is_managed = 1;
1258		dr->enabled = 1;
1259	}
1260	return rc;
1261}
1262
1263/**
1264 * pcim_pin_device - Pin managed PCI device
1265 * @pdev: PCI device to pin
 
1266 *
1267 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1268 * driver detach.  @pdev must have been enabled with
1269 * pcim_enable_device().
1270 */
1271void pcim_pin_device(struct pci_dev *pdev)
1272{
1273	struct pci_devres *dr;
1274
1275	dr = find_pci_dr(pdev);
1276	WARN_ON(!dr || !dr->enabled);
1277	if (dr)
1278		dr->pinned = 1;
1279}
1280
1281/**
1282 * pcibios_disable_device - disable arch specific PCI resources for device dev
1283 * @dev: the PCI device to disable
1284 *
1285 * Disables architecture specific PCI resources for the device. This
1286 * is the default implementation. Architecture implementations can
1287 * override this.
1288 */
1289void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1290
1291static void do_pci_disable_device(struct pci_dev *dev)
1292{
1293	u16 pci_command;
1294
1295	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1296	if (pci_command & PCI_COMMAND_MASTER) {
1297		pci_command &= ~PCI_COMMAND_MASTER;
1298		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1299	}
1300
1301	pcibios_disable_device(dev);
1302}
1303
1304/**
1305 * pci_disable_enabled_device - Disable device without updating enable_cnt
1306 * @dev: PCI device to disable
1307 *
1308 * NOTE: This function is a backend of PCI power management routines and is
1309 * not supposed to be called drivers.
1310 */
1311void pci_disable_enabled_device(struct pci_dev *dev)
1312{
1313	if (pci_is_enabled(dev))
1314		do_pci_disable_device(dev);
1315}
1316
1317/**
1318 * pci_disable_device - Disable PCI device after use
1319 * @dev: PCI device to be disabled
1320 *
1321 * Signal to the system that the PCI device is not in use by the system
1322 * anymore.  This only involves disabling PCI bus-mastering, if active.
1323 *
1324 * Note we don't actually disable the device until all callers of
1325 * pci_enable_device() have called pci_disable_device().
1326 */
1327void
1328pci_disable_device(struct pci_dev *dev)
1329{
1330	struct pci_devres *dr;
1331
1332	dr = find_pci_dr(dev);
1333	if (dr)
1334		dr->enabled = 0;
1335
1336	if (atomic_sub_return(1, &dev->enable_cnt) != 0)
 
 
 
1337		return;
1338
1339	do_pci_disable_device(dev);
1340
1341	dev->is_busmaster = 0;
1342}
 
1343
1344/**
1345 * pcibios_set_pcie_reset_state - set reset state for device dev
1346 * @dev: the PCIe device reset
1347 * @state: Reset state to enter into
1348 *
1349 *
1350 * Sets the PCIe reset state for the device. This is the default
1351 * implementation. Architecture implementations can override this.
1352 */
1353int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1354							enum pcie_reset_state state)
1355{
1356	return -EINVAL;
1357}
1358
1359/**
1360 * pci_set_pcie_reset_state - set reset state for device dev
1361 * @dev: the PCIe device reset
1362 * @state: Reset state to enter into
1363 *
1364 *
1365 * Sets the PCI reset state for the device.
1366 */
1367int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1368{
1369	return pcibios_set_pcie_reset_state(dev, state);
1370}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371
1372/**
1373 * pci_check_pme_status - Check if given device has generated PME.
1374 * @dev: Device to check.
1375 *
1376 * Check the PME status of the device and if set, clear it and clear PME enable
1377 * (if set).  Return 'true' if PME status and PME enable were both set or
1378 * 'false' otherwise.
1379 */
1380bool pci_check_pme_status(struct pci_dev *dev)
1381{
1382	int pmcsr_pos;
1383	u16 pmcsr;
1384	bool ret = false;
1385
1386	if (!dev->pm_cap)
1387		return false;
1388
1389	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1390	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1391	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1392		return false;
1393
1394	/* Clear PME status. */
1395	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1396	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1397		/* Disable PME to avoid interrupt flood. */
1398		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1399		ret = true;
1400	}
1401
1402	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1403
1404	return ret;
1405}
1406
1407/**
1408 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1409 * @dev: Device to handle.
1410 * @ign: Ignored.
1411 *
1412 * Check if @dev has generated PME and queue a resume request for it in that
1413 * case.
1414 */
1415static int pci_pme_wakeup(struct pci_dev *dev, void *ign)
1416{
 
 
 
1417	if (pci_check_pme_status(dev)) {
1418		pci_wakeup_event(dev);
1419		pm_request_resume(&dev->dev);
1420	}
1421	return 0;
1422}
1423
1424/**
1425 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1426 * @bus: Top bus of the subtree to walk.
1427 */
1428void pci_pme_wakeup_bus(struct pci_bus *bus)
1429{
1430	if (bus)
1431		pci_walk_bus(bus, pci_pme_wakeup, NULL);
1432}
1433
 
1434/**
1435 * pci_pme_capable - check the capability of PCI device to generate PME#
1436 * @dev: PCI device to handle.
1437 * @state: PCI state from which device will issue PME#.
1438 */
1439bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1440{
1441	if (!dev->pm_cap)
1442		return false;
1443
1444	return !!(dev->pme_support & (1 << state));
1445}
 
1446
1447static void pci_pme_list_scan(struct work_struct *work)
1448{
1449	struct pci_pme_device *pme_dev;
1450
1451	mutex_lock(&pci_pme_list_mutex);
1452	if (!list_empty(&pci_pme_list)) {
1453		list_for_each_entry(pme_dev, &pci_pme_list, list)
1454			pci_pme_wakeup(pme_dev->dev, NULL);
1455		schedule_delayed_work(&pci_pme_work, msecs_to_jiffies(PME_TIMEOUT));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1456	}
 
 
 
1457	mutex_unlock(&pci_pme_list_mutex);
1458}
1459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460/**
1461 * pci_external_pme - is a device an external PCI PME source?
1462 * @dev: PCI device to check
1463 *
1464 */
1465
1466static bool pci_external_pme(struct pci_dev *dev)
1467{
1468	if (pci_is_pcie(dev) || dev->bus->number == 0)
1469		return false;
1470	return true;
 
 
 
 
 
 
 
 
 
 
 
1471}
1472
1473/**
1474 * pci_pme_active - enable or disable PCI device's PME# function
1475 * @dev: PCI device to handle.
1476 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1477 *
1478 * The caller must verify that the device is capable of generating PME# before
1479 * calling this function with @enable equal to 'true'.
1480 */
1481void pci_pme_active(struct pci_dev *dev, bool enable)
1482{
1483	u16 pmcsr;
1484
1485	if (!dev->pm_cap)
1486		return;
1487
1488	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1489	/* Clear PME_Status by writing 1 to it and enable PME# */
1490	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1491	if (!enable)
1492		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1493
1494	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1495
1496	/* PCI (as opposed to PCIe) PME requires that the device have
1497	   its PME# line hooked up correctly. Not all hardware vendors
1498	   do this, so the PME never gets delivered and the device
1499	   remains asleep. The easiest way around this is to
1500	   periodically walk the list of suspended devices and check
1501	   whether any have their PME flag set. The assumption is that
1502	   we'll wake up often enough anyway that this won't be a huge
1503	   hit, and the power savings from the devices will still be a
1504	   win. */
 
 
 
 
 
 
 
 
 
 
1505
1506	if (pci_external_pme(dev)) {
1507		struct pci_pme_device *pme_dev;
1508		if (enable) {
1509			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1510					  GFP_KERNEL);
1511			if (!pme_dev)
1512				goto out;
 
 
1513			pme_dev->dev = dev;
1514			mutex_lock(&pci_pme_list_mutex);
1515			list_add(&pme_dev->list, &pci_pme_list);
1516			if (list_is_singular(&pci_pme_list))
1517				schedule_delayed_work(&pci_pme_work,
1518						      msecs_to_jiffies(PME_TIMEOUT));
 
1519			mutex_unlock(&pci_pme_list_mutex);
1520		} else {
1521			mutex_lock(&pci_pme_list_mutex);
1522			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1523				if (pme_dev->dev == dev) {
1524					list_del(&pme_dev->list);
1525					kfree(pme_dev);
1526					break;
1527				}
1528			}
1529			mutex_unlock(&pci_pme_list_mutex);
1530		}
1531	}
1532
1533out:
1534	dev_printk(KERN_DEBUG, &dev->dev, "PME# %s\n",
1535			enable ? "enabled" : "disabled");
1536}
 
1537
1538/**
1539 * __pci_enable_wake - enable PCI device as wakeup event source
1540 * @dev: PCI device affected
1541 * @state: PCI state from which device will issue wakeup events
1542 * @runtime: True if the events are to be generated at run time
1543 * @enable: True to enable event generation; false to disable
1544 *
1545 * This enables the device as a wakeup event source, or disables it.
1546 * When such events involves platform-specific hooks, those hooks are
1547 * called automatically by this routine.
1548 *
1549 * Devices with legacy power management (no standard PCI PM capabilities)
1550 * always require such platform hooks.
1551 *
1552 * RETURN VALUE:
1553 * 0 is returned on success
1554 * -EINVAL is returned if device is not supposed to wake up the system
1555 * Error code depending on the platform is returned if both the platform and
1556 * the native mechanism fail to enable the generation of wake-up events
1557 */
1558int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1559		      bool runtime, bool enable)
1560{
1561	int ret = 0;
1562
1563	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1564		return -EINVAL;
 
 
 
 
 
 
 
1565
1566	/* Don't do the same thing twice in a row for one device. */
1567	if (!!enable == !!dev->wakeup_prepared)
1568		return 0;
1569
1570	/*
1571	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1572	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1573	 * enable.  To disable wake-up we call the platform first, for symmetry.
1574	 */
1575
1576	if (enable) {
1577		int error;
1578
1579		if (pci_pme_capable(dev, state))
 
 
 
 
 
 
 
1580			pci_pme_active(dev, true);
1581		else
1582			ret = 1;
1583		error = runtime ? platform_pci_run_wake(dev, true) :
1584					platform_pci_sleep_wake(dev, true);
1585		if (ret)
1586			ret = error;
1587		if (!ret)
1588			dev->wakeup_prepared = true;
1589	} else {
1590		if (runtime)
1591			platform_pci_run_wake(dev, false);
1592		else
1593			platform_pci_sleep_wake(dev, false);
1594		pci_pme_active(dev, false);
1595		dev->wakeup_prepared = false;
1596	}
1597
1598	return ret;
1599}
1600EXPORT_SYMBOL(__pci_enable_wake);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1601
1602/**
1603 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1604 * @dev: PCI device to prepare
1605 * @enable: True to enable wake-up event generation; false to disable
1606 *
1607 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1608 * and this function allows them to set that up cleanly - pci_enable_wake()
1609 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1610 * ordering constraints.
1611 *
1612 * This function only returns error code if the device is not capable of
1613 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1614 * enable wake-up power for it.
1615 */
1616int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1617{
1618	return pci_pme_capable(dev, PCI_D3cold) ?
1619			pci_enable_wake(dev, PCI_D3cold, enable) :
1620			pci_enable_wake(dev, PCI_D3hot, enable);
1621}
 
1622
1623/**
1624 * pci_target_state - find an appropriate low power state for a given PCI dev
1625 * @dev: PCI device
 
1626 *
1627 * Use underlying platform code to find a supported low power state for @dev.
1628 * If the platform can't manage @dev, return the deepest state from which it
1629 * can generate wake events, based on any available PME info.
1630 */
1631pci_power_t pci_target_state(struct pci_dev *dev)
1632{
1633	pci_power_t target_state = PCI_D3hot;
1634
1635	if (platform_pci_power_manageable(dev)) {
1636		/*
1637		 * Call the platform to choose the target state of the device
1638		 * and enable wake-up from this state if supported.
1639		 */
1640		pci_power_t state = platform_pci_choose_state(dev);
1641
1642		switch (state) {
1643		case PCI_POWER_ERROR:
1644		case PCI_UNKNOWN:
1645			break;
 
1646		case PCI_D1:
1647		case PCI_D2:
1648			if (pci_no_d1d2(dev))
1649				break;
1650		default:
1651			target_state = state;
1652		}
1653	} else if (!dev->pm_cap) {
1654		target_state = PCI_D0;
1655	} else if (device_may_wakeup(&dev->dev)) {
 
 
 
 
 
 
 
 
 
 
 
 
1656		/*
1657		 * Find the deepest state from which the device can generate
1658		 * wake-up events, make it the target state and enable device
1659		 * to generate PME#.
1660		 */
1661		if (dev->pme_support) {
1662			while (target_state
1663			      && !(dev->pme_support & (1 << target_state)))
1664				target_state--;
1665		}
 
 
1666	}
1667
1668	return target_state;
1669}
1670
1671/**
1672 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
 
1673 * @dev: Device to handle.
1674 *
1675 * Choose the power state appropriate for the device depending on whether
1676 * it can wake up the system and/or is power manageable by the platform
1677 * (PCI_D3hot is the default) and put the device into that state.
1678 */
1679int pci_prepare_to_sleep(struct pci_dev *dev)
1680{
1681	pci_power_t target_state = pci_target_state(dev);
 
1682	int error;
1683
1684	if (target_state == PCI_POWER_ERROR)
1685		return -EIO;
1686
1687	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1688
1689	error = pci_set_power_state(dev, target_state);
1690
1691	if (error)
1692		pci_enable_wake(dev, target_state, false);
1693
1694	return error;
1695}
 
1696
1697/**
1698 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
 
1699 * @dev: Device to handle.
1700 *
1701 * Disable device's system wake-up capability and put it into D0.
1702 */
1703int pci_back_from_sleep(struct pci_dev *dev)
1704{
 
 
 
 
 
1705	pci_enable_wake(dev, PCI_D0, false);
1706	return pci_set_power_state(dev, PCI_D0);
1707}
 
1708
1709/**
1710 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1711 * @dev: PCI device being suspended.
1712 *
1713 * Prepare @dev to generate wake-up events at run time and put it into a low
1714 * power state.
1715 */
1716int pci_finish_runtime_suspend(struct pci_dev *dev)
1717{
1718	pci_power_t target_state = pci_target_state(dev);
1719	int error;
1720
 
1721	if (target_state == PCI_POWER_ERROR)
1722		return -EIO;
1723
1724	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1725
1726	error = pci_set_power_state(dev, target_state);
1727
1728	if (error)
1729		__pci_enable_wake(dev, target_state, true, false);
1730
1731	return error;
1732}
1733
1734/**
1735 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1736 * @dev: Device to check.
1737 *
1738 * Return true if the device itself is cabable of generating wake-up events
1739 * (through the platform or using the native PCIe PME) or if the device supports
1740 * PME and one of its upstream bridges can generate wake-up events.
1741 */
1742bool pci_dev_run_wake(struct pci_dev *dev)
1743{
1744	struct pci_bus *bus = dev->bus;
1745
1746	if (device_run_wake(&dev->dev))
1747		return true;
1748
1749	if (!dev->pme_support)
1750		return false;
1751
 
 
 
 
 
 
 
1752	while (bus->parent) {
1753		struct pci_dev *bridge = bus->self;
1754
1755		if (device_run_wake(&bridge->dev))
1756			return true;
1757
1758		bus = bus->parent;
1759	}
1760
1761	/* We have reached the root bus. */
1762	if (bus->bridge)
1763		return device_run_wake(bus->bridge);
1764
1765	return false;
1766}
1767EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1768
1769/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1770 * pci_pm_init - Initialize PM functions of given PCI device
1771 * @dev: PCI device to handle.
1772 */
1773void pci_pm_init(struct pci_dev *dev)
1774{
1775	int pm;
 
1776	u16 pmc;
1777
1778	pm_runtime_forbid(&dev->dev);
 
 
1779	device_enable_async_suspend(&dev->dev);
1780	dev->wakeup_prepared = false;
1781
1782	dev->pm_cap = 0;
 
1783
1784	/* find PCI PM capability in list */
1785	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1786	if (!pm)
1787		return;
1788	/* Check device's ability to generate PME# */
1789	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1790
1791	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1792		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1793			pmc & PCI_PM_CAP_VER_MASK);
1794		return;
1795	}
1796
1797	dev->pm_cap = pm;
1798	dev->d3_delay = PCI_PM_D3_WAIT;
 
 
 
1799
1800	dev->d1_support = false;
1801	dev->d2_support = false;
1802	if (!pci_no_d1d2(dev)) {
1803		if (pmc & PCI_PM_CAP_D1)
1804			dev->d1_support = true;
1805		if (pmc & PCI_PM_CAP_D2)
1806			dev->d2_support = true;
1807
1808		if (dev->d1_support || dev->d2_support)
1809			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1810				   dev->d1_support ? " D1" : "",
1811				   dev->d2_support ? " D2" : "");
1812	}
1813
1814	pmc &= PCI_PM_CAP_PME_MASK;
1815	if (pmc) {
1816		dev_printk(KERN_DEBUG, &dev->dev,
1817			 "PME# supported from%s%s%s%s%s\n",
1818			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1819			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1820			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1821			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1822			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1823		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
 
1824		/*
1825		 * Make device's PM flags reflect the wake-up capability, but
1826		 * let the user space enable it to wake up the system as needed.
1827		 */
1828		device_set_wakeup_capable(&dev->dev, true);
1829		/* Disable the PME# generation functionality */
1830		pci_pme_active(dev, false);
1831	} else {
1832		dev->pme_support = 0;
1833	}
 
 
 
 
1834}
1835
1836/**
1837 * platform_pci_wakeup_init - init platform wakeup if present
1838 * @dev: PCI device
1839 *
1840 * Some devices don't have PCI PM caps but can still generate wakeup
1841 * events through platform methods (like ACPI events).  If @dev supports
1842 * platform wakeup events, set the device flag to indicate as much.  This
1843 * may be redundant if the device also supports PCI PM caps, but double
1844 * initialization should be safe in that case.
1845 */
1846void platform_pci_wakeup_init(struct pci_dev *dev)
1847{
1848	if (!platform_pci_can_wakeup(dev))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1849		return;
1850
1851	device_set_wakeup_capable(&dev->dev, true);
1852	platform_pci_sleep_wake(dev, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1853}
1854
1855/**
1856 * pci_add_save_buffer - allocate buffer for saving given capability registers
 
1857 * @dev: the PCI device
1858 * @cap: the capability to allocate the buffer for
 
1859 * @size: requested size of the buffer
1860 */
1861static int pci_add_cap_save_buffer(
1862	struct pci_dev *dev, char cap, unsigned int size)
1863{
1864	int pos;
1865	struct pci_cap_saved_state *save_state;
1866
1867	pos = pci_find_capability(dev, cap);
1868	if (pos <= 0)
 
 
 
 
1869		return 0;
1870
1871	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1872	if (!save_state)
1873		return -ENOMEM;
1874
1875	save_state->cap.cap_nr = cap;
 
1876	save_state->cap.size = size;
1877	pci_add_saved_cap(dev, save_state);
1878
1879	return 0;
1880}
1881
 
 
 
 
 
 
 
 
 
 
1882/**
1883 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1884 * @dev: the PCI device
1885 */
1886void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1887{
1888	int error;
1889
1890	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1891					PCI_EXP_SAVE_REGS * sizeof(u16));
1892	if (error)
1893		dev_err(&dev->dev,
1894			"unable to preallocate PCI Express save buffer\n");
1895
1896	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1897	if (error)
1898		dev_err(&dev->dev,
1899			"unable to preallocate PCI-X save buffer\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1900}
1901
1902/**
1903 * pci_enable_ari - enable ARI forwarding if hardware support it
1904 * @dev: the PCI device
 
 
 
1905 */
1906void pci_enable_ari(struct pci_dev *dev)
1907{
1908	int pos;
1909	u32 cap;
1910	u16 flags, ctrl;
1911	struct pci_dev *bridge;
1912
1913	if (!pci_is_pcie(dev) || dev->devfn)
1914		return;
1915
1916	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1917	if (!pos)
1918		return;
1919
1920	bridge = dev->bus->self;
1921	if (!bridge || !pci_is_pcie(bridge))
1922		return;
1923
1924	pos = pci_pcie_cap(bridge);
1925	if (!pos)
1926		return;
1927
1928	/* ARI is a PCIe v2 feature */
1929	pci_read_config_word(bridge, pos + PCI_EXP_FLAGS, &flags);
1930	if ((flags & PCI_EXP_FLAGS_VERS) < 2)
1931		return;
1932
1933	pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1934	if (!(cap & PCI_EXP_DEVCAP2_ARI))
1935		return;
1936
1937	pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1938	ctrl |= PCI_EXP_DEVCTL2_ARI;
1939	pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1940
1941	bridge->ari_enabled = 1;
 
 
 
 
1942}
1943
1944/**
1945 * pci_enable_ido - enable ID-based ordering on a device
1946 * @dev: the PCI device
1947 * @type: which types of IDO to enable
1948 *
1949 * Enable ID-based ordering on @dev.  @type can contain the bits
1950 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
1951 * which types of transactions are allowed to be re-ordered.
1952 */
1953void pci_enable_ido(struct pci_dev *dev, unsigned long type)
1954{
1955	int pos;
1956	u16 ctrl;
1957
1958	pos = pci_pcie_cap(dev);
1959	if (!pos)
1960		return;
1961
1962	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
1963	if (type & PCI_EXP_IDO_REQUEST)
1964		ctrl |= PCI_EXP_IDO_REQ_EN;
1965	if (type & PCI_EXP_IDO_COMPLETION)
1966		ctrl |= PCI_EXP_IDO_CMP_EN;
1967	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
1968}
1969EXPORT_SYMBOL(pci_enable_ido);
1970
1971/**
1972 * pci_disable_ido - disable ID-based ordering on a device
1973 * @dev: the PCI device
1974 * @type: which types of IDO to disable
1975 */
1976void pci_disable_ido(struct pci_dev *dev, unsigned long type)
1977{
1978	int pos;
1979	u16 ctrl;
1980
1981	if (!pci_is_pcie(dev))
1982		return;
1983
1984	pos = pci_pcie_cap(dev);
1985	if (!pos)
1986		return;
 
 
 
 
1987
1988	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
1989	if (type & PCI_EXP_IDO_REQUEST)
1990		ctrl &= ~PCI_EXP_IDO_REQ_EN;
1991	if (type & PCI_EXP_IDO_COMPLETION)
1992		ctrl &= ~PCI_EXP_IDO_CMP_EN;
1993	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
1994}
1995EXPORT_SYMBOL(pci_disable_ido);
1996
1997/**
1998 * pci_enable_obff - enable optimized buffer flush/fill
1999 * @dev: PCI device
2000 * @type: type of signaling to use
2001 *
2002 * Try to enable @type OBFF signaling on @dev.  It will try using WAKE#
2003 * signaling if possible, falling back to message signaling only if
2004 * WAKE# isn't supported.  @type should indicate whether the PCIe link
2005 * be brought out of L0s or L1 to send the message.  It should be either
2006 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2007 *
2008 * If your device can benefit from receiving all messages, even at the
2009 * power cost of bringing the link back up from a low power state, use
2010 * %PCI_EXP_OBFF_SIGNAL_ALWAYS.  Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2011 * preferred type).
2012 *
2013 * RETURNS:
2014 * Zero on success, appropriate error number on failure.
 
 
 
 
 
2015 */
2016int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2017{
2018	int pos;
2019	u32 cap;
2020	u16 ctrl;
2021	int ret;
2022
2023	if (!pci_is_pcie(dev))
2024		return -ENOTSUPP;
2025
2026	pos = pci_pcie_cap(dev);
2027	if (!pos)
2028		return -ENOTSUPP;
2029
2030	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2031	if (!(cap & PCI_EXP_OBFF_MASK))
2032		return -ENOTSUPP; /* no OBFF support at all */
2033
2034	/* Make sure the topology supports OBFF as well */
2035	if (dev->bus) {
2036		ret = pci_enable_obff(dev->bus->self, type);
2037		if (ret)
2038			return ret;
2039	}
2040
2041	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2042	if (cap & PCI_EXP_OBFF_WAKE)
2043		ctrl |= PCI_EXP_OBFF_WAKE_EN;
2044	else {
2045		switch (type) {
2046		case PCI_EXP_OBFF_SIGNAL_L0:
2047			if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2048				ctrl |= PCI_EXP_OBFF_MSGA_EN;
2049			break;
2050		case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2051			ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2052			ctrl |= PCI_EXP_OBFF_MSGB_EN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2053			break;
2054		default:
2055			WARN(1, "bad OBFF signal type\n");
2056			return -ENOTSUPP;
2057		}
2058	}
2059	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2060
2061	return 0;
 
 
 
 
2062}
2063EXPORT_SYMBOL(pci_enable_obff);
2064
2065/**
2066 * pci_disable_obff - disable optimized buffer flush/fill
2067 * @dev: PCI device
 
 
2068 *
2069 * Disable OBFF on @dev.
 
2070 */
2071void pci_disable_obff(struct pci_dev *dev)
 
2072{
2073	int pos;
2074	u16 ctrl;
2075
2076	if (!pci_is_pcie(dev))
2077		return;
2078
2079	pos = pci_pcie_cap(dev);
2080	if (!pos)
2081		return;
 
 
2082
2083	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2084	ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2085	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
 
2086}
2087EXPORT_SYMBOL(pci_disable_obff);
2088
2089/**
2090 * pci_ltr_supported - check whether a device supports LTR
2091 * @dev: PCI device
2092 *
2093 * RETURNS:
2094 * True if @dev supports latency tolerance reporting, false otherwise.
2095 */
2096bool pci_ltr_supported(struct pci_dev *dev)
2097{
2098	int pos;
2099	u32 cap;
2100
2101	if (!pci_is_pcie(dev))
2102		return false;
2103
2104	pos = pci_pcie_cap(dev);
2105	if (!pos)
2106		return false;
2107
2108	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2109
2110	return cap & PCI_EXP_DEVCAP2_LTR;
 
 
 
 
 
 
2111}
2112EXPORT_SYMBOL(pci_ltr_supported);
2113
2114/**
2115 * pci_enable_ltr - enable latency tolerance reporting
2116 * @dev: PCI device
2117 *
2118 * Enable LTR on @dev if possible, which means enabling it first on
2119 * upstream ports.
2120 *
2121 * RETURNS:
2122 * Zero on success, errno on failure.
 
2123 */
2124int pci_enable_ltr(struct pci_dev *dev)
2125{
2126	int pos;
2127	u16 ctrl;
2128	int ret;
2129
2130	if (!pci_ltr_supported(dev))
2131		return -ENOTSUPP;
2132
2133	pos = pci_pcie_cap(dev);
2134	if (!pos)
2135		return -ENOTSUPP;
2136
2137	/* Only primary function can enable/disable LTR */
2138	if (PCI_FUNC(dev->devfn) != 0)
2139		return -EINVAL;
2140
2141	/* Enable upstream ports first */
2142	if (dev->bus) {
2143		ret = pci_enable_ltr(dev->bus->self);
2144		if (ret)
2145			return ret;
2146	}
2147
2148	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2149	ctrl |= PCI_EXP_LTR_EN;
2150	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
 
 
2151
2152	return 0;
2153}
2154EXPORT_SYMBOL(pci_enable_ltr);
2155
2156/**
2157 * pci_disable_ltr - disable latency tolerance reporting
2158 * @dev: PCI device
 
 
 
 
2159 */
2160void pci_disable_ltr(struct pci_dev *dev)
2161{
2162	int pos;
2163	u16 ctrl;
2164
2165	if (!pci_ltr_supported(dev))
2166		return;
2167
2168	pos = pci_pcie_cap(dev);
2169	if (!pos)
2170		return;
2171
2172	/* Only primary function can enable/disable LTR */
2173	if (PCI_FUNC(dev->devfn) != 0)
2174		return;
2175
2176	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2177	ctrl &= ~PCI_EXP_LTR_EN;
2178	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2179}
2180EXPORT_SYMBOL(pci_disable_ltr);
2181
2182static int __pci_ltr_scale(int *val)
2183{
2184	int scale = 0;
 
2185
2186	while (*val > 1023) {
2187		*val = (*val + 31) / 32;
2188		scale++;
2189	}
2190	return scale;
2191}
 
2192
2193/**
2194 * pci_set_ltr - set LTR latency values
2195 * @dev: PCI device
2196 * @snoop_lat_ns: snoop latency in nanoseconds
2197 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2198 *
2199 * Figure out the scale and set the LTR values accordingly.
 
2200 */
2201int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2202{
2203	int pos, ret, snoop_scale, nosnoop_scale;
2204	u16 val;
2205
2206	if (!pci_ltr_supported(dev))
2207		return -ENOTSUPP;
2208
2209	snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2210	nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2211
2212	if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2213	    nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2214		return -EINVAL;
2215
2216	if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2217	    (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2218		return -EINVAL;
2219
2220	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2221	if (!pos)
2222		return -ENOTSUPP;
2223
2224	val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2225	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2226	if (ret != 4)
2227		return -EIO;
2228
2229	val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2230	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2231	if (ret != 4)
2232		return -EIO;
2233
2234	return 0;
 
2235}
2236EXPORT_SYMBOL(pci_set_ltr);
2237
2238static int pci_acs_enable;
2239
2240/**
2241 * pci_request_acs - ask for ACS to be enabled if supported
 
 
 
 
 
 
2242 */
2243void pci_request_acs(void)
2244{
2245	pci_acs_enable = 1;
 
 
 
 
 
 
 
 
 
 
 
2246}
2247
2248/**
2249 * pci_enable_acs - enable ACS if hardware support it
2250 * @dev: the PCI device
 
 
 
 
 
 
 
 
 
2251 */
2252void pci_enable_acs(struct pci_dev *dev)
2253{
2254	int pos;
2255	u16 cap;
2256	u16 ctrl;
2257
2258	if (!pci_acs_enable)
2259		return;
 
 
 
 
 
2260
2261	if (!pci_is_pcie(dev))
2262		return;
2263
2264	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2265	if (!pos)
2266		return;
2267
2268	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2269	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2270
2271	/* Source Validation */
2272	ctrl |= (cap & PCI_ACS_SV);
2273
2274	/* P2P Request Redirect */
2275	ctrl |= (cap & PCI_ACS_RR);
2276
2277	/* P2P Completion Redirect */
2278	ctrl |= (cap & PCI_ACS_CR);
2279
2280	/* Upstream Forwarding */
2281	ctrl |= (cap & PCI_ACS_UF);
 
 
 
 
2282
2283	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2284}
 
 
 
 
 
 
2285
2286/**
2287 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2288 * @dev: the PCI device
2289 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2290 *
2291 * Perform INTx swizzling for a device behind one level of bridge.  This is
2292 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2293 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2294 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2295 * the PCI Express Base Specification, Revision 2.1)
2296 */
2297u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
2298{
2299	int slot;
2300
2301	if (pci_ari_enabled(dev->bus))
2302		slot = 0;
2303	else
2304		slot = PCI_SLOT(dev->devfn);
2305
2306	return (((pin - 1) + slot) % 4) + 1;
2307}
 
 
 
 
 
2308
2309int
2310pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2311{
2312	u8 pin;
 
 
2313
2314	pin = dev->pin;
2315	if (!pin)
2316		return -1;
 
 
 
 
2317
2318	while (!pci_is_root_bus(dev->bus)) {
2319		pin = pci_swizzle_interrupt_pin(dev, pin);
2320		dev = dev->bus->self;
2321	}
2322	*bridge = dev;
2323	return pin;
2324}
2325
2326/**
2327 * pci_common_swizzle - swizzle INTx all the way to root bridge
2328 * @dev: the PCI device
2329 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2330 *
2331 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2332 * bridges all the way up to a PCI root bus.
2333 */
2334u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2335{
2336	u8 pin = *pinp;
2337
2338	while (!pci_is_root_bus(dev->bus)) {
2339		pin = pci_swizzle_interrupt_pin(dev, pin);
2340		dev = dev->bus->self;
2341	}
2342	*pinp = pin;
2343	return PCI_SLOT(dev->devfn);
2344}
 
2345
2346/**
2347 *	pci_release_region - Release a PCI bar
2348 *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2349 *	@bar: BAR to release
 
2350 *
2351 *	Releases the PCI I/O and memory resources previously reserved by a
2352 *	successful call to pci_request_region.  Call this function only
2353 *	after all use of the PCI regions has ceased.
2354 */
2355void pci_release_region(struct pci_dev *pdev, int bar)
2356{
2357	struct pci_devres *dr;
2358
2359	if (pci_resource_len(pdev, bar) == 0)
2360		return;
2361	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2362		release_region(pci_resource_start(pdev, bar),
2363				pci_resource_len(pdev, bar));
2364	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2365		release_mem_region(pci_resource_start(pdev, bar),
2366				pci_resource_len(pdev, bar));
2367
2368	dr = find_pci_dr(pdev);
2369	if (dr)
2370		dr->region_mask &= ~(1 << bar);
2371}
 
2372
2373/**
2374 *	__pci_request_region - Reserved PCI I/O and memory resource
2375 *	@pdev: PCI device whose resources are to be reserved
2376 *	@bar: BAR to be reserved
2377 *	@res_name: Name to be associated with resource.
2378 *	@exclusive: whether the region access is exclusive or not
2379 *
2380 *	Mark the PCI region associated with PCI device @pdev BR @bar as
2381 *	being reserved by owner @res_name.  Do not access any
2382 *	address inside the PCI regions unless this call returns
2383 *	successfully.
2384 *
2385 *	If @exclusive is set, then the region is marked so that userspace
2386 *	is explicitly not allowed to map the resource via /dev/mem or
2387 * 	sysfs MMIO access.
2388 *
2389 *	Returns 0 on success, or %EBUSY on error.  A warning
2390 *	message is also printed on failure.
2391 */
2392static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2393									int exclusive)
2394{
2395	struct pci_devres *dr;
2396
2397	if (pci_resource_len(pdev, bar) == 0)
2398		return 0;
2399		
2400	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2401		if (!request_region(pci_resource_start(pdev, bar),
2402			    pci_resource_len(pdev, bar), res_name))
2403			goto err_out;
2404	}
2405	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2406		if (!__request_mem_region(pci_resource_start(pdev, bar),
2407					pci_resource_len(pdev, bar), res_name,
2408					exclusive))
2409			goto err_out;
2410	}
2411
2412	dr = find_pci_dr(pdev);
2413	if (dr)
2414		dr->region_mask |= 1 << bar;
2415
2416	return 0;
2417
2418err_out:
2419	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2420		 &pdev->resource[bar]);
2421	return -EBUSY;
2422}
2423
2424/**
2425 *	pci_request_region - Reserve PCI I/O and memory resource
2426 *	@pdev: PCI device whose resources are to be reserved
2427 *	@bar: BAR to be reserved
2428 *	@res_name: Name to be associated with resource
2429 *
2430 *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2431 *	being reserved by owner @res_name.  Do not access any
2432 *	address inside the PCI regions unless this call returns
2433 *	successfully.
2434 *
2435 *	Returns 0 on success, or %EBUSY on error.  A warning
2436 *	message is also printed on failure.
2437 */
2438int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2439{
2440	return __pci_request_region(pdev, bar, res_name, 0);
2441}
 
2442
2443/**
2444 *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2445 *	@pdev: PCI device whose resources are to be reserved
2446 *	@bar: BAR to be reserved
2447 *	@res_name: Name to be associated with resource.
2448 *
2449 *	Mark the PCI region associated with PCI device @pdev BR @bar as
2450 *	being reserved by owner @res_name.  Do not access any
2451 *	address inside the PCI regions unless this call returns
2452 *	successfully.
2453 *
2454 *	Returns 0 on success, or %EBUSY on error.  A warning
2455 *	message is also printed on failure.
2456 *
2457 *	The key difference that _exclusive makes it that userspace is
2458 *	explicitly not allowed to map the resource via /dev/mem or
2459 * 	sysfs.
2460 */
2461int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2462{
2463	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2464}
2465/**
2466 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2467 * @pdev: PCI device whose resources were previously reserved
2468 * @bars: Bitmask of BARs to be released
2469 *
2470 * Release selected PCI I/O and memory resources previously reserved.
2471 * Call this function only after all use of the PCI regions has ceased.
2472 */
2473void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2474{
2475	int i;
2476
2477	for (i = 0; i < 6; i++)
2478		if (bars & (1 << i))
2479			pci_release_region(pdev, i);
2480}
 
2481
2482int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2483				 const char *res_name, int excl)
2484{
2485	int i;
2486
2487	for (i = 0; i < 6; i++)
2488		if (bars & (1 << i))
2489			if (__pci_request_region(pdev, i, res_name, excl))
2490				goto err_out;
2491	return 0;
2492
2493err_out:
2494	while(--i >= 0)
2495		if (bars & (1 << i))
2496			pci_release_region(pdev, i);
2497
2498	return -EBUSY;
2499}
2500
2501
2502/**
2503 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2504 * @pdev: PCI device whose resources are to be reserved
2505 * @bars: Bitmask of BARs to be requested
2506 * @res_name: Name to be associated with resource
2507 */
2508int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2509				 const char *res_name)
2510{
2511	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2512}
 
2513
2514int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2515				 int bars, const char *res_name)
2516{
2517	return __pci_request_selected_regions(pdev, bars, res_name,
2518			IORESOURCE_EXCLUSIVE);
2519}
 
2520
2521/**
2522 *	pci_release_regions - Release reserved PCI I/O and memory resources
2523 *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2524 *
2525 *	Releases all PCI I/O and memory resources previously reserved by a
2526 *	successful call to pci_request_regions.  Call this function only
2527 *	after all use of the PCI regions has ceased.
 
2528 */
2529
2530void pci_release_regions(struct pci_dev *pdev)
2531{
2532	pci_release_selected_regions(pdev, (1 << 6) - 1);
2533}
 
2534
2535/**
2536 *	pci_request_regions - Reserved PCI I/O and memory resources
2537 *	@pdev: PCI device whose resources are to be reserved
2538 *	@res_name: Name to be associated with resource.
2539 *
2540 *	Mark all PCI regions associated with PCI device @pdev as
2541 *	being reserved by owner @res_name.  Do not access any
2542 *	address inside the PCI regions unless this call returns
2543 *	successfully.
2544 *
2545 *	Returns 0 on success, or %EBUSY on error.  A warning
2546 *	message is also printed on failure.
2547 */
2548int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2549{
2550	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
 
2551}
 
2552
2553/**
2554 *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2555 *	@pdev: PCI device whose resources are to be reserved
2556 *	@res_name: Name to be associated with resource.
2557 *
2558 *	Mark all PCI regions associated with PCI device @pdev as
2559 *	being reserved by owner @res_name.  Do not access any
2560 *	address inside the PCI regions unless this call returns
2561 *	successfully.
2562 *
2563 *	pci_request_regions_exclusive() will mark the region so that
2564 * 	/dev/mem and the sysfs MMIO access will not be allowed.
2565 *
2566 *	Returns 0 on success, or %EBUSY on error.  A warning
2567 *	message is also printed on failure.
2568 */
2569int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2570{
2571	return pci_request_selected_regions_exclusive(pdev,
2572					((1 << 6) - 1), res_name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2573}
 
2574
2575static void __pci_set_master(struct pci_dev *dev, bool enable)
2576{
2577	u16 old_cmd, cmd;
2578
2579	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2580	if (enable)
2581		cmd = old_cmd | PCI_COMMAND_MASTER;
2582	else
2583		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2584	if (cmd != old_cmd) {
2585		dev_dbg(&dev->dev, "%s bus mastering\n",
2586			enable ? "enabling" : "disabling");
2587		pci_write_config_word(dev, PCI_COMMAND, cmd);
2588	}
2589	dev->is_busmaster = enable;
2590}
2591
2592/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2593 * pci_set_master - enables bus-mastering for device dev
2594 * @dev: the PCI device to enable
2595 *
2596 * Enables bus-mastering on the device and calls pcibios_set_master()
2597 * to do the needed arch specific settings.
2598 */
2599void pci_set_master(struct pci_dev *dev)
2600{
2601	__pci_set_master(dev, true);
2602	pcibios_set_master(dev);
2603}
 
2604
2605/**
2606 * pci_clear_master - disables bus-mastering for device dev
2607 * @dev: the PCI device to disable
2608 */
2609void pci_clear_master(struct pci_dev *dev)
2610{
2611	__pci_set_master(dev, false);
2612}
 
2613
2614/**
2615 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2616 * @dev: the PCI device for which MWI is to be enabled
2617 *
2618 * Helper function for pci_set_mwi.
2619 * Originally copied from drivers/net/acenic.c.
2620 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2621 *
2622 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2623 */
2624int pci_set_cacheline_size(struct pci_dev *dev)
2625{
2626	u8 cacheline_size;
2627
2628	if (!pci_cache_line_size)
2629		return -EINVAL;
2630
2631	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2632	   equal to or multiple of the right value. */
2633	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2634	if (cacheline_size >= pci_cache_line_size &&
2635	    (cacheline_size % pci_cache_line_size) == 0)
2636		return 0;
2637
2638	/* Write the correct value. */
2639	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2640	/* Read it back. */
2641	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2642	if (cacheline_size == pci_cache_line_size)
2643		return 0;
2644
2645	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2646		   "supported\n", pci_cache_line_size << 2);
2647
2648	return -EINVAL;
2649}
2650EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2651
2652#ifdef PCI_DISABLE_MWI
2653int pci_set_mwi(struct pci_dev *dev)
2654{
2655	return 0;
2656}
2657
2658int pci_try_set_mwi(struct pci_dev *dev)
2659{
2660	return 0;
2661}
2662
2663void pci_clear_mwi(struct pci_dev *dev)
2664{
2665}
2666
2667#else
2668
2669/**
2670 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2671 * @dev: the PCI device for which MWI is enabled
2672 *
2673 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2674 *
2675 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2676 */
2677int
2678pci_set_mwi(struct pci_dev *dev)
2679{
 
 
 
2680	int rc;
2681	u16 cmd;
2682
2683	rc = pci_set_cacheline_size(dev);
2684	if (rc)
2685		return rc;
2686
2687	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2688	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2689		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2690		cmd |= PCI_COMMAND_INVALIDATE;
2691		pci_write_config_word(dev, PCI_COMMAND, cmd);
2692	}
2693	
2694	return 0;
 
2695}
 
2696
2697/**
2698 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2699 * @dev: the PCI device for which MWI is enabled
2700 *
2701 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2702 * Callers are not required to check the return value.
2703 *
2704 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2705 */
2706int pci_try_set_mwi(struct pci_dev *dev)
2707{
2708	int rc = pci_set_mwi(dev);
2709	return rc;
 
 
 
2710}
 
2711
2712/**
2713 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2714 * @dev: the PCI device to disable
2715 *
2716 * Disables PCI Memory-Write-Invalidate transaction on the device
2717 */
2718void
2719pci_clear_mwi(struct pci_dev *dev)
2720{
 
2721	u16 cmd;
2722
2723	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2724	if (cmd & PCI_COMMAND_INVALIDATE) {
2725		cmd &= ~PCI_COMMAND_INVALIDATE;
2726		pci_write_config_word(dev, PCI_COMMAND, cmd);
2727	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2728}
2729#endif /* ! PCI_DISABLE_MWI */
2730
2731/**
2732 * pci_intx - enables/disables PCI INTx for device dev
2733 * @pdev: the PCI device to operate on
2734 * @enable: boolean: whether to enable or disable PCI INTx
2735 *
2736 * Enables/disables PCI INTx for device dev
2737 */
2738void
2739pci_intx(struct pci_dev *pdev, int enable)
2740{
2741	u16 pci_command, new;
2742
2743	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2744
2745	if (enable) {
2746		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2747	} else {
2748		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2749	}
2750
2751	if (new != pci_command) {
2752		struct pci_devres *dr;
2753
2754		pci_write_config_word(pdev, PCI_COMMAND, new);
2755
2756		dr = find_pci_dr(pdev);
2757		if (dr && !dr->restore_intx) {
2758			dr->restore_intx = 1;
2759			dr->orig_intx = !enable;
2760		}
2761	}
2762}
 
2763
2764/**
2765 * pci_msi_off - disables any msi or msix capabilities
2766 * @dev: the PCI device to operate on
2767 *
2768 * If you want to use msi see pci_enable_msi and friends.
2769 * This is a lower level primitive that allows us to disable
2770 * msi operation at the device level.
2771 */
2772void pci_msi_off(struct pci_dev *dev)
2773{
2774	int pos;
2775	u16 control;
2776
2777	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2778	if (pos) {
2779		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2780		control &= ~PCI_MSI_FLAGS_ENABLE;
2781		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2782	}
2783	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2784	if (pos) {
2785		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2786		control &= ~PCI_MSIX_FLAGS_ENABLE;
2787		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2788	}
2789}
2790EXPORT_SYMBOL_GPL(pci_msi_off);
2791
2792int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
 
 
 
 
 
 
 
2793{
2794	return dma_set_max_seg_size(&dev->dev, size);
2795}
2796EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2797
2798int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2799{
2800	return dma_set_seg_boundary(&dev->dev, mask);
 
 
 
 
 
 
 
 
 
 
2801}
2802EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2803
2804static int pcie_flr(struct pci_dev *dev, int probe)
 
 
 
 
 
 
 
2805{
2806	int i;
2807	int pos;
2808	u32 cap;
2809	u16 status, control;
2810
2811	pos = pci_pcie_cap(dev);
2812	if (!pos)
2813		return -ENOTTY;
2814
2815	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2816	if (!(cap & PCI_EXP_DEVCAP_FLR))
2817		return -ENOTTY;
2818
2819	if (probe)
2820		return 0;
2821
2822	/* Wait for Transaction Pending bit clean */
2823	for (i = 0; i < 4; i++) {
2824		if (i)
2825			msleep((1 << (i - 1)) * 100);
2826
2827		pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2828		if (!(status & PCI_EXP_DEVSTA_TRPND))
2829			goto clear;
2830	}
2831
2832	dev_err(&dev->dev, "transaction is not cleared; "
2833			"proceeding with reset anyway\n");
2834
2835clear:
2836	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
2837	control |= PCI_EXP_DEVCTL_BCR_FLR;
2838	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
2839
2840	msleep(100);
2841
2842	return 0;
2843}
 
2844
2845static int pci_af_flr(struct pci_dev *dev, int probe)
2846{
2847	int i;
2848	int pos;
2849	u8 cap;
2850	u8 status;
2851
2852	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2853	if (!pos)
2854		return -ENOTTY;
2855
 
 
 
2856	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2857	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2858		return -ENOTTY;
2859
2860	if (probe)
2861		return 0;
2862
2863	/* Wait for Transaction Pending bit clean */
2864	for (i = 0; i < 4; i++) {
2865		if (i)
2866			msleep((1 << (i - 1)) * 100);
 
 
 
 
2867
2868		pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2869		if (!(status & PCI_AF_STATUS_TP))
2870			goto clear;
2871	}
2872
2873	dev_err(&dev->dev, "transaction is not cleared; "
2874			"proceeding with reset anyway\n");
2875
2876clear:
2877	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
 
 
 
 
2878	msleep(100);
2879
2880	return 0;
2881}
2882
2883/**
2884 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
2885 * @dev: Device to reset.
2886 * @probe: If set, only check if the device can be reset this way.
2887 *
2888 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
2889 * unset, it will be reinitialized internally when going from PCI_D3hot to
2890 * PCI_D0.  If that's the case and the device is not in a low-power state
2891 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
2892 *
2893 * NOTE: This causes the caller to sleep for twice the device power transition
2894 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
2895 * by devault (i.e. unless the @dev's d3_delay field has a different value).
2896 * Moreover, only devices in D0 can be reset by this function.
2897 */
2898static int pci_pm_reset(struct pci_dev *dev, int probe)
2899{
2900	u16 csr;
2901
2902	if (!dev->pm_cap)
2903		return -ENOTTY;
2904
2905	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2906	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2907		return -ENOTTY;
2908
2909	if (probe)
2910		return 0;
2911
2912	if (dev->current_state != PCI_D0)
2913		return -EINVAL;
2914
2915	csr &= ~PCI_PM_CTRL_STATE_MASK;
2916	csr |= PCI_D3hot;
2917	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2918	pci_dev_d3_sleep(dev);
2919
2920	csr &= ~PCI_PM_CTRL_STATE_MASK;
2921	csr |= PCI_D0;
2922	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2923	pci_dev_d3_sleep(dev);
2924
2925	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2926}
2927
2928static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2929{
2930	u16 ctrl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2931	struct pci_dev *pdev;
2932
2933	if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
 
2934		return -ENOTTY;
2935
2936	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2937		if (pdev != dev)
2938			return -ENOTTY;
2939
2940	if (probe)
2941		return 0;
2942
2943	pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2944	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2945	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2946	msleep(100);
2947
2948	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2949	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2950	msleep(100);
2951
2952	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2953}
2954
2955static int pci_dev_reset(struct pci_dev *dev, int probe)
2956{
2957	int rc;
2958
2959	might_sleep();
 
 
 
 
 
 
 
 
 
 
 
 
2960
2961	if (!probe) {
2962		pci_block_user_cfg_access(dev);
2963		/* block PM suspend, driver probe, etc. */
2964		device_lock(&dev->dev);
 
 
 
2965	}
2966
2967	rc = pci_dev_specific_reset(dev, probe);
2968	if (rc != -ENOTTY)
2969		goto done;
2970
2971	rc = pcie_flr(dev, probe);
2972	if (rc != -ENOTTY)
2973		goto done;
 
 
 
2974
2975	rc = pci_af_flr(dev, probe);
2976	if (rc != -ENOTTY)
2977		goto done;
 
2978
2979	rc = pci_pm_reset(dev, probe);
2980	if (rc != -ENOTTY)
2981		goto done;
 
 
 
 
2982
2983	rc = pci_parent_bus_reset(dev, probe);
2984done:
2985	if (!probe) {
2986		device_unlock(&dev->dev);
2987		pci_unblock_user_cfg_access(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2988	}
2989
2990	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2991}
2992
 
 
 
 
 
2993/**
2994 * __pci_reset_function - reset a PCI device function
 
2995 * @dev: PCI device to reset
2996 *
2997 * Some devices allow an individual function to be reset without affecting
2998 * other functions in the same device.  The PCI device must be responsive
2999 * to PCI config space in order to use this function.
3000 *
3001 * The device function is presumed to be unused when this function is called.
 
 
3002 * Resetting the device will make the contents of PCI configuration space
3003 * random, so any caller of this must be prepared to reinitialise the
3004 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3005 * etc.
3006 *
3007 * Returns 0 if the device function was successfully reset or negative if the
3008 * device doesn't support resetting a single function.
3009 */
3010int __pci_reset_function(struct pci_dev *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3011{
3012	return pci_dev_reset(dev, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3013}
3014EXPORT_SYMBOL_GPL(__pci_reset_function);
3015
3016/**
3017 * pci_probe_reset_function - check whether the device can be safely reset
3018 * @dev: PCI device to reset
3019 *
3020 * Some devices allow an individual function to be reset without affecting
3021 * other functions in the same device.  The PCI device must be responsive
3022 * to PCI config space in order to use this function.
3023 *
3024 * Returns 0 if the device function can be reset or negative if the
 
 
 
 
 
3025 * device doesn't support resetting a single function.
3026 */
3027int pci_probe_reset_function(struct pci_dev *dev)
3028{
3029	return pci_dev_reset(dev, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
3030}
 
3031
3032/**
3033 * pci_reset_function - quiesce and reset a PCI device function
3034 * @dev: PCI device to reset
3035 *
3036 * Some devices allow an individual function to be reset without affecting
3037 * other functions in the same device.  The PCI device must be responsive
3038 * to PCI config space in order to use this function.
3039 *
3040 * This function does not just reset the PCI portion of a device, but
3041 * clears all the state associated with the device.  This function differs
3042 * from __pci_reset_function in that it saves and restores device state
3043 * over the reset.
 
3044 *
3045 * Returns 0 if the device function was successfully reset or negative if the
3046 * device doesn't support resetting a single function.
3047 */
3048int pci_reset_function(struct pci_dev *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3049{
3050	int rc;
3051
3052	rc = pci_dev_reset(dev, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3053	if (rc)
3054		return rc;
3055
3056	pci_save_state(dev);
 
 
 
 
 
 
 
3057
3058	/*
3059	 * both INTx and MSI are disabled after the Interrupt Disable bit
3060	 * is set and the Bus Master bit is cleared.
3061	 */
3062	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3063
3064	rc = pci_dev_reset(dev, 0);
 
 
3065
3066	pci_restore_state(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3067
3068	return rc;
3069}
3070EXPORT_SYMBOL_GPL(pci_reset_function);
 
 
 
 
 
 
 
 
 
 
 
 
3071
3072/**
3073 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3074 * @dev: PCI device to query
3075 *
3076 * Returns mmrbc: maximum designed memory read count in bytes
3077 *    or appropriate error value.
3078 */
3079int pcix_get_max_mmrbc(struct pci_dev *dev)
3080{
3081	int cap;
3082	u32 stat;
3083
3084	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3085	if (!cap)
3086		return -EINVAL;
3087
3088	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3089		return -EINVAL;
3090
3091	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3092}
3093EXPORT_SYMBOL(pcix_get_max_mmrbc);
3094
3095/**
3096 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3097 * @dev: PCI device to query
3098 *
3099 * Returns mmrbc: maximum memory read count in bytes
3100 *    or appropriate error value.
3101 */
3102int pcix_get_mmrbc(struct pci_dev *dev)
3103{
3104	int cap;
3105	u16 cmd;
3106
3107	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3108	if (!cap)
3109		return -EINVAL;
3110
3111	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3112		return -EINVAL;
3113
3114	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3115}
3116EXPORT_SYMBOL(pcix_get_mmrbc);
3117
3118/**
3119 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3120 * @dev: PCI device to query
3121 * @mmrbc: maximum memory read count in bytes
3122 *    valid values are 512, 1024, 2048, 4096
3123 *
3124 * If possible sets maximum memory read byte count, some bridges have erratas
3125 * that prevent this.
3126 */
3127int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3128{
3129	int cap;
3130	u32 stat, v, o;
3131	u16 cmd;
3132
3133	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3134		return -EINVAL;
3135
3136	v = ffs(mmrbc) - 10;
3137
3138	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3139	if (!cap)
3140		return -EINVAL;
3141
3142	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3143		return -EINVAL;
3144
3145	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3146		return -E2BIG;
3147
3148	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3149		return -EINVAL;
3150
3151	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3152	if (o != v) {
3153		if (v > o && dev->bus &&
3154		   (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3155			return -EIO;
3156
3157		cmd &= ~PCI_X_CMD_MAX_READ;
3158		cmd |= v << 2;
3159		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3160			return -EIO;
3161	}
3162	return 0;
3163}
3164EXPORT_SYMBOL(pcix_set_mmrbc);
3165
3166/**
3167 * pcie_get_readrq - get PCI Express read request size
3168 * @dev: PCI device to query
3169 *
3170 * Returns maximum memory read request in bytes
3171 *    or appropriate error value.
3172 */
3173int pcie_get_readrq(struct pci_dev *dev)
3174{
3175	int ret, cap;
3176	u16 ctl;
3177
3178	cap = pci_pcie_cap(dev);
3179	if (!cap)
3180		return -EINVAL;
3181
3182	ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3183	if (!ret)
3184		ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3185
3186	return ret;
3187}
3188EXPORT_SYMBOL(pcie_get_readrq);
3189
3190/**
3191 * pcie_set_readrq - set PCI Express maximum memory read request
3192 * @dev: PCI device to query
3193 * @rq: maximum memory read count in bytes
3194 *    valid values are 128, 256, 512, 1024, 2048, 4096
3195 *
3196 * If possible sets maximum memory read request in bytes
3197 */
3198int pcie_set_readrq(struct pci_dev *dev, int rq)
3199{
3200	int cap, err = -EINVAL;
3201	u16 ctl, v;
 
3202
3203	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3204		goto out;
3205
3206	v = (ffs(rq) - 8) << 12;
 
 
 
 
 
 
3207
3208	cap = pci_pcie_cap(dev);
3209	if (!cap)
3210		goto out;
3211
3212	err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3213	if (err)
3214		goto out;
 
3215
3216	if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
3217		ctl &= ~PCI_EXP_DEVCTL_READRQ;
3218		ctl |= v;
3219		err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3220	}
3221
3222out:
3223	return err;
 
 
3224}
3225EXPORT_SYMBOL(pcie_set_readrq);
3226
3227/**
3228 * pcie_get_mps - get PCI Express maximum payload size
3229 * @dev: PCI device to query
3230 *
3231 * Returns maximum payload size in bytes
3232 *    or appropriate error value.
3233 */
3234int pcie_get_mps(struct pci_dev *dev)
3235{
3236	int ret, cap;
3237	u16 ctl;
3238
3239	cap = pci_pcie_cap(dev);
3240	if (!cap)
3241		return -EINVAL;
3242
3243	ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3244	if (!ret)
3245		ret = 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3246
3247	return ret;
3248}
 
3249
3250/**
3251 * pcie_set_mps - set PCI Express maximum payload size
3252 * @dev: PCI device to query
3253 * @mps: maximum payload size in bytes
3254 *    valid values are 128, 256, 512, 1024, 2048, 4096
3255 *
3256 * If possible sets maximum payload size
3257 */
3258int pcie_set_mps(struct pci_dev *dev, int mps)
3259{
3260	int cap, err = -EINVAL;
3261	u16 ctl, v;
3262
3263	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3264		goto out;
3265
3266	v = ffs(mps) - 8;
3267	if (v > dev->pcie_mpss) 
3268		goto out;
3269	v <<= 5;
3270
3271	cap = pci_pcie_cap(dev);
3272	if (!cap)
3273		goto out;
 
 
 
 
 
 
 
 
3274
3275	err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
 
 
 
 
 
3276	if (err)
3277		goto out;
3278
3279	if ((ctl & PCI_EXP_DEVCTL_PAYLOAD) != v) {
3280		ctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
3281		ctl |= v;
3282		err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
 
 
 
 
 
 
 
 
 
 
 
3283	}
3284out:
3285	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3286}
3287
3288/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3289 * pci_select_bars - Make BAR mask from the type of resource
3290 * @dev: the PCI device for which BAR mask is made
3291 * @flags: resource type mask to be selected
3292 *
3293 * This helper routine makes bar mask from the type of resource.
3294 */
3295int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3296{
3297	int i, bars = 0;
3298	for (i = 0; i < PCI_NUM_RESOURCES; i++)
3299		if (pci_resource_flags(dev, i) & flags)
3300			bars |= (1 << i);
3301	return bars;
3302}
3303
3304/**
3305 * pci_resource_bar - get position of the BAR associated with a resource
3306 * @dev: the PCI device
3307 * @resno: the resource number
3308 * @type: the BAR type to be filled in
3309 *
3310 * Returns BAR position in config space, or 0 if the BAR is invalid.
3311 */
3312int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3313{
3314	int reg;
3315
3316	if (resno < PCI_ROM_RESOURCE) {
3317		*type = pci_bar_unknown;
3318		return PCI_BASE_ADDRESS_0 + 4 * resno;
3319	} else if (resno == PCI_ROM_RESOURCE) {
3320		*type = pci_bar_mem32;
3321		return dev->rom_base_reg;
3322	} else if (resno < PCI_BRIDGE_RESOURCES) {
3323		/* device specific resource */
3324		reg = pci_iov_resource_bar(dev, resno, type);
3325		if (reg)
3326			return reg;
3327	}
3328
3329	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3330	return 0;
3331}
3332
3333/* Some architectures require additional programming to enable VGA */
3334static arch_set_vga_state_t arch_set_vga_state;
3335
3336void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3337{
3338	arch_set_vga_state = func;	/* NULL disables */
3339}
3340
3341static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3342		      unsigned int command_bits, u32 flags)
3343{
3344	if (arch_set_vga_state)
3345		return arch_set_vga_state(dev, decode, command_bits,
3346						flags);
3347	return 0;
3348}
3349
3350/**
3351 * pci_set_vga_state - set VGA decode state on device and parents if requested
3352 * @dev: the PCI device
3353 * @decode: true = enable decoding, false = disable decoding
3354 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3355 * @flags: traverse ancestors and change bridges
3356 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3357 */
3358int pci_set_vga_state(struct pci_dev *dev, bool decode,
3359		      unsigned int command_bits, u32 flags)
3360{
3361	struct pci_bus *bus;
3362	struct pci_dev *bridge;
3363	u16 cmd;
3364	int rc;
3365
3366	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3367
3368	/* ARCH specific VGA enables */
3369	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3370	if (rc)
3371		return rc;
3372
3373	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3374		pci_read_config_word(dev, PCI_COMMAND, &cmd);
3375		if (decode == true)
3376			cmd |= command_bits;
3377		else
3378			cmd &= ~command_bits;
3379		pci_write_config_word(dev, PCI_COMMAND, cmd);
3380	}
3381
3382	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3383		return 0;
3384
3385	bus = dev->bus;
3386	while (bus) {
3387		bridge = bus->self;
3388		if (bridge) {
3389			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3390					     &cmd);
3391			if (decode == true)
3392				cmd |= PCI_BRIDGE_CTL_VGA;
3393			else
3394				cmd &= ~PCI_BRIDGE_CTL_VGA;
3395			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3396					      cmd);
3397		}
3398		bus = bus->parent;
3399	}
3400	return 0;
3401}
3402
3403#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3404static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3405static DEFINE_SPINLOCK(resource_alignment_lock);
3406
3407/**
3408 * pci_specified_resource_alignment - get resource alignment specified by user.
3409 * @dev: the PCI device to get
 
3410 *
3411 * RETURNS: Resource alignment if it is specified.
3412 *          Zero if it is not specified.
3413 */
3414resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
 
3415{
3416	int seg, bus, slot, func, align_order, count;
3417	resource_size_t align = 0;
3418	char *p;
 
3419
3420	spin_lock(&resource_alignment_lock);
3421	p = resource_alignment_param;
 
 
 
 
 
 
 
 
3422	while (*p) {
3423		count = 0;
3424		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3425							p[count] == '@') {
3426			p += count + 1;
3427		} else {
3428			align_order = -1;
3429		}
3430		if (sscanf(p, "%x:%x:%x.%x%n",
3431			&seg, &bus, &slot, &func, &count) != 4) {
3432			seg = 0;
3433			if (sscanf(p, "%x:%x.%x%n",
3434					&bus, &slot, &func, &count) != 3) {
3435				/* Invalid format */
3436				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3437					p);
3438				break;
3439			}
 
 
3440		}
3441		p += count;
3442		if (seg == pci_domain_nr(dev->bus) &&
3443			bus == dev->bus->number &&
3444			slot == PCI_SLOT(dev->devfn) &&
3445			func == PCI_FUNC(dev->devfn)) {
3446			if (align_order == -1) {
3447				align = PAGE_SIZE;
3448			} else {
3449				align = 1 << align_order;
3450			}
3451			/* Found */
3452			break;
3453		}
 
3454		if (*p != ';' && *p != ',') {
3455			/* End of param or invalid format */
3456			break;
3457		}
3458		p++;
3459	}
 
3460	spin_unlock(&resource_alignment_lock);
3461	return align;
3462}
3463
3464/**
3465 * pci_is_reassigndev - check if specified PCI is target device to reassign
3466 * @dev: the PCI device to check
3467 *
3468 * RETURNS: non-zero for PCI device is a target device to reassign,
3469 *          or zero is not.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3470 */
3471int pci_is_reassigndev(struct pci_dev *dev)
3472{
3473	return (pci_specified_resource_alignment(dev) != 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3474}
3475
3476ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3477{
3478	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3479		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3480	spin_lock(&resource_alignment_lock);
3481	strncpy(resource_alignment_param, buf, count);
3482	resource_alignment_param[count] = '\0';
3483	spin_unlock(&resource_alignment_lock);
 
3484	return count;
3485}
3486
3487ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
 
3488{
3489	size_t count;
 
 
 
 
 
 
 
 
 
 
 
 
3490	spin_lock(&resource_alignment_lock);
3491	count = snprintf(buf, size, "%s", resource_alignment_param);
 
 
 
 
 
 
3492	spin_unlock(&resource_alignment_lock);
3493	return count;
3494}
3495
3496static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3497{
3498	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3499}
3500
3501static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3502					const char *buf, size_t count)
3503{
3504	return pci_set_resource_alignment_param(buf, count);
3505}
3506
3507BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3508					pci_resource_alignment_store);
3509
3510static int __init pci_resource_alignment_sysfs_init(void)
3511{
3512	return bus_create_file(&pci_bus_type,
3513					&bus_attr_resource_alignment);
3514}
3515
3516late_initcall(pci_resource_alignment_sysfs_init);
3517
3518static void __devinit pci_no_domains(void)
3519{
3520#ifdef CONFIG_PCI_DOMAINS
3521	pci_domains_supported = 0;
3522#endif
3523}
3524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3525/**
3526 * pci_ext_cfg_enabled - can we access extended PCI config space?
3527 * @dev: The PCI device of the root bridge.
3528 *
3529 * Returns 1 if we can access PCI extended config space (offsets
3530 * greater than 0xff). This is the default implementation. Architecture
3531 * implementations can override this.
3532 */
3533int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
3534{
3535	return 1;
3536}
3537
3538void __weak pci_fixup_cardbus(struct pci_bus *bus)
3539{
3540}
3541EXPORT_SYMBOL(pci_fixup_cardbus);
3542
3543static int __init pci_setup(char *str)
3544{
3545	while (str) {
3546		char *k = strchr(str, ',');
3547		if (k)
3548			*k++ = 0;
3549		if (*str && (str = pcibios_setup(str)) && *str) {
3550			if (!strcmp(str, "nomsi")) {
3551				pci_no_msi();
 
 
 
3552			} else if (!strcmp(str, "noaer")) {
3553				pci_no_aer();
 
 
 
 
3554			} else if (!strncmp(str, "realloc", 7)) {
3555				pci_realloc();
3556			} else if (!strcmp(str, "nodomains")) {
3557				pci_no_domains();
 
 
3558			} else if (!strncmp(str, "cbiosize=", 9)) {
3559				pci_cardbus_io_size = memparse(str + 9, &str);
3560			} else if (!strncmp(str, "cbmemsize=", 10)) {
3561				pci_cardbus_mem_size = memparse(str + 10, &str);
3562			} else if (!strncmp(str, "resource_alignment=", 19)) {
3563				pci_set_resource_alignment_param(str + 19,
3564							strlen(str + 19));
3565			} else if (!strncmp(str, "ecrc=", 5)) {
3566				pcie_ecrc_get_policy(str + 5);
3567			} else if (!strncmp(str, "hpiosize=", 9)) {
3568				pci_hotplug_io_size = memparse(str + 9, &str);
 
 
 
 
3569			} else if (!strncmp(str, "hpmemsize=", 10)) {
3570				pci_hotplug_mem_size = memparse(str + 10, &str);
 
 
 
 
 
 
3571			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3572				pcie_bus_config = PCIE_BUS_TUNE_OFF;
3573			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
3574				pcie_bus_config = PCIE_BUS_SAFE;
3575			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
3576				pcie_bus_config = PCIE_BUS_PERFORMANCE;
3577			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3578				pcie_bus_config = PCIE_BUS_PEER2PEER;
 
 
 
 
3579			} else {
3580				printk(KERN_ERR "PCI: Unknown option `%s'\n",
3581						str);
3582			}
3583		}
3584		str = k;
3585	}
3586	return 0;
3587}
3588early_param("pci", pci_setup);
3589
3590EXPORT_SYMBOL(pci_reenable_device);
3591EXPORT_SYMBOL(pci_enable_device_io);
3592EXPORT_SYMBOL(pci_enable_device_mem);
3593EXPORT_SYMBOL(pci_enable_device);
3594EXPORT_SYMBOL(pcim_enable_device);
3595EXPORT_SYMBOL(pcim_pin_device);
3596EXPORT_SYMBOL(pci_disable_device);
3597EXPORT_SYMBOL(pci_find_capability);
3598EXPORT_SYMBOL(pci_bus_find_capability);
3599EXPORT_SYMBOL(pci_release_regions);
3600EXPORT_SYMBOL(pci_request_regions);
3601EXPORT_SYMBOL(pci_request_regions_exclusive);
3602EXPORT_SYMBOL(pci_release_region);
3603EXPORT_SYMBOL(pci_request_region);
3604EXPORT_SYMBOL(pci_request_region_exclusive);
3605EXPORT_SYMBOL(pci_release_selected_regions);
3606EXPORT_SYMBOL(pci_request_selected_regions);
3607EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3608EXPORT_SYMBOL(pci_set_master);
3609EXPORT_SYMBOL(pci_clear_master);
3610EXPORT_SYMBOL(pci_set_mwi);
3611EXPORT_SYMBOL(pci_try_set_mwi);
3612EXPORT_SYMBOL(pci_clear_mwi);
3613EXPORT_SYMBOL_GPL(pci_intx);
3614EXPORT_SYMBOL(pci_assign_resource);
3615EXPORT_SYMBOL(pci_find_parent_resource);
3616EXPORT_SYMBOL(pci_select_bars);
3617
3618EXPORT_SYMBOL(pci_set_power_state);
3619EXPORT_SYMBOL(pci_save_state);
3620EXPORT_SYMBOL(pci_restore_state);
3621EXPORT_SYMBOL(pci_pme_capable);
3622EXPORT_SYMBOL(pci_pme_active);
3623EXPORT_SYMBOL(pci_wake_from_d3);
3624EXPORT_SYMBOL(pci_target_state);
3625EXPORT_SYMBOL(pci_prepare_to_sleep);
3626EXPORT_SYMBOL(pci_back_from_sleep);
3627EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
 
  27#include <linux/device.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/pci_hotplug.h>
  30#include <linux/vmalloc.h>
  31#include <asm/dma.h>
  32#include <linux/aer.h>
  33#include <linux/bitfield.h>
  34#include "pci.h"
  35
  36DEFINE_MUTEX(pci_slot_mutex);
  37
  38const char *pci_power_names[] = {
  39	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  40};
  41EXPORT_SYMBOL_GPL(pci_power_names);
  42
  43#ifdef CONFIG_X86_32
  44int isa_dma_bridge_buggy;
  45EXPORT_SYMBOL(isa_dma_bridge_buggy);
  46#endif
  47
  48int pci_pci_problems;
  49EXPORT_SYMBOL(pci_pci_problems);
  50
  51unsigned int pci_pm_d3hot_delay;
  52
  53static void pci_pme_list_scan(struct work_struct *work);
  54
  55static LIST_HEAD(pci_pme_list);
  56static DEFINE_MUTEX(pci_pme_list_mutex);
  57static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  58
  59struct pci_pme_device {
  60	struct list_head list;
  61	struct pci_dev *dev;
  62};
  63
  64#define PME_TIMEOUT 1000 /* How long between PME checks */
  65
  66/*
  67 * Following exit from Conventional Reset, devices must be ready within 1 sec
  68 * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
  69 * Reset (PCIe r6.0 sec 5.8).
  70 */
  71#define PCI_RESET_WAIT 1000 /* msec */
  72
  73/*
  74 * Devices may extend the 1 sec period through Request Retry Status
  75 * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
  76 * limit, but 60 sec ought to be enough for any device to become
  77 * responsive.
  78 */
  79#define PCIE_RESET_READY_POLL_MS 60000 /* msec */
  80
  81static void pci_dev_d3_sleep(struct pci_dev *dev)
  82{
  83	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
  84	unsigned int upper;
  85
  86	if (delay_ms) {
  87		/* Use a 20% upper bound, 1ms minimum */
  88		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
  89		usleep_range(delay_ms * USEC_PER_MSEC,
  90			     (delay_ms + upper) * USEC_PER_MSEC);
  91	}
  92}
  93
  94bool pci_reset_supported(struct pci_dev *dev)
  95{
  96	return dev->reset_methods[0] != 0;
  97}
  98
  99#ifdef CONFIG_PCI_DOMAINS
 100int pci_domains_supported = 1;
 101#endif
 102
 103#define DEFAULT_CARDBUS_IO_SIZE		(256)
 104#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
 105/* pci=cbmemsize=nnM,cbiosize=nn can override this */
 106unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
 107unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
 108
 109#define DEFAULT_HOTPLUG_IO_SIZE		(256)
 110#define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
 111#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
 112/* hpiosize=nn can override this */
 113unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
 114/*
 115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
 116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
 117 * pci=hpmemsize=nnM overrides both
 118 */
 119unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
 120unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
 121
 122#define DEFAULT_HOTPLUG_BUS_SIZE	1
 123unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 124
 125
 126/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
 127#ifdef CONFIG_PCIE_BUS_TUNE_OFF
 128enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
 129#elif defined CONFIG_PCIE_BUS_SAFE
 130enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
 131#elif defined CONFIG_PCIE_BUS_PERFORMANCE
 132enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
 133#elif defined CONFIG_PCIE_BUS_PEER2PEER
 134enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
 135#else
 136enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 137#endif
 138
 139/*
 140 * The default CLS is used if arch didn't set CLS explicitly and not
 141 * all pci devices agree on the same value.  Arch can override either
 142 * the dfl or actual value as it sees fit.  Don't forget this is
 143 * measured in 32-bit words, not bytes.
 144 */
 145u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 146u8 pci_cache_line_size;
 147
 148/*
 149 * If we set up a device for bus mastering, we need to check the latency
 150 * timer as certain BIOSes forget to set it properly.
 151 */
 152unsigned int pcibios_max_latency = 255;
 153
 154/* If set, the PCIe ARI capability will not be used. */
 155static bool pcie_ari_disabled;
 156
 157/* If set, the PCIe ATS capability will not be used. */
 158static bool pcie_ats_disabled;
 159
 160/* If set, the PCI config space of each device is printed during boot. */
 161bool pci_early_dump;
 162
 163bool pci_ats_disabled(void)
 164{
 165	return pcie_ats_disabled;
 166}
 167EXPORT_SYMBOL_GPL(pci_ats_disabled);
 168
 169/* Disable bridge_d3 for all PCIe ports */
 170static bool pci_bridge_d3_disable;
 171/* Force bridge_d3 for all PCIe ports */
 172static bool pci_bridge_d3_force;
 173
 174static int __init pcie_port_pm_setup(char *str)
 175{
 176	if (!strcmp(str, "off"))
 177		pci_bridge_d3_disable = true;
 178	else if (!strcmp(str, "force"))
 179		pci_bridge_d3_force = true;
 180	return 1;
 181}
 182__setup("pcie_port_pm=", pcie_port_pm_setup);
 183
 184/**
 185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 186 * @bus: pointer to PCI bus structure to search
 187 *
 188 * Given a PCI bus, returns the highest PCI bus number present in the set
 189 * including the given PCI bus and its list of child PCI buses.
 190 */
 191unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 192{
 193	struct pci_bus *tmp;
 194	unsigned char max, n;
 195
 196	max = bus->busn_res.end;
 197	list_for_each_entry(tmp, &bus->children, node) {
 198		n = pci_bus_max_busnr(tmp);
 199		if (n > max)
 200			max = n;
 201	}
 202	return max;
 203}
 204EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 205
 206/**
 207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 208 * @pdev: the PCI device
 209 *
 210 * Returns error bits set in PCI_STATUS and clears them.
 211 */
 212int pci_status_get_and_clear_errors(struct pci_dev *pdev)
 213{
 214	u16 status;
 215	int ret;
 216
 217	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 218	if (ret != PCIBIOS_SUCCESSFUL)
 219		return -EIO;
 220
 221	status &= PCI_STATUS_ERROR_BITS;
 222	if (status)
 223		pci_write_config_word(pdev, PCI_STATUS, status);
 224
 225	return status;
 226}
 227EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
 228
 229#ifdef CONFIG_HAS_IOMEM
 230static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
 231					    bool write_combine)
 232{
 233	struct resource *res = &pdev->resource[bar];
 234	resource_size_t start = res->start;
 235	resource_size_t size = resource_size(res);
 236
 237	/*
 238	 * Make sure the BAR is actually a memory resource, not an IO resource
 239	 */
 240	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 241		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 242		return NULL;
 243	}
 244
 245	if (write_combine)
 246		return ioremap_wc(start, size);
 247
 248	return ioremap(start, size);
 249}
 250
 251void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 252{
 253	return __pci_ioremap_resource(pdev, bar, false);
 254}
 255EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 256
 257void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 258{
 259	return __pci_ioremap_resource(pdev, bar, true);
 260}
 261EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 262#endif
 263
 
 264/**
 265 * pci_dev_str_match_path - test if a path string matches a device
 266 * @dev: the PCI device to test
 267 * @path: string to match the device against
 268 * @endptr: pointer to the string after the match
 269 *
 270 * Test if a string (typically from a kernel parameter) formatted as a
 271 * path of device/function addresses matches a PCI device. The string must
 272 * be of the form:
 273 *
 274 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 275 *
 276 * A path for a device can be obtained using 'lspci -t'.  Using a path
 277 * is more robust against bus renumbering than using only a single bus,
 278 * device and function address.
 279 *
 280 * Returns 1 if the string matches the device, 0 if it does not and
 281 * a negative error code if it fails to parse the string.
 282 */
 283static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 284				  const char **endptr)
 285{
 286	int ret;
 287	unsigned int seg, bus, slot, func;
 288	char *wpath, *p;
 289	char end;
 290
 291	*endptr = strchrnul(path, ';');
 292
 293	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
 294	if (!wpath)
 295		return -ENOMEM;
 296
 297	while (1) {
 298		p = strrchr(wpath, '/');
 299		if (!p)
 300			break;
 301		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 302		if (ret != 2) {
 303			ret = -EINVAL;
 304			goto free_and_exit;
 305		}
 306
 307		if (dev->devfn != PCI_DEVFN(slot, func)) {
 308			ret = 0;
 309			goto free_and_exit;
 310		}
 311
 312		/*
 313		 * Note: we don't need to get a reference to the upstream
 314		 * bridge because we hold a reference to the top level
 315		 * device which should hold a reference to the bridge,
 316		 * and so on.
 317		 */
 318		dev = pci_upstream_bridge(dev);
 319		if (!dev) {
 320			ret = 0;
 321			goto free_and_exit;
 322		}
 323
 324		*p = 0;
 325	}
 326
 327	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 328		     &func, &end);
 329	if (ret != 4) {
 330		seg = 0;
 331		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 332		if (ret != 3) {
 333			ret = -EINVAL;
 334			goto free_and_exit;
 335		}
 336	}
 337
 338	ret = (seg == pci_domain_nr(dev->bus) &&
 339	       bus == dev->bus->number &&
 340	       dev->devfn == PCI_DEVFN(slot, func));
 341
 342free_and_exit:
 343	kfree(wpath);
 344	return ret;
 345}
 346
 347/**
 348 * pci_dev_str_match - test if a string matches a device
 349 * @dev: the PCI device to test
 350 * @p: string to match the device against
 351 * @endptr: pointer to the string after the match
 352 *
 353 * Test if a string (typically from a kernel parameter) matches a specified
 354 * PCI device. The string may be of one of the following formats:
 355 *
 356 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 357 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 358 *
 359 * The first format specifies a PCI bus/device/function address which
 360 * may change if new hardware is inserted, if motherboard firmware changes,
 361 * or due to changes caused in kernel parameters. If the domain is
 362 * left unspecified, it is taken to be 0.  In order to be robust against
 363 * bus renumbering issues, a path of PCI device/function numbers may be used
 364 * to address the specific device.  The path for a device can be determined
 365 * through the use of 'lspci -t'.
 366 *
 367 * The second format matches devices using IDs in the configuration
 368 * space which may match multiple devices in the system. A value of 0
 369 * for any field will match all devices. (Note: this differs from
 370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 371 * legacy reasons and convenience so users don't have to specify
 372 * FFFFFFFFs on the command line.)
 373 *
 374 * Returns 1 if the string matches the device, 0 if it does not and
 375 * a negative error code if the string cannot be parsed.
 376 */
 377static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 378			     const char **endptr)
 379{
 380	int ret;
 381	int count;
 382	unsigned short vendor, device, subsystem_vendor, subsystem_device;
 383
 384	if (strncmp(p, "pci:", 4) == 0) {
 385		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
 386		p += 4;
 387		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 388			     &subsystem_vendor, &subsystem_device, &count);
 389		if (ret != 4) {
 390			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 391			if (ret != 2)
 392				return -EINVAL;
 393
 394			subsystem_vendor = 0;
 395			subsystem_device = 0;
 396		}
 397
 398		p += count;
 399
 400		if ((!vendor || vendor == dev->vendor) &&
 401		    (!device || device == dev->device) &&
 402		    (!subsystem_vendor ||
 403			    subsystem_vendor == dev->subsystem_vendor) &&
 404		    (!subsystem_device ||
 405			    subsystem_device == dev->subsystem_device))
 406			goto found;
 407	} else {
 408		/*
 409		 * PCI Bus, Device, Function IDs are specified
 410		 * (optionally, may include a path of devfns following it)
 411		 */
 412		ret = pci_dev_str_match_path(dev, p, &p);
 413		if (ret < 0)
 414			return ret;
 415		else if (ret)
 416			goto found;
 417	}
 418
 419	*endptr = p;
 420	return 0;
 421
 422found:
 423	*endptr = p;
 424	return 1;
 425}
 426
 427static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 428				  u8 pos, int cap, int *ttl)
 429{
 430	u8 id;
 431	u16 ent;
 432
 433	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 434
 435	while ((*ttl)--) {
 
 436		if (pos < 0x40)
 437			break;
 438		pos &= ~3;
 439		pci_bus_read_config_word(bus, devfn, pos, &ent);
 440
 441		id = ent & 0xff;
 442		if (id == 0xff)
 443			break;
 444		if (id == cap)
 445			return pos;
 446		pos = (ent >> 8);
 447	}
 448	return 0;
 449}
 450
 451static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 452			      u8 pos, int cap)
 453{
 454	int ttl = PCI_FIND_CAP_TTL;
 455
 456	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 457}
 458
 459u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 460{
 461	return __pci_find_next_cap(dev->bus, dev->devfn,
 462				   pos + PCI_CAP_LIST_NEXT, cap);
 463}
 464EXPORT_SYMBOL_GPL(pci_find_next_capability);
 465
 466static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
 467				    unsigned int devfn, u8 hdr_type)
 468{
 469	u16 status;
 470
 471	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 472	if (!(status & PCI_STATUS_CAP_LIST))
 473		return 0;
 474
 475	switch (hdr_type) {
 476	case PCI_HEADER_TYPE_NORMAL:
 477	case PCI_HEADER_TYPE_BRIDGE:
 478		return PCI_CAPABILITY_LIST;
 479	case PCI_HEADER_TYPE_CARDBUS:
 480		return PCI_CB_CAPABILITY_LIST;
 
 
 481	}
 482
 483	return 0;
 484}
 485
 486/**
 487 * pci_find_capability - query for devices' capabilities
 488 * @dev: PCI device to query
 489 * @cap: capability code
 490 *
 491 * Tell if a device supports a given PCI capability.
 492 * Returns the address of the requested capability structure within the
 493 * device's PCI configuration space or 0 in case the device does not
 494 * support it.  Possible values for @cap include:
 495 *
 496 *  %PCI_CAP_ID_PM           Power Management
 497 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 498 *  %PCI_CAP_ID_VPD          Vital Product Data
 499 *  %PCI_CAP_ID_SLOTID       Slot Identification
 500 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 501 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 502 *  %PCI_CAP_ID_PCIX         PCI-X
 503 *  %PCI_CAP_ID_EXP          PCI Express
 504 */
 505u8 pci_find_capability(struct pci_dev *dev, int cap)
 506{
 507	u8 pos;
 508
 509	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 510	if (pos)
 511		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 512
 513	return pos;
 514}
 515EXPORT_SYMBOL(pci_find_capability);
 516
 517/**
 518 * pci_bus_find_capability - query for devices' capabilities
 519 * @bus: the PCI bus to query
 520 * @devfn: PCI device to query
 521 * @cap: capability code
 522 *
 523 * Like pci_find_capability() but works for PCI devices that do not have a
 524 * pci_dev structure set up yet.
 525 *
 526 * Returns the address of the requested capability structure within the
 527 * device's PCI configuration space or 0 in case the device does not
 528 * support it.
 529 */
 530u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 531{
 532	u8 hdr_type, pos;
 
 533
 534	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 535
 536	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
 537	if (pos)
 538		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 539
 540	return pos;
 541}
 542EXPORT_SYMBOL(pci_bus_find_capability);
 543
 544/**
 545 * pci_find_next_ext_capability - Find an extended capability
 546 * @dev: PCI device to query
 547 * @start: address at which to start looking (0 to start at beginning of list)
 548 * @cap: capability code
 549 *
 550 * Returns the address of the next matching extended capability structure
 551 * within the device's PCI configuration space or 0 if the device does
 552 * not support it.  Some capabilities can occur several times, e.g., the
 553 * vendor-specific capability, and this provides a way to find them all.
 
 
 
 
 554 */
 555u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
 556{
 557	u32 header;
 558	int ttl;
 559	u16 pos = PCI_CFG_SPACE_SIZE;
 560
 561	/* minimum 8 bytes per capability */
 562	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 563
 564	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 565		return 0;
 566
 567	if (start)
 568		pos = start;
 569
 570	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 571		return 0;
 572
 573	/*
 574	 * If we have no capabilities, this is indicated by cap ID,
 575	 * cap version and next pointer all being 0.
 576	 */
 577	if (header == 0)
 578		return 0;
 579
 580	while (ttl-- > 0) {
 581		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 582			return pos;
 583
 584		pos = PCI_EXT_CAP_NEXT(header);
 585		if (pos < PCI_CFG_SPACE_SIZE)
 586			break;
 587
 588		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 589			break;
 590	}
 591
 592	return 0;
 593}
 594EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 595
 596/**
 597 * pci_find_ext_capability - Find an extended capability
 598 * @dev: PCI device to query
 599 * @cap: capability code
 
 600 *
 601 * Returns the address of the requested extended capability structure
 602 * within the device's PCI configuration space or 0 if the device does
 603 * not support it.  Possible values for @cap include:
 604 *
 605 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 606 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 607 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 608 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 609 */
 610u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
 
 611{
 612	return pci_find_next_ext_capability(dev, 0, cap);
 613}
 614EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 615
 616/**
 617 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 618 * @dev: PCI device to query
 619 *
 620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 621 * Number.
 622 *
 623 * Returns the DSN, or zero if the capability does not exist.
 624 */
 625u64 pci_get_dsn(struct pci_dev *dev)
 626{
 627	u32 dword;
 628	u64 dsn;
 629	int pos;
 630
 631	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
 632	if (!pos)
 
 633		return 0;
 634
 635	/*
 636	 * The Device Serial Number is two dwords offset 4 bytes from the
 637	 * capability position. The specification says that the first dword is
 638	 * the lower half, and the second dword is the upper half.
 639	 */
 640	pos += 4;
 641	pci_read_config_dword(dev, pos, &dword);
 642	dsn = (u64)dword;
 643	pci_read_config_dword(dev, pos + 4, &dword);
 644	dsn |= ((u64)dword) << 32;
 
 645
 646	return dsn;
 647}
 648EXPORT_SYMBOL_GPL(pci_get_dsn);
 649
 650static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
 651{
 652	int rc, ttl = PCI_FIND_CAP_TTL;
 653	u8 cap, mask;
 654
 655	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 656		mask = HT_3BIT_CAP_MASK;
 657	else
 658		mask = HT_5BIT_CAP_MASK;
 659
 660	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 661				      PCI_CAP_ID_HT, &ttl);
 662	while (pos) {
 663		rc = pci_read_config_byte(dev, pos + 3, &cap);
 664		if (rc != PCIBIOS_SUCCESSFUL)
 665			return 0;
 666
 667		if ((cap & mask) == ht_cap)
 668			return pos;
 669
 670		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 671					      pos + PCI_CAP_LIST_NEXT,
 672					      PCI_CAP_ID_HT, &ttl);
 673	}
 674
 675	return 0;
 676}
 677
 678/**
 679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
 680 * @dev: PCI device to query
 681 * @pos: Position from which to continue searching
 682 * @ht_cap: HyperTransport capability code
 683 *
 684 * To be used in conjunction with pci_find_ht_capability() to search for
 685 * all capabilities matching @ht_cap. @pos should always be a value returned
 686 * from pci_find_ht_capability().
 687 *
 688 * NB. To be 100% safe against broken PCI devices, the caller should take
 689 * steps to avoid an infinite loop.
 690 */
 691u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
 692{
 693	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 694}
 695EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 696
 697/**
 698 * pci_find_ht_capability - query a device's HyperTransport capabilities
 699 * @dev: PCI device to query
 700 * @ht_cap: HyperTransport capability code
 701 *
 702 * Tell if a device supports a given HyperTransport capability.
 703 * Returns an address within the device's PCI configuration space
 704 * or 0 in case the device does not support the request capability.
 705 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 706 * which has a HyperTransport capability matching @ht_cap.
 707 */
 708u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 709{
 710	u8 pos;
 711
 712	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 713	if (pos)
 714		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 715
 716	return pos;
 717}
 718EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 719
 720/**
 721 * pci_find_vsec_capability - Find a vendor-specific extended capability
 722 * @dev: PCI device to query
 723 * @vendor: Vendor ID for which capability is defined
 724 * @cap: Vendor-specific capability ID
 725 *
 726 * If @dev has Vendor ID @vendor, search for a VSEC capability with
 727 * VSEC ID @cap. If found, return the capability offset in
 728 * config space; otherwise return 0.
 729 */
 730u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
 731{
 732	u16 vsec = 0;
 733	u32 header;
 734	int ret;
 735
 736	if (vendor != dev->vendor)
 737		return 0;
 738
 739	while ((vsec = pci_find_next_ext_capability(dev, vsec,
 740						     PCI_EXT_CAP_ID_VNDR))) {
 741		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
 742		if (ret != PCIBIOS_SUCCESSFUL)
 743			continue;
 744
 745		if (PCI_VNDR_HEADER_ID(header) == cap)
 746			return vsec;
 747	}
 748
 749	return 0;
 750}
 751EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
 752
 753/**
 754 * pci_find_dvsec_capability - Find DVSEC for vendor
 755 * @dev: PCI device to query
 756 * @vendor: Vendor ID to match for the DVSEC
 757 * @dvsec: Designated Vendor-specific capability ID
 758 *
 759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
 760 * offset in config space; otherwise return 0.
 761 */
 762u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
 763{
 764	int pos;
 765
 766	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
 767	if (!pos)
 768		return 0;
 769
 770	while (pos) {
 771		u16 v, id;
 772
 773		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
 774		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
 775		if (vendor == v && dvsec == id)
 776			return pos;
 777
 778		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
 779	}
 780
 781	return 0;
 782}
 783EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
 784
 785/**
 786 * pci_find_parent_resource - return resource region of parent bus of given
 787 *			      region
 788 * @dev: PCI device structure contains resources to be searched
 789 * @res: child resource record for which parent is sought
 790 *
 791 * For given resource region of given device, return the resource region of
 792 * parent bus the given region is contained in.
 
 793 */
 794struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 795					  struct resource *res)
 796{
 797	const struct pci_bus *bus = dev->bus;
 798	struct resource *r;
 
 799
 800	pci_bus_for_each_resource(bus, r) {
 801		if (!r)
 802			continue;
 803		if (resource_contains(r, res)) {
 804
 805			/*
 806			 * If the window is prefetchable but the BAR is
 807			 * not, the allocator made a mistake.
 808			 */
 809			if (r->flags & IORESOURCE_PREFETCH &&
 810			    !(res->flags & IORESOURCE_PREFETCH))
 811				return NULL;
 812
 813			/*
 814			 * If we're below a transparent bridge, there may
 815			 * be both a positively-decoded aperture and a
 816			 * subtractively-decoded region that contain the BAR.
 817			 * We want the positively-decoded one, so this depends
 818			 * on pci_bus_for_each_resource() giving us those
 819			 * first.
 820			 */
 821			return r;
 822		}
 823	}
 824	return NULL;
 825}
 826EXPORT_SYMBOL(pci_find_parent_resource);
 827
 828/**
 829 * pci_find_resource - Return matching PCI device resource
 830 * @dev: PCI device to query
 831 * @res: Resource to look for
 832 *
 833 * Goes over standard PCI resources (BARs) and checks if the given resource
 834 * is partially or fully contained in any of them. In that case the
 835 * matching resource is returned, %NULL otherwise.
 836 */
 837struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 
 838{
 839	int i;
 840
 841	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 842		struct resource *r = &dev->resource[i];
 843
 844		if (r->start && resource_contains(r, res))
 845			return r;
 846	}
 847
 848	return NULL;
 849}
 850EXPORT_SYMBOL(pci_find_resource);
 851
 852/**
 853 * pci_resource_name - Return the name of the PCI resource
 854 * @dev: PCI device to query
 855 * @i: index of the resource
 856 *
 857 * Return the standard PCI resource (BAR) name according to their index.
 858 */
 859const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
 860{
 861	static const char * const bar_name[] = {
 862		"BAR 0",
 863		"BAR 1",
 864		"BAR 2",
 865		"BAR 3",
 866		"BAR 4",
 867		"BAR 5",
 868		"ROM",
 869#ifdef CONFIG_PCI_IOV
 870		"VF BAR 0",
 871		"VF BAR 1",
 872		"VF BAR 2",
 873		"VF BAR 3",
 874		"VF BAR 4",
 875		"VF BAR 5",
 876#endif
 877		"bridge window",	/* "io" included in %pR */
 878		"bridge window",	/* "mem" included in %pR */
 879		"bridge window",	/* "mem pref" included in %pR */
 880	};
 881	static const char * const cardbus_name[] = {
 882		"BAR 1",
 883		"unknown",
 884		"unknown",
 885		"unknown",
 886		"unknown",
 887		"unknown",
 888#ifdef CONFIG_PCI_IOV
 889		"unknown",
 890		"unknown",
 891		"unknown",
 892		"unknown",
 893		"unknown",
 894		"unknown",
 895#endif
 896		"CardBus bridge window 0",	/* I/O */
 897		"CardBus bridge window 1",	/* I/O */
 898		"CardBus bridge window 0",	/* mem */
 899		"CardBus bridge window 1",	/* mem */
 900	};
 901
 902	if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
 903	    i < ARRAY_SIZE(cardbus_name))
 904		return cardbus_name[i];
 905
 906	if (i < ARRAY_SIZE(bar_name))
 907		return bar_name[i];
 908
 909	return "unknown";
 910}
 911
 912/**
 913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 914 * @dev: the PCI device to operate on
 915 * @pos: config space offset of status word
 916 * @mask: mask of bit(s) to care about in status word
 917 *
 918 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 919 */
 920int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 921{
 922	int i;
 923
 924	/* Wait for Transaction Pending bit clean */
 925	for (i = 0; i < 4; i++) {
 926		u16 status;
 927		if (i)
 928			msleep((1 << (i - 1)) * 100);
 929
 930		pci_read_config_word(dev, pos, &status);
 931		if (!(status & mask))
 932			return 1;
 933	}
 934
 935	return 0;
 936}
 937
 938static int pci_acs_enable;
 939
 940/**
 941 * pci_request_acs - ask for ACS to be enabled if supported
 942 */
 943void pci_request_acs(void)
 944{
 945	pci_acs_enable = 1;
 946}
 947
 948static const char *disable_acs_redir_param;
 949
 950/**
 951 * pci_disable_acs_redir - disable ACS redirect capabilities
 952 * @dev: the PCI device
 953 *
 954 * For only devices specified in the disable_acs_redir parameter.
 955 */
 956static void pci_disable_acs_redir(struct pci_dev *dev)
 957{
 958	int ret = 0;
 959	const char *p;
 960	int pos;
 961	u16 ctrl;
 962
 963	if (!disable_acs_redir_param)
 964		return;
 965
 966	p = disable_acs_redir_param;
 967	while (*p) {
 968		ret = pci_dev_str_match(dev, p, &p);
 969		if (ret < 0) {
 970			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
 971				     disable_acs_redir_param);
 972
 973			break;
 974		} else if (ret == 1) {
 975			/* Found a match */
 976			break;
 977		}
 978
 979		if (*p != ';' && *p != ',') {
 980			/* End of param or invalid format */
 981			break;
 982		}
 983		p++;
 984	}
 985
 986	if (ret != 1)
 987		return;
 988
 989	if (!pci_dev_specific_disable_acs_redir(dev))
 990		return;
 991
 992	pos = dev->acs_cap;
 993	if (!pos) {
 994		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
 995		return;
 996	}
 997
 998	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 999
1000	/* P2P Request & Completion Redirect */
1001	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
1002
1003	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1004
1005	pci_info(dev, "disabled ACS redirect\n");
1006}
1007
1008/**
1009 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1010 * @dev: the PCI device
1011 */
1012static void pci_std_enable_acs(struct pci_dev *dev)
1013{
1014	int pos;
1015	u16 cap;
1016	u16 ctrl;
1017
1018	pos = dev->acs_cap;
1019	if (!pos)
1020		return;
1021
1022	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1023	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1024
1025	/* Source Validation */
1026	ctrl |= (cap & PCI_ACS_SV);
1027
1028	/* P2P Request Redirect */
1029	ctrl |= (cap & PCI_ACS_RR);
1030
1031	/* P2P Completion Redirect */
1032	ctrl |= (cap & PCI_ACS_CR);
1033
1034	/* Upstream Forwarding */
1035	ctrl |= (cap & PCI_ACS_UF);
1036
1037	/* Enable Translation Blocking for external devices and noats */
1038	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1039		ctrl |= (cap & PCI_ACS_TB);
1040
1041	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1042}
1043
1044/**
1045 * pci_enable_acs - enable ACS if hardware support it
1046 * @dev: the PCI device
1047 */
1048static void pci_enable_acs(struct pci_dev *dev)
1049{
1050	if (!pci_acs_enable)
1051		goto disable_acs_redir;
1052
1053	if (!pci_dev_specific_enable_acs(dev))
1054		goto disable_acs_redir;
1055
1056	pci_std_enable_acs(dev);
1057
1058disable_acs_redir:
1059	/*
1060	 * Note: pci_disable_acs_redir() must be called even if ACS was not
1061	 * enabled by the kernel because it may have been enabled by
1062	 * platform firmware.  So if we are told to disable it, we should
1063	 * always disable it after setting the kernel's default
1064	 * preferences.
1065	 */
1066	pci_disable_acs_redir(dev);
1067}
1068
1069/**
1070 * pcie_read_tlp_log - read TLP Header Log
1071 * @dev: PCIe device
1072 * @where: PCI Config offset of TLP Header Log
1073 * @tlp_log: TLP Log structure to fill
1074 *
1075 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC.
1076 *
1077 * Return: 0 on success and filled TLP Log structure, <0 on error.
1078 */
1079int pcie_read_tlp_log(struct pci_dev *dev, int where,
1080		      struct pcie_tlp_log *tlp_log)
1081{
1082	int i, ret;
1083
1084	memset(tlp_log, 0, sizeof(*tlp_log));
1085
1086	for (i = 0; i < 4; i++) {
1087		ret = pci_read_config_dword(dev, where + i * 4,
1088					    &tlp_log->dw[i]);
1089		if (ret)
1090			return pcibios_err_to_errno(ret);
1091	}
1092
1093	return 0;
1094}
1095EXPORT_SYMBOL_GPL(pcie_read_tlp_log);
1096
1097/**
1098 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1099 * @dev: PCI device to have its BARs restored
 
 
1100 *
1101 * Restore the BAR values for a given device, so as to make it
1102 * accessible by its driver.
 
 
 
 
1103 */
1104static void pci_restore_bars(struct pci_dev *dev)
1105{
1106	int i;
 
1107
1108	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1109		pci_update_resource(dev, i);
1110}
1111
1112static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1113{
1114	if (pci_use_mid_pm())
1115		return true;
1116
1117	return acpi_pci_power_manageable(dev);
1118}
1119
1120static inline int platform_pci_set_power_state(struct pci_dev *dev,
1121					       pci_power_t t)
1122{
1123	if (pci_use_mid_pm())
1124		return mid_pci_set_power_state(dev, t);
 
 
 
 
 
1125
1126	return acpi_pci_set_power_state(dev, t);
1127}
 
 
1128
1129static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1130{
1131	if (pci_use_mid_pm())
1132		return mid_pci_get_power_state(dev);
1133
1134	return acpi_pci_get_power_state(dev);
1135}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1136
1137static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1138{
1139	if (!pci_use_mid_pm())
1140		acpi_pci_refresh_power_state(dev);
1141}
1142
1143static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1144{
1145	if (pci_use_mid_pm())
1146		return PCI_POWER_ERROR;
 
 
1147
1148	return acpi_pci_choose_state(dev);
1149}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150
1151static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1152{
1153	if (pci_use_mid_pm())
1154		return PCI_POWER_ERROR;
1155
1156	return acpi_pci_wakeup(dev, enable);
1157}
1158
1159static inline bool platform_pci_need_resume(struct pci_dev *dev)
1160{
1161	if (pci_use_mid_pm())
1162		return false;
1163
1164	return acpi_pci_need_resume(dev);
1165}
1166
1167static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1168{
1169	if (pci_use_mid_pm())
1170		return false;
1171
1172	return acpi_pci_bridge_d3(dev);
1173}
1174
1175/**
1176 * pci_update_current_state - Read power state of given device and cache it
 
1177 * @dev: PCI device to handle.
1178 * @state: State to cache in case the device doesn't have the PM capability
1179 *
1180 * The power state is read from the PMCSR register, which however is
1181 * inaccessible in D3cold.  The platform firmware is therefore queried first
1182 * to detect accessibility of the register.  In case the platform firmware
1183 * reports an incorrect state or the device isn't power manageable by the
1184 * platform at all, we try to detect D3cold by testing accessibility of the
1185 * vendor ID in config space.
1186 */
1187void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1188{
1189	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1190		dev->current_state = PCI_D3cold;
1191	} else if (dev->pm_cap) {
1192		u16 pmcsr;
1193
1194		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1195		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1196			dev->current_state = PCI_D3cold;
1197			return;
1198		}
1199		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1200	} else {
1201		dev->current_state = state;
1202	}
1203}
1204
1205/**
1206 * pci_refresh_power_state - Refresh the given device's power state data
1207 * @dev: Target PCI device.
1208 *
1209 * Ask the platform to refresh the devices power state information and invoke
1210 * pci_update_current_state() to update its current PCI power state.
1211 */
1212void pci_refresh_power_state(struct pci_dev *dev)
1213{
1214	platform_pci_refresh_power_state(dev);
1215	pci_update_current_state(dev, dev->current_state);
1216}
1217
1218/**
1219 * pci_platform_power_transition - Use platform to change device power state
1220 * @dev: PCI device to handle.
1221 * @state: State to put the device into.
1222 */
1223int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1224{
1225	int error;
1226
1227	error = platform_pci_set_power_state(dev, state);
1228	if (!error)
1229		pci_update_current_state(dev, state);
1230	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1231		dev->current_state = PCI_D0;
 
 
 
 
 
1232
1233	return error;
1234}
1235EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1236
1237static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1238{
1239	pm_request_resume(&pci_dev->dev);
1240	return 0;
1241}
1242
1243/**
1244 * pci_resume_bus - Walk given bus and runtime resume devices on it
1245 * @bus: Top bus of the subtree to walk.
 
1246 */
1247void pci_resume_bus(struct pci_bus *bus)
1248{
1249	if (bus)
1250		pci_walk_bus(bus, pci_resume_one, NULL);
1251}
1252
1253static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1254{
1255	int delay = 1;
1256	bool retrain = false;
1257	struct pci_dev *bridge;
1258
1259	if (pci_is_pcie(dev)) {
1260		bridge = pci_upstream_bridge(dev);
1261		if (bridge)
1262			retrain = true;
1263	}
1264
1265	/*
1266	 * After reset, the device should not silently discard config
1267	 * requests, but it may still indicate that it needs more time by
1268	 * responding to them with CRS completions.  The Root Port will
1269	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1270	 * the read (except when CRS SV is enabled and the read was for the
1271	 * Vendor ID; in that case it synthesizes 0x0001 data).
1272	 *
1273	 * Wait for the device to return a non-CRS completion.  Read the
1274	 * Command register instead of Vendor ID so we don't have to
1275	 * contend with the CRS SV value.
1276	 */
1277	for (;;) {
1278		u32 id;
1279
1280		pci_read_config_dword(dev, PCI_COMMAND, &id);
1281		if (!PCI_POSSIBLE_ERROR(id))
1282			break;
1283
1284		if (delay > timeout) {
1285			pci_warn(dev, "not ready %dms after %s; giving up\n",
1286				 delay - 1, reset_type);
1287			return -ENOTTY;
1288		}
1289
1290		if (delay > PCI_RESET_WAIT) {
1291			if (retrain) {
1292				retrain = false;
1293				if (pcie_failed_link_retrain(bridge)) {
1294					delay = 1;
1295					continue;
1296				}
1297			}
1298			pci_info(dev, "not ready %dms after %s; waiting\n",
1299				 delay - 1, reset_type);
1300		}
1301
1302		msleep(delay);
1303		delay *= 2;
1304	}
1305
1306	if (delay > PCI_RESET_WAIT)
1307		pci_info(dev, "ready %dms after %s\n", delay - 1,
1308			 reset_type);
1309	else
1310		pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1311			reset_type);
1312
1313	return 0;
1314}
1315
1316/**
1317 * pci_power_up - Put the given device into D0
1318 * @dev: PCI device to power up
 
1319 *
1320 * On success, return 0 or 1, depending on whether or not it is necessary to
1321 * restore the device's BARs subsequently (1 is returned in that case).
1322 *
1323 * On failure, return a negative error code.  Always return failure if @dev
1324 * lacks a Power Management Capability, even if the platform was able to
1325 * put the device in D0 via non-PCI means.
1326 */
1327int pci_power_up(struct pci_dev *dev)
1328{
1329	bool need_restore;
1330	pci_power_t state;
1331	u16 pmcsr;
1332
1333	platform_pci_set_power_state(dev, PCI_D0);
1334
1335	if (!dev->pm_cap) {
1336		state = platform_pci_get_power_state(dev);
1337		if (state == PCI_UNKNOWN)
1338			dev->current_state = PCI_D0;
1339		else
1340			dev->current_state = state;
1341
1342		return -EIO;
1343	}
1344
1345	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1346	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1347		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1348			pci_power_name(dev->current_state));
1349		dev->current_state = PCI_D3cold;
1350		return -EIO;
1351	}
1352
1353	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1354
1355	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1356			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1357
1358	if (state == PCI_D0)
1359		goto end;
1360
1361	/*
1362	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1363	 * PME_En, and sets PowerState to 0.
1364	 */
1365	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1366
1367	/* Mandatory transition delays; see PCI PM 1.2. */
1368	if (state == PCI_D3hot)
1369		pci_dev_d3_sleep(dev);
1370	else if (state == PCI_D2)
1371		udelay(PCI_PM_D2_DELAY);
1372
1373end:
1374	dev->current_state = PCI_D0;
1375	if (need_restore)
1376		return 1;
1377
1378	return 0;
1379}
 
1380
1381/**
1382 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1383 * @dev: PCI device to power up
1384 * @locked: whether pci_bus_sem is held
1385 *
1386 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1387 * to confirm the state change, restore its BARs if they might be lost and
1388 * reconfigure ASPM in accordance with the new power state.
1389 *
1390 * If pci_restore_state() is going to be called right after a power state change
1391 * to D0, it is more efficient to use pci_power_up() directly instead of this
1392 * function.
1393 */
1394static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1395{
1396	u16 pmcsr;
1397	int ret;
1398
1399	ret = pci_power_up(dev);
1400	if (ret < 0) {
1401		if (dev->current_state == PCI_D0)
1402			return 0;
1403
1404		return ret;
1405	}
1406
1407	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1408	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1409	if (dev->current_state != PCI_D0) {
1410		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1411				     pci_power_name(dev->current_state));
1412	} else if (ret > 0) {
1413		/*
1414		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1415		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1416		 * from D3hot to D0 _may_ perform an internal reset, thereby
1417		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1418		 * For example, at least some versions of the 3c905B and the
1419		 * 3c556B exhibit this behaviour.
1420		 *
1421		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1422		 * devices in a D3hot state at boot.  Consequently, we need to
1423		 * restore at least the BARs so that the device will be
1424		 * accessible to its driver.
1425		 */
1426		pci_restore_bars(dev);
1427	}
1428
1429	if (dev->bus->self)
1430		pcie_aspm_pm_state_change(dev->bus->self, locked);
1431
1432	return 0;
1433}
1434
1435/**
1436 * __pci_dev_set_current_state - Set current state of a PCI device
1437 * @dev: Device to handle
1438 * @data: pointer to state to be set
1439 */
1440static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1441{
1442	pci_power_t state = *(pci_power_t *)data;
1443
1444	dev->current_state = state;
1445	return 0;
1446}
1447
1448/**
1449 * pci_bus_set_current_state - Walk given bus and set current state of devices
1450 * @bus: Top bus of the subtree to walk.
1451 * @state: state to be set
1452 */
1453void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1454{
1455	if (bus)
1456		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1457}
1458
1459static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1460{
1461	if (!bus)
1462		return;
1463
1464	if (locked)
1465		pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1466	else
1467		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1468}
1469
1470/**
1471 * pci_set_low_power_state - Put a PCI device into a low-power state.
1472 * @dev: PCI device to handle.
1473 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1474 * @locked: whether pci_bus_sem is held
1475 *
1476 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
 
1477 *
1478 * RETURN VALUE:
1479 * -EINVAL if the requested state is invalid.
1480 * -EIO if device does not support PCI PM or its PM capabilities register has a
1481 * wrong version, or device doesn't support the requested state.
1482 * 0 if device already is in the requested state.
1483 * 0 if device's power state has been successfully changed.
1484 */
1485static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1486{
1487	u16 pmcsr;
1488
1489	if (!dev->pm_cap)
1490		return -EIO;
1491
1492	/*
1493	 * Validate transition: We can enter D0 from any state, but if
1494	 * we're already in a low-power state, we can only go deeper.  E.g.,
1495	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1496	 * we'd have to go from D3 to D0, then to D1.
1497	 */
1498	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1499		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1500			pci_power_name(dev->current_state),
1501			pci_power_name(state));
1502		return -EINVAL;
1503	}
1504
1505	/* Check if this device supports the desired state */
1506	if ((state == PCI_D1 && !dev->d1_support)
1507	   || (state == PCI_D2 && !dev->d2_support))
1508		return -EIO;
1509
1510	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1511	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1512		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1513			pci_power_name(dev->current_state),
1514			pci_power_name(state));
1515		dev->current_state = PCI_D3cold;
1516		return -EIO;
1517	}
1518
1519	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1520	pmcsr |= state;
1521
1522	/* Enter specified state */
1523	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1524
1525	/* Mandatory power management transition delays; see PCI PM 1.2. */
1526	if (state == PCI_D3hot)
1527		pci_dev_d3_sleep(dev);
1528	else if (state == PCI_D2)
1529		udelay(PCI_PM_D2_DELAY);
1530
1531	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1532	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1533	if (dev->current_state != state)
1534		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1535				     pci_power_name(dev->current_state),
1536				     pci_power_name(state));
1537
1538	if (dev->bus->self)
1539		pcie_aspm_pm_state_change(dev->bus->self, locked);
1540
1541	return 0;
1542}
1543
1544static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1545{
1546	int error;
1547
1548	/* Bound the state we're entering */
1549	if (state > PCI_D3cold)
1550		state = PCI_D3cold;
1551	else if (state < PCI_D0)
1552		state = PCI_D0;
1553	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1554
1555		/*
1556		 * If the device or the parent bridge do not support PCI
1557		 * PM, ignore the request if we're doing anything other
1558		 * than putting it into D0 (which would only happen on
1559		 * boot).
1560		 */
1561		return 0;
1562
1563	/* Check if we're already there */
1564	if (dev->current_state == state)
 
 
 
1565		return 0;
1566
1567	if (state == PCI_D0)
1568		return pci_set_full_power_state(dev, locked);
1569
 
 
1570	/*
1571	 * This device is quirked not to be put into D3, so don't put it in
1572	 * D3
1573	 */
1574	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1575		return 0;
1576
1577	if (state == PCI_D3cold) {
1578		/*
1579		 * To put the device in D3cold, put it into D3hot in the native
1580		 * way, then put it into D3cold using platform ops.
1581		 */
1582		error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1583
1584		if (pci_platform_power_transition(dev, PCI_D3cold))
1585			return error;
1586
1587		/* Powering off a bridge may power off the whole hierarchy */
1588		if (dev->current_state == PCI_D3cold)
1589			__pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1590	} else {
1591		error = pci_set_low_power_state(dev, state, locked);
1592
1593		if (pci_platform_power_transition(dev, state))
1594			return error;
1595	}
1596
1597	return 0;
1598}
1599
1600/**
1601 * pci_set_power_state - Set the power state of a PCI device
1602 * @dev: PCI device to handle.
1603 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 
1604 *
1605 * Transition a device to a new power state, using the platform firmware and/or
1606 * the device's PCI PM registers.
1607 *
1608 * RETURN VALUE:
1609 * -EINVAL if the requested state is invalid.
1610 * -EIO if device does not support PCI PM or its PM capabilities register has a
1611 * wrong version, or device doesn't support the requested state.
1612 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1613 * 0 if device already is in the requested state.
1614 * 0 if the transition is to D3 but D3 is not supported.
1615 * 0 if device's power state has been successfully changed.
1616 */
1617int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1618{
1619	return __pci_set_power_state(dev, state, false);
1620}
1621EXPORT_SYMBOL(pci_set_power_state);
1622
1623int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1624{
1625	lockdep_assert_held(&pci_bus_sem);
1626
1627	return __pci_set_power_state(dev, state, true);
1628}
1629EXPORT_SYMBOL(pci_set_power_state_locked);
1630
1631#define PCI_EXP_SAVE_REGS	7
 
 
1632
1633static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1634						       u16 cap, bool extended)
1635{
1636	struct pci_cap_saved_state *tmp;
1637
1638	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1639		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1640			return tmp;
 
 
 
 
 
1641	}
1642	return NULL;
1643}
1644
1645struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1646{
1647	return _pci_find_saved_cap(dev, cap, false);
1648}
1649
1650struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1651{
1652	return _pci_find_saved_cap(dev, cap, true);
1653}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654
1655static int pci_save_pcie_state(struct pci_dev *dev)
1656{
1657	int i = 0;
1658	struct pci_cap_saved_state *save_state;
1659	u16 *cap;
 
1660
1661	if (!pci_is_pcie(dev))
 
1662		return 0;
1663
1664	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1665	if (!save_state) {
1666		pci_err(dev, "buffer not found in %s\n", __func__);
1667		return -ENOMEM;
1668	}
 
1669
1670	cap = (u16 *)&save_state->cap.data[0];
1671	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1672	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1673	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1674	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1675	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1676	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1677	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1678
1679	pci_save_aspm_l1ss_state(dev);
1680	pci_save_ltr_state(dev);
 
 
 
 
 
 
 
 
 
 
 
 
1681
1682	return 0;
1683}
1684
1685static void pci_restore_pcie_state(struct pci_dev *dev)
1686{
1687	int i = 0;
1688	struct pci_cap_saved_state *save_state;
1689	u16 *cap;
1690
1691	/*
1692	 * Restore max latencies (in the LTR capability) before enabling
1693	 * LTR itself in PCI_EXP_DEVCTL2.
1694	 */
1695	pci_restore_ltr_state(dev);
1696	pci_restore_aspm_l1ss_state(dev);
1697
1698	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1699	if (!save_state)
 
1700		return;
 
1701
1702	/*
1703	 * Downstream ports reset the LTR enable bit when link goes down.
1704	 * Check and re-configure the bit here before restoring device.
1705	 * PCIe r5.0, sec 7.5.3.16.
1706	 */
1707	pci_bridge_reconfigure_ltr(dev);
1708
1709	cap = (u16 *)&save_state->cap.data[0];
1710	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1711	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1712	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1713	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1714	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1715	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1716	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
 
 
 
 
 
 
1717}
1718
 
1719static int pci_save_pcix_state(struct pci_dev *dev)
1720{
1721	int pos;
1722	struct pci_cap_saved_state *save_state;
1723
1724	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1725	if (!pos)
1726		return 0;
1727
1728	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1729	if (!save_state) {
1730		pci_err(dev, "buffer not found in %s\n", __func__);
1731		return -ENOMEM;
1732	}
1733
1734	pci_read_config_word(dev, pos + PCI_X_CMD,
1735			     (u16 *)save_state->cap.data);
1736
1737	return 0;
1738}
1739
1740static void pci_restore_pcix_state(struct pci_dev *dev)
1741{
1742	int i = 0, pos;
1743	struct pci_cap_saved_state *save_state;
1744	u16 *cap;
1745
1746	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1747	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1748	if (!save_state || !pos)
1749		return;
1750	cap = (u16 *)&save_state->cap.data[0];
1751
1752	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1753}
1754
 
1755/**
1756 * pci_save_state - save the PCI configuration space of a device before
1757 *		    suspending
1758 * @dev: PCI device that we're dealing with
1759 */
1760int pci_save_state(struct pci_dev *dev)
 
1761{
1762	int i;
1763	/* XXX: 100% dword access ok here? */
1764	for (i = 0; i < 16; i++) {
1765		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1766		pci_dbg(dev, "save config %#04x: %#010x\n",
1767			i * 4, dev->saved_config_space[i]);
1768	}
1769	dev->state_saved = true;
1770
1771	i = pci_save_pcie_state(dev);
1772	if (i != 0)
1773		return i;
1774
1775	i = pci_save_pcix_state(dev);
1776	if (i != 0)
1777		return i;
1778
1779	pci_save_dpc_state(dev);
1780	pci_save_aer_state(dev);
1781	pci_save_ptm_state(dev);
1782	return pci_save_vc_state(dev);
1783}
1784EXPORT_SYMBOL(pci_save_state);
1785
1786static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1787				     u32 saved_val, int retry, bool force)
1788{
1789	u32 val;
1790
1791	pci_read_config_dword(pdev, offset, &val);
1792	if (!force && val == saved_val)
1793		return;
1794
1795	for (;;) {
1796		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1797			offset, val, saved_val);
1798		pci_write_config_dword(pdev, offset, saved_val);
1799		if (retry-- <= 0)
1800			return;
1801
1802		pci_read_config_dword(pdev, offset, &val);
1803		if (val == saved_val)
1804			return;
1805
1806		mdelay(1);
1807	}
1808}
1809
1810static void pci_restore_config_space_range(struct pci_dev *pdev,
1811					   int start, int end, int retry,
1812					   bool force)
1813{
1814	int index;
1815
1816	for (index = end; index >= start; index--)
1817		pci_restore_config_dword(pdev, 4 * index,
1818					 pdev->saved_config_space[index],
1819					 retry, force);
1820}
1821
1822static void pci_restore_config_space(struct pci_dev *pdev)
1823{
1824	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1825		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1826		/* Restore BARs before the command register. */
1827		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1828		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1829	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1830		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1831
1832		/*
1833		 * Force rewriting of prefetch registers to avoid S3 resume
1834		 * issues on Intel PCI bridges that occur when these
1835		 * registers are not explicitly written.
1836		 */
1837		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1838		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1839	} else {
1840		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1841	}
1842}
1843
1844static void pci_restore_rebar_state(struct pci_dev *pdev)
1845{
1846	unsigned int pos, nbars, i;
1847	u32 ctrl;
1848
1849	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1850	if (!pos)
1851		return;
1852
1853	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1854	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1855
1856	for (i = 0; i < nbars; i++, pos += 8) {
1857		struct resource *res;
1858		int bar_idx, size;
1859
1860		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1861		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1862		res = pdev->resource + bar_idx;
1863		size = pci_rebar_bytes_to_size(resource_size(res));
1864		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1865		ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1866		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1867	}
1868}
1869
1870/**
1871 * pci_restore_state - Restore the saved state of a PCI device
1872 * @dev: PCI device that we're dealing with
1873 */
1874void pci_restore_state(struct pci_dev *dev)
1875{
 
 
 
1876	if (!dev->state_saved)
1877		return;
1878
 
1879	pci_restore_pcie_state(dev);
1880	pci_restore_pasid_state(dev);
1881	pci_restore_pri_state(dev);
1882	pci_restore_ats_state(dev);
1883	pci_restore_vc_state(dev);
1884	pci_restore_rebar_state(dev);
1885	pci_restore_dpc_state(dev);
1886	pci_restore_ptm_state(dev);
1887
1888	pci_aer_clear_status(dev);
1889	pci_restore_aer_state(dev);
1890
1891	pci_restore_config_space(dev);
1892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893	pci_restore_pcix_state(dev);
1894	pci_restore_msi_state(dev);
1895
1896	/* Restore ACS and IOV configuration state */
1897	pci_enable_acs(dev);
1898	pci_restore_iov_state(dev);
1899
1900	dev->state_saved = false;
1901}
1902EXPORT_SYMBOL(pci_restore_state);
1903
1904struct pci_saved_state {
1905	u32 config_space[16];
1906	struct pci_cap_saved_data cap[];
1907};
1908
1909/**
1910 * pci_store_saved_state - Allocate and return an opaque struct containing
1911 *			   the device saved state.
1912 * @dev: PCI device that we're dealing with
1913 *
1914 * Return NULL if no state or error.
1915 */
1916struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1917{
1918	struct pci_saved_state *state;
1919	struct pci_cap_saved_state *tmp;
1920	struct pci_cap_saved_data *cap;
 
1921	size_t size;
1922
1923	if (!dev->state_saved)
1924		return NULL;
1925
1926	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1927
1928	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1929		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1930
1931	state = kzalloc(size, GFP_KERNEL);
1932	if (!state)
1933		return NULL;
1934
1935	memcpy(state->config_space, dev->saved_config_space,
1936	       sizeof(state->config_space));
1937
1938	cap = state->cap;
1939	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1940		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1941		memcpy(cap, &tmp->cap, len);
1942		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1943	}
1944	/* Empty cap_save terminates list */
1945
1946	return state;
1947}
1948EXPORT_SYMBOL_GPL(pci_store_saved_state);
1949
1950/**
1951 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1952 * @dev: PCI device that we're dealing with
1953 * @state: Saved state returned from pci_store_saved_state()
1954 */
1955int pci_load_saved_state(struct pci_dev *dev,
1956			 struct pci_saved_state *state)
1957{
1958	struct pci_cap_saved_data *cap;
1959
1960	dev->state_saved = false;
1961
1962	if (!state)
1963		return 0;
1964
1965	memcpy(dev->saved_config_space, state->config_space,
1966	       sizeof(state->config_space));
1967
1968	cap = state->cap;
1969	while (cap->size) {
1970		struct pci_cap_saved_state *tmp;
1971
1972		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1973		if (!tmp || tmp->cap.size != cap->size)
1974			return -EINVAL;
1975
1976		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1977		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1978		       sizeof(struct pci_cap_saved_data) + cap->size);
1979	}
1980
1981	dev->state_saved = true;
1982	return 0;
1983}
1984EXPORT_SYMBOL_GPL(pci_load_saved_state);
1985
1986/**
1987 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1988 *				   and free the memory allocated for it.
1989 * @dev: PCI device that we're dealing with
1990 * @state: Pointer to saved state returned from pci_store_saved_state()
1991 */
1992int pci_load_and_free_saved_state(struct pci_dev *dev,
1993				  struct pci_saved_state **state)
1994{
1995	int ret = pci_load_saved_state(dev, *state);
1996	kfree(*state);
1997	*state = NULL;
1998	return ret;
1999}
2000EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2001
2002int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2003{
2004	return pci_enable_resources(dev, bars);
2005}
2006
2007static int do_pci_enable_device(struct pci_dev *dev, int bars)
2008{
2009	int err;
2010	struct pci_dev *bridge;
2011	u16 cmd;
2012	u8 pin;
2013
2014	err = pci_set_power_state(dev, PCI_D0);
2015	if (err < 0 && err != -EIO)
2016		return err;
2017
2018	bridge = pci_upstream_bridge(dev);
2019	if (bridge)
2020		pcie_aspm_powersave_config_link(bridge);
2021
2022	err = pcibios_enable_device(dev, bars);
2023	if (err < 0)
2024		return err;
2025	pci_fixup_device(pci_fixup_enable, dev);
2026
2027	if (dev->msi_enabled || dev->msix_enabled)
2028		return 0;
2029
2030	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2031	if (pin) {
2032		pci_read_config_word(dev, PCI_COMMAND, &cmd);
2033		if (cmd & PCI_COMMAND_INTX_DISABLE)
2034			pci_write_config_word(dev, PCI_COMMAND,
2035					      cmd & ~PCI_COMMAND_INTX_DISABLE);
2036	}
2037
2038	return 0;
2039}
2040
2041/**
2042 * pci_reenable_device - Resume abandoned device
2043 * @dev: PCI device to be resumed
2044 *
2045 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2046 * to be called by normal code, write proper resume handler and use it instead.
2047 */
2048int pci_reenable_device(struct pci_dev *dev)
2049{
2050	if (pci_is_enabled(dev))
2051		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2052	return 0;
2053}
2054EXPORT_SYMBOL(pci_reenable_device);
2055
2056static void pci_enable_bridge(struct pci_dev *dev)
2057{
2058	struct pci_dev *bridge;
2059	int retval;
2060
2061	bridge = pci_upstream_bridge(dev);
2062	if (bridge)
2063		pci_enable_bridge(bridge);
2064
2065	if (pci_is_enabled(dev)) {
2066		if (!dev->is_busmaster)
2067			pci_set_master(dev);
2068		return;
2069	}
2070
2071	retval = pci_enable_device(dev);
2072	if (retval)
2073		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2074			retval);
2075	pci_set_master(dev);
2076}
2077
2078static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
 
2079{
2080	struct pci_dev *bridge;
2081	int err;
2082	int i, bars = 0;
2083
2084	/*
2085	 * Power state could be unknown at this point, either due to a fresh
2086	 * boot or a device removal call.  So get the current power state
2087	 * so that things like MSI message writing will behave as expected
2088	 * (e.g. if the device really is in D0 at enable time).
2089	 */
2090	pci_update_current_state(dev, dev->current_state);
 
 
 
 
2091
2092	if (atomic_inc_return(&dev->enable_cnt) > 1)
2093		return 0;		/* already enabled */
2094
2095	bridge = pci_upstream_bridge(dev);
2096	if (bridge)
2097		pci_enable_bridge(bridge);
2098
2099	/* only skip sriov related */
2100	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2101		if (dev->resource[i].flags & flags)
2102			bars |= (1 << i);
2103	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2104		if (dev->resource[i].flags & flags)
2105			bars |= (1 << i);
2106
2107	err = do_pci_enable_device(dev, bars);
2108	if (err < 0)
2109		atomic_dec(&dev->enable_cnt);
2110	return err;
2111}
2112
2113/**
2114 * pci_enable_device_io - Initialize a device for use with IO space
2115 * @dev: PCI device to be initialized
2116 *
2117 * Initialize device before it's used by a driver. Ask low-level code
2118 * to enable I/O resources. Wake up the device if it was suspended.
2119 * Beware, this function can fail.
2120 */
2121int pci_enable_device_io(struct pci_dev *dev)
2122{
2123	return pci_enable_device_flags(dev, IORESOURCE_IO);
2124}
2125EXPORT_SYMBOL(pci_enable_device_io);
2126
2127/**
2128 * pci_enable_device_mem - Initialize a device for use with Memory space
2129 * @dev: PCI device to be initialized
2130 *
2131 * Initialize device before it's used by a driver. Ask low-level code
2132 * to enable Memory resources. Wake up the device if it was suspended.
2133 * Beware, this function can fail.
2134 */
2135int pci_enable_device_mem(struct pci_dev *dev)
2136{
2137	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2138}
2139EXPORT_SYMBOL(pci_enable_device_mem);
2140
2141/**
2142 * pci_enable_device - Initialize device before it's used by a driver.
2143 * @dev: PCI device to be initialized
2144 *
2145 * Initialize device before it's used by a driver. Ask low-level code
2146 * to enable I/O and memory. Wake up the device if it was suspended.
2147 * Beware, this function can fail.
2148 *
2149 * Note we don't actually enable the device many times if we call
2150 * this function repeatedly (we just increment the count).
2151 */
2152int pci_enable_device(struct pci_dev *dev)
2153{
2154	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2155}
2156EXPORT_SYMBOL(pci_enable_device);
2157
2158/*
2159 * pcibios_device_add - provide arch specific hooks when adding device dev
2160 * @dev: the PCI device being added
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2161 *
2162 * Permits the platform to provide architecture specific functionality when
2163 * devices are added. This is the default implementation. Architecture
2164 * implementations can override this.
2165 */
2166int __weak pcibios_device_add(struct pci_dev *dev)
2167{
2168	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2169}
2170
2171/**
2172 * pcibios_release_device - provide arch specific hooks when releasing
2173 *			    device dev
2174 * @dev: the PCI device being released
2175 *
2176 * Permits the platform to provide architecture specific functionality when
2177 * devices are released. This is the default implementation. Architecture
2178 * implementations can override this.
2179 */
2180void __weak pcibios_release_device(struct pci_dev *dev) {}
 
 
 
 
 
 
 
 
2181
2182/**
2183 * pcibios_disable_device - disable arch specific PCI resources for device dev
2184 * @dev: the PCI device to disable
2185 *
2186 * Disables architecture specific PCI resources for the device. This
2187 * is the default implementation. Architecture implementations can
2188 * override this.
2189 */
2190void __weak pcibios_disable_device(struct pci_dev *dev) {}
2191
2192static void do_pci_disable_device(struct pci_dev *dev)
2193{
2194	u16 pci_command;
2195
2196	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2197	if (pci_command & PCI_COMMAND_MASTER) {
2198		pci_command &= ~PCI_COMMAND_MASTER;
2199		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2200	}
2201
2202	pcibios_disable_device(dev);
2203}
2204
2205/**
2206 * pci_disable_enabled_device - Disable device without updating enable_cnt
2207 * @dev: PCI device to disable
2208 *
2209 * NOTE: This function is a backend of PCI power management routines and is
2210 * not supposed to be called drivers.
2211 */
2212void pci_disable_enabled_device(struct pci_dev *dev)
2213{
2214	if (pci_is_enabled(dev))
2215		do_pci_disable_device(dev);
2216}
2217
2218/**
2219 * pci_disable_device - Disable PCI device after use
2220 * @dev: PCI device to be disabled
2221 *
2222 * Signal to the system that the PCI device is not in use by the system
2223 * anymore.  This only involves disabling PCI bus-mastering, if active.
2224 *
2225 * Note we don't actually disable the device until all callers of
2226 * pci_enable_device() have called pci_disable_device().
2227 */
2228void pci_disable_device(struct pci_dev *dev)
 
2229{
2230	struct pci_devres *dr;
2231
2232	dr = find_pci_dr(dev);
2233	if (dr)
2234		dr->enabled = 0;
2235
2236	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2237		      "disabling already-disabled device");
2238
2239	if (atomic_dec_return(&dev->enable_cnt) != 0)
2240		return;
2241
2242	do_pci_disable_device(dev);
2243
2244	dev->is_busmaster = 0;
2245}
2246EXPORT_SYMBOL(pci_disable_device);
2247
2248/**
2249 * pcibios_set_pcie_reset_state - set reset state for device dev
2250 * @dev: the PCIe device reset
2251 * @state: Reset state to enter into
2252 *
2253 * Set the PCIe reset state for the device. This is the default
 
2254 * implementation. Architecture implementations can override this.
2255 */
2256int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2257					enum pcie_reset_state state)
2258{
2259	return -EINVAL;
2260}
2261
2262/**
2263 * pci_set_pcie_reset_state - set reset state for device dev
2264 * @dev: the PCIe device reset
2265 * @state: Reset state to enter into
2266 *
 
2267 * Sets the PCI reset state for the device.
2268 */
2269int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2270{
2271	return pcibios_set_pcie_reset_state(dev, state);
2272}
2273EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2274
2275#ifdef CONFIG_PCIEAER
2276void pcie_clear_device_status(struct pci_dev *dev)
2277{
2278	u16 sta;
2279
2280	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2281	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2282}
2283#endif
2284
2285/**
2286 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2287 * @dev: PCIe root port or event collector.
2288 */
2289void pcie_clear_root_pme_status(struct pci_dev *dev)
2290{
2291	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2292}
2293
2294/**
2295 * pci_check_pme_status - Check if given device has generated PME.
2296 * @dev: Device to check.
2297 *
2298 * Check the PME status of the device and if set, clear it and clear PME enable
2299 * (if set).  Return 'true' if PME status and PME enable were both set or
2300 * 'false' otherwise.
2301 */
2302bool pci_check_pme_status(struct pci_dev *dev)
2303{
2304	int pmcsr_pos;
2305	u16 pmcsr;
2306	bool ret = false;
2307
2308	if (!dev->pm_cap)
2309		return false;
2310
2311	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2312	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2313	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2314		return false;
2315
2316	/* Clear PME status. */
2317	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2318	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2319		/* Disable PME to avoid interrupt flood. */
2320		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2321		ret = true;
2322	}
2323
2324	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2325
2326	return ret;
2327}
2328
2329/**
2330 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2331 * @dev: Device to handle.
2332 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2333 *
2334 * Check if @dev has generated PME and queue a resume request for it in that
2335 * case.
2336 */
2337static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2338{
2339	if (pme_poll_reset && dev->pme_poll)
2340		dev->pme_poll = false;
2341
2342	if (pci_check_pme_status(dev)) {
2343		pci_wakeup_event(dev);
2344		pm_request_resume(&dev->dev);
2345	}
2346	return 0;
2347}
2348
2349/**
2350 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2351 * @bus: Top bus of the subtree to walk.
2352 */
2353void pci_pme_wakeup_bus(struct pci_bus *bus)
2354{
2355	if (bus)
2356		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2357}
2358
2359
2360/**
2361 * pci_pme_capable - check the capability of PCI device to generate PME#
2362 * @dev: PCI device to handle.
2363 * @state: PCI state from which device will issue PME#.
2364 */
2365bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2366{
2367	if (!dev->pm_cap)
2368		return false;
2369
2370	return !!(dev->pme_support & (1 << state));
2371}
2372EXPORT_SYMBOL(pci_pme_capable);
2373
2374static void pci_pme_list_scan(struct work_struct *work)
2375{
2376	struct pci_pme_device *pme_dev, *n;
2377
2378	mutex_lock(&pci_pme_list_mutex);
2379	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2380		struct pci_dev *pdev = pme_dev->dev;
2381
2382		if (pdev->pme_poll) {
2383			struct pci_dev *bridge = pdev->bus->self;
2384			struct device *dev = &pdev->dev;
2385			struct device *bdev = bridge ? &bridge->dev : NULL;
2386			int bref = 0;
2387
2388			/*
2389			 * If we have a bridge, it should be in an active/D0
2390			 * state or the configuration space of subordinate
2391			 * devices may not be accessible or stable over the
2392			 * course of the call.
2393			 */
2394			if (bdev) {
2395				bref = pm_runtime_get_if_active(bdev);
2396				if (!bref)
2397					continue;
2398
2399				if (bridge->current_state != PCI_D0)
2400					goto put_bridge;
2401			}
2402
2403			/*
2404			 * The device itself should be suspended but config
2405			 * space must be accessible, therefore it cannot be in
2406			 * D3cold.
2407			 */
2408			if (pm_runtime_suspended(dev) &&
2409			    pdev->current_state != PCI_D3cold)
2410				pci_pme_wakeup(pdev, NULL);
2411
2412put_bridge:
2413			if (bref > 0)
2414				pm_runtime_put(bdev);
2415		} else {
2416			list_del(&pme_dev->list);
2417			kfree(pme_dev);
2418		}
2419	}
2420	if (!list_empty(&pci_pme_list))
2421		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2422				   msecs_to_jiffies(PME_TIMEOUT));
2423	mutex_unlock(&pci_pme_list_mutex);
2424}
2425
2426static void __pci_pme_active(struct pci_dev *dev, bool enable)
2427{
2428	u16 pmcsr;
2429
2430	if (!dev->pme_support)
2431		return;
2432
2433	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2434	/* Clear PME_Status by writing 1 to it and enable PME# */
2435	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2436	if (!enable)
2437		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2438
2439	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2440}
2441
2442/**
2443 * pci_pme_restore - Restore PME configuration after config space restore.
2444 * @dev: PCI device to update.
 
2445 */
2446void pci_pme_restore(struct pci_dev *dev)
 
2447{
2448	u16 pmcsr;
2449
2450	if (!dev->pme_support)
2451		return;
2452
2453	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2454	if (dev->wakeup_prepared) {
2455		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2456		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2457	} else {
2458		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2459		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2460	}
2461	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2462}
2463
2464/**
2465 * pci_pme_active - enable or disable PCI device's PME# function
2466 * @dev: PCI device to handle.
2467 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2468 *
2469 * The caller must verify that the device is capable of generating PME# before
2470 * calling this function with @enable equal to 'true'.
2471 */
2472void pci_pme_active(struct pci_dev *dev, bool enable)
2473{
2474	__pci_pme_active(dev, enable);
 
 
 
 
 
 
 
 
 
 
 
2475
2476	/*
2477	 * PCI (as opposed to PCIe) PME requires that the device have
2478	 * its PME# line hooked up correctly. Not all hardware vendors
2479	 * do this, so the PME never gets delivered and the device
2480	 * remains asleep. The easiest way around this is to
2481	 * periodically walk the list of suspended devices and check
2482	 * whether any have their PME flag set. The assumption is that
2483	 * we'll wake up often enough anyway that this won't be a huge
2484	 * hit, and the power savings from the devices will still be a
2485	 * win.
2486	 *
2487	 * Although PCIe uses in-band PME message instead of PME# line
2488	 * to report PME, PME does not work for some PCIe devices in
2489	 * reality.  For example, there are devices that set their PME
2490	 * status bits, but don't really bother to send a PME message;
2491	 * there are PCI Express Root Ports that don't bother to
2492	 * trigger interrupts when they receive PME messages from the
2493	 * devices below.  So PME poll is used for PCIe devices too.
2494	 */
2495
2496	if (dev->pme_poll) {
2497		struct pci_pme_device *pme_dev;
2498		if (enable) {
2499			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2500					  GFP_KERNEL);
2501			if (!pme_dev) {
2502				pci_warn(dev, "can't enable PME#\n");
2503				return;
2504			}
2505			pme_dev->dev = dev;
2506			mutex_lock(&pci_pme_list_mutex);
2507			list_add(&pme_dev->list, &pci_pme_list);
2508			if (list_is_singular(&pci_pme_list))
2509				queue_delayed_work(system_freezable_wq,
2510						   &pci_pme_work,
2511						   msecs_to_jiffies(PME_TIMEOUT));
2512			mutex_unlock(&pci_pme_list_mutex);
2513		} else {
2514			mutex_lock(&pci_pme_list_mutex);
2515			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2516				if (pme_dev->dev == dev) {
2517					list_del(&pme_dev->list);
2518					kfree(pme_dev);
2519					break;
2520				}
2521			}
2522			mutex_unlock(&pci_pme_list_mutex);
2523		}
2524	}
2525
2526	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
 
 
2527}
2528EXPORT_SYMBOL(pci_pme_active);
2529
2530/**
2531 * __pci_enable_wake - enable PCI device as wakeup event source
2532 * @dev: PCI device affected
2533 * @state: PCI state from which device will issue wakeup events
 
2534 * @enable: True to enable event generation; false to disable
2535 *
2536 * This enables the device as a wakeup event source, or disables it.
2537 * When such events involves platform-specific hooks, those hooks are
2538 * called automatically by this routine.
2539 *
2540 * Devices with legacy power management (no standard PCI PM capabilities)
2541 * always require such platform hooks.
2542 *
2543 * RETURN VALUE:
2544 * 0 is returned on success
2545 * -EINVAL is returned if device is not supposed to wake up the system
2546 * Error code depending on the platform is returned if both the platform and
2547 * the native mechanism fail to enable the generation of wake-up events
2548 */
2549static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
 
2550{
2551	int ret = 0;
2552
2553	/*
2554	 * Bridges that are not power-manageable directly only signal
2555	 * wakeup on behalf of subordinate devices which is set up
2556	 * elsewhere, so skip them. However, bridges that are
2557	 * power-manageable may signal wakeup for themselves (for example,
2558	 * on a hotplug event) and they need to be covered here.
2559	 */
2560	if (!pci_power_manageable(dev))
2561		return 0;
2562
2563	/* Don't do the same thing twice in a row for one device. */
2564	if (!!enable == !!dev->wakeup_prepared)
2565		return 0;
2566
2567	/*
2568	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2569	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2570	 * enable.  To disable wake-up we call the platform first, for symmetry.
2571	 */
2572
2573	if (enable) {
2574		int error;
2575
2576		/*
2577		 * Enable PME signaling if the device can signal PME from
2578		 * D3cold regardless of whether or not it can signal PME from
2579		 * the current target state, because that will allow it to
2580		 * signal PME when the hierarchy above it goes into D3cold and
2581		 * the device itself ends up in D3cold as a result of that.
2582		 */
2583		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2584			pci_pme_active(dev, true);
2585		else
2586			ret = 1;
2587		error = platform_pci_set_wakeup(dev, true);
 
2588		if (ret)
2589			ret = error;
2590		if (!ret)
2591			dev->wakeup_prepared = true;
2592	} else {
2593		platform_pci_set_wakeup(dev, false);
 
 
 
2594		pci_pme_active(dev, false);
2595		dev->wakeup_prepared = false;
2596	}
2597
2598	return ret;
2599}
2600
2601/**
2602 * pci_enable_wake - change wakeup settings for a PCI device
2603 * @pci_dev: Target device
2604 * @state: PCI state from which device will issue wakeup events
2605 * @enable: Whether or not to enable event generation
2606 *
2607 * If @enable is set, check device_may_wakeup() for the device before calling
2608 * __pci_enable_wake() for it.
2609 */
2610int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2611{
2612	if (enable && !device_may_wakeup(&pci_dev->dev))
2613		return -EINVAL;
2614
2615	return __pci_enable_wake(pci_dev, state, enable);
2616}
2617EXPORT_SYMBOL(pci_enable_wake);
2618
2619/**
2620 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2621 * @dev: PCI device to prepare
2622 * @enable: True to enable wake-up event generation; false to disable
2623 *
2624 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2625 * and this function allows them to set that up cleanly - pci_enable_wake()
2626 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2627 * ordering constraints.
2628 *
2629 * This function only returns error code if the device is not allowed to wake
2630 * up the system from sleep or it is not capable of generating PME# from both
2631 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2632 */
2633int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2634{
2635	return pci_pme_capable(dev, PCI_D3cold) ?
2636			pci_enable_wake(dev, PCI_D3cold, enable) :
2637			pci_enable_wake(dev, PCI_D3hot, enable);
2638}
2639EXPORT_SYMBOL(pci_wake_from_d3);
2640
2641/**
2642 * pci_target_state - find an appropriate low power state for a given PCI dev
2643 * @dev: PCI device
2644 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2645 *
2646 * Use underlying platform code to find a supported low power state for @dev.
2647 * If the platform can't manage @dev, return the deepest state from which it
2648 * can generate wake events, based on any available PME info.
2649 */
2650static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2651{
 
 
2652	if (platform_pci_power_manageable(dev)) {
2653		/*
2654		 * Call the platform to find the target state for the device.
 
2655		 */
2656		pci_power_t state = platform_pci_choose_state(dev);
2657
2658		switch (state) {
2659		case PCI_POWER_ERROR:
2660		case PCI_UNKNOWN:
2661			return PCI_D3hot;
2662
2663		case PCI_D1:
2664		case PCI_D2:
2665			if (pci_no_d1d2(dev))
2666				return PCI_D3hot;
2667		}
2668
2669		return state;
2670	}
2671
2672	/*
2673	 * If the device is in D3cold even though it's not power-manageable by
2674	 * the platform, it may have been powered down by non-standard means.
2675	 * Best to let it slumber.
2676	 */
2677	if (dev->current_state == PCI_D3cold)
2678		return PCI_D3cold;
2679	else if (!dev->pm_cap)
2680		return PCI_D0;
2681
2682	if (wakeup && dev->pme_support) {
2683		pci_power_t state = PCI_D3hot;
2684
2685		/*
2686		 * Find the deepest state from which the device can generate
2687		 * PME#.
 
2688		 */
2689		while (state && !(dev->pme_support & (1 << state)))
2690			state--;
2691
2692		if (state)
2693			return state;
2694		else if (dev->pme_support & 1)
2695			return PCI_D0;
2696	}
2697
2698	return PCI_D3hot;
2699}
2700
2701/**
2702 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2703 *			  into a sleep state
2704 * @dev: Device to handle.
2705 *
2706 * Choose the power state appropriate for the device depending on whether
2707 * it can wake up the system and/or is power manageable by the platform
2708 * (PCI_D3hot is the default) and put the device into that state.
2709 */
2710int pci_prepare_to_sleep(struct pci_dev *dev)
2711{
2712	bool wakeup = device_may_wakeup(&dev->dev);
2713	pci_power_t target_state = pci_target_state(dev, wakeup);
2714	int error;
2715
2716	if (target_state == PCI_POWER_ERROR)
2717		return -EIO;
2718
2719	pci_enable_wake(dev, target_state, wakeup);
2720
2721	error = pci_set_power_state(dev, target_state);
2722
2723	if (error)
2724		pci_enable_wake(dev, target_state, false);
2725
2726	return error;
2727}
2728EXPORT_SYMBOL(pci_prepare_to_sleep);
2729
2730/**
2731 * pci_back_from_sleep - turn PCI device on during system-wide transition
2732 *			 into working state
2733 * @dev: Device to handle.
2734 *
2735 * Disable device's system wake-up capability and put it into D0.
2736 */
2737int pci_back_from_sleep(struct pci_dev *dev)
2738{
2739	int ret = pci_set_power_state(dev, PCI_D0);
2740
2741	if (ret)
2742		return ret;
2743
2744	pci_enable_wake(dev, PCI_D0, false);
2745	return 0;
2746}
2747EXPORT_SYMBOL(pci_back_from_sleep);
2748
2749/**
2750 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2751 * @dev: PCI device being suspended.
2752 *
2753 * Prepare @dev to generate wake-up events at run time and put it into a low
2754 * power state.
2755 */
2756int pci_finish_runtime_suspend(struct pci_dev *dev)
2757{
2758	pci_power_t target_state;
2759	int error;
2760
2761	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2762	if (target_state == PCI_POWER_ERROR)
2763		return -EIO;
2764
2765	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2766
2767	error = pci_set_power_state(dev, target_state);
2768
2769	if (error)
2770		pci_enable_wake(dev, target_state, false);
2771
2772	return error;
2773}
2774
2775/**
2776 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2777 * @dev: Device to check.
2778 *
2779 * Return true if the device itself is capable of generating wake-up events
2780 * (through the platform or using the native PCIe PME) or if the device supports
2781 * PME and one of its upstream bridges can generate wake-up events.
2782 */
2783bool pci_dev_run_wake(struct pci_dev *dev)
2784{
2785	struct pci_bus *bus = dev->bus;
2786
 
 
 
2787	if (!dev->pme_support)
2788		return false;
2789
2790	/* PME-capable in principle, but not from the target power state */
2791	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2792		return false;
2793
2794	if (device_can_wakeup(&dev->dev))
2795		return true;
2796
2797	while (bus->parent) {
2798		struct pci_dev *bridge = bus->self;
2799
2800		if (device_can_wakeup(&bridge->dev))
2801			return true;
2802
2803		bus = bus->parent;
2804	}
2805
2806	/* We have reached the root bus. */
2807	if (bus->bridge)
2808		return device_can_wakeup(bus->bridge);
2809
2810	return false;
2811}
2812EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2813
2814/**
2815 * pci_dev_need_resume - Check if it is necessary to resume the device.
2816 * @pci_dev: Device to check.
2817 *
2818 * Return 'true' if the device is not runtime-suspended or it has to be
2819 * reconfigured due to wakeup settings difference between system and runtime
2820 * suspend, or the current power state of it is not suitable for the upcoming
2821 * (system-wide) transition.
2822 */
2823bool pci_dev_need_resume(struct pci_dev *pci_dev)
2824{
2825	struct device *dev = &pci_dev->dev;
2826	pci_power_t target_state;
2827
2828	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2829		return true;
2830
2831	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2832
2833	/*
2834	 * If the earlier platform check has not triggered, D3cold is just power
2835	 * removal on top of D3hot, so no need to resume the device in that
2836	 * case.
2837	 */
2838	return target_state != pci_dev->current_state &&
2839		target_state != PCI_D3cold &&
2840		pci_dev->current_state != PCI_D3hot;
2841}
2842
2843/**
2844 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2845 * @pci_dev: Device to check.
2846 *
2847 * If the device is suspended and it is not configured for system wakeup,
2848 * disable PME for it to prevent it from waking up the system unnecessarily.
2849 *
2850 * Note that if the device's power state is D3cold and the platform check in
2851 * pci_dev_need_resume() has not triggered, the device's configuration need not
2852 * be changed.
2853 */
2854void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2855{
2856	struct device *dev = &pci_dev->dev;
2857
2858	spin_lock_irq(&dev->power.lock);
2859
2860	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2861	    pci_dev->current_state < PCI_D3cold)
2862		__pci_pme_active(pci_dev, false);
2863
2864	spin_unlock_irq(&dev->power.lock);
2865}
2866
2867/**
2868 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2869 * @pci_dev: Device to handle.
2870 *
2871 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2872 * it might have been disabled during the prepare phase of system suspend if
2873 * the device was not configured for system wakeup.
2874 */
2875void pci_dev_complete_resume(struct pci_dev *pci_dev)
2876{
2877	struct device *dev = &pci_dev->dev;
2878
2879	if (!pci_dev_run_wake(pci_dev))
2880		return;
2881
2882	spin_lock_irq(&dev->power.lock);
2883
2884	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2885		__pci_pme_active(pci_dev, true);
2886
2887	spin_unlock_irq(&dev->power.lock);
2888}
2889
2890/**
2891 * pci_choose_state - Choose the power state of a PCI device.
2892 * @dev: Target PCI device.
2893 * @state: Target state for the whole system.
2894 *
2895 * Returns PCI power state suitable for @dev and @state.
2896 */
2897pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2898{
2899	if (state.event == PM_EVENT_ON)
2900		return PCI_D0;
2901
2902	return pci_target_state(dev, false);
2903}
2904EXPORT_SYMBOL(pci_choose_state);
2905
2906void pci_config_pm_runtime_get(struct pci_dev *pdev)
2907{
2908	struct device *dev = &pdev->dev;
2909	struct device *parent = dev->parent;
2910
2911	if (parent)
2912		pm_runtime_get_sync(parent);
2913	pm_runtime_get_noresume(dev);
2914	/*
2915	 * pdev->current_state is set to PCI_D3cold during suspending,
2916	 * so wait until suspending completes
2917	 */
2918	pm_runtime_barrier(dev);
2919	/*
2920	 * Only need to resume devices in D3cold, because config
2921	 * registers are still accessible for devices suspended but
2922	 * not in D3cold.
2923	 */
2924	if (pdev->current_state == PCI_D3cold)
2925		pm_runtime_resume(dev);
2926}
2927
2928void pci_config_pm_runtime_put(struct pci_dev *pdev)
2929{
2930	struct device *dev = &pdev->dev;
2931	struct device *parent = dev->parent;
2932
2933	pm_runtime_put(dev);
2934	if (parent)
2935		pm_runtime_put_sync(parent);
2936}
2937
2938static const struct dmi_system_id bridge_d3_blacklist[] = {
2939#ifdef CONFIG_X86
2940	{
2941		/*
2942		 * Gigabyte X299 root port is not marked as hotplug capable
2943		 * which allows Linux to power manage it.  However, this
2944		 * confuses the BIOS SMI handler so don't power manage root
2945		 * ports on that system.
2946		 */
2947		.ident = "X299 DESIGNARE EX-CF",
2948		.matches = {
2949			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2950			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2951		},
2952	},
2953	{
2954		/*
2955		 * Downstream device is not accessible after putting a root port
2956		 * into D3cold and back into D0 on Elo Continental Z2 board
2957		 */
2958		.ident = "Elo Continental Z2",
2959		.matches = {
2960			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2961			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2962			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2963		},
2964	},
2965#endif
2966	{ }
2967};
2968
2969/**
2970 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2971 * @bridge: Bridge to check
2972 *
2973 * This function checks if it is possible to move the bridge to D3.
2974 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2975 */
2976bool pci_bridge_d3_possible(struct pci_dev *bridge)
2977{
2978	if (!pci_is_pcie(bridge))
2979		return false;
2980
2981	switch (pci_pcie_type(bridge)) {
2982	case PCI_EXP_TYPE_ROOT_PORT:
2983	case PCI_EXP_TYPE_UPSTREAM:
2984	case PCI_EXP_TYPE_DOWNSTREAM:
2985		if (pci_bridge_d3_disable)
2986			return false;
2987
2988		/*
2989		 * Hotplug ports handled by firmware in System Management Mode
2990		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2991		 */
2992		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2993			return false;
2994
2995		if (pci_bridge_d3_force)
2996			return true;
2997
2998		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2999		if (bridge->is_thunderbolt)
3000			return true;
3001
3002		/* Platform might know better if the bridge supports D3 */
3003		if (platform_pci_bridge_d3(bridge))
3004			return true;
3005
3006		/*
3007		 * Hotplug ports handled natively by the OS were not validated
3008		 * by vendors for runtime D3 at least until 2018 because there
3009		 * was no OS support.
3010		 */
3011		if (bridge->is_hotplug_bridge)
3012			return false;
3013
3014		if (dmi_check_system(bridge_d3_blacklist))
3015			return false;
3016
3017		/*
3018		 * It should be safe to put PCIe ports from 2015 or newer
3019		 * to D3.
3020		 */
3021		if (dmi_get_bios_year() >= 2015)
3022			return true;
3023		break;
3024	}
3025
3026	return false;
3027}
3028
3029static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3030{
3031	bool *d3cold_ok = data;
3032
3033	if (/* The device needs to be allowed to go D3cold ... */
3034	    dev->no_d3cold || !dev->d3cold_allowed ||
3035
3036	    /* ... and if it is wakeup capable to do so from D3cold. */
3037	    (device_may_wakeup(&dev->dev) &&
3038	     !pci_pme_capable(dev, PCI_D3cold)) ||
3039
3040	    /* If it is a bridge it must be allowed to go to D3. */
3041	    !pci_power_manageable(dev))
3042
3043		*d3cold_ok = false;
3044
3045	return !*d3cold_ok;
3046}
3047
3048/*
3049 * pci_bridge_d3_update - Update bridge D3 capabilities
3050 * @dev: PCI device which is changed
3051 *
3052 * Update upstream bridge PM capabilities accordingly depending on if the
3053 * device PM configuration was changed or the device is being removed.  The
3054 * change is also propagated upstream.
3055 */
3056void pci_bridge_d3_update(struct pci_dev *dev)
3057{
3058	bool remove = !device_is_registered(&dev->dev);
3059	struct pci_dev *bridge;
3060	bool d3cold_ok = true;
3061
3062	bridge = pci_upstream_bridge(dev);
3063	if (!bridge || !pci_bridge_d3_possible(bridge))
3064		return;
3065
3066	/*
3067	 * If D3 is currently allowed for the bridge, removing one of its
3068	 * children won't change that.
3069	 */
3070	if (remove && bridge->bridge_d3)
3071		return;
3072
3073	/*
3074	 * If D3 is currently allowed for the bridge and a child is added or
3075	 * changed, disallowance of D3 can only be caused by that child, so
3076	 * we only need to check that single device, not any of its siblings.
3077	 *
3078	 * If D3 is currently not allowed for the bridge, checking the device
3079	 * first may allow us to skip checking its siblings.
3080	 */
3081	if (!remove)
3082		pci_dev_check_d3cold(dev, &d3cold_ok);
3083
3084	/*
3085	 * If D3 is currently not allowed for the bridge, this may be caused
3086	 * either by the device being changed/removed or any of its siblings,
3087	 * so we need to go through all children to find out if one of them
3088	 * continues to block D3.
3089	 */
3090	if (d3cold_ok && !bridge->bridge_d3)
3091		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3092			     &d3cold_ok);
3093
3094	if (bridge->bridge_d3 != d3cold_ok) {
3095		bridge->bridge_d3 = d3cold_ok;
3096		/* Propagate change to upstream bridges */
3097		pci_bridge_d3_update(bridge);
3098	}
3099}
3100
3101/**
3102 * pci_d3cold_enable - Enable D3cold for device
3103 * @dev: PCI device to handle
3104 *
3105 * This function can be used in drivers to enable D3cold from the device
3106 * they handle.  It also updates upstream PCI bridge PM capabilities
3107 * accordingly.
3108 */
3109void pci_d3cold_enable(struct pci_dev *dev)
3110{
3111	if (dev->no_d3cold) {
3112		dev->no_d3cold = false;
3113		pci_bridge_d3_update(dev);
3114	}
3115}
3116EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3117
3118/**
3119 * pci_d3cold_disable - Disable D3cold for device
3120 * @dev: PCI device to handle
3121 *
3122 * This function can be used in drivers to disable D3cold from the device
3123 * they handle.  It also updates upstream PCI bridge PM capabilities
3124 * accordingly.
3125 */
3126void pci_d3cold_disable(struct pci_dev *dev)
3127{
3128	if (!dev->no_d3cold) {
3129		dev->no_d3cold = true;
3130		pci_bridge_d3_update(dev);
3131	}
3132}
3133EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3134
3135/**
3136 * pci_pm_init - Initialize PM functions of given PCI device
3137 * @dev: PCI device to handle.
3138 */
3139void pci_pm_init(struct pci_dev *dev)
3140{
3141	int pm;
3142	u16 status;
3143	u16 pmc;
3144
3145	pm_runtime_forbid(&dev->dev);
3146	pm_runtime_set_active(&dev->dev);
3147	pm_runtime_enable(&dev->dev);
3148	device_enable_async_suspend(&dev->dev);
3149	dev->wakeup_prepared = false;
3150
3151	dev->pm_cap = 0;
3152	dev->pme_support = 0;
3153
3154	/* find PCI PM capability in list */
3155	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3156	if (!pm)
3157		return;
3158	/* Check device's ability to generate PME# */
3159	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3160
3161	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3162		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3163			pmc & PCI_PM_CAP_VER_MASK);
3164		return;
3165	}
3166
3167	dev->pm_cap = pm;
3168	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3169	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3170	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3171	dev->d3cold_allowed = true;
3172
3173	dev->d1_support = false;
3174	dev->d2_support = false;
3175	if (!pci_no_d1d2(dev)) {
3176		if (pmc & PCI_PM_CAP_D1)
3177			dev->d1_support = true;
3178		if (pmc & PCI_PM_CAP_D2)
3179			dev->d2_support = true;
3180
3181		if (dev->d1_support || dev->d2_support)
3182			pci_info(dev, "supports%s%s\n",
3183				   dev->d1_support ? " D1" : "",
3184				   dev->d2_support ? " D2" : "");
3185	}
3186
3187	pmc &= PCI_PM_CAP_PME_MASK;
3188	if (pmc) {
3189		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
 
3190			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3191			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3192			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3193			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3194			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3195		dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3196		dev->pme_poll = true;
3197		/*
3198		 * Make device's PM flags reflect the wake-up capability, but
3199		 * let the user space enable it to wake up the system as needed.
3200		 */
3201		device_set_wakeup_capable(&dev->dev, true);
3202		/* Disable the PME# generation functionality */
3203		pci_pme_active(dev, false);
 
 
3204	}
3205
3206	pci_read_config_word(dev, PCI_STATUS, &status);
3207	if (status & PCI_STATUS_IMM_READY)
3208		dev->imm_ready = 1;
3209}
3210
3211static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
 
 
 
 
 
 
 
 
 
 
3212{
3213	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3214
3215	switch (prop) {
3216	case PCI_EA_P_MEM:
3217	case PCI_EA_P_VF_MEM:
3218		flags |= IORESOURCE_MEM;
3219		break;
3220	case PCI_EA_P_MEM_PREFETCH:
3221	case PCI_EA_P_VF_MEM_PREFETCH:
3222		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3223		break;
3224	case PCI_EA_P_IO:
3225		flags |= IORESOURCE_IO;
3226		break;
3227	default:
3228		return 0;
3229	}
3230
3231	return flags;
3232}
3233
3234static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3235					    u8 prop)
3236{
3237	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3238		return &dev->resource[bei];
3239#ifdef CONFIG_PCI_IOV
3240	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3241		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3242		return &dev->resource[PCI_IOV_RESOURCES +
3243				      bei - PCI_EA_BEI_VF_BAR0];
3244#endif
3245	else if (bei == PCI_EA_BEI_ROM)
3246		return &dev->resource[PCI_ROM_RESOURCE];
3247	else
3248		return NULL;
3249}
3250
3251/* Read an Enhanced Allocation (EA) entry */
3252static int pci_ea_read(struct pci_dev *dev, int offset)
3253{
3254	struct resource *res;
3255	const char *res_name;
3256	int ent_size, ent_offset = offset;
3257	resource_size_t start, end;
3258	unsigned long flags;
3259	u32 dw0, bei, base, max_offset;
3260	u8 prop;
3261	bool support_64 = (sizeof(resource_size_t) >= 8);
3262
3263	pci_read_config_dword(dev, ent_offset, &dw0);
3264	ent_offset += 4;
3265
3266	/* Entry size field indicates DWORDs after 1st */
3267	ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3268
3269	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3270		goto out;
3271
3272	bei = FIELD_GET(PCI_EA_BEI, dw0);
3273	prop = FIELD_GET(PCI_EA_PP, dw0);
3274
3275	/*
3276	 * If the Property is in the reserved range, try the Secondary
3277	 * Property instead.
3278	 */
3279	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3280		prop = FIELD_GET(PCI_EA_SP, dw0);
3281	if (prop > PCI_EA_P_BRIDGE_IO)
3282		goto out;
3283
3284	res = pci_ea_get_resource(dev, bei, prop);
3285	res_name = pci_resource_name(dev, bei);
3286	if (!res) {
3287		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3288		goto out;
3289	}
3290
3291	flags = pci_ea_flags(dev, prop);
3292	if (!flags) {
3293		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3294		goto out;
3295	}
3296
3297	/* Read Base */
3298	pci_read_config_dword(dev, ent_offset, &base);
3299	start = (base & PCI_EA_FIELD_MASK);
3300	ent_offset += 4;
3301
3302	/* Read MaxOffset */
3303	pci_read_config_dword(dev, ent_offset, &max_offset);
3304	ent_offset += 4;
3305
3306	/* Read Base MSBs (if 64-bit entry) */
3307	if (base & PCI_EA_IS_64) {
3308		u32 base_upper;
3309
3310		pci_read_config_dword(dev, ent_offset, &base_upper);
3311		ent_offset += 4;
3312
3313		flags |= IORESOURCE_MEM_64;
3314
3315		/* entry starts above 32-bit boundary, can't use */
3316		if (!support_64 && base_upper)
3317			goto out;
3318
3319		if (support_64)
3320			start |= ((u64)base_upper << 32);
3321	}
3322
3323	end = start + (max_offset | 0x03);
3324
3325	/* Read MaxOffset MSBs (if 64-bit entry) */
3326	if (max_offset & PCI_EA_IS_64) {
3327		u32 max_offset_upper;
3328
3329		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3330		ent_offset += 4;
3331
3332		flags |= IORESOURCE_MEM_64;
3333
3334		/* entry too big, can't use */
3335		if (!support_64 && max_offset_upper)
3336			goto out;
3337
3338		if (support_64)
3339			end += ((u64)max_offset_upper << 32);
3340	}
3341
3342	if (end < start) {
3343		pci_err(dev, "EA Entry crosses address boundary\n");
3344		goto out;
3345	}
3346
3347	if (ent_size != ent_offset - offset) {
3348		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3349			ent_size, ent_offset - offset);
3350		goto out;
3351	}
3352
3353	res->name = pci_name(dev);
3354	res->start = start;
3355	res->end = end;
3356	res->flags = flags;
3357
3358	if (bei <= PCI_EA_BEI_BAR5)
3359		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3360			 res_name, res, prop);
3361	else if (bei == PCI_EA_BEI_ROM)
3362		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3363			 res_name, res, prop);
3364	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3365		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3366			 res_name, res, prop);
3367	else
3368		pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3369			   bei, res, prop);
3370
3371out:
3372	return offset + ent_size;
3373}
3374
3375/* Enhanced Allocation Initialization */
3376void pci_ea_init(struct pci_dev *dev)
3377{
3378	int ea;
3379	u8 num_ent;
3380	int offset;
3381	int i;
3382
3383	/* find PCI EA capability in list */
3384	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3385	if (!ea)
3386		return;
3387
3388	/* determine the number of entries */
3389	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3390					&num_ent);
3391	num_ent &= PCI_EA_NUM_ENT_MASK;
3392
3393	offset = ea + PCI_EA_FIRST_ENT;
3394
3395	/* Skip DWORD 2 for type 1 functions */
3396	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3397		offset += 4;
3398
3399	/* parse each EA entry */
3400	for (i = 0; i < num_ent; ++i)
3401		offset = pci_ea_read(dev, offset);
3402}
3403
3404static void pci_add_saved_cap(struct pci_dev *pci_dev,
3405	struct pci_cap_saved_state *new_cap)
3406{
3407	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3408}
3409
3410/**
3411 * _pci_add_cap_save_buffer - allocate buffer for saving given
3412 *			      capability registers
3413 * @dev: the PCI device
3414 * @cap: the capability to allocate the buffer for
3415 * @extended: Standard or Extended capability ID
3416 * @size: requested size of the buffer
3417 */
3418static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3419				    bool extended, unsigned int size)
3420{
3421	int pos;
3422	struct pci_cap_saved_state *save_state;
3423
3424	if (extended)
3425		pos = pci_find_ext_capability(dev, cap);
3426	else
3427		pos = pci_find_capability(dev, cap);
3428
3429	if (!pos)
3430		return 0;
3431
3432	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3433	if (!save_state)
3434		return -ENOMEM;
3435
3436	save_state->cap.cap_nr = cap;
3437	save_state->cap.cap_extended = extended;
3438	save_state->cap.size = size;
3439	pci_add_saved_cap(dev, save_state);
3440
3441	return 0;
3442}
3443
3444int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3445{
3446	return _pci_add_cap_save_buffer(dev, cap, false, size);
3447}
3448
3449int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3450{
3451	return _pci_add_cap_save_buffer(dev, cap, true, size);
3452}
3453
3454/**
3455 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3456 * @dev: the PCI device
3457 */
3458void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3459{
3460	int error;
3461
3462	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3463					PCI_EXP_SAVE_REGS * sizeof(u16));
3464	if (error)
3465		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
 
3466
3467	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3468	if (error)
3469		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3470
3471	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3472					    2 * sizeof(u16));
3473	if (error)
3474		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3475
3476	pci_allocate_vc_save_buffers(dev);
3477}
3478
3479void pci_free_cap_save_buffers(struct pci_dev *dev)
3480{
3481	struct pci_cap_saved_state *tmp;
3482	struct hlist_node *n;
3483
3484	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3485		kfree(tmp);
3486}
3487
3488/**
3489 * pci_configure_ari - enable or disable ARI forwarding
3490 * @dev: the PCI device
3491 *
3492 * If @dev and its upstream bridge both support ARI, enable ARI in the
3493 * bridge.  Otherwise, disable ARI in the bridge.
3494 */
3495void pci_configure_ari(struct pci_dev *dev)
3496{
 
3497	u32 cap;
 
3498	struct pci_dev *bridge;
3499
3500	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
 
 
 
 
3501		return;
3502
3503	bridge = dev->bus->self;
3504	if (!bridge)
3505		return;
3506
3507	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
 
 
 
 
 
 
 
 
 
3508	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3509		return;
3510
3511	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3512		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3513					 PCI_EXP_DEVCTL2_ARI);
3514		bridge->ari_enabled = 1;
3515	} else {
3516		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3517					   PCI_EXP_DEVCTL2_ARI);
3518		bridge->ari_enabled = 0;
3519	}
3520}
3521
3522static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
 
 
 
 
 
 
 
 
 
3523{
3524	int pos;
3525	u16 cap, ctrl;
3526
3527	pos = pdev->acs_cap;
3528	if (!pos)
3529		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3530
3531	/*
3532	 * Except for egress control, capabilities are either required
3533	 * or only required if controllable.  Features missing from the
3534	 * capability field can therefore be assumed as hard-wired enabled.
3535	 */
3536	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3537	acs_flags &= (cap | PCI_ACS_EC);
3538
3539	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3540	return (ctrl & acs_flags) == acs_flags;
 
 
 
 
3541}
 
3542
3543/**
3544 * pci_acs_enabled - test ACS against required flags for a given device
3545 * @pdev: device to test
3546 * @acs_flags: required PCI ACS flags
3547 *
3548 * Return true if the device supports the provided flags.  Automatically
3549 * filters out flags that are not implemented on multifunction devices.
 
 
 
 
 
 
 
 
3550 *
3551 * Note that this interface checks the effective ACS capabilities of the
3552 * device rather than the actual capabilities.  For instance, most single
3553 * function endpoints are not required to support ACS because they have no
3554 * opportunity for peer-to-peer access.  We therefore return 'true'
3555 * regardless of whether the device exposes an ACS capability.  This makes
3556 * it much easier for callers of this function to ignore the actual type
3557 * or topology of the device when testing ACS support.
3558 */
3559bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3560{
 
 
 
3561	int ret;
3562
3563	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3564	if (ret >= 0)
3565		return ret > 0;
 
 
 
3566
3567	/*
3568	 * Conventional PCI and PCI-X devices never support ACS, either
3569	 * effectively or actually.  The shared bus topology implies that
3570	 * any device on the bus can receive or snoop DMA.
3571	 */
3572	if (!pci_is_pcie(pdev))
3573		return false;
 
 
 
3574
3575	switch (pci_pcie_type(pdev)) {
3576	/*
3577	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3578	 * but since their primary interface is PCI/X, we conservatively
3579	 * handle them as we would a non-PCIe device.
3580	 */
3581	case PCI_EXP_TYPE_PCIE_BRIDGE:
3582	/*
3583	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3584	 * applicable... must never implement an ACS Extended Capability...".
3585	 * This seems arbitrary, but we take a conservative interpretation
3586	 * of this statement.
3587	 */
3588	case PCI_EXP_TYPE_PCI_BRIDGE:
3589	case PCI_EXP_TYPE_RC_EC:
3590		return false;
3591	/*
3592	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3593	 * implement ACS in order to indicate their peer-to-peer capabilities,
3594	 * regardless of whether they are single- or multi-function devices.
3595	 */
3596	case PCI_EXP_TYPE_DOWNSTREAM:
3597	case PCI_EXP_TYPE_ROOT_PORT:
3598		return pci_acs_flags_enabled(pdev, acs_flags);
3599	/*
3600	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3601	 * implemented by the remaining PCIe types to indicate peer-to-peer
3602	 * capabilities, but only when they are part of a multifunction
3603	 * device.  The footnote for section 6.12 indicates the specific
3604	 * PCIe types included here.
3605	 */
3606	case PCI_EXP_TYPE_ENDPOINT:
3607	case PCI_EXP_TYPE_UPSTREAM:
3608	case PCI_EXP_TYPE_LEG_END:
3609	case PCI_EXP_TYPE_RC_END:
3610		if (!pdev->multifunction)
3611			break;
3612
3613		return pci_acs_flags_enabled(pdev, acs_flags);
 
 
3614	}
 
3615
3616	/*
3617	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3618	 * to single function devices with the exception of downstream ports.
3619	 */
3620	return true;
3621}
 
3622
3623/**
3624 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3625 * @start: starting downstream device
3626 * @end: ending upstream device or NULL to search to the root bus
3627 * @acs_flags: required flags
3628 *
3629 * Walk up a device tree from start to end testing PCI ACS support.  If
3630 * any step along the way does not support the required flags, return false.
3631 */
3632bool pci_acs_path_enabled(struct pci_dev *start,
3633			  struct pci_dev *end, u16 acs_flags)
3634{
3635	struct pci_dev *pdev, *parent = start;
 
3636
3637	do {
3638		pdev = parent;
3639
3640		if (!pci_acs_enabled(pdev, acs_flags))
3641			return false;
3642
3643		if (pci_is_root_bus(pdev->bus))
3644			return (end == NULL);
3645
3646		parent = pdev->bus->self;
3647	} while (pdev != end);
3648
3649	return true;
3650}
 
3651
3652/**
3653 * pci_acs_init - Initialize ACS if hardware supports it
3654 * @dev: the PCI device
 
 
 
3655 */
3656void pci_acs_init(struct pci_dev *dev)
3657{
3658	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
 
 
 
 
 
 
 
 
 
 
3659
3660	/*
3661	 * Attempt to enable ACS regardless of capability because some Root
3662	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3663	 * the standard ACS capability but still support ACS via those
3664	 * quirks.
3665	 */
3666	pci_enable_acs(dev);
3667}
 
3668
3669/**
3670 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3671 * @pdev: PCI device
3672 * @bar: BAR to find
 
 
3673 *
3674 * Helper to find the position of the ctrl register for a BAR.
3675 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3676 * Returns -ENOENT if no ctrl register for the BAR could be found.
3677 */
3678static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3679{
3680	unsigned int pos, nbars, i;
3681	u32 ctrl;
 
 
 
 
3682
3683	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3684	if (!pos)
3685		return -ENOTSUPP;
3686
3687	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3688	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
 
3689
3690	for (i = 0; i < nbars; i++, pos += 8) {
3691		int bar_idx;
 
 
 
 
3692
3693		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3694		bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3695		if (bar_idx == bar)
3696			return pos;
3697	}
3698
3699	return -ENOENT;
3700}
 
3701
3702/**
3703 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3704 * @pdev: PCI device
3705 * @bar: BAR to query
3706 *
3707 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3708 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3709 */
3710u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3711{
3712	int pos;
3713	u32 cap;
 
 
 
 
 
 
 
3714
3715	pos = pci_rebar_find_pos(pdev, bar);
3716	if (pos < 0)
3717		return 0;
3718
3719	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3720	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
 
 
 
3721
3722	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3723	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3724	    bar == 0 && cap == 0x700)
3725		return 0x3f00;
3726
3727	return cap;
 
 
 
 
3728}
3729EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3730
3731/**
3732 * pci_rebar_get_current_size - get the current size of a BAR
3733 * @pdev: PCI device
3734 * @bar: BAR to set size to
 
3735 *
3736 * Read the size of a BAR from the resizable BAR config.
3737 * Returns size if found or negative error code.
3738 */
3739int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3740{
3741	int pos;
3742	u32 ctrl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3743
3744	pos = pci_rebar_find_pos(pdev, bar);
3745	if (pos < 0)
3746		return pos;
 
3747
3748	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3749	return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3750}
 
 
 
3751
3752/**
3753 * pci_rebar_set_size - set a new size for a BAR
3754 * @pdev: PCI device
3755 * @bar: BAR to set size to
3756 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3757 *
3758 * Set the new size of a BAR as defined in the spec.
3759 * Returns zero if resizing was successful, error code otherwise.
3760 */
3761int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3762{
3763	int pos;
3764	u32 ctrl;
3765
3766	pos = pci_rebar_find_pos(pdev, bar);
3767	if (pos < 0)
3768		return pos;
3769
3770	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3771	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3772	ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3773	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3774	return 0;
3775}
3776
3777/**
3778 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3779 * @dev: the PCI device
3780 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3781 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3782 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3783 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3784 *
3785 * Return 0 if all upstream bridges support AtomicOp routing, egress
3786 * blocking is disabled on all upstream ports, and the root port supports
3787 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3788 * AtomicOp completion), or negative otherwise.
3789 */
3790int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3791{
3792	struct pci_bus *bus = dev->bus;
3793	struct pci_dev *bridge;
3794	u32 cap, ctl2;
3795
3796	/*
3797	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3798	 * in Device Control 2 is reserved in VFs and the PF value applies
3799	 * to all associated VFs.
3800	 */
3801	if (dev->is_virtfn)
3802		return -EINVAL;
3803
3804	if (!pci_is_pcie(dev))
3805		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3806
3807	/*
3808	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3809	 * AtomicOp requesters.  For now, we only support endpoints as
3810	 * requesters and root ports as completers.  No endpoints as
3811	 * completers, and no peer-to-peer.
3812	 */
3813
3814	switch (pci_pcie_type(dev)) {
3815	case PCI_EXP_TYPE_ENDPOINT:
3816	case PCI_EXP_TYPE_LEG_END:
3817	case PCI_EXP_TYPE_RC_END:
3818		break;
3819	default:
3820		return -EINVAL;
3821	}
3822
3823	while (bus->parent) {
3824		bridge = bus->self;
 
 
 
 
 
 
 
 
 
 
 
 
3825
3826		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
 
 
 
3827
3828		switch (pci_pcie_type(bridge)) {
3829		/* Ensure switch ports support AtomicOp routing */
3830		case PCI_EXP_TYPE_UPSTREAM:
3831		case PCI_EXP_TYPE_DOWNSTREAM:
3832			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3833				return -EINVAL;
3834			break;
3835
3836		/* Ensure root port supports all the sizes we care about */
3837		case PCI_EXP_TYPE_ROOT_PORT:
3838			if ((cap & cap_mask) != cap_mask)
3839				return -EINVAL;
3840			break;
3841		}
3842
3843		/* Ensure upstream ports don't block AtomicOps on egress */
3844		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3845			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3846						   &ctl2);
3847			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3848				return -EINVAL;
3849		}
3850
3851		bus = bus->parent;
 
 
3852	}
 
 
 
3853
3854	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3855				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3856	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3857}
3858EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3859
3860/**
3861 * pci_release_region - Release a PCI bar
3862 * @pdev: PCI device whose resources were previously reserved by
3863 *	  pci_request_region()
3864 * @bar: BAR to release
3865 *
3866 * Releases the PCI I/O and memory resources previously reserved by a
3867 * successful call to pci_request_region().  Call this function only
3868 * after all use of the PCI regions has ceased.
3869 */
3870void pci_release_region(struct pci_dev *pdev, int bar)
3871{
3872	struct pci_devres *dr;
3873
3874	if (pci_resource_len(pdev, bar) == 0)
3875		return;
3876	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3877		release_region(pci_resource_start(pdev, bar),
3878				pci_resource_len(pdev, bar));
3879	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3880		release_mem_region(pci_resource_start(pdev, bar),
3881				pci_resource_len(pdev, bar));
3882
3883	dr = find_pci_dr(pdev);
3884	if (dr)
3885		dr->region_mask &= ~(1 << bar);
3886}
3887EXPORT_SYMBOL(pci_release_region);
3888
3889/**
3890 * __pci_request_region - Reserved PCI I/O and memory resource
3891 * @pdev: PCI device whose resources are to be reserved
3892 * @bar: BAR to be reserved
3893 * @res_name: Name to be associated with resource.
3894 * @exclusive: whether the region access is exclusive or not
3895 *
3896 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3897 * being reserved by owner @res_name.  Do not access any
3898 * address inside the PCI regions unless this call returns
3899 * successfully.
3900 *
3901 * If @exclusive is set, then the region is marked so that userspace
3902 * is explicitly not allowed to map the resource via /dev/mem or
3903 * sysfs MMIO access.
3904 *
3905 * Returns 0 on success, or %EBUSY on error.  A warning
3906 * message is also printed on failure.
3907 */
3908static int __pci_request_region(struct pci_dev *pdev, int bar,
3909				const char *res_name, int exclusive)
3910{
3911	struct pci_devres *dr;
3912
3913	if (pci_resource_len(pdev, bar) == 0)
3914		return 0;
3915
3916	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3917		if (!request_region(pci_resource_start(pdev, bar),
3918			    pci_resource_len(pdev, bar), res_name))
3919			goto err_out;
3920	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
 
3921		if (!__request_mem_region(pci_resource_start(pdev, bar),
3922					pci_resource_len(pdev, bar), res_name,
3923					exclusive))
3924			goto err_out;
3925	}
3926
3927	dr = find_pci_dr(pdev);
3928	if (dr)
3929		dr->region_mask |= 1 << bar;
3930
3931	return 0;
3932
3933err_out:
3934	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3935		 &pdev->resource[bar]);
3936	return -EBUSY;
3937}
3938
3939/**
3940 * pci_request_region - Reserve PCI I/O and memory resource
3941 * @pdev: PCI device whose resources are to be reserved
3942 * @bar: BAR to be reserved
3943 * @res_name: Name to be associated with resource
3944 *
3945 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3946 * being reserved by owner @res_name.  Do not access any
3947 * address inside the PCI regions unless this call returns
3948 * successfully.
3949 *
3950 * Returns 0 on success, or %EBUSY on error.  A warning
3951 * message is also printed on failure.
3952 */
3953int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3954{
3955	return __pci_request_region(pdev, bar, res_name, 0);
3956}
3957EXPORT_SYMBOL(pci_request_region);
3958
3959/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3960 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3961 * @pdev: PCI device whose resources were previously reserved
3962 * @bars: Bitmask of BARs to be released
3963 *
3964 * Release selected PCI I/O and memory resources previously reserved.
3965 * Call this function only after all use of the PCI regions has ceased.
3966 */
3967void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3968{
3969	int i;
3970
3971	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3972		if (bars & (1 << i))
3973			pci_release_region(pdev, i);
3974}
3975EXPORT_SYMBOL(pci_release_selected_regions);
3976
3977static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3978					  const char *res_name, int excl)
3979{
3980	int i;
3981
3982	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3983		if (bars & (1 << i))
3984			if (__pci_request_region(pdev, i, res_name, excl))
3985				goto err_out;
3986	return 0;
3987
3988err_out:
3989	while (--i >= 0)
3990		if (bars & (1 << i))
3991			pci_release_region(pdev, i);
3992
3993	return -EBUSY;
3994}
3995
3996
3997/**
3998 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3999 * @pdev: PCI device whose resources are to be reserved
4000 * @bars: Bitmask of BARs to be requested
4001 * @res_name: Name to be associated with resource
4002 */
4003int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4004				 const char *res_name)
4005{
4006	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4007}
4008EXPORT_SYMBOL(pci_request_selected_regions);
4009
4010int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4011					   const char *res_name)
4012{
4013	return __pci_request_selected_regions(pdev, bars, res_name,
4014			IORESOURCE_EXCLUSIVE);
4015}
4016EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4017
4018/**
4019 * pci_release_regions - Release reserved PCI I/O and memory resources
4020 * @pdev: PCI device whose resources were previously reserved by
4021 *	  pci_request_regions()
4022 *
4023 * Releases all PCI I/O and memory resources previously reserved by a
4024 * successful call to pci_request_regions().  Call this function only
4025 * after all use of the PCI regions has ceased.
4026 */
4027
4028void pci_release_regions(struct pci_dev *pdev)
4029{
4030	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4031}
4032EXPORT_SYMBOL(pci_release_regions);
4033
4034/**
4035 * pci_request_regions - Reserve PCI I/O and memory resources
4036 * @pdev: PCI device whose resources are to be reserved
4037 * @res_name: Name to be associated with resource.
4038 *
4039 * Mark all PCI regions associated with PCI device @pdev as
4040 * being reserved by owner @res_name.  Do not access any
4041 * address inside the PCI regions unless this call returns
4042 * successfully.
4043 *
4044 * Returns 0 on success, or %EBUSY on error.  A warning
4045 * message is also printed on failure.
4046 */
4047int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4048{
4049	return pci_request_selected_regions(pdev,
4050			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4051}
4052EXPORT_SYMBOL(pci_request_regions);
4053
4054/**
4055 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4056 * @pdev: PCI device whose resources are to be reserved
4057 * @res_name: Name to be associated with resource.
4058 *
4059 * Mark all PCI regions associated with PCI device @pdev as being reserved
4060 * by owner @res_name.  Do not access any address inside the PCI regions
4061 * unless this call returns successfully.
 
4062 *
4063 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4064 * and the sysfs MMIO access will not be allowed.
4065 *
4066 * Returns 0 on success, or %EBUSY on error.  A warning message is also
4067 * printed on failure.
4068 */
4069int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4070{
4071	return pci_request_selected_regions_exclusive(pdev,
4072				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4073}
4074EXPORT_SYMBOL(pci_request_regions_exclusive);
4075
4076/*
4077 * Record the PCI IO range (expressed as CPU physical address + size).
4078 * Return a negative value if an error has occurred, zero otherwise
4079 */
4080int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4081			resource_size_t	size)
4082{
4083	int ret = 0;
4084#ifdef PCI_IOBASE
4085	struct logic_pio_hwaddr *range;
4086
4087	if (!size || addr + size < addr)
4088		return -EINVAL;
4089
4090	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4091	if (!range)
4092		return -ENOMEM;
4093
4094	range->fwnode = fwnode;
4095	range->size = size;
4096	range->hw_start = addr;
4097	range->flags = LOGIC_PIO_CPU_MMIO;
4098
4099	ret = logic_pio_register_range(range);
4100	if (ret)
4101		kfree(range);
4102
4103	/* Ignore duplicates due to deferred probing */
4104	if (ret == -EEXIST)
4105		ret = 0;
4106#endif
4107
4108	return ret;
4109}
4110
4111phys_addr_t pci_pio_to_address(unsigned long pio)
4112{
4113#ifdef PCI_IOBASE
4114	if (pio < MMIO_UPPER_LIMIT)
4115		return logic_pio_to_hwaddr(pio);
4116#endif
4117
4118	return (phys_addr_t) OF_BAD_ADDR;
4119}
4120EXPORT_SYMBOL_GPL(pci_pio_to_address);
4121
4122unsigned long __weak pci_address_to_pio(phys_addr_t address)
4123{
4124#ifdef PCI_IOBASE
4125	return logic_pio_trans_cpuaddr(address);
4126#else
4127	if (address > IO_SPACE_LIMIT)
4128		return (unsigned long)-1;
4129
4130	return (unsigned long) address;
4131#endif
4132}
4133
4134/**
4135 * pci_remap_iospace - Remap the memory mapped I/O space
4136 * @res: Resource describing the I/O space
4137 * @phys_addr: physical address of range to be mapped
4138 *
4139 * Remap the memory mapped I/O space described by the @res and the CPU
4140 * physical address @phys_addr into virtual address space.  Only
4141 * architectures that have memory mapped IO functions defined (and the
4142 * PCI_IOBASE value defined) should call this function.
4143 */
4144#ifndef pci_remap_iospace
4145int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4146{
4147#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4148	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4149
4150	if (!(res->flags & IORESOURCE_IO))
4151		return -EINVAL;
4152
4153	if (res->end > IO_SPACE_LIMIT)
4154		return -EINVAL;
4155
4156	return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4157			       pgprot_device(PAGE_KERNEL));
4158#else
4159	/*
4160	 * This architecture does not have memory mapped I/O space,
4161	 * so this function should never be called
4162	 */
4163	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4164	return -ENODEV;
4165#endif
4166}
4167EXPORT_SYMBOL(pci_remap_iospace);
4168#endif
4169
4170/**
4171 * pci_unmap_iospace - Unmap the memory mapped I/O space
4172 * @res: resource to be unmapped
4173 *
4174 * Unmap the CPU virtual address @res from virtual address space.  Only
4175 * architectures that have memory mapped IO functions defined (and the
4176 * PCI_IOBASE value defined) should call this function.
4177 */
4178void pci_unmap_iospace(struct resource *res)
4179{
4180#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4181	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4182
4183	vunmap_range(vaddr, vaddr + resource_size(res));
4184#endif
4185}
4186EXPORT_SYMBOL(pci_unmap_iospace);
4187
4188static void __pci_set_master(struct pci_dev *dev, bool enable)
4189{
4190	u16 old_cmd, cmd;
4191
4192	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4193	if (enable)
4194		cmd = old_cmd | PCI_COMMAND_MASTER;
4195	else
4196		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4197	if (cmd != old_cmd) {
4198		pci_dbg(dev, "%s bus mastering\n",
4199			enable ? "enabling" : "disabling");
4200		pci_write_config_word(dev, PCI_COMMAND, cmd);
4201	}
4202	dev->is_busmaster = enable;
4203}
4204
4205/**
4206 * pcibios_setup - process "pci=" kernel boot arguments
4207 * @str: string used to pass in "pci=" kernel boot arguments
4208 *
4209 * Process kernel boot arguments.  This is the default implementation.
4210 * Architecture specific implementations can override this as necessary.
4211 */
4212char * __weak __init pcibios_setup(char *str)
4213{
4214	return str;
4215}
4216
4217/**
4218 * pcibios_set_master - enable PCI bus-mastering for device dev
4219 * @dev: the PCI device to enable
4220 *
4221 * Enables PCI bus-mastering for the device.  This is the default
4222 * implementation.  Architecture specific implementations can override
4223 * this if necessary.
4224 */
4225void __weak pcibios_set_master(struct pci_dev *dev)
4226{
4227	u8 lat;
4228
4229	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4230	if (pci_is_pcie(dev))
4231		return;
4232
4233	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4234	if (lat < 16)
4235		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4236	else if (lat > pcibios_max_latency)
4237		lat = pcibios_max_latency;
4238	else
4239		return;
4240
4241	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4242}
4243
4244/**
4245 * pci_set_master - enables bus-mastering for device dev
4246 * @dev: the PCI device to enable
4247 *
4248 * Enables bus-mastering on the device and calls pcibios_set_master()
4249 * to do the needed arch specific settings.
4250 */
4251void pci_set_master(struct pci_dev *dev)
4252{
4253	__pci_set_master(dev, true);
4254	pcibios_set_master(dev);
4255}
4256EXPORT_SYMBOL(pci_set_master);
4257
4258/**
4259 * pci_clear_master - disables bus-mastering for device dev
4260 * @dev: the PCI device to disable
4261 */
4262void pci_clear_master(struct pci_dev *dev)
4263{
4264	__pci_set_master(dev, false);
4265}
4266EXPORT_SYMBOL(pci_clear_master);
4267
4268/**
4269 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4270 * @dev: the PCI device for which MWI is to be enabled
4271 *
4272 * Helper function for pci_set_mwi.
4273 * Originally copied from drivers/net/acenic.c.
4274 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4275 *
4276 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4277 */
4278int pci_set_cacheline_size(struct pci_dev *dev)
4279{
4280	u8 cacheline_size;
4281
4282	if (!pci_cache_line_size)
4283		return -EINVAL;
4284
4285	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4286	   equal to or multiple of the right value. */
4287	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4288	if (cacheline_size >= pci_cache_line_size &&
4289	    (cacheline_size % pci_cache_line_size) == 0)
4290		return 0;
4291
4292	/* Write the correct value. */
4293	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4294	/* Read it back. */
4295	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4296	if (cacheline_size == pci_cache_line_size)
4297		return 0;
4298
4299	pci_dbg(dev, "cache line size of %d is not supported\n",
4300		   pci_cache_line_size << 2);
4301
4302	return -EINVAL;
4303}
4304EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4306/**
4307 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4308 * @dev: the PCI device for which MWI is enabled
4309 *
4310 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4311 *
4312 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4313 */
4314int pci_set_mwi(struct pci_dev *dev)
 
4315{
4316#ifdef PCI_DISABLE_MWI
4317	return 0;
4318#else
4319	int rc;
4320	u16 cmd;
4321
4322	rc = pci_set_cacheline_size(dev);
4323	if (rc)
4324		return rc;
4325
4326	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4327	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4328		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4329		cmd |= PCI_COMMAND_INVALIDATE;
4330		pci_write_config_word(dev, PCI_COMMAND, cmd);
4331	}
 
4332	return 0;
4333#endif
4334}
4335EXPORT_SYMBOL(pci_set_mwi);
4336
4337/**
4338 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4339 * @dev: the PCI device for which MWI is enabled
4340 *
4341 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4342 * Callers are not required to check the return value.
4343 *
4344 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4345 */
4346int pci_try_set_mwi(struct pci_dev *dev)
4347{
4348#ifdef PCI_DISABLE_MWI
4349	return 0;
4350#else
4351	return pci_set_mwi(dev);
4352#endif
4353}
4354EXPORT_SYMBOL(pci_try_set_mwi);
4355
4356/**
4357 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4358 * @dev: the PCI device to disable
4359 *
4360 * Disables PCI Memory-Write-Invalidate transaction on the device
4361 */
4362void pci_clear_mwi(struct pci_dev *dev)
 
4363{
4364#ifndef PCI_DISABLE_MWI
4365	u16 cmd;
4366
4367	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4368	if (cmd & PCI_COMMAND_INVALIDATE) {
4369		cmd &= ~PCI_COMMAND_INVALIDATE;
4370		pci_write_config_word(dev, PCI_COMMAND, cmd);
4371	}
4372#endif
4373}
4374EXPORT_SYMBOL(pci_clear_mwi);
4375
4376/**
4377 * pci_disable_parity - disable parity checking for device
4378 * @dev: the PCI device to operate on
4379 *
4380 * Disable parity checking for device @dev
4381 */
4382void pci_disable_parity(struct pci_dev *dev)
4383{
4384	u16 cmd;
4385
4386	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4387	if (cmd & PCI_COMMAND_PARITY) {
4388		cmd &= ~PCI_COMMAND_PARITY;
4389		pci_write_config_word(dev, PCI_COMMAND, cmd);
4390	}
4391}
 
4392
4393/**
4394 * pci_intx - enables/disables PCI INTx for device dev
4395 * @pdev: the PCI device to operate on
4396 * @enable: boolean: whether to enable or disable PCI INTx
4397 *
4398 * Enables/disables PCI INTx for device @pdev
4399 */
4400void pci_intx(struct pci_dev *pdev, int enable)
 
4401{
4402	u16 pci_command, new;
4403
4404	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4405
4406	if (enable)
4407		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4408	else
4409		new = pci_command | PCI_COMMAND_INTX_DISABLE;
 
4410
4411	if (new != pci_command) {
4412		struct pci_devres *dr;
4413
4414		pci_write_config_word(pdev, PCI_COMMAND, new);
4415
4416		dr = find_pci_dr(pdev);
4417		if (dr && !dr->restore_intx) {
4418			dr->restore_intx = 1;
4419			dr->orig_intx = !enable;
4420		}
4421	}
4422}
4423EXPORT_SYMBOL_GPL(pci_intx);
4424
4425/**
4426 * pci_wait_for_pending_transaction - wait for pending transaction
4427 * @dev: the PCI device to operate on
4428 *
4429 * Return 0 if transaction is pending 1 otherwise.
 
 
4430 */
4431int pci_wait_for_pending_transaction(struct pci_dev *dev)
4432{
4433	if (!pci_is_pcie(dev))
4434		return 1;
4435
4436	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4437				    PCI_EXP_DEVSTA_TRPND);
 
 
 
 
 
 
 
 
 
 
4438}
4439EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4440
4441/**
4442 * pcie_flr - initiate a PCIe function level reset
4443 * @dev: device to reset
4444 *
4445 * Initiate a function level reset unconditionally on @dev without
4446 * checking any flags and DEVCAP
4447 */
4448int pcie_flr(struct pci_dev *dev)
4449{
4450	if (!pci_wait_for_pending_transaction(dev))
4451		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
 
4452
4453	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4454
4455	if (dev->imm_ready)
4456		return 0;
4457
4458	/*
4459	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4460	 * 100ms, but may silently discard requests while the FLR is in
4461	 * progress.  Wait 100ms before trying to access the device.
4462	 */
4463	msleep(100);
4464
4465	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4466}
4467EXPORT_SYMBOL_GPL(pcie_flr);
4468
4469/**
4470 * pcie_reset_flr - initiate a PCIe function level reset
4471 * @dev: device to reset
4472 * @probe: if true, return 0 if device can be reset this way
4473 *
4474 * Initiate a function level reset on @dev.
4475 */
4476int pcie_reset_flr(struct pci_dev *dev, bool probe)
4477{
4478	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
 
 
 
 
 
 
4479		return -ENOTTY;
4480
4481	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
 
4482		return -ENOTTY;
4483
4484	if (probe)
4485		return 0;
4486
4487	return pcie_flr(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4488}
4489EXPORT_SYMBOL_GPL(pcie_reset_flr);
4490
4491static int pci_af_flr(struct pci_dev *dev, bool probe)
4492{
 
4493	int pos;
4494	u8 cap;
 
4495
4496	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4497	if (!pos)
4498		return -ENOTTY;
4499
4500	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4501		return -ENOTTY;
4502
4503	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4504	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4505		return -ENOTTY;
4506
4507	if (probe)
4508		return 0;
4509
4510	/*
4511	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4512	 * is used, so we use the control offset rather than status and shift
4513	 * the test bit to match.
4514	 */
4515	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4516				 PCI_AF_STATUS_TP << 8))
4517		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4518
4519	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
 
 
 
4520
4521	if (dev->imm_ready)
4522		return 0;
4523
4524	/*
4525	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4526	 * updated 27 July 2006; a device must complete an FLR within
4527	 * 100ms, but may silently discard requests while the FLR is in
4528	 * progress.  Wait 100ms before trying to access the device.
4529	 */
4530	msleep(100);
4531
4532	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4533}
4534
4535/**
4536 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4537 * @dev: Device to reset.
4538 * @probe: if true, return 0 if the device can be reset this way.
4539 *
4540 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4541 * unset, it will be reinitialized internally when going from PCI_D3hot to
4542 * PCI_D0.  If that's the case and the device is not in a low-power state
4543 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4544 *
4545 * NOTE: This causes the caller to sleep for twice the device power transition
4546 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4547 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4548 * Moreover, only devices in D0 can be reset by this function.
4549 */
4550static int pci_pm_reset(struct pci_dev *dev, bool probe)
4551{
4552	u16 csr;
4553
4554	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4555		return -ENOTTY;
4556
4557	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4558	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4559		return -ENOTTY;
4560
4561	if (probe)
4562		return 0;
4563
4564	if (dev->current_state != PCI_D0)
4565		return -EINVAL;
4566
4567	csr &= ~PCI_PM_CTRL_STATE_MASK;
4568	csr |= PCI_D3hot;
4569	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4570	pci_dev_d3_sleep(dev);
4571
4572	csr &= ~PCI_PM_CTRL_STATE_MASK;
4573	csr |= PCI_D0;
4574	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4575	pci_dev_d3_sleep(dev);
4576
4577	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4578}
4579
4580/**
4581 * pcie_wait_for_link_status - Wait for link status change
4582 * @pdev: Device whose link to wait for.
4583 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4584 * @active: Waiting for active or inactive?
4585 *
4586 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4587 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4588 */
4589static int pcie_wait_for_link_status(struct pci_dev *pdev,
4590				     bool use_lt, bool active)
4591{
4592	u16 lnksta_mask, lnksta_match;
4593	unsigned long end_jiffies;
4594	u16 lnksta;
4595
4596	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4597	lnksta_match = active ? lnksta_mask : 0;
4598
4599	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4600	do {
4601		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4602		if ((lnksta & lnksta_mask) == lnksta_match)
4603			return 0;
4604		msleep(1);
4605	} while (time_before(jiffies, end_jiffies));
4606
4607	return -ETIMEDOUT;
4608}
4609
4610/**
4611 * pcie_retrain_link - Request a link retrain and wait for it to complete
4612 * @pdev: Device whose link to retrain.
4613 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4614 *
4615 * Retrain completion status is retrieved from the Link Status Register
4616 * according to @use_lt.  It is not verified whether the use of the DLLLA
4617 * bit is valid.
4618 *
4619 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4620 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4621 */
4622int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4623{
4624	int rc;
4625
4626	/*
4627	 * Ensure the updated LNKCTL parameters are used during link
4628	 * training by checking that there is no ongoing link training to
4629	 * avoid LTSSM race as recommended in Implementation Note at the
4630	 * end of PCIe r6.0.1 sec 7.5.3.7.
4631	 */
4632	rc = pcie_wait_for_link_status(pdev, true, false);
4633	if (rc)
4634		return rc;
4635
4636	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4637	if (pdev->clear_retrain_link) {
4638		/*
4639		 * Due to an erratum in some devices the Retrain Link bit
4640		 * needs to be cleared again manually to allow the link
4641		 * training to succeed.
4642		 */
4643		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4644	}
4645
4646	return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4647}
4648
4649/**
4650 * pcie_wait_for_link_delay - Wait until link is active or inactive
4651 * @pdev: Bridge device
4652 * @active: waiting for active or inactive?
4653 * @delay: Delay to wait after link has become active (in ms)
4654 *
4655 * Use this to wait till link becomes active or inactive.
4656 */
4657static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4658				     int delay)
4659{
4660	int rc;
4661
4662	/*
4663	 * Some controllers might not implement link active reporting. In this
4664	 * case, we wait for 1000 ms + any delay requested by the caller.
4665	 */
4666	if (!pdev->link_active_reporting) {
4667		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4668		return true;
4669	}
4670
4671	/*
4672	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4673	 * after which we should expect an link active if the reset was
4674	 * successful. If so, software must wait a minimum 100ms before sending
4675	 * configuration requests to devices downstream this port.
4676	 *
4677	 * If the link fails to activate, either the device was physically
4678	 * removed or the link is permanently failed.
4679	 */
4680	if (active)
4681		msleep(20);
4682	rc = pcie_wait_for_link_status(pdev, false, active);
4683	if (active) {
4684		if (rc)
4685			rc = pcie_failed_link_retrain(pdev);
4686		if (rc)
4687			return false;
4688
4689		msleep(delay);
4690		return true;
4691	}
4692
4693	if (rc)
4694		return false;
4695
4696	return true;
4697}
4698
4699/**
4700 * pcie_wait_for_link - Wait until link is active or inactive
4701 * @pdev: Bridge device
4702 * @active: waiting for active or inactive?
4703 *
4704 * Use this to wait till link becomes active or inactive.
4705 */
4706bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4707{
4708	return pcie_wait_for_link_delay(pdev, active, 100);
4709}
4710
4711/*
4712 * Find maximum D3cold delay required by all the devices on the bus.  The
4713 * spec says 100 ms, but firmware can lower it and we allow drivers to
4714 * increase it as well.
4715 *
4716 * Called with @pci_bus_sem locked for reading.
4717 */
4718static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4719{
4720	const struct pci_dev *pdev;
4721	int min_delay = 100;
4722	int max_delay = 0;
4723
4724	list_for_each_entry(pdev, &bus->devices, bus_list) {
4725		if (pdev->d3cold_delay < min_delay)
4726			min_delay = pdev->d3cold_delay;
4727		if (pdev->d3cold_delay > max_delay)
4728			max_delay = pdev->d3cold_delay;
4729	}
4730
4731	return max(min_delay, max_delay);
4732}
4733
4734/**
4735 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4736 * @dev: PCI bridge
4737 * @reset_type: reset type in human-readable form
4738 *
4739 * Handle necessary delays before access to the devices on the secondary
4740 * side of the bridge are permitted after D3cold to D0 transition
4741 * or Conventional Reset.
4742 *
4743 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4744 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4745 * 4.3.2.
4746 *
4747 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4748 * failed to become accessible.
4749 */
4750int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4751{
4752	struct pci_dev *child;
4753	int delay;
4754
4755	if (pci_dev_is_disconnected(dev))
4756		return 0;
4757
4758	if (!pci_is_bridge(dev))
4759		return 0;
4760
4761	down_read(&pci_bus_sem);
4762
4763	/*
4764	 * We only deal with devices that are present currently on the bus.
4765	 * For any hot-added devices the access delay is handled in pciehp
4766	 * board_added(). In case of ACPI hotplug the firmware is expected
4767	 * to configure the devices before OS is notified.
4768	 */
4769	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4770		up_read(&pci_bus_sem);
4771		return 0;
4772	}
4773
4774	/* Take d3cold_delay requirements into account */
4775	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4776	if (!delay) {
4777		up_read(&pci_bus_sem);
4778		return 0;
4779	}
4780
4781	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4782				 bus_list);
4783	up_read(&pci_bus_sem);
4784
4785	/*
4786	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4787	 * accessing the device after reset (that is 1000 ms + 100 ms).
4788	 */
4789	if (!pci_is_pcie(dev)) {
4790		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4791		msleep(1000 + delay);
4792		return 0;
4793	}
4794
4795	/*
4796	 * For PCIe downstream and root ports that do not support speeds
4797	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4798	 * speeds (gen3) we need to wait first for the data link layer to
4799	 * become active.
4800	 *
4801	 * However, 100 ms is the minimum and the PCIe spec says the
4802	 * software must allow at least 1s before it can determine that the
4803	 * device that did not respond is a broken device. Also device can
4804	 * take longer than that to respond if it indicates so through Request
4805	 * Retry Status completions.
4806	 *
4807	 * Therefore we wait for 100 ms and check for the device presence
4808	 * until the timeout expires.
4809	 */
4810	if (!pcie_downstream_port(dev))
4811		return 0;
4812
4813	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4814		u16 status;
4815
4816		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4817		msleep(delay);
4818
4819		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4820			return 0;
4821
4822		/*
4823		 * If the port supports active link reporting we now check
4824		 * whether the link is active and if not bail out early with
4825		 * the assumption that the device is not present anymore.
4826		 */
4827		if (!dev->link_active_reporting)
4828			return -ENOTTY;
4829
4830		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4831		if (!(status & PCI_EXP_LNKSTA_DLLLA))
4832			return -ENOTTY;
4833
4834		return pci_dev_wait(child, reset_type,
4835				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4836	}
4837
4838	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4839		delay);
4840	if (!pcie_wait_for_link_delay(dev, true, delay)) {
4841		/* Did not train, no need to wait any further */
4842		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4843		return -ENOTTY;
4844	}
4845
4846	return pci_dev_wait(child, reset_type,
4847			    PCIE_RESET_READY_POLL_MS - delay);
4848}
4849
4850void pci_reset_secondary_bus(struct pci_dev *dev)
4851{
4852	u16 ctrl;
4853
4854	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4855	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4856	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4857
4858	/*
4859	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4860	 * this to 2ms to ensure that we meet the minimum requirement.
4861	 */
4862	msleep(2);
4863
4864	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4865	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4866}
4867
4868void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4869{
4870	pci_reset_secondary_bus(dev);
4871}
4872
4873/**
4874 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4875 * @dev: Bridge device
4876 *
4877 * Use the bridge control register to assert reset on the secondary bus.
4878 * Devices on the secondary bus are left in power-on state.
4879 */
4880int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4881{
4882	pcibios_reset_secondary_bus(dev);
4883
4884	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
4885}
4886EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4887
4888static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4889{
4890	struct pci_dev *pdev;
4891
4892	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4893	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4894		return -ENOTTY;
4895
4896	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4897		if (pdev != dev)
4898			return -ENOTTY;
4899
4900	if (probe)
4901		return 0;
4902
4903	return pci_bridge_secondary_bus_reset(dev->bus->self);
4904}
 
 
4905
4906static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
4907{
4908	int rc = -ENOTTY;
4909
4910	if (!hotplug || !try_module_get(hotplug->owner))
4911		return rc;
4912
4913	if (hotplug->ops->reset_slot)
4914		rc = hotplug->ops->reset_slot(hotplug, probe);
4915
4916	module_put(hotplug->owner);
4917
4918	return rc;
4919}
4920
4921static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
4922{
4923	if (dev->multifunction || dev->subordinate || !dev->slot ||
4924	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4925		return -ENOTTY;
4926
4927	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4928}
4929
4930static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
4931{
4932	int rc;
4933
4934	rc = pci_dev_reset_slot_function(dev, probe);
4935	if (rc != -ENOTTY)
4936		return rc;
4937	return pci_parent_bus_reset(dev, probe);
4938}
4939
4940void pci_dev_lock(struct pci_dev *dev)
4941{
4942	/* block PM suspend, driver probe, etc. */
4943	device_lock(&dev->dev);
4944	pci_cfg_access_lock(dev);
4945}
4946EXPORT_SYMBOL_GPL(pci_dev_lock);
4947
4948/* Return 1 on successful lock, 0 on contention */
4949int pci_dev_trylock(struct pci_dev *dev)
4950{
4951	if (device_trylock(&dev->dev)) {
4952		if (pci_cfg_access_trylock(dev))
4953			return 1;
4954		device_unlock(&dev->dev);
4955	}
4956
4957	return 0;
4958}
4959EXPORT_SYMBOL_GPL(pci_dev_trylock);
4960
4961void pci_dev_unlock(struct pci_dev *dev)
4962{
4963	pci_cfg_access_unlock(dev);
4964	device_unlock(&dev->dev);
4965}
4966EXPORT_SYMBOL_GPL(pci_dev_unlock);
4967
4968static void pci_dev_save_and_disable(struct pci_dev *dev)
4969{
4970	const struct pci_error_handlers *err_handler =
4971			dev->driver ? dev->driver->err_handler : NULL;
4972
4973	/*
4974	 * dev->driver->err_handler->reset_prepare() is protected against
4975	 * races with ->remove() by the device lock, which must be held by
4976	 * the caller.
4977	 */
4978	if (err_handler && err_handler->reset_prepare)
4979		err_handler->reset_prepare(dev);
4980
4981	/*
4982	 * Wake-up device prior to save.  PM registers default to D0 after
4983	 * reset and a simple register restore doesn't reliably return
4984	 * to a non-D0 state anyway.
4985	 */
4986	pci_set_power_state(dev, PCI_D0);
4987
4988	pci_save_state(dev);
4989	/*
4990	 * Disable the device by clearing the Command register, except for
4991	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4992	 * BARs, but also prevents the device from being Bus Master, preventing
4993	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4994	 * compliant devices, INTx-disable prevents legacy interrupts.
4995	 */
4996	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4997}
4998
4999static void pci_dev_restore(struct pci_dev *dev)
5000{
5001	const struct pci_error_handlers *err_handler =
5002			dev->driver ? dev->driver->err_handler : NULL;
5003
5004	pci_restore_state(dev);
5005
5006	/*
5007	 * dev->driver->err_handler->reset_done() is protected against
5008	 * races with ->remove() by the device lock, which must be held by
5009	 * the caller.
5010	 */
5011	if (err_handler && err_handler->reset_done)
5012		err_handler->reset_done(dev);
5013}
5014
5015/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5016static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5017	{ },
5018	{ pci_dev_specific_reset, .name = "device_specific" },
5019	{ pci_dev_acpi_reset, .name = "acpi" },
5020	{ pcie_reset_flr, .name = "flr" },
5021	{ pci_af_flr, .name = "af_flr" },
5022	{ pci_pm_reset, .name = "pm" },
5023	{ pci_reset_bus_function, .name = "bus" },
5024};
5025
5026static ssize_t reset_method_show(struct device *dev,
5027				 struct device_attribute *attr, char *buf)
5028{
5029	struct pci_dev *pdev = to_pci_dev(dev);
5030	ssize_t len = 0;
5031	int i, m;
5032
5033	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5034		m = pdev->reset_methods[i];
5035		if (!m)
5036			break;
5037
5038		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5039				     pci_reset_fn_methods[m].name);
5040	}
5041
5042	if (len)
5043		len += sysfs_emit_at(buf, len, "\n");
5044
5045	return len;
5046}
5047
5048static int reset_method_lookup(const char *name)
5049{
5050	int m;
5051
5052	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5053		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5054			return m;
5055	}
5056
5057	return 0;	/* not found */
5058}
5059
5060static ssize_t reset_method_store(struct device *dev,
5061				  struct device_attribute *attr,
5062				  const char *buf, size_t count)
5063{
5064	struct pci_dev *pdev = to_pci_dev(dev);
5065	char *options, *name;
5066	int m, n;
5067	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5068
5069	if (sysfs_streq(buf, "")) {
5070		pdev->reset_methods[0] = 0;
5071		pci_warn(pdev, "All device reset methods disabled by user");
5072		return count;
5073	}
5074
5075	if (sysfs_streq(buf, "default")) {
5076		pci_init_reset_methods(pdev);
5077		return count;
5078	}
5079
5080	options = kstrndup(buf, count, GFP_KERNEL);
5081	if (!options)
5082		return -ENOMEM;
5083
5084	n = 0;
5085	while ((name = strsep(&options, " ")) != NULL) {
5086		if (sysfs_streq(name, ""))
5087			continue;
5088
5089		name = strim(name);
5090
5091		m = reset_method_lookup(name);
5092		if (!m) {
5093			pci_err(pdev, "Invalid reset method '%s'", name);
5094			goto error;
5095		}
5096
5097		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5098			pci_err(pdev, "Unsupported reset method '%s'", name);
5099			goto error;
5100		}
5101
5102		if (n == PCI_NUM_RESET_METHODS - 1) {
5103			pci_err(pdev, "Too many reset methods\n");
5104			goto error;
5105		}
5106
5107		reset_methods[n++] = m;
5108	}
5109
5110	reset_methods[n] = 0;
5111
5112	/* Warn if dev-specific supported but not highest priority */
5113	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5114	    reset_methods[0] != 1)
5115		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5116	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5117	kfree(options);
5118	return count;
5119
5120error:
5121	/* Leave previous methods unchanged */
5122	kfree(options);
5123	return -EINVAL;
5124}
5125static DEVICE_ATTR_RW(reset_method);
5126
5127static struct attribute *pci_dev_reset_method_attrs[] = {
5128	&dev_attr_reset_method.attr,
5129	NULL,
5130};
5131
5132static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5133						    struct attribute *a, int n)
5134{
5135	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5136
5137	if (!pci_reset_supported(pdev))
5138		return 0;
5139
5140	return a->mode;
5141}
5142
5143const struct attribute_group pci_dev_reset_method_attr_group = {
5144	.attrs = pci_dev_reset_method_attrs,
5145	.is_visible = pci_dev_reset_method_attr_is_visible,
5146};
5147
5148/**
5149 * __pci_reset_function_locked - reset a PCI device function while holding
5150 * the @dev mutex lock.
5151 * @dev: PCI device to reset
5152 *
5153 * Some devices allow an individual function to be reset without affecting
5154 * other functions in the same device.  The PCI device must be responsive
5155 * to PCI config space in order to use this function.
5156 *
5157 * The device function is presumed to be unused and the caller is holding
5158 * the device mutex lock when this function is called.
5159 *
5160 * Resetting the device will make the contents of PCI configuration space
5161 * random, so any caller of this must be prepared to reinitialise the
5162 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5163 * etc.
5164 *
5165 * Returns 0 if the device function was successfully reset or negative if the
5166 * device doesn't support resetting a single function.
5167 */
5168int __pci_reset_function_locked(struct pci_dev *dev)
5169{
5170	int i, m, rc;
5171
5172	might_sleep();
5173
5174	/*
5175	 * A reset method returns -ENOTTY if it doesn't support this device and
5176	 * we should try the next method.
5177	 *
5178	 * If it returns 0 (success), we're finished.  If it returns any other
5179	 * error, we're also finished: this indicates that further reset
5180	 * mechanisms might be broken on the device.
5181	 */
5182	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5183		m = dev->reset_methods[i];
5184		if (!m)
5185			return -ENOTTY;
5186
5187		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5188		if (!rc)
5189			return 0;
5190		if (rc != -ENOTTY)
5191			return rc;
5192	}
5193
5194	return -ENOTTY;
5195}
5196EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5197
5198/**
5199 * pci_init_reset_methods - check whether device can be safely reset
5200 * and store supported reset mechanisms.
5201 * @dev: PCI device to check for reset mechanisms
5202 *
5203 * Some devices allow an individual function to be reset without affecting
5204 * other functions in the same device.  The PCI device must be in D0-D3hot
5205 * state.
5206 *
5207 * Stores reset mechanisms supported by device in reset_methods byte array
5208 * which is a member of struct pci_dev.
5209 */
5210void pci_init_reset_methods(struct pci_dev *dev)
5211{
5212	int m, i, rc;
5213
5214	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5215
5216	might_sleep();
5217
5218	i = 0;
5219	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5220		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5221		if (!rc)
5222			dev->reset_methods[i++] = m;
5223		else if (rc != -ENOTTY)
5224			break;
5225	}
5226
5227	dev->reset_methods[i] = 0;
5228}
 
5229
5230/**
5231 * pci_reset_function - quiesce and reset a PCI device function
5232 * @dev: PCI device to reset
5233 *
5234 * Some devices allow an individual function to be reset without affecting
5235 * other functions in the same device.  The PCI device must be responsive
5236 * to PCI config space in order to use this function.
5237 *
5238 * This function does not just reset the PCI portion of a device, but
5239 * clears all the state associated with the device.  This function differs
5240 * from __pci_reset_function_locked() in that it saves and restores device state
5241 * over the reset and takes the PCI device lock.
5242 *
5243 * Returns 0 if the device function was successfully reset or negative if the
5244 * device doesn't support resetting a single function.
5245 */
5246int pci_reset_function(struct pci_dev *dev)
5247{
5248	int rc;
5249
5250	if (!pci_reset_supported(dev))
5251		return -ENOTTY;
5252
5253	pci_dev_lock(dev);
5254	pci_dev_save_and_disable(dev);
5255
5256	rc = __pci_reset_function_locked(dev);
5257
5258	pci_dev_restore(dev);
5259	pci_dev_unlock(dev);
5260
5261	return rc;
5262}
5263EXPORT_SYMBOL_GPL(pci_reset_function);
5264
5265/**
5266 * pci_reset_function_locked - quiesce and reset a PCI device function
5267 * @dev: PCI device to reset
5268 *
5269 * Some devices allow an individual function to be reset without affecting
5270 * other functions in the same device.  The PCI device must be responsive
5271 * to PCI config space in order to use this function.
5272 *
5273 * This function does not just reset the PCI portion of a device, but
5274 * clears all the state associated with the device.  This function differs
5275 * from __pci_reset_function_locked() in that it saves and restores device state
5276 * over the reset.  It also differs from pci_reset_function() in that it
5277 * requires the PCI device lock to be held.
5278 *
5279 * Returns 0 if the device function was successfully reset or negative if the
5280 * device doesn't support resetting a single function.
5281 */
5282int pci_reset_function_locked(struct pci_dev *dev)
5283{
5284	int rc;
5285
5286	if (!pci_reset_supported(dev))
5287		return -ENOTTY;
5288
5289	pci_dev_save_and_disable(dev);
5290
5291	rc = __pci_reset_function_locked(dev);
5292
5293	pci_dev_restore(dev);
5294
5295	return rc;
5296}
5297EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5298
5299/**
5300 * pci_try_reset_function - quiesce and reset a PCI device function
5301 * @dev: PCI device to reset
5302 *
5303 * Same as above, except return -EAGAIN if unable to lock device.
5304 */
5305int pci_try_reset_function(struct pci_dev *dev)
5306{
5307	int rc;
5308
5309	if (!pci_reset_supported(dev))
5310		return -ENOTTY;
5311
5312	if (!pci_dev_trylock(dev))
5313		return -EAGAIN;
5314
5315	pci_dev_save_and_disable(dev);
5316	rc = __pci_reset_function_locked(dev);
5317	pci_dev_restore(dev);
5318	pci_dev_unlock(dev);
5319
5320	return rc;
5321}
5322EXPORT_SYMBOL_GPL(pci_try_reset_function);
5323
5324/* Do any devices on or below this bus prevent a bus reset? */
5325static bool pci_bus_resettable(struct pci_bus *bus)
5326{
5327	struct pci_dev *dev;
5328
5329
5330	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5331		return false;
5332
5333	list_for_each_entry(dev, &bus->devices, bus_list) {
5334		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5335		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5336			return false;
5337	}
5338
5339	return true;
5340}
5341
5342/* Lock devices from the top of the tree down */
5343static void pci_bus_lock(struct pci_bus *bus)
5344{
5345	struct pci_dev *dev;
5346
5347	list_for_each_entry(dev, &bus->devices, bus_list) {
5348		pci_dev_lock(dev);
5349		if (dev->subordinate)
5350			pci_bus_lock(dev->subordinate);
5351	}
5352}
5353
5354/* Unlock devices from the bottom of the tree up */
5355static void pci_bus_unlock(struct pci_bus *bus)
5356{
5357	struct pci_dev *dev;
5358
5359	list_for_each_entry(dev, &bus->devices, bus_list) {
5360		if (dev->subordinate)
5361			pci_bus_unlock(dev->subordinate);
5362		pci_dev_unlock(dev);
5363	}
5364}
5365
5366/* Return 1 on successful lock, 0 on contention */
5367static int pci_bus_trylock(struct pci_bus *bus)
5368{
5369	struct pci_dev *dev;
5370
5371	list_for_each_entry(dev, &bus->devices, bus_list) {
5372		if (!pci_dev_trylock(dev))
5373			goto unlock;
5374		if (dev->subordinate) {
5375			if (!pci_bus_trylock(dev->subordinate)) {
5376				pci_dev_unlock(dev);
5377				goto unlock;
5378			}
5379		}
5380	}
5381	return 1;
5382
5383unlock:
5384	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5385		if (dev->subordinate)
5386			pci_bus_unlock(dev->subordinate);
5387		pci_dev_unlock(dev);
5388	}
5389	return 0;
5390}
5391
5392/* Do any devices on or below this slot prevent a bus reset? */
5393static bool pci_slot_resettable(struct pci_slot *slot)
5394{
5395	struct pci_dev *dev;
5396
5397	if (slot->bus->self &&
5398	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5399		return false;
5400
5401	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5402		if (!dev->slot || dev->slot != slot)
5403			continue;
5404		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5405		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5406			return false;
5407	}
5408
5409	return true;
5410}
5411
5412/* Lock devices from the top of the tree down */
5413static void pci_slot_lock(struct pci_slot *slot)
5414{
5415	struct pci_dev *dev;
5416
5417	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5418		if (!dev->slot || dev->slot != slot)
5419			continue;
5420		pci_dev_lock(dev);
5421		if (dev->subordinate)
5422			pci_bus_lock(dev->subordinate);
5423	}
5424}
5425
5426/* Unlock devices from the bottom of the tree up */
5427static void pci_slot_unlock(struct pci_slot *slot)
5428{
5429	struct pci_dev *dev;
5430
5431	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5432		if (!dev->slot || dev->slot != slot)
5433			continue;
5434		if (dev->subordinate)
5435			pci_bus_unlock(dev->subordinate);
5436		pci_dev_unlock(dev);
5437	}
5438}
5439
5440/* Return 1 on successful lock, 0 on contention */
5441static int pci_slot_trylock(struct pci_slot *slot)
5442{
5443	struct pci_dev *dev;
5444
5445	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5446		if (!dev->slot || dev->slot != slot)
5447			continue;
5448		if (!pci_dev_trylock(dev))
5449			goto unlock;
5450		if (dev->subordinate) {
5451			if (!pci_bus_trylock(dev->subordinate)) {
5452				pci_dev_unlock(dev);
5453				goto unlock;
5454			}
5455		}
5456	}
5457	return 1;
5458
5459unlock:
5460	list_for_each_entry_continue_reverse(dev,
5461					     &slot->bus->devices, bus_list) {
5462		if (!dev->slot || dev->slot != slot)
5463			continue;
5464		if (dev->subordinate)
5465			pci_bus_unlock(dev->subordinate);
5466		pci_dev_unlock(dev);
5467	}
5468	return 0;
5469}
5470
5471/*
5472 * Save and disable devices from the top of the tree down while holding
5473 * the @dev mutex lock for the entire tree.
5474 */
5475static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5476{
5477	struct pci_dev *dev;
5478
5479	list_for_each_entry(dev, &bus->devices, bus_list) {
5480		pci_dev_save_and_disable(dev);
5481		if (dev->subordinate)
5482			pci_bus_save_and_disable_locked(dev->subordinate);
5483	}
5484}
5485
5486/*
5487 * Restore devices from top of the tree down while holding @dev mutex lock
5488 * for the entire tree.  Parent bridges need to be restored before we can
5489 * get to subordinate devices.
5490 */
5491static void pci_bus_restore_locked(struct pci_bus *bus)
5492{
5493	struct pci_dev *dev;
5494
5495	list_for_each_entry(dev, &bus->devices, bus_list) {
5496		pci_dev_restore(dev);
5497		if (dev->subordinate)
5498			pci_bus_restore_locked(dev->subordinate);
5499	}
5500}
5501
5502/*
5503 * Save and disable devices from the top of the tree down while holding
5504 * the @dev mutex lock for the entire tree.
5505 */
5506static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5507{
5508	struct pci_dev *dev;
5509
5510	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5511		if (!dev->slot || dev->slot != slot)
5512			continue;
5513		pci_dev_save_and_disable(dev);
5514		if (dev->subordinate)
5515			pci_bus_save_and_disable_locked(dev->subordinate);
5516	}
5517}
5518
5519/*
5520 * Restore devices from top of the tree down while holding @dev mutex lock
5521 * for the entire tree.  Parent bridges need to be restored before we can
5522 * get to subordinate devices.
5523 */
5524static void pci_slot_restore_locked(struct pci_slot *slot)
5525{
5526	struct pci_dev *dev;
5527
5528	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5529		if (!dev->slot || dev->slot != slot)
5530			continue;
5531		pci_dev_restore(dev);
5532		if (dev->subordinate)
5533			pci_bus_restore_locked(dev->subordinate);
5534	}
5535}
5536
5537static int pci_slot_reset(struct pci_slot *slot, bool probe)
5538{
5539	int rc;
5540
5541	if (!slot || !pci_slot_resettable(slot))
5542		return -ENOTTY;
5543
5544	if (!probe)
5545		pci_slot_lock(slot);
5546
5547	might_sleep();
5548
5549	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5550
5551	if (!probe)
5552		pci_slot_unlock(slot);
5553
5554	return rc;
5555}
5556
5557/**
5558 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5559 * @slot: PCI slot to probe
5560 *
5561 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5562 */
5563int pci_probe_reset_slot(struct pci_slot *slot)
5564{
5565	return pci_slot_reset(slot, PCI_RESET_PROBE);
5566}
5567EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5568
5569/**
5570 * __pci_reset_slot - Try to reset a PCI slot
5571 * @slot: PCI slot to reset
5572 *
5573 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5574 * independent of other slots.  For instance, some slots may support slot power
5575 * control.  In the case of a 1:1 bus to slot architecture, this function may
5576 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5577 * Generally a slot reset should be attempted before a bus reset.  All of the
5578 * function of the slot and any subordinate buses behind the slot are reset
5579 * through this function.  PCI config space of all devices in the slot and
5580 * behind the slot is saved before and restored after reset.
5581 *
5582 * Same as above except return -EAGAIN if the slot cannot be locked
5583 */
5584static int __pci_reset_slot(struct pci_slot *slot)
5585{
5586	int rc;
5587
5588	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5589	if (rc)
5590		return rc;
5591
5592	if (pci_slot_trylock(slot)) {
5593		pci_slot_save_and_disable_locked(slot);
5594		might_sleep();
5595		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5596		pci_slot_restore_locked(slot);
5597		pci_slot_unlock(slot);
5598	} else
5599		rc = -EAGAIN;
5600
5601	return rc;
5602}
 
 
 
5603
5604static int pci_bus_reset(struct pci_bus *bus, bool probe)
5605{
5606	int ret;
5607
5608	if (!bus->self || !pci_bus_resettable(bus))
5609		return -ENOTTY;
5610
5611	if (probe)
5612		return 0;
5613
5614	pci_bus_lock(bus);
5615
5616	might_sleep();
5617
5618	ret = pci_bridge_secondary_bus_reset(bus->self);
5619
5620	pci_bus_unlock(bus);
5621
5622	return ret;
5623}
5624
5625/**
5626 * pci_bus_error_reset - reset the bridge's subordinate bus
5627 * @bridge: The parent device that connects to the bus to reset
5628 *
5629 * This function will first try to reset the slots on this bus if the method is
5630 * available. If slot reset fails or is not available, this will fall back to a
5631 * secondary bus reset.
5632 */
5633int pci_bus_error_reset(struct pci_dev *bridge)
5634{
5635	struct pci_bus *bus = bridge->subordinate;
5636	struct pci_slot *slot;
5637
5638	if (!bus)
5639		return -ENOTTY;
5640
5641	mutex_lock(&pci_slot_mutex);
5642	if (list_empty(&bus->slots))
5643		goto bus_reset;
5644
5645	list_for_each_entry(slot, &bus->slots, list)
5646		if (pci_probe_reset_slot(slot))
5647			goto bus_reset;
5648
5649	list_for_each_entry(slot, &bus->slots, list)
5650		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5651			goto bus_reset;
5652
5653	mutex_unlock(&pci_slot_mutex);
5654	return 0;
5655bus_reset:
5656	mutex_unlock(&pci_slot_mutex);
5657	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5658}
5659
5660/**
5661 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5662 * @bus: PCI bus to probe
5663 *
5664 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5665 */
5666int pci_probe_reset_bus(struct pci_bus *bus)
5667{
5668	return pci_bus_reset(bus, PCI_RESET_PROBE);
5669}
5670EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5671
5672/**
5673 * __pci_reset_bus - Try to reset a PCI bus
5674 * @bus: top level PCI bus to reset
5675 *
5676 * Same as above except return -EAGAIN if the bus cannot be locked
5677 */
5678static int __pci_reset_bus(struct pci_bus *bus)
5679{
5680	int rc;
5681
5682	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5683	if (rc)
5684		return rc;
5685
5686	if (pci_bus_trylock(bus)) {
5687		pci_bus_save_and_disable_locked(bus);
5688		might_sleep();
5689		rc = pci_bridge_secondary_bus_reset(bus->self);
5690		pci_bus_restore_locked(bus);
5691		pci_bus_unlock(bus);
5692	} else
5693		rc = -EAGAIN;
5694
5695	return rc;
5696}
5697
5698/**
5699 * pci_reset_bus - Try to reset a PCI bus
5700 * @pdev: top level PCI device to reset via slot/bus
5701 *
5702 * Same as above except return -EAGAIN if the bus cannot be locked
5703 */
5704int pci_reset_bus(struct pci_dev *pdev)
5705{
5706	return (!pci_probe_reset_slot(pdev->slot)) ?
5707	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5708}
5709EXPORT_SYMBOL_GPL(pci_reset_bus);
5710
5711/**
5712 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5713 * @dev: PCI device to query
5714 *
5715 * Returns mmrbc: maximum designed memory read count in bytes or
5716 * appropriate error value.
5717 */
5718int pcix_get_max_mmrbc(struct pci_dev *dev)
5719{
5720	int cap;
5721	u32 stat;
5722
5723	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5724	if (!cap)
5725		return -EINVAL;
5726
5727	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5728		return -EINVAL;
5729
5730	return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5731}
5732EXPORT_SYMBOL(pcix_get_max_mmrbc);
5733
5734/**
5735 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5736 * @dev: PCI device to query
5737 *
5738 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5739 * value.
5740 */
5741int pcix_get_mmrbc(struct pci_dev *dev)
5742{
5743	int cap;
5744	u16 cmd;
5745
5746	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5747	if (!cap)
5748		return -EINVAL;
5749
5750	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5751		return -EINVAL;
5752
5753	return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5754}
5755EXPORT_SYMBOL(pcix_get_mmrbc);
5756
5757/**
5758 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5759 * @dev: PCI device to query
5760 * @mmrbc: maximum memory read count in bytes
5761 *    valid values are 512, 1024, 2048, 4096
5762 *
5763 * If possible sets maximum memory read byte count, some bridges have errata
5764 * that prevent this.
5765 */
5766int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5767{
5768	int cap;
5769	u32 stat, v, o;
5770	u16 cmd;
5771
5772	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5773		return -EINVAL;
5774
5775	v = ffs(mmrbc) - 10;
5776
5777	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5778	if (!cap)
5779		return -EINVAL;
5780
5781	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5782		return -EINVAL;
5783
5784	if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
5785		return -E2BIG;
5786
5787	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5788		return -EINVAL;
5789
5790	o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5791	if (o != v) {
5792		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
 
5793			return -EIO;
5794
5795		cmd &= ~PCI_X_CMD_MAX_READ;
5796		cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
5797		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5798			return -EIO;
5799	}
5800	return 0;
5801}
5802EXPORT_SYMBOL(pcix_set_mmrbc);
5803
5804/**
5805 * pcie_get_readrq - get PCI Express read request size
5806 * @dev: PCI device to query
5807 *
5808 * Returns maximum memory read request in bytes or appropriate error value.
 
5809 */
5810int pcie_get_readrq(struct pci_dev *dev)
5811{
 
5812	u16 ctl;
5813
5814	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
 
 
 
 
 
 
5815
5816	return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
5817}
5818EXPORT_SYMBOL(pcie_get_readrq);
5819
5820/**
5821 * pcie_set_readrq - set PCI Express maximum memory read request
5822 * @dev: PCI device to query
5823 * @rq: maximum memory read count in bytes
5824 *    valid values are 128, 256, 512, 1024, 2048, 4096
5825 *
5826 * If possible sets maximum memory read request in bytes
5827 */
5828int pcie_set_readrq(struct pci_dev *dev, int rq)
5829{
5830	u16 v;
5831	int ret;
5832	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
5833
5834	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5835		return -EINVAL;
5836
5837	/*
5838	 * If using the "performance" PCIe config, we clamp the read rq
5839	 * size to the max packet size to keep the host bridge from
5840	 * generating requests larger than we can cope with.
5841	 */
5842	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5843		int mps = pcie_get_mps(dev);
5844
5845		if (mps < rq)
5846			rq = mps;
5847	}
5848
5849	v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
5850
5851	if (bridge->no_inc_mrrs) {
5852		int max_mrrs = pcie_get_readrq(dev);
5853
5854		if (rq > max_mrrs) {
5855			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
5856			return -EINVAL;
5857		}
5858	}
5859
5860	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5861						  PCI_EXP_DEVCTL_READRQ, v);
5862
5863	return pcibios_err_to_errno(ret);
5864}
5865EXPORT_SYMBOL(pcie_set_readrq);
5866
5867/**
5868 * pcie_get_mps - get PCI Express maximum payload size
5869 * @dev: PCI device to query
5870 *
5871 * Returns maximum payload size in bytes
 
5872 */
5873int pcie_get_mps(struct pci_dev *dev)
5874{
 
5875	u16 ctl;
5876
5877	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
 
 
5878
5879	return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
 
 
 
 
5880}
5881EXPORT_SYMBOL(pcie_get_mps);
5882
5883/**
5884 * pcie_set_mps - set PCI Express maximum payload size
5885 * @dev: PCI device to query
5886 * @mps: maximum payload size in bytes
5887 *    valid values are 128, 256, 512, 1024, 2048, 4096
5888 *
5889 * If possible sets maximum payload size
5890 */
5891int pcie_set_mps(struct pci_dev *dev, int mps)
5892{
5893	u16 v;
5894	int ret;
5895
5896	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5897		return -EINVAL;
5898
5899	v = ffs(mps) - 8;
5900	if (v > dev->pcie_mpss)
5901		return -EINVAL;
5902	v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
5903
5904	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5905						  PCI_EXP_DEVCTL_PAYLOAD, v);
5906
5907	return pcibios_err_to_errno(ret);
5908}
5909EXPORT_SYMBOL(pcie_set_mps);
5910
5911static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
5912{
5913	return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
5914}
5915
5916int pcie_link_speed_mbps(struct pci_dev *pdev)
5917{
5918	u16 lnksta;
5919	int err;
5920
5921	err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
5922	if (err)
5923		return err;
5924
5925	switch (to_pcie_link_speed(lnksta)) {
5926	case PCIE_SPEED_2_5GT:
5927		return 2500;
5928	case PCIE_SPEED_5_0GT:
5929		return 5000;
5930	case PCIE_SPEED_8_0GT:
5931		return 8000;
5932	case PCIE_SPEED_16_0GT:
5933		return 16000;
5934	case PCIE_SPEED_32_0GT:
5935		return 32000;
5936	case PCIE_SPEED_64_0GT:
5937		return 64000;
5938	default:
5939		break;
5940	}
5941
5942	return -EINVAL;
5943}
5944EXPORT_SYMBOL(pcie_link_speed_mbps);
5945
5946/**
5947 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5948 *			      device and its bandwidth limitation
5949 * @dev: PCI device to query
5950 * @limiting_dev: storage for device causing the bandwidth limitation
5951 * @speed: storage for speed of limiting device
5952 * @width: storage for width of limiting device
5953 *
5954 * Walk up the PCI device chain and find the point where the minimum
5955 * bandwidth is available.  Return the bandwidth available there and (if
5956 * limiting_dev, speed, and width pointers are supplied) information about
5957 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5958 * raw bandwidth.
5959 */
5960u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5961			     enum pci_bus_speed *speed,
5962			     enum pcie_link_width *width)
5963{
5964	u16 lnksta;
5965	enum pci_bus_speed next_speed;
5966	enum pcie_link_width next_width;
5967	u32 bw, next_bw;
5968
5969	if (speed)
5970		*speed = PCI_SPEED_UNKNOWN;
5971	if (width)
5972		*width = PCIE_LNK_WIDTH_UNKNOWN;
5973
5974	bw = 0;
5975
5976	while (dev) {
5977		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5978
5979		next_speed = to_pcie_link_speed(lnksta);
5980		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
5981
5982		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5983
5984		/* Check if current device limits the total bandwidth */
5985		if (!bw || next_bw <= bw) {
5986			bw = next_bw;
5987
5988			if (limiting_dev)
5989				*limiting_dev = dev;
5990			if (speed)
5991				*speed = next_speed;
5992			if (width)
5993				*width = next_width;
5994		}
5995
5996		dev = pci_upstream_bridge(dev);
5997	}
5998
5999	return bw;
6000}
6001EXPORT_SYMBOL(pcie_bandwidth_available);
6002
6003/**
6004 * pcie_get_speed_cap - query for the PCI device's link speed capability
6005 * @dev: PCI device to query
6006 *
6007 * Query the PCI device speed capability.  Return the maximum link speed
6008 * supported by the device.
6009 */
6010enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6011{
6012	u32 lnkcap2, lnkcap;
6013
6014	/*
6015	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6016	 * implementation note there recommends using the Supported Link
6017	 * Speeds Vector in Link Capabilities 2 when supported.
6018	 *
6019	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6020	 * should use the Supported Link Speeds field in Link Capabilities,
6021	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6022	 */
6023	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6024
6025	/* PCIe r3.0-compliant */
6026	if (lnkcap2)
6027		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6028
6029	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6030	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6031		return PCIE_SPEED_5_0GT;
6032	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6033		return PCIE_SPEED_2_5GT;
6034
6035	return PCI_SPEED_UNKNOWN;
6036}
6037EXPORT_SYMBOL(pcie_get_speed_cap);
6038
6039/**
6040 * pcie_get_width_cap - query for the PCI device's link width capability
6041 * @dev: PCI device to query
6042 *
6043 * Query the PCI device width capability.  Return the maximum link width
6044 * supported by the device.
6045 */
6046enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6047{
6048	u32 lnkcap;
6049
6050	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6051	if (lnkcap)
6052		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6053
6054	return PCIE_LNK_WIDTH_UNKNOWN;
6055}
6056EXPORT_SYMBOL(pcie_get_width_cap);
6057
6058/**
6059 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6060 * @dev: PCI device
6061 * @speed: storage for link speed
6062 * @width: storage for link width
6063 *
6064 * Calculate a PCI device's link bandwidth by querying for its link speed
6065 * and width, multiplying them, and applying encoding overhead.  The result
6066 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6067 */
6068u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6069			   enum pcie_link_width *width)
6070{
6071	*speed = pcie_get_speed_cap(dev);
6072	*width = pcie_get_width_cap(dev);
6073
6074	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6075		return 0;
6076
6077	return *width * PCIE_SPEED2MBS_ENC(*speed);
6078}
6079
6080/**
6081 * __pcie_print_link_status - Report the PCI device's link speed and width
6082 * @dev: PCI device to query
6083 * @verbose: Print info even when enough bandwidth is available
6084 *
6085 * If the available bandwidth at the device is less than the device is
6086 * capable of, report the device's maximum possible bandwidth and the
6087 * upstream link that limits its performance.  If @verbose, always print
6088 * the available bandwidth, even if the device isn't constrained.
6089 */
6090void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6091{
6092	enum pcie_link_width width, width_cap;
6093	enum pci_bus_speed speed, speed_cap;
6094	struct pci_dev *limiting_dev = NULL;
6095	u32 bw_avail, bw_cap;
6096
6097	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6098	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6099
6100	if (bw_avail >= bw_cap && verbose)
6101		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6102			 bw_cap / 1000, bw_cap % 1000,
6103			 pci_speed_string(speed_cap), width_cap);
6104	else if (bw_avail < bw_cap)
6105		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6106			 bw_avail / 1000, bw_avail % 1000,
6107			 pci_speed_string(speed), width,
6108			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6109			 bw_cap / 1000, bw_cap % 1000,
6110			 pci_speed_string(speed_cap), width_cap);
6111}
6112
6113/**
6114 * pcie_print_link_status - Report the PCI device's link speed and width
6115 * @dev: PCI device to query
6116 *
6117 * Report the available bandwidth at the device.
6118 */
6119void pcie_print_link_status(struct pci_dev *dev)
6120{
6121	__pcie_print_link_status(dev, true);
6122}
6123EXPORT_SYMBOL(pcie_print_link_status);
6124
6125/**
6126 * pci_select_bars - Make BAR mask from the type of resource
6127 * @dev: the PCI device for which BAR mask is made
6128 * @flags: resource type mask to be selected
6129 *
6130 * This helper routine makes bar mask from the type of resource.
6131 */
6132int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6133{
6134	int i, bars = 0;
6135	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6136		if (pci_resource_flags(dev, i) & flags)
6137			bars |= (1 << i);
6138	return bars;
6139}
6140EXPORT_SYMBOL(pci_select_bars);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6141
6142/* Some architectures require additional programming to enable VGA */
6143static arch_set_vga_state_t arch_set_vga_state;
6144
6145void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6146{
6147	arch_set_vga_state = func;	/* NULL disables */
6148}
6149
6150static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6151				  unsigned int command_bits, u32 flags)
6152{
6153	if (arch_set_vga_state)
6154		return arch_set_vga_state(dev, decode, command_bits,
6155						flags);
6156	return 0;
6157}
6158
6159/**
6160 * pci_set_vga_state - set VGA decode state on device and parents if requested
6161 * @dev: the PCI device
6162 * @decode: true = enable decoding, false = disable decoding
6163 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6164 * @flags: traverse ancestors and change bridges
6165 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6166 */
6167int pci_set_vga_state(struct pci_dev *dev, bool decode,
6168		      unsigned int command_bits, u32 flags)
6169{
6170	struct pci_bus *bus;
6171	struct pci_dev *bridge;
6172	u16 cmd;
6173	int rc;
6174
6175	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6176
6177	/* ARCH specific VGA enables */
6178	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6179	if (rc)
6180		return rc;
6181
6182	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6183		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6184		if (decode)
6185			cmd |= command_bits;
6186		else
6187			cmd &= ~command_bits;
6188		pci_write_config_word(dev, PCI_COMMAND, cmd);
6189	}
6190
6191	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6192		return 0;
6193
6194	bus = dev->bus;
6195	while (bus) {
6196		bridge = bus->self;
6197		if (bridge) {
6198			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6199					     &cmd);
6200			if (decode)
6201				cmd |= PCI_BRIDGE_CTL_VGA;
6202			else
6203				cmd &= ~PCI_BRIDGE_CTL_VGA;
6204			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6205					      cmd);
6206		}
6207		bus = bus->parent;
6208	}
6209	return 0;
6210}
6211
6212#ifdef CONFIG_ACPI
6213bool pci_pr3_present(struct pci_dev *pdev)
6214{
6215	struct acpi_device *adev;
6216
6217	if (acpi_disabled)
6218		return false;
6219
6220	adev = ACPI_COMPANION(&pdev->dev);
6221	if (!adev)
6222		return false;
6223
6224	return adev->power.flags.power_resources &&
6225		acpi_has_method(adev->handle, "_PR3");
6226}
6227EXPORT_SYMBOL_GPL(pci_pr3_present);
6228#endif
6229
6230/**
6231 * pci_add_dma_alias - Add a DMA devfn alias for a device
6232 * @dev: the PCI device for which alias is added
6233 * @devfn_from: alias slot and function
6234 * @nr_devfns: number of subsequent devfns to alias
6235 *
6236 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6237 * which is used to program permissible bus-devfn source addresses for DMA
6238 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6239 * and are useful for devices generating DMA requests beyond or different
6240 * from their logical bus-devfn.  Examples include device quirks where the
6241 * device simply uses the wrong devfn, as well as non-transparent bridges
6242 * where the alias may be a proxy for devices in another domain.
6243 *
6244 * IOMMU group creation is performed during device discovery or addition,
6245 * prior to any potential DMA mapping and therefore prior to driver probing
6246 * (especially for userspace assigned devices where IOMMU group definition
6247 * cannot be left as a userspace activity).  DMA aliases should therefore
6248 * be configured via quirks, such as the PCI fixup header quirk.
6249 */
6250void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6251		       unsigned int nr_devfns)
6252{
6253	int devfn_to;
6254
6255	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6256	devfn_to = devfn_from + nr_devfns - 1;
6257
6258	if (!dev->dma_alias_mask)
6259		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6260	if (!dev->dma_alias_mask) {
6261		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6262		return;
6263	}
6264
6265	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6266
6267	if (nr_devfns == 1)
6268		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6269				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6270	else if (nr_devfns > 1)
6271		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6272				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6273				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6274}
6275
6276bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6277{
6278	return (dev1->dma_alias_mask &&
6279		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6280	       (dev2->dma_alias_mask &&
6281		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6282	       pci_real_dma_dev(dev1) == dev2 ||
6283	       pci_real_dma_dev(dev2) == dev1;
6284}
6285
6286bool pci_device_is_present(struct pci_dev *pdev)
6287{
6288	u32 v;
6289
6290	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6291	pdev = pci_physfn(pdev);
6292	if (pci_dev_is_disconnected(pdev))
6293		return false;
6294	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6295}
6296EXPORT_SYMBOL_GPL(pci_device_is_present);
6297
6298void pci_ignore_hotplug(struct pci_dev *dev)
6299{
6300	struct pci_dev *bridge = dev->bus->self;
6301
6302	dev->ignore_hotplug = 1;
6303	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6304	if (bridge)
6305		bridge->ignore_hotplug = 1;
6306}
6307EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6308
6309/**
6310 * pci_real_dma_dev - Get PCI DMA device for PCI device
6311 * @dev: the PCI device that may have a PCI DMA alias
6312 *
6313 * Permits the platform to provide architecture-specific functionality to
6314 * devices needing to alias DMA to another PCI device on another PCI bus. If
6315 * the PCI device is on the same bus, it is recommended to use
6316 * pci_add_dma_alias(). This is the default implementation. Architecture
6317 * implementations can override this.
6318 */
6319struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6320{
6321	return dev;
6322}
6323
6324resource_size_t __weak pcibios_default_alignment(void)
6325{
6326	return 0;
6327}
6328
6329/*
6330 * Arches that don't want to expose struct resource to userland as-is in
6331 * sysfs and /proc can implement their own pci_resource_to_user().
6332 */
6333void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6334				 const struct resource *rsrc,
6335				 resource_size_t *start, resource_size_t *end)
6336{
6337	*start = rsrc->start;
6338	*end = rsrc->end;
6339}
6340
6341static char *resource_alignment_param;
6342static DEFINE_SPINLOCK(resource_alignment_lock);
6343
6344/**
6345 * pci_specified_resource_alignment - get resource alignment specified by user.
6346 * @dev: the PCI device to get
6347 * @resize: whether or not to change resources' size when reassigning alignment
6348 *
6349 * RETURNS: Resource alignment if it is specified.
6350 *          Zero if it is not specified.
6351 */
6352static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6353							bool *resize)
6354{
6355	int align_order, count;
6356	resource_size_t align = pcibios_default_alignment();
6357	const char *p;
6358	int ret;
6359
6360	spin_lock(&resource_alignment_lock);
6361	p = resource_alignment_param;
6362	if (!p || !*p)
6363		goto out;
6364	if (pci_has_flag(PCI_PROBE_ONLY)) {
6365		align = 0;
6366		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6367		goto out;
6368	}
6369
6370	while (*p) {
6371		count = 0;
6372		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6373		    p[count] == '@') {
6374			p += count + 1;
6375			if (align_order > 63) {
6376				pr_err("PCI: Invalid requested alignment (order %d)\n",
6377				       align_order);
6378				align_order = PAGE_SHIFT;
 
 
 
 
 
 
 
 
6379			}
6380		} else {
6381			align_order = PAGE_SHIFT;
6382		}
6383
6384		ret = pci_dev_str_match(dev, p, &p);
6385		if (ret == 1) {
6386			*resize = true;
6387			align = 1ULL << align_order;
6388			break;
6389		} else if (ret < 0) {
6390			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6391			       p);
 
 
6392			break;
6393		}
6394
6395		if (*p != ';' && *p != ',') {
6396			/* End of param or invalid format */
6397			break;
6398		}
6399		p++;
6400	}
6401out:
6402	spin_unlock(&resource_alignment_lock);
6403	return align;
6404}
6405
6406static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6407					   resource_size_t align, bool resize)
6408{
6409	struct resource *r = &dev->resource[bar];
6410	const char *r_name = pci_resource_name(dev, bar);
6411	resource_size_t size;
6412
6413	if (!(r->flags & IORESOURCE_MEM))
6414		return;
6415
6416	if (r->flags & IORESOURCE_PCI_FIXED) {
6417		pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6418			 r_name, r, (unsigned long long)align);
6419		return;
6420	}
6421
6422	size = resource_size(r);
6423	if (size >= align)
6424		return;
6425
6426	/*
6427	 * Increase the alignment of the resource.  There are two ways we
6428	 * can do this:
6429	 *
6430	 * 1) Increase the size of the resource.  BARs are aligned on their
6431	 *    size, so when we reallocate space for this resource, we'll
6432	 *    allocate it with the larger alignment.  This also prevents
6433	 *    assignment of any other BARs inside the alignment region, so
6434	 *    if we're requesting page alignment, this means no other BARs
6435	 *    will share the page.
6436	 *
6437	 *    The disadvantage is that this makes the resource larger than
6438	 *    the hardware BAR, which may break drivers that compute things
6439	 *    based on the resource size, e.g., to find registers at a
6440	 *    fixed offset before the end of the BAR.
6441	 *
6442	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6443	 *    set r->start to the desired alignment.  By itself this
6444	 *    doesn't prevent other BARs being put inside the alignment
6445	 *    region, but if we realign *every* resource of every device in
6446	 *    the system, none of them will share an alignment region.
6447	 *
6448	 * When the user has requested alignment for only some devices via
6449	 * the "pci=resource_alignment" argument, "resize" is true and we
6450	 * use the first method.  Otherwise we assume we're aligning all
6451	 * devices and we use the second.
6452	 */
6453
6454	pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6455		 r_name, r, (unsigned long long)align);
6456
6457	if (resize) {
6458		r->start = 0;
6459		r->end = align - 1;
6460	} else {
6461		r->flags &= ~IORESOURCE_SIZEALIGN;
6462		r->flags |= IORESOURCE_STARTALIGN;
6463		r->start = align;
6464		r->end = r->start + size - 1;
6465	}
6466	r->flags |= IORESOURCE_UNSET;
6467}
6468
6469/*
6470 * This function disables memory decoding and releases memory resources
6471 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6472 * It also rounds up size to specified alignment.
6473 * Later on, the kernel will assign page-aligned memory resource back
6474 * to the device.
6475 */
6476void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6477{
6478	int i;
6479	struct resource *r;
6480	resource_size_t align;
6481	u16 command;
6482	bool resize = false;
6483
6484	/*
6485	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6486	 * 3.4.1.11.  Their resources are allocated from the space
6487	 * described by the VF BARx register in the PF's SR-IOV capability.
6488	 * We can't influence their alignment here.
6489	 */
6490	if (dev->is_virtfn)
6491		return;
6492
6493	/* check if specified PCI is target device to reassign */
6494	align = pci_specified_resource_alignment(dev, &resize);
6495	if (!align)
6496		return;
6497
6498	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6499	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6500		pci_warn(dev, "Can't reassign resources to host bridge\n");
6501		return;
6502	}
6503
6504	pci_read_config_word(dev, PCI_COMMAND, &command);
6505	command &= ~PCI_COMMAND_MEMORY;
6506	pci_write_config_word(dev, PCI_COMMAND, command);
6507
6508	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6509		pci_request_resource_alignment(dev, i, align, resize);
6510
6511	/*
6512	 * Need to disable bridge's resource window,
6513	 * to enable the kernel to reassign new resource
6514	 * window later on.
6515	 */
6516	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6517		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6518			r = &dev->resource[i];
6519			if (!(r->flags & IORESOURCE_MEM))
6520				continue;
6521			r->flags |= IORESOURCE_UNSET;
6522			r->end = resource_size(r) - 1;
6523			r->start = 0;
6524		}
6525		pci_disable_bridge_window(dev);
6526	}
6527}
6528
6529static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6530{
6531	size_t count = 0;
6532
6533	spin_lock(&resource_alignment_lock);
6534	if (resource_alignment_param)
6535		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6536	spin_unlock(&resource_alignment_lock);
6537
6538	return count;
6539}
6540
6541static ssize_t resource_alignment_store(const struct bus_type *bus,
6542					const char *buf, size_t count)
6543{
6544	char *param, *old, *end;
6545
6546	if (count >= (PAGE_SIZE - 1))
6547		return -EINVAL;
6548
6549	param = kstrndup(buf, count, GFP_KERNEL);
6550	if (!param)
6551		return -ENOMEM;
6552
6553	end = strchr(param, '\n');
6554	if (end)
6555		*end = '\0';
6556
6557	spin_lock(&resource_alignment_lock);
6558	old = resource_alignment_param;
6559	if (strlen(param)) {
6560		resource_alignment_param = param;
6561	} else {
6562		kfree(param);
6563		resource_alignment_param = NULL;
6564	}
6565	spin_unlock(&resource_alignment_lock);
 
 
6566
6567	kfree(old);
 
 
 
6568
6569	return count;
 
 
 
6570}
6571
6572static BUS_ATTR_RW(resource_alignment);
 
6573
6574static int __init pci_resource_alignment_sysfs_init(void)
6575{
6576	return bus_create_file(&pci_bus_type,
6577					&bus_attr_resource_alignment);
6578}
 
6579late_initcall(pci_resource_alignment_sysfs_init);
6580
6581static void pci_no_domains(void)
6582{
6583#ifdef CONFIG_PCI_DOMAINS
6584	pci_domains_supported = 0;
6585#endif
6586}
6587
6588#ifdef CONFIG_PCI_DOMAINS_GENERIC
6589static DEFINE_IDA(pci_domain_nr_static_ida);
6590static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6591
6592static void of_pci_reserve_static_domain_nr(void)
6593{
6594	struct device_node *np;
6595	int domain_nr;
6596
6597	for_each_node_by_type(np, "pci") {
6598		domain_nr = of_get_pci_domain_nr(np);
6599		if (domain_nr < 0)
6600			continue;
6601		/*
6602		 * Permanently allocate domain_nr in dynamic_ida
6603		 * to prevent it from dynamic allocation.
6604		 */
6605		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6606				domain_nr, domain_nr, GFP_KERNEL);
6607	}
6608}
6609
6610static int of_pci_bus_find_domain_nr(struct device *parent)
6611{
6612	static bool static_domains_reserved = false;
6613	int domain_nr;
6614
6615	/* On the first call scan device tree for static allocations. */
6616	if (!static_domains_reserved) {
6617		of_pci_reserve_static_domain_nr();
6618		static_domains_reserved = true;
6619	}
6620
6621	if (parent) {
6622		/*
6623		 * If domain is in DT, allocate it in static IDA.  This
6624		 * prevents duplicate static allocations in case of errors
6625		 * in DT.
6626		 */
6627		domain_nr = of_get_pci_domain_nr(parent->of_node);
6628		if (domain_nr >= 0)
6629			return ida_alloc_range(&pci_domain_nr_static_ida,
6630					       domain_nr, domain_nr,
6631					       GFP_KERNEL);
6632	}
6633
6634	/*
6635	 * If domain was not specified in DT, choose a free ID from dynamic
6636	 * allocations. All domain numbers from DT are permanently in
6637	 * dynamic allocations to prevent assigning them to other DT nodes
6638	 * without static domain.
6639	 */
6640	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6641}
6642
6643static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6644{
6645	if (bus->domain_nr < 0)
6646		return;
6647
6648	/* Release domain from IDA where it was allocated. */
6649	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6650		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6651	else
6652		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6653}
6654
6655int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6656{
6657	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6658			       acpi_pci_bus_find_domain_nr(bus);
6659}
6660
6661void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6662{
6663	if (!acpi_disabled)
6664		return;
6665	of_pci_bus_release_domain_nr(bus, parent);
6666}
6667#endif
6668
6669/**
6670 * pci_ext_cfg_avail - can we access extended PCI config space?
 
6671 *
6672 * Returns 1 if we can access PCI extended config space (offsets
6673 * greater than 0xff). This is the default implementation. Architecture
6674 * implementations can override this.
6675 */
6676int __weak pci_ext_cfg_avail(void)
6677{
6678	return 1;
6679}
6680
6681void __weak pci_fixup_cardbus(struct pci_bus *bus)
6682{
6683}
6684EXPORT_SYMBOL(pci_fixup_cardbus);
6685
6686static int __init pci_setup(char *str)
6687{
6688	while (str) {
6689		char *k = strchr(str, ',');
6690		if (k)
6691			*k++ = 0;
6692		if (*str && (str = pcibios_setup(str)) && *str) {
6693			if (!strcmp(str, "nomsi")) {
6694				pci_no_msi();
6695			} else if (!strncmp(str, "noats", 5)) {
6696				pr_info("PCIe: ATS is disabled\n");
6697				pcie_ats_disabled = true;
6698			} else if (!strcmp(str, "noaer")) {
6699				pci_no_aer();
6700			} else if (!strcmp(str, "earlydump")) {
6701				pci_early_dump = true;
6702			} else if (!strncmp(str, "realloc=", 8)) {
6703				pci_realloc_get_opt(str + 8);
6704			} else if (!strncmp(str, "realloc", 7)) {
6705				pci_realloc_get_opt("on");
6706			} else if (!strcmp(str, "nodomains")) {
6707				pci_no_domains();
6708			} else if (!strncmp(str, "noari", 5)) {
6709				pcie_ari_disabled = true;
6710			} else if (!strncmp(str, "cbiosize=", 9)) {
6711				pci_cardbus_io_size = memparse(str + 9, &str);
6712			} else if (!strncmp(str, "cbmemsize=", 10)) {
6713				pci_cardbus_mem_size = memparse(str + 10, &str);
6714			} else if (!strncmp(str, "resource_alignment=", 19)) {
6715				resource_alignment_param = str + 19;
 
6716			} else if (!strncmp(str, "ecrc=", 5)) {
6717				pcie_ecrc_get_policy(str + 5);
6718			} else if (!strncmp(str, "hpiosize=", 9)) {
6719				pci_hotplug_io_size = memparse(str + 9, &str);
6720			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6721				pci_hotplug_mmio_size = memparse(str + 11, &str);
6722			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6723				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6724			} else if (!strncmp(str, "hpmemsize=", 10)) {
6725				pci_hotplug_mmio_size = memparse(str + 10, &str);
6726				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6727			} else if (!strncmp(str, "hpbussize=", 10)) {
6728				pci_hotplug_bus_size =
6729					simple_strtoul(str + 10, &str, 0);
6730				if (pci_hotplug_bus_size > 0xff)
6731					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6732			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6733				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6734			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6735				pcie_bus_config = PCIE_BUS_SAFE;
6736			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6737				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6738			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6739				pcie_bus_config = PCIE_BUS_PEER2PEER;
6740			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6741				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6742			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6743				disable_acs_redir_param = str + 18;
6744			} else {
6745				pr_err("PCI: Unknown option `%s'\n", str);
 
6746			}
6747		}
6748		str = k;
6749	}
6750	return 0;
6751}
6752early_param("pci", pci_setup);
6753
6754/*
6755 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6756 * in pci_setup(), above, to point to data in the __initdata section which
6757 * will be freed after the init sequence is complete. We can't allocate memory
6758 * in pci_setup() because some architectures do not have any memory allocation
6759 * service available during an early_param() call. So we allocate memory and
6760 * copy the variable here before the init section is freed.
6761 *
6762 */
6763static int __init pci_realloc_setup_params(void)
6764{
6765	resource_alignment_param = kstrdup(resource_alignment_param,
6766					   GFP_KERNEL);
6767	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
6768
6769	return 0;
6770}
6771pure_initcall(pci_realloc_setup_params);