Loading...
1/*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10#include <linux/kernel.h>
11#include <linux/delay.h>
12#include <linux/init.h>
13#include <linux/pci.h>
14#include <linux/pm.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/spinlock.h>
18#include <linux/string.h>
19#include <linux/log2.h>
20#include <linux/pci-aspm.h>
21#include <linux/pm_wakeup.h>
22#include <linux/interrupt.h>
23#include <linux/device.h>
24#include <linux/pm_runtime.h>
25#include <asm/setup.h>
26#include "pci.h"
27
28const char *pci_power_names[] = {
29 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
30};
31EXPORT_SYMBOL_GPL(pci_power_names);
32
33int isa_dma_bridge_buggy;
34EXPORT_SYMBOL(isa_dma_bridge_buggy);
35
36int pci_pci_problems;
37EXPORT_SYMBOL(pci_pci_problems);
38
39unsigned int pci_pm_d3_delay;
40
41static void pci_pme_list_scan(struct work_struct *work);
42
43static LIST_HEAD(pci_pme_list);
44static DEFINE_MUTEX(pci_pme_list_mutex);
45static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
46
47struct pci_pme_device {
48 struct list_head list;
49 struct pci_dev *dev;
50};
51
52#define PME_TIMEOUT 1000 /* How long between PME checks */
53
54static void pci_dev_d3_sleep(struct pci_dev *dev)
55{
56 unsigned int delay = dev->d3_delay;
57
58 if (delay < pci_pm_d3_delay)
59 delay = pci_pm_d3_delay;
60
61 msleep(delay);
62}
63
64#ifdef CONFIG_PCI_DOMAINS
65int pci_domains_supported = 1;
66#endif
67
68#define DEFAULT_CARDBUS_IO_SIZE (256)
69#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
70/* pci=cbmemsize=nnM,cbiosize=nn can override this */
71unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
72unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
73
74#define DEFAULT_HOTPLUG_IO_SIZE (256)
75#define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
76/* pci=hpmemsize=nnM,hpiosize=nn can override this */
77unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
78unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
79
80enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
81
82/*
83 * The default CLS is used if arch didn't set CLS explicitly and not
84 * all pci devices agree on the same value. Arch can override either
85 * the dfl or actual value as it sees fit. Don't forget this is
86 * measured in 32-bit words, not bytes.
87 */
88u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
89u8 pci_cache_line_size;
90
91/**
92 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
93 * @bus: pointer to PCI bus structure to search
94 *
95 * Given a PCI bus, returns the highest PCI bus number present in the set
96 * including the given PCI bus and its list of child PCI buses.
97 */
98unsigned char pci_bus_max_busnr(struct pci_bus* bus)
99{
100 struct list_head *tmp;
101 unsigned char max, n;
102
103 max = bus->subordinate;
104 list_for_each(tmp, &bus->children) {
105 n = pci_bus_max_busnr(pci_bus_b(tmp));
106 if(n > max)
107 max = n;
108 }
109 return max;
110}
111EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
112
113#ifdef CONFIG_HAS_IOMEM
114void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
115{
116 /*
117 * Make sure the BAR is actually a memory resource, not an IO resource
118 */
119 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
120 WARN_ON(1);
121 return NULL;
122 }
123 return ioremap_nocache(pci_resource_start(pdev, bar),
124 pci_resource_len(pdev, bar));
125}
126EXPORT_SYMBOL_GPL(pci_ioremap_bar);
127#endif
128
129#if 0
130/**
131 * pci_max_busnr - returns maximum PCI bus number
132 *
133 * Returns the highest PCI bus number present in the system global list of
134 * PCI buses.
135 */
136unsigned char __devinit
137pci_max_busnr(void)
138{
139 struct pci_bus *bus = NULL;
140 unsigned char max, n;
141
142 max = 0;
143 while ((bus = pci_find_next_bus(bus)) != NULL) {
144 n = pci_bus_max_busnr(bus);
145 if(n > max)
146 max = n;
147 }
148 return max;
149}
150
151#endif /* 0 */
152
153#define PCI_FIND_CAP_TTL 48
154
155static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
156 u8 pos, int cap, int *ttl)
157{
158 u8 id;
159
160 while ((*ttl)--) {
161 pci_bus_read_config_byte(bus, devfn, pos, &pos);
162 if (pos < 0x40)
163 break;
164 pos &= ~3;
165 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
166 &id);
167 if (id == 0xff)
168 break;
169 if (id == cap)
170 return pos;
171 pos += PCI_CAP_LIST_NEXT;
172 }
173 return 0;
174}
175
176static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
177 u8 pos, int cap)
178{
179 int ttl = PCI_FIND_CAP_TTL;
180
181 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
182}
183
184int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
185{
186 return __pci_find_next_cap(dev->bus, dev->devfn,
187 pos + PCI_CAP_LIST_NEXT, cap);
188}
189EXPORT_SYMBOL_GPL(pci_find_next_capability);
190
191static int __pci_bus_find_cap_start(struct pci_bus *bus,
192 unsigned int devfn, u8 hdr_type)
193{
194 u16 status;
195
196 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
197 if (!(status & PCI_STATUS_CAP_LIST))
198 return 0;
199
200 switch (hdr_type) {
201 case PCI_HEADER_TYPE_NORMAL:
202 case PCI_HEADER_TYPE_BRIDGE:
203 return PCI_CAPABILITY_LIST;
204 case PCI_HEADER_TYPE_CARDBUS:
205 return PCI_CB_CAPABILITY_LIST;
206 default:
207 return 0;
208 }
209
210 return 0;
211}
212
213/**
214 * pci_find_capability - query for devices' capabilities
215 * @dev: PCI device to query
216 * @cap: capability code
217 *
218 * Tell if a device supports a given PCI capability.
219 * Returns the address of the requested capability structure within the
220 * device's PCI configuration space or 0 in case the device does not
221 * support it. Possible values for @cap:
222 *
223 * %PCI_CAP_ID_PM Power Management
224 * %PCI_CAP_ID_AGP Accelerated Graphics Port
225 * %PCI_CAP_ID_VPD Vital Product Data
226 * %PCI_CAP_ID_SLOTID Slot Identification
227 * %PCI_CAP_ID_MSI Message Signalled Interrupts
228 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
229 * %PCI_CAP_ID_PCIX PCI-X
230 * %PCI_CAP_ID_EXP PCI Express
231 */
232int pci_find_capability(struct pci_dev *dev, int cap)
233{
234 int pos;
235
236 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
237 if (pos)
238 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
239
240 return pos;
241}
242
243/**
244 * pci_bus_find_capability - query for devices' capabilities
245 * @bus: the PCI bus to query
246 * @devfn: PCI device to query
247 * @cap: capability code
248 *
249 * Like pci_find_capability() but works for pci devices that do not have a
250 * pci_dev structure set up yet.
251 *
252 * Returns the address of the requested capability structure within the
253 * device's PCI configuration space or 0 in case the device does not
254 * support it.
255 */
256int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
257{
258 int pos;
259 u8 hdr_type;
260
261 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
262
263 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
264 if (pos)
265 pos = __pci_find_next_cap(bus, devfn, pos, cap);
266
267 return pos;
268}
269
270/**
271 * pci_find_ext_capability - Find an extended capability
272 * @dev: PCI device to query
273 * @cap: capability code
274 *
275 * Returns the address of the requested extended capability structure
276 * within the device's PCI configuration space or 0 if the device does
277 * not support it. Possible values for @cap:
278 *
279 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
280 * %PCI_EXT_CAP_ID_VC Virtual Channel
281 * %PCI_EXT_CAP_ID_DSN Device Serial Number
282 * %PCI_EXT_CAP_ID_PWR Power Budgeting
283 */
284int pci_find_ext_capability(struct pci_dev *dev, int cap)
285{
286 u32 header;
287 int ttl;
288 int pos = PCI_CFG_SPACE_SIZE;
289
290 /* minimum 8 bytes per capability */
291 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
292
293 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
294 return 0;
295
296 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
297 return 0;
298
299 /*
300 * If we have no capabilities, this is indicated by cap ID,
301 * cap version and next pointer all being 0.
302 */
303 if (header == 0)
304 return 0;
305
306 while (ttl-- > 0) {
307 if (PCI_EXT_CAP_ID(header) == cap)
308 return pos;
309
310 pos = PCI_EXT_CAP_NEXT(header);
311 if (pos < PCI_CFG_SPACE_SIZE)
312 break;
313
314 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
315 break;
316 }
317
318 return 0;
319}
320EXPORT_SYMBOL_GPL(pci_find_ext_capability);
321
322/**
323 * pci_bus_find_ext_capability - find an extended capability
324 * @bus: the PCI bus to query
325 * @devfn: PCI device to query
326 * @cap: capability code
327 *
328 * Like pci_find_ext_capability() but works for pci devices that do not have a
329 * pci_dev structure set up yet.
330 *
331 * Returns the address of the requested capability structure within the
332 * device's PCI configuration space or 0 in case the device does not
333 * support it.
334 */
335int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
336 int cap)
337{
338 u32 header;
339 int ttl;
340 int pos = PCI_CFG_SPACE_SIZE;
341
342 /* minimum 8 bytes per capability */
343 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
344
345 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
346 return 0;
347 if (header == 0xffffffff || header == 0)
348 return 0;
349
350 while (ttl-- > 0) {
351 if (PCI_EXT_CAP_ID(header) == cap)
352 return pos;
353
354 pos = PCI_EXT_CAP_NEXT(header);
355 if (pos < PCI_CFG_SPACE_SIZE)
356 break;
357
358 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
359 break;
360 }
361
362 return 0;
363}
364
365static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
366{
367 int rc, ttl = PCI_FIND_CAP_TTL;
368 u8 cap, mask;
369
370 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
371 mask = HT_3BIT_CAP_MASK;
372 else
373 mask = HT_5BIT_CAP_MASK;
374
375 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
376 PCI_CAP_ID_HT, &ttl);
377 while (pos) {
378 rc = pci_read_config_byte(dev, pos + 3, &cap);
379 if (rc != PCIBIOS_SUCCESSFUL)
380 return 0;
381
382 if ((cap & mask) == ht_cap)
383 return pos;
384
385 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
386 pos + PCI_CAP_LIST_NEXT,
387 PCI_CAP_ID_HT, &ttl);
388 }
389
390 return 0;
391}
392/**
393 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
394 * @dev: PCI device to query
395 * @pos: Position from which to continue searching
396 * @ht_cap: Hypertransport capability code
397 *
398 * To be used in conjunction with pci_find_ht_capability() to search for
399 * all capabilities matching @ht_cap. @pos should always be a value returned
400 * from pci_find_ht_capability().
401 *
402 * NB. To be 100% safe against broken PCI devices, the caller should take
403 * steps to avoid an infinite loop.
404 */
405int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
406{
407 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
408}
409EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
410
411/**
412 * pci_find_ht_capability - query a device's Hypertransport capabilities
413 * @dev: PCI device to query
414 * @ht_cap: Hypertransport capability code
415 *
416 * Tell if a device supports a given Hypertransport capability.
417 * Returns an address within the device's PCI configuration space
418 * or 0 in case the device does not support the request capability.
419 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
420 * which has a Hypertransport capability matching @ht_cap.
421 */
422int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
423{
424 int pos;
425
426 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
427 if (pos)
428 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
429
430 return pos;
431}
432EXPORT_SYMBOL_GPL(pci_find_ht_capability);
433
434/**
435 * pci_find_parent_resource - return resource region of parent bus of given region
436 * @dev: PCI device structure contains resources to be searched
437 * @res: child resource record for which parent is sought
438 *
439 * For given resource region of given device, return the resource
440 * region of parent bus the given region is contained in or where
441 * it should be allocated from.
442 */
443struct resource *
444pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
445{
446 const struct pci_bus *bus = dev->bus;
447 int i;
448 struct resource *best = NULL, *r;
449
450 pci_bus_for_each_resource(bus, r, i) {
451 if (!r)
452 continue;
453 if (res->start && !(res->start >= r->start && res->end <= r->end))
454 continue; /* Not contained */
455 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
456 continue; /* Wrong type */
457 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
458 return r; /* Exact match */
459 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
460 if (r->flags & IORESOURCE_PREFETCH)
461 continue;
462 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
463 if (!best)
464 best = r;
465 }
466 return best;
467}
468
469/**
470 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
471 * @dev: PCI device to have its BARs restored
472 *
473 * Restore the BAR values for a given device, so as to make it
474 * accessible by its driver.
475 */
476static void
477pci_restore_bars(struct pci_dev *dev)
478{
479 int i;
480
481 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
482 pci_update_resource(dev, i);
483}
484
485static struct pci_platform_pm_ops *pci_platform_pm;
486
487int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
488{
489 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
490 || !ops->sleep_wake || !ops->can_wakeup)
491 return -EINVAL;
492 pci_platform_pm = ops;
493 return 0;
494}
495
496static inline bool platform_pci_power_manageable(struct pci_dev *dev)
497{
498 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
499}
500
501static inline int platform_pci_set_power_state(struct pci_dev *dev,
502 pci_power_t t)
503{
504 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
505}
506
507static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
508{
509 return pci_platform_pm ?
510 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
511}
512
513static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
514{
515 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
516}
517
518static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
519{
520 return pci_platform_pm ?
521 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
522}
523
524static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
525{
526 return pci_platform_pm ?
527 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
528}
529
530/**
531 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
532 * given PCI device
533 * @dev: PCI device to handle.
534 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
535 *
536 * RETURN VALUE:
537 * -EINVAL if the requested state is invalid.
538 * -EIO if device does not support PCI PM or its PM capabilities register has a
539 * wrong version, or device doesn't support the requested state.
540 * 0 if device already is in the requested state.
541 * 0 if device's power state has been successfully changed.
542 */
543static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
544{
545 u16 pmcsr;
546 bool need_restore = false;
547
548 /* Check if we're already there */
549 if (dev->current_state == state)
550 return 0;
551
552 if (!dev->pm_cap)
553 return -EIO;
554
555 if (state < PCI_D0 || state > PCI_D3hot)
556 return -EINVAL;
557
558 /* Validate current state:
559 * Can enter D0 from any state, but if we can only go deeper
560 * to sleep if we're already in a low power state
561 */
562 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
563 && dev->current_state > state) {
564 dev_err(&dev->dev, "invalid power transition "
565 "(from state %d to %d)\n", dev->current_state, state);
566 return -EINVAL;
567 }
568
569 /* check if this device supports the desired state */
570 if ((state == PCI_D1 && !dev->d1_support)
571 || (state == PCI_D2 && !dev->d2_support))
572 return -EIO;
573
574 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
575
576 /* If we're (effectively) in D3, force entire word to 0.
577 * This doesn't affect PME_Status, disables PME_En, and
578 * sets PowerState to 0.
579 */
580 switch (dev->current_state) {
581 case PCI_D0:
582 case PCI_D1:
583 case PCI_D2:
584 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
585 pmcsr |= state;
586 break;
587 case PCI_D3hot:
588 case PCI_D3cold:
589 case PCI_UNKNOWN: /* Boot-up */
590 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
591 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
592 need_restore = true;
593 /* Fall-through: force to D0 */
594 default:
595 pmcsr = 0;
596 break;
597 }
598
599 /* enter specified state */
600 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
601
602 /* Mandatory power management transition delays */
603 /* see PCI PM 1.1 5.6.1 table 18 */
604 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
605 pci_dev_d3_sleep(dev);
606 else if (state == PCI_D2 || dev->current_state == PCI_D2)
607 udelay(PCI_PM_D2_DELAY);
608
609 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
610 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
611 if (dev->current_state != state && printk_ratelimit())
612 dev_info(&dev->dev, "Refused to change power state, "
613 "currently in D%d\n", dev->current_state);
614
615 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
616 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
617 * from D3hot to D0 _may_ perform an internal reset, thereby
618 * going to "D0 Uninitialized" rather than "D0 Initialized".
619 * For example, at least some versions of the 3c905B and the
620 * 3c556B exhibit this behaviour.
621 *
622 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
623 * devices in a D3hot state at boot. Consequently, we need to
624 * restore at least the BARs so that the device will be
625 * accessible to its driver.
626 */
627 if (need_restore)
628 pci_restore_bars(dev);
629
630 if (dev->bus->self)
631 pcie_aspm_pm_state_change(dev->bus->self);
632
633 return 0;
634}
635
636/**
637 * pci_update_current_state - Read PCI power state of given device from its
638 * PCI PM registers and cache it
639 * @dev: PCI device to handle.
640 * @state: State to cache in case the device doesn't have the PM capability
641 */
642void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
643{
644 if (dev->pm_cap) {
645 u16 pmcsr;
646
647 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
648 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
649 } else {
650 dev->current_state = state;
651 }
652}
653
654/**
655 * pci_platform_power_transition - Use platform to change device power state
656 * @dev: PCI device to handle.
657 * @state: State to put the device into.
658 */
659static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
660{
661 int error;
662
663 if (platform_pci_power_manageable(dev)) {
664 error = platform_pci_set_power_state(dev, state);
665 if (!error)
666 pci_update_current_state(dev, state);
667 } else {
668 error = -ENODEV;
669 /* Fall back to PCI_D0 if native PM is not supported */
670 if (!dev->pm_cap)
671 dev->current_state = PCI_D0;
672 }
673
674 return error;
675}
676
677/**
678 * __pci_start_power_transition - Start power transition of a PCI device
679 * @dev: PCI device to handle.
680 * @state: State to put the device into.
681 */
682static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
683{
684 if (state == PCI_D0)
685 pci_platform_power_transition(dev, PCI_D0);
686}
687
688/**
689 * __pci_complete_power_transition - Complete power transition of a PCI device
690 * @dev: PCI device to handle.
691 * @state: State to put the device into.
692 *
693 * This function should not be called directly by device drivers.
694 */
695int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
696{
697 return state >= PCI_D0 ?
698 pci_platform_power_transition(dev, state) : -EINVAL;
699}
700EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
701
702/**
703 * pci_set_power_state - Set the power state of a PCI device
704 * @dev: PCI device to handle.
705 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
706 *
707 * Transition a device to a new power state, using the platform firmware and/or
708 * the device's PCI PM registers.
709 *
710 * RETURN VALUE:
711 * -EINVAL if the requested state is invalid.
712 * -EIO if device does not support PCI PM or its PM capabilities register has a
713 * wrong version, or device doesn't support the requested state.
714 * 0 if device already is in the requested state.
715 * 0 if device's power state has been successfully changed.
716 */
717int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
718{
719 int error;
720
721 /* bound the state we're entering */
722 if (state > PCI_D3hot)
723 state = PCI_D3hot;
724 else if (state < PCI_D0)
725 state = PCI_D0;
726 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
727 /*
728 * If the device or the parent bridge do not support PCI PM,
729 * ignore the request if we're doing anything other than putting
730 * it into D0 (which would only happen on boot).
731 */
732 return 0;
733
734 __pci_start_power_transition(dev, state);
735
736 /* This device is quirked not to be put into D3, so
737 don't put it in D3 */
738 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
739 return 0;
740
741 error = pci_raw_set_power_state(dev, state);
742
743 if (!__pci_complete_power_transition(dev, state))
744 error = 0;
745 /*
746 * When aspm_policy is "powersave" this call ensures
747 * that ASPM is configured.
748 */
749 if (!error && dev->bus->self)
750 pcie_aspm_powersave_config_link(dev->bus->self);
751
752 return error;
753}
754
755/**
756 * pci_choose_state - Choose the power state of a PCI device
757 * @dev: PCI device to be suspended
758 * @state: target sleep state for the whole system. This is the value
759 * that is passed to suspend() function.
760 *
761 * Returns PCI power state suitable for given device and given system
762 * message.
763 */
764
765pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
766{
767 pci_power_t ret;
768
769 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
770 return PCI_D0;
771
772 ret = platform_pci_choose_state(dev);
773 if (ret != PCI_POWER_ERROR)
774 return ret;
775
776 switch (state.event) {
777 case PM_EVENT_ON:
778 return PCI_D0;
779 case PM_EVENT_FREEZE:
780 case PM_EVENT_PRETHAW:
781 /* REVISIT both freeze and pre-thaw "should" use D0 */
782 case PM_EVENT_SUSPEND:
783 case PM_EVENT_HIBERNATE:
784 return PCI_D3hot;
785 default:
786 dev_info(&dev->dev, "unrecognized suspend event %d\n",
787 state.event);
788 BUG();
789 }
790 return PCI_D0;
791}
792
793EXPORT_SYMBOL(pci_choose_state);
794
795#define PCI_EXP_SAVE_REGS 7
796
797#define pcie_cap_has_devctl(type, flags) 1
798#define pcie_cap_has_lnkctl(type, flags) \
799 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
800 (type == PCI_EXP_TYPE_ROOT_PORT || \
801 type == PCI_EXP_TYPE_ENDPOINT || \
802 type == PCI_EXP_TYPE_LEG_END))
803#define pcie_cap_has_sltctl(type, flags) \
804 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
805 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
806 (type == PCI_EXP_TYPE_DOWNSTREAM && \
807 (flags & PCI_EXP_FLAGS_SLOT))))
808#define pcie_cap_has_rtctl(type, flags) \
809 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
810 (type == PCI_EXP_TYPE_ROOT_PORT || \
811 type == PCI_EXP_TYPE_RC_EC))
812#define pcie_cap_has_devctl2(type, flags) \
813 ((flags & PCI_EXP_FLAGS_VERS) > 1)
814#define pcie_cap_has_lnkctl2(type, flags) \
815 ((flags & PCI_EXP_FLAGS_VERS) > 1)
816#define pcie_cap_has_sltctl2(type, flags) \
817 ((flags & PCI_EXP_FLAGS_VERS) > 1)
818
819static int pci_save_pcie_state(struct pci_dev *dev)
820{
821 int pos, i = 0;
822 struct pci_cap_saved_state *save_state;
823 u16 *cap;
824 u16 flags;
825
826 pos = pci_pcie_cap(dev);
827 if (!pos)
828 return 0;
829
830 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
831 if (!save_state) {
832 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
833 return -ENOMEM;
834 }
835 cap = (u16 *)&save_state->cap.data[0];
836
837 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
838
839 if (pcie_cap_has_devctl(dev->pcie_type, flags))
840 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
841 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
842 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
843 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
844 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
845 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
846 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
847 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
848 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
849 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
850 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
851 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
852 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
853
854 return 0;
855}
856
857static void pci_restore_pcie_state(struct pci_dev *dev)
858{
859 int i = 0, pos;
860 struct pci_cap_saved_state *save_state;
861 u16 *cap;
862 u16 flags;
863
864 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
865 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
866 if (!save_state || pos <= 0)
867 return;
868 cap = (u16 *)&save_state->cap.data[0];
869
870 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
871
872 if (pcie_cap_has_devctl(dev->pcie_type, flags))
873 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
874 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
875 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
876 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
877 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
878 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
879 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
880 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
881 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
882 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
883 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
884 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
885 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
886}
887
888
889static int pci_save_pcix_state(struct pci_dev *dev)
890{
891 int pos;
892 struct pci_cap_saved_state *save_state;
893
894 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
895 if (pos <= 0)
896 return 0;
897
898 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
899 if (!save_state) {
900 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
901 return -ENOMEM;
902 }
903
904 pci_read_config_word(dev, pos + PCI_X_CMD,
905 (u16 *)save_state->cap.data);
906
907 return 0;
908}
909
910static void pci_restore_pcix_state(struct pci_dev *dev)
911{
912 int i = 0, pos;
913 struct pci_cap_saved_state *save_state;
914 u16 *cap;
915
916 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
917 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
918 if (!save_state || pos <= 0)
919 return;
920 cap = (u16 *)&save_state->cap.data[0];
921
922 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
923}
924
925
926/**
927 * pci_save_state - save the PCI configuration space of a device before suspending
928 * @dev: - PCI device that we're dealing with
929 */
930int
931pci_save_state(struct pci_dev *dev)
932{
933 int i;
934 /* XXX: 100% dword access ok here? */
935 for (i = 0; i < 16; i++)
936 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
937 dev->state_saved = true;
938 if ((i = pci_save_pcie_state(dev)) != 0)
939 return i;
940 if ((i = pci_save_pcix_state(dev)) != 0)
941 return i;
942 return 0;
943}
944
945/**
946 * pci_restore_state - Restore the saved state of a PCI device
947 * @dev: - PCI device that we're dealing with
948 */
949void pci_restore_state(struct pci_dev *dev)
950{
951 int i;
952 u32 val;
953
954 if (!dev->state_saved)
955 return;
956
957 /* PCI Express register must be restored first */
958 pci_restore_pcie_state(dev);
959
960 /*
961 * The Base Address register should be programmed before the command
962 * register(s)
963 */
964 for (i = 15; i >= 0; i--) {
965 pci_read_config_dword(dev, i * 4, &val);
966 if (val != dev->saved_config_space[i]) {
967 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
968 "space at offset %#x (was %#x, writing %#x)\n",
969 i, val, (int)dev->saved_config_space[i]);
970 pci_write_config_dword(dev,i * 4,
971 dev->saved_config_space[i]);
972 }
973 }
974 pci_restore_pcix_state(dev);
975 pci_restore_msi_state(dev);
976 pci_restore_iov_state(dev);
977
978 dev->state_saved = false;
979}
980
981struct pci_saved_state {
982 u32 config_space[16];
983 struct pci_cap_saved_data cap[0];
984};
985
986/**
987 * pci_store_saved_state - Allocate and return an opaque struct containing
988 * the device saved state.
989 * @dev: PCI device that we're dealing with
990 *
991 * Rerturn NULL if no state or error.
992 */
993struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
994{
995 struct pci_saved_state *state;
996 struct pci_cap_saved_state *tmp;
997 struct pci_cap_saved_data *cap;
998 struct hlist_node *pos;
999 size_t size;
1000
1001 if (!dev->state_saved)
1002 return NULL;
1003
1004 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1005
1006 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next)
1007 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1008
1009 state = kzalloc(size, GFP_KERNEL);
1010 if (!state)
1011 return NULL;
1012
1013 memcpy(state->config_space, dev->saved_config_space,
1014 sizeof(state->config_space));
1015
1016 cap = state->cap;
1017 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) {
1018 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1019 memcpy(cap, &tmp->cap, len);
1020 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1021 }
1022 /* Empty cap_save terminates list */
1023
1024 return state;
1025}
1026EXPORT_SYMBOL_GPL(pci_store_saved_state);
1027
1028/**
1029 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1030 * @dev: PCI device that we're dealing with
1031 * @state: Saved state returned from pci_store_saved_state()
1032 */
1033int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1034{
1035 struct pci_cap_saved_data *cap;
1036
1037 dev->state_saved = false;
1038
1039 if (!state)
1040 return 0;
1041
1042 memcpy(dev->saved_config_space, state->config_space,
1043 sizeof(state->config_space));
1044
1045 cap = state->cap;
1046 while (cap->size) {
1047 struct pci_cap_saved_state *tmp;
1048
1049 tmp = pci_find_saved_cap(dev, cap->cap_nr);
1050 if (!tmp || tmp->cap.size != cap->size)
1051 return -EINVAL;
1052
1053 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1054 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1055 sizeof(struct pci_cap_saved_data) + cap->size);
1056 }
1057
1058 dev->state_saved = true;
1059 return 0;
1060}
1061EXPORT_SYMBOL_GPL(pci_load_saved_state);
1062
1063/**
1064 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1065 * and free the memory allocated for it.
1066 * @dev: PCI device that we're dealing with
1067 * @state: Pointer to saved state returned from pci_store_saved_state()
1068 */
1069int pci_load_and_free_saved_state(struct pci_dev *dev,
1070 struct pci_saved_state **state)
1071{
1072 int ret = pci_load_saved_state(dev, *state);
1073 kfree(*state);
1074 *state = NULL;
1075 return ret;
1076}
1077EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1078
1079static int do_pci_enable_device(struct pci_dev *dev, int bars)
1080{
1081 int err;
1082
1083 err = pci_set_power_state(dev, PCI_D0);
1084 if (err < 0 && err != -EIO)
1085 return err;
1086 err = pcibios_enable_device(dev, bars);
1087 if (err < 0)
1088 return err;
1089 pci_fixup_device(pci_fixup_enable, dev);
1090
1091 return 0;
1092}
1093
1094/**
1095 * pci_reenable_device - Resume abandoned device
1096 * @dev: PCI device to be resumed
1097 *
1098 * Note this function is a backend of pci_default_resume and is not supposed
1099 * to be called by normal code, write proper resume handler and use it instead.
1100 */
1101int pci_reenable_device(struct pci_dev *dev)
1102{
1103 if (pci_is_enabled(dev))
1104 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1105 return 0;
1106}
1107
1108static int __pci_enable_device_flags(struct pci_dev *dev,
1109 resource_size_t flags)
1110{
1111 int err;
1112 int i, bars = 0;
1113
1114 /*
1115 * Power state could be unknown at this point, either due to a fresh
1116 * boot or a device removal call. So get the current power state
1117 * so that things like MSI message writing will behave as expected
1118 * (e.g. if the device really is in D0 at enable time).
1119 */
1120 if (dev->pm_cap) {
1121 u16 pmcsr;
1122 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1123 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1124 }
1125
1126 if (atomic_add_return(1, &dev->enable_cnt) > 1)
1127 return 0; /* already enabled */
1128
1129 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1130 if (dev->resource[i].flags & flags)
1131 bars |= (1 << i);
1132
1133 err = do_pci_enable_device(dev, bars);
1134 if (err < 0)
1135 atomic_dec(&dev->enable_cnt);
1136 return err;
1137}
1138
1139/**
1140 * pci_enable_device_io - Initialize a device for use with IO space
1141 * @dev: PCI device to be initialized
1142 *
1143 * Initialize device before it's used by a driver. Ask low-level code
1144 * to enable I/O resources. Wake up the device if it was suspended.
1145 * Beware, this function can fail.
1146 */
1147int pci_enable_device_io(struct pci_dev *dev)
1148{
1149 return __pci_enable_device_flags(dev, IORESOURCE_IO);
1150}
1151
1152/**
1153 * pci_enable_device_mem - Initialize a device for use with Memory space
1154 * @dev: PCI device to be initialized
1155 *
1156 * Initialize device before it's used by a driver. Ask low-level code
1157 * to enable Memory resources. Wake up the device if it was suspended.
1158 * Beware, this function can fail.
1159 */
1160int pci_enable_device_mem(struct pci_dev *dev)
1161{
1162 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1163}
1164
1165/**
1166 * pci_enable_device - Initialize device before it's used by a driver.
1167 * @dev: PCI device to be initialized
1168 *
1169 * Initialize device before it's used by a driver. Ask low-level code
1170 * to enable I/O and memory. Wake up the device if it was suspended.
1171 * Beware, this function can fail.
1172 *
1173 * Note we don't actually enable the device many times if we call
1174 * this function repeatedly (we just increment the count).
1175 */
1176int pci_enable_device(struct pci_dev *dev)
1177{
1178 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1179}
1180
1181/*
1182 * Managed PCI resources. This manages device on/off, intx/msi/msix
1183 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1184 * there's no need to track it separately. pci_devres is initialized
1185 * when a device is enabled using managed PCI device enable interface.
1186 */
1187struct pci_devres {
1188 unsigned int enabled:1;
1189 unsigned int pinned:1;
1190 unsigned int orig_intx:1;
1191 unsigned int restore_intx:1;
1192 u32 region_mask;
1193};
1194
1195static void pcim_release(struct device *gendev, void *res)
1196{
1197 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1198 struct pci_devres *this = res;
1199 int i;
1200
1201 if (dev->msi_enabled)
1202 pci_disable_msi(dev);
1203 if (dev->msix_enabled)
1204 pci_disable_msix(dev);
1205
1206 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1207 if (this->region_mask & (1 << i))
1208 pci_release_region(dev, i);
1209
1210 if (this->restore_intx)
1211 pci_intx(dev, this->orig_intx);
1212
1213 if (this->enabled && !this->pinned)
1214 pci_disable_device(dev);
1215}
1216
1217static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1218{
1219 struct pci_devres *dr, *new_dr;
1220
1221 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1222 if (dr)
1223 return dr;
1224
1225 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1226 if (!new_dr)
1227 return NULL;
1228 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1229}
1230
1231static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1232{
1233 if (pci_is_managed(pdev))
1234 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1235 return NULL;
1236}
1237
1238/**
1239 * pcim_enable_device - Managed pci_enable_device()
1240 * @pdev: PCI device to be initialized
1241 *
1242 * Managed pci_enable_device().
1243 */
1244int pcim_enable_device(struct pci_dev *pdev)
1245{
1246 struct pci_devres *dr;
1247 int rc;
1248
1249 dr = get_pci_dr(pdev);
1250 if (unlikely(!dr))
1251 return -ENOMEM;
1252 if (dr->enabled)
1253 return 0;
1254
1255 rc = pci_enable_device(pdev);
1256 if (!rc) {
1257 pdev->is_managed = 1;
1258 dr->enabled = 1;
1259 }
1260 return rc;
1261}
1262
1263/**
1264 * pcim_pin_device - Pin managed PCI device
1265 * @pdev: PCI device to pin
1266 *
1267 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1268 * driver detach. @pdev must have been enabled with
1269 * pcim_enable_device().
1270 */
1271void pcim_pin_device(struct pci_dev *pdev)
1272{
1273 struct pci_devres *dr;
1274
1275 dr = find_pci_dr(pdev);
1276 WARN_ON(!dr || !dr->enabled);
1277 if (dr)
1278 dr->pinned = 1;
1279}
1280
1281/**
1282 * pcibios_disable_device - disable arch specific PCI resources for device dev
1283 * @dev: the PCI device to disable
1284 *
1285 * Disables architecture specific PCI resources for the device. This
1286 * is the default implementation. Architecture implementations can
1287 * override this.
1288 */
1289void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1290
1291static void do_pci_disable_device(struct pci_dev *dev)
1292{
1293 u16 pci_command;
1294
1295 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1296 if (pci_command & PCI_COMMAND_MASTER) {
1297 pci_command &= ~PCI_COMMAND_MASTER;
1298 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1299 }
1300
1301 pcibios_disable_device(dev);
1302}
1303
1304/**
1305 * pci_disable_enabled_device - Disable device without updating enable_cnt
1306 * @dev: PCI device to disable
1307 *
1308 * NOTE: This function is a backend of PCI power management routines and is
1309 * not supposed to be called drivers.
1310 */
1311void pci_disable_enabled_device(struct pci_dev *dev)
1312{
1313 if (pci_is_enabled(dev))
1314 do_pci_disable_device(dev);
1315}
1316
1317/**
1318 * pci_disable_device - Disable PCI device after use
1319 * @dev: PCI device to be disabled
1320 *
1321 * Signal to the system that the PCI device is not in use by the system
1322 * anymore. This only involves disabling PCI bus-mastering, if active.
1323 *
1324 * Note we don't actually disable the device until all callers of
1325 * pci_enable_device() have called pci_disable_device().
1326 */
1327void
1328pci_disable_device(struct pci_dev *dev)
1329{
1330 struct pci_devres *dr;
1331
1332 dr = find_pci_dr(dev);
1333 if (dr)
1334 dr->enabled = 0;
1335
1336 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1337 return;
1338
1339 do_pci_disable_device(dev);
1340
1341 dev->is_busmaster = 0;
1342}
1343
1344/**
1345 * pcibios_set_pcie_reset_state - set reset state for device dev
1346 * @dev: the PCIe device reset
1347 * @state: Reset state to enter into
1348 *
1349 *
1350 * Sets the PCIe reset state for the device. This is the default
1351 * implementation. Architecture implementations can override this.
1352 */
1353int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1354 enum pcie_reset_state state)
1355{
1356 return -EINVAL;
1357}
1358
1359/**
1360 * pci_set_pcie_reset_state - set reset state for device dev
1361 * @dev: the PCIe device reset
1362 * @state: Reset state to enter into
1363 *
1364 *
1365 * Sets the PCI reset state for the device.
1366 */
1367int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1368{
1369 return pcibios_set_pcie_reset_state(dev, state);
1370}
1371
1372/**
1373 * pci_check_pme_status - Check if given device has generated PME.
1374 * @dev: Device to check.
1375 *
1376 * Check the PME status of the device and if set, clear it and clear PME enable
1377 * (if set). Return 'true' if PME status and PME enable were both set or
1378 * 'false' otherwise.
1379 */
1380bool pci_check_pme_status(struct pci_dev *dev)
1381{
1382 int pmcsr_pos;
1383 u16 pmcsr;
1384 bool ret = false;
1385
1386 if (!dev->pm_cap)
1387 return false;
1388
1389 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1390 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1391 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1392 return false;
1393
1394 /* Clear PME status. */
1395 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1396 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1397 /* Disable PME to avoid interrupt flood. */
1398 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1399 ret = true;
1400 }
1401
1402 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1403
1404 return ret;
1405}
1406
1407/**
1408 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1409 * @dev: Device to handle.
1410 * @ign: Ignored.
1411 *
1412 * Check if @dev has generated PME and queue a resume request for it in that
1413 * case.
1414 */
1415static int pci_pme_wakeup(struct pci_dev *dev, void *ign)
1416{
1417 if (pci_check_pme_status(dev)) {
1418 pci_wakeup_event(dev);
1419 pm_request_resume(&dev->dev);
1420 }
1421 return 0;
1422}
1423
1424/**
1425 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1426 * @bus: Top bus of the subtree to walk.
1427 */
1428void pci_pme_wakeup_bus(struct pci_bus *bus)
1429{
1430 if (bus)
1431 pci_walk_bus(bus, pci_pme_wakeup, NULL);
1432}
1433
1434/**
1435 * pci_pme_capable - check the capability of PCI device to generate PME#
1436 * @dev: PCI device to handle.
1437 * @state: PCI state from which device will issue PME#.
1438 */
1439bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1440{
1441 if (!dev->pm_cap)
1442 return false;
1443
1444 return !!(dev->pme_support & (1 << state));
1445}
1446
1447static void pci_pme_list_scan(struct work_struct *work)
1448{
1449 struct pci_pme_device *pme_dev;
1450
1451 mutex_lock(&pci_pme_list_mutex);
1452 if (!list_empty(&pci_pme_list)) {
1453 list_for_each_entry(pme_dev, &pci_pme_list, list)
1454 pci_pme_wakeup(pme_dev->dev, NULL);
1455 schedule_delayed_work(&pci_pme_work, msecs_to_jiffies(PME_TIMEOUT));
1456 }
1457 mutex_unlock(&pci_pme_list_mutex);
1458}
1459
1460/**
1461 * pci_external_pme - is a device an external PCI PME source?
1462 * @dev: PCI device to check
1463 *
1464 */
1465
1466static bool pci_external_pme(struct pci_dev *dev)
1467{
1468 if (pci_is_pcie(dev) || dev->bus->number == 0)
1469 return false;
1470 return true;
1471}
1472
1473/**
1474 * pci_pme_active - enable or disable PCI device's PME# function
1475 * @dev: PCI device to handle.
1476 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1477 *
1478 * The caller must verify that the device is capable of generating PME# before
1479 * calling this function with @enable equal to 'true'.
1480 */
1481void pci_pme_active(struct pci_dev *dev, bool enable)
1482{
1483 u16 pmcsr;
1484
1485 if (!dev->pm_cap)
1486 return;
1487
1488 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1489 /* Clear PME_Status by writing 1 to it and enable PME# */
1490 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1491 if (!enable)
1492 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1493
1494 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1495
1496 /* PCI (as opposed to PCIe) PME requires that the device have
1497 its PME# line hooked up correctly. Not all hardware vendors
1498 do this, so the PME never gets delivered and the device
1499 remains asleep. The easiest way around this is to
1500 periodically walk the list of suspended devices and check
1501 whether any have their PME flag set. The assumption is that
1502 we'll wake up often enough anyway that this won't be a huge
1503 hit, and the power savings from the devices will still be a
1504 win. */
1505
1506 if (pci_external_pme(dev)) {
1507 struct pci_pme_device *pme_dev;
1508 if (enable) {
1509 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1510 GFP_KERNEL);
1511 if (!pme_dev)
1512 goto out;
1513 pme_dev->dev = dev;
1514 mutex_lock(&pci_pme_list_mutex);
1515 list_add(&pme_dev->list, &pci_pme_list);
1516 if (list_is_singular(&pci_pme_list))
1517 schedule_delayed_work(&pci_pme_work,
1518 msecs_to_jiffies(PME_TIMEOUT));
1519 mutex_unlock(&pci_pme_list_mutex);
1520 } else {
1521 mutex_lock(&pci_pme_list_mutex);
1522 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1523 if (pme_dev->dev == dev) {
1524 list_del(&pme_dev->list);
1525 kfree(pme_dev);
1526 break;
1527 }
1528 }
1529 mutex_unlock(&pci_pme_list_mutex);
1530 }
1531 }
1532
1533out:
1534 dev_printk(KERN_DEBUG, &dev->dev, "PME# %s\n",
1535 enable ? "enabled" : "disabled");
1536}
1537
1538/**
1539 * __pci_enable_wake - enable PCI device as wakeup event source
1540 * @dev: PCI device affected
1541 * @state: PCI state from which device will issue wakeup events
1542 * @runtime: True if the events are to be generated at run time
1543 * @enable: True to enable event generation; false to disable
1544 *
1545 * This enables the device as a wakeup event source, or disables it.
1546 * When such events involves platform-specific hooks, those hooks are
1547 * called automatically by this routine.
1548 *
1549 * Devices with legacy power management (no standard PCI PM capabilities)
1550 * always require such platform hooks.
1551 *
1552 * RETURN VALUE:
1553 * 0 is returned on success
1554 * -EINVAL is returned if device is not supposed to wake up the system
1555 * Error code depending on the platform is returned if both the platform and
1556 * the native mechanism fail to enable the generation of wake-up events
1557 */
1558int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1559 bool runtime, bool enable)
1560{
1561 int ret = 0;
1562
1563 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1564 return -EINVAL;
1565
1566 /* Don't do the same thing twice in a row for one device. */
1567 if (!!enable == !!dev->wakeup_prepared)
1568 return 0;
1569
1570 /*
1571 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1572 * Anderson we should be doing PME# wake enable followed by ACPI wake
1573 * enable. To disable wake-up we call the platform first, for symmetry.
1574 */
1575
1576 if (enable) {
1577 int error;
1578
1579 if (pci_pme_capable(dev, state))
1580 pci_pme_active(dev, true);
1581 else
1582 ret = 1;
1583 error = runtime ? platform_pci_run_wake(dev, true) :
1584 platform_pci_sleep_wake(dev, true);
1585 if (ret)
1586 ret = error;
1587 if (!ret)
1588 dev->wakeup_prepared = true;
1589 } else {
1590 if (runtime)
1591 platform_pci_run_wake(dev, false);
1592 else
1593 platform_pci_sleep_wake(dev, false);
1594 pci_pme_active(dev, false);
1595 dev->wakeup_prepared = false;
1596 }
1597
1598 return ret;
1599}
1600EXPORT_SYMBOL(__pci_enable_wake);
1601
1602/**
1603 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1604 * @dev: PCI device to prepare
1605 * @enable: True to enable wake-up event generation; false to disable
1606 *
1607 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1608 * and this function allows them to set that up cleanly - pci_enable_wake()
1609 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1610 * ordering constraints.
1611 *
1612 * This function only returns error code if the device is not capable of
1613 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1614 * enable wake-up power for it.
1615 */
1616int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1617{
1618 return pci_pme_capable(dev, PCI_D3cold) ?
1619 pci_enable_wake(dev, PCI_D3cold, enable) :
1620 pci_enable_wake(dev, PCI_D3hot, enable);
1621}
1622
1623/**
1624 * pci_target_state - find an appropriate low power state for a given PCI dev
1625 * @dev: PCI device
1626 *
1627 * Use underlying platform code to find a supported low power state for @dev.
1628 * If the platform can't manage @dev, return the deepest state from which it
1629 * can generate wake events, based on any available PME info.
1630 */
1631pci_power_t pci_target_state(struct pci_dev *dev)
1632{
1633 pci_power_t target_state = PCI_D3hot;
1634
1635 if (platform_pci_power_manageable(dev)) {
1636 /*
1637 * Call the platform to choose the target state of the device
1638 * and enable wake-up from this state if supported.
1639 */
1640 pci_power_t state = platform_pci_choose_state(dev);
1641
1642 switch (state) {
1643 case PCI_POWER_ERROR:
1644 case PCI_UNKNOWN:
1645 break;
1646 case PCI_D1:
1647 case PCI_D2:
1648 if (pci_no_d1d2(dev))
1649 break;
1650 default:
1651 target_state = state;
1652 }
1653 } else if (!dev->pm_cap) {
1654 target_state = PCI_D0;
1655 } else if (device_may_wakeup(&dev->dev)) {
1656 /*
1657 * Find the deepest state from which the device can generate
1658 * wake-up events, make it the target state and enable device
1659 * to generate PME#.
1660 */
1661 if (dev->pme_support) {
1662 while (target_state
1663 && !(dev->pme_support & (1 << target_state)))
1664 target_state--;
1665 }
1666 }
1667
1668 return target_state;
1669}
1670
1671/**
1672 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1673 * @dev: Device to handle.
1674 *
1675 * Choose the power state appropriate for the device depending on whether
1676 * it can wake up the system and/or is power manageable by the platform
1677 * (PCI_D3hot is the default) and put the device into that state.
1678 */
1679int pci_prepare_to_sleep(struct pci_dev *dev)
1680{
1681 pci_power_t target_state = pci_target_state(dev);
1682 int error;
1683
1684 if (target_state == PCI_POWER_ERROR)
1685 return -EIO;
1686
1687 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1688
1689 error = pci_set_power_state(dev, target_state);
1690
1691 if (error)
1692 pci_enable_wake(dev, target_state, false);
1693
1694 return error;
1695}
1696
1697/**
1698 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1699 * @dev: Device to handle.
1700 *
1701 * Disable device's system wake-up capability and put it into D0.
1702 */
1703int pci_back_from_sleep(struct pci_dev *dev)
1704{
1705 pci_enable_wake(dev, PCI_D0, false);
1706 return pci_set_power_state(dev, PCI_D0);
1707}
1708
1709/**
1710 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1711 * @dev: PCI device being suspended.
1712 *
1713 * Prepare @dev to generate wake-up events at run time and put it into a low
1714 * power state.
1715 */
1716int pci_finish_runtime_suspend(struct pci_dev *dev)
1717{
1718 pci_power_t target_state = pci_target_state(dev);
1719 int error;
1720
1721 if (target_state == PCI_POWER_ERROR)
1722 return -EIO;
1723
1724 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1725
1726 error = pci_set_power_state(dev, target_state);
1727
1728 if (error)
1729 __pci_enable_wake(dev, target_state, true, false);
1730
1731 return error;
1732}
1733
1734/**
1735 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1736 * @dev: Device to check.
1737 *
1738 * Return true if the device itself is cabable of generating wake-up events
1739 * (through the platform or using the native PCIe PME) or if the device supports
1740 * PME and one of its upstream bridges can generate wake-up events.
1741 */
1742bool pci_dev_run_wake(struct pci_dev *dev)
1743{
1744 struct pci_bus *bus = dev->bus;
1745
1746 if (device_run_wake(&dev->dev))
1747 return true;
1748
1749 if (!dev->pme_support)
1750 return false;
1751
1752 while (bus->parent) {
1753 struct pci_dev *bridge = bus->self;
1754
1755 if (device_run_wake(&bridge->dev))
1756 return true;
1757
1758 bus = bus->parent;
1759 }
1760
1761 /* We have reached the root bus. */
1762 if (bus->bridge)
1763 return device_run_wake(bus->bridge);
1764
1765 return false;
1766}
1767EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1768
1769/**
1770 * pci_pm_init - Initialize PM functions of given PCI device
1771 * @dev: PCI device to handle.
1772 */
1773void pci_pm_init(struct pci_dev *dev)
1774{
1775 int pm;
1776 u16 pmc;
1777
1778 pm_runtime_forbid(&dev->dev);
1779 device_enable_async_suspend(&dev->dev);
1780 dev->wakeup_prepared = false;
1781
1782 dev->pm_cap = 0;
1783
1784 /* find PCI PM capability in list */
1785 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1786 if (!pm)
1787 return;
1788 /* Check device's ability to generate PME# */
1789 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1790
1791 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1792 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1793 pmc & PCI_PM_CAP_VER_MASK);
1794 return;
1795 }
1796
1797 dev->pm_cap = pm;
1798 dev->d3_delay = PCI_PM_D3_WAIT;
1799
1800 dev->d1_support = false;
1801 dev->d2_support = false;
1802 if (!pci_no_d1d2(dev)) {
1803 if (pmc & PCI_PM_CAP_D1)
1804 dev->d1_support = true;
1805 if (pmc & PCI_PM_CAP_D2)
1806 dev->d2_support = true;
1807
1808 if (dev->d1_support || dev->d2_support)
1809 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1810 dev->d1_support ? " D1" : "",
1811 dev->d2_support ? " D2" : "");
1812 }
1813
1814 pmc &= PCI_PM_CAP_PME_MASK;
1815 if (pmc) {
1816 dev_printk(KERN_DEBUG, &dev->dev,
1817 "PME# supported from%s%s%s%s%s\n",
1818 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1819 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1820 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1821 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1822 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1823 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1824 /*
1825 * Make device's PM flags reflect the wake-up capability, but
1826 * let the user space enable it to wake up the system as needed.
1827 */
1828 device_set_wakeup_capable(&dev->dev, true);
1829 /* Disable the PME# generation functionality */
1830 pci_pme_active(dev, false);
1831 } else {
1832 dev->pme_support = 0;
1833 }
1834}
1835
1836/**
1837 * platform_pci_wakeup_init - init platform wakeup if present
1838 * @dev: PCI device
1839 *
1840 * Some devices don't have PCI PM caps but can still generate wakeup
1841 * events through platform methods (like ACPI events). If @dev supports
1842 * platform wakeup events, set the device flag to indicate as much. This
1843 * may be redundant if the device also supports PCI PM caps, but double
1844 * initialization should be safe in that case.
1845 */
1846void platform_pci_wakeup_init(struct pci_dev *dev)
1847{
1848 if (!platform_pci_can_wakeup(dev))
1849 return;
1850
1851 device_set_wakeup_capable(&dev->dev, true);
1852 platform_pci_sleep_wake(dev, false);
1853}
1854
1855/**
1856 * pci_add_save_buffer - allocate buffer for saving given capability registers
1857 * @dev: the PCI device
1858 * @cap: the capability to allocate the buffer for
1859 * @size: requested size of the buffer
1860 */
1861static int pci_add_cap_save_buffer(
1862 struct pci_dev *dev, char cap, unsigned int size)
1863{
1864 int pos;
1865 struct pci_cap_saved_state *save_state;
1866
1867 pos = pci_find_capability(dev, cap);
1868 if (pos <= 0)
1869 return 0;
1870
1871 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1872 if (!save_state)
1873 return -ENOMEM;
1874
1875 save_state->cap.cap_nr = cap;
1876 save_state->cap.size = size;
1877 pci_add_saved_cap(dev, save_state);
1878
1879 return 0;
1880}
1881
1882/**
1883 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1884 * @dev: the PCI device
1885 */
1886void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1887{
1888 int error;
1889
1890 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1891 PCI_EXP_SAVE_REGS * sizeof(u16));
1892 if (error)
1893 dev_err(&dev->dev,
1894 "unable to preallocate PCI Express save buffer\n");
1895
1896 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1897 if (error)
1898 dev_err(&dev->dev,
1899 "unable to preallocate PCI-X save buffer\n");
1900}
1901
1902/**
1903 * pci_enable_ari - enable ARI forwarding if hardware support it
1904 * @dev: the PCI device
1905 */
1906void pci_enable_ari(struct pci_dev *dev)
1907{
1908 int pos;
1909 u32 cap;
1910 u16 flags, ctrl;
1911 struct pci_dev *bridge;
1912
1913 if (!pci_is_pcie(dev) || dev->devfn)
1914 return;
1915
1916 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1917 if (!pos)
1918 return;
1919
1920 bridge = dev->bus->self;
1921 if (!bridge || !pci_is_pcie(bridge))
1922 return;
1923
1924 pos = pci_pcie_cap(bridge);
1925 if (!pos)
1926 return;
1927
1928 /* ARI is a PCIe v2 feature */
1929 pci_read_config_word(bridge, pos + PCI_EXP_FLAGS, &flags);
1930 if ((flags & PCI_EXP_FLAGS_VERS) < 2)
1931 return;
1932
1933 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1934 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1935 return;
1936
1937 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1938 ctrl |= PCI_EXP_DEVCTL2_ARI;
1939 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1940
1941 bridge->ari_enabled = 1;
1942}
1943
1944/**
1945 * pci_enable_ido - enable ID-based ordering on a device
1946 * @dev: the PCI device
1947 * @type: which types of IDO to enable
1948 *
1949 * Enable ID-based ordering on @dev. @type can contain the bits
1950 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
1951 * which types of transactions are allowed to be re-ordered.
1952 */
1953void pci_enable_ido(struct pci_dev *dev, unsigned long type)
1954{
1955 int pos;
1956 u16 ctrl;
1957
1958 pos = pci_pcie_cap(dev);
1959 if (!pos)
1960 return;
1961
1962 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
1963 if (type & PCI_EXP_IDO_REQUEST)
1964 ctrl |= PCI_EXP_IDO_REQ_EN;
1965 if (type & PCI_EXP_IDO_COMPLETION)
1966 ctrl |= PCI_EXP_IDO_CMP_EN;
1967 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
1968}
1969EXPORT_SYMBOL(pci_enable_ido);
1970
1971/**
1972 * pci_disable_ido - disable ID-based ordering on a device
1973 * @dev: the PCI device
1974 * @type: which types of IDO to disable
1975 */
1976void pci_disable_ido(struct pci_dev *dev, unsigned long type)
1977{
1978 int pos;
1979 u16 ctrl;
1980
1981 if (!pci_is_pcie(dev))
1982 return;
1983
1984 pos = pci_pcie_cap(dev);
1985 if (!pos)
1986 return;
1987
1988 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
1989 if (type & PCI_EXP_IDO_REQUEST)
1990 ctrl &= ~PCI_EXP_IDO_REQ_EN;
1991 if (type & PCI_EXP_IDO_COMPLETION)
1992 ctrl &= ~PCI_EXP_IDO_CMP_EN;
1993 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
1994}
1995EXPORT_SYMBOL(pci_disable_ido);
1996
1997/**
1998 * pci_enable_obff - enable optimized buffer flush/fill
1999 * @dev: PCI device
2000 * @type: type of signaling to use
2001 *
2002 * Try to enable @type OBFF signaling on @dev. It will try using WAKE#
2003 * signaling if possible, falling back to message signaling only if
2004 * WAKE# isn't supported. @type should indicate whether the PCIe link
2005 * be brought out of L0s or L1 to send the message. It should be either
2006 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2007 *
2008 * If your device can benefit from receiving all messages, even at the
2009 * power cost of bringing the link back up from a low power state, use
2010 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2011 * preferred type).
2012 *
2013 * RETURNS:
2014 * Zero on success, appropriate error number on failure.
2015 */
2016int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2017{
2018 int pos;
2019 u32 cap;
2020 u16 ctrl;
2021 int ret;
2022
2023 if (!pci_is_pcie(dev))
2024 return -ENOTSUPP;
2025
2026 pos = pci_pcie_cap(dev);
2027 if (!pos)
2028 return -ENOTSUPP;
2029
2030 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2031 if (!(cap & PCI_EXP_OBFF_MASK))
2032 return -ENOTSUPP; /* no OBFF support at all */
2033
2034 /* Make sure the topology supports OBFF as well */
2035 if (dev->bus) {
2036 ret = pci_enable_obff(dev->bus->self, type);
2037 if (ret)
2038 return ret;
2039 }
2040
2041 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2042 if (cap & PCI_EXP_OBFF_WAKE)
2043 ctrl |= PCI_EXP_OBFF_WAKE_EN;
2044 else {
2045 switch (type) {
2046 case PCI_EXP_OBFF_SIGNAL_L0:
2047 if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2048 ctrl |= PCI_EXP_OBFF_MSGA_EN;
2049 break;
2050 case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2051 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2052 ctrl |= PCI_EXP_OBFF_MSGB_EN;
2053 break;
2054 default:
2055 WARN(1, "bad OBFF signal type\n");
2056 return -ENOTSUPP;
2057 }
2058 }
2059 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2060
2061 return 0;
2062}
2063EXPORT_SYMBOL(pci_enable_obff);
2064
2065/**
2066 * pci_disable_obff - disable optimized buffer flush/fill
2067 * @dev: PCI device
2068 *
2069 * Disable OBFF on @dev.
2070 */
2071void pci_disable_obff(struct pci_dev *dev)
2072{
2073 int pos;
2074 u16 ctrl;
2075
2076 if (!pci_is_pcie(dev))
2077 return;
2078
2079 pos = pci_pcie_cap(dev);
2080 if (!pos)
2081 return;
2082
2083 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2084 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2085 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2086}
2087EXPORT_SYMBOL(pci_disable_obff);
2088
2089/**
2090 * pci_ltr_supported - check whether a device supports LTR
2091 * @dev: PCI device
2092 *
2093 * RETURNS:
2094 * True if @dev supports latency tolerance reporting, false otherwise.
2095 */
2096bool pci_ltr_supported(struct pci_dev *dev)
2097{
2098 int pos;
2099 u32 cap;
2100
2101 if (!pci_is_pcie(dev))
2102 return false;
2103
2104 pos = pci_pcie_cap(dev);
2105 if (!pos)
2106 return false;
2107
2108 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2109
2110 return cap & PCI_EXP_DEVCAP2_LTR;
2111}
2112EXPORT_SYMBOL(pci_ltr_supported);
2113
2114/**
2115 * pci_enable_ltr - enable latency tolerance reporting
2116 * @dev: PCI device
2117 *
2118 * Enable LTR on @dev if possible, which means enabling it first on
2119 * upstream ports.
2120 *
2121 * RETURNS:
2122 * Zero on success, errno on failure.
2123 */
2124int pci_enable_ltr(struct pci_dev *dev)
2125{
2126 int pos;
2127 u16 ctrl;
2128 int ret;
2129
2130 if (!pci_ltr_supported(dev))
2131 return -ENOTSUPP;
2132
2133 pos = pci_pcie_cap(dev);
2134 if (!pos)
2135 return -ENOTSUPP;
2136
2137 /* Only primary function can enable/disable LTR */
2138 if (PCI_FUNC(dev->devfn) != 0)
2139 return -EINVAL;
2140
2141 /* Enable upstream ports first */
2142 if (dev->bus) {
2143 ret = pci_enable_ltr(dev->bus->self);
2144 if (ret)
2145 return ret;
2146 }
2147
2148 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2149 ctrl |= PCI_EXP_LTR_EN;
2150 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2151
2152 return 0;
2153}
2154EXPORT_SYMBOL(pci_enable_ltr);
2155
2156/**
2157 * pci_disable_ltr - disable latency tolerance reporting
2158 * @dev: PCI device
2159 */
2160void pci_disable_ltr(struct pci_dev *dev)
2161{
2162 int pos;
2163 u16 ctrl;
2164
2165 if (!pci_ltr_supported(dev))
2166 return;
2167
2168 pos = pci_pcie_cap(dev);
2169 if (!pos)
2170 return;
2171
2172 /* Only primary function can enable/disable LTR */
2173 if (PCI_FUNC(dev->devfn) != 0)
2174 return;
2175
2176 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2177 ctrl &= ~PCI_EXP_LTR_EN;
2178 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2179}
2180EXPORT_SYMBOL(pci_disable_ltr);
2181
2182static int __pci_ltr_scale(int *val)
2183{
2184 int scale = 0;
2185
2186 while (*val > 1023) {
2187 *val = (*val + 31) / 32;
2188 scale++;
2189 }
2190 return scale;
2191}
2192
2193/**
2194 * pci_set_ltr - set LTR latency values
2195 * @dev: PCI device
2196 * @snoop_lat_ns: snoop latency in nanoseconds
2197 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2198 *
2199 * Figure out the scale and set the LTR values accordingly.
2200 */
2201int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2202{
2203 int pos, ret, snoop_scale, nosnoop_scale;
2204 u16 val;
2205
2206 if (!pci_ltr_supported(dev))
2207 return -ENOTSUPP;
2208
2209 snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2210 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2211
2212 if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2213 nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2214 return -EINVAL;
2215
2216 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2217 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2218 return -EINVAL;
2219
2220 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2221 if (!pos)
2222 return -ENOTSUPP;
2223
2224 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2225 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2226 if (ret != 4)
2227 return -EIO;
2228
2229 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2230 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2231 if (ret != 4)
2232 return -EIO;
2233
2234 return 0;
2235}
2236EXPORT_SYMBOL(pci_set_ltr);
2237
2238static int pci_acs_enable;
2239
2240/**
2241 * pci_request_acs - ask for ACS to be enabled if supported
2242 */
2243void pci_request_acs(void)
2244{
2245 pci_acs_enable = 1;
2246}
2247
2248/**
2249 * pci_enable_acs - enable ACS if hardware support it
2250 * @dev: the PCI device
2251 */
2252void pci_enable_acs(struct pci_dev *dev)
2253{
2254 int pos;
2255 u16 cap;
2256 u16 ctrl;
2257
2258 if (!pci_acs_enable)
2259 return;
2260
2261 if (!pci_is_pcie(dev))
2262 return;
2263
2264 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2265 if (!pos)
2266 return;
2267
2268 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2269 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2270
2271 /* Source Validation */
2272 ctrl |= (cap & PCI_ACS_SV);
2273
2274 /* P2P Request Redirect */
2275 ctrl |= (cap & PCI_ACS_RR);
2276
2277 /* P2P Completion Redirect */
2278 ctrl |= (cap & PCI_ACS_CR);
2279
2280 /* Upstream Forwarding */
2281 ctrl |= (cap & PCI_ACS_UF);
2282
2283 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2284}
2285
2286/**
2287 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2288 * @dev: the PCI device
2289 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2290 *
2291 * Perform INTx swizzling for a device behind one level of bridge. This is
2292 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2293 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2294 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2295 * the PCI Express Base Specification, Revision 2.1)
2296 */
2297u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
2298{
2299 int slot;
2300
2301 if (pci_ari_enabled(dev->bus))
2302 slot = 0;
2303 else
2304 slot = PCI_SLOT(dev->devfn);
2305
2306 return (((pin - 1) + slot) % 4) + 1;
2307}
2308
2309int
2310pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2311{
2312 u8 pin;
2313
2314 pin = dev->pin;
2315 if (!pin)
2316 return -1;
2317
2318 while (!pci_is_root_bus(dev->bus)) {
2319 pin = pci_swizzle_interrupt_pin(dev, pin);
2320 dev = dev->bus->self;
2321 }
2322 *bridge = dev;
2323 return pin;
2324}
2325
2326/**
2327 * pci_common_swizzle - swizzle INTx all the way to root bridge
2328 * @dev: the PCI device
2329 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2330 *
2331 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2332 * bridges all the way up to a PCI root bus.
2333 */
2334u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2335{
2336 u8 pin = *pinp;
2337
2338 while (!pci_is_root_bus(dev->bus)) {
2339 pin = pci_swizzle_interrupt_pin(dev, pin);
2340 dev = dev->bus->self;
2341 }
2342 *pinp = pin;
2343 return PCI_SLOT(dev->devfn);
2344}
2345
2346/**
2347 * pci_release_region - Release a PCI bar
2348 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2349 * @bar: BAR to release
2350 *
2351 * Releases the PCI I/O and memory resources previously reserved by a
2352 * successful call to pci_request_region. Call this function only
2353 * after all use of the PCI regions has ceased.
2354 */
2355void pci_release_region(struct pci_dev *pdev, int bar)
2356{
2357 struct pci_devres *dr;
2358
2359 if (pci_resource_len(pdev, bar) == 0)
2360 return;
2361 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2362 release_region(pci_resource_start(pdev, bar),
2363 pci_resource_len(pdev, bar));
2364 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2365 release_mem_region(pci_resource_start(pdev, bar),
2366 pci_resource_len(pdev, bar));
2367
2368 dr = find_pci_dr(pdev);
2369 if (dr)
2370 dr->region_mask &= ~(1 << bar);
2371}
2372
2373/**
2374 * __pci_request_region - Reserved PCI I/O and memory resource
2375 * @pdev: PCI device whose resources are to be reserved
2376 * @bar: BAR to be reserved
2377 * @res_name: Name to be associated with resource.
2378 * @exclusive: whether the region access is exclusive or not
2379 *
2380 * Mark the PCI region associated with PCI device @pdev BR @bar as
2381 * being reserved by owner @res_name. Do not access any
2382 * address inside the PCI regions unless this call returns
2383 * successfully.
2384 *
2385 * If @exclusive is set, then the region is marked so that userspace
2386 * is explicitly not allowed to map the resource via /dev/mem or
2387 * sysfs MMIO access.
2388 *
2389 * Returns 0 on success, or %EBUSY on error. A warning
2390 * message is also printed on failure.
2391 */
2392static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2393 int exclusive)
2394{
2395 struct pci_devres *dr;
2396
2397 if (pci_resource_len(pdev, bar) == 0)
2398 return 0;
2399
2400 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2401 if (!request_region(pci_resource_start(pdev, bar),
2402 pci_resource_len(pdev, bar), res_name))
2403 goto err_out;
2404 }
2405 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2406 if (!__request_mem_region(pci_resource_start(pdev, bar),
2407 pci_resource_len(pdev, bar), res_name,
2408 exclusive))
2409 goto err_out;
2410 }
2411
2412 dr = find_pci_dr(pdev);
2413 if (dr)
2414 dr->region_mask |= 1 << bar;
2415
2416 return 0;
2417
2418err_out:
2419 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2420 &pdev->resource[bar]);
2421 return -EBUSY;
2422}
2423
2424/**
2425 * pci_request_region - Reserve PCI I/O and memory resource
2426 * @pdev: PCI device whose resources are to be reserved
2427 * @bar: BAR to be reserved
2428 * @res_name: Name to be associated with resource
2429 *
2430 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2431 * being reserved by owner @res_name. Do not access any
2432 * address inside the PCI regions unless this call returns
2433 * successfully.
2434 *
2435 * Returns 0 on success, or %EBUSY on error. A warning
2436 * message is also printed on failure.
2437 */
2438int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2439{
2440 return __pci_request_region(pdev, bar, res_name, 0);
2441}
2442
2443/**
2444 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2445 * @pdev: PCI device whose resources are to be reserved
2446 * @bar: BAR to be reserved
2447 * @res_name: Name to be associated with resource.
2448 *
2449 * Mark the PCI region associated with PCI device @pdev BR @bar as
2450 * being reserved by owner @res_name. Do not access any
2451 * address inside the PCI regions unless this call returns
2452 * successfully.
2453 *
2454 * Returns 0 on success, or %EBUSY on error. A warning
2455 * message is also printed on failure.
2456 *
2457 * The key difference that _exclusive makes it that userspace is
2458 * explicitly not allowed to map the resource via /dev/mem or
2459 * sysfs.
2460 */
2461int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2462{
2463 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2464}
2465/**
2466 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2467 * @pdev: PCI device whose resources were previously reserved
2468 * @bars: Bitmask of BARs to be released
2469 *
2470 * Release selected PCI I/O and memory resources previously reserved.
2471 * Call this function only after all use of the PCI regions has ceased.
2472 */
2473void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2474{
2475 int i;
2476
2477 for (i = 0; i < 6; i++)
2478 if (bars & (1 << i))
2479 pci_release_region(pdev, i);
2480}
2481
2482int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2483 const char *res_name, int excl)
2484{
2485 int i;
2486
2487 for (i = 0; i < 6; i++)
2488 if (bars & (1 << i))
2489 if (__pci_request_region(pdev, i, res_name, excl))
2490 goto err_out;
2491 return 0;
2492
2493err_out:
2494 while(--i >= 0)
2495 if (bars & (1 << i))
2496 pci_release_region(pdev, i);
2497
2498 return -EBUSY;
2499}
2500
2501
2502/**
2503 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2504 * @pdev: PCI device whose resources are to be reserved
2505 * @bars: Bitmask of BARs to be requested
2506 * @res_name: Name to be associated with resource
2507 */
2508int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2509 const char *res_name)
2510{
2511 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2512}
2513
2514int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2515 int bars, const char *res_name)
2516{
2517 return __pci_request_selected_regions(pdev, bars, res_name,
2518 IORESOURCE_EXCLUSIVE);
2519}
2520
2521/**
2522 * pci_release_regions - Release reserved PCI I/O and memory resources
2523 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2524 *
2525 * Releases all PCI I/O and memory resources previously reserved by a
2526 * successful call to pci_request_regions. Call this function only
2527 * after all use of the PCI regions has ceased.
2528 */
2529
2530void pci_release_regions(struct pci_dev *pdev)
2531{
2532 pci_release_selected_regions(pdev, (1 << 6) - 1);
2533}
2534
2535/**
2536 * pci_request_regions - Reserved PCI I/O and memory resources
2537 * @pdev: PCI device whose resources are to be reserved
2538 * @res_name: Name to be associated with resource.
2539 *
2540 * Mark all PCI regions associated with PCI device @pdev as
2541 * being reserved by owner @res_name. Do not access any
2542 * address inside the PCI regions unless this call returns
2543 * successfully.
2544 *
2545 * Returns 0 on success, or %EBUSY on error. A warning
2546 * message is also printed on failure.
2547 */
2548int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2549{
2550 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2551}
2552
2553/**
2554 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2555 * @pdev: PCI device whose resources are to be reserved
2556 * @res_name: Name to be associated with resource.
2557 *
2558 * Mark all PCI regions associated with PCI device @pdev as
2559 * being reserved by owner @res_name. Do not access any
2560 * address inside the PCI regions unless this call returns
2561 * successfully.
2562 *
2563 * pci_request_regions_exclusive() will mark the region so that
2564 * /dev/mem and the sysfs MMIO access will not be allowed.
2565 *
2566 * Returns 0 on success, or %EBUSY on error. A warning
2567 * message is also printed on failure.
2568 */
2569int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2570{
2571 return pci_request_selected_regions_exclusive(pdev,
2572 ((1 << 6) - 1), res_name);
2573}
2574
2575static void __pci_set_master(struct pci_dev *dev, bool enable)
2576{
2577 u16 old_cmd, cmd;
2578
2579 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2580 if (enable)
2581 cmd = old_cmd | PCI_COMMAND_MASTER;
2582 else
2583 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2584 if (cmd != old_cmd) {
2585 dev_dbg(&dev->dev, "%s bus mastering\n",
2586 enable ? "enabling" : "disabling");
2587 pci_write_config_word(dev, PCI_COMMAND, cmd);
2588 }
2589 dev->is_busmaster = enable;
2590}
2591
2592/**
2593 * pci_set_master - enables bus-mastering for device dev
2594 * @dev: the PCI device to enable
2595 *
2596 * Enables bus-mastering on the device and calls pcibios_set_master()
2597 * to do the needed arch specific settings.
2598 */
2599void pci_set_master(struct pci_dev *dev)
2600{
2601 __pci_set_master(dev, true);
2602 pcibios_set_master(dev);
2603}
2604
2605/**
2606 * pci_clear_master - disables bus-mastering for device dev
2607 * @dev: the PCI device to disable
2608 */
2609void pci_clear_master(struct pci_dev *dev)
2610{
2611 __pci_set_master(dev, false);
2612}
2613
2614/**
2615 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2616 * @dev: the PCI device for which MWI is to be enabled
2617 *
2618 * Helper function for pci_set_mwi.
2619 * Originally copied from drivers/net/acenic.c.
2620 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2621 *
2622 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2623 */
2624int pci_set_cacheline_size(struct pci_dev *dev)
2625{
2626 u8 cacheline_size;
2627
2628 if (!pci_cache_line_size)
2629 return -EINVAL;
2630
2631 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2632 equal to or multiple of the right value. */
2633 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2634 if (cacheline_size >= pci_cache_line_size &&
2635 (cacheline_size % pci_cache_line_size) == 0)
2636 return 0;
2637
2638 /* Write the correct value. */
2639 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2640 /* Read it back. */
2641 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2642 if (cacheline_size == pci_cache_line_size)
2643 return 0;
2644
2645 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2646 "supported\n", pci_cache_line_size << 2);
2647
2648 return -EINVAL;
2649}
2650EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2651
2652#ifdef PCI_DISABLE_MWI
2653int pci_set_mwi(struct pci_dev *dev)
2654{
2655 return 0;
2656}
2657
2658int pci_try_set_mwi(struct pci_dev *dev)
2659{
2660 return 0;
2661}
2662
2663void pci_clear_mwi(struct pci_dev *dev)
2664{
2665}
2666
2667#else
2668
2669/**
2670 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2671 * @dev: the PCI device for which MWI is enabled
2672 *
2673 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2674 *
2675 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2676 */
2677int
2678pci_set_mwi(struct pci_dev *dev)
2679{
2680 int rc;
2681 u16 cmd;
2682
2683 rc = pci_set_cacheline_size(dev);
2684 if (rc)
2685 return rc;
2686
2687 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2688 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2689 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2690 cmd |= PCI_COMMAND_INVALIDATE;
2691 pci_write_config_word(dev, PCI_COMMAND, cmd);
2692 }
2693
2694 return 0;
2695}
2696
2697/**
2698 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2699 * @dev: the PCI device for which MWI is enabled
2700 *
2701 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2702 * Callers are not required to check the return value.
2703 *
2704 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2705 */
2706int pci_try_set_mwi(struct pci_dev *dev)
2707{
2708 int rc = pci_set_mwi(dev);
2709 return rc;
2710}
2711
2712/**
2713 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2714 * @dev: the PCI device to disable
2715 *
2716 * Disables PCI Memory-Write-Invalidate transaction on the device
2717 */
2718void
2719pci_clear_mwi(struct pci_dev *dev)
2720{
2721 u16 cmd;
2722
2723 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2724 if (cmd & PCI_COMMAND_INVALIDATE) {
2725 cmd &= ~PCI_COMMAND_INVALIDATE;
2726 pci_write_config_word(dev, PCI_COMMAND, cmd);
2727 }
2728}
2729#endif /* ! PCI_DISABLE_MWI */
2730
2731/**
2732 * pci_intx - enables/disables PCI INTx for device dev
2733 * @pdev: the PCI device to operate on
2734 * @enable: boolean: whether to enable or disable PCI INTx
2735 *
2736 * Enables/disables PCI INTx for device dev
2737 */
2738void
2739pci_intx(struct pci_dev *pdev, int enable)
2740{
2741 u16 pci_command, new;
2742
2743 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2744
2745 if (enable) {
2746 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2747 } else {
2748 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2749 }
2750
2751 if (new != pci_command) {
2752 struct pci_devres *dr;
2753
2754 pci_write_config_word(pdev, PCI_COMMAND, new);
2755
2756 dr = find_pci_dr(pdev);
2757 if (dr && !dr->restore_intx) {
2758 dr->restore_intx = 1;
2759 dr->orig_intx = !enable;
2760 }
2761 }
2762}
2763
2764/**
2765 * pci_msi_off - disables any msi or msix capabilities
2766 * @dev: the PCI device to operate on
2767 *
2768 * If you want to use msi see pci_enable_msi and friends.
2769 * This is a lower level primitive that allows us to disable
2770 * msi operation at the device level.
2771 */
2772void pci_msi_off(struct pci_dev *dev)
2773{
2774 int pos;
2775 u16 control;
2776
2777 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2778 if (pos) {
2779 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2780 control &= ~PCI_MSI_FLAGS_ENABLE;
2781 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2782 }
2783 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2784 if (pos) {
2785 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2786 control &= ~PCI_MSIX_FLAGS_ENABLE;
2787 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2788 }
2789}
2790EXPORT_SYMBOL_GPL(pci_msi_off);
2791
2792int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2793{
2794 return dma_set_max_seg_size(&dev->dev, size);
2795}
2796EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2797
2798int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2799{
2800 return dma_set_seg_boundary(&dev->dev, mask);
2801}
2802EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2803
2804static int pcie_flr(struct pci_dev *dev, int probe)
2805{
2806 int i;
2807 int pos;
2808 u32 cap;
2809 u16 status, control;
2810
2811 pos = pci_pcie_cap(dev);
2812 if (!pos)
2813 return -ENOTTY;
2814
2815 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2816 if (!(cap & PCI_EXP_DEVCAP_FLR))
2817 return -ENOTTY;
2818
2819 if (probe)
2820 return 0;
2821
2822 /* Wait for Transaction Pending bit clean */
2823 for (i = 0; i < 4; i++) {
2824 if (i)
2825 msleep((1 << (i - 1)) * 100);
2826
2827 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2828 if (!(status & PCI_EXP_DEVSTA_TRPND))
2829 goto clear;
2830 }
2831
2832 dev_err(&dev->dev, "transaction is not cleared; "
2833 "proceeding with reset anyway\n");
2834
2835clear:
2836 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
2837 control |= PCI_EXP_DEVCTL_BCR_FLR;
2838 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
2839
2840 msleep(100);
2841
2842 return 0;
2843}
2844
2845static int pci_af_flr(struct pci_dev *dev, int probe)
2846{
2847 int i;
2848 int pos;
2849 u8 cap;
2850 u8 status;
2851
2852 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2853 if (!pos)
2854 return -ENOTTY;
2855
2856 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2857 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2858 return -ENOTTY;
2859
2860 if (probe)
2861 return 0;
2862
2863 /* Wait for Transaction Pending bit clean */
2864 for (i = 0; i < 4; i++) {
2865 if (i)
2866 msleep((1 << (i - 1)) * 100);
2867
2868 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2869 if (!(status & PCI_AF_STATUS_TP))
2870 goto clear;
2871 }
2872
2873 dev_err(&dev->dev, "transaction is not cleared; "
2874 "proceeding with reset anyway\n");
2875
2876clear:
2877 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2878 msleep(100);
2879
2880 return 0;
2881}
2882
2883/**
2884 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
2885 * @dev: Device to reset.
2886 * @probe: If set, only check if the device can be reset this way.
2887 *
2888 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
2889 * unset, it will be reinitialized internally when going from PCI_D3hot to
2890 * PCI_D0. If that's the case and the device is not in a low-power state
2891 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
2892 *
2893 * NOTE: This causes the caller to sleep for twice the device power transition
2894 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
2895 * by devault (i.e. unless the @dev's d3_delay field has a different value).
2896 * Moreover, only devices in D0 can be reset by this function.
2897 */
2898static int pci_pm_reset(struct pci_dev *dev, int probe)
2899{
2900 u16 csr;
2901
2902 if (!dev->pm_cap)
2903 return -ENOTTY;
2904
2905 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2906 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2907 return -ENOTTY;
2908
2909 if (probe)
2910 return 0;
2911
2912 if (dev->current_state != PCI_D0)
2913 return -EINVAL;
2914
2915 csr &= ~PCI_PM_CTRL_STATE_MASK;
2916 csr |= PCI_D3hot;
2917 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2918 pci_dev_d3_sleep(dev);
2919
2920 csr &= ~PCI_PM_CTRL_STATE_MASK;
2921 csr |= PCI_D0;
2922 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2923 pci_dev_d3_sleep(dev);
2924
2925 return 0;
2926}
2927
2928static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2929{
2930 u16 ctrl;
2931 struct pci_dev *pdev;
2932
2933 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2934 return -ENOTTY;
2935
2936 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2937 if (pdev != dev)
2938 return -ENOTTY;
2939
2940 if (probe)
2941 return 0;
2942
2943 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2944 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2945 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2946 msleep(100);
2947
2948 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2949 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2950 msleep(100);
2951
2952 return 0;
2953}
2954
2955static int pci_dev_reset(struct pci_dev *dev, int probe)
2956{
2957 int rc;
2958
2959 might_sleep();
2960
2961 if (!probe) {
2962 pci_block_user_cfg_access(dev);
2963 /* block PM suspend, driver probe, etc. */
2964 device_lock(&dev->dev);
2965 }
2966
2967 rc = pci_dev_specific_reset(dev, probe);
2968 if (rc != -ENOTTY)
2969 goto done;
2970
2971 rc = pcie_flr(dev, probe);
2972 if (rc != -ENOTTY)
2973 goto done;
2974
2975 rc = pci_af_flr(dev, probe);
2976 if (rc != -ENOTTY)
2977 goto done;
2978
2979 rc = pci_pm_reset(dev, probe);
2980 if (rc != -ENOTTY)
2981 goto done;
2982
2983 rc = pci_parent_bus_reset(dev, probe);
2984done:
2985 if (!probe) {
2986 device_unlock(&dev->dev);
2987 pci_unblock_user_cfg_access(dev);
2988 }
2989
2990 return rc;
2991}
2992
2993/**
2994 * __pci_reset_function - reset a PCI device function
2995 * @dev: PCI device to reset
2996 *
2997 * Some devices allow an individual function to be reset without affecting
2998 * other functions in the same device. The PCI device must be responsive
2999 * to PCI config space in order to use this function.
3000 *
3001 * The device function is presumed to be unused when this function is called.
3002 * Resetting the device will make the contents of PCI configuration space
3003 * random, so any caller of this must be prepared to reinitialise the
3004 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3005 * etc.
3006 *
3007 * Returns 0 if the device function was successfully reset or negative if the
3008 * device doesn't support resetting a single function.
3009 */
3010int __pci_reset_function(struct pci_dev *dev)
3011{
3012 return pci_dev_reset(dev, 0);
3013}
3014EXPORT_SYMBOL_GPL(__pci_reset_function);
3015
3016/**
3017 * pci_probe_reset_function - check whether the device can be safely reset
3018 * @dev: PCI device to reset
3019 *
3020 * Some devices allow an individual function to be reset without affecting
3021 * other functions in the same device. The PCI device must be responsive
3022 * to PCI config space in order to use this function.
3023 *
3024 * Returns 0 if the device function can be reset or negative if the
3025 * device doesn't support resetting a single function.
3026 */
3027int pci_probe_reset_function(struct pci_dev *dev)
3028{
3029 return pci_dev_reset(dev, 1);
3030}
3031
3032/**
3033 * pci_reset_function - quiesce and reset a PCI device function
3034 * @dev: PCI device to reset
3035 *
3036 * Some devices allow an individual function to be reset without affecting
3037 * other functions in the same device. The PCI device must be responsive
3038 * to PCI config space in order to use this function.
3039 *
3040 * This function does not just reset the PCI portion of a device, but
3041 * clears all the state associated with the device. This function differs
3042 * from __pci_reset_function in that it saves and restores device state
3043 * over the reset.
3044 *
3045 * Returns 0 if the device function was successfully reset or negative if the
3046 * device doesn't support resetting a single function.
3047 */
3048int pci_reset_function(struct pci_dev *dev)
3049{
3050 int rc;
3051
3052 rc = pci_dev_reset(dev, 1);
3053 if (rc)
3054 return rc;
3055
3056 pci_save_state(dev);
3057
3058 /*
3059 * both INTx and MSI are disabled after the Interrupt Disable bit
3060 * is set and the Bus Master bit is cleared.
3061 */
3062 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3063
3064 rc = pci_dev_reset(dev, 0);
3065
3066 pci_restore_state(dev);
3067
3068 return rc;
3069}
3070EXPORT_SYMBOL_GPL(pci_reset_function);
3071
3072/**
3073 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3074 * @dev: PCI device to query
3075 *
3076 * Returns mmrbc: maximum designed memory read count in bytes
3077 * or appropriate error value.
3078 */
3079int pcix_get_max_mmrbc(struct pci_dev *dev)
3080{
3081 int cap;
3082 u32 stat;
3083
3084 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3085 if (!cap)
3086 return -EINVAL;
3087
3088 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3089 return -EINVAL;
3090
3091 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3092}
3093EXPORT_SYMBOL(pcix_get_max_mmrbc);
3094
3095/**
3096 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3097 * @dev: PCI device to query
3098 *
3099 * Returns mmrbc: maximum memory read count in bytes
3100 * or appropriate error value.
3101 */
3102int pcix_get_mmrbc(struct pci_dev *dev)
3103{
3104 int cap;
3105 u16 cmd;
3106
3107 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3108 if (!cap)
3109 return -EINVAL;
3110
3111 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3112 return -EINVAL;
3113
3114 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3115}
3116EXPORT_SYMBOL(pcix_get_mmrbc);
3117
3118/**
3119 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3120 * @dev: PCI device to query
3121 * @mmrbc: maximum memory read count in bytes
3122 * valid values are 512, 1024, 2048, 4096
3123 *
3124 * If possible sets maximum memory read byte count, some bridges have erratas
3125 * that prevent this.
3126 */
3127int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3128{
3129 int cap;
3130 u32 stat, v, o;
3131 u16 cmd;
3132
3133 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3134 return -EINVAL;
3135
3136 v = ffs(mmrbc) - 10;
3137
3138 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3139 if (!cap)
3140 return -EINVAL;
3141
3142 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3143 return -EINVAL;
3144
3145 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3146 return -E2BIG;
3147
3148 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3149 return -EINVAL;
3150
3151 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3152 if (o != v) {
3153 if (v > o && dev->bus &&
3154 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3155 return -EIO;
3156
3157 cmd &= ~PCI_X_CMD_MAX_READ;
3158 cmd |= v << 2;
3159 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3160 return -EIO;
3161 }
3162 return 0;
3163}
3164EXPORT_SYMBOL(pcix_set_mmrbc);
3165
3166/**
3167 * pcie_get_readrq - get PCI Express read request size
3168 * @dev: PCI device to query
3169 *
3170 * Returns maximum memory read request in bytes
3171 * or appropriate error value.
3172 */
3173int pcie_get_readrq(struct pci_dev *dev)
3174{
3175 int ret, cap;
3176 u16 ctl;
3177
3178 cap = pci_pcie_cap(dev);
3179 if (!cap)
3180 return -EINVAL;
3181
3182 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3183 if (!ret)
3184 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3185
3186 return ret;
3187}
3188EXPORT_SYMBOL(pcie_get_readrq);
3189
3190/**
3191 * pcie_set_readrq - set PCI Express maximum memory read request
3192 * @dev: PCI device to query
3193 * @rq: maximum memory read count in bytes
3194 * valid values are 128, 256, 512, 1024, 2048, 4096
3195 *
3196 * If possible sets maximum memory read request in bytes
3197 */
3198int pcie_set_readrq(struct pci_dev *dev, int rq)
3199{
3200 int cap, err = -EINVAL;
3201 u16 ctl, v;
3202
3203 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3204 goto out;
3205
3206 v = (ffs(rq) - 8) << 12;
3207
3208 cap = pci_pcie_cap(dev);
3209 if (!cap)
3210 goto out;
3211
3212 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3213 if (err)
3214 goto out;
3215
3216 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
3217 ctl &= ~PCI_EXP_DEVCTL_READRQ;
3218 ctl |= v;
3219 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3220 }
3221
3222out:
3223 return err;
3224}
3225EXPORT_SYMBOL(pcie_set_readrq);
3226
3227/**
3228 * pcie_get_mps - get PCI Express maximum payload size
3229 * @dev: PCI device to query
3230 *
3231 * Returns maximum payload size in bytes
3232 * or appropriate error value.
3233 */
3234int pcie_get_mps(struct pci_dev *dev)
3235{
3236 int ret, cap;
3237 u16 ctl;
3238
3239 cap = pci_pcie_cap(dev);
3240 if (!cap)
3241 return -EINVAL;
3242
3243 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3244 if (!ret)
3245 ret = 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3246
3247 return ret;
3248}
3249
3250/**
3251 * pcie_set_mps - set PCI Express maximum payload size
3252 * @dev: PCI device to query
3253 * @mps: maximum payload size in bytes
3254 * valid values are 128, 256, 512, 1024, 2048, 4096
3255 *
3256 * If possible sets maximum payload size
3257 */
3258int pcie_set_mps(struct pci_dev *dev, int mps)
3259{
3260 int cap, err = -EINVAL;
3261 u16 ctl, v;
3262
3263 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3264 goto out;
3265
3266 v = ffs(mps) - 8;
3267 if (v > dev->pcie_mpss)
3268 goto out;
3269 v <<= 5;
3270
3271 cap = pci_pcie_cap(dev);
3272 if (!cap)
3273 goto out;
3274
3275 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3276 if (err)
3277 goto out;
3278
3279 if ((ctl & PCI_EXP_DEVCTL_PAYLOAD) != v) {
3280 ctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
3281 ctl |= v;
3282 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3283 }
3284out:
3285 return err;
3286}
3287
3288/**
3289 * pci_select_bars - Make BAR mask from the type of resource
3290 * @dev: the PCI device for which BAR mask is made
3291 * @flags: resource type mask to be selected
3292 *
3293 * This helper routine makes bar mask from the type of resource.
3294 */
3295int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3296{
3297 int i, bars = 0;
3298 for (i = 0; i < PCI_NUM_RESOURCES; i++)
3299 if (pci_resource_flags(dev, i) & flags)
3300 bars |= (1 << i);
3301 return bars;
3302}
3303
3304/**
3305 * pci_resource_bar - get position of the BAR associated with a resource
3306 * @dev: the PCI device
3307 * @resno: the resource number
3308 * @type: the BAR type to be filled in
3309 *
3310 * Returns BAR position in config space, or 0 if the BAR is invalid.
3311 */
3312int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3313{
3314 int reg;
3315
3316 if (resno < PCI_ROM_RESOURCE) {
3317 *type = pci_bar_unknown;
3318 return PCI_BASE_ADDRESS_0 + 4 * resno;
3319 } else if (resno == PCI_ROM_RESOURCE) {
3320 *type = pci_bar_mem32;
3321 return dev->rom_base_reg;
3322 } else if (resno < PCI_BRIDGE_RESOURCES) {
3323 /* device specific resource */
3324 reg = pci_iov_resource_bar(dev, resno, type);
3325 if (reg)
3326 return reg;
3327 }
3328
3329 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3330 return 0;
3331}
3332
3333/* Some architectures require additional programming to enable VGA */
3334static arch_set_vga_state_t arch_set_vga_state;
3335
3336void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3337{
3338 arch_set_vga_state = func; /* NULL disables */
3339}
3340
3341static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3342 unsigned int command_bits, u32 flags)
3343{
3344 if (arch_set_vga_state)
3345 return arch_set_vga_state(dev, decode, command_bits,
3346 flags);
3347 return 0;
3348}
3349
3350/**
3351 * pci_set_vga_state - set VGA decode state on device and parents if requested
3352 * @dev: the PCI device
3353 * @decode: true = enable decoding, false = disable decoding
3354 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3355 * @flags: traverse ancestors and change bridges
3356 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3357 */
3358int pci_set_vga_state(struct pci_dev *dev, bool decode,
3359 unsigned int command_bits, u32 flags)
3360{
3361 struct pci_bus *bus;
3362 struct pci_dev *bridge;
3363 u16 cmd;
3364 int rc;
3365
3366 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3367
3368 /* ARCH specific VGA enables */
3369 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3370 if (rc)
3371 return rc;
3372
3373 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3374 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3375 if (decode == true)
3376 cmd |= command_bits;
3377 else
3378 cmd &= ~command_bits;
3379 pci_write_config_word(dev, PCI_COMMAND, cmd);
3380 }
3381
3382 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3383 return 0;
3384
3385 bus = dev->bus;
3386 while (bus) {
3387 bridge = bus->self;
3388 if (bridge) {
3389 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3390 &cmd);
3391 if (decode == true)
3392 cmd |= PCI_BRIDGE_CTL_VGA;
3393 else
3394 cmd &= ~PCI_BRIDGE_CTL_VGA;
3395 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3396 cmd);
3397 }
3398 bus = bus->parent;
3399 }
3400 return 0;
3401}
3402
3403#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3404static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3405static DEFINE_SPINLOCK(resource_alignment_lock);
3406
3407/**
3408 * pci_specified_resource_alignment - get resource alignment specified by user.
3409 * @dev: the PCI device to get
3410 *
3411 * RETURNS: Resource alignment if it is specified.
3412 * Zero if it is not specified.
3413 */
3414resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3415{
3416 int seg, bus, slot, func, align_order, count;
3417 resource_size_t align = 0;
3418 char *p;
3419
3420 spin_lock(&resource_alignment_lock);
3421 p = resource_alignment_param;
3422 while (*p) {
3423 count = 0;
3424 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3425 p[count] == '@') {
3426 p += count + 1;
3427 } else {
3428 align_order = -1;
3429 }
3430 if (sscanf(p, "%x:%x:%x.%x%n",
3431 &seg, &bus, &slot, &func, &count) != 4) {
3432 seg = 0;
3433 if (sscanf(p, "%x:%x.%x%n",
3434 &bus, &slot, &func, &count) != 3) {
3435 /* Invalid format */
3436 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3437 p);
3438 break;
3439 }
3440 }
3441 p += count;
3442 if (seg == pci_domain_nr(dev->bus) &&
3443 bus == dev->bus->number &&
3444 slot == PCI_SLOT(dev->devfn) &&
3445 func == PCI_FUNC(dev->devfn)) {
3446 if (align_order == -1) {
3447 align = PAGE_SIZE;
3448 } else {
3449 align = 1 << align_order;
3450 }
3451 /* Found */
3452 break;
3453 }
3454 if (*p != ';' && *p != ',') {
3455 /* End of param or invalid format */
3456 break;
3457 }
3458 p++;
3459 }
3460 spin_unlock(&resource_alignment_lock);
3461 return align;
3462}
3463
3464/**
3465 * pci_is_reassigndev - check if specified PCI is target device to reassign
3466 * @dev: the PCI device to check
3467 *
3468 * RETURNS: non-zero for PCI device is a target device to reassign,
3469 * or zero is not.
3470 */
3471int pci_is_reassigndev(struct pci_dev *dev)
3472{
3473 return (pci_specified_resource_alignment(dev) != 0);
3474}
3475
3476ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3477{
3478 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3479 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3480 spin_lock(&resource_alignment_lock);
3481 strncpy(resource_alignment_param, buf, count);
3482 resource_alignment_param[count] = '\0';
3483 spin_unlock(&resource_alignment_lock);
3484 return count;
3485}
3486
3487ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3488{
3489 size_t count;
3490 spin_lock(&resource_alignment_lock);
3491 count = snprintf(buf, size, "%s", resource_alignment_param);
3492 spin_unlock(&resource_alignment_lock);
3493 return count;
3494}
3495
3496static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3497{
3498 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3499}
3500
3501static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3502 const char *buf, size_t count)
3503{
3504 return pci_set_resource_alignment_param(buf, count);
3505}
3506
3507BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3508 pci_resource_alignment_store);
3509
3510static int __init pci_resource_alignment_sysfs_init(void)
3511{
3512 return bus_create_file(&pci_bus_type,
3513 &bus_attr_resource_alignment);
3514}
3515
3516late_initcall(pci_resource_alignment_sysfs_init);
3517
3518static void __devinit pci_no_domains(void)
3519{
3520#ifdef CONFIG_PCI_DOMAINS
3521 pci_domains_supported = 0;
3522#endif
3523}
3524
3525/**
3526 * pci_ext_cfg_enabled - can we access extended PCI config space?
3527 * @dev: The PCI device of the root bridge.
3528 *
3529 * Returns 1 if we can access PCI extended config space (offsets
3530 * greater than 0xff). This is the default implementation. Architecture
3531 * implementations can override this.
3532 */
3533int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
3534{
3535 return 1;
3536}
3537
3538void __weak pci_fixup_cardbus(struct pci_bus *bus)
3539{
3540}
3541EXPORT_SYMBOL(pci_fixup_cardbus);
3542
3543static int __init pci_setup(char *str)
3544{
3545 while (str) {
3546 char *k = strchr(str, ',');
3547 if (k)
3548 *k++ = 0;
3549 if (*str && (str = pcibios_setup(str)) && *str) {
3550 if (!strcmp(str, "nomsi")) {
3551 pci_no_msi();
3552 } else if (!strcmp(str, "noaer")) {
3553 pci_no_aer();
3554 } else if (!strncmp(str, "realloc", 7)) {
3555 pci_realloc();
3556 } else if (!strcmp(str, "nodomains")) {
3557 pci_no_domains();
3558 } else if (!strncmp(str, "cbiosize=", 9)) {
3559 pci_cardbus_io_size = memparse(str + 9, &str);
3560 } else if (!strncmp(str, "cbmemsize=", 10)) {
3561 pci_cardbus_mem_size = memparse(str + 10, &str);
3562 } else if (!strncmp(str, "resource_alignment=", 19)) {
3563 pci_set_resource_alignment_param(str + 19,
3564 strlen(str + 19));
3565 } else if (!strncmp(str, "ecrc=", 5)) {
3566 pcie_ecrc_get_policy(str + 5);
3567 } else if (!strncmp(str, "hpiosize=", 9)) {
3568 pci_hotplug_io_size = memparse(str + 9, &str);
3569 } else if (!strncmp(str, "hpmemsize=", 10)) {
3570 pci_hotplug_mem_size = memparse(str + 10, &str);
3571 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3572 pcie_bus_config = PCIE_BUS_TUNE_OFF;
3573 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
3574 pcie_bus_config = PCIE_BUS_SAFE;
3575 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
3576 pcie_bus_config = PCIE_BUS_PERFORMANCE;
3577 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3578 pcie_bus_config = PCIE_BUS_PEER2PEER;
3579 } else {
3580 printk(KERN_ERR "PCI: Unknown option `%s'\n",
3581 str);
3582 }
3583 }
3584 str = k;
3585 }
3586 return 0;
3587}
3588early_param("pci", pci_setup);
3589
3590EXPORT_SYMBOL(pci_reenable_device);
3591EXPORT_SYMBOL(pci_enable_device_io);
3592EXPORT_SYMBOL(pci_enable_device_mem);
3593EXPORT_SYMBOL(pci_enable_device);
3594EXPORT_SYMBOL(pcim_enable_device);
3595EXPORT_SYMBOL(pcim_pin_device);
3596EXPORT_SYMBOL(pci_disable_device);
3597EXPORT_SYMBOL(pci_find_capability);
3598EXPORT_SYMBOL(pci_bus_find_capability);
3599EXPORT_SYMBOL(pci_release_regions);
3600EXPORT_SYMBOL(pci_request_regions);
3601EXPORT_SYMBOL(pci_request_regions_exclusive);
3602EXPORT_SYMBOL(pci_release_region);
3603EXPORT_SYMBOL(pci_request_region);
3604EXPORT_SYMBOL(pci_request_region_exclusive);
3605EXPORT_SYMBOL(pci_release_selected_regions);
3606EXPORT_SYMBOL(pci_request_selected_regions);
3607EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3608EXPORT_SYMBOL(pci_set_master);
3609EXPORT_SYMBOL(pci_clear_master);
3610EXPORT_SYMBOL(pci_set_mwi);
3611EXPORT_SYMBOL(pci_try_set_mwi);
3612EXPORT_SYMBOL(pci_clear_mwi);
3613EXPORT_SYMBOL_GPL(pci_intx);
3614EXPORT_SYMBOL(pci_assign_resource);
3615EXPORT_SYMBOL(pci_find_parent_resource);
3616EXPORT_SYMBOL(pci_select_bars);
3617
3618EXPORT_SYMBOL(pci_set_power_state);
3619EXPORT_SYMBOL(pci_save_state);
3620EXPORT_SYMBOL(pci_restore_state);
3621EXPORT_SYMBOL(pci_pme_capable);
3622EXPORT_SYMBOL(pci_pme_active);
3623EXPORT_SYMBOL(pci_wake_from_d3);
3624EXPORT_SYMBOL(pci_target_state);
3625EXPORT_SYMBOL(pci_prepare_to_sleep);
3626EXPORT_SYMBOL(pci_back_from_sleep);
3627EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/msi.h>
17#include <linux/of.h>
18#include <linux/pci.h>
19#include <linux/pm.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/log2.h>
25#include <linux/logic_pio.h>
26#include <linux/pm_wakeup.h>
27#include <linux/device.h>
28#include <linux/pm_runtime.h>
29#include <linux/pci_hotplug.h>
30#include <linux/vmalloc.h>
31#include <asm/dma.h>
32#include <linux/aer.h>
33#include <linux/bitfield.h>
34#include "pci.h"
35
36DEFINE_MUTEX(pci_slot_mutex);
37
38const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40};
41EXPORT_SYMBOL_GPL(pci_power_names);
42
43#ifdef CONFIG_X86_32
44int isa_dma_bridge_buggy;
45EXPORT_SYMBOL(isa_dma_bridge_buggy);
46#endif
47
48int pci_pci_problems;
49EXPORT_SYMBOL(pci_pci_problems);
50
51unsigned int pci_pm_d3hot_delay;
52
53static void pci_pme_list_scan(struct work_struct *work);
54
55static LIST_HEAD(pci_pme_list);
56static DEFINE_MUTEX(pci_pme_list_mutex);
57static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58
59struct pci_pme_device {
60 struct list_head list;
61 struct pci_dev *dev;
62};
63
64#define PME_TIMEOUT 1000 /* How long between PME checks */
65
66/*
67 * Following exit from Conventional Reset, devices must be ready within 1 sec
68 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
69 * Reset (PCIe r6.0 sec 5.8).
70 */
71#define PCI_RESET_WAIT 1000 /* msec */
72
73/*
74 * Devices may extend the 1 sec period through Request Retry Status
75 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
76 * limit, but 60 sec ought to be enough for any device to become
77 * responsive.
78 */
79#define PCIE_RESET_READY_POLL_MS 60000 /* msec */
80
81static void pci_dev_d3_sleep(struct pci_dev *dev)
82{
83 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
84 unsigned int upper;
85
86 if (delay_ms) {
87 /* Use a 20% upper bound, 1ms minimum */
88 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
89 usleep_range(delay_ms * USEC_PER_MSEC,
90 (delay_ms + upper) * USEC_PER_MSEC);
91 }
92}
93
94bool pci_reset_supported(struct pci_dev *dev)
95{
96 return dev->reset_methods[0] != 0;
97}
98
99#ifdef CONFIG_PCI_DOMAINS
100int pci_domains_supported = 1;
101#endif
102
103#define DEFAULT_CARDBUS_IO_SIZE (256)
104#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
105/* pci=cbmemsize=nnM,cbiosize=nn can override this */
106unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
107unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
108
109#define DEFAULT_HOTPLUG_IO_SIZE (256)
110#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
111#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
112/* hpiosize=nn can override this */
113unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
114/*
115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
117 * pci=hpmemsize=nnM overrides both
118 */
119unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
120unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
121
122#define DEFAULT_HOTPLUG_BUS_SIZE 1
123unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
124
125
126/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
127#ifdef CONFIG_PCIE_BUS_TUNE_OFF
128enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
129#elif defined CONFIG_PCIE_BUS_SAFE
130enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
131#elif defined CONFIG_PCIE_BUS_PERFORMANCE
132enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
133#elif defined CONFIG_PCIE_BUS_PEER2PEER
134enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
135#else
136enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
137#endif
138
139/*
140 * The default CLS is used if arch didn't set CLS explicitly and not
141 * all pci devices agree on the same value. Arch can override either
142 * the dfl or actual value as it sees fit. Don't forget this is
143 * measured in 32-bit words, not bytes.
144 */
145u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2;
146u8 pci_cache_line_size __ro_after_init ;
147
148/*
149 * If we set up a device for bus mastering, we need to check the latency
150 * timer as certain BIOSes forget to set it properly.
151 */
152unsigned int pcibios_max_latency = 255;
153
154/* If set, the PCIe ARI capability will not be used. */
155static bool pcie_ari_disabled;
156
157/* If set, the PCIe ATS capability will not be used. */
158static bool pcie_ats_disabled;
159
160/* If set, the PCI config space of each device is printed during boot. */
161bool pci_early_dump;
162
163bool pci_ats_disabled(void)
164{
165 return pcie_ats_disabled;
166}
167EXPORT_SYMBOL_GPL(pci_ats_disabled);
168
169/* Disable bridge_d3 for all PCIe ports */
170static bool pci_bridge_d3_disable;
171/* Force bridge_d3 for all PCIe ports */
172static bool pci_bridge_d3_force;
173
174static int __init pcie_port_pm_setup(char *str)
175{
176 if (!strcmp(str, "off"))
177 pci_bridge_d3_disable = true;
178 else if (!strcmp(str, "force"))
179 pci_bridge_d3_force = true;
180 return 1;
181}
182__setup("pcie_port_pm=", pcie_port_pm_setup);
183
184/**
185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
186 * @bus: pointer to PCI bus structure to search
187 *
188 * Given a PCI bus, returns the highest PCI bus number present in the set
189 * including the given PCI bus and its list of child PCI buses.
190 */
191unsigned char pci_bus_max_busnr(struct pci_bus *bus)
192{
193 struct pci_bus *tmp;
194 unsigned char max, n;
195
196 max = bus->busn_res.end;
197 list_for_each_entry(tmp, &bus->children, node) {
198 n = pci_bus_max_busnr(tmp);
199 if (n > max)
200 max = n;
201 }
202 return max;
203}
204EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
205
206/**
207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
208 * @pdev: the PCI device
209 *
210 * Returns error bits set in PCI_STATUS and clears them.
211 */
212int pci_status_get_and_clear_errors(struct pci_dev *pdev)
213{
214 u16 status;
215 int ret;
216
217 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
218 if (ret != PCIBIOS_SUCCESSFUL)
219 return -EIO;
220
221 status &= PCI_STATUS_ERROR_BITS;
222 if (status)
223 pci_write_config_word(pdev, PCI_STATUS, status);
224
225 return status;
226}
227EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
228
229#ifdef CONFIG_HAS_IOMEM
230static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
231 bool write_combine)
232{
233 struct resource *res = &pdev->resource[bar];
234 resource_size_t start = res->start;
235 resource_size_t size = resource_size(res);
236
237 /*
238 * Make sure the BAR is actually a memory resource, not an IO resource
239 */
240 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
241 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
242 return NULL;
243 }
244
245 if (write_combine)
246 return ioremap_wc(start, size);
247
248 return ioremap(start, size);
249}
250
251void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
252{
253 return __pci_ioremap_resource(pdev, bar, false);
254}
255EXPORT_SYMBOL_GPL(pci_ioremap_bar);
256
257void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
258{
259 return __pci_ioremap_resource(pdev, bar, true);
260}
261EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
262#endif
263
264/**
265 * pci_dev_str_match_path - test if a path string matches a device
266 * @dev: the PCI device to test
267 * @path: string to match the device against
268 * @endptr: pointer to the string after the match
269 *
270 * Test if a string (typically from a kernel parameter) formatted as a
271 * path of device/function addresses matches a PCI device. The string must
272 * be of the form:
273 *
274 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
275 *
276 * A path for a device can be obtained using 'lspci -t'. Using a path
277 * is more robust against bus renumbering than using only a single bus,
278 * device and function address.
279 *
280 * Returns 1 if the string matches the device, 0 if it does not and
281 * a negative error code if it fails to parse the string.
282 */
283static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
284 const char **endptr)
285{
286 int ret;
287 unsigned int seg, bus, slot, func;
288 char *wpath, *p;
289 char end;
290
291 *endptr = strchrnul(path, ';');
292
293 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
294 if (!wpath)
295 return -ENOMEM;
296
297 while (1) {
298 p = strrchr(wpath, '/');
299 if (!p)
300 break;
301 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
302 if (ret != 2) {
303 ret = -EINVAL;
304 goto free_and_exit;
305 }
306
307 if (dev->devfn != PCI_DEVFN(slot, func)) {
308 ret = 0;
309 goto free_and_exit;
310 }
311
312 /*
313 * Note: we don't need to get a reference to the upstream
314 * bridge because we hold a reference to the top level
315 * device which should hold a reference to the bridge,
316 * and so on.
317 */
318 dev = pci_upstream_bridge(dev);
319 if (!dev) {
320 ret = 0;
321 goto free_and_exit;
322 }
323
324 *p = 0;
325 }
326
327 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
328 &func, &end);
329 if (ret != 4) {
330 seg = 0;
331 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
332 if (ret != 3) {
333 ret = -EINVAL;
334 goto free_and_exit;
335 }
336 }
337
338 ret = (seg == pci_domain_nr(dev->bus) &&
339 bus == dev->bus->number &&
340 dev->devfn == PCI_DEVFN(slot, func));
341
342free_and_exit:
343 kfree(wpath);
344 return ret;
345}
346
347/**
348 * pci_dev_str_match - test if a string matches a device
349 * @dev: the PCI device to test
350 * @p: string to match the device against
351 * @endptr: pointer to the string after the match
352 *
353 * Test if a string (typically from a kernel parameter) matches a specified
354 * PCI device. The string may be of one of the following formats:
355 *
356 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
357 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
358 *
359 * The first format specifies a PCI bus/device/function address which
360 * may change if new hardware is inserted, if motherboard firmware changes,
361 * or due to changes caused in kernel parameters. If the domain is
362 * left unspecified, it is taken to be 0. In order to be robust against
363 * bus renumbering issues, a path of PCI device/function numbers may be used
364 * to address the specific device. The path for a device can be determined
365 * through the use of 'lspci -t'.
366 *
367 * The second format matches devices using IDs in the configuration
368 * space which may match multiple devices in the system. A value of 0
369 * for any field will match all devices. (Note: this differs from
370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
371 * legacy reasons and convenience so users don't have to specify
372 * FFFFFFFFs on the command line.)
373 *
374 * Returns 1 if the string matches the device, 0 if it does not and
375 * a negative error code if the string cannot be parsed.
376 */
377static int pci_dev_str_match(struct pci_dev *dev, const char *p,
378 const char **endptr)
379{
380 int ret;
381 int count;
382 unsigned short vendor, device, subsystem_vendor, subsystem_device;
383
384 if (strncmp(p, "pci:", 4) == 0) {
385 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
386 p += 4;
387 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
388 &subsystem_vendor, &subsystem_device, &count);
389 if (ret != 4) {
390 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
391 if (ret != 2)
392 return -EINVAL;
393
394 subsystem_vendor = 0;
395 subsystem_device = 0;
396 }
397
398 p += count;
399
400 if ((!vendor || vendor == dev->vendor) &&
401 (!device || device == dev->device) &&
402 (!subsystem_vendor ||
403 subsystem_vendor == dev->subsystem_vendor) &&
404 (!subsystem_device ||
405 subsystem_device == dev->subsystem_device))
406 goto found;
407 } else {
408 /*
409 * PCI Bus, Device, Function IDs are specified
410 * (optionally, may include a path of devfns following it)
411 */
412 ret = pci_dev_str_match_path(dev, p, &p);
413 if (ret < 0)
414 return ret;
415 else if (ret)
416 goto found;
417 }
418
419 *endptr = p;
420 return 0;
421
422found:
423 *endptr = p;
424 return 1;
425}
426
427static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
428 u8 pos, int cap, int *ttl)
429{
430 u8 id;
431 u16 ent;
432
433 pci_bus_read_config_byte(bus, devfn, pos, &pos);
434
435 while ((*ttl)--) {
436 if (pos < 0x40)
437 break;
438 pos &= ~3;
439 pci_bus_read_config_word(bus, devfn, pos, &ent);
440
441 id = ent & 0xff;
442 if (id == 0xff)
443 break;
444 if (id == cap)
445 return pos;
446 pos = (ent >> 8);
447 }
448 return 0;
449}
450
451static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
452 u8 pos, int cap)
453{
454 int ttl = PCI_FIND_CAP_TTL;
455
456 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
457}
458
459u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
460{
461 return __pci_find_next_cap(dev->bus, dev->devfn,
462 pos + PCI_CAP_LIST_NEXT, cap);
463}
464EXPORT_SYMBOL_GPL(pci_find_next_capability);
465
466static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
467 unsigned int devfn, u8 hdr_type)
468{
469 u16 status;
470
471 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
472 if (!(status & PCI_STATUS_CAP_LIST))
473 return 0;
474
475 switch (hdr_type) {
476 case PCI_HEADER_TYPE_NORMAL:
477 case PCI_HEADER_TYPE_BRIDGE:
478 return PCI_CAPABILITY_LIST;
479 case PCI_HEADER_TYPE_CARDBUS:
480 return PCI_CB_CAPABILITY_LIST;
481 }
482
483 return 0;
484}
485
486/**
487 * pci_find_capability - query for devices' capabilities
488 * @dev: PCI device to query
489 * @cap: capability code
490 *
491 * Tell if a device supports a given PCI capability.
492 * Returns the address of the requested capability structure within the
493 * device's PCI configuration space or 0 in case the device does not
494 * support it. Possible values for @cap include:
495 *
496 * %PCI_CAP_ID_PM Power Management
497 * %PCI_CAP_ID_AGP Accelerated Graphics Port
498 * %PCI_CAP_ID_VPD Vital Product Data
499 * %PCI_CAP_ID_SLOTID Slot Identification
500 * %PCI_CAP_ID_MSI Message Signalled Interrupts
501 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
502 * %PCI_CAP_ID_PCIX PCI-X
503 * %PCI_CAP_ID_EXP PCI Express
504 */
505u8 pci_find_capability(struct pci_dev *dev, int cap)
506{
507 u8 pos;
508
509 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
510 if (pos)
511 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
512
513 return pos;
514}
515EXPORT_SYMBOL(pci_find_capability);
516
517/**
518 * pci_bus_find_capability - query for devices' capabilities
519 * @bus: the PCI bus to query
520 * @devfn: PCI device to query
521 * @cap: capability code
522 *
523 * Like pci_find_capability() but works for PCI devices that do not have a
524 * pci_dev structure set up yet.
525 *
526 * Returns the address of the requested capability structure within the
527 * device's PCI configuration space or 0 in case the device does not
528 * support it.
529 */
530u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
531{
532 u8 hdr_type, pos;
533
534 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
535
536 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
537 if (pos)
538 pos = __pci_find_next_cap(bus, devfn, pos, cap);
539
540 return pos;
541}
542EXPORT_SYMBOL(pci_bus_find_capability);
543
544/**
545 * pci_find_next_ext_capability - Find an extended capability
546 * @dev: PCI device to query
547 * @start: address at which to start looking (0 to start at beginning of list)
548 * @cap: capability code
549 *
550 * Returns the address of the next matching extended capability structure
551 * within the device's PCI configuration space or 0 if the device does
552 * not support it. Some capabilities can occur several times, e.g., the
553 * vendor-specific capability, and this provides a way to find them all.
554 */
555u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
556{
557 u32 header;
558 int ttl;
559 u16 pos = PCI_CFG_SPACE_SIZE;
560
561 /* minimum 8 bytes per capability */
562 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
563
564 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
565 return 0;
566
567 if (start)
568 pos = start;
569
570 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
571 return 0;
572
573 /*
574 * If we have no capabilities, this is indicated by cap ID,
575 * cap version and next pointer all being 0.
576 */
577 if (header == 0)
578 return 0;
579
580 while (ttl-- > 0) {
581 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
582 return pos;
583
584 pos = PCI_EXT_CAP_NEXT(header);
585 if (pos < PCI_CFG_SPACE_SIZE)
586 break;
587
588 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
589 break;
590 }
591
592 return 0;
593}
594EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
595
596/**
597 * pci_find_ext_capability - Find an extended capability
598 * @dev: PCI device to query
599 * @cap: capability code
600 *
601 * Returns the address of the requested extended capability structure
602 * within the device's PCI configuration space or 0 if the device does
603 * not support it. Possible values for @cap include:
604 *
605 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
606 * %PCI_EXT_CAP_ID_VC Virtual Channel
607 * %PCI_EXT_CAP_ID_DSN Device Serial Number
608 * %PCI_EXT_CAP_ID_PWR Power Budgeting
609 */
610u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
611{
612 return pci_find_next_ext_capability(dev, 0, cap);
613}
614EXPORT_SYMBOL_GPL(pci_find_ext_capability);
615
616/**
617 * pci_get_dsn - Read and return the 8-byte Device Serial Number
618 * @dev: PCI device to query
619 *
620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
621 * Number.
622 *
623 * Returns the DSN, or zero if the capability does not exist.
624 */
625u64 pci_get_dsn(struct pci_dev *dev)
626{
627 u32 dword;
628 u64 dsn;
629 int pos;
630
631 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
632 if (!pos)
633 return 0;
634
635 /*
636 * The Device Serial Number is two dwords offset 4 bytes from the
637 * capability position. The specification says that the first dword is
638 * the lower half, and the second dword is the upper half.
639 */
640 pos += 4;
641 pci_read_config_dword(dev, pos, &dword);
642 dsn = (u64)dword;
643 pci_read_config_dword(dev, pos + 4, &dword);
644 dsn |= ((u64)dword) << 32;
645
646 return dsn;
647}
648EXPORT_SYMBOL_GPL(pci_get_dsn);
649
650static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
651{
652 int rc, ttl = PCI_FIND_CAP_TTL;
653 u8 cap, mask;
654
655 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
656 mask = HT_3BIT_CAP_MASK;
657 else
658 mask = HT_5BIT_CAP_MASK;
659
660 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
661 PCI_CAP_ID_HT, &ttl);
662 while (pos) {
663 rc = pci_read_config_byte(dev, pos + 3, &cap);
664 if (rc != PCIBIOS_SUCCESSFUL)
665 return 0;
666
667 if ((cap & mask) == ht_cap)
668 return pos;
669
670 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
671 pos + PCI_CAP_LIST_NEXT,
672 PCI_CAP_ID_HT, &ttl);
673 }
674
675 return 0;
676}
677
678/**
679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
680 * @dev: PCI device to query
681 * @pos: Position from which to continue searching
682 * @ht_cap: HyperTransport capability code
683 *
684 * To be used in conjunction with pci_find_ht_capability() to search for
685 * all capabilities matching @ht_cap. @pos should always be a value returned
686 * from pci_find_ht_capability().
687 *
688 * NB. To be 100% safe against broken PCI devices, the caller should take
689 * steps to avoid an infinite loop.
690 */
691u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
692{
693 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
694}
695EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
696
697/**
698 * pci_find_ht_capability - query a device's HyperTransport capabilities
699 * @dev: PCI device to query
700 * @ht_cap: HyperTransport capability code
701 *
702 * Tell if a device supports a given HyperTransport capability.
703 * Returns an address within the device's PCI configuration space
704 * or 0 in case the device does not support the request capability.
705 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
706 * which has a HyperTransport capability matching @ht_cap.
707 */
708u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
709{
710 u8 pos;
711
712 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
713 if (pos)
714 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
715
716 return pos;
717}
718EXPORT_SYMBOL_GPL(pci_find_ht_capability);
719
720/**
721 * pci_find_vsec_capability - Find a vendor-specific extended capability
722 * @dev: PCI device to query
723 * @vendor: Vendor ID for which capability is defined
724 * @cap: Vendor-specific capability ID
725 *
726 * If @dev has Vendor ID @vendor, search for a VSEC capability with
727 * VSEC ID @cap. If found, return the capability offset in
728 * config space; otherwise return 0.
729 */
730u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
731{
732 u16 vsec = 0;
733 u32 header;
734 int ret;
735
736 if (vendor != dev->vendor)
737 return 0;
738
739 while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 PCI_EXT_CAP_ID_VNDR))) {
741 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
742 if (ret != PCIBIOS_SUCCESSFUL)
743 continue;
744
745 if (PCI_VNDR_HEADER_ID(header) == cap)
746 return vsec;
747 }
748
749 return 0;
750}
751EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
752
753/**
754 * pci_find_dvsec_capability - Find DVSEC for vendor
755 * @dev: PCI device to query
756 * @vendor: Vendor ID to match for the DVSEC
757 * @dvsec: Designated Vendor-specific capability ID
758 *
759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
760 * offset in config space; otherwise return 0.
761 */
762u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
763{
764 int pos;
765
766 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
767 if (!pos)
768 return 0;
769
770 while (pos) {
771 u16 v, id;
772
773 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
775 if (vendor == v && dvsec == id)
776 return pos;
777
778 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
779 }
780
781 return 0;
782}
783EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
784
785/**
786 * pci_find_parent_resource - return resource region of parent bus of given
787 * region
788 * @dev: PCI device structure contains resources to be searched
789 * @res: child resource record for which parent is sought
790 *
791 * For given resource region of given device, return the resource region of
792 * parent bus the given region is contained in.
793 */
794struct resource *pci_find_parent_resource(const struct pci_dev *dev,
795 struct resource *res)
796{
797 const struct pci_bus *bus = dev->bus;
798 struct resource *r;
799
800 pci_bus_for_each_resource(bus, r) {
801 if (!r)
802 continue;
803 if (resource_contains(r, res)) {
804
805 /*
806 * If the window is prefetchable but the BAR is
807 * not, the allocator made a mistake.
808 */
809 if (r->flags & IORESOURCE_PREFETCH &&
810 !(res->flags & IORESOURCE_PREFETCH))
811 return NULL;
812
813 /*
814 * If we're below a transparent bridge, there may
815 * be both a positively-decoded aperture and a
816 * subtractively-decoded region that contain the BAR.
817 * We want the positively-decoded one, so this depends
818 * on pci_bus_for_each_resource() giving us those
819 * first.
820 */
821 return r;
822 }
823 }
824 return NULL;
825}
826EXPORT_SYMBOL(pci_find_parent_resource);
827
828/**
829 * pci_find_resource - Return matching PCI device resource
830 * @dev: PCI device to query
831 * @res: Resource to look for
832 *
833 * Goes over standard PCI resources (BARs) and checks if the given resource
834 * is partially or fully contained in any of them. In that case the
835 * matching resource is returned, %NULL otherwise.
836 */
837struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
838{
839 int i;
840
841 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
842 struct resource *r = &dev->resource[i];
843
844 if (r->start && resource_contains(r, res))
845 return r;
846 }
847
848 return NULL;
849}
850EXPORT_SYMBOL(pci_find_resource);
851
852/**
853 * pci_resource_name - Return the name of the PCI resource
854 * @dev: PCI device to query
855 * @i: index of the resource
856 *
857 * Return the standard PCI resource (BAR) name according to their index.
858 */
859const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
860{
861 static const char * const bar_name[] = {
862 "BAR 0",
863 "BAR 1",
864 "BAR 2",
865 "BAR 3",
866 "BAR 4",
867 "BAR 5",
868 "ROM",
869#ifdef CONFIG_PCI_IOV
870 "VF BAR 0",
871 "VF BAR 1",
872 "VF BAR 2",
873 "VF BAR 3",
874 "VF BAR 4",
875 "VF BAR 5",
876#endif
877 "bridge window", /* "io" included in %pR */
878 "bridge window", /* "mem" included in %pR */
879 "bridge window", /* "mem pref" included in %pR */
880 };
881 static const char * const cardbus_name[] = {
882 "BAR 1",
883 "unknown",
884 "unknown",
885 "unknown",
886 "unknown",
887 "unknown",
888#ifdef CONFIG_PCI_IOV
889 "unknown",
890 "unknown",
891 "unknown",
892 "unknown",
893 "unknown",
894 "unknown",
895#endif
896 "CardBus bridge window 0", /* I/O */
897 "CardBus bridge window 1", /* I/O */
898 "CardBus bridge window 0", /* mem */
899 "CardBus bridge window 1", /* mem */
900 };
901
902 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
903 i < ARRAY_SIZE(cardbus_name))
904 return cardbus_name[i];
905
906 if (i < ARRAY_SIZE(bar_name))
907 return bar_name[i];
908
909 return "unknown";
910}
911
912/**
913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
914 * @dev: the PCI device to operate on
915 * @pos: config space offset of status word
916 * @mask: mask of bit(s) to care about in status word
917 *
918 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
919 */
920int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
921{
922 int i;
923
924 /* Wait for Transaction Pending bit clean */
925 for (i = 0; i < 4; i++) {
926 u16 status;
927 if (i)
928 msleep((1 << (i - 1)) * 100);
929
930 pci_read_config_word(dev, pos, &status);
931 if (!(status & mask))
932 return 1;
933 }
934
935 return 0;
936}
937
938static int pci_acs_enable;
939
940/**
941 * pci_request_acs - ask for ACS to be enabled if supported
942 */
943void pci_request_acs(void)
944{
945 pci_acs_enable = 1;
946}
947
948static const char *disable_acs_redir_param;
949static const char *config_acs_param;
950
951struct pci_acs {
952 u16 cap;
953 u16 ctrl;
954 u16 fw_ctrl;
955};
956
957static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps,
958 const char *p, u16 mask, u16 flags)
959{
960 char *delimit;
961 int ret = 0;
962
963 if (!p)
964 return;
965
966 while (*p) {
967 if (!mask) {
968 /* Check for ACS flags */
969 delimit = strstr(p, "@");
970 if (delimit) {
971 int end;
972 u32 shift = 0;
973
974 end = delimit - p - 1;
975
976 while (end > -1) {
977 if (*(p + end) == '0') {
978 mask |= 1 << shift;
979 shift++;
980 end--;
981 } else if (*(p + end) == '1') {
982 mask |= 1 << shift;
983 flags |= 1 << shift;
984 shift++;
985 end--;
986 } else if ((*(p + end) == 'x') || (*(p + end) == 'X')) {
987 shift++;
988 end--;
989 } else {
990 pci_err(dev, "Invalid ACS flags... Ignoring\n");
991 return;
992 }
993 }
994 p = delimit + 1;
995 } else {
996 pci_err(dev, "ACS Flags missing\n");
997 return;
998 }
999 }
1000
1001 if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR |
1002 PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) {
1003 pci_err(dev, "Invalid ACS flags specified\n");
1004 return;
1005 }
1006
1007 ret = pci_dev_str_match(dev, p, &p);
1008 if (ret < 0) {
1009 pr_info_once("PCI: Can't parse ACS command line parameter\n");
1010 break;
1011 } else if (ret == 1) {
1012 /* Found a match */
1013 break;
1014 }
1015
1016 if (*p != ';' && *p != ',') {
1017 /* End of param or invalid format */
1018 break;
1019 }
1020 p++;
1021 }
1022
1023 if (ret != 1)
1024 return;
1025
1026 if (!pci_dev_specific_disable_acs_redir(dev))
1027 return;
1028
1029 pci_dbg(dev, "ACS mask = %#06x\n", mask);
1030 pci_dbg(dev, "ACS flags = %#06x\n", flags);
1031
1032 /* If mask is 0 then we copy the bit from the firmware setting. */
1033 caps->ctrl = (caps->ctrl & ~mask) | (caps->fw_ctrl & mask);
1034 caps->ctrl |= flags;
1035
1036 pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl);
1037}
1038
1039/**
1040 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1041 * @dev: the PCI device
1042 * @caps: default ACS controls
1043 */
1044static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps)
1045{
1046 /* Source Validation */
1047 caps->ctrl |= (caps->cap & PCI_ACS_SV);
1048
1049 /* P2P Request Redirect */
1050 caps->ctrl |= (caps->cap & PCI_ACS_RR);
1051
1052 /* P2P Completion Redirect */
1053 caps->ctrl |= (caps->cap & PCI_ACS_CR);
1054
1055 /* Upstream Forwarding */
1056 caps->ctrl |= (caps->cap & PCI_ACS_UF);
1057
1058 /* Enable Translation Blocking for external devices and noats */
1059 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1060 caps->ctrl |= (caps->cap & PCI_ACS_TB);
1061}
1062
1063/**
1064 * pci_enable_acs - enable ACS if hardware support it
1065 * @dev: the PCI device
1066 */
1067static void pci_enable_acs(struct pci_dev *dev)
1068{
1069 struct pci_acs caps;
1070 bool enable_acs = false;
1071 int pos;
1072
1073 /* If an iommu is present we start with kernel default caps */
1074 if (pci_acs_enable) {
1075 if (pci_dev_specific_enable_acs(dev))
1076 enable_acs = true;
1077 }
1078
1079 pos = dev->acs_cap;
1080 if (!pos)
1081 return;
1082
1083 pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap);
1084 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl);
1085 caps.fw_ctrl = caps.ctrl;
1086
1087 if (enable_acs)
1088 pci_std_enable_acs(dev, &caps);
1089
1090 /*
1091 * Always apply caps from the command line, even if there is no iommu.
1092 * Trust that the admin has a reason to change the ACS settings.
1093 */
1094 __pci_config_acs(dev, &caps, disable_acs_redir_param,
1095 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC,
1096 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC));
1097 __pci_config_acs(dev, &caps, config_acs_param, 0, 0);
1098
1099 pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl);
1100}
1101
1102/**
1103 * pcie_read_tlp_log - read TLP Header Log
1104 * @dev: PCIe device
1105 * @where: PCI Config offset of TLP Header Log
1106 * @tlp_log: TLP Log structure to fill
1107 *
1108 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC.
1109 *
1110 * Return: 0 on success and filled TLP Log structure, <0 on error.
1111 */
1112int pcie_read_tlp_log(struct pci_dev *dev, int where,
1113 struct pcie_tlp_log *tlp_log)
1114{
1115 int i, ret;
1116
1117 memset(tlp_log, 0, sizeof(*tlp_log));
1118
1119 for (i = 0; i < 4; i++) {
1120 ret = pci_read_config_dword(dev, where + i * 4,
1121 &tlp_log->dw[i]);
1122 if (ret)
1123 return pcibios_err_to_errno(ret);
1124 }
1125
1126 return 0;
1127}
1128EXPORT_SYMBOL_GPL(pcie_read_tlp_log);
1129
1130/**
1131 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1132 * @dev: PCI device to have its BARs restored
1133 *
1134 * Restore the BAR values for a given device, so as to make it
1135 * accessible by its driver.
1136 */
1137static void pci_restore_bars(struct pci_dev *dev)
1138{
1139 int i;
1140
1141 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1142 pci_update_resource(dev, i);
1143}
1144
1145static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1146{
1147 if (pci_use_mid_pm())
1148 return true;
1149
1150 return acpi_pci_power_manageable(dev);
1151}
1152
1153static inline int platform_pci_set_power_state(struct pci_dev *dev,
1154 pci_power_t t)
1155{
1156 if (pci_use_mid_pm())
1157 return mid_pci_set_power_state(dev, t);
1158
1159 return acpi_pci_set_power_state(dev, t);
1160}
1161
1162static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1163{
1164 if (pci_use_mid_pm())
1165 return mid_pci_get_power_state(dev);
1166
1167 return acpi_pci_get_power_state(dev);
1168}
1169
1170static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1171{
1172 if (!pci_use_mid_pm())
1173 acpi_pci_refresh_power_state(dev);
1174}
1175
1176static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1177{
1178 if (pci_use_mid_pm())
1179 return PCI_POWER_ERROR;
1180
1181 return acpi_pci_choose_state(dev);
1182}
1183
1184static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1185{
1186 if (pci_use_mid_pm())
1187 return PCI_POWER_ERROR;
1188
1189 return acpi_pci_wakeup(dev, enable);
1190}
1191
1192static inline bool platform_pci_need_resume(struct pci_dev *dev)
1193{
1194 if (pci_use_mid_pm())
1195 return false;
1196
1197 return acpi_pci_need_resume(dev);
1198}
1199
1200static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1201{
1202 if (pci_use_mid_pm())
1203 return false;
1204
1205 return acpi_pci_bridge_d3(dev);
1206}
1207
1208/**
1209 * pci_update_current_state - Read power state of given device and cache it
1210 * @dev: PCI device to handle.
1211 * @state: State to cache in case the device doesn't have the PM capability
1212 *
1213 * The power state is read from the PMCSR register, which however is
1214 * inaccessible in D3cold. The platform firmware is therefore queried first
1215 * to detect accessibility of the register. In case the platform firmware
1216 * reports an incorrect state or the device isn't power manageable by the
1217 * platform at all, we try to detect D3cold by testing accessibility of the
1218 * vendor ID in config space.
1219 */
1220void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1221{
1222 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1223 dev->current_state = PCI_D3cold;
1224 } else if (dev->pm_cap) {
1225 u16 pmcsr;
1226
1227 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1228 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1229 dev->current_state = PCI_D3cold;
1230 return;
1231 }
1232 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1233 } else {
1234 dev->current_state = state;
1235 }
1236}
1237
1238/**
1239 * pci_refresh_power_state - Refresh the given device's power state data
1240 * @dev: Target PCI device.
1241 *
1242 * Ask the platform to refresh the devices power state information and invoke
1243 * pci_update_current_state() to update its current PCI power state.
1244 */
1245void pci_refresh_power_state(struct pci_dev *dev)
1246{
1247 platform_pci_refresh_power_state(dev);
1248 pci_update_current_state(dev, dev->current_state);
1249}
1250
1251/**
1252 * pci_platform_power_transition - Use platform to change device power state
1253 * @dev: PCI device to handle.
1254 * @state: State to put the device into.
1255 */
1256int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1257{
1258 int error;
1259
1260 error = platform_pci_set_power_state(dev, state);
1261 if (!error)
1262 pci_update_current_state(dev, state);
1263 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1264 dev->current_state = PCI_D0;
1265
1266 return error;
1267}
1268EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1269
1270static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1271{
1272 pm_request_resume(&pci_dev->dev);
1273 return 0;
1274}
1275
1276/**
1277 * pci_resume_bus - Walk given bus and runtime resume devices on it
1278 * @bus: Top bus of the subtree to walk.
1279 */
1280void pci_resume_bus(struct pci_bus *bus)
1281{
1282 if (bus)
1283 pci_walk_bus(bus, pci_resume_one, NULL);
1284}
1285
1286static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1287{
1288 int delay = 1;
1289 bool retrain = false;
1290 struct pci_dev *root, *bridge;
1291
1292 root = pcie_find_root_port(dev);
1293
1294 if (pci_is_pcie(dev)) {
1295 bridge = pci_upstream_bridge(dev);
1296 if (bridge)
1297 retrain = true;
1298 }
1299
1300 /*
1301 * The caller has already waited long enough after a reset that the
1302 * device should respond to config requests, but it may respond
1303 * with Request Retry Status (RRS) if it needs more time to
1304 * initialize.
1305 *
1306 * If the device is below a Root Port with Configuration RRS
1307 * Software Visibility enabled, reading the Vendor ID returns a
1308 * special data value if the device responded with RRS. Read the
1309 * Vendor ID until we get non-RRS status.
1310 *
1311 * If there's no Root Port or Configuration RRS Software Visibility
1312 * is not enabled, the device may still respond with RRS, but
1313 * hardware may retry the config request. If no retries receive
1314 * Successful Completion, hardware generally synthesizes ~0
1315 * (PCI_ERROR_RESPONSE) data to complete the read. Reading Vendor
1316 * ID for VFs and non-existent devices also returns ~0, so read the
1317 * Command register until it returns something other than ~0.
1318 */
1319 for (;;) {
1320 u32 id;
1321
1322 if (pci_dev_is_disconnected(dev)) {
1323 pci_dbg(dev, "disconnected; not waiting\n");
1324 return -ENOTTY;
1325 }
1326
1327 if (root && root->config_rrs_sv) {
1328 pci_read_config_dword(dev, PCI_VENDOR_ID, &id);
1329 if (!pci_bus_rrs_vendor_id(id))
1330 break;
1331 } else {
1332 pci_read_config_dword(dev, PCI_COMMAND, &id);
1333 if (!PCI_POSSIBLE_ERROR(id))
1334 break;
1335 }
1336
1337 if (delay > timeout) {
1338 pci_warn(dev, "not ready %dms after %s; giving up\n",
1339 delay - 1, reset_type);
1340 return -ENOTTY;
1341 }
1342
1343 if (delay > PCI_RESET_WAIT) {
1344 if (retrain) {
1345 retrain = false;
1346 if (pcie_failed_link_retrain(bridge) == 0) {
1347 delay = 1;
1348 continue;
1349 }
1350 }
1351 pci_info(dev, "not ready %dms after %s; waiting\n",
1352 delay - 1, reset_type);
1353 }
1354
1355 msleep(delay);
1356 delay *= 2;
1357 }
1358
1359 if (delay > PCI_RESET_WAIT)
1360 pci_info(dev, "ready %dms after %s\n", delay - 1,
1361 reset_type);
1362 else
1363 pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1364 reset_type);
1365
1366 return 0;
1367}
1368
1369/**
1370 * pci_power_up - Put the given device into D0
1371 * @dev: PCI device to power up
1372 *
1373 * On success, return 0 or 1, depending on whether or not it is necessary to
1374 * restore the device's BARs subsequently (1 is returned in that case).
1375 *
1376 * On failure, return a negative error code. Always return failure if @dev
1377 * lacks a Power Management Capability, even if the platform was able to
1378 * put the device in D0 via non-PCI means.
1379 */
1380int pci_power_up(struct pci_dev *dev)
1381{
1382 bool need_restore;
1383 pci_power_t state;
1384 u16 pmcsr;
1385
1386 platform_pci_set_power_state(dev, PCI_D0);
1387
1388 if (!dev->pm_cap) {
1389 state = platform_pci_get_power_state(dev);
1390 if (state == PCI_UNKNOWN)
1391 dev->current_state = PCI_D0;
1392 else
1393 dev->current_state = state;
1394
1395 return -EIO;
1396 }
1397
1398 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1399 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1400 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1401 pci_power_name(dev->current_state));
1402 dev->current_state = PCI_D3cold;
1403 return -EIO;
1404 }
1405
1406 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1407
1408 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1409 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1410
1411 if (state == PCI_D0)
1412 goto end;
1413
1414 /*
1415 * Force the entire word to 0. This doesn't affect PME_Status, disables
1416 * PME_En, and sets PowerState to 0.
1417 */
1418 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1419
1420 /* Mandatory transition delays; see PCI PM 1.2. */
1421 if (state == PCI_D3hot)
1422 pci_dev_d3_sleep(dev);
1423 else if (state == PCI_D2)
1424 udelay(PCI_PM_D2_DELAY);
1425
1426end:
1427 dev->current_state = PCI_D0;
1428 if (need_restore)
1429 return 1;
1430
1431 return 0;
1432}
1433
1434/**
1435 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1436 * @dev: PCI device to power up
1437 * @locked: whether pci_bus_sem is held
1438 *
1439 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1440 * to confirm the state change, restore its BARs if they might be lost and
1441 * reconfigure ASPM in accordance with the new power state.
1442 *
1443 * If pci_restore_state() is going to be called right after a power state change
1444 * to D0, it is more efficient to use pci_power_up() directly instead of this
1445 * function.
1446 */
1447static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1448{
1449 u16 pmcsr;
1450 int ret;
1451
1452 ret = pci_power_up(dev);
1453 if (ret < 0) {
1454 if (dev->current_state == PCI_D0)
1455 return 0;
1456
1457 return ret;
1458 }
1459
1460 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1461 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1462 if (dev->current_state != PCI_D0) {
1463 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1464 pci_power_name(dev->current_state));
1465 } else if (ret > 0) {
1466 /*
1467 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1468 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1469 * from D3hot to D0 _may_ perform an internal reset, thereby
1470 * going to "D0 Uninitialized" rather than "D0 Initialized".
1471 * For example, at least some versions of the 3c905B and the
1472 * 3c556B exhibit this behaviour.
1473 *
1474 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1475 * devices in a D3hot state at boot. Consequently, we need to
1476 * restore at least the BARs so that the device will be
1477 * accessible to its driver.
1478 */
1479 pci_restore_bars(dev);
1480 }
1481
1482 if (dev->bus->self)
1483 pcie_aspm_pm_state_change(dev->bus->self, locked);
1484
1485 return 0;
1486}
1487
1488/**
1489 * __pci_dev_set_current_state - Set current state of a PCI device
1490 * @dev: Device to handle
1491 * @data: pointer to state to be set
1492 */
1493static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1494{
1495 pci_power_t state = *(pci_power_t *)data;
1496
1497 dev->current_state = state;
1498 return 0;
1499}
1500
1501/**
1502 * pci_bus_set_current_state - Walk given bus and set current state of devices
1503 * @bus: Top bus of the subtree to walk.
1504 * @state: state to be set
1505 */
1506void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1507{
1508 if (bus)
1509 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1510}
1511
1512static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1513{
1514 if (!bus)
1515 return;
1516
1517 if (locked)
1518 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1519 else
1520 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1521}
1522
1523/**
1524 * pci_set_low_power_state - Put a PCI device into a low-power state.
1525 * @dev: PCI device to handle.
1526 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1527 * @locked: whether pci_bus_sem is held
1528 *
1529 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1530 *
1531 * RETURN VALUE:
1532 * -EINVAL if the requested state is invalid.
1533 * -EIO if device does not support PCI PM or its PM capabilities register has a
1534 * wrong version, or device doesn't support the requested state.
1535 * 0 if device already is in the requested state.
1536 * 0 if device's power state has been successfully changed.
1537 */
1538static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1539{
1540 u16 pmcsr;
1541
1542 if (!dev->pm_cap)
1543 return -EIO;
1544
1545 /*
1546 * Validate transition: We can enter D0 from any state, but if
1547 * we're already in a low-power state, we can only go deeper. E.g.,
1548 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1549 * we'd have to go from D3 to D0, then to D1.
1550 */
1551 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1552 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1553 pci_power_name(dev->current_state),
1554 pci_power_name(state));
1555 return -EINVAL;
1556 }
1557
1558 /* Check if this device supports the desired state */
1559 if ((state == PCI_D1 && !dev->d1_support)
1560 || (state == PCI_D2 && !dev->d2_support))
1561 return -EIO;
1562
1563 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1564 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1565 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1566 pci_power_name(dev->current_state),
1567 pci_power_name(state));
1568 dev->current_state = PCI_D3cold;
1569 return -EIO;
1570 }
1571
1572 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1573 pmcsr |= state;
1574
1575 /* Enter specified state */
1576 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1577
1578 /* Mandatory power management transition delays; see PCI PM 1.2. */
1579 if (state == PCI_D3hot)
1580 pci_dev_d3_sleep(dev);
1581 else if (state == PCI_D2)
1582 udelay(PCI_PM_D2_DELAY);
1583
1584 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1585 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1586 if (dev->current_state != state)
1587 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1588 pci_power_name(dev->current_state),
1589 pci_power_name(state));
1590
1591 if (dev->bus->self)
1592 pcie_aspm_pm_state_change(dev->bus->self, locked);
1593
1594 return 0;
1595}
1596
1597static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1598{
1599 int error;
1600
1601 /* Bound the state we're entering */
1602 if (state > PCI_D3cold)
1603 state = PCI_D3cold;
1604 else if (state < PCI_D0)
1605 state = PCI_D0;
1606 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1607
1608 /*
1609 * If the device or the parent bridge do not support PCI
1610 * PM, ignore the request if we're doing anything other
1611 * than putting it into D0 (which would only happen on
1612 * boot).
1613 */
1614 return 0;
1615
1616 /* Check if we're already there */
1617 if (dev->current_state == state)
1618 return 0;
1619
1620 if (state == PCI_D0)
1621 return pci_set_full_power_state(dev, locked);
1622
1623 /*
1624 * This device is quirked not to be put into D3, so don't put it in
1625 * D3
1626 */
1627 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1628 return 0;
1629
1630 if (state == PCI_D3cold) {
1631 /*
1632 * To put the device in D3cold, put it into D3hot in the native
1633 * way, then put it into D3cold using platform ops.
1634 */
1635 error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1636
1637 if (pci_platform_power_transition(dev, PCI_D3cold))
1638 return error;
1639
1640 /* Powering off a bridge may power off the whole hierarchy */
1641 if (dev->current_state == PCI_D3cold)
1642 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1643 } else {
1644 error = pci_set_low_power_state(dev, state, locked);
1645
1646 if (pci_platform_power_transition(dev, state))
1647 return error;
1648 }
1649
1650 return 0;
1651}
1652
1653/**
1654 * pci_set_power_state - Set the power state of a PCI device
1655 * @dev: PCI device to handle.
1656 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1657 *
1658 * Transition a device to a new power state, using the platform firmware and/or
1659 * the device's PCI PM registers.
1660 *
1661 * RETURN VALUE:
1662 * -EINVAL if the requested state is invalid.
1663 * -EIO if device does not support PCI PM or its PM capabilities register has a
1664 * wrong version, or device doesn't support the requested state.
1665 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1666 * 0 if device already is in the requested state.
1667 * 0 if the transition is to D3 but D3 is not supported.
1668 * 0 if device's power state has been successfully changed.
1669 */
1670int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1671{
1672 return __pci_set_power_state(dev, state, false);
1673}
1674EXPORT_SYMBOL(pci_set_power_state);
1675
1676int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1677{
1678 lockdep_assert_held(&pci_bus_sem);
1679
1680 return __pci_set_power_state(dev, state, true);
1681}
1682EXPORT_SYMBOL(pci_set_power_state_locked);
1683
1684#define PCI_EXP_SAVE_REGS 7
1685
1686static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1687 u16 cap, bool extended)
1688{
1689 struct pci_cap_saved_state *tmp;
1690
1691 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1692 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1693 return tmp;
1694 }
1695 return NULL;
1696}
1697
1698struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1699{
1700 return _pci_find_saved_cap(dev, cap, false);
1701}
1702
1703struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1704{
1705 return _pci_find_saved_cap(dev, cap, true);
1706}
1707
1708static int pci_save_pcie_state(struct pci_dev *dev)
1709{
1710 int i = 0;
1711 struct pci_cap_saved_state *save_state;
1712 u16 *cap;
1713
1714 if (!pci_is_pcie(dev))
1715 return 0;
1716
1717 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1718 if (!save_state) {
1719 pci_err(dev, "buffer not found in %s\n", __func__);
1720 return -ENOMEM;
1721 }
1722
1723 cap = (u16 *)&save_state->cap.data[0];
1724 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1725 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1726 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1727 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1728 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1729 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1730 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1731
1732 pci_save_aspm_l1ss_state(dev);
1733 pci_save_ltr_state(dev);
1734
1735 return 0;
1736}
1737
1738static void pci_restore_pcie_state(struct pci_dev *dev)
1739{
1740 int i = 0;
1741 struct pci_cap_saved_state *save_state;
1742 u16 *cap;
1743
1744 /*
1745 * Restore max latencies (in the LTR capability) before enabling
1746 * LTR itself in PCI_EXP_DEVCTL2.
1747 */
1748 pci_restore_ltr_state(dev);
1749 pci_restore_aspm_l1ss_state(dev);
1750
1751 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1752 if (!save_state)
1753 return;
1754
1755 /*
1756 * Downstream ports reset the LTR enable bit when link goes down.
1757 * Check and re-configure the bit here before restoring device.
1758 * PCIe r5.0, sec 7.5.3.16.
1759 */
1760 pci_bridge_reconfigure_ltr(dev);
1761
1762 cap = (u16 *)&save_state->cap.data[0];
1763 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1764 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1765 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1766 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1767 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1768 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1769 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1770}
1771
1772static int pci_save_pcix_state(struct pci_dev *dev)
1773{
1774 int pos;
1775 struct pci_cap_saved_state *save_state;
1776
1777 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1778 if (!pos)
1779 return 0;
1780
1781 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1782 if (!save_state) {
1783 pci_err(dev, "buffer not found in %s\n", __func__);
1784 return -ENOMEM;
1785 }
1786
1787 pci_read_config_word(dev, pos + PCI_X_CMD,
1788 (u16 *)save_state->cap.data);
1789
1790 return 0;
1791}
1792
1793static void pci_restore_pcix_state(struct pci_dev *dev)
1794{
1795 int i = 0, pos;
1796 struct pci_cap_saved_state *save_state;
1797 u16 *cap;
1798
1799 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1800 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1801 if (!save_state || !pos)
1802 return;
1803 cap = (u16 *)&save_state->cap.data[0];
1804
1805 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1806}
1807
1808/**
1809 * pci_save_state - save the PCI configuration space of a device before
1810 * suspending
1811 * @dev: PCI device that we're dealing with
1812 */
1813int pci_save_state(struct pci_dev *dev)
1814{
1815 int i;
1816 /* XXX: 100% dword access ok here? */
1817 for (i = 0; i < 16; i++) {
1818 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1819 pci_dbg(dev, "save config %#04x: %#010x\n",
1820 i * 4, dev->saved_config_space[i]);
1821 }
1822 dev->state_saved = true;
1823
1824 i = pci_save_pcie_state(dev);
1825 if (i != 0)
1826 return i;
1827
1828 i = pci_save_pcix_state(dev);
1829 if (i != 0)
1830 return i;
1831
1832 pci_save_dpc_state(dev);
1833 pci_save_aer_state(dev);
1834 pci_save_ptm_state(dev);
1835 pci_save_tph_state(dev);
1836 return pci_save_vc_state(dev);
1837}
1838EXPORT_SYMBOL(pci_save_state);
1839
1840static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1841 u32 saved_val, int retry, bool force)
1842{
1843 u32 val;
1844
1845 pci_read_config_dword(pdev, offset, &val);
1846 if (!force && val == saved_val)
1847 return;
1848
1849 for (;;) {
1850 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1851 offset, val, saved_val);
1852 pci_write_config_dword(pdev, offset, saved_val);
1853 if (retry-- <= 0)
1854 return;
1855
1856 pci_read_config_dword(pdev, offset, &val);
1857 if (val == saved_val)
1858 return;
1859
1860 mdelay(1);
1861 }
1862}
1863
1864static void pci_restore_config_space_range(struct pci_dev *pdev,
1865 int start, int end, int retry,
1866 bool force)
1867{
1868 int index;
1869
1870 for (index = end; index >= start; index--)
1871 pci_restore_config_dword(pdev, 4 * index,
1872 pdev->saved_config_space[index],
1873 retry, force);
1874}
1875
1876static void pci_restore_config_space(struct pci_dev *pdev)
1877{
1878 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1879 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1880 /* Restore BARs before the command register. */
1881 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1882 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1883 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1884 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1885
1886 /*
1887 * Force rewriting of prefetch registers to avoid S3 resume
1888 * issues on Intel PCI bridges that occur when these
1889 * registers are not explicitly written.
1890 */
1891 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1892 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1893 } else {
1894 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1895 }
1896}
1897
1898static void pci_restore_rebar_state(struct pci_dev *pdev)
1899{
1900 unsigned int pos, nbars, i;
1901 u32 ctrl;
1902
1903 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1904 if (!pos)
1905 return;
1906
1907 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1908 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1909
1910 for (i = 0; i < nbars; i++, pos += 8) {
1911 struct resource *res;
1912 int bar_idx, size;
1913
1914 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1915 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1916 res = pdev->resource + bar_idx;
1917 size = pci_rebar_bytes_to_size(resource_size(res));
1918 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1919 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1920 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1921 }
1922}
1923
1924/**
1925 * pci_restore_state - Restore the saved state of a PCI device
1926 * @dev: PCI device that we're dealing with
1927 */
1928void pci_restore_state(struct pci_dev *dev)
1929{
1930 if (!dev->state_saved)
1931 return;
1932
1933 pci_restore_pcie_state(dev);
1934 pci_restore_pasid_state(dev);
1935 pci_restore_pri_state(dev);
1936 pci_restore_ats_state(dev);
1937 pci_restore_vc_state(dev);
1938 pci_restore_rebar_state(dev);
1939 pci_restore_dpc_state(dev);
1940 pci_restore_ptm_state(dev);
1941 pci_restore_tph_state(dev);
1942
1943 pci_aer_clear_status(dev);
1944 pci_restore_aer_state(dev);
1945
1946 pci_restore_config_space(dev);
1947
1948 pci_restore_pcix_state(dev);
1949 pci_restore_msi_state(dev);
1950
1951 /* Restore ACS and IOV configuration state */
1952 pci_enable_acs(dev);
1953 pci_restore_iov_state(dev);
1954
1955 dev->state_saved = false;
1956}
1957EXPORT_SYMBOL(pci_restore_state);
1958
1959struct pci_saved_state {
1960 u32 config_space[16];
1961 struct pci_cap_saved_data cap[];
1962};
1963
1964/**
1965 * pci_store_saved_state - Allocate and return an opaque struct containing
1966 * the device saved state.
1967 * @dev: PCI device that we're dealing with
1968 *
1969 * Return NULL if no state or error.
1970 */
1971struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1972{
1973 struct pci_saved_state *state;
1974 struct pci_cap_saved_state *tmp;
1975 struct pci_cap_saved_data *cap;
1976 size_t size;
1977
1978 if (!dev->state_saved)
1979 return NULL;
1980
1981 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1982
1983 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1984 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1985
1986 state = kzalloc(size, GFP_KERNEL);
1987 if (!state)
1988 return NULL;
1989
1990 memcpy(state->config_space, dev->saved_config_space,
1991 sizeof(state->config_space));
1992
1993 cap = state->cap;
1994 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1995 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1996 memcpy(cap, &tmp->cap, len);
1997 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1998 }
1999 /* Empty cap_save terminates list */
2000
2001 return state;
2002}
2003EXPORT_SYMBOL_GPL(pci_store_saved_state);
2004
2005/**
2006 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
2007 * @dev: PCI device that we're dealing with
2008 * @state: Saved state returned from pci_store_saved_state()
2009 */
2010int pci_load_saved_state(struct pci_dev *dev,
2011 struct pci_saved_state *state)
2012{
2013 struct pci_cap_saved_data *cap;
2014
2015 dev->state_saved = false;
2016
2017 if (!state)
2018 return 0;
2019
2020 memcpy(dev->saved_config_space, state->config_space,
2021 sizeof(state->config_space));
2022
2023 cap = state->cap;
2024 while (cap->size) {
2025 struct pci_cap_saved_state *tmp;
2026
2027 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
2028 if (!tmp || tmp->cap.size != cap->size)
2029 return -EINVAL;
2030
2031 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
2032 cap = (struct pci_cap_saved_data *)((u8 *)cap +
2033 sizeof(struct pci_cap_saved_data) + cap->size);
2034 }
2035
2036 dev->state_saved = true;
2037 return 0;
2038}
2039EXPORT_SYMBOL_GPL(pci_load_saved_state);
2040
2041/**
2042 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2043 * and free the memory allocated for it.
2044 * @dev: PCI device that we're dealing with
2045 * @state: Pointer to saved state returned from pci_store_saved_state()
2046 */
2047int pci_load_and_free_saved_state(struct pci_dev *dev,
2048 struct pci_saved_state **state)
2049{
2050 int ret = pci_load_saved_state(dev, *state);
2051 kfree(*state);
2052 *state = NULL;
2053 return ret;
2054}
2055EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2056
2057int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2058{
2059 return pci_enable_resources(dev, bars);
2060}
2061
2062static int do_pci_enable_device(struct pci_dev *dev, int bars)
2063{
2064 int err;
2065 struct pci_dev *bridge;
2066 u16 cmd;
2067 u8 pin;
2068
2069 err = pci_set_power_state(dev, PCI_D0);
2070 if (err < 0 && err != -EIO)
2071 return err;
2072
2073 bridge = pci_upstream_bridge(dev);
2074 if (bridge)
2075 pcie_aspm_powersave_config_link(bridge);
2076
2077 err = pcibios_enable_device(dev, bars);
2078 if (err < 0)
2079 return err;
2080 pci_fixup_device(pci_fixup_enable, dev);
2081
2082 if (dev->msi_enabled || dev->msix_enabled)
2083 return 0;
2084
2085 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2086 if (pin) {
2087 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2088 if (cmd & PCI_COMMAND_INTX_DISABLE)
2089 pci_write_config_word(dev, PCI_COMMAND,
2090 cmd & ~PCI_COMMAND_INTX_DISABLE);
2091 }
2092
2093 return 0;
2094}
2095
2096/**
2097 * pci_reenable_device - Resume abandoned device
2098 * @dev: PCI device to be resumed
2099 *
2100 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2101 * to be called by normal code, write proper resume handler and use it instead.
2102 */
2103int pci_reenable_device(struct pci_dev *dev)
2104{
2105 if (pci_is_enabled(dev))
2106 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2107 return 0;
2108}
2109EXPORT_SYMBOL(pci_reenable_device);
2110
2111static void pci_enable_bridge(struct pci_dev *dev)
2112{
2113 struct pci_dev *bridge;
2114 int retval;
2115
2116 bridge = pci_upstream_bridge(dev);
2117 if (bridge)
2118 pci_enable_bridge(bridge);
2119
2120 if (pci_is_enabled(dev)) {
2121 if (!dev->is_busmaster)
2122 pci_set_master(dev);
2123 return;
2124 }
2125
2126 retval = pci_enable_device(dev);
2127 if (retval)
2128 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2129 retval);
2130 pci_set_master(dev);
2131}
2132
2133static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2134{
2135 struct pci_dev *bridge;
2136 int err;
2137 int i, bars = 0;
2138
2139 /*
2140 * Power state could be unknown at this point, either due to a fresh
2141 * boot or a device removal call. So get the current power state
2142 * so that things like MSI message writing will behave as expected
2143 * (e.g. if the device really is in D0 at enable time).
2144 */
2145 pci_update_current_state(dev, dev->current_state);
2146
2147 if (atomic_inc_return(&dev->enable_cnt) > 1)
2148 return 0; /* already enabled */
2149
2150 bridge = pci_upstream_bridge(dev);
2151 if (bridge)
2152 pci_enable_bridge(bridge);
2153
2154 /* only skip sriov related */
2155 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2156 if (dev->resource[i].flags & flags)
2157 bars |= (1 << i);
2158 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2159 if (dev->resource[i].flags & flags)
2160 bars |= (1 << i);
2161
2162 err = do_pci_enable_device(dev, bars);
2163 if (err < 0)
2164 atomic_dec(&dev->enable_cnt);
2165 return err;
2166}
2167
2168/**
2169 * pci_enable_device_mem - Initialize a device for use with Memory space
2170 * @dev: PCI device to be initialized
2171 *
2172 * Initialize device before it's used by a driver. Ask low-level code
2173 * to enable Memory resources. Wake up the device if it was suspended.
2174 * Beware, this function can fail.
2175 */
2176int pci_enable_device_mem(struct pci_dev *dev)
2177{
2178 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2179}
2180EXPORT_SYMBOL(pci_enable_device_mem);
2181
2182/**
2183 * pci_enable_device - Initialize device before it's used by a driver.
2184 * @dev: PCI device to be initialized
2185 *
2186 * Initialize device before it's used by a driver. Ask low-level code
2187 * to enable I/O and memory. Wake up the device if it was suspended.
2188 * Beware, this function can fail.
2189 *
2190 * Note we don't actually enable the device many times if we call
2191 * this function repeatedly (we just increment the count).
2192 */
2193int pci_enable_device(struct pci_dev *dev)
2194{
2195 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2196}
2197EXPORT_SYMBOL(pci_enable_device);
2198
2199/*
2200 * pcibios_device_add - provide arch specific hooks when adding device dev
2201 * @dev: the PCI device being added
2202 *
2203 * Permits the platform to provide architecture specific functionality when
2204 * devices are added. This is the default implementation. Architecture
2205 * implementations can override this.
2206 */
2207int __weak pcibios_device_add(struct pci_dev *dev)
2208{
2209 return 0;
2210}
2211
2212/**
2213 * pcibios_release_device - provide arch specific hooks when releasing
2214 * device dev
2215 * @dev: the PCI device being released
2216 *
2217 * Permits the platform to provide architecture specific functionality when
2218 * devices are released. This is the default implementation. Architecture
2219 * implementations can override this.
2220 */
2221void __weak pcibios_release_device(struct pci_dev *dev) {}
2222
2223/**
2224 * pcibios_disable_device - disable arch specific PCI resources for device dev
2225 * @dev: the PCI device to disable
2226 *
2227 * Disables architecture specific PCI resources for the device. This
2228 * is the default implementation. Architecture implementations can
2229 * override this.
2230 */
2231void __weak pcibios_disable_device(struct pci_dev *dev) {}
2232
2233static void do_pci_disable_device(struct pci_dev *dev)
2234{
2235 u16 pci_command;
2236
2237 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2238 if (pci_command & PCI_COMMAND_MASTER) {
2239 pci_command &= ~PCI_COMMAND_MASTER;
2240 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2241 }
2242
2243 pcibios_disable_device(dev);
2244}
2245
2246/**
2247 * pci_disable_enabled_device - Disable device without updating enable_cnt
2248 * @dev: PCI device to disable
2249 *
2250 * NOTE: This function is a backend of PCI power management routines and is
2251 * not supposed to be called drivers.
2252 */
2253void pci_disable_enabled_device(struct pci_dev *dev)
2254{
2255 if (pci_is_enabled(dev))
2256 do_pci_disable_device(dev);
2257}
2258
2259/**
2260 * pci_disable_device - Disable PCI device after use
2261 * @dev: PCI device to be disabled
2262 *
2263 * Signal to the system that the PCI device is not in use by the system
2264 * anymore. This only involves disabling PCI bus-mastering, if active.
2265 *
2266 * Note we don't actually disable the device until all callers of
2267 * pci_enable_device() have called pci_disable_device().
2268 */
2269void pci_disable_device(struct pci_dev *dev)
2270{
2271 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2272 "disabling already-disabled device");
2273
2274 if (atomic_dec_return(&dev->enable_cnt) != 0)
2275 return;
2276
2277 do_pci_disable_device(dev);
2278
2279 dev->is_busmaster = 0;
2280}
2281EXPORT_SYMBOL(pci_disable_device);
2282
2283/**
2284 * pcibios_set_pcie_reset_state - set reset state for device dev
2285 * @dev: the PCIe device reset
2286 * @state: Reset state to enter into
2287 *
2288 * Set the PCIe reset state for the device. This is the default
2289 * implementation. Architecture implementations can override this.
2290 */
2291int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2292 enum pcie_reset_state state)
2293{
2294 return -EINVAL;
2295}
2296
2297/**
2298 * pci_set_pcie_reset_state - set reset state for device dev
2299 * @dev: the PCIe device reset
2300 * @state: Reset state to enter into
2301 *
2302 * Sets the PCI reset state for the device.
2303 */
2304int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2305{
2306 return pcibios_set_pcie_reset_state(dev, state);
2307}
2308EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2309
2310#ifdef CONFIG_PCIEAER
2311void pcie_clear_device_status(struct pci_dev *dev)
2312{
2313 u16 sta;
2314
2315 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2316 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2317}
2318#endif
2319
2320/**
2321 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2322 * @dev: PCIe root port or event collector.
2323 */
2324void pcie_clear_root_pme_status(struct pci_dev *dev)
2325{
2326 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2327}
2328
2329/**
2330 * pci_check_pme_status - Check if given device has generated PME.
2331 * @dev: Device to check.
2332 *
2333 * Check the PME status of the device and if set, clear it and clear PME enable
2334 * (if set). Return 'true' if PME status and PME enable were both set or
2335 * 'false' otherwise.
2336 */
2337bool pci_check_pme_status(struct pci_dev *dev)
2338{
2339 int pmcsr_pos;
2340 u16 pmcsr;
2341 bool ret = false;
2342
2343 if (!dev->pm_cap)
2344 return false;
2345
2346 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2347 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2348 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2349 return false;
2350
2351 /* Clear PME status. */
2352 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2353 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2354 /* Disable PME to avoid interrupt flood. */
2355 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2356 ret = true;
2357 }
2358
2359 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2360
2361 return ret;
2362}
2363
2364/**
2365 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2366 * @dev: Device to handle.
2367 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2368 *
2369 * Check if @dev has generated PME and queue a resume request for it in that
2370 * case.
2371 */
2372static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2373{
2374 if (pme_poll_reset && dev->pme_poll)
2375 dev->pme_poll = false;
2376
2377 if (pci_check_pme_status(dev)) {
2378 pci_wakeup_event(dev);
2379 pm_request_resume(&dev->dev);
2380 }
2381 return 0;
2382}
2383
2384/**
2385 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2386 * @bus: Top bus of the subtree to walk.
2387 */
2388void pci_pme_wakeup_bus(struct pci_bus *bus)
2389{
2390 if (bus)
2391 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2392}
2393
2394
2395/**
2396 * pci_pme_capable - check the capability of PCI device to generate PME#
2397 * @dev: PCI device to handle.
2398 * @state: PCI state from which device will issue PME#.
2399 */
2400bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2401{
2402 if (!dev->pm_cap)
2403 return false;
2404
2405 return !!(dev->pme_support & (1 << state));
2406}
2407EXPORT_SYMBOL(pci_pme_capable);
2408
2409static void pci_pme_list_scan(struct work_struct *work)
2410{
2411 struct pci_pme_device *pme_dev, *n;
2412
2413 mutex_lock(&pci_pme_list_mutex);
2414 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2415 struct pci_dev *pdev = pme_dev->dev;
2416
2417 if (pdev->pme_poll) {
2418 struct pci_dev *bridge = pdev->bus->self;
2419 struct device *dev = &pdev->dev;
2420 struct device *bdev = bridge ? &bridge->dev : NULL;
2421 int bref = 0;
2422
2423 /*
2424 * If we have a bridge, it should be in an active/D0
2425 * state or the configuration space of subordinate
2426 * devices may not be accessible or stable over the
2427 * course of the call.
2428 */
2429 if (bdev) {
2430 bref = pm_runtime_get_if_active(bdev);
2431 if (!bref)
2432 continue;
2433
2434 if (bridge->current_state != PCI_D0)
2435 goto put_bridge;
2436 }
2437
2438 /*
2439 * The device itself should be suspended but config
2440 * space must be accessible, therefore it cannot be in
2441 * D3cold.
2442 */
2443 if (pm_runtime_suspended(dev) &&
2444 pdev->current_state != PCI_D3cold)
2445 pci_pme_wakeup(pdev, NULL);
2446
2447put_bridge:
2448 if (bref > 0)
2449 pm_runtime_put(bdev);
2450 } else {
2451 list_del(&pme_dev->list);
2452 kfree(pme_dev);
2453 }
2454 }
2455 if (!list_empty(&pci_pme_list))
2456 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2457 msecs_to_jiffies(PME_TIMEOUT));
2458 mutex_unlock(&pci_pme_list_mutex);
2459}
2460
2461static void __pci_pme_active(struct pci_dev *dev, bool enable)
2462{
2463 u16 pmcsr;
2464
2465 if (!dev->pme_support)
2466 return;
2467
2468 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2469 /* Clear PME_Status by writing 1 to it and enable PME# */
2470 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2471 if (!enable)
2472 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2473
2474 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2475}
2476
2477/**
2478 * pci_pme_restore - Restore PME configuration after config space restore.
2479 * @dev: PCI device to update.
2480 */
2481void pci_pme_restore(struct pci_dev *dev)
2482{
2483 u16 pmcsr;
2484
2485 if (!dev->pme_support)
2486 return;
2487
2488 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2489 if (dev->wakeup_prepared) {
2490 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2491 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2492 } else {
2493 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2494 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2495 }
2496 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2497}
2498
2499/**
2500 * pci_pme_active - enable or disable PCI device's PME# function
2501 * @dev: PCI device to handle.
2502 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2503 *
2504 * The caller must verify that the device is capable of generating PME# before
2505 * calling this function with @enable equal to 'true'.
2506 */
2507void pci_pme_active(struct pci_dev *dev, bool enable)
2508{
2509 __pci_pme_active(dev, enable);
2510
2511 /*
2512 * PCI (as opposed to PCIe) PME requires that the device have
2513 * its PME# line hooked up correctly. Not all hardware vendors
2514 * do this, so the PME never gets delivered and the device
2515 * remains asleep. The easiest way around this is to
2516 * periodically walk the list of suspended devices and check
2517 * whether any have their PME flag set. The assumption is that
2518 * we'll wake up often enough anyway that this won't be a huge
2519 * hit, and the power savings from the devices will still be a
2520 * win.
2521 *
2522 * Although PCIe uses in-band PME message instead of PME# line
2523 * to report PME, PME does not work for some PCIe devices in
2524 * reality. For example, there are devices that set their PME
2525 * status bits, but don't really bother to send a PME message;
2526 * there are PCI Express Root Ports that don't bother to
2527 * trigger interrupts when they receive PME messages from the
2528 * devices below. So PME poll is used for PCIe devices too.
2529 */
2530
2531 if (dev->pme_poll) {
2532 struct pci_pme_device *pme_dev;
2533 if (enable) {
2534 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2535 GFP_KERNEL);
2536 if (!pme_dev) {
2537 pci_warn(dev, "can't enable PME#\n");
2538 return;
2539 }
2540 pme_dev->dev = dev;
2541 mutex_lock(&pci_pme_list_mutex);
2542 list_add(&pme_dev->list, &pci_pme_list);
2543 if (list_is_singular(&pci_pme_list))
2544 queue_delayed_work(system_freezable_wq,
2545 &pci_pme_work,
2546 msecs_to_jiffies(PME_TIMEOUT));
2547 mutex_unlock(&pci_pme_list_mutex);
2548 } else {
2549 mutex_lock(&pci_pme_list_mutex);
2550 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2551 if (pme_dev->dev == dev) {
2552 list_del(&pme_dev->list);
2553 kfree(pme_dev);
2554 break;
2555 }
2556 }
2557 mutex_unlock(&pci_pme_list_mutex);
2558 }
2559 }
2560
2561 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2562}
2563EXPORT_SYMBOL(pci_pme_active);
2564
2565/**
2566 * __pci_enable_wake - enable PCI device as wakeup event source
2567 * @dev: PCI device affected
2568 * @state: PCI state from which device will issue wakeup events
2569 * @enable: True to enable event generation; false to disable
2570 *
2571 * This enables the device as a wakeup event source, or disables it.
2572 * When such events involves platform-specific hooks, those hooks are
2573 * called automatically by this routine.
2574 *
2575 * Devices with legacy power management (no standard PCI PM capabilities)
2576 * always require such platform hooks.
2577 *
2578 * RETURN VALUE:
2579 * 0 is returned on success
2580 * -EINVAL is returned if device is not supposed to wake up the system
2581 * Error code depending on the platform is returned if both the platform and
2582 * the native mechanism fail to enable the generation of wake-up events
2583 */
2584static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2585{
2586 int ret = 0;
2587
2588 /*
2589 * Bridges that are not power-manageable directly only signal
2590 * wakeup on behalf of subordinate devices which is set up
2591 * elsewhere, so skip them. However, bridges that are
2592 * power-manageable may signal wakeup for themselves (for example,
2593 * on a hotplug event) and they need to be covered here.
2594 */
2595 if (!pci_power_manageable(dev))
2596 return 0;
2597
2598 /* Don't do the same thing twice in a row for one device. */
2599 if (!!enable == !!dev->wakeup_prepared)
2600 return 0;
2601
2602 /*
2603 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2604 * Anderson we should be doing PME# wake enable followed by ACPI wake
2605 * enable. To disable wake-up we call the platform first, for symmetry.
2606 */
2607
2608 if (enable) {
2609 int error;
2610
2611 /*
2612 * Enable PME signaling if the device can signal PME from
2613 * D3cold regardless of whether or not it can signal PME from
2614 * the current target state, because that will allow it to
2615 * signal PME when the hierarchy above it goes into D3cold and
2616 * the device itself ends up in D3cold as a result of that.
2617 */
2618 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2619 pci_pme_active(dev, true);
2620 else
2621 ret = 1;
2622 error = platform_pci_set_wakeup(dev, true);
2623 if (ret)
2624 ret = error;
2625 if (!ret)
2626 dev->wakeup_prepared = true;
2627 } else {
2628 platform_pci_set_wakeup(dev, false);
2629 pci_pme_active(dev, false);
2630 dev->wakeup_prepared = false;
2631 }
2632
2633 return ret;
2634}
2635
2636/**
2637 * pci_enable_wake - change wakeup settings for a PCI device
2638 * @pci_dev: Target device
2639 * @state: PCI state from which device will issue wakeup events
2640 * @enable: Whether or not to enable event generation
2641 *
2642 * If @enable is set, check device_may_wakeup() for the device before calling
2643 * __pci_enable_wake() for it.
2644 */
2645int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2646{
2647 if (enable && !device_may_wakeup(&pci_dev->dev))
2648 return -EINVAL;
2649
2650 return __pci_enable_wake(pci_dev, state, enable);
2651}
2652EXPORT_SYMBOL(pci_enable_wake);
2653
2654/**
2655 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2656 * @dev: PCI device to prepare
2657 * @enable: True to enable wake-up event generation; false to disable
2658 *
2659 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2660 * and this function allows them to set that up cleanly - pci_enable_wake()
2661 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2662 * ordering constraints.
2663 *
2664 * This function only returns error code if the device is not allowed to wake
2665 * up the system from sleep or it is not capable of generating PME# from both
2666 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2667 */
2668int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2669{
2670 return pci_pme_capable(dev, PCI_D3cold) ?
2671 pci_enable_wake(dev, PCI_D3cold, enable) :
2672 pci_enable_wake(dev, PCI_D3hot, enable);
2673}
2674EXPORT_SYMBOL(pci_wake_from_d3);
2675
2676/**
2677 * pci_target_state - find an appropriate low power state for a given PCI dev
2678 * @dev: PCI device
2679 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2680 *
2681 * Use underlying platform code to find a supported low power state for @dev.
2682 * If the platform can't manage @dev, return the deepest state from which it
2683 * can generate wake events, based on any available PME info.
2684 */
2685static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2686{
2687 if (platform_pci_power_manageable(dev)) {
2688 /*
2689 * Call the platform to find the target state for the device.
2690 */
2691 pci_power_t state = platform_pci_choose_state(dev);
2692
2693 switch (state) {
2694 case PCI_POWER_ERROR:
2695 case PCI_UNKNOWN:
2696 return PCI_D3hot;
2697
2698 case PCI_D1:
2699 case PCI_D2:
2700 if (pci_no_d1d2(dev))
2701 return PCI_D3hot;
2702 }
2703
2704 return state;
2705 }
2706
2707 /*
2708 * If the device is in D3cold even though it's not power-manageable by
2709 * the platform, it may have been powered down by non-standard means.
2710 * Best to let it slumber.
2711 */
2712 if (dev->current_state == PCI_D3cold)
2713 return PCI_D3cold;
2714 else if (!dev->pm_cap)
2715 return PCI_D0;
2716
2717 if (wakeup && dev->pme_support) {
2718 pci_power_t state = PCI_D3hot;
2719
2720 /*
2721 * Find the deepest state from which the device can generate
2722 * PME#.
2723 */
2724 while (state && !(dev->pme_support & (1 << state)))
2725 state--;
2726
2727 if (state)
2728 return state;
2729 else if (dev->pme_support & 1)
2730 return PCI_D0;
2731 }
2732
2733 return PCI_D3hot;
2734}
2735
2736/**
2737 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2738 * into a sleep state
2739 * @dev: Device to handle.
2740 *
2741 * Choose the power state appropriate for the device depending on whether
2742 * it can wake up the system and/or is power manageable by the platform
2743 * (PCI_D3hot is the default) and put the device into that state.
2744 */
2745int pci_prepare_to_sleep(struct pci_dev *dev)
2746{
2747 bool wakeup = device_may_wakeup(&dev->dev);
2748 pci_power_t target_state = pci_target_state(dev, wakeup);
2749 int error;
2750
2751 if (target_state == PCI_POWER_ERROR)
2752 return -EIO;
2753
2754 pci_enable_wake(dev, target_state, wakeup);
2755
2756 error = pci_set_power_state(dev, target_state);
2757
2758 if (error)
2759 pci_enable_wake(dev, target_state, false);
2760
2761 return error;
2762}
2763EXPORT_SYMBOL(pci_prepare_to_sleep);
2764
2765/**
2766 * pci_back_from_sleep - turn PCI device on during system-wide transition
2767 * into working state
2768 * @dev: Device to handle.
2769 *
2770 * Disable device's system wake-up capability and put it into D0.
2771 */
2772int pci_back_from_sleep(struct pci_dev *dev)
2773{
2774 int ret = pci_set_power_state(dev, PCI_D0);
2775
2776 if (ret)
2777 return ret;
2778
2779 pci_enable_wake(dev, PCI_D0, false);
2780 return 0;
2781}
2782EXPORT_SYMBOL(pci_back_from_sleep);
2783
2784/**
2785 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2786 * @dev: PCI device being suspended.
2787 *
2788 * Prepare @dev to generate wake-up events at run time and put it into a low
2789 * power state.
2790 */
2791int pci_finish_runtime_suspend(struct pci_dev *dev)
2792{
2793 pci_power_t target_state;
2794 int error;
2795
2796 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2797 if (target_state == PCI_POWER_ERROR)
2798 return -EIO;
2799
2800 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2801
2802 error = pci_set_power_state(dev, target_state);
2803
2804 if (error)
2805 pci_enable_wake(dev, target_state, false);
2806
2807 return error;
2808}
2809
2810/**
2811 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2812 * @dev: Device to check.
2813 *
2814 * Return true if the device itself is capable of generating wake-up events
2815 * (through the platform or using the native PCIe PME) or if the device supports
2816 * PME and one of its upstream bridges can generate wake-up events.
2817 */
2818bool pci_dev_run_wake(struct pci_dev *dev)
2819{
2820 struct pci_bus *bus = dev->bus;
2821
2822 if (!dev->pme_support)
2823 return false;
2824
2825 /* PME-capable in principle, but not from the target power state */
2826 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2827 return false;
2828
2829 if (device_can_wakeup(&dev->dev))
2830 return true;
2831
2832 while (bus->parent) {
2833 struct pci_dev *bridge = bus->self;
2834
2835 if (device_can_wakeup(&bridge->dev))
2836 return true;
2837
2838 bus = bus->parent;
2839 }
2840
2841 /* We have reached the root bus. */
2842 if (bus->bridge)
2843 return device_can_wakeup(bus->bridge);
2844
2845 return false;
2846}
2847EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2848
2849/**
2850 * pci_dev_need_resume - Check if it is necessary to resume the device.
2851 * @pci_dev: Device to check.
2852 *
2853 * Return 'true' if the device is not runtime-suspended or it has to be
2854 * reconfigured due to wakeup settings difference between system and runtime
2855 * suspend, or the current power state of it is not suitable for the upcoming
2856 * (system-wide) transition.
2857 */
2858bool pci_dev_need_resume(struct pci_dev *pci_dev)
2859{
2860 struct device *dev = &pci_dev->dev;
2861 pci_power_t target_state;
2862
2863 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2864 return true;
2865
2866 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2867
2868 /*
2869 * If the earlier platform check has not triggered, D3cold is just power
2870 * removal on top of D3hot, so no need to resume the device in that
2871 * case.
2872 */
2873 return target_state != pci_dev->current_state &&
2874 target_state != PCI_D3cold &&
2875 pci_dev->current_state != PCI_D3hot;
2876}
2877
2878/**
2879 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2880 * @pci_dev: Device to check.
2881 *
2882 * If the device is suspended and it is not configured for system wakeup,
2883 * disable PME for it to prevent it from waking up the system unnecessarily.
2884 *
2885 * Note that if the device's power state is D3cold and the platform check in
2886 * pci_dev_need_resume() has not triggered, the device's configuration need not
2887 * be changed.
2888 */
2889void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2890{
2891 struct device *dev = &pci_dev->dev;
2892
2893 spin_lock_irq(&dev->power.lock);
2894
2895 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2896 pci_dev->current_state < PCI_D3cold)
2897 __pci_pme_active(pci_dev, false);
2898
2899 spin_unlock_irq(&dev->power.lock);
2900}
2901
2902/**
2903 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2904 * @pci_dev: Device to handle.
2905 *
2906 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2907 * it might have been disabled during the prepare phase of system suspend if
2908 * the device was not configured for system wakeup.
2909 */
2910void pci_dev_complete_resume(struct pci_dev *pci_dev)
2911{
2912 struct device *dev = &pci_dev->dev;
2913
2914 if (!pci_dev_run_wake(pci_dev))
2915 return;
2916
2917 spin_lock_irq(&dev->power.lock);
2918
2919 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2920 __pci_pme_active(pci_dev, true);
2921
2922 spin_unlock_irq(&dev->power.lock);
2923}
2924
2925/**
2926 * pci_choose_state - Choose the power state of a PCI device.
2927 * @dev: Target PCI device.
2928 * @state: Target state for the whole system.
2929 *
2930 * Returns PCI power state suitable for @dev and @state.
2931 */
2932pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2933{
2934 if (state.event == PM_EVENT_ON)
2935 return PCI_D0;
2936
2937 return pci_target_state(dev, false);
2938}
2939EXPORT_SYMBOL(pci_choose_state);
2940
2941void pci_config_pm_runtime_get(struct pci_dev *pdev)
2942{
2943 struct device *dev = &pdev->dev;
2944 struct device *parent = dev->parent;
2945
2946 if (parent)
2947 pm_runtime_get_sync(parent);
2948 pm_runtime_get_noresume(dev);
2949 /*
2950 * pdev->current_state is set to PCI_D3cold during suspending,
2951 * so wait until suspending completes
2952 */
2953 pm_runtime_barrier(dev);
2954 /*
2955 * Only need to resume devices in D3cold, because config
2956 * registers are still accessible for devices suspended but
2957 * not in D3cold.
2958 */
2959 if (pdev->current_state == PCI_D3cold)
2960 pm_runtime_resume(dev);
2961}
2962
2963void pci_config_pm_runtime_put(struct pci_dev *pdev)
2964{
2965 struct device *dev = &pdev->dev;
2966 struct device *parent = dev->parent;
2967
2968 pm_runtime_put(dev);
2969 if (parent)
2970 pm_runtime_put_sync(parent);
2971}
2972
2973static const struct dmi_system_id bridge_d3_blacklist[] = {
2974#ifdef CONFIG_X86
2975 {
2976 /*
2977 * Gigabyte X299 root port is not marked as hotplug capable
2978 * which allows Linux to power manage it. However, this
2979 * confuses the BIOS SMI handler so don't power manage root
2980 * ports on that system.
2981 */
2982 .ident = "X299 DESIGNARE EX-CF",
2983 .matches = {
2984 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2985 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2986 },
2987 },
2988 {
2989 /*
2990 * Downstream device is not accessible after putting a root port
2991 * into D3cold and back into D0 on Elo Continental Z2 board
2992 */
2993 .ident = "Elo Continental Z2",
2994 .matches = {
2995 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2996 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2997 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2998 },
2999 },
3000 {
3001 /*
3002 * Changing power state of root port dGPU is connected fails
3003 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
3004 */
3005 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
3006 .matches = {
3007 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"),
3008 DMI_MATCH(DMI_BOARD_NAME, "1972"),
3009 DMI_MATCH(DMI_BOARD_VERSION, "95.33"),
3010 },
3011 },
3012#endif
3013 { }
3014};
3015
3016/**
3017 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3018 * @bridge: Bridge to check
3019 *
3020 * This function checks if it is possible to move the bridge to D3.
3021 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3022 */
3023bool pci_bridge_d3_possible(struct pci_dev *bridge)
3024{
3025 if (!pci_is_pcie(bridge))
3026 return false;
3027
3028 switch (pci_pcie_type(bridge)) {
3029 case PCI_EXP_TYPE_ROOT_PORT:
3030 case PCI_EXP_TYPE_UPSTREAM:
3031 case PCI_EXP_TYPE_DOWNSTREAM:
3032 if (pci_bridge_d3_disable)
3033 return false;
3034
3035 /*
3036 * Hotplug ports handled by firmware in System Management Mode
3037 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3038 */
3039 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3040 return false;
3041
3042 if (pci_bridge_d3_force)
3043 return true;
3044
3045 /* Even the oldest 2010 Thunderbolt controller supports D3. */
3046 if (bridge->is_thunderbolt)
3047 return true;
3048
3049 /* Platform might know better if the bridge supports D3 */
3050 if (platform_pci_bridge_d3(bridge))
3051 return true;
3052
3053 /*
3054 * Hotplug ports handled natively by the OS were not validated
3055 * by vendors for runtime D3 at least until 2018 because there
3056 * was no OS support.
3057 */
3058 if (bridge->is_hotplug_bridge)
3059 return false;
3060
3061 if (dmi_check_system(bridge_d3_blacklist))
3062 return false;
3063
3064 /*
3065 * It should be safe to put PCIe ports from 2015 or newer
3066 * to D3.
3067 */
3068 if (dmi_get_bios_year() >= 2015)
3069 return true;
3070 break;
3071 }
3072
3073 return false;
3074}
3075
3076static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3077{
3078 bool *d3cold_ok = data;
3079
3080 if (/* The device needs to be allowed to go D3cold ... */
3081 dev->no_d3cold || !dev->d3cold_allowed ||
3082
3083 /* ... and if it is wakeup capable to do so from D3cold. */
3084 (device_may_wakeup(&dev->dev) &&
3085 !pci_pme_capable(dev, PCI_D3cold)) ||
3086
3087 /* If it is a bridge it must be allowed to go to D3. */
3088 !pci_power_manageable(dev))
3089
3090 *d3cold_ok = false;
3091
3092 return !*d3cold_ok;
3093}
3094
3095/*
3096 * pci_bridge_d3_update - Update bridge D3 capabilities
3097 * @dev: PCI device which is changed
3098 *
3099 * Update upstream bridge PM capabilities accordingly depending on if the
3100 * device PM configuration was changed or the device is being removed. The
3101 * change is also propagated upstream.
3102 */
3103void pci_bridge_d3_update(struct pci_dev *dev)
3104{
3105 bool remove = !device_is_registered(&dev->dev);
3106 struct pci_dev *bridge;
3107 bool d3cold_ok = true;
3108
3109 bridge = pci_upstream_bridge(dev);
3110 if (!bridge || !pci_bridge_d3_possible(bridge))
3111 return;
3112
3113 /*
3114 * If D3 is currently allowed for the bridge, removing one of its
3115 * children won't change that.
3116 */
3117 if (remove && bridge->bridge_d3)
3118 return;
3119
3120 /*
3121 * If D3 is currently allowed for the bridge and a child is added or
3122 * changed, disallowance of D3 can only be caused by that child, so
3123 * we only need to check that single device, not any of its siblings.
3124 *
3125 * If D3 is currently not allowed for the bridge, checking the device
3126 * first may allow us to skip checking its siblings.
3127 */
3128 if (!remove)
3129 pci_dev_check_d3cold(dev, &d3cold_ok);
3130
3131 /*
3132 * If D3 is currently not allowed for the bridge, this may be caused
3133 * either by the device being changed/removed or any of its siblings,
3134 * so we need to go through all children to find out if one of them
3135 * continues to block D3.
3136 */
3137 if (d3cold_ok && !bridge->bridge_d3)
3138 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3139 &d3cold_ok);
3140
3141 if (bridge->bridge_d3 != d3cold_ok) {
3142 bridge->bridge_d3 = d3cold_ok;
3143 /* Propagate change to upstream bridges */
3144 pci_bridge_d3_update(bridge);
3145 }
3146}
3147
3148/**
3149 * pci_d3cold_enable - Enable D3cold for device
3150 * @dev: PCI device to handle
3151 *
3152 * This function can be used in drivers to enable D3cold from the device
3153 * they handle. It also updates upstream PCI bridge PM capabilities
3154 * accordingly.
3155 */
3156void pci_d3cold_enable(struct pci_dev *dev)
3157{
3158 if (dev->no_d3cold) {
3159 dev->no_d3cold = false;
3160 pci_bridge_d3_update(dev);
3161 }
3162}
3163EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3164
3165/**
3166 * pci_d3cold_disable - Disable D3cold for device
3167 * @dev: PCI device to handle
3168 *
3169 * This function can be used in drivers to disable D3cold from the device
3170 * they handle. It also updates upstream PCI bridge PM capabilities
3171 * accordingly.
3172 */
3173void pci_d3cold_disable(struct pci_dev *dev)
3174{
3175 if (!dev->no_d3cold) {
3176 dev->no_d3cold = true;
3177 pci_bridge_d3_update(dev);
3178 }
3179}
3180EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3181
3182/**
3183 * pci_pm_init - Initialize PM functions of given PCI device
3184 * @dev: PCI device to handle.
3185 */
3186void pci_pm_init(struct pci_dev *dev)
3187{
3188 int pm;
3189 u16 status;
3190 u16 pmc;
3191
3192 pm_runtime_forbid(&dev->dev);
3193 pm_runtime_set_active(&dev->dev);
3194 pm_runtime_enable(&dev->dev);
3195 device_enable_async_suspend(&dev->dev);
3196 dev->wakeup_prepared = false;
3197
3198 dev->pm_cap = 0;
3199 dev->pme_support = 0;
3200
3201 /* find PCI PM capability in list */
3202 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3203 if (!pm)
3204 return;
3205 /* Check device's ability to generate PME# */
3206 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3207
3208 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3209 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3210 pmc & PCI_PM_CAP_VER_MASK);
3211 return;
3212 }
3213
3214 dev->pm_cap = pm;
3215 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3216 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3217 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3218 dev->d3cold_allowed = true;
3219
3220 dev->d1_support = false;
3221 dev->d2_support = false;
3222 if (!pci_no_d1d2(dev)) {
3223 if (pmc & PCI_PM_CAP_D1)
3224 dev->d1_support = true;
3225 if (pmc & PCI_PM_CAP_D2)
3226 dev->d2_support = true;
3227
3228 if (dev->d1_support || dev->d2_support)
3229 pci_info(dev, "supports%s%s\n",
3230 dev->d1_support ? " D1" : "",
3231 dev->d2_support ? " D2" : "");
3232 }
3233
3234 pmc &= PCI_PM_CAP_PME_MASK;
3235 if (pmc) {
3236 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3237 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3238 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3239 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3240 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3241 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3242 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3243 dev->pme_poll = true;
3244 /*
3245 * Make device's PM flags reflect the wake-up capability, but
3246 * let the user space enable it to wake up the system as needed.
3247 */
3248 device_set_wakeup_capable(&dev->dev, true);
3249 /* Disable the PME# generation functionality */
3250 pci_pme_active(dev, false);
3251 }
3252
3253 pci_read_config_word(dev, PCI_STATUS, &status);
3254 if (status & PCI_STATUS_IMM_READY)
3255 dev->imm_ready = 1;
3256}
3257
3258static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3259{
3260 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3261
3262 switch (prop) {
3263 case PCI_EA_P_MEM:
3264 case PCI_EA_P_VF_MEM:
3265 flags |= IORESOURCE_MEM;
3266 break;
3267 case PCI_EA_P_MEM_PREFETCH:
3268 case PCI_EA_P_VF_MEM_PREFETCH:
3269 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3270 break;
3271 case PCI_EA_P_IO:
3272 flags |= IORESOURCE_IO;
3273 break;
3274 default:
3275 return 0;
3276 }
3277
3278 return flags;
3279}
3280
3281static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3282 u8 prop)
3283{
3284 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3285 return &dev->resource[bei];
3286#ifdef CONFIG_PCI_IOV
3287 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3288 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3289 return &dev->resource[PCI_IOV_RESOURCES +
3290 bei - PCI_EA_BEI_VF_BAR0];
3291#endif
3292 else if (bei == PCI_EA_BEI_ROM)
3293 return &dev->resource[PCI_ROM_RESOURCE];
3294 else
3295 return NULL;
3296}
3297
3298/* Read an Enhanced Allocation (EA) entry */
3299static int pci_ea_read(struct pci_dev *dev, int offset)
3300{
3301 struct resource *res;
3302 const char *res_name;
3303 int ent_size, ent_offset = offset;
3304 resource_size_t start, end;
3305 unsigned long flags;
3306 u32 dw0, bei, base, max_offset;
3307 u8 prop;
3308 bool support_64 = (sizeof(resource_size_t) >= 8);
3309
3310 pci_read_config_dword(dev, ent_offset, &dw0);
3311 ent_offset += 4;
3312
3313 /* Entry size field indicates DWORDs after 1st */
3314 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3315
3316 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3317 goto out;
3318
3319 bei = FIELD_GET(PCI_EA_BEI, dw0);
3320 prop = FIELD_GET(PCI_EA_PP, dw0);
3321
3322 /*
3323 * If the Property is in the reserved range, try the Secondary
3324 * Property instead.
3325 */
3326 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3327 prop = FIELD_GET(PCI_EA_SP, dw0);
3328 if (prop > PCI_EA_P_BRIDGE_IO)
3329 goto out;
3330
3331 res = pci_ea_get_resource(dev, bei, prop);
3332 res_name = pci_resource_name(dev, bei);
3333 if (!res) {
3334 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3335 goto out;
3336 }
3337
3338 flags = pci_ea_flags(dev, prop);
3339 if (!flags) {
3340 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3341 goto out;
3342 }
3343
3344 /* Read Base */
3345 pci_read_config_dword(dev, ent_offset, &base);
3346 start = (base & PCI_EA_FIELD_MASK);
3347 ent_offset += 4;
3348
3349 /* Read MaxOffset */
3350 pci_read_config_dword(dev, ent_offset, &max_offset);
3351 ent_offset += 4;
3352
3353 /* Read Base MSBs (if 64-bit entry) */
3354 if (base & PCI_EA_IS_64) {
3355 u32 base_upper;
3356
3357 pci_read_config_dword(dev, ent_offset, &base_upper);
3358 ent_offset += 4;
3359
3360 flags |= IORESOURCE_MEM_64;
3361
3362 /* entry starts above 32-bit boundary, can't use */
3363 if (!support_64 && base_upper)
3364 goto out;
3365
3366 if (support_64)
3367 start |= ((u64)base_upper << 32);
3368 }
3369
3370 end = start + (max_offset | 0x03);
3371
3372 /* Read MaxOffset MSBs (if 64-bit entry) */
3373 if (max_offset & PCI_EA_IS_64) {
3374 u32 max_offset_upper;
3375
3376 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3377 ent_offset += 4;
3378
3379 flags |= IORESOURCE_MEM_64;
3380
3381 /* entry too big, can't use */
3382 if (!support_64 && max_offset_upper)
3383 goto out;
3384
3385 if (support_64)
3386 end += ((u64)max_offset_upper << 32);
3387 }
3388
3389 if (end < start) {
3390 pci_err(dev, "EA Entry crosses address boundary\n");
3391 goto out;
3392 }
3393
3394 if (ent_size != ent_offset - offset) {
3395 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3396 ent_size, ent_offset - offset);
3397 goto out;
3398 }
3399
3400 res->name = pci_name(dev);
3401 res->start = start;
3402 res->end = end;
3403 res->flags = flags;
3404
3405 if (bei <= PCI_EA_BEI_BAR5)
3406 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3407 res_name, res, prop);
3408 else if (bei == PCI_EA_BEI_ROM)
3409 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3410 res_name, res, prop);
3411 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3412 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3413 res_name, res, prop);
3414 else
3415 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3416 bei, res, prop);
3417
3418out:
3419 return offset + ent_size;
3420}
3421
3422/* Enhanced Allocation Initialization */
3423void pci_ea_init(struct pci_dev *dev)
3424{
3425 int ea;
3426 u8 num_ent;
3427 int offset;
3428 int i;
3429
3430 /* find PCI EA capability in list */
3431 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3432 if (!ea)
3433 return;
3434
3435 /* determine the number of entries */
3436 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3437 &num_ent);
3438 num_ent &= PCI_EA_NUM_ENT_MASK;
3439
3440 offset = ea + PCI_EA_FIRST_ENT;
3441
3442 /* Skip DWORD 2 for type 1 functions */
3443 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3444 offset += 4;
3445
3446 /* parse each EA entry */
3447 for (i = 0; i < num_ent; ++i)
3448 offset = pci_ea_read(dev, offset);
3449}
3450
3451static void pci_add_saved_cap(struct pci_dev *pci_dev,
3452 struct pci_cap_saved_state *new_cap)
3453{
3454 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3455}
3456
3457/**
3458 * _pci_add_cap_save_buffer - allocate buffer for saving given
3459 * capability registers
3460 * @dev: the PCI device
3461 * @cap: the capability to allocate the buffer for
3462 * @extended: Standard or Extended capability ID
3463 * @size: requested size of the buffer
3464 */
3465static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3466 bool extended, unsigned int size)
3467{
3468 int pos;
3469 struct pci_cap_saved_state *save_state;
3470
3471 if (extended)
3472 pos = pci_find_ext_capability(dev, cap);
3473 else
3474 pos = pci_find_capability(dev, cap);
3475
3476 if (!pos)
3477 return 0;
3478
3479 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3480 if (!save_state)
3481 return -ENOMEM;
3482
3483 save_state->cap.cap_nr = cap;
3484 save_state->cap.cap_extended = extended;
3485 save_state->cap.size = size;
3486 pci_add_saved_cap(dev, save_state);
3487
3488 return 0;
3489}
3490
3491int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3492{
3493 return _pci_add_cap_save_buffer(dev, cap, false, size);
3494}
3495
3496int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3497{
3498 return _pci_add_cap_save_buffer(dev, cap, true, size);
3499}
3500
3501/**
3502 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3503 * @dev: the PCI device
3504 */
3505void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3506{
3507 int error;
3508
3509 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3510 PCI_EXP_SAVE_REGS * sizeof(u16));
3511 if (error)
3512 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3513
3514 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3515 if (error)
3516 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3517
3518 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3519 2 * sizeof(u16));
3520 if (error)
3521 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3522
3523 pci_allocate_vc_save_buffers(dev);
3524}
3525
3526void pci_free_cap_save_buffers(struct pci_dev *dev)
3527{
3528 struct pci_cap_saved_state *tmp;
3529 struct hlist_node *n;
3530
3531 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3532 kfree(tmp);
3533}
3534
3535/**
3536 * pci_configure_ari - enable or disable ARI forwarding
3537 * @dev: the PCI device
3538 *
3539 * If @dev and its upstream bridge both support ARI, enable ARI in the
3540 * bridge. Otherwise, disable ARI in the bridge.
3541 */
3542void pci_configure_ari(struct pci_dev *dev)
3543{
3544 u32 cap;
3545 struct pci_dev *bridge;
3546
3547 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3548 return;
3549
3550 bridge = dev->bus->self;
3551 if (!bridge)
3552 return;
3553
3554 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3555 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3556 return;
3557
3558 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3559 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3560 PCI_EXP_DEVCTL2_ARI);
3561 bridge->ari_enabled = 1;
3562 } else {
3563 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3564 PCI_EXP_DEVCTL2_ARI);
3565 bridge->ari_enabled = 0;
3566 }
3567}
3568
3569static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3570{
3571 int pos;
3572 u16 cap, ctrl;
3573
3574 pos = pdev->acs_cap;
3575 if (!pos)
3576 return false;
3577
3578 /*
3579 * Except for egress control, capabilities are either required
3580 * or only required if controllable. Features missing from the
3581 * capability field can therefore be assumed as hard-wired enabled.
3582 */
3583 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3584 acs_flags &= (cap | PCI_ACS_EC);
3585
3586 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3587 return (ctrl & acs_flags) == acs_flags;
3588}
3589
3590/**
3591 * pci_acs_enabled - test ACS against required flags for a given device
3592 * @pdev: device to test
3593 * @acs_flags: required PCI ACS flags
3594 *
3595 * Return true if the device supports the provided flags. Automatically
3596 * filters out flags that are not implemented on multifunction devices.
3597 *
3598 * Note that this interface checks the effective ACS capabilities of the
3599 * device rather than the actual capabilities. For instance, most single
3600 * function endpoints are not required to support ACS because they have no
3601 * opportunity for peer-to-peer access. We therefore return 'true'
3602 * regardless of whether the device exposes an ACS capability. This makes
3603 * it much easier for callers of this function to ignore the actual type
3604 * or topology of the device when testing ACS support.
3605 */
3606bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3607{
3608 int ret;
3609
3610 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3611 if (ret >= 0)
3612 return ret > 0;
3613
3614 /*
3615 * Conventional PCI and PCI-X devices never support ACS, either
3616 * effectively or actually. The shared bus topology implies that
3617 * any device on the bus can receive or snoop DMA.
3618 */
3619 if (!pci_is_pcie(pdev))
3620 return false;
3621
3622 switch (pci_pcie_type(pdev)) {
3623 /*
3624 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3625 * but since their primary interface is PCI/X, we conservatively
3626 * handle them as we would a non-PCIe device.
3627 */
3628 case PCI_EXP_TYPE_PCIE_BRIDGE:
3629 /*
3630 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3631 * applicable... must never implement an ACS Extended Capability...".
3632 * This seems arbitrary, but we take a conservative interpretation
3633 * of this statement.
3634 */
3635 case PCI_EXP_TYPE_PCI_BRIDGE:
3636 case PCI_EXP_TYPE_RC_EC:
3637 return false;
3638 /*
3639 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3640 * implement ACS in order to indicate their peer-to-peer capabilities,
3641 * regardless of whether they are single- or multi-function devices.
3642 */
3643 case PCI_EXP_TYPE_DOWNSTREAM:
3644 case PCI_EXP_TYPE_ROOT_PORT:
3645 return pci_acs_flags_enabled(pdev, acs_flags);
3646 /*
3647 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3648 * implemented by the remaining PCIe types to indicate peer-to-peer
3649 * capabilities, but only when they are part of a multifunction
3650 * device. The footnote for section 6.12 indicates the specific
3651 * PCIe types included here.
3652 */
3653 case PCI_EXP_TYPE_ENDPOINT:
3654 case PCI_EXP_TYPE_UPSTREAM:
3655 case PCI_EXP_TYPE_LEG_END:
3656 case PCI_EXP_TYPE_RC_END:
3657 if (!pdev->multifunction)
3658 break;
3659
3660 return pci_acs_flags_enabled(pdev, acs_flags);
3661 }
3662
3663 /*
3664 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3665 * to single function devices with the exception of downstream ports.
3666 */
3667 return true;
3668}
3669
3670/**
3671 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3672 * @start: starting downstream device
3673 * @end: ending upstream device or NULL to search to the root bus
3674 * @acs_flags: required flags
3675 *
3676 * Walk up a device tree from start to end testing PCI ACS support. If
3677 * any step along the way does not support the required flags, return false.
3678 */
3679bool pci_acs_path_enabled(struct pci_dev *start,
3680 struct pci_dev *end, u16 acs_flags)
3681{
3682 struct pci_dev *pdev, *parent = start;
3683
3684 do {
3685 pdev = parent;
3686
3687 if (!pci_acs_enabled(pdev, acs_flags))
3688 return false;
3689
3690 if (pci_is_root_bus(pdev->bus))
3691 return (end == NULL);
3692
3693 parent = pdev->bus->self;
3694 } while (pdev != end);
3695
3696 return true;
3697}
3698
3699/**
3700 * pci_acs_init - Initialize ACS if hardware supports it
3701 * @dev: the PCI device
3702 */
3703void pci_acs_init(struct pci_dev *dev)
3704{
3705 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3706
3707 /*
3708 * Attempt to enable ACS regardless of capability because some Root
3709 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3710 * the standard ACS capability but still support ACS via those
3711 * quirks.
3712 */
3713 pci_enable_acs(dev);
3714}
3715
3716/**
3717 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3718 * @pdev: PCI device
3719 * @bar: BAR to find
3720 *
3721 * Helper to find the position of the ctrl register for a BAR.
3722 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3723 * Returns -ENOENT if no ctrl register for the BAR could be found.
3724 */
3725static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3726{
3727 unsigned int pos, nbars, i;
3728 u32 ctrl;
3729
3730 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3731 if (!pos)
3732 return -ENOTSUPP;
3733
3734 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3735 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3736
3737 for (i = 0; i < nbars; i++, pos += 8) {
3738 int bar_idx;
3739
3740 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3741 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3742 if (bar_idx == bar)
3743 return pos;
3744 }
3745
3746 return -ENOENT;
3747}
3748
3749/**
3750 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3751 * @pdev: PCI device
3752 * @bar: BAR to query
3753 *
3754 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3755 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3756 */
3757u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3758{
3759 int pos;
3760 u32 cap;
3761
3762 pos = pci_rebar_find_pos(pdev, bar);
3763 if (pos < 0)
3764 return 0;
3765
3766 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3767 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3768
3769 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3770 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3771 bar == 0 && cap == 0x700)
3772 return 0x3f00;
3773
3774 return cap;
3775}
3776EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3777
3778/**
3779 * pci_rebar_get_current_size - get the current size of a BAR
3780 * @pdev: PCI device
3781 * @bar: BAR to set size to
3782 *
3783 * Read the size of a BAR from the resizable BAR config.
3784 * Returns size if found or negative error code.
3785 */
3786int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3787{
3788 int pos;
3789 u32 ctrl;
3790
3791 pos = pci_rebar_find_pos(pdev, bar);
3792 if (pos < 0)
3793 return pos;
3794
3795 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3796 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3797}
3798
3799/**
3800 * pci_rebar_set_size - set a new size for a BAR
3801 * @pdev: PCI device
3802 * @bar: BAR to set size to
3803 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3804 *
3805 * Set the new size of a BAR as defined in the spec.
3806 * Returns zero if resizing was successful, error code otherwise.
3807 */
3808int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3809{
3810 int pos;
3811 u32 ctrl;
3812
3813 pos = pci_rebar_find_pos(pdev, bar);
3814 if (pos < 0)
3815 return pos;
3816
3817 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3818 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3819 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3820 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3821 return 0;
3822}
3823
3824/**
3825 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3826 * @dev: the PCI device
3827 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3828 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3829 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3830 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3831 *
3832 * Return 0 if all upstream bridges support AtomicOp routing, egress
3833 * blocking is disabled on all upstream ports, and the root port supports
3834 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3835 * AtomicOp completion), or negative otherwise.
3836 */
3837int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3838{
3839 struct pci_bus *bus = dev->bus;
3840 struct pci_dev *bridge;
3841 u32 cap, ctl2;
3842
3843 /*
3844 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3845 * in Device Control 2 is reserved in VFs and the PF value applies
3846 * to all associated VFs.
3847 */
3848 if (dev->is_virtfn)
3849 return -EINVAL;
3850
3851 if (!pci_is_pcie(dev))
3852 return -EINVAL;
3853
3854 /*
3855 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3856 * AtomicOp requesters. For now, we only support endpoints as
3857 * requesters and root ports as completers. No endpoints as
3858 * completers, and no peer-to-peer.
3859 */
3860
3861 switch (pci_pcie_type(dev)) {
3862 case PCI_EXP_TYPE_ENDPOINT:
3863 case PCI_EXP_TYPE_LEG_END:
3864 case PCI_EXP_TYPE_RC_END:
3865 break;
3866 default:
3867 return -EINVAL;
3868 }
3869
3870 while (bus->parent) {
3871 bridge = bus->self;
3872
3873 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3874
3875 switch (pci_pcie_type(bridge)) {
3876 /* Ensure switch ports support AtomicOp routing */
3877 case PCI_EXP_TYPE_UPSTREAM:
3878 case PCI_EXP_TYPE_DOWNSTREAM:
3879 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3880 return -EINVAL;
3881 break;
3882
3883 /* Ensure root port supports all the sizes we care about */
3884 case PCI_EXP_TYPE_ROOT_PORT:
3885 if ((cap & cap_mask) != cap_mask)
3886 return -EINVAL;
3887 break;
3888 }
3889
3890 /* Ensure upstream ports don't block AtomicOps on egress */
3891 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3892 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3893 &ctl2);
3894 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3895 return -EINVAL;
3896 }
3897
3898 bus = bus->parent;
3899 }
3900
3901 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3902 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3903 return 0;
3904}
3905EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3906
3907/**
3908 * pci_release_region - Release a PCI bar
3909 * @pdev: PCI device whose resources were previously reserved by
3910 * pci_request_region()
3911 * @bar: BAR to release
3912 *
3913 * Releases the PCI I/O and memory resources previously reserved by a
3914 * successful call to pci_request_region(). Call this function only
3915 * after all use of the PCI regions has ceased.
3916 */
3917void pci_release_region(struct pci_dev *pdev, int bar)
3918{
3919 /*
3920 * This is done for backwards compatibility, because the old PCI devres
3921 * API had a mode in which the function became managed if it had been
3922 * enabled with pcim_enable_device() instead of pci_enable_device().
3923 */
3924 if (pci_is_managed(pdev)) {
3925 pcim_release_region(pdev, bar);
3926 return;
3927 }
3928
3929 if (pci_resource_len(pdev, bar) == 0)
3930 return;
3931 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3932 release_region(pci_resource_start(pdev, bar),
3933 pci_resource_len(pdev, bar));
3934 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3935 release_mem_region(pci_resource_start(pdev, bar),
3936 pci_resource_len(pdev, bar));
3937}
3938EXPORT_SYMBOL(pci_release_region);
3939
3940/**
3941 * __pci_request_region - Reserved PCI I/O and memory resource
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @bar: BAR to be reserved
3944 * @res_name: Name to be associated with resource.
3945 * @exclusive: whether the region access is exclusive or not
3946 *
3947 * Returns: 0 on success, negative error code on failure.
3948 *
3949 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3950 * being reserved by owner @res_name. Do not access any
3951 * address inside the PCI regions unless this call returns
3952 * successfully.
3953 *
3954 * If @exclusive is set, then the region is marked so that userspace
3955 * is explicitly not allowed to map the resource via /dev/mem or
3956 * sysfs MMIO access.
3957 *
3958 * Returns 0 on success, or %EBUSY on error. A warning
3959 * message is also printed on failure.
3960 */
3961static int __pci_request_region(struct pci_dev *pdev, int bar,
3962 const char *res_name, int exclusive)
3963{
3964 if (pci_is_managed(pdev)) {
3965 if (exclusive == IORESOURCE_EXCLUSIVE)
3966 return pcim_request_region_exclusive(pdev, bar, res_name);
3967
3968 return pcim_request_region(pdev, bar, res_name);
3969 }
3970
3971 if (pci_resource_len(pdev, bar) == 0)
3972 return 0;
3973
3974 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3975 if (!request_region(pci_resource_start(pdev, bar),
3976 pci_resource_len(pdev, bar), res_name))
3977 goto err_out;
3978 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3979 if (!__request_mem_region(pci_resource_start(pdev, bar),
3980 pci_resource_len(pdev, bar), res_name,
3981 exclusive))
3982 goto err_out;
3983 }
3984
3985 return 0;
3986
3987err_out:
3988 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3989 &pdev->resource[bar]);
3990 return -EBUSY;
3991}
3992
3993/**
3994 * pci_request_region - Reserve PCI I/O and memory resource
3995 * @pdev: PCI device whose resources are to be reserved
3996 * @bar: BAR to be reserved
3997 * @res_name: Name to be associated with resource
3998 *
3999 * Returns: 0 on success, negative error code on failure.
4000 *
4001 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4002 * being reserved by owner @res_name. Do not access any
4003 * address inside the PCI regions unless this call returns
4004 * successfully.
4005 *
4006 * Returns 0 on success, or %EBUSY on error. A warning
4007 * message is also printed on failure.
4008 *
4009 * NOTE:
4010 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4011 * when pcim_enable_device() has been called in advance. This hybrid feature is
4012 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4013 */
4014int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4015{
4016 return __pci_request_region(pdev, bar, res_name, 0);
4017}
4018EXPORT_SYMBOL(pci_request_region);
4019
4020/**
4021 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4022 * @pdev: PCI device whose resources were previously reserved
4023 * @bars: Bitmask of BARs to be released
4024 *
4025 * Release selected PCI I/O and memory resources previously reserved.
4026 * Call this function only after all use of the PCI regions has ceased.
4027 */
4028void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4029{
4030 int i;
4031
4032 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4033 if (bars & (1 << i))
4034 pci_release_region(pdev, i);
4035}
4036EXPORT_SYMBOL(pci_release_selected_regions);
4037
4038static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4039 const char *res_name, int excl)
4040{
4041 int i;
4042
4043 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4044 if (bars & (1 << i))
4045 if (__pci_request_region(pdev, i, res_name, excl))
4046 goto err_out;
4047 return 0;
4048
4049err_out:
4050 while (--i >= 0)
4051 if (bars & (1 << i))
4052 pci_release_region(pdev, i);
4053
4054 return -EBUSY;
4055}
4056
4057
4058/**
4059 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4060 * @pdev: PCI device whose resources are to be reserved
4061 * @bars: Bitmask of BARs to be requested
4062 * @res_name: Name to be associated with resource
4063 *
4064 * Returns: 0 on success, negative error code on failure.
4065 *
4066 * NOTE:
4067 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4068 * when pcim_enable_device() has been called in advance. This hybrid feature is
4069 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4070 */
4071int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4072 const char *res_name)
4073{
4074 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4075}
4076EXPORT_SYMBOL(pci_request_selected_regions);
4077
4078/**
4079 * pci_request_selected_regions_exclusive - Request regions exclusively
4080 * @pdev: PCI device to request regions from
4081 * @bars: bit mask of BARs to request
4082 * @res_name: name to be associated with the requests
4083 *
4084 * Returns: 0 on success, negative error code on failure.
4085 *
4086 * NOTE:
4087 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4088 * when pcim_enable_device() has been called in advance. This hybrid feature is
4089 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4090 */
4091int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4092 const char *res_name)
4093{
4094 return __pci_request_selected_regions(pdev, bars, res_name,
4095 IORESOURCE_EXCLUSIVE);
4096}
4097EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4098
4099/**
4100 * pci_release_regions - Release reserved PCI I/O and memory resources
4101 * @pdev: PCI device whose resources were previously reserved by
4102 * pci_request_regions()
4103 *
4104 * Releases all PCI I/O and memory resources previously reserved by a
4105 * successful call to pci_request_regions(). Call this function only
4106 * after all use of the PCI regions has ceased.
4107 */
4108void pci_release_regions(struct pci_dev *pdev)
4109{
4110 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4111}
4112EXPORT_SYMBOL(pci_release_regions);
4113
4114/**
4115 * pci_request_regions - Reserve PCI I/O and memory resources
4116 * @pdev: PCI device whose resources are to be reserved
4117 * @res_name: Name to be associated with resource.
4118 *
4119 * Mark all PCI regions associated with PCI device @pdev as
4120 * being reserved by owner @res_name. Do not access any
4121 * address inside the PCI regions unless this call returns
4122 * successfully.
4123 *
4124 * Returns 0 on success, or %EBUSY on error. A warning
4125 * message is also printed on failure.
4126 *
4127 * NOTE:
4128 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4129 * when pcim_enable_device() has been called in advance. This hybrid feature is
4130 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4131 */
4132int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4133{
4134 return pci_request_selected_regions(pdev,
4135 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4136}
4137EXPORT_SYMBOL(pci_request_regions);
4138
4139/**
4140 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4141 * @pdev: PCI device whose resources are to be reserved
4142 * @res_name: Name to be associated with resource.
4143 *
4144 * Returns: 0 on success, negative error code on failure.
4145 *
4146 * Mark all PCI regions associated with PCI device @pdev as being reserved
4147 * by owner @res_name. Do not access any address inside the PCI regions
4148 * unless this call returns successfully.
4149 *
4150 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4151 * and the sysfs MMIO access will not be allowed.
4152 *
4153 * Returns 0 on success, or %EBUSY on error. A warning message is also
4154 * printed on failure.
4155 *
4156 * NOTE:
4157 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4158 * when pcim_enable_device() has been called in advance. This hybrid feature is
4159 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4160 */
4161int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4162{
4163 return pci_request_selected_regions_exclusive(pdev,
4164 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4165}
4166EXPORT_SYMBOL(pci_request_regions_exclusive);
4167
4168/*
4169 * Record the PCI IO range (expressed as CPU physical address + size).
4170 * Return a negative value if an error has occurred, zero otherwise
4171 */
4172int pci_register_io_range(const struct fwnode_handle *fwnode, phys_addr_t addr,
4173 resource_size_t size)
4174{
4175 int ret = 0;
4176#ifdef PCI_IOBASE
4177 struct logic_pio_hwaddr *range;
4178
4179 if (!size || addr + size < addr)
4180 return -EINVAL;
4181
4182 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4183 if (!range)
4184 return -ENOMEM;
4185
4186 range->fwnode = fwnode;
4187 range->size = size;
4188 range->hw_start = addr;
4189 range->flags = LOGIC_PIO_CPU_MMIO;
4190
4191 ret = logic_pio_register_range(range);
4192 if (ret)
4193 kfree(range);
4194
4195 /* Ignore duplicates due to deferred probing */
4196 if (ret == -EEXIST)
4197 ret = 0;
4198#endif
4199
4200 return ret;
4201}
4202
4203phys_addr_t pci_pio_to_address(unsigned long pio)
4204{
4205#ifdef PCI_IOBASE
4206 if (pio < MMIO_UPPER_LIMIT)
4207 return logic_pio_to_hwaddr(pio);
4208#endif
4209
4210 return (phys_addr_t) OF_BAD_ADDR;
4211}
4212EXPORT_SYMBOL_GPL(pci_pio_to_address);
4213
4214unsigned long __weak pci_address_to_pio(phys_addr_t address)
4215{
4216#ifdef PCI_IOBASE
4217 return logic_pio_trans_cpuaddr(address);
4218#else
4219 if (address > IO_SPACE_LIMIT)
4220 return (unsigned long)-1;
4221
4222 return (unsigned long) address;
4223#endif
4224}
4225
4226/**
4227 * pci_remap_iospace - Remap the memory mapped I/O space
4228 * @res: Resource describing the I/O space
4229 * @phys_addr: physical address of range to be mapped
4230 *
4231 * Remap the memory mapped I/O space described by the @res and the CPU
4232 * physical address @phys_addr into virtual address space. Only
4233 * architectures that have memory mapped IO functions defined (and the
4234 * PCI_IOBASE value defined) should call this function.
4235 */
4236#ifndef pci_remap_iospace
4237int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4238{
4239#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4240 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4241
4242 if (!(res->flags & IORESOURCE_IO))
4243 return -EINVAL;
4244
4245 if (res->end > IO_SPACE_LIMIT)
4246 return -EINVAL;
4247
4248 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4249 pgprot_device(PAGE_KERNEL));
4250#else
4251 /*
4252 * This architecture does not have memory mapped I/O space,
4253 * so this function should never be called
4254 */
4255 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4256 return -ENODEV;
4257#endif
4258}
4259EXPORT_SYMBOL(pci_remap_iospace);
4260#endif
4261
4262/**
4263 * pci_unmap_iospace - Unmap the memory mapped I/O space
4264 * @res: resource to be unmapped
4265 *
4266 * Unmap the CPU virtual address @res from virtual address space. Only
4267 * architectures that have memory mapped IO functions defined (and the
4268 * PCI_IOBASE value defined) should call this function.
4269 */
4270void pci_unmap_iospace(struct resource *res)
4271{
4272#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4273 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4274
4275 vunmap_range(vaddr, vaddr + resource_size(res));
4276#endif
4277}
4278EXPORT_SYMBOL(pci_unmap_iospace);
4279
4280static void __pci_set_master(struct pci_dev *dev, bool enable)
4281{
4282 u16 old_cmd, cmd;
4283
4284 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4285 if (enable)
4286 cmd = old_cmd | PCI_COMMAND_MASTER;
4287 else
4288 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4289 if (cmd != old_cmd) {
4290 pci_dbg(dev, "%s bus mastering\n",
4291 enable ? "enabling" : "disabling");
4292 pci_write_config_word(dev, PCI_COMMAND, cmd);
4293 }
4294 dev->is_busmaster = enable;
4295}
4296
4297/**
4298 * pcibios_setup - process "pci=" kernel boot arguments
4299 * @str: string used to pass in "pci=" kernel boot arguments
4300 *
4301 * Process kernel boot arguments. This is the default implementation.
4302 * Architecture specific implementations can override this as necessary.
4303 */
4304char * __weak __init pcibios_setup(char *str)
4305{
4306 return str;
4307}
4308
4309/**
4310 * pcibios_set_master - enable PCI bus-mastering for device dev
4311 * @dev: the PCI device to enable
4312 *
4313 * Enables PCI bus-mastering for the device. This is the default
4314 * implementation. Architecture specific implementations can override
4315 * this if necessary.
4316 */
4317void __weak pcibios_set_master(struct pci_dev *dev)
4318{
4319 u8 lat;
4320
4321 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4322 if (pci_is_pcie(dev))
4323 return;
4324
4325 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4326 if (lat < 16)
4327 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4328 else if (lat > pcibios_max_latency)
4329 lat = pcibios_max_latency;
4330 else
4331 return;
4332
4333 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4334}
4335
4336/**
4337 * pci_set_master - enables bus-mastering for device dev
4338 * @dev: the PCI device to enable
4339 *
4340 * Enables bus-mastering on the device and calls pcibios_set_master()
4341 * to do the needed arch specific settings.
4342 */
4343void pci_set_master(struct pci_dev *dev)
4344{
4345 __pci_set_master(dev, true);
4346 pcibios_set_master(dev);
4347}
4348EXPORT_SYMBOL(pci_set_master);
4349
4350/**
4351 * pci_clear_master - disables bus-mastering for device dev
4352 * @dev: the PCI device to disable
4353 */
4354void pci_clear_master(struct pci_dev *dev)
4355{
4356 __pci_set_master(dev, false);
4357}
4358EXPORT_SYMBOL(pci_clear_master);
4359
4360/**
4361 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4362 * @dev: the PCI device for which MWI is to be enabled
4363 *
4364 * Helper function for pci_set_mwi.
4365 * Originally copied from drivers/net/acenic.c.
4366 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4367 *
4368 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4369 */
4370int pci_set_cacheline_size(struct pci_dev *dev)
4371{
4372 u8 cacheline_size;
4373
4374 if (!pci_cache_line_size)
4375 return -EINVAL;
4376
4377 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4378 equal to or multiple of the right value. */
4379 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4380 if (cacheline_size >= pci_cache_line_size &&
4381 (cacheline_size % pci_cache_line_size) == 0)
4382 return 0;
4383
4384 /* Write the correct value. */
4385 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4386 /* Read it back. */
4387 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4388 if (cacheline_size == pci_cache_line_size)
4389 return 0;
4390
4391 pci_dbg(dev, "cache line size of %d is not supported\n",
4392 pci_cache_line_size << 2);
4393
4394 return -EINVAL;
4395}
4396EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4397
4398/**
4399 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4400 * @dev: the PCI device for which MWI is enabled
4401 *
4402 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4403 *
4404 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4405 */
4406int pci_set_mwi(struct pci_dev *dev)
4407{
4408#ifdef PCI_DISABLE_MWI
4409 return 0;
4410#else
4411 int rc;
4412 u16 cmd;
4413
4414 rc = pci_set_cacheline_size(dev);
4415 if (rc)
4416 return rc;
4417
4418 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4419 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4420 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4421 cmd |= PCI_COMMAND_INVALIDATE;
4422 pci_write_config_word(dev, PCI_COMMAND, cmd);
4423 }
4424 return 0;
4425#endif
4426}
4427EXPORT_SYMBOL(pci_set_mwi);
4428
4429/**
4430 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4431 * @dev: the PCI device for which MWI is enabled
4432 *
4433 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4434 * Callers are not required to check the return value.
4435 *
4436 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4437 */
4438int pci_try_set_mwi(struct pci_dev *dev)
4439{
4440#ifdef PCI_DISABLE_MWI
4441 return 0;
4442#else
4443 return pci_set_mwi(dev);
4444#endif
4445}
4446EXPORT_SYMBOL(pci_try_set_mwi);
4447
4448/**
4449 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4450 * @dev: the PCI device to disable
4451 *
4452 * Disables PCI Memory-Write-Invalidate transaction on the device
4453 */
4454void pci_clear_mwi(struct pci_dev *dev)
4455{
4456#ifndef PCI_DISABLE_MWI
4457 u16 cmd;
4458
4459 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4460 if (cmd & PCI_COMMAND_INVALIDATE) {
4461 cmd &= ~PCI_COMMAND_INVALIDATE;
4462 pci_write_config_word(dev, PCI_COMMAND, cmd);
4463 }
4464#endif
4465}
4466EXPORT_SYMBOL(pci_clear_mwi);
4467
4468/**
4469 * pci_disable_parity - disable parity checking for device
4470 * @dev: the PCI device to operate on
4471 *
4472 * Disable parity checking for device @dev
4473 */
4474void pci_disable_parity(struct pci_dev *dev)
4475{
4476 u16 cmd;
4477
4478 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4479 if (cmd & PCI_COMMAND_PARITY) {
4480 cmd &= ~PCI_COMMAND_PARITY;
4481 pci_write_config_word(dev, PCI_COMMAND, cmd);
4482 }
4483}
4484
4485/**
4486 * pci_intx - enables/disables PCI INTx for device dev
4487 * @pdev: the PCI device to operate on
4488 * @enable: boolean: whether to enable or disable PCI INTx
4489 *
4490 * Enables/disables PCI INTx for device @pdev
4491 */
4492void pci_intx(struct pci_dev *pdev, int enable)
4493{
4494 u16 pci_command, new;
4495
4496 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4497
4498 if (enable)
4499 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4500 else
4501 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4502
4503 if (new == pci_command)
4504 return;
4505
4506 pci_write_config_word(pdev, PCI_COMMAND, new);
4507}
4508EXPORT_SYMBOL_GPL(pci_intx);
4509
4510/**
4511 * pci_wait_for_pending_transaction - wait for pending transaction
4512 * @dev: the PCI device to operate on
4513 *
4514 * Return 0 if transaction is pending 1 otherwise.
4515 */
4516int pci_wait_for_pending_transaction(struct pci_dev *dev)
4517{
4518 if (!pci_is_pcie(dev))
4519 return 1;
4520
4521 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4522 PCI_EXP_DEVSTA_TRPND);
4523}
4524EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4525
4526/**
4527 * pcie_flr - initiate a PCIe function level reset
4528 * @dev: device to reset
4529 *
4530 * Initiate a function level reset unconditionally on @dev without
4531 * checking any flags and DEVCAP
4532 */
4533int pcie_flr(struct pci_dev *dev)
4534{
4535 if (!pci_wait_for_pending_transaction(dev))
4536 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4537
4538 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4539
4540 if (dev->imm_ready)
4541 return 0;
4542
4543 /*
4544 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4545 * 100ms, but may silently discard requests while the FLR is in
4546 * progress. Wait 100ms before trying to access the device.
4547 */
4548 msleep(100);
4549
4550 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4551}
4552EXPORT_SYMBOL_GPL(pcie_flr);
4553
4554/**
4555 * pcie_reset_flr - initiate a PCIe function level reset
4556 * @dev: device to reset
4557 * @probe: if true, return 0 if device can be reset this way
4558 *
4559 * Initiate a function level reset on @dev.
4560 */
4561int pcie_reset_flr(struct pci_dev *dev, bool probe)
4562{
4563 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4564 return -ENOTTY;
4565
4566 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4567 return -ENOTTY;
4568
4569 if (probe)
4570 return 0;
4571
4572 return pcie_flr(dev);
4573}
4574EXPORT_SYMBOL_GPL(pcie_reset_flr);
4575
4576static int pci_af_flr(struct pci_dev *dev, bool probe)
4577{
4578 int pos;
4579 u8 cap;
4580
4581 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4582 if (!pos)
4583 return -ENOTTY;
4584
4585 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4586 return -ENOTTY;
4587
4588 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4589 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4590 return -ENOTTY;
4591
4592 if (probe)
4593 return 0;
4594
4595 /*
4596 * Wait for Transaction Pending bit to clear. A word-aligned test
4597 * is used, so we use the control offset rather than status and shift
4598 * the test bit to match.
4599 */
4600 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4601 PCI_AF_STATUS_TP << 8))
4602 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4603
4604 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4605
4606 if (dev->imm_ready)
4607 return 0;
4608
4609 /*
4610 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4611 * updated 27 July 2006; a device must complete an FLR within
4612 * 100ms, but may silently discard requests while the FLR is in
4613 * progress. Wait 100ms before trying to access the device.
4614 */
4615 msleep(100);
4616
4617 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4618}
4619
4620/**
4621 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4622 * @dev: Device to reset.
4623 * @probe: if true, return 0 if the device can be reset this way.
4624 *
4625 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4626 * unset, it will be reinitialized internally when going from PCI_D3hot to
4627 * PCI_D0. If that's the case and the device is not in a low-power state
4628 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4629 *
4630 * NOTE: This causes the caller to sleep for twice the device power transition
4631 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4632 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4633 * Moreover, only devices in D0 can be reset by this function.
4634 */
4635static int pci_pm_reset(struct pci_dev *dev, bool probe)
4636{
4637 u16 csr;
4638
4639 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4640 return -ENOTTY;
4641
4642 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4643 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4644 return -ENOTTY;
4645
4646 if (probe)
4647 return 0;
4648
4649 if (dev->current_state != PCI_D0)
4650 return -EINVAL;
4651
4652 csr &= ~PCI_PM_CTRL_STATE_MASK;
4653 csr |= PCI_D3hot;
4654 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4655 pci_dev_d3_sleep(dev);
4656
4657 csr &= ~PCI_PM_CTRL_STATE_MASK;
4658 csr |= PCI_D0;
4659 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4660 pci_dev_d3_sleep(dev);
4661
4662 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4663}
4664
4665/**
4666 * pcie_wait_for_link_status - Wait for link status change
4667 * @pdev: Device whose link to wait for.
4668 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4669 * @active: Waiting for active or inactive?
4670 *
4671 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4672 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4673 */
4674static int pcie_wait_for_link_status(struct pci_dev *pdev,
4675 bool use_lt, bool active)
4676{
4677 u16 lnksta_mask, lnksta_match;
4678 unsigned long end_jiffies;
4679 u16 lnksta;
4680
4681 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4682 lnksta_match = active ? lnksta_mask : 0;
4683
4684 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4685 do {
4686 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4687 if ((lnksta & lnksta_mask) == lnksta_match)
4688 return 0;
4689 msleep(1);
4690 } while (time_before(jiffies, end_jiffies));
4691
4692 return -ETIMEDOUT;
4693}
4694
4695/**
4696 * pcie_retrain_link - Request a link retrain and wait for it to complete
4697 * @pdev: Device whose link to retrain.
4698 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4699 *
4700 * Retrain completion status is retrieved from the Link Status Register
4701 * according to @use_lt. It is not verified whether the use of the DLLLA
4702 * bit is valid.
4703 *
4704 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4705 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4706 */
4707int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4708{
4709 int rc;
4710
4711 /*
4712 * Ensure the updated LNKCTL parameters are used during link
4713 * training by checking that there is no ongoing link training that
4714 * may have started before link parameters were changed, so as to
4715 * avoid LTSSM race as recommended in Implementation Note at the end
4716 * of PCIe r6.1 sec 7.5.3.7.
4717 */
4718 rc = pcie_wait_for_link_status(pdev, true, false);
4719 if (rc)
4720 return rc;
4721
4722 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4723 if (pdev->clear_retrain_link) {
4724 /*
4725 * Due to an erratum in some devices the Retrain Link bit
4726 * needs to be cleared again manually to allow the link
4727 * training to succeed.
4728 */
4729 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4730 }
4731
4732 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4733
4734 /*
4735 * Clear LBMS after a manual retrain so that the bit can be used
4736 * to track link speed or width changes made by hardware itself
4737 * in attempt to correct unreliable link operation.
4738 */
4739 pcie_reset_lbms_count(pdev);
4740 return rc;
4741}
4742
4743/**
4744 * pcie_wait_for_link_delay - Wait until link is active or inactive
4745 * @pdev: Bridge device
4746 * @active: waiting for active or inactive?
4747 * @delay: Delay to wait after link has become active (in ms)
4748 *
4749 * Use this to wait till link becomes active or inactive.
4750 */
4751static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4752 int delay)
4753{
4754 int rc;
4755
4756 /*
4757 * Some controllers might not implement link active reporting. In this
4758 * case, we wait for 1000 ms + any delay requested by the caller.
4759 */
4760 if (!pdev->link_active_reporting) {
4761 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4762 return true;
4763 }
4764
4765 /*
4766 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4767 * after which we should expect an link active if the reset was
4768 * successful. If so, software must wait a minimum 100ms before sending
4769 * configuration requests to devices downstream this port.
4770 *
4771 * If the link fails to activate, either the device was physically
4772 * removed or the link is permanently failed.
4773 */
4774 if (active)
4775 msleep(20);
4776 rc = pcie_wait_for_link_status(pdev, false, active);
4777 if (active) {
4778 if (rc)
4779 rc = pcie_failed_link_retrain(pdev);
4780 if (rc)
4781 return false;
4782
4783 msleep(delay);
4784 return true;
4785 }
4786
4787 if (rc)
4788 return false;
4789
4790 return true;
4791}
4792
4793/**
4794 * pcie_wait_for_link - Wait until link is active or inactive
4795 * @pdev: Bridge device
4796 * @active: waiting for active or inactive?
4797 *
4798 * Use this to wait till link becomes active or inactive.
4799 */
4800bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4801{
4802 return pcie_wait_for_link_delay(pdev, active, 100);
4803}
4804
4805/*
4806 * Find maximum D3cold delay required by all the devices on the bus. The
4807 * spec says 100 ms, but firmware can lower it and we allow drivers to
4808 * increase it as well.
4809 *
4810 * Called with @pci_bus_sem locked for reading.
4811 */
4812static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4813{
4814 const struct pci_dev *pdev;
4815 int min_delay = 100;
4816 int max_delay = 0;
4817
4818 list_for_each_entry(pdev, &bus->devices, bus_list) {
4819 if (pdev->d3cold_delay < min_delay)
4820 min_delay = pdev->d3cold_delay;
4821 if (pdev->d3cold_delay > max_delay)
4822 max_delay = pdev->d3cold_delay;
4823 }
4824
4825 return max(min_delay, max_delay);
4826}
4827
4828/**
4829 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4830 * @dev: PCI bridge
4831 * @reset_type: reset type in human-readable form
4832 *
4833 * Handle necessary delays before access to the devices on the secondary
4834 * side of the bridge are permitted after D3cold to D0 transition
4835 * or Conventional Reset.
4836 *
4837 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4838 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4839 * 4.3.2.
4840 *
4841 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4842 * failed to become accessible.
4843 */
4844int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4845{
4846 struct pci_dev *child __free(pci_dev_put) = NULL;
4847 int delay;
4848
4849 if (pci_dev_is_disconnected(dev))
4850 return 0;
4851
4852 if (!pci_is_bridge(dev))
4853 return 0;
4854
4855 down_read(&pci_bus_sem);
4856
4857 /*
4858 * We only deal with devices that are present currently on the bus.
4859 * For any hot-added devices the access delay is handled in pciehp
4860 * board_added(). In case of ACPI hotplug the firmware is expected
4861 * to configure the devices before OS is notified.
4862 */
4863 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4864 up_read(&pci_bus_sem);
4865 return 0;
4866 }
4867
4868 /* Take d3cold_delay requirements into account */
4869 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4870 if (!delay) {
4871 up_read(&pci_bus_sem);
4872 return 0;
4873 }
4874
4875 child = pci_dev_get(list_first_entry(&dev->subordinate->devices,
4876 struct pci_dev, bus_list));
4877 up_read(&pci_bus_sem);
4878
4879 /*
4880 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4881 * accessing the device after reset (that is 1000 ms + 100 ms).
4882 */
4883 if (!pci_is_pcie(dev)) {
4884 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4885 msleep(1000 + delay);
4886 return 0;
4887 }
4888
4889 /*
4890 * For PCIe downstream and root ports that do not support speeds
4891 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4892 * speeds (gen3) we need to wait first for the data link layer to
4893 * become active.
4894 *
4895 * However, 100 ms is the minimum and the PCIe spec says the
4896 * software must allow at least 1s before it can determine that the
4897 * device that did not respond is a broken device. Also device can
4898 * take longer than that to respond if it indicates so through Request
4899 * Retry Status completions.
4900 *
4901 * Therefore we wait for 100 ms and check for the device presence
4902 * until the timeout expires.
4903 */
4904 if (!pcie_downstream_port(dev))
4905 return 0;
4906
4907 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4908 u16 status;
4909
4910 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4911 msleep(delay);
4912
4913 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4914 return 0;
4915
4916 /*
4917 * If the port supports active link reporting we now check
4918 * whether the link is active and if not bail out early with
4919 * the assumption that the device is not present anymore.
4920 */
4921 if (!dev->link_active_reporting)
4922 return -ENOTTY;
4923
4924 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4925 if (!(status & PCI_EXP_LNKSTA_DLLLA))
4926 return -ENOTTY;
4927
4928 return pci_dev_wait(child, reset_type,
4929 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4930 }
4931
4932 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4933 delay);
4934 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4935 /* Did not train, no need to wait any further */
4936 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4937 return -ENOTTY;
4938 }
4939
4940 return pci_dev_wait(child, reset_type,
4941 PCIE_RESET_READY_POLL_MS - delay);
4942}
4943
4944void pci_reset_secondary_bus(struct pci_dev *dev)
4945{
4946 u16 ctrl;
4947
4948 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4949 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4950 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4951
4952 /*
4953 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4954 * this to 2ms to ensure that we meet the minimum requirement.
4955 */
4956 msleep(2);
4957
4958 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4959 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4960}
4961
4962void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4963{
4964 pci_reset_secondary_bus(dev);
4965}
4966
4967/**
4968 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4969 * @dev: Bridge device
4970 *
4971 * Use the bridge control register to assert reset on the secondary bus.
4972 * Devices on the secondary bus are left in power-on state.
4973 */
4974int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4975{
4976 if (!dev->block_cfg_access)
4977 pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n",
4978 __builtin_return_address(0));
4979 pcibios_reset_secondary_bus(dev);
4980
4981 return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
4982}
4983EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4984
4985static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4986{
4987 struct pci_dev *pdev;
4988
4989 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4990 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4991 return -ENOTTY;
4992
4993 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4994 if (pdev != dev)
4995 return -ENOTTY;
4996
4997 if (probe)
4998 return 0;
4999
5000 return pci_bridge_secondary_bus_reset(dev->bus->self);
5001}
5002
5003static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5004{
5005 int rc = -ENOTTY;
5006
5007 if (!hotplug || !try_module_get(hotplug->owner))
5008 return rc;
5009
5010 if (hotplug->ops->reset_slot)
5011 rc = hotplug->ops->reset_slot(hotplug, probe);
5012
5013 module_put(hotplug->owner);
5014
5015 return rc;
5016}
5017
5018static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5019{
5020 if (dev->multifunction || dev->subordinate || !dev->slot ||
5021 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5022 return -ENOTTY;
5023
5024 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5025}
5026
5027static u16 cxl_port_dvsec(struct pci_dev *dev)
5028{
5029 return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL,
5030 PCI_DVSEC_CXL_PORT);
5031}
5032
5033static bool cxl_sbr_masked(struct pci_dev *dev)
5034{
5035 u16 dvsec, reg;
5036 int rc;
5037
5038 dvsec = cxl_port_dvsec(dev);
5039 if (!dvsec)
5040 return false;
5041
5042 rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®);
5043 if (rc || PCI_POSSIBLE_ERROR(reg))
5044 return false;
5045
5046 /*
5047 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR
5048 * bit in Bridge Control has no effect. When 1, the Port generates
5049 * hot reset when the SBR bit is set to 1.
5050 */
5051 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR)
5052 return false;
5053
5054 return true;
5055}
5056
5057static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5058{
5059 struct pci_dev *bridge = pci_upstream_bridge(dev);
5060 int rc;
5061
5062 /*
5063 * If "dev" is below a CXL port that has SBR control masked, SBR
5064 * won't do anything, so return error.
5065 */
5066 if (bridge && cxl_sbr_masked(bridge)) {
5067 if (probe)
5068 return 0;
5069
5070 return -ENOTTY;
5071 }
5072
5073 rc = pci_dev_reset_slot_function(dev, probe);
5074 if (rc != -ENOTTY)
5075 return rc;
5076 return pci_parent_bus_reset(dev, probe);
5077}
5078
5079static int cxl_reset_bus_function(struct pci_dev *dev, bool probe)
5080{
5081 struct pci_dev *bridge;
5082 u16 dvsec, reg, val;
5083 int rc;
5084
5085 bridge = pci_upstream_bridge(dev);
5086 if (!bridge)
5087 return -ENOTTY;
5088
5089 dvsec = cxl_port_dvsec(bridge);
5090 if (!dvsec)
5091 return -ENOTTY;
5092
5093 if (probe)
5094 return 0;
5095
5096 rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®);
5097 if (rc)
5098 return -ENOTTY;
5099
5100 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) {
5101 val = reg;
5102 } else {
5103 val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR;
5104 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5105 val);
5106 }
5107
5108 rc = pci_reset_bus_function(dev, probe);
5109
5110 if (reg != val)
5111 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5112 reg);
5113
5114 return rc;
5115}
5116
5117void pci_dev_lock(struct pci_dev *dev)
5118{
5119 /* block PM suspend, driver probe, etc. */
5120 device_lock(&dev->dev);
5121 pci_cfg_access_lock(dev);
5122}
5123EXPORT_SYMBOL_GPL(pci_dev_lock);
5124
5125/* Return 1 on successful lock, 0 on contention */
5126int pci_dev_trylock(struct pci_dev *dev)
5127{
5128 if (device_trylock(&dev->dev)) {
5129 if (pci_cfg_access_trylock(dev))
5130 return 1;
5131 device_unlock(&dev->dev);
5132 }
5133
5134 return 0;
5135}
5136EXPORT_SYMBOL_GPL(pci_dev_trylock);
5137
5138void pci_dev_unlock(struct pci_dev *dev)
5139{
5140 pci_cfg_access_unlock(dev);
5141 device_unlock(&dev->dev);
5142}
5143EXPORT_SYMBOL_GPL(pci_dev_unlock);
5144
5145static void pci_dev_save_and_disable(struct pci_dev *dev)
5146{
5147 const struct pci_error_handlers *err_handler =
5148 dev->driver ? dev->driver->err_handler : NULL;
5149
5150 /*
5151 * dev->driver->err_handler->reset_prepare() is protected against
5152 * races with ->remove() by the device lock, which must be held by
5153 * the caller.
5154 */
5155 if (err_handler && err_handler->reset_prepare)
5156 err_handler->reset_prepare(dev);
5157 else if (dev->driver)
5158 pci_warn(dev, "resetting");
5159
5160 /*
5161 * Wake-up device prior to save. PM registers default to D0 after
5162 * reset and a simple register restore doesn't reliably return
5163 * to a non-D0 state anyway.
5164 */
5165 pci_set_power_state(dev, PCI_D0);
5166
5167 pci_save_state(dev);
5168 /*
5169 * Disable the device by clearing the Command register, except for
5170 * INTx-disable which is set. This not only disables MMIO and I/O port
5171 * BARs, but also prevents the device from being Bus Master, preventing
5172 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5173 * compliant devices, INTx-disable prevents legacy interrupts.
5174 */
5175 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5176}
5177
5178static void pci_dev_restore(struct pci_dev *dev)
5179{
5180 const struct pci_error_handlers *err_handler =
5181 dev->driver ? dev->driver->err_handler : NULL;
5182
5183 pci_restore_state(dev);
5184
5185 /*
5186 * dev->driver->err_handler->reset_done() is protected against
5187 * races with ->remove() by the device lock, which must be held by
5188 * the caller.
5189 */
5190 if (err_handler && err_handler->reset_done)
5191 err_handler->reset_done(dev);
5192 else if (dev->driver)
5193 pci_warn(dev, "reset done");
5194}
5195
5196/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5197static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5198 { },
5199 { pci_dev_specific_reset, .name = "device_specific" },
5200 { pci_dev_acpi_reset, .name = "acpi" },
5201 { pcie_reset_flr, .name = "flr" },
5202 { pci_af_flr, .name = "af_flr" },
5203 { pci_pm_reset, .name = "pm" },
5204 { pci_reset_bus_function, .name = "bus" },
5205 { cxl_reset_bus_function, .name = "cxl_bus" },
5206};
5207
5208static ssize_t reset_method_show(struct device *dev,
5209 struct device_attribute *attr, char *buf)
5210{
5211 struct pci_dev *pdev = to_pci_dev(dev);
5212 ssize_t len = 0;
5213 int i, m;
5214
5215 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5216 m = pdev->reset_methods[i];
5217 if (!m)
5218 break;
5219
5220 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5221 pci_reset_fn_methods[m].name);
5222 }
5223
5224 if (len)
5225 len += sysfs_emit_at(buf, len, "\n");
5226
5227 return len;
5228}
5229
5230static int reset_method_lookup(const char *name)
5231{
5232 int m;
5233
5234 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5235 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5236 return m;
5237 }
5238
5239 return 0; /* not found */
5240}
5241
5242static ssize_t reset_method_store(struct device *dev,
5243 struct device_attribute *attr,
5244 const char *buf, size_t count)
5245{
5246 struct pci_dev *pdev = to_pci_dev(dev);
5247 char *options, *tmp_options, *name;
5248 int m, n;
5249 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5250
5251 if (sysfs_streq(buf, "")) {
5252 pdev->reset_methods[0] = 0;
5253 pci_warn(pdev, "All device reset methods disabled by user");
5254 return count;
5255 }
5256
5257 if (sysfs_streq(buf, "default")) {
5258 pci_init_reset_methods(pdev);
5259 return count;
5260 }
5261
5262 options = kstrndup(buf, count, GFP_KERNEL);
5263 if (!options)
5264 return -ENOMEM;
5265
5266 n = 0;
5267 tmp_options = options;
5268 while ((name = strsep(&tmp_options, " ")) != NULL) {
5269 if (sysfs_streq(name, ""))
5270 continue;
5271
5272 name = strim(name);
5273
5274 m = reset_method_lookup(name);
5275 if (!m) {
5276 pci_err(pdev, "Invalid reset method '%s'", name);
5277 goto error;
5278 }
5279
5280 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5281 pci_err(pdev, "Unsupported reset method '%s'", name);
5282 goto error;
5283 }
5284
5285 if (n == PCI_NUM_RESET_METHODS - 1) {
5286 pci_err(pdev, "Too many reset methods\n");
5287 goto error;
5288 }
5289
5290 reset_methods[n++] = m;
5291 }
5292
5293 reset_methods[n] = 0;
5294
5295 /* Warn if dev-specific supported but not highest priority */
5296 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5297 reset_methods[0] != 1)
5298 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5299 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5300 kfree(options);
5301 return count;
5302
5303error:
5304 /* Leave previous methods unchanged */
5305 kfree(options);
5306 return -EINVAL;
5307}
5308static DEVICE_ATTR_RW(reset_method);
5309
5310static struct attribute *pci_dev_reset_method_attrs[] = {
5311 &dev_attr_reset_method.attr,
5312 NULL,
5313};
5314
5315static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5316 struct attribute *a, int n)
5317{
5318 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5319
5320 if (!pci_reset_supported(pdev))
5321 return 0;
5322
5323 return a->mode;
5324}
5325
5326const struct attribute_group pci_dev_reset_method_attr_group = {
5327 .attrs = pci_dev_reset_method_attrs,
5328 .is_visible = pci_dev_reset_method_attr_is_visible,
5329};
5330
5331/**
5332 * __pci_reset_function_locked - reset a PCI device function while holding
5333 * the @dev mutex lock.
5334 * @dev: PCI device to reset
5335 *
5336 * Some devices allow an individual function to be reset without affecting
5337 * other functions in the same device. The PCI device must be responsive
5338 * to PCI config space in order to use this function.
5339 *
5340 * The device function is presumed to be unused and the caller is holding
5341 * the device mutex lock when this function is called.
5342 *
5343 * Resetting the device will make the contents of PCI configuration space
5344 * random, so any caller of this must be prepared to reinitialise the
5345 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5346 * etc.
5347 *
5348 * Returns 0 if the device function was successfully reset or negative if the
5349 * device doesn't support resetting a single function.
5350 */
5351int __pci_reset_function_locked(struct pci_dev *dev)
5352{
5353 int i, m, rc;
5354
5355 might_sleep();
5356
5357 /*
5358 * A reset method returns -ENOTTY if it doesn't support this device and
5359 * we should try the next method.
5360 *
5361 * If it returns 0 (success), we're finished. If it returns any other
5362 * error, we're also finished: this indicates that further reset
5363 * mechanisms might be broken on the device.
5364 */
5365 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5366 m = dev->reset_methods[i];
5367 if (!m)
5368 return -ENOTTY;
5369
5370 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5371 if (!rc)
5372 return 0;
5373 if (rc != -ENOTTY)
5374 return rc;
5375 }
5376
5377 return -ENOTTY;
5378}
5379EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5380
5381/**
5382 * pci_init_reset_methods - check whether device can be safely reset
5383 * and store supported reset mechanisms.
5384 * @dev: PCI device to check for reset mechanisms
5385 *
5386 * Some devices allow an individual function to be reset without affecting
5387 * other functions in the same device. The PCI device must be in D0-D3hot
5388 * state.
5389 *
5390 * Stores reset mechanisms supported by device in reset_methods byte array
5391 * which is a member of struct pci_dev.
5392 */
5393void pci_init_reset_methods(struct pci_dev *dev)
5394{
5395 int m, i, rc;
5396
5397 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5398
5399 might_sleep();
5400
5401 i = 0;
5402 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5403 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5404 if (!rc)
5405 dev->reset_methods[i++] = m;
5406 else if (rc != -ENOTTY)
5407 break;
5408 }
5409
5410 dev->reset_methods[i] = 0;
5411}
5412
5413/**
5414 * pci_reset_function - quiesce and reset a PCI device function
5415 * @dev: PCI device to reset
5416 *
5417 * Some devices allow an individual function to be reset without affecting
5418 * other functions in the same device. The PCI device must be responsive
5419 * to PCI config space in order to use this function.
5420 *
5421 * This function does not just reset the PCI portion of a device, but
5422 * clears all the state associated with the device. This function differs
5423 * from __pci_reset_function_locked() in that it saves and restores device state
5424 * over the reset and takes the PCI device lock.
5425 *
5426 * Returns 0 if the device function was successfully reset or negative if the
5427 * device doesn't support resetting a single function.
5428 */
5429int pci_reset_function(struct pci_dev *dev)
5430{
5431 struct pci_dev *bridge;
5432 int rc;
5433
5434 if (!pci_reset_supported(dev))
5435 return -ENOTTY;
5436
5437 /*
5438 * If there's no upstream bridge, no locking is needed since there is
5439 * no upstream bridge configuration to hold consistent.
5440 */
5441 bridge = pci_upstream_bridge(dev);
5442 if (bridge)
5443 pci_dev_lock(bridge);
5444
5445 pci_dev_lock(dev);
5446 pci_dev_save_and_disable(dev);
5447
5448 rc = __pci_reset_function_locked(dev);
5449
5450 pci_dev_restore(dev);
5451 pci_dev_unlock(dev);
5452
5453 if (bridge)
5454 pci_dev_unlock(bridge);
5455
5456 return rc;
5457}
5458EXPORT_SYMBOL_GPL(pci_reset_function);
5459
5460/**
5461 * pci_reset_function_locked - quiesce and reset a PCI device function
5462 * @dev: PCI device to reset
5463 *
5464 * Some devices allow an individual function to be reset without affecting
5465 * other functions in the same device. The PCI device must be responsive
5466 * to PCI config space in order to use this function.
5467 *
5468 * This function does not just reset the PCI portion of a device, but
5469 * clears all the state associated with the device. This function differs
5470 * from __pci_reset_function_locked() in that it saves and restores device state
5471 * over the reset. It also differs from pci_reset_function() in that it
5472 * requires the PCI device lock to be held.
5473 *
5474 * Returns 0 if the device function was successfully reset or negative if the
5475 * device doesn't support resetting a single function.
5476 */
5477int pci_reset_function_locked(struct pci_dev *dev)
5478{
5479 int rc;
5480
5481 if (!pci_reset_supported(dev))
5482 return -ENOTTY;
5483
5484 pci_dev_save_and_disable(dev);
5485
5486 rc = __pci_reset_function_locked(dev);
5487
5488 pci_dev_restore(dev);
5489
5490 return rc;
5491}
5492EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5493
5494/**
5495 * pci_try_reset_function - quiesce and reset a PCI device function
5496 * @dev: PCI device to reset
5497 *
5498 * Same as above, except return -EAGAIN if unable to lock device.
5499 */
5500int pci_try_reset_function(struct pci_dev *dev)
5501{
5502 int rc;
5503
5504 if (!pci_reset_supported(dev))
5505 return -ENOTTY;
5506
5507 if (!pci_dev_trylock(dev))
5508 return -EAGAIN;
5509
5510 pci_dev_save_and_disable(dev);
5511 rc = __pci_reset_function_locked(dev);
5512 pci_dev_restore(dev);
5513 pci_dev_unlock(dev);
5514
5515 return rc;
5516}
5517EXPORT_SYMBOL_GPL(pci_try_reset_function);
5518
5519/* Do any devices on or below this bus prevent a bus reset? */
5520static bool pci_bus_resettable(struct pci_bus *bus)
5521{
5522 struct pci_dev *dev;
5523
5524
5525 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5526 return false;
5527
5528 list_for_each_entry(dev, &bus->devices, bus_list) {
5529 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5530 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5531 return false;
5532 }
5533
5534 return true;
5535}
5536
5537/* Lock devices from the top of the tree down */
5538static void pci_bus_lock(struct pci_bus *bus)
5539{
5540 struct pci_dev *dev;
5541
5542 pci_dev_lock(bus->self);
5543 list_for_each_entry(dev, &bus->devices, bus_list) {
5544 if (dev->subordinate)
5545 pci_bus_lock(dev->subordinate);
5546 else
5547 pci_dev_lock(dev);
5548 }
5549}
5550
5551/* Unlock devices from the bottom of the tree up */
5552static void pci_bus_unlock(struct pci_bus *bus)
5553{
5554 struct pci_dev *dev;
5555
5556 list_for_each_entry(dev, &bus->devices, bus_list) {
5557 if (dev->subordinate)
5558 pci_bus_unlock(dev->subordinate);
5559 else
5560 pci_dev_unlock(dev);
5561 }
5562 pci_dev_unlock(bus->self);
5563}
5564
5565/* Return 1 on successful lock, 0 on contention */
5566static int pci_bus_trylock(struct pci_bus *bus)
5567{
5568 struct pci_dev *dev;
5569
5570 if (!pci_dev_trylock(bus->self))
5571 return 0;
5572
5573 list_for_each_entry(dev, &bus->devices, bus_list) {
5574 if (dev->subordinate) {
5575 if (!pci_bus_trylock(dev->subordinate))
5576 goto unlock;
5577 } else if (!pci_dev_trylock(dev))
5578 goto unlock;
5579 }
5580 return 1;
5581
5582unlock:
5583 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5584 if (dev->subordinate)
5585 pci_bus_unlock(dev->subordinate);
5586 else
5587 pci_dev_unlock(dev);
5588 }
5589 pci_dev_unlock(bus->self);
5590 return 0;
5591}
5592
5593/* Do any devices on or below this slot prevent a bus reset? */
5594static bool pci_slot_resettable(struct pci_slot *slot)
5595{
5596 struct pci_dev *dev;
5597
5598 if (slot->bus->self &&
5599 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5600 return false;
5601
5602 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5603 if (!dev->slot || dev->slot != slot)
5604 continue;
5605 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5606 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5607 return false;
5608 }
5609
5610 return true;
5611}
5612
5613/* Lock devices from the top of the tree down */
5614static void pci_slot_lock(struct pci_slot *slot)
5615{
5616 struct pci_dev *dev;
5617
5618 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5619 if (!dev->slot || dev->slot != slot)
5620 continue;
5621 if (dev->subordinate)
5622 pci_bus_lock(dev->subordinate);
5623 else
5624 pci_dev_lock(dev);
5625 }
5626}
5627
5628/* Unlock devices from the bottom of the tree up */
5629static void pci_slot_unlock(struct pci_slot *slot)
5630{
5631 struct pci_dev *dev;
5632
5633 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5634 if (!dev->slot || dev->slot != slot)
5635 continue;
5636 if (dev->subordinate)
5637 pci_bus_unlock(dev->subordinate);
5638 pci_dev_unlock(dev);
5639 }
5640}
5641
5642/* Return 1 on successful lock, 0 on contention */
5643static int pci_slot_trylock(struct pci_slot *slot)
5644{
5645 struct pci_dev *dev;
5646
5647 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5648 if (!dev->slot || dev->slot != slot)
5649 continue;
5650 if (dev->subordinate) {
5651 if (!pci_bus_trylock(dev->subordinate)) {
5652 pci_dev_unlock(dev);
5653 goto unlock;
5654 }
5655 } else if (!pci_dev_trylock(dev))
5656 goto unlock;
5657 }
5658 return 1;
5659
5660unlock:
5661 list_for_each_entry_continue_reverse(dev,
5662 &slot->bus->devices, bus_list) {
5663 if (!dev->slot || dev->slot != slot)
5664 continue;
5665 if (dev->subordinate)
5666 pci_bus_unlock(dev->subordinate);
5667 else
5668 pci_dev_unlock(dev);
5669 }
5670 return 0;
5671}
5672
5673/*
5674 * Save and disable devices from the top of the tree down while holding
5675 * the @dev mutex lock for the entire tree.
5676 */
5677static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5678{
5679 struct pci_dev *dev;
5680
5681 list_for_each_entry(dev, &bus->devices, bus_list) {
5682 pci_dev_save_and_disable(dev);
5683 if (dev->subordinate)
5684 pci_bus_save_and_disable_locked(dev->subordinate);
5685 }
5686}
5687
5688/*
5689 * Restore devices from top of the tree down while holding @dev mutex lock
5690 * for the entire tree. Parent bridges need to be restored before we can
5691 * get to subordinate devices.
5692 */
5693static void pci_bus_restore_locked(struct pci_bus *bus)
5694{
5695 struct pci_dev *dev;
5696
5697 list_for_each_entry(dev, &bus->devices, bus_list) {
5698 pci_dev_restore(dev);
5699 if (dev->subordinate) {
5700 pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5701 pci_bus_restore_locked(dev->subordinate);
5702 }
5703 }
5704}
5705
5706/*
5707 * Save and disable devices from the top of the tree down while holding
5708 * the @dev mutex lock for the entire tree.
5709 */
5710static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5711{
5712 struct pci_dev *dev;
5713
5714 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5715 if (!dev->slot || dev->slot != slot)
5716 continue;
5717 pci_dev_save_and_disable(dev);
5718 if (dev->subordinate)
5719 pci_bus_save_and_disable_locked(dev->subordinate);
5720 }
5721}
5722
5723/*
5724 * Restore devices from top of the tree down while holding @dev mutex lock
5725 * for the entire tree. Parent bridges need to be restored before we can
5726 * get to subordinate devices.
5727 */
5728static void pci_slot_restore_locked(struct pci_slot *slot)
5729{
5730 struct pci_dev *dev;
5731
5732 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5733 if (!dev->slot || dev->slot != slot)
5734 continue;
5735 pci_dev_restore(dev);
5736 if (dev->subordinate) {
5737 pci_bridge_wait_for_secondary_bus(dev, "slot reset");
5738 pci_bus_restore_locked(dev->subordinate);
5739 }
5740 }
5741}
5742
5743static int pci_slot_reset(struct pci_slot *slot, bool probe)
5744{
5745 int rc;
5746
5747 if (!slot || !pci_slot_resettable(slot))
5748 return -ENOTTY;
5749
5750 if (!probe)
5751 pci_slot_lock(slot);
5752
5753 might_sleep();
5754
5755 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5756
5757 if (!probe)
5758 pci_slot_unlock(slot);
5759
5760 return rc;
5761}
5762
5763/**
5764 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5765 * @slot: PCI slot to probe
5766 *
5767 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5768 */
5769int pci_probe_reset_slot(struct pci_slot *slot)
5770{
5771 return pci_slot_reset(slot, PCI_RESET_PROBE);
5772}
5773EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5774
5775/**
5776 * __pci_reset_slot - Try to reset a PCI slot
5777 * @slot: PCI slot to reset
5778 *
5779 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5780 * independent of other slots. For instance, some slots may support slot power
5781 * control. In the case of a 1:1 bus to slot architecture, this function may
5782 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5783 * Generally a slot reset should be attempted before a bus reset. All of the
5784 * function of the slot and any subordinate buses behind the slot are reset
5785 * through this function. PCI config space of all devices in the slot and
5786 * behind the slot is saved before and restored after reset.
5787 *
5788 * Same as above except return -EAGAIN if the slot cannot be locked
5789 */
5790static int __pci_reset_slot(struct pci_slot *slot)
5791{
5792 int rc;
5793
5794 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5795 if (rc)
5796 return rc;
5797
5798 if (pci_slot_trylock(slot)) {
5799 pci_slot_save_and_disable_locked(slot);
5800 might_sleep();
5801 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5802 pci_slot_restore_locked(slot);
5803 pci_slot_unlock(slot);
5804 } else
5805 rc = -EAGAIN;
5806
5807 return rc;
5808}
5809
5810static int pci_bus_reset(struct pci_bus *bus, bool probe)
5811{
5812 int ret;
5813
5814 if (!bus->self || !pci_bus_resettable(bus))
5815 return -ENOTTY;
5816
5817 if (probe)
5818 return 0;
5819
5820 pci_bus_lock(bus);
5821
5822 might_sleep();
5823
5824 ret = pci_bridge_secondary_bus_reset(bus->self);
5825
5826 pci_bus_unlock(bus);
5827
5828 return ret;
5829}
5830
5831/**
5832 * pci_bus_error_reset - reset the bridge's subordinate bus
5833 * @bridge: The parent device that connects to the bus to reset
5834 *
5835 * This function will first try to reset the slots on this bus if the method is
5836 * available. If slot reset fails or is not available, this will fall back to a
5837 * secondary bus reset.
5838 */
5839int pci_bus_error_reset(struct pci_dev *bridge)
5840{
5841 struct pci_bus *bus = bridge->subordinate;
5842 struct pci_slot *slot;
5843
5844 if (!bus)
5845 return -ENOTTY;
5846
5847 mutex_lock(&pci_slot_mutex);
5848 if (list_empty(&bus->slots))
5849 goto bus_reset;
5850
5851 list_for_each_entry(slot, &bus->slots, list)
5852 if (pci_probe_reset_slot(slot))
5853 goto bus_reset;
5854
5855 list_for_each_entry(slot, &bus->slots, list)
5856 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5857 goto bus_reset;
5858
5859 mutex_unlock(&pci_slot_mutex);
5860 return 0;
5861bus_reset:
5862 mutex_unlock(&pci_slot_mutex);
5863 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5864}
5865
5866/**
5867 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5868 * @bus: PCI bus to probe
5869 *
5870 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5871 */
5872int pci_probe_reset_bus(struct pci_bus *bus)
5873{
5874 return pci_bus_reset(bus, PCI_RESET_PROBE);
5875}
5876EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5877
5878/**
5879 * __pci_reset_bus - Try to reset a PCI bus
5880 * @bus: top level PCI bus to reset
5881 *
5882 * Same as above except return -EAGAIN if the bus cannot be locked
5883 */
5884int __pci_reset_bus(struct pci_bus *bus)
5885{
5886 int rc;
5887
5888 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5889 if (rc)
5890 return rc;
5891
5892 if (pci_bus_trylock(bus)) {
5893 pci_bus_save_and_disable_locked(bus);
5894 might_sleep();
5895 rc = pci_bridge_secondary_bus_reset(bus->self);
5896 pci_bus_restore_locked(bus);
5897 pci_bus_unlock(bus);
5898 } else
5899 rc = -EAGAIN;
5900
5901 return rc;
5902}
5903
5904/**
5905 * pci_reset_bus - Try to reset a PCI bus
5906 * @pdev: top level PCI device to reset via slot/bus
5907 *
5908 * Same as above except return -EAGAIN if the bus cannot be locked
5909 */
5910int pci_reset_bus(struct pci_dev *pdev)
5911{
5912 return (!pci_probe_reset_slot(pdev->slot)) ?
5913 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5914}
5915EXPORT_SYMBOL_GPL(pci_reset_bus);
5916
5917/**
5918 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5919 * @dev: PCI device to query
5920 *
5921 * Returns mmrbc: maximum designed memory read count in bytes or
5922 * appropriate error value.
5923 */
5924int pcix_get_max_mmrbc(struct pci_dev *dev)
5925{
5926 int cap;
5927 u32 stat;
5928
5929 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5930 if (!cap)
5931 return -EINVAL;
5932
5933 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5934 return -EINVAL;
5935
5936 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5937}
5938EXPORT_SYMBOL(pcix_get_max_mmrbc);
5939
5940/**
5941 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5942 * @dev: PCI device to query
5943 *
5944 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5945 * value.
5946 */
5947int pcix_get_mmrbc(struct pci_dev *dev)
5948{
5949 int cap;
5950 u16 cmd;
5951
5952 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5953 if (!cap)
5954 return -EINVAL;
5955
5956 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5957 return -EINVAL;
5958
5959 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5960}
5961EXPORT_SYMBOL(pcix_get_mmrbc);
5962
5963/**
5964 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5965 * @dev: PCI device to query
5966 * @mmrbc: maximum memory read count in bytes
5967 * valid values are 512, 1024, 2048, 4096
5968 *
5969 * If possible sets maximum memory read byte count, some bridges have errata
5970 * that prevent this.
5971 */
5972int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5973{
5974 int cap;
5975 u32 stat, v, o;
5976 u16 cmd;
5977
5978 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5979 return -EINVAL;
5980
5981 v = ffs(mmrbc) - 10;
5982
5983 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5984 if (!cap)
5985 return -EINVAL;
5986
5987 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5988 return -EINVAL;
5989
5990 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
5991 return -E2BIG;
5992
5993 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5994 return -EINVAL;
5995
5996 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5997 if (o != v) {
5998 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5999 return -EIO;
6000
6001 cmd &= ~PCI_X_CMD_MAX_READ;
6002 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6003 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6004 return -EIO;
6005 }
6006 return 0;
6007}
6008EXPORT_SYMBOL(pcix_set_mmrbc);
6009
6010/**
6011 * pcie_get_readrq - get PCI Express read request size
6012 * @dev: PCI device to query
6013 *
6014 * Returns maximum memory read request in bytes or appropriate error value.
6015 */
6016int pcie_get_readrq(struct pci_dev *dev)
6017{
6018 u16 ctl;
6019
6020 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6021
6022 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6023}
6024EXPORT_SYMBOL(pcie_get_readrq);
6025
6026/**
6027 * pcie_set_readrq - set PCI Express maximum memory read request
6028 * @dev: PCI device to query
6029 * @rq: maximum memory read count in bytes
6030 * valid values are 128, 256, 512, 1024, 2048, 4096
6031 *
6032 * If possible sets maximum memory read request in bytes
6033 */
6034int pcie_set_readrq(struct pci_dev *dev, int rq)
6035{
6036 u16 v;
6037 int ret;
6038 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6039
6040 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6041 return -EINVAL;
6042
6043 /*
6044 * If using the "performance" PCIe config, we clamp the read rq
6045 * size to the max packet size to keep the host bridge from
6046 * generating requests larger than we can cope with.
6047 */
6048 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6049 int mps = pcie_get_mps(dev);
6050
6051 if (mps < rq)
6052 rq = mps;
6053 }
6054
6055 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6056
6057 if (bridge->no_inc_mrrs) {
6058 int max_mrrs = pcie_get_readrq(dev);
6059
6060 if (rq > max_mrrs) {
6061 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6062 return -EINVAL;
6063 }
6064 }
6065
6066 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6067 PCI_EXP_DEVCTL_READRQ, v);
6068
6069 return pcibios_err_to_errno(ret);
6070}
6071EXPORT_SYMBOL(pcie_set_readrq);
6072
6073/**
6074 * pcie_get_mps - get PCI Express maximum payload size
6075 * @dev: PCI device to query
6076 *
6077 * Returns maximum payload size in bytes
6078 */
6079int pcie_get_mps(struct pci_dev *dev)
6080{
6081 u16 ctl;
6082
6083 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6084
6085 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6086}
6087EXPORT_SYMBOL(pcie_get_mps);
6088
6089/**
6090 * pcie_set_mps - set PCI Express maximum payload size
6091 * @dev: PCI device to query
6092 * @mps: maximum payload size in bytes
6093 * valid values are 128, 256, 512, 1024, 2048, 4096
6094 *
6095 * If possible sets maximum payload size
6096 */
6097int pcie_set_mps(struct pci_dev *dev, int mps)
6098{
6099 u16 v;
6100 int ret;
6101
6102 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6103 return -EINVAL;
6104
6105 v = ffs(mps) - 8;
6106 if (v > dev->pcie_mpss)
6107 return -EINVAL;
6108 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6109
6110 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6111 PCI_EXP_DEVCTL_PAYLOAD, v);
6112
6113 return pcibios_err_to_errno(ret);
6114}
6115EXPORT_SYMBOL(pcie_set_mps);
6116
6117static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6118{
6119 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6120}
6121
6122int pcie_link_speed_mbps(struct pci_dev *pdev)
6123{
6124 u16 lnksta;
6125 int err;
6126
6127 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6128 if (err)
6129 return err;
6130
6131 return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta));
6132}
6133EXPORT_SYMBOL(pcie_link_speed_mbps);
6134
6135/**
6136 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6137 * device and its bandwidth limitation
6138 * @dev: PCI device to query
6139 * @limiting_dev: storage for device causing the bandwidth limitation
6140 * @speed: storage for speed of limiting device
6141 * @width: storage for width of limiting device
6142 *
6143 * Walk up the PCI device chain and find the point where the minimum
6144 * bandwidth is available. Return the bandwidth available there and (if
6145 * limiting_dev, speed, and width pointers are supplied) information about
6146 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6147 * raw bandwidth.
6148 */
6149u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6150 enum pci_bus_speed *speed,
6151 enum pcie_link_width *width)
6152{
6153 u16 lnksta;
6154 enum pci_bus_speed next_speed;
6155 enum pcie_link_width next_width;
6156 u32 bw, next_bw;
6157
6158 if (speed)
6159 *speed = PCI_SPEED_UNKNOWN;
6160 if (width)
6161 *width = PCIE_LNK_WIDTH_UNKNOWN;
6162
6163 bw = 0;
6164
6165 while (dev) {
6166 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6167
6168 next_speed = to_pcie_link_speed(lnksta);
6169 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6170
6171 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6172
6173 /* Check if current device limits the total bandwidth */
6174 if (!bw || next_bw <= bw) {
6175 bw = next_bw;
6176
6177 if (limiting_dev)
6178 *limiting_dev = dev;
6179 if (speed)
6180 *speed = next_speed;
6181 if (width)
6182 *width = next_width;
6183 }
6184
6185 dev = pci_upstream_bridge(dev);
6186 }
6187
6188 return bw;
6189}
6190EXPORT_SYMBOL(pcie_bandwidth_available);
6191
6192/**
6193 * pcie_get_supported_speeds - query Supported Link Speed Vector
6194 * @dev: PCI device to query
6195 *
6196 * Query @dev supported link speeds.
6197 *
6198 * Implementation Note in PCIe r6.0 sec 7.5.3.18 recommends determining
6199 * supported link speeds using the Supported Link Speeds Vector in the Link
6200 * Capabilities 2 Register (when available).
6201 *
6202 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.
6203 *
6204 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, Supported Link
6205 * Speeds field in Link Capabilities is used and only 2.5 GT/s and 5.0 GT/s
6206 * speeds were defined.
6207 *
6208 * For @dev without Supported Link Speed Vector, the field is synthesized
6209 * from the Max Link Speed field in the Link Capabilities Register.
6210 *
6211 * Return: Supported Link Speeds Vector (+ reserved 0 at LSB).
6212 */
6213u8 pcie_get_supported_speeds(struct pci_dev *dev)
6214{
6215 u32 lnkcap2, lnkcap;
6216 u8 speeds;
6217
6218 /*
6219 * Speeds retain the reserved 0 at LSB before PCIe Supported Link
6220 * Speeds Vector to allow using SLS Vector bit defines directly.
6221 */
6222 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6223 speeds = lnkcap2 & PCI_EXP_LNKCAP2_SLS;
6224
6225 /* Ignore speeds higher than Max Link Speed */
6226 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6227 speeds &= GENMASK(lnkcap & PCI_EXP_LNKCAP_SLS, 0);
6228
6229 /* PCIe r3.0-compliant */
6230 if (speeds)
6231 return speeds;
6232
6233 /* Synthesize from the Max Link Speed field */
6234 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6235 speeds = PCI_EXP_LNKCAP2_SLS_5_0GB | PCI_EXP_LNKCAP2_SLS_2_5GB;
6236 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6237 speeds = PCI_EXP_LNKCAP2_SLS_2_5GB;
6238
6239 return speeds;
6240}
6241
6242/**
6243 * pcie_get_speed_cap - query for the PCI device's link speed capability
6244 * @dev: PCI device to query
6245 *
6246 * Query the PCI device speed capability.
6247 *
6248 * Return: the maximum link speed supported by the device.
6249 */
6250enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6251{
6252 return PCIE_LNKCAP2_SLS2SPEED(dev->supported_speeds);
6253}
6254EXPORT_SYMBOL(pcie_get_speed_cap);
6255
6256/**
6257 * pcie_get_width_cap - query for the PCI device's link width capability
6258 * @dev: PCI device to query
6259 *
6260 * Query the PCI device width capability. Return the maximum link width
6261 * supported by the device.
6262 */
6263enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6264{
6265 u32 lnkcap;
6266
6267 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6268 if (lnkcap)
6269 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6270
6271 return PCIE_LNK_WIDTH_UNKNOWN;
6272}
6273EXPORT_SYMBOL(pcie_get_width_cap);
6274
6275/**
6276 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6277 * @dev: PCI device
6278 * @speed: storage for link speed
6279 * @width: storage for link width
6280 *
6281 * Calculate a PCI device's link bandwidth by querying for its link speed
6282 * and width, multiplying them, and applying encoding overhead. The result
6283 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6284 */
6285static u32 pcie_bandwidth_capable(struct pci_dev *dev,
6286 enum pci_bus_speed *speed,
6287 enum pcie_link_width *width)
6288{
6289 *speed = pcie_get_speed_cap(dev);
6290 *width = pcie_get_width_cap(dev);
6291
6292 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6293 return 0;
6294
6295 return *width * PCIE_SPEED2MBS_ENC(*speed);
6296}
6297
6298/**
6299 * __pcie_print_link_status - Report the PCI device's link speed and width
6300 * @dev: PCI device to query
6301 * @verbose: Print info even when enough bandwidth is available
6302 *
6303 * If the available bandwidth at the device is less than the device is
6304 * capable of, report the device's maximum possible bandwidth and the
6305 * upstream link that limits its performance. If @verbose, always print
6306 * the available bandwidth, even if the device isn't constrained.
6307 */
6308void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6309{
6310 enum pcie_link_width width, width_cap;
6311 enum pci_bus_speed speed, speed_cap;
6312 struct pci_dev *limiting_dev = NULL;
6313 u32 bw_avail, bw_cap;
6314
6315 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6316 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6317
6318 if (bw_avail >= bw_cap && verbose)
6319 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6320 bw_cap / 1000, bw_cap % 1000,
6321 pci_speed_string(speed_cap), width_cap);
6322 else if (bw_avail < bw_cap)
6323 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6324 bw_avail / 1000, bw_avail % 1000,
6325 pci_speed_string(speed), width,
6326 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6327 bw_cap / 1000, bw_cap % 1000,
6328 pci_speed_string(speed_cap), width_cap);
6329}
6330
6331/**
6332 * pcie_print_link_status - Report the PCI device's link speed and width
6333 * @dev: PCI device to query
6334 *
6335 * Report the available bandwidth at the device.
6336 */
6337void pcie_print_link_status(struct pci_dev *dev)
6338{
6339 __pcie_print_link_status(dev, true);
6340}
6341EXPORT_SYMBOL(pcie_print_link_status);
6342
6343/**
6344 * pci_select_bars - Make BAR mask from the type of resource
6345 * @dev: the PCI device for which BAR mask is made
6346 * @flags: resource type mask to be selected
6347 *
6348 * This helper routine makes bar mask from the type of resource.
6349 */
6350int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6351{
6352 int i, bars = 0;
6353 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6354 if (pci_resource_flags(dev, i) & flags)
6355 bars |= (1 << i);
6356 return bars;
6357}
6358EXPORT_SYMBOL(pci_select_bars);
6359
6360/* Some architectures require additional programming to enable VGA */
6361static arch_set_vga_state_t arch_set_vga_state;
6362
6363void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6364{
6365 arch_set_vga_state = func; /* NULL disables */
6366}
6367
6368static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6369 unsigned int command_bits, u32 flags)
6370{
6371 if (arch_set_vga_state)
6372 return arch_set_vga_state(dev, decode, command_bits,
6373 flags);
6374 return 0;
6375}
6376
6377/**
6378 * pci_set_vga_state - set VGA decode state on device and parents if requested
6379 * @dev: the PCI device
6380 * @decode: true = enable decoding, false = disable decoding
6381 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6382 * @flags: traverse ancestors and change bridges
6383 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6384 */
6385int pci_set_vga_state(struct pci_dev *dev, bool decode,
6386 unsigned int command_bits, u32 flags)
6387{
6388 struct pci_bus *bus;
6389 struct pci_dev *bridge;
6390 u16 cmd;
6391 int rc;
6392
6393 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6394
6395 /* ARCH specific VGA enables */
6396 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6397 if (rc)
6398 return rc;
6399
6400 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6401 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6402 if (decode)
6403 cmd |= command_bits;
6404 else
6405 cmd &= ~command_bits;
6406 pci_write_config_word(dev, PCI_COMMAND, cmd);
6407 }
6408
6409 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6410 return 0;
6411
6412 bus = dev->bus;
6413 while (bus) {
6414 bridge = bus->self;
6415 if (bridge) {
6416 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6417 &cmd);
6418 if (decode)
6419 cmd |= PCI_BRIDGE_CTL_VGA;
6420 else
6421 cmd &= ~PCI_BRIDGE_CTL_VGA;
6422 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6423 cmd);
6424 }
6425 bus = bus->parent;
6426 }
6427 return 0;
6428}
6429
6430#ifdef CONFIG_ACPI
6431bool pci_pr3_present(struct pci_dev *pdev)
6432{
6433 struct acpi_device *adev;
6434
6435 if (acpi_disabled)
6436 return false;
6437
6438 adev = ACPI_COMPANION(&pdev->dev);
6439 if (!adev)
6440 return false;
6441
6442 return adev->power.flags.power_resources &&
6443 acpi_has_method(adev->handle, "_PR3");
6444}
6445EXPORT_SYMBOL_GPL(pci_pr3_present);
6446#endif
6447
6448/**
6449 * pci_add_dma_alias - Add a DMA devfn alias for a device
6450 * @dev: the PCI device for which alias is added
6451 * @devfn_from: alias slot and function
6452 * @nr_devfns: number of subsequent devfns to alias
6453 *
6454 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6455 * which is used to program permissible bus-devfn source addresses for DMA
6456 * requests in an IOMMU. These aliases factor into IOMMU group creation
6457 * and are useful for devices generating DMA requests beyond or different
6458 * from their logical bus-devfn. Examples include device quirks where the
6459 * device simply uses the wrong devfn, as well as non-transparent bridges
6460 * where the alias may be a proxy for devices in another domain.
6461 *
6462 * IOMMU group creation is performed during device discovery or addition,
6463 * prior to any potential DMA mapping and therefore prior to driver probing
6464 * (especially for userspace assigned devices where IOMMU group definition
6465 * cannot be left as a userspace activity). DMA aliases should therefore
6466 * be configured via quirks, such as the PCI fixup header quirk.
6467 */
6468void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6469 unsigned int nr_devfns)
6470{
6471 int devfn_to;
6472
6473 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6474 devfn_to = devfn_from + nr_devfns - 1;
6475
6476 if (!dev->dma_alias_mask)
6477 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6478 if (!dev->dma_alias_mask) {
6479 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6480 return;
6481 }
6482
6483 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6484
6485 if (nr_devfns == 1)
6486 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6487 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6488 else if (nr_devfns > 1)
6489 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6490 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6491 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6492}
6493
6494bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6495{
6496 return (dev1->dma_alias_mask &&
6497 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6498 (dev2->dma_alias_mask &&
6499 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6500 pci_real_dma_dev(dev1) == dev2 ||
6501 pci_real_dma_dev(dev2) == dev1;
6502}
6503
6504bool pci_device_is_present(struct pci_dev *pdev)
6505{
6506 u32 v;
6507
6508 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6509 pdev = pci_physfn(pdev);
6510 if (pci_dev_is_disconnected(pdev))
6511 return false;
6512 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6513}
6514EXPORT_SYMBOL_GPL(pci_device_is_present);
6515
6516void pci_ignore_hotplug(struct pci_dev *dev)
6517{
6518 struct pci_dev *bridge = dev->bus->self;
6519
6520 dev->ignore_hotplug = 1;
6521 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6522 if (bridge)
6523 bridge->ignore_hotplug = 1;
6524}
6525EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6526
6527/**
6528 * pci_real_dma_dev - Get PCI DMA device for PCI device
6529 * @dev: the PCI device that may have a PCI DMA alias
6530 *
6531 * Permits the platform to provide architecture-specific functionality to
6532 * devices needing to alias DMA to another PCI device on another PCI bus. If
6533 * the PCI device is on the same bus, it is recommended to use
6534 * pci_add_dma_alias(). This is the default implementation. Architecture
6535 * implementations can override this.
6536 */
6537struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6538{
6539 return dev;
6540}
6541
6542resource_size_t __weak pcibios_default_alignment(void)
6543{
6544 return 0;
6545}
6546
6547/*
6548 * Arches that don't want to expose struct resource to userland as-is in
6549 * sysfs and /proc can implement their own pci_resource_to_user().
6550 */
6551void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6552 const struct resource *rsrc,
6553 resource_size_t *start, resource_size_t *end)
6554{
6555 *start = rsrc->start;
6556 *end = rsrc->end;
6557}
6558
6559static char *resource_alignment_param;
6560static DEFINE_SPINLOCK(resource_alignment_lock);
6561
6562/**
6563 * pci_specified_resource_alignment - get resource alignment specified by user.
6564 * @dev: the PCI device to get
6565 * @resize: whether or not to change resources' size when reassigning alignment
6566 *
6567 * RETURNS: Resource alignment if it is specified.
6568 * Zero if it is not specified.
6569 */
6570static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6571 bool *resize)
6572{
6573 int align_order, count;
6574 resource_size_t align = pcibios_default_alignment();
6575 const char *p;
6576 int ret;
6577
6578 spin_lock(&resource_alignment_lock);
6579 p = resource_alignment_param;
6580 if (!p || !*p)
6581 goto out;
6582 if (pci_has_flag(PCI_PROBE_ONLY)) {
6583 align = 0;
6584 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6585 goto out;
6586 }
6587
6588 while (*p) {
6589 count = 0;
6590 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6591 p[count] == '@') {
6592 p += count + 1;
6593 if (align_order > 63) {
6594 pr_err("PCI: Invalid requested alignment (order %d)\n",
6595 align_order);
6596 align_order = PAGE_SHIFT;
6597 }
6598 } else {
6599 align_order = PAGE_SHIFT;
6600 }
6601
6602 ret = pci_dev_str_match(dev, p, &p);
6603 if (ret == 1) {
6604 *resize = true;
6605 align = 1ULL << align_order;
6606 break;
6607 } else if (ret < 0) {
6608 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6609 p);
6610 break;
6611 }
6612
6613 if (*p != ';' && *p != ',') {
6614 /* End of param or invalid format */
6615 break;
6616 }
6617 p++;
6618 }
6619out:
6620 spin_unlock(&resource_alignment_lock);
6621 return align;
6622}
6623
6624static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6625 resource_size_t align, bool resize)
6626{
6627 struct resource *r = &dev->resource[bar];
6628 const char *r_name = pci_resource_name(dev, bar);
6629 resource_size_t size;
6630
6631 if (!(r->flags & IORESOURCE_MEM))
6632 return;
6633
6634 if (r->flags & IORESOURCE_PCI_FIXED) {
6635 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6636 r_name, r, (unsigned long long)align);
6637 return;
6638 }
6639
6640 size = resource_size(r);
6641 if (size >= align)
6642 return;
6643
6644 /*
6645 * Increase the alignment of the resource. There are two ways we
6646 * can do this:
6647 *
6648 * 1) Increase the size of the resource. BARs are aligned on their
6649 * size, so when we reallocate space for this resource, we'll
6650 * allocate it with the larger alignment. This also prevents
6651 * assignment of any other BARs inside the alignment region, so
6652 * if we're requesting page alignment, this means no other BARs
6653 * will share the page.
6654 *
6655 * The disadvantage is that this makes the resource larger than
6656 * the hardware BAR, which may break drivers that compute things
6657 * based on the resource size, e.g., to find registers at a
6658 * fixed offset before the end of the BAR.
6659 *
6660 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6661 * set r->start to the desired alignment. By itself this
6662 * doesn't prevent other BARs being put inside the alignment
6663 * region, but if we realign *every* resource of every device in
6664 * the system, none of them will share an alignment region.
6665 *
6666 * When the user has requested alignment for only some devices via
6667 * the "pci=resource_alignment" argument, "resize" is true and we
6668 * use the first method. Otherwise we assume we're aligning all
6669 * devices and we use the second.
6670 */
6671
6672 pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6673 r_name, r, (unsigned long long)align);
6674
6675 if (resize) {
6676 r->start = 0;
6677 r->end = align - 1;
6678 } else {
6679 r->flags &= ~IORESOURCE_SIZEALIGN;
6680 r->flags |= IORESOURCE_STARTALIGN;
6681 resource_set_range(r, align, size);
6682 }
6683 r->flags |= IORESOURCE_UNSET;
6684}
6685
6686/*
6687 * This function disables memory decoding and releases memory resources
6688 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6689 * It also rounds up size to specified alignment.
6690 * Later on, the kernel will assign page-aligned memory resource back
6691 * to the device.
6692 */
6693void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6694{
6695 int i;
6696 struct resource *r;
6697 resource_size_t align;
6698 u16 command;
6699 bool resize = false;
6700
6701 /*
6702 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6703 * 3.4.1.11. Their resources are allocated from the space
6704 * described by the VF BARx register in the PF's SR-IOV capability.
6705 * We can't influence their alignment here.
6706 */
6707 if (dev->is_virtfn)
6708 return;
6709
6710 /* check if specified PCI is target device to reassign */
6711 align = pci_specified_resource_alignment(dev, &resize);
6712 if (!align)
6713 return;
6714
6715 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6716 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6717 pci_warn(dev, "Can't reassign resources to host bridge\n");
6718 return;
6719 }
6720
6721 pci_read_config_word(dev, PCI_COMMAND, &command);
6722 command &= ~PCI_COMMAND_MEMORY;
6723 pci_write_config_word(dev, PCI_COMMAND, command);
6724
6725 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6726 pci_request_resource_alignment(dev, i, align, resize);
6727
6728 /*
6729 * Need to disable bridge's resource window,
6730 * to enable the kernel to reassign new resource
6731 * window later on.
6732 */
6733 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6734 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6735 r = &dev->resource[i];
6736 if (!(r->flags & IORESOURCE_MEM))
6737 continue;
6738 r->flags |= IORESOURCE_UNSET;
6739 r->end = resource_size(r) - 1;
6740 r->start = 0;
6741 }
6742 pci_disable_bridge_window(dev);
6743 }
6744}
6745
6746static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6747{
6748 size_t count = 0;
6749
6750 spin_lock(&resource_alignment_lock);
6751 if (resource_alignment_param)
6752 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6753 spin_unlock(&resource_alignment_lock);
6754
6755 return count;
6756}
6757
6758static ssize_t resource_alignment_store(const struct bus_type *bus,
6759 const char *buf, size_t count)
6760{
6761 char *param, *old, *end;
6762
6763 if (count >= (PAGE_SIZE - 1))
6764 return -EINVAL;
6765
6766 param = kstrndup(buf, count, GFP_KERNEL);
6767 if (!param)
6768 return -ENOMEM;
6769
6770 end = strchr(param, '\n');
6771 if (end)
6772 *end = '\0';
6773
6774 spin_lock(&resource_alignment_lock);
6775 old = resource_alignment_param;
6776 if (strlen(param)) {
6777 resource_alignment_param = param;
6778 } else {
6779 kfree(param);
6780 resource_alignment_param = NULL;
6781 }
6782 spin_unlock(&resource_alignment_lock);
6783
6784 kfree(old);
6785
6786 return count;
6787}
6788
6789static BUS_ATTR_RW(resource_alignment);
6790
6791static int __init pci_resource_alignment_sysfs_init(void)
6792{
6793 return bus_create_file(&pci_bus_type,
6794 &bus_attr_resource_alignment);
6795}
6796late_initcall(pci_resource_alignment_sysfs_init);
6797
6798static void pci_no_domains(void)
6799{
6800#ifdef CONFIG_PCI_DOMAINS
6801 pci_domains_supported = 0;
6802#endif
6803}
6804
6805#ifdef CONFIG_PCI_DOMAINS_GENERIC
6806static DEFINE_IDA(pci_domain_nr_static_ida);
6807static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6808
6809static void of_pci_reserve_static_domain_nr(void)
6810{
6811 struct device_node *np;
6812 int domain_nr;
6813
6814 for_each_node_by_type(np, "pci") {
6815 domain_nr = of_get_pci_domain_nr(np);
6816 if (domain_nr < 0)
6817 continue;
6818 /*
6819 * Permanently allocate domain_nr in dynamic_ida
6820 * to prevent it from dynamic allocation.
6821 */
6822 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6823 domain_nr, domain_nr, GFP_KERNEL);
6824 }
6825}
6826
6827static int of_pci_bus_find_domain_nr(struct device *parent)
6828{
6829 static bool static_domains_reserved = false;
6830 int domain_nr;
6831
6832 /* On the first call scan device tree for static allocations. */
6833 if (!static_domains_reserved) {
6834 of_pci_reserve_static_domain_nr();
6835 static_domains_reserved = true;
6836 }
6837
6838 if (parent) {
6839 /*
6840 * If domain is in DT, allocate it in static IDA. This
6841 * prevents duplicate static allocations in case of errors
6842 * in DT.
6843 */
6844 domain_nr = of_get_pci_domain_nr(parent->of_node);
6845 if (domain_nr >= 0)
6846 return ida_alloc_range(&pci_domain_nr_static_ida,
6847 domain_nr, domain_nr,
6848 GFP_KERNEL);
6849 }
6850
6851 /*
6852 * If domain was not specified in DT, choose a free ID from dynamic
6853 * allocations. All domain numbers from DT are permanently in
6854 * dynamic allocations to prevent assigning them to other DT nodes
6855 * without static domain.
6856 */
6857 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6858}
6859
6860static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6861{
6862 if (domain_nr < 0)
6863 return;
6864
6865 /* Release domain from IDA where it was allocated. */
6866 if (of_get_pci_domain_nr(parent->of_node) == domain_nr)
6867 ida_free(&pci_domain_nr_static_ida, domain_nr);
6868 else
6869 ida_free(&pci_domain_nr_dynamic_ida, domain_nr);
6870}
6871
6872int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6873{
6874 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6875 acpi_pci_bus_find_domain_nr(bus);
6876}
6877
6878void pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6879{
6880 if (!acpi_disabled)
6881 return;
6882 of_pci_bus_release_domain_nr(parent, domain_nr);
6883}
6884#endif
6885
6886/**
6887 * pci_ext_cfg_avail - can we access extended PCI config space?
6888 *
6889 * Returns 1 if we can access PCI extended config space (offsets
6890 * greater than 0xff). This is the default implementation. Architecture
6891 * implementations can override this.
6892 */
6893int __weak pci_ext_cfg_avail(void)
6894{
6895 return 1;
6896}
6897
6898void __weak pci_fixup_cardbus(struct pci_bus *bus)
6899{
6900}
6901EXPORT_SYMBOL(pci_fixup_cardbus);
6902
6903static int __init pci_setup(char *str)
6904{
6905 while (str) {
6906 char *k = strchr(str, ',');
6907 if (k)
6908 *k++ = 0;
6909 if (*str && (str = pcibios_setup(str)) && *str) {
6910 if (!strcmp(str, "nomsi")) {
6911 pci_no_msi();
6912 } else if (!strncmp(str, "noats", 5)) {
6913 pr_info("PCIe: ATS is disabled\n");
6914 pcie_ats_disabled = true;
6915 } else if (!strcmp(str, "noaer")) {
6916 pci_no_aer();
6917 } else if (!strcmp(str, "earlydump")) {
6918 pci_early_dump = true;
6919 } else if (!strncmp(str, "realloc=", 8)) {
6920 pci_realloc_get_opt(str + 8);
6921 } else if (!strncmp(str, "realloc", 7)) {
6922 pci_realloc_get_opt("on");
6923 } else if (!strcmp(str, "nodomains")) {
6924 pci_no_domains();
6925 } else if (!strncmp(str, "noari", 5)) {
6926 pcie_ari_disabled = true;
6927 } else if (!strncmp(str, "notph", 5)) {
6928 pci_no_tph();
6929 } else if (!strncmp(str, "cbiosize=", 9)) {
6930 pci_cardbus_io_size = memparse(str + 9, &str);
6931 } else if (!strncmp(str, "cbmemsize=", 10)) {
6932 pci_cardbus_mem_size = memparse(str + 10, &str);
6933 } else if (!strncmp(str, "resource_alignment=", 19)) {
6934 resource_alignment_param = str + 19;
6935 } else if (!strncmp(str, "ecrc=", 5)) {
6936 pcie_ecrc_get_policy(str + 5);
6937 } else if (!strncmp(str, "hpiosize=", 9)) {
6938 pci_hotplug_io_size = memparse(str + 9, &str);
6939 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6940 pci_hotplug_mmio_size = memparse(str + 11, &str);
6941 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6942 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6943 } else if (!strncmp(str, "hpmemsize=", 10)) {
6944 pci_hotplug_mmio_size = memparse(str + 10, &str);
6945 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6946 } else if (!strncmp(str, "hpbussize=", 10)) {
6947 pci_hotplug_bus_size =
6948 simple_strtoul(str + 10, &str, 0);
6949 if (pci_hotplug_bus_size > 0xff)
6950 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6951 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6952 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6953 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6954 pcie_bus_config = PCIE_BUS_SAFE;
6955 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6956 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6957 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6958 pcie_bus_config = PCIE_BUS_PEER2PEER;
6959 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6960 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6961 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6962 disable_acs_redir_param = str + 18;
6963 } else if (!strncmp(str, "config_acs=", 11)) {
6964 config_acs_param = str + 11;
6965 } else {
6966 pr_err("PCI: Unknown option `%s'\n", str);
6967 }
6968 }
6969 str = k;
6970 }
6971 return 0;
6972}
6973early_param("pci", pci_setup);
6974
6975/*
6976 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6977 * in pci_setup(), above, to point to data in the __initdata section which
6978 * will be freed after the init sequence is complete. We can't allocate memory
6979 * in pci_setup() because some architectures do not have any memory allocation
6980 * service available during an early_param() call. So we allocate memory and
6981 * copy the variable here before the init section is freed.
6982 *
6983 */
6984static int __init pci_realloc_setup_params(void)
6985{
6986 resource_alignment_param = kstrdup(resource_alignment_param,
6987 GFP_KERNEL);
6988 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6989 config_acs_param = kstrdup(config_acs_param, GFP_KERNEL);
6990
6991 return 0;
6992}
6993pure_initcall(pci_realloc_setup_params);