Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
 
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
 
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 100#include <asm/system.h>
 
 101
 102#include <linux/kbd_kern.h>
 103#include <linux/vt_kern.h>
 104#include <linux/selection.h>
 105
 106#include <linux/kmod.h>
 107#include <linux/nsproxy.h>
 
 108
 109#undef TTY_DEBUG_HANGUP
 
 
 
 
 
 110
 111#define TTY_PARANOIA_CHECK 1
 112#define CHECK_TTY_COUNT 1
 113
 114struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 115	.c_iflag = ICRNL | IXON,
 116	.c_oflag = OPOST | ONLCR,
 117	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 118	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 119		   ECHOCTL | ECHOKE | IEXTEN,
 120	.c_cc = INIT_C_CC,
 121	.c_ispeed = 38400,
 122	.c_ospeed = 38400
 
 123};
 124
 125EXPORT_SYMBOL(tty_std_termios);
 126
 127/* This list gets poked at by procfs and various bits of boot up code. This
 128   could do with some rationalisation such as pulling the tty proc function
 129   into this file */
 
 130
 131LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 132
 133/* Mutex to protect creating and releasing a tty. This is shared with
 134   vt.c for deeply disgusting hack reasons */
 135DEFINE_MUTEX(tty_mutex);
 136EXPORT_SYMBOL(tty_mutex);
 137
 138/* Spinlock to protect the tty->tty_files list */
 139DEFINE_SPINLOCK(tty_files_lock);
 140
 141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 143ssize_t redirected_tty_write(struct file *, const char __user *,
 144							size_t, loff_t *);
 145static unsigned int tty_poll(struct file *, poll_table *);
 146static int tty_open(struct inode *, struct file *);
 147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 148#ifdef CONFIG_COMPAT
 149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 150				unsigned long arg);
 151#else
 152#define tty_compat_ioctl NULL
 153#endif
 154static int __tty_fasync(int fd, struct file *filp, int on);
 155static int tty_fasync(int fd, struct file *filp, int on);
 156static void release_tty(struct tty_struct *tty, int idx);
 157static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 158static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 159
 160/**
 161 *	alloc_tty_struct	-	allocate a tty object
 
 162 *
 163 *	Return a new empty tty structure. The data fields have not
 164 *	been initialized in any way but has been zeroed
 165 *
 166 *	Locking: none
 167 */
 168
 169struct tty_struct *alloc_tty_struct(void)
 170{
 171	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 172}
 173
 174/**
 175 *	free_tty_struct		-	free a disused tty
 176 *	@tty: tty struct to free
 177 *
 178 *	Free the write buffers, tty queue and tty memory itself.
 179 *
 180 *	Locking: none. Must be called after tty is definitely unused
 181 */
 182
 183void free_tty_struct(struct tty_struct *tty)
 184{
 185	if (tty->dev)
 186		put_device(tty->dev);
 187	kfree(tty->write_buf);
 188	tty_buffer_free_all(tty);
 189	kfree(tty);
 190}
 191
 192static inline struct tty_struct *file_tty(struct file *file)
 193{
 194	return ((struct tty_file_private *)file->private_data)->tty;
 195}
 196
 197/* Associate a new file with the tty structure */
 198int tty_add_file(struct tty_struct *tty, struct file *file)
 199{
 200	struct tty_file_private *priv;
 201
 202	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 203	if (!priv)
 204		return -ENOMEM;
 205
 
 
 
 
 
 
 
 
 
 
 206	priv->tty = tty;
 207	priv->file = file;
 208	file->private_data = priv;
 209
 210	spin_lock(&tty_files_lock);
 211	list_add(&priv->list, &tty->tty_files);
 212	spin_unlock(&tty_files_lock);
 213
 214	return 0;
 215}
 216
 217/* Delete file from its tty */
 218void tty_del_file(struct file *file)
 
 
 
 
 
 
 219{
 220	struct tty_file_private *priv = file->private_data;
 221
 222	spin_lock(&tty_files_lock);
 223	list_del(&priv->list);
 224	spin_unlock(&tty_files_lock);
 225	file->private_data = NULL;
 226	kfree(priv);
 227}
 228
 
 
 
 
 
 229
 230#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 
 
 
 
 231
 232/**
 233 *	tty_name	-	return tty naming
 234 *	@tty: tty structure
 235 *	@buf: buffer for output
 236 *
 237 *	Convert a tty structure into a name. The name reflects the kernel
 238 *	naming policy and if udev is in use may not reflect user space
 239 *
 240 *	Locking: none
 241 */
 242
 243char *tty_name(struct tty_struct *tty, char *buf)
 244{
 245	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 246		strcpy(buf, "NULL tty");
 247	else
 248		strcpy(buf, tty->name);
 249	return buf;
 250}
 251
 252EXPORT_SYMBOL(tty_name);
 253
 254int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 
 
 
 
 
 
 
 255			      const char *routine)
 256{
 257#ifdef TTY_PARANOIA_CHECK
 258	if (!tty) {
 259		printk(KERN_WARNING
 260			"null TTY for (%d:%d) in %s\n",
 261			imajor(inode), iminor(inode), routine);
 262		return 1;
 263	}
 264	if (tty->magic != TTY_MAGIC) {
 265		printk(KERN_WARNING
 266			"bad magic number for tty struct (%d:%d) in %s\n",
 267			imajor(inode), iminor(inode), routine);
 268		return 1;
 269	}
 270#endif
 271	return 0;
 272}
 273
 274static int check_tty_count(struct tty_struct *tty, const char *routine)
 
 275{
 276#ifdef CHECK_TTY_COUNT
 277	struct list_head *p;
 278	int count = 0;
 279
 280	spin_lock(&tty_files_lock);
 281	list_for_each(p, &tty->tty_files) {
 282		count++;
 283	}
 284	spin_unlock(&tty_files_lock);
 285	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 286	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 287	    tty->link && tty->link->count)
 288		count++;
 289	if (tty->count != count) {
 290		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 291				    "!= #fd's(%d) in %s\n",
 292		       tty->name, tty->count, count, routine);
 293		return count;
 294	}
 295#endif
 296	return 0;
 297}
 298
 299/**
 300 *	get_tty_driver		-	find device of a tty
 301 *	@dev_t: device identifier
 302 *	@index: returns the index of the tty
 303 *
 304 *	This routine returns a tty driver structure, given a device number
 305 *	and also passes back the index number.
 306 *
 307 *	Locking: caller must hold tty_mutex
 308 */
 309
 310static struct tty_driver *get_tty_driver(dev_t device, int *index)
 311{
 312	struct tty_driver *p;
 313
 314	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 315		dev_t base = MKDEV(p->major, p->minor_start);
 
 316		if (device < base || device >= base + p->num)
 317			continue;
 318		*index = device - base;
 319		return tty_driver_kref_get(p);
 320	}
 321	return NULL;
 322}
 323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324#ifdef CONFIG_CONSOLE_POLL
 325
 326/**
 327 *	tty_find_polling_driver	-	find device of a polled tty
 328 *	@name: name string to match
 329 *	@line: pointer to resulting tty line nr
 330 *
 331 *	This routine returns a tty driver structure, given a name
 332 *	and the condition that the tty driver is capable of polled
 333 *	operation.
 334 */
 335struct tty_driver *tty_find_polling_driver(char *name, int *line)
 336{
 337	struct tty_driver *p, *res = NULL;
 338	int tty_line = 0;
 339	int len;
 340	char *str, *stp;
 341
 342	for (str = name; *str; str++)
 343		if ((*str >= '0' && *str <= '9') || *str == ',')
 344			break;
 345	if (!*str)
 346		return NULL;
 347
 348	len = str - name;
 349	tty_line = simple_strtoul(str, &str, 10);
 350
 351	mutex_lock(&tty_mutex);
 352	/* Search through the tty devices to look for a match */
 353	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 354		if (strncmp(name, p->name, len) != 0)
 355			continue;
 356		stp = str;
 357		if (*stp == ',')
 358			stp++;
 359		if (*stp == '\0')
 360			stp = NULL;
 361
 362		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 363		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 364			res = tty_driver_kref_get(p);
 365			*line = tty_line;
 366			break;
 367		}
 368	}
 369	mutex_unlock(&tty_mutex);
 370
 371	return res;
 372}
 373EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 374#endif
 375
 376/**
 377 *	tty_check_change	-	check for POSIX terminal changes
 378 *	@tty: tty to check
 379 *
 380 *	If we try to write to, or set the state of, a terminal and we're
 381 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 382 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 383 *
 384 *	Locking: ctrl_lock
 385 */
 386
 387int tty_check_change(struct tty_struct *tty)
 388{
 389	unsigned long flags;
 390	int ret = 0;
 391
 392	if (current->signal->tty != tty)
 393		return 0;
 394
 395	spin_lock_irqsave(&tty->ctrl_lock, flags);
 396
 397	if (!tty->pgrp) {
 398		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 399		goto out_unlock;
 400	}
 401	if (task_pgrp(current) == tty->pgrp)
 402		goto out_unlock;
 403	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 404	if (is_ignored(SIGTTOU))
 405		goto out;
 406	if (is_current_pgrp_orphaned()) {
 407		ret = -EIO;
 408		goto out;
 409	}
 410	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 411	set_thread_flag(TIF_SIGPENDING);
 412	ret = -ERESTARTSYS;
 413out:
 414	return ret;
 415out_unlock:
 416	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 417	return ret;
 418}
 419
 420EXPORT_SYMBOL(tty_check_change);
 421
 422static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 423				size_t count, loff_t *ppos)
 424{
 425	return 0;
 426}
 427
 428static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 429				 size_t count, loff_t *ppos)
 430{
 431	return -EIO;
 432}
 433
 434/* No kernel lock held - none needed ;) */
 435static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 436{
 437	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 438}
 439
 440static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 441		unsigned long arg)
 442{
 443	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 444}
 445
 446static long hung_up_tty_compat_ioctl(struct file *file,
 447				     unsigned int cmd, unsigned long arg)
 448{
 449	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 450}
 451
 
 
 
 
 
 
 
 
 
 
 
 
 
 452static const struct file_operations tty_fops = {
 453	.llseek		= no_llseek,
 454	.read		= tty_read,
 455	.write		= tty_write,
 
 
 456	.poll		= tty_poll,
 457	.unlocked_ioctl	= tty_ioctl,
 458	.compat_ioctl	= tty_compat_ioctl,
 459	.open		= tty_open,
 460	.release	= tty_release,
 461	.fasync		= tty_fasync,
 
 462};
 463
 464static const struct file_operations console_fops = {
 465	.llseek		= no_llseek,
 466	.read		= tty_read,
 467	.write		= redirected_tty_write,
 
 
 468	.poll		= tty_poll,
 469	.unlocked_ioctl	= tty_ioctl,
 470	.compat_ioctl	= tty_compat_ioctl,
 471	.open		= tty_open,
 472	.release	= tty_release,
 473	.fasync		= tty_fasync,
 474};
 475
 476static const struct file_operations hung_up_tty_fops = {
 477	.llseek		= no_llseek,
 478	.read		= hung_up_tty_read,
 479	.write		= hung_up_tty_write,
 480	.poll		= hung_up_tty_poll,
 481	.unlocked_ioctl	= hung_up_tty_ioctl,
 482	.compat_ioctl	= hung_up_tty_compat_ioctl,
 483	.release	= tty_release,
 
 484};
 485
 486static DEFINE_SPINLOCK(redirect_lock);
 487static struct file *redirect;
 488
 489/**
 490 *	tty_wakeup	-	request more data
 491 *	@tty: terminal
 492 *
 493 *	Internal and external helper for wakeups of tty. This function
 494 *	informs the line discipline if present that the driver is ready
 495 *	to receive more output data.
 496 */
 497
 498void tty_wakeup(struct tty_struct *tty)
 499{
 500	struct tty_ldisc *ld;
 501
 502	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 503		ld = tty_ldisc_ref(tty);
 504		if (ld) {
 505			if (ld->ops->write_wakeup)
 506				ld->ops->write_wakeup(tty);
 507			tty_ldisc_deref(ld);
 508		}
 509	}
 510	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 511}
 512
 513EXPORT_SYMBOL_GPL(tty_wakeup);
 514
 515/**
 516 *	__tty_hangup		-	actual handler for hangup events
 517 *	@work: tty device
 518 *
 519 *	This can be called by the "eventd" kernel thread.  That is process
 520 *	synchronous but doesn't hold any locks, so we need to make sure we
 521 *	have the appropriate locks for what we're doing.
 522 *
 523 *	The hangup event clears any pending redirections onto the hung up
 524 *	device. It ensures future writes will error and it does the needed
 525 *	line discipline hangup and signal delivery. The tty object itself
 526 *	remains intact.
 527 *
 528 *	Locking:
 529 *		BTM
 530 *		  redirect lock for undoing redirection
 531 *		  file list lock for manipulating list of ttys
 532 *		  tty_ldisc_lock from called functions
 533 *		  termios_mutex resetting termios data
 534 *		  tasklist_lock to walk task list for hangup event
 535 *		    ->siglock to protect ->signal/->sighand
 536 */
 537void __tty_hangup(struct tty_struct *tty)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 538{
 539	struct file *cons_filp = NULL;
 540	struct file *filp, *f = NULL;
 541	struct task_struct *p;
 542	struct tty_file_private *priv;
 543	int    closecount = 0, n;
 544	unsigned long flags;
 545	int refs = 0;
 546
 547	if (!tty)
 548		return;
 549
 
 550
 551	spin_lock(&redirect_lock);
 552	if (redirect && file_tty(redirect) == tty) {
 553		f = redirect;
 554		redirect = NULL;
 555	}
 556	spin_unlock(&redirect_lock);
 557
 558	tty_lock();
 
 
 
 559
 560	/* some functions below drop BTM, so we need this bit */
 
 
 
 
 
 561	set_bit(TTY_HUPPING, &tty->flags);
 562
 563	/* inuse_filps is protected by the single tty lock,
 564	   this really needs to change if we want to flush the
 565	   workqueue with the lock held */
 
 566	check_tty_count(tty, "tty_hangup");
 567
 568	spin_lock(&tty_files_lock);
 569	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 570	list_for_each_entry(priv, &tty->tty_files, list) {
 571		filp = priv->file;
 572		if (filp->f_op->write == redirected_tty_write)
 573			cons_filp = filp;
 574		if (filp->f_op->write != tty_write)
 575			continue;
 576		closecount++;
 577		__tty_fasync(-1, filp, 0);	/* can't block */
 578		filp->f_op = &hung_up_tty_fops;
 579	}
 580	spin_unlock(&tty_files_lock);
 581
 582	/*
 583	 * it drops BTM and thus races with reopen
 584	 * we protect the race by TTY_HUPPING
 585	 */
 586	tty_ldisc_hangup(tty);
 587
 588	read_lock(&tasklist_lock);
 589	if (tty->session) {
 590		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 591			spin_lock_irq(&p->sighand->siglock);
 592			if (p->signal->tty == tty) {
 593				p->signal->tty = NULL;
 594				/* We defer the dereferences outside fo
 595				   the tasklist lock */
 596				refs++;
 597			}
 598			if (!p->signal->leader) {
 599				spin_unlock_irq(&p->sighand->siglock);
 600				continue;
 601			}
 602			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 603			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 604			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 605			spin_lock_irqsave(&tty->ctrl_lock, flags);
 606			if (tty->pgrp)
 607				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 608			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 609			spin_unlock_irq(&p->sighand->siglock);
 610		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 611	}
 612	read_unlock(&tasklist_lock);
 613
 614	spin_lock_irqsave(&tty->ctrl_lock, flags);
 615	clear_bit(TTY_THROTTLED, &tty->flags);
 616	clear_bit(TTY_PUSH, &tty->flags);
 617	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 618	put_pid(tty->session);
 619	put_pid(tty->pgrp);
 620	tty->session = NULL;
 621	tty->pgrp = NULL;
 622	tty->ctrl_status = 0;
 623	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 624
 625	/* Account for the p->signal references we killed */
 626	while (refs--)
 627		tty_kref_put(tty);
 628
 629	/*
 630	 * If one of the devices matches a console pointer, we
 631	 * cannot just call hangup() because that will cause
 632	 * tty->count and state->count to go out of sync.
 633	 * So we just call close() the right number of times.
 634	 */
 635	if (cons_filp) {
 636		if (tty->ops->close)
 637			for (n = 0; n < closecount; n++)
 638				tty->ops->close(tty, cons_filp);
 639	} else if (tty->ops->hangup)
 640		(tty->ops->hangup)(tty);
 641	/*
 642	 * We don't want to have driver/ldisc interactions beyond
 643	 * the ones we did here. The driver layer expects no
 644	 * calls after ->hangup() from the ldisc side. However we
 645	 * can't yet guarantee all that.
 646	 */
 647	set_bit(TTY_HUPPED, &tty->flags);
 648	clear_bit(TTY_HUPPING, &tty->flags);
 649	tty_ldisc_enable(tty);
 650
 651	tty_unlock();
 652
 653	if (f)
 654		fput(f);
 655}
 656
 657static void do_tty_hangup(struct work_struct *work)
 658{
 659	struct tty_struct *tty =
 660		container_of(work, struct tty_struct, hangup_work);
 661
 662	__tty_hangup(tty);
 663}
 664
 665/**
 666 *	tty_hangup		-	trigger a hangup event
 667 *	@tty: tty to hangup
 668 *
 669 *	A carrier loss (virtual or otherwise) has occurred on this like
 670 *	schedule a hangup sequence to run after this event.
 671 */
 672
 673void tty_hangup(struct tty_struct *tty)
 674{
 675#ifdef TTY_DEBUG_HANGUP
 676	char	buf[64];
 677	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 678#endif
 679	schedule_work(&tty->hangup_work);
 680}
 681
 682EXPORT_SYMBOL(tty_hangup);
 683
 684/**
 685 *	tty_vhangup		-	process vhangup
 686 *	@tty: tty to hangup
 687 *
 688 *	The user has asked via system call for the terminal to be hung up.
 689 *	We do this synchronously so that when the syscall returns the process
 690 *	is complete. That guarantee is necessary for security reasons.
 691 */
 692
 693void tty_vhangup(struct tty_struct *tty)
 694{
 695#ifdef TTY_DEBUG_HANGUP
 696	char	buf[64];
 697
 698	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 699#endif
 700	__tty_hangup(tty);
 701}
 702
 703EXPORT_SYMBOL(tty_vhangup);
 704
 705
 706/**
 707 *	tty_vhangup_self	-	process vhangup for own ctty
 708 *
 709 *	Perform a vhangup on the current controlling tty
 710 */
 711
 712void tty_vhangup_self(void)
 713{
 714	struct tty_struct *tty;
 715
 716	tty = get_current_tty();
 717	if (tty) {
 718		tty_vhangup(tty);
 719		tty_kref_put(tty);
 720	}
 721}
 722
 723/**
 724 *	tty_hung_up_p		-	was tty hung up
 725 *	@filp: file pointer of tty
 726 *
 727 *	Return true if the tty has been subject to a vhangup or a carrier
 728 *	loss
 
 
 
 729 */
 
 
 
 
 
 730
 
 
 
 
 
 
 731int tty_hung_up_p(struct file *filp)
 732{
 733	return (filp->f_op == &hung_up_tty_fops);
 734}
 735
 736EXPORT_SYMBOL(tty_hung_up_p);
 737
 738static void session_clear_tty(struct pid *session)
 739{
 740	struct task_struct *p;
 741	do_each_pid_task(session, PIDTYPE_SID, p) {
 742		proc_clear_tty(p);
 743	} while_each_pid_task(session, PIDTYPE_SID, p);
 
 744}
 745
 746/**
 747 *	disassociate_ctty	-	disconnect controlling tty
 748 *	@on_exit: true if exiting so need to "hang up" the session
 749 *
 750 *	This function is typically called only by the session leader, when
 751 *	it wants to disassociate itself from its controlling tty.
 752 *
 753 *	It performs the following functions:
 754 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 755 * 	(2)  Clears the tty from being controlling the session
 756 * 	(3)  Clears the controlling tty for all processes in the
 757 * 		session group.
 758 *
 759 *	The argument on_exit is set to 1 if called when a process is
 760 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 761 *
 762 *	Locking:
 763 *		BTM is taken for hysterical raisins, and held when
 764 *		  called from no_tty().
 765 *		  tty_mutex is taken to protect tty
 766 *		  ->siglock is taken to protect ->signal/->sighand
 767 *		  tasklist_lock is taken to walk process list for sessions
 768 *		    ->siglock is taken to protect ->signal/->sighand
 769 */
 770
 771void disassociate_ctty(int on_exit)
 772{
 773	struct tty_struct *tty;
 774	struct pid *tty_pgrp = NULL;
 775
 776	if (!current->signal->leader)
 777		return;
 
 
 
 778
 779	tty = get_current_tty();
 780	if (tty) {
 781		tty_pgrp = get_pid(tty->pgrp);
 782		if (on_exit) {
 783			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
 784				tty_vhangup(tty);
 785		}
 786		tty_kref_put(tty);
 787	} else if (on_exit) {
 788		struct pid *old_pgrp;
 789		spin_lock_irq(&current->sighand->siglock);
 790		old_pgrp = current->signal->tty_old_pgrp;
 791		current->signal->tty_old_pgrp = NULL;
 792		spin_unlock_irq(&current->sighand->siglock);
 793		if (old_pgrp) {
 794			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 795			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 796			put_pid(old_pgrp);
 797		}
 798		return;
 799	}
 800	if (tty_pgrp) {
 801		kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 802		if (!on_exit)
 803			kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 804		put_pid(tty_pgrp);
 805	}
 806
 807	spin_lock_irq(&current->sighand->siglock);
 808	put_pid(current->signal->tty_old_pgrp);
 809	current->signal->tty_old_pgrp = NULL;
 810	spin_unlock_irq(&current->sighand->siglock);
 811
 812	tty = get_current_tty();
 813	if (tty) {
 814		unsigned long flags;
 815		spin_lock_irqsave(&tty->ctrl_lock, flags);
 816		put_pid(tty->session);
 817		put_pid(tty->pgrp);
 818		tty->session = NULL;
 819		tty->pgrp = NULL;
 820		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 821		tty_kref_put(tty);
 822	} else {
 823#ifdef TTY_DEBUG_HANGUP
 824		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 825		       " = NULL", tty);
 826#endif
 827	}
 828
 829	/* Now clear signal->tty under the lock */
 830	read_lock(&tasklist_lock);
 831	session_clear_tty(task_session(current));
 832	read_unlock(&tasklist_lock);
 833}
 834
 835/**
 
 
 
 
 
 
 836 *
 837 *	no_tty	- Ensure the current process does not have a controlling tty
 
 838 */
 839void no_tty(void)
 840{
 841	struct task_struct *tsk = current;
 842	tty_lock();
 843	disassociate_ctty(0);
 844	tty_unlock();
 845	proc_clear_tty(tsk);
 846}
 
 847
 
 
 
 
 848
 849/**
 850 *	stop_tty	-	propagate flow control
 851 *	@tty: tty to stop
 852 *
 853 *	Perform flow control to the driver. For PTY/TTY pairs we
 854 *	must also propagate the TIOCKPKT status. May be called
 855 *	on an already stopped device and will not re-call the driver
 856 *	method.
 857 *
 858 *	This functionality is used by both the line disciplines for
 859 *	halting incoming flow and by the driver. It may therefore be
 860 *	called from any context, may be under the tty atomic_write_lock
 861 *	but not always.
 862 *
 863 *	Locking:
 864 *		Uses the tty control lock internally
 865 */
 866
 867void stop_tty(struct tty_struct *tty)
 868{
 869	unsigned long flags;
 870	spin_lock_irqsave(&tty->ctrl_lock, flags);
 871	if (tty->stopped) {
 872		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 873		return;
 874	}
 875	tty->stopped = 1;
 876	if (tty->link && tty->link->packet) {
 877		tty->ctrl_status &= ~TIOCPKT_START;
 878		tty->ctrl_status |= TIOCPKT_STOP;
 879		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 880	}
 881	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 882	if (tty->ops->stop)
 883		(tty->ops->stop)(tty);
 884}
 885
 886EXPORT_SYMBOL(stop_tty);
 887
 888/**
 889 *	start_tty	-	propagate flow control
 890 *	@tty: tty to start
 891 *
 892 *	Start a tty that has been stopped if at all possible. Perform
 893 *	any necessary wakeups and propagate the TIOCPKT status. If this
 894 *	is the tty was previous stopped and is being started then the
 895 *	driver start method is invoked and the line discipline woken.
 896 *
 897 *	Locking:
 898 *		ctrl_lock
 899 */
 
 
 
 
 
 
 
 
 
 900
 901void start_tty(struct tty_struct *tty)
 902{
 903	unsigned long flags;
 904	spin_lock_irqsave(&tty->ctrl_lock, flags);
 905	if (!tty->stopped || tty->flow_stopped) {
 906		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 907		return;
 908	}
 909	tty->stopped = 0;
 910	if (tty->link && tty->link->packet) {
 911		tty->ctrl_status &= ~TIOCPKT_STOP;
 912		tty->ctrl_status |= TIOCPKT_START;
 913		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 914	}
 915	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 916	if (tty->ops->start)
 917		(tty->ops->start)(tty);
 918	/* If we have a running line discipline it may need kicking */
 919	tty_wakeup(tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 920}
 921
 922EXPORT_SYMBOL(start_tty);
 923
 924/**
 925 *	tty_read	-	read method for tty device files
 926 *	@file: pointer to tty file
 927 *	@buf: user buffer
 928 *	@count: size of user buffer
 929 *	@ppos: unused
 930 *
 931 *	Perform the read system call function on this terminal device. Checks
 932 *	for hung up devices before calling the line discipline method.
 933 *
 934 *	Locking:
 935 *		Locks the line discipline internally while needed. Multiple
 936 *	read calls may be outstanding in parallel.
 937 */
 938
 939static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 940			loff_t *ppos)
 941{
 942	int i;
 943	struct inode *inode = file->f_path.dentry->d_inode;
 944	struct tty_struct *tty = file_tty(file);
 945	struct tty_ldisc *ld;
 
 946
 947	if (tty_paranoia_check(tty, inode, "tty_read"))
 948		return -EIO;
 949	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
 950		return -EIO;
 951
 952	/* We want to wait for the line discipline to sort out in this
 953	   situation */
 
 954	ld = tty_ldisc_ref_wait(tty);
 
 
 
 955	if (ld->ops->read)
 956		i = (ld->ops->read)(tty, file, buf, count);
 957	else
 958		i = -EIO;
 959	tty_ldisc_deref(ld);
 960	if (i > 0)
 961		inode->i_atime = current_fs_time(inode->i_sb);
 962	return i;
 
 
 963}
 964
 965void tty_write_unlock(struct tty_struct *tty)
 966	__releases(&tty->atomic_write_lock)
 967{
 968	mutex_unlock(&tty->atomic_write_lock);
 969	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 970}
 971
 972int tty_write_lock(struct tty_struct *tty, int ndelay)
 973	__acquires(&tty->atomic_write_lock)
 974{
 975	if (!mutex_trylock(&tty->atomic_write_lock)) {
 976		if (ndelay)
 977			return -EAGAIN;
 978		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 979			return -ERESTARTSYS;
 980	}
 981	return 0;
 982}
 983
 984/*
 985 * Split writes up in sane blocksizes to avoid
 986 * denial-of-service type attacks
 987 */
 988static inline ssize_t do_tty_write(
 989	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 990	struct tty_struct *tty,
 991	struct file *file,
 992	const char __user *buf,
 993	size_t count)
 994{
 
 995	ssize_t ret, written = 0;
 996	unsigned int chunk;
 997
 998	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 999	if (ret < 0)
1000		return ret;
1001
1002	/*
1003	 * We chunk up writes into a temporary buffer. This
1004	 * simplifies low-level drivers immensely, since they
1005	 * don't have locking issues and user mode accesses.
1006	 *
1007	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1008	 * big chunk-size..
1009	 *
1010	 * The default chunk-size is 2kB, because the NTTY
1011	 * layer has problems with bigger chunks. It will
1012	 * claim to be able to handle more characters than
1013	 * it actually does.
1014	 *
1015	 * FIXME: This can probably go away now except that 64K chunks
1016	 * are too likely to fail unless switched to vmalloc...
1017	 */
1018	chunk = 2048;
1019	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1020		chunk = 65536;
1021	if (count < chunk)
1022		chunk = count;
1023
1024	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1025	if (tty->write_cnt < chunk) {
1026		unsigned char *buf_chunk;
1027
1028		if (chunk < 1024)
1029			chunk = 1024;
1030
1031		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1032		if (!buf_chunk) {
1033			ret = -ENOMEM;
1034			goto out;
1035		}
1036		kfree(tty->write_buf);
1037		tty->write_cnt = chunk;
1038		tty->write_buf = buf_chunk;
1039	}
1040
1041	/* Do the write .. */
1042	for (;;) {
1043		size_t size = count;
1044		if (size > chunk)
1045			size = chunk;
1046		ret = -EFAULT;
1047		if (copy_from_user(tty->write_buf, buf, size))
1048			break;
1049		ret = write(tty, file, tty->write_buf, size);
 
1050		if (ret <= 0)
1051			break;
 
1052		written += ret;
1053		buf += ret;
 
 
 
 
 
 
1054		count -= ret;
1055		if (!count)
1056			break;
1057		ret = -ERESTARTSYS;
1058		if (signal_pending(current))
1059			break;
1060		cond_resched();
1061	}
1062	if (written) {
1063		struct inode *inode = file->f_path.dentry->d_inode;
1064		inode->i_mtime = current_fs_time(inode->i_sb);
1065		ret = written;
1066	}
1067out:
1068	tty_write_unlock(tty);
1069	return ret;
1070}
1071
 
1072/**
1073 * tty_write_message - write a message to a certain tty, not just the console.
1074 * @tty: the destination tty_struct
1075 * @msg: the message to write
1076 *
1077 * This is used for messages that need to be redirected to a specific tty.
1078 * We don't put it into the syslog queue right now maybe in the future if
1079 * really needed.
1080 *
1081 * We must still hold the BTM and test the CLOSING flag for the moment.
 
 
1082 */
1083
1084void tty_write_message(struct tty_struct *tty, char *msg)
1085{
1086	if (tty) {
1087		mutex_lock(&tty->atomic_write_lock);
1088		tty_lock();
1089		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1090			tty_unlock();
1091			tty->ops->write(tty, msg, strlen(msg));
1092		} else
1093			tty_unlock();
1094		tty_write_unlock(tty);
1095	}
1096	return;
1097}
 
1098
1099
1100/**
1101 *	tty_write		-	write method for tty device file
1102 *	@file: tty file pointer
1103 *	@buf: user data to write
1104 *	@count: bytes to write
1105 *	@ppos: unused
1106 *
1107 *	Write data to a tty device via the line discipline.
1108 *
1109 *	Locking:
1110 *		Locks the line discipline as required
1111 *		Writes to the tty driver are serialized by the atomic_write_lock
1112 *	and are then processed in chunks to the device. The line discipline
1113 *	write method will not be invoked in parallel for each device.
1114 */
1115
1116static ssize_t tty_write(struct file *file, const char __user *buf,
1117						size_t count, loff_t *ppos)
1118{
1119	struct inode *inode = file->f_path.dentry->d_inode;
1120	struct tty_struct *tty = file_tty(file);
1121 	struct tty_ldisc *ld;
1122	ssize_t ret;
1123
1124	if (tty_paranoia_check(tty, inode, "tty_write"))
 
 
1125		return -EIO;
1126	if (!tty || !tty->ops->write ||
1127		(test_bit(TTY_IO_ERROR, &tty->flags)))
1128			return -EIO;
1129	/* Short term debug to catch buggy drivers */
1130	if (tty->ops->write_room == NULL)
1131		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1132			tty->driver->name);
1133	ld = tty_ldisc_ref_wait(tty);
 
 
1134	if (!ld->ops->write)
1135		ret = -EIO;
1136	else
1137		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1138	tty_ldisc_deref(ld);
1139	return ret;
1140}
1141
1142ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1143						size_t count, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144{
1145	struct file *p = NULL;
1146
1147	spin_lock(&redirect_lock);
1148	if (redirect) {
1149		get_file(redirect);
1150		p = redirect;
1151	}
1152	spin_unlock(&redirect_lock);
1153
 
 
 
 
1154	if (p) {
1155		ssize_t res;
1156		res = vfs_write(p, buf, count, &p->f_pos);
 
1157		fput(p);
1158		return res;
1159	}
1160	return tty_write(file, buf, count, ppos);
1161}
1162
1163static char ptychar[] = "pqrstuvwxyzabcde";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164
1165/**
1166 *	pty_line_name	-	generate name for a pty
1167 *	@driver: the tty driver in use
1168 *	@index: the minor number
1169 *	@p: output buffer of at least 6 bytes
1170 *
1171 *	Generate a name from a driver reference and write it to the output
1172 *	buffer.
1173 *
1174 *	Locking: None
1175 */
1176static void pty_line_name(struct tty_driver *driver, int index, char *p)
1177{
 
1178	int i = index + driver->name_base;
1179	/* ->name is initialized to "ttyp", but "tty" is expected */
1180	sprintf(p, "%s%c%x",
1181		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1182		ptychar[i >> 4 & 0xf], i & 0xf);
1183}
1184
1185/**
1186 *	tty_line_name	-	generate name for a tty
1187 *	@driver: the tty driver in use
1188 *	@index: the minor number
1189 *	@p: output buffer of at least 7 bytes
1190 *
1191 *	Generate a name from a driver reference and write it to the output
1192 *	buffer.
1193 *
1194 *	Locking: None
1195 */
1196static void tty_line_name(struct tty_driver *driver, int index, char *p)
1197{
1198	sprintf(p, "%s%d", driver->name, index + driver->name_base);
 
 
 
 
1199}
1200
1201/**
1202 *	tty_driver_lookup_tty() - find an existing tty, if any
1203 *	@driver: the driver for the tty
1204 *	@idx:	 the minor number
 
1205 *
1206 *	Return the tty, if found or ERR_PTR() otherwise.
 
1207 *
1208 *	Locking: tty_mutex must be held. If tty is found, the mutex must
1209 *	be held until the 'fast-open' is also done. Will change once we
1210 *	have refcounting in the driver and per driver locking
1211 */
1212static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1213		struct inode *inode, int idx)
1214{
1215	struct tty_struct *tty;
1216
1217	if (driver->ops->lookup)
1218		return driver->ops->lookup(driver, inode, idx);
1219
1220	tty = driver->ttys[idx];
 
 
 
 
 
 
 
 
1221	return tty;
1222}
1223
1224/**
1225 *	tty_init_termios	-  helper for termios setup
1226 *	@tty: the tty to set up
1227 *
1228 *	Initialise the termios structures for this tty. Thus runs under
1229 *	the tty_mutex currently so we can be relaxed about ordering.
1230 */
1231
1232int tty_init_termios(struct tty_struct *tty)
1233{
1234	struct ktermios *tp;
1235	int idx = tty->index;
1236
1237	tp = tty->driver->termios[idx];
1238	if (tp == NULL) {
1239		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1240		if (tp == NULL)
1241			return -ENOMEM;
1242		memcpy(tp, &tty->driver->init_termios,
1243						sizeof(struct ktermios));
1244		tty->driver->termios[idx] = tp;
 
 
1245	}
1246	tty->termios = tp;
1247	tty->termios_locked = tp + 1;
1248
1249	/* Compatibility until drivers always set this */
1250	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1251	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1252	return 0;
1253}
1254EXPORT_SYMBOL_GPL(tty_init_termios);
1255
1256/**
1257 *	tty_driver_install_tty() - install a tty entry in the driver
1258 *	@driver: the driver for the tty
1259 *	@tty: the tty
1260 *
1261 *	Install a tty object into the driver tables. The tty->index field
1262 *	will be set by the time this is called. This method is responsible
1263 *	for ensuring any need additional structures are allocated and
1264 *	configured.
 
 
 
 
 
 
 
 
 
 
 
 
 
1265 *
1266 *	Locking: tty_mutex for now
 
 
 
 
1267 */
1268static int tty_driver_install_tty(struct tty_driver *driver,
1269						struct tty_struct *tty)
1270{
1271	int idx = tty->index;
1272	int ret;
1273
1274	if (driver->ops->install) {
1275		ret = driver->ops->install(driver, tty);
1276		return ret;
1277	}
1278
1279	if (tty_init_termios(tty) == 0) {
1280		tty_driver_kref_get(driver);
1281		tty->count++;
1282		driver->ttys[idx] = tty;
1283		return 0;
1284	}
1285	return -ENOMEM;
1286}
1287
1288/**
1289 *	tty_driver_remove_tty() - remove a tty from the driver tables
1290 *	@driver: the driver for the tty
1291 *	@idx:	 the minor number
1292 *
1293 *	Remvoe a tty object from the driver tables. The tty->index field
1294 *	will be set by the time this is called.
1295 *
1296 *	Locking: tty_mutex for now
1297 */
1298void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1299{
1300	if (driver->ops->remove)
1301		driver->ops->remove(driver, tty);
1302	else
1303		driver->ttys[tty->index] = NULL;
1304}
1305
1306/*
1307 * 	tty_reopen()	- fast re-open of an open tty
1308 * 	@tty	- the tty to open
1309 *
1310 *	Return 0 on success, -errno on error.
1311 *
1312 *	Locking: tty_mutex must be held from the time the tty was found
1313 *		 till this open completes.
1314 */
1315static int tty_reopen(struct tty_struct *tty)
1316{
1317	struct tty_driver *driver = tty->driver;
 
 
1318
1319	if (test_bit(TTY_CLOSING, &tty->flags) ||
1320			test_bit(TTY_HUPPING, &tty->flags) ||
1321			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1322		return -EIO;
1323
1324	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1325	    driver->subtype == PTY_TYPE_MASTER) {
1326		/*
1327		 * special case for PTY masters: only one open permitted,
1328		 * and the slave side open count is incremented as well.
1329		 */
1330		if (tty->count)
1331			return -EIO;
1332
1333		tty->link->count++;
 
 
 
 
 
 
 
 
 
 
1334	}
1335	tty->count++;
1336	tty->driver = driver; /* N.B. why do this every time?? */
1337
1338	mutex_lock(&tty->ldisc_mutex);
1339	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1340	mutex_unlock(&tty->ldisc_mutex);
1341
1342	return 0;
1343}
1344
1345/**
1346 *	tty_init_dev		-	initialise a tty device
1347 *	@driver: tty driver we are opening a device on
1348 *	@idx: device index
1349 *	@ret_tty: returned tty structure
1350 *	@first_ok: ok to open a new device (used by ptmx)
1351 *
1352 *	Prepare a tty device. This may not be a "new" clean device but
1353 *	could also be an active device. The pty drivers require special
1354 *	handling because of this.
1355 *
1356 *	Locking:
1357 *		The function is called under the tty_mutex, which
1358 *	protects us from the tty struct or driver itself going away.
1359 *
1360 *	On exit the tty device has the line discipline attached and
1361 *	a reference count of 1. If a pair was created for pty/tty use
1362 *	and the other was a pty master then it too has a reference count of 1.
1363 *
1364 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1365 * failed open.  The new code protects the open with a mutex, so it's
1366 * really quite straightforward.  The mutex locking can probably be
1367 * relaxed for the (most common) case of reopening a tty.
1368 */
1369
1370struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1371								int first_ok)
1372{
1373	struct tty_struct *tty;
1374	int retval;
1375
1376	/* Check if pty master is being opened multiple times */
1377	if (driver->subtype == PTY_TYPE_MASTER &&
1378		(driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1379		return ERR_PTR(-EIO);
1380	}
1381
1382	/*
1383	 * First time open is complex, especially for PTY devices.
1384	 * This code guarantees that either everything succeeds and the
1385	 * TTY is ready for operation, or else the table slots are vacated
1386	 * and the allocated memory released.  (Except that the termios
1387	 * and locked termios may be retained.)
1388	 */
1389
1390	if (!try_module_get(driver->owner))
1391		return ERR_PTR(-ENODEV);
1392
1393	tty = alloc_tty_struct();
1394	if (!tty) {
1395		retval = -ENOMEM;
1396		goto err_module_put;
1397	}
1398	initialize_tty_struct(tty, driver, idx);
1399
 
1400	retval = tty_driver_install_tty(driver, tty);
1401	if (retval < 0)
1402		goto err_deinit_tty;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1403
1404	/*
1405	 * Structures all installed ... call the ldisc open routines.
1406	 * If we fail here just call release_tty to clean up.  No need
1407	 * to decrement the use counts, as release_tty doesn't care.
1408	 */
1409	retval = tty_ldisc_setup(tty, tty->link);
1410	if (retval)
1411		goto err_release_tty;
 
 
1412	return tty;
1413
1414err_deinit_tty:
1415	deinitialize_tty_struct(tty);
1416	free_tty_struct(tty);
1417err_module_put:
1418	module_put(driver->owner);
1419	return ERR_PTR(retval);
1420
1421	/* call the tty release_tty routine to clean out this slot */
1422err_release_tty:
1423	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1424				 "clearing slot %d\n", idx);
 
 
 
1425	release_tty(tty, idx);
1426	return ERR_PTR(retval);
1427}
1428
1429void tty_free_termios(struct tty_struct *tty)
 
 
 
 
 
 
1430{
1431	struct ktermios *tp;
1432	int idx = tty->index;
1433	/* Kill this flag and push into drivers for locking etc */
1434	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1435		/* FIXME: Locking on ->termios array */
1436		tp = tty->termios;
1437		tty->driver->termios[idx] = NULL;
1438		kfree(tp);
 
 
 
 
 
 
1439	}
 
1440}
1441EXPORT_SYMBOL(tty_free_termios);
1442
1443void tty_shutdown(struct tty_struct *tty)
 
 
 
 
 
 
1444{
1445	tty_driver_remove_tty(tty->driver, tty);
1446	tty_free_termios(tty);
 
 
 
 
1447}
1448EXPORT_SYMBOL(tty_shutdown);
1449
1450/**
1451 *	release_one_tty		-	release tty structure memory
1452 *	@kref: kref of tty we are obliterating
1453 *
1454 *	Releases memory associated with a tty structure, and clears out the
1455 *	driver table slots. This function is called when a device is no longer
1456 *	in use. It also gets called when setup of a device fails.
1457 *
1458 *	Locking:
1459 *		tty_mutex - sometimes only
1460 *		takes the file list lock internally when working on the list
1461 *	of ttys that the driver keeps.
1462 *
1463 *	This method gets called from a work queue so that the driver private
1464 *	cleanup ops can sleep (needed for USB at least)
1465 */
1466static void release_one_tty(struct work_struct *work)
1467{
1468	struct tty_struct *tty =
1469		container_of(work, struct tty_struct, hangup_work);
1470	struct tty_driver *driver = tty->driver;
 
1471
1472	if (tty->ops->cleanup)
1473		tty->ops->cleanup(tty);
1474
1475	tty->magic = 0;
1476	tty_driver_kref_put(driver);
1477	module_put(driver->owner);
1478
1479	spin_lock(&tty_files_lock);
1480	list_del_init(&tty->tty_files);
1481	spin_unlock(&tty_files_lock);
1482
1483	put_pid(tty->pgrp);
1484	put_pid(tty->session);
1485	free_tty_struct(tty);
1486}
1487
1488static void queue_release_one_tty(struct kref *kref)
1489{
1490	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1491
1492	if (tty->ops->shutdown)
1493		tty->ops->shutdown(tty);
1494	else
1495		tty_shutdown(tty);
1496
1497	/* The hangup queue is now free so we can reuse it rather than
1498	   waste a chunk of memory for each port */
 
1499	INIT_WORK(&tty->hangup_work, release_one_tty);
1500	schedule_work(&tty->hangup_work);
1501}
1502
1503/**
1504 *	tty_kref_put		-	release a tty kref
1505 *	@tty: tty device
1506 *
1507 *	Release a reference to a tty device and if need be let the kref
1508 *	layer destruct the object for us
1509 */
1510
1511void tty_kref_put(struct tty_struct *tty)
1512{
1513	if (tty)
1514		kref_put(&tty->kref, queue_release_one_tty);
1515}
1516EXPORT_SYMBOL(tty_kref_put);
1517
1518/**
1519 *	release_tty		-	release tty structure memory
1520 *
1521 *	Release both @tty and a possible linked partner (think pty pair),
1522 *	and decrement the refcount of the backing module.
1523 *
1524 *	Locking:
1525 *		tty_mutex - sometimes only
1526 *		takes the file list lock internally when working on the list
1527 *	of ttys that the driver keeps.
1528 *		FIXME: should we require tty_mutex is held here ??
1529 *
1530 */
1531static void release_tty(struct tty_struct *tty, int idx)
1532{
1533	/* This should always be true but check for the moment */
1534	WARN_ON(tty->index != idx);
1535
 
 
 
 
 
 
 
 
 
 
1536	if (tty->link)
1537		tty_kref_put(tty->link);
 
 
1538	tty_kref_put(tty);
1539}
1540
1541/**
1542 *	tty_release		-	vfs callback for close
1543 *	@inode: inode of tty
1544 *	@filp: file pointer for handle to tty
1545 *
1546 *	Called the last time each file handle is closed that references
1547 *	this tty. There may however be several such references.
1548 *
1549 *	Locking:
1550 *		Takes bkl. See tty_release_dev
1551 *
1552 * Even releasing the tty structures is a tricky business.. We have
1553 * to be very careful that the structures are all released at the
1554 * same time, as interrupts might otherwise get the wrong pointers.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1555 *
1556 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1557 * lead to double frees or releasing memory still in use.
1558 */
1559
1560int tty_release(struct inode *inode, struct file *filp)
1561{
1562	struct tty_struct *tty = file_tty(filp);
1563	struct tty_struct *o_tty;
1564	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1565	int	devpts;
1566	int	idx;
1567	char	buf[64];
 
1568
1569	if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1570		return 0;
1571
1572	tty_lock();
1573	check_tty_count(tty, "tty_release_dev");
1574
1575	__tty_fasync(-1, filp, 0);
1576
1577	idx = tty->index;
1578	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1579		      tty->driver->subtype == PTY_TYPE_MASTER);
1580	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1581	o_tty = tty->link;
1582
1583#ifdef TTY_PARANOIA_CHECK
1584	if (idx < 0 || idx >= tty->driver->num) {
1585		printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1586				  "free (%s)\n", tty->name);
1587		tty_unlock();
1588		return 0;
1589	}
1590	if (!devpts) {
1591		if (tty != tty->driver->ttys[idx]) {
1592			tty_unlock();
1593			printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1594			       "for (%s)\n", idx, tty->name);
1595			return 0;
1596		}
1597		if (tty->termios != tty->driver->termios[idx]) {
1598			tty_unlock();
1599			printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1600			       "for (%s)\n",
1601			       idx, tty->name);
1602			return 0;
1603		}
1604	}
1605#endif
1606
1607#ifdef TTY_DEBUG_HANGUP
1608	printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1609	       tty_name(tty, buf), tty->count);
1610#endif
1611
1612#ifdef TTY_PARANOIA_CHECK
1613	if (tty->driver->other &&
1614	     !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1615		if (o_tty != tty->driver->other->ttys[idx]) {
1616			tty_unlock();
1617			printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1618					  "not o_tty for (%s)\n",
1619			       idx, tty->name);
1620			return 0 ;
1621		}
1622		if (o_tty->termios != tty->driver->other->termios[idx]) {
1623			tty_unlock();
1624			printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1625					  "not o_termios for (%s)\n",
1626			       idx, tty->name);
1627			return 0;
1628		}
1629		if (o_tty->link != tty) {
1630			tty_unlock();
1631			printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1632			return 0;
1633		}
1634	}
1635#endif
1636	if (tty->ops->close)
1637		tty->ops->close(tty, filp);
1638
1639	tty_unlock();
 
 
1640	/*
1641	 * Sanity check: if tty->count is going to zero, there shouldn't be
1642	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1643	 * wait queues and kick everyone out _before_ actually starting to
1644	 * close.  This ensures that we won't block while releasing the tty
1645	 * structure.
1646	 *
1647	 * The test for the o_tty closing is necessary, since the master and
1648	 * slave sides may close in any order.  If the slave side closes out
1649	 * first, its count will be one, since the master side holds an open.
1650	 * Thus this test wouldn't be triggered at the time the slave closes,
1651	 * so we do it now.
1652	 *
1653	 * Note that it's possible for the tty to be opened again while we're
1654	 * flushing out waiters.  By recalculating the closing flags before
1655	 * each iteration we avoid any problems.
1656	 */
1657	while (1) {
1658		/* Guard against races with tty->count changes elsewhere and
1659		   opens on /dev/tty */
1660
1661		mutex_lock(&tty_mutex);
1662		tty_lock();
1663		tty_closing = tty->count <= 1;
1664		o_tty_closing = o_tty &&
1665			(o_tty->count <= (pty_master ? 1 : 0));
1666		do_sleep = 0;
1667
1668		if (tty_closing) {
1669			if (waitqueue_active(&tty->read_wait)) {
1670				wake_up_poll(&tty->read_wait, POLLIN);
1671				do_sleep++;
1672			}
1673			if (waitqueue_active(&tty->write_wait)) {
1674				wake_up_poll(&tty->write_wait, POLLOUT);
1675				do_sleep++;
1676			}
1677		}
1678		if (o_tty_closing) {
1679			if (waitqueue_active(&o_tty->read_wait)) {
1680				wake_up_poll(&o_tty->read_wait, POLLIN);
1681				do_sleep++;
1682			}
1683			if (waitqueue_active(&o_tty->write_wait)) {
1684				wake_up_poll(&o_tty->write_wait, POLLOUT);
1685				do_sleep++;
1686			}
1687		}
1688		if (!do_sleep)
1689			break;
1690
1691		printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1692				    "active!\n", tty_name(tty, buf));
1693		tty_unlock();
1694		mutex_unlock(&tty_mutex);
1695		schedule();
 
 
 
 
1696	}
1697
1698	/*
1699	 * The closing flags are now consistent with the open counts on
1700	 * both sides, and we've completed the last operation that could
1701	 * block, so it's safe to proceed with closing.
1702	 */
1703	if (pty_master) {
1704		if (--o_tty->count < 0) {
1705			printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1706					    "(%d) for %s\n",
1707			       o_tty->count, tty_name(o_tty, buf));
1708			o_tty->count = 0;
1709		}
1710	}
1711	if (--tty->count < 0) {
1712		printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1713		       tty->count, tty_name(tty, buf));
1714		tty->count = 0;
1715	}
1716
1717	/*
1718	 * We've decremented tty->count, so we need to remove this file
1719	 * descriptor off the tty->tty_files list; this serves two
1720	 * purposes:
1721	 *  - check_tty_count sees the correct number of file descriptors
1722	 *    associated with this tty.
1723	 *  - do_tty_hangup no longer sees this file descriptor as
1724	 *    something that needs to be handled for hangups.
1725	 */
1726	tty_del_file(filp);
1727
1728	/*
1729	 * Perform some housekeeping before deciding whether to return.
1730	 *
1731	 * Set the TTY_CLOSING flag if this was the last open.  In the
1732	 * case of a pty we may have to wait around for the other side
1733	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1734	 */
1735	if (tty_closing)
1736		set_bit(TTY_CLOSING, &tty->flags);
1737	if (o_tty_closing)
1738		set_bit(TTY_CLOSING, &o_tty->flags);
1739
1740	/*
1741	 * If _either_ side is closing, make sure there aren't any
1742	 * processes that still think tty or o_tty is their controlling
1743	 * tty.
1744	 */
1745	if (tty_closing || o_tty_closing) {
1746		read_lock(&tasklist_lock);
1747		session_clear_tty(tty->session);
1748		if (o_tty)
1749			session_clear_tty(o_tty->session);
1750		read_unlock(&tasklist_lock);
1751	}
1752
1753	mutex_unlock(&tty_mutex);
1754
1755	/* check whether both sides are closing ... */
1756	if (!tty_closing || (o_tty && !o_tty_closing)) {
1757		tty_unlock();
1758		return 0;
1759	}
1760
1761#ifdef TTY_DEBUG_HANGUP
1762	printk(KERN_DEBUG "freeing tty structure...");
1763#endif
1764	/*
1765	 * Ask the line discipline code to release its structures
1766	 */
1767	tty_ldisc_release(tty, o_tty);
1768	/*
1769	 * The release_tty function takes care of the details of clearing
1770	 * the slots and preserving the termios structure.
1771	 */
1772	release_tty(tty, idx);
1773
1774	/* Make this pty number available for reallocation */
1775	if (devpts)
1776		devpts_kill_index(inode, idx);
1777	tty_unlock();
 
 
1778	return 0;
1779}
1780
1781/**
1782 *	tty_open		-	open a tty device
1783 *	@inode: inode of device file
1784 *	@filp: file pointer to tty
1785 *
1786 *	tty_open and tty_release keep up the tty count that contains the
1787 *	number of opens done on a tty. We cannot use the inode-count, as
1788 *	different inodes might point to the same tty.
1789 *
1790 *	Open-counting is needed for pty masters, as well as for keeping
1791 *	track of serial lines: DTR is dropped when the last close happens.
1792 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1793 *
1794 *	The termios state of a pty is reset on first open so that
1795 *	settings don't persist across reuse.
1796 *
1797 *	Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1798 *		 tty->count should protect the rest.
1799 *		 ->siglock protects ->signal/->sighand
1800 */
1801
1802static int tty_open(struct inode *inode, struct file *filp)
1803{
1804	struct tty_struct *tty = NULL;
1805	int noctty, retval;
1806	struct tty_driver *driver;
1807	int index;
1808	dev_t device = inode->i_rdev;
1809	unsigned saved_flags = filp->f_flags;
1810
1811	nonseekable_open(inode, filp);
1812
1813retry_open:
1814	noctty = filp->f_flags & O_NOCTTY;
1815	index  = -1;
1816	retval = 0;
1817
1818	mutex_lock(&tty_mutex);
1819	tty_lock();
 
1820
1821	if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1822		tty = get_current_tty();
1823		if (!tty) {
1824			tty_unlock();
1825			mutex_unlock(&tty_mutex);
1826			return -ENXIO;
1827		}
1828		driver = tty_driver_kref_get(tty->driver);
1829		index = tty->index;
1830		filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1831		/* noctty = 1; */
1832		/* FIXME: Should we take a driver reference ? */
1833		tty_kref_put(tty);
1834		goto got_driver;
1835	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1836#ifdef CONFIG_VT
1837	if (device == MKDEV(TTY_MAJOR, 0)) {
1838		extern struct tty_driver *console_driver;
 
1839		driver = tty_driver_kref_get(console_driver);
1840		index = fg_console;
1841		noctty = 1;
1842		goto got_driver;
1843	}
1844#endif
1845	if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1846		struct tty_driver *console_driver = console_device(&index);
 
1847		if (console_driver) {
1848			driver = tty_driver_kref_get(console_driver);
1849			if (driver) {
1850				/* Don't let /dev/console block */
1851				filp->f_flags |= O_NONBLOCK;
1852				noctty = 1;
1853				goto got_driver;
1854			}
1855		}
1856		tty_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1857		mutex_unlock(&tty_mutex);
1858		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1859	}
 
 
 
 
 
1860
1861	driver = get_tty_driver(device, &index);
1862	if (!driver) {
1863		tty_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1864		mutex_unlock(&tty_mutex);
1865		return -ENODEV;
1866	}
1867got_driver:
1868	if (!tty) {
1869		/* check whether we're reopening an existing tty */
1870		tty = tty_driver_lookup_tty(driver, inode, index);
1871
1872		if (IS_ERR(tty)) {
1873			tty_unlock();
1874			mutex_unlock(&tty_mutex);
1875			return PTR_ERR(tty);
1876		}
1877	}
1878
1879	if (tty) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1880		retval = tty_reopen(tty);
1881		if (retval)
 
1882			tty = ERR_PTR(retval);
1883	} else
1884		tty = tty_init_dev(driver, index, 0);
1885
1886	mutex_unlock(&tty_mutex);
 
 
1887	tty_driver_kref_put(driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1888	if (IS_ERR(tty)) {
1889		tty_unlock();
1890		return PTR_ERR(tty);
 
 
 
 
1891	}
1892
1893	retval = tty_add_file(tty, filp);
1894	if (retval) {
1895		tty_unlock();
1896		tty_release(inode, filp);
1897		return retval;
1898	}
1899
1900	check_tty_count(tty, "tty_open");
1901	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1902	    tty->driver->subtype == PTY_TYPE_MASTER)
1903		noctty = 1;
1904#ifdef TTY_DEBUG_HANGUP
1905	printk(KERN_DEBUG "opening %s...", tty->name);
1906#endif
1907	if (tty->ops->open)
1908		retval = tty->ops->open(tty, filp);
1909	else
1910		retval = -ENODEV;
1911	filp->f_flags = saved_flags;
1912
1913	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1914						!capable(CAP_SYS_ADMIN))
1915		retval = -EBUSY;
1916
1917	if (retval) {
1918#ifdef TTY_DEBUG_HANGUP
1919		printk(KERN_DEBUG "error %d in opening %s...", retval,
1920		       tty->name);
1921#endif
1922		tty_unlock(); /* need to call tty_release without BTM */
1923		tty_release(inode, filp);
1924		if (retval != -ERESTARTSYS)
1925			return retval;
1926
1927		if (signal_pending(current))
1928			return retval;
1929
1930		schedule();
1931		/*
1932		 * Need to reset f_op in case a hangup happened.
1933		 */
1934		tty_lock();
1935		if (filp->f_op == &hung_up_tty_fops)
1936			filp->f_op = &tty_fops;
1937		tty_unlock();
1938		goto retry_open;
1939	}
1940	tty_unlock();
1941
1942
1943	mutex_lock(&tty_mutex);
1944	tty_lock();
1945	spin_lock_irq(&current->sighand->siglock);
1946	if (!noctty &&
1947	    current->signal->leader &&
1948	    !current->signal->tty &&
1949	    tty->session == NULL)
1950		__proc_set_tty(current, tty);
1951	spin_unlock_irq(&current->sighand->siglock);
1952	tty_unlock();
1953	mutex_unlock(&tty_mutex);
1954	return 0;
1955}
1956
1957
1958
1959/**
1960 *	tty_poll	-	check tty status
1961 *	@filp: file being polled
1962 *	@wait: poll wait structures to update
1963 *
1964 *	Call the line discipline polling method to obtain the poll
1965 *	status of the device.
1966 *
1967 *	Locking: locks called line discipline but ldisc poll method
1968 *	may be re-entered freely by other callers.
1969 */
1970
1971static unsigned int tty_poll(struct file *filp, poll_table *wait)
1972{
1973	struct tty_struct *tty = file_tty(filp);
1974	struct tty_ldisc *ld;
1975	int ret = 0;
1976
1977	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1978		return 0;
1979
1980	ld = tty_ldisc_ref_wait(tty);
 
 
1981	if (ld->ops->poll)
1982		ret = (ld->ops->poll)(tty, filp, wait);
1983	tty_ldisc_deref(ld);
1984	return ret;
1985}
1986
1987static int __tty_fasync(int fd, struct file *filp, int on)
1988{
1989	struct tty_struct *tty = file_tty(filp);
1990	unsigned long flags;
1991	int retval = 0;
1992
1993	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1994		goto out;
1995
1996	retval = fasync_helper(fd, filp, on, &tty->fasync);
1997	if (retval <= 0)
1998		goto out;
1999
2000	if (on) {
2001		enum pid_type type;
2002		struct pid *pid;
2003		if (!waitqueue_active(&tty->read_wait))
2004			tty->minimum_to_wake = 1;
2005		spin_lock_irqsave(&tty->ctrl_lock, flags);
2006		if (tty->pgrp) {
2007			pid = tty->pgrp;
2008			type = PIDTYPE_PGID;
2009		} else {
2010			pid = task_pid(current);
2011			type = PIDTYPE_PID;
2012		}
2013		get_pid(pid);
2014		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2015		retval = __f_setown(filp, pid, type, 0);
2016		put_pid(pid);
2017		if (retval)
2018			goto out;
2019	} else {
2020		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2021			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2022	}
2023	retval = 0;
2024out:
2025	return retval;
2026}
2027
2028static int tty_fasync(int fd, struct file *filp, int on)
2029{
2030	int retval;
2031	tty_lock();
2032	retval = __tty_fasync(fd, filp, on);
2033	tty_unlock();
 
 
 
 
2034	return retval;
2035}
2036
 
2037/**
2038 *	tiocsti			-	fake input character
2039 *	@tty: tty to fake input into
2040 *	@p: pointer to character
2041 *
2042 *	Fake input to a tty device. Does the necessary locking and
2043 *	input management.
2044 *
2045 *	FIXME: does not honour flow control ??
2046 *
2047 *	Locking:
2048 *		Called functions take tty_ldisc_lock
2049 *		current->signal->tty check is safe without locks
2050 *
2051 *	FIXME: may race normal receive processing
2052 */
2053
2054static int tiocsti(struct tty_struct *tty, char __user *p)
2055{
2056	char ch, mbz = 0;
2057	struct tty_ldisc *ld;
 
 
 
 
2058
2059	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2060		return -EPERM;
2061	if (get_user(ch, p))
2062		return -EFAULT;
2063	tty_audit_tiocsti(tty, ch);
2064	ld = tty_ldisc_ref_wait(tty);
2065	ld->ops->receive_buf(tty, &ch, &mbz, 1);
 
 
 
 
 
2066	tty_ldisc_deref(ld);
2067	return 0;
2068}
2069
2070/**
2071 *	tiocgwinsz		-	implement window query ioctl
2072 *	@tty; tty
2073 *	@arg: user buffer for result
2074 *
2075 *	Copies the kernel idea of the window size into the user buffer.
2076 *
2077 *	Locking: tty->termios_mutex is taken to ensure the winsize data
2078 *		is consistent.
2079 */
2080
2081static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2082{
2083	int err;
2084
2085	mutex_lock(&tty->termios_mutex);
2086	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2087	mutex_unlock(&tty->termios_mutex);
2088
2089	return err ? -EFAULT: 0;
2090}
2091
2092/**
2093 *	tty_do_resize		-	resize event
2094 *	@tty: tty being resized
2095 *	@rows: rows (character)
2096 *	@cols: cols (character)
2097 *
2098 *	Update the termios variables and send the necessary signals to
2099 *	peform a terminal resize correctly
2100 */
2101
2102int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2103{
2104	struct pid *pgrp;
2105	unsigned long flags;
2106
2107	/* Lock the tty */
2108	mutex_lock(&tty->termios_mutex);
2109	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2110		goto done;
2111	/* Get the PID values and reference them so we can
2112	   avoid holding the tty ctrl lock while sending signals */
2113	spin_lock_irqsave(&tty->ctrl_lock, flags);
2114	pgrp = get_pid(tty->pgrp);
2115	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2116
 
 
2117	if (pgrp)
2118		kill_pgrp(pgrp, SIGWINCH, 1);
2119	put_pid(pgrp);
2120
2121	tty->winsize = *ws;
2122done:
2123	mutex_unlock(&tty->termios_mutex);
2124	return 0;
2125}
 
2126
2127/**
2128 *	tiocswinsz		-	implement window size set ioctl
2129 *	@tty; tty side of tty
2130 *	@arg: user buffer for result
2131 *
2132 *	Copies the user idea of the window size to the kernel. Traditionally
2133 *	this is just advisory information but for the Linux console it
2134 *	actually has driver level meaning and triggers a VC resize.
2135 *
2136 *	Locking:
2137 *		Driver dependent. The default do_resize method takes the
2138 *	tty termios mutex and ctrl_lock. The console takes its own lock
2139 *	then calls into the default method.
2140 */
2141
2142static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2143{
2144	struct winsize tmp_ws;
 
2145	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2146		return -EFAULT;
2147
2148	if (tty->ops->resize)
2149		return tty->ops->resize(tty, &tmp_ws);
2150	else
2151		return tty_do_resize(tty, &tmp_ws);
2152}
2153
2154/**
2155 *	tioccons	-	allow admin to move logical console
2156 *	@file: the file to become console
2157 *
2158 *	Allow the administrator to move the redirected console device
2159 *
2160 *	Locking: uses redirect_lock to guard the redirect information
2161 */
2162
2163static int tioccons(struct file *file)
2164{
2165	if (!capable(CAP_SYS_ADMIN))
2166		return -EPERM;
2167	if (file->f_op->write == redirected_tty_write) {
2168		struct file *f;
 
2169		spin_lock(&redirect_lock);
2170		f = redirect;
2171		redirect = NULL;
2172		spin_unlock(&redirect_lock);
2173		if (f)
2174			fput(f);
2175		return 0;
2176	}
 
 
 
 
 
 
2177	spin_lock(&redirect_lock);
2178	if (redirect) {
2179		spin_unlock(&redirect_lock);
2180		return -EBUSY;
2181	}
2182	get_file(file);
2183	redirect = file;
2184	spin_unlock(&redirect_lock);
2185	return 0;
2186}
2187
2188/**
2189 *	fionbio		-	non blocking ioctl
2190 *	@file: file to set blocking value
2191 *	@p: user parameter
2192 *
2193 *	Historical tty interfaces had a blocking control ioctl before
2194 *	the generic functionality existed. This piece of history is preserved
2195 *	in the expected tty API of posix OS's.
2196 *
2197 *	Locking: none, the open file handle ensures it won't go away.
2198 */
2199
2200static int fionbio(struct file *file, int __user *p)
2201{
2202	int nonblock;
 
2203
2204	if (get_user(nonblock, p))
2205		return -EFAULT;
2206
2207	spin_lock(&file->f_lock);
2208	if (nonblock)
2209		file->f_flags |= O_NONBLOCK;
2210	else
2211		file->f_flags &= ~O_NONBLOCK;
2212	spin_unlock(&file->f_lock);
2213	return 0;
2214}
2215
2216/**
2217 *	tiocsctty	-	set controlling tty
2218 *	@tty: tty structure
2219 *	@arg: user argument
2220 *
2221 *	This ioctl is used to manage job control. It permits a session
2222 *	leader to set this tty as the controlling tty for the session.
2223 *
2224 *	Locking:
2225 *		Takes tty_mutex() to protect tty instance
2226 *		Takes tasklist_lock internally to walk sessions
2227 *		Takes ->siglock() when updating signal->tty
2228 */
2229
2230static int tiocsctty(struct tty_struct *tty, int arg)
2231{
2232	int ret = 0;
2233	if (current->signal->leader && (task_session(current) == tty->session))
2234		return ret;
2235
2236	mutex_lock(&tty_mutex);
2237	/*
2238	 * The process must be a session leader and
2239	 * not have a controlling tty already.
2240	 */
2241	if (!current->signal->leader || current->signal->tty) {
2242		ret = -EPERM;
2243		goto unlock;
2244	}
2245
2246	if (tty->session) {
2247		/*
2248		 * This tty is already the controlling
2249		 * tty for another session group!
2250		 */
2251		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2252			/*
2253			 * Steal it away
2254			 */
2255			read_lock(&tasklist_lock);
2256			session_clear_tty(tty->session);
2257			read_unlock(&tasklist_lock);
2258		} else {
2259			ret = -EPERM;
2260			goto unlock;
2261		}
2262	}
2263	proc_set_tty(current, tty);
2264unlock:
2265	mutex_unlock(&tty_mutex);
2266	return ret;
2267}
2268
2269/**
2270 *	tty_get_pgrp	-	return a ref counted pgrp pid
2271 *	@tty: tty to read
 
2272 *
2273 *	Returns a refcounted instance of the pid struct for the process
2274 *	group controlling the tty.
2275 */
2276
2277struct pid *tty_get_pgrp(struct tty_struct *tty)
2278{
2279	unsigned long flags;
2280	struct pid *pgrp;
2281
2282	spin_lock_irqsave(&tty->ctrl_lock, flags);
2283	pgrp = get_pid(tty->pgrp);
2284	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2285
2286	return pgrp;
2287}
2288EXPORT_SYMBOL_GPL(tty_get_pgrp);
2289
2290/**
2291 *	tiocgpgrp		-	get process group
2292 *	@tty: tty passed by user
2293 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2294 *	@p: returned pid
2295 *
2296 *	Obtain the process group of the tty. If there is no process group
2297 *	return an error.
2298 *
2299 *	Locking: none. Reference to current->signal->tty is safe.
2300 */
2301
2302static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2303{
2304	struct pid *pid;
2305	int ret;
2306	/*
2307	 * (tty == real_tty) is a cheap way of
2308	 * testing if the tty is NOT a master pty.
2309	 */
2310	if (tty == real_tty && current->signal->tty != real_tty)
2311		return -ENOTTY;
2312	pid = tty_get_pgrp(real_tty);
2313	ret =  put_user(pid_vnr(pid), p);
2314	put_pid(pid);
2315	return ret;
2316}
2317
2318/**
2319 *	tiocspgrp		-	attempt to set process group
2320 *	@tty: tty passed by user
2321 *	@real_tty: tty side device matching tty passed by user
2322 *	@p: pid pointer
2323 *
2324 *	Set the process group of the tty to the session passed. Only
2325 *	permitted where the tty session is our session.
2326 *
2327 *	Locking: RCU, ctrl lock
2328 */
2329
2330static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2331{
2332	struct pid *pgrp;
2333	pid_t pgrp_nr;
2334	int retval = tty_check_change(real_tty);
2335	unsigned long flags;
2336
2337	if (retval == -EIO)
2338		return -ENOTTY;
2339	if (retval)
2340		return retval;
2341	if (!current->signal->tty ||
2342	    (current->signal->tty != real_tty) ||
2343	    (real_tty->session != task_session(current)))
2344		return -ENOTTY;
2345	if (get_user(pgrp_nr, p))
2346		return -EFAULT;
2347	if (pgrp_nr < 0)
2348		return -EINVAL;
2349	rcu_read_lock();
2350	pgrp = find_vpid(pgrp_nr);
2351	retval = -ESRCH;
2352	if (!pgrp)
2353		goto out_unlock;
2354	retval = -EPERM;
2355	if (session_of_pgrp(pgrp) != task_session(current))
2356		goto out_unlock;
2357	retval = 0;
2358	spin_lock_irqsave(&tty->ctrl_lock, flags);
2359	put_pid(real_tty->pgrp);
2360	real_tty->pgrp = get_pid(pgrp);
2361	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2362out_unlock:
2363	rcu_read_unlock();
2364	return retval;
2365}
2366
2367/**
2368 *	tiocgsid		-	get session id
2369 *	@tty: tty passed by user
2370 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2371 *	@p: pointer to returned session id
2372 *
2373 *	Obtain the session id of the tty. If there is no session
2374 *	return an error.
2375 *
2376 *	Locking: none. Reference to current->signal->tty is safe.
 
2377 */
2378
2379static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2380{
2381	/*
2382	 * (tty == real_tty) is a cheap way of
2383	 * testing if the tty is NOT a master pty.
2384	*/
2385	if (tty == real_tty && current->signal->tty != real_tty)
2386		return -ENOTTY;
2387	if (!real_tty->session)
2388		return -ENOTTY;
2389	return put_user(pid_vnr(real_tty->session), p);
2390}
2391
2392/**
2393 *	tiocsetd	-	set line discipline
2394 *	@tty: tty device
2395 *	@p: pointer to user data
2396 *
2397 *	Set the line discipline according to user request.
2398 *
2399 *	Locking: see tty_set_ldisc, this function is just a helper
2400 */
2401
2402static int tiocsetd(struct tty_struct *tty, int __user *p)
2403{
2404	int ldisc;
2405	int ret;
2406
2407	if (get_user(ldisc, p))
2408		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
2409
2410	ret = tty_set_ldisc(tty, ldisc);
 
2411
2412	return ret;
2413}
2414
2415/**
2416 *	send_break	-	performed time break
2417 *	@tty: device to break on
2418 *	@duration: timeout in mS
2419 *
2420 *	Perform a timed break on hardware that lacks its own driver level
2421 *	timed break functionality.
2422 *
2423 *	Locking:
2424 *		atomic_write_lock serializes
2425 *
 
 
2426 */
2427
2428static int send_break(struct tty_struct *tty, unsigned int duration)
2429{
2430	int retval;
2431
2432	if (tty->ops->break_ctl == NULL)
2433		return 0;
2434
2435	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2436		retval = tty->ops->break_ctl(tty, duration);
2437	else {
2438		/* Do the work ourselves */
2439		if (tty_write_lock(tty, 0) < 0)
2440			return -EINTR;
2441		retval = tty->ops->break_ctl(tty, -1);
2442		if (retval)
2443			goto out;
2444		if (!signal_pending(current))
2445			msleep_interruptible(duration);
2446		retval = tty->ops->break_ctl(tty, 0);
2447out:
2448		tty_write_unlock(tty);
2449		if (signal_pending(current))
2450			retval = -EINTR;
2451	}
2452	return retval;
2453}
 
2454
2455/**
2456 *	tty_tiocmget		-	get modem status
2457 *	@tty: tty device
2458 *	@file: user file pointer
2459 *	@p: pointer to result
2460 *
2461 *	Obtain the modem status bits from the tty driver if the feature
2462 *	is supported. Return -EINVAL if it is not available.
2463 *
2464 *	Locking: none (up to the driver)
2465 */
2466
2467static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2468{
2469	int retval = -EINVAL;
2470
2471	if (tty->ops->tiocmget) {
2472		retval = tty->ops->tiocmget(tty);
 
2473
2474		if (retval >= 0)
2475			retval = put_user(retval, p);
2476	}
2477	return retval;
2478}
2479
2480/**
2481 *	tty_tiocmset		-	set modem status
2482 *	@tty: tty device
2483 *	@cmd: command - clear bits, set bits or set all
2484 *	@p: pointer to desired bits
2485 *
2486 *	Set the modem status bits from the tty driver if the feature
2487 *	is supported. Return -EINVAL if it is not available.
2488 *
2489 *	Locking: none (up to the driver)
2490 */
2491
2492static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2493	     unsigned __user *p)
2494{
2495	int retval;
2496	unsigned int set, clear, val;
2497
2498	if (tty->ops->tiocmset == NULL)
2499		return -EINVAL;
2500
2501	retval = get_user(val, p);
2502	if (retval)
2503		return retval;
2504	set = clear = 0;
2505	switch (cmd) {
2506	case TIOCMBIS:
2507		set = val;
2508		break;
2509	case TIOCMBIC:
2510		clear = val;
2511		break;
2512	case TIOCMSET:
2513		set = val;
2514		clear = ~val;
2515		break;
2516	}
2517	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2518	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2519	return tty->ops->tiocmset(tty, set, clear);
2520}
2521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2522static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2523{
2524	int retval = -EINVAL;
2525	struct serial_icounter_struct icount;
2526	memset(&icount, 0, sizeof(icount));
2527	if (tty->ops->get_icount)
2528		retval = tty->ops->get_icount(tty, &icount);
2529	if (retval != 0)
2530		return retval;
 
2531	if (copy_to_user(arg, &icount, sizeof(icount)))
2532		return -EFAULT;
2533	return 0;
2534}
2535
2536struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2537{
2538	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2539	    tty->driver->subtype == PTY_TYPE_MASTER)
2540		tty = tty->link;
2541	return tty;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2542}
2543EXPORT_SYMBOL(tty_pair_get_tty);
2544
2545struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
 
 
 
 
2546{
2547	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2548	    tty->driver->subtype == PTY_TYPE_MASTER)
2549	    return tty;
2550	return tty->link;
2551}
2552EXPORT_SYMBOL(tty_pair_get_pty);
2553
2554/*
2555 * Split this up, as gcc can choke on it otherwise..
2556 */
2557long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2558{
2559	struct tty_struct *tty = file_tty(file);
2560	struct tty_struct *real_tty;
2561	void __user *p = (void __user *)arg;
2562	int retval;
2563	struct tty_ldisc *ld;
2564	struct inode *inode = file->f_dentry->d_inode;
2565
2566	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2567		return -EINVAL;
2568
2569	real_tty = tty_pair_get_tty(tty);
2570
2571	/*
2572	 * Factor out some common prep work
2573	 */
2574	switch (cmd) {
2575	case TIOCSETD:
2576	case TIOCSBRK:
2577	case TIOCCBRK:
2578	case TCSBRK:
2579	case TCSBRKP:
2580		retval = tty_check_change(tty);
2581		if (retval)
2582			return retval;
2583		if (cmd != TIOCCBRK) {
2584			tty_wait_until_sent(tty, 0);
2585			if (signal_pending(current))
2586				return -EINTR;
2587		}
2588		break;
2589	}
2590
2591	/*
2592	 *	Now do the stuff.
2593	 */
2594	switch (cmd) {
2595	case TIOCSTI:
2596		return tiocsti(tty, p);
2597	case TIOCGWINSZ:
2598		return tiocgwinsz(real_tty, p);
2599	case TIOCSWINSZ:
2600		return tiocswinsz(real_tty, p);
2601	case TIOCCONS:
2602		return real_tty != tty ? -EINVAL : tioccons(file);
2603	case FIONBIO:
2604		return fionbio(file, p);
2605	case TIOCEXCL:
2606		set_bit(TTY_EXCLUSIVE, &tty->flags);
2607		return 0;
2608	case TIOCNXCL:
2609		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2610		return 0;
2611	case TIOCNOTTY:
2612		if (current->signal->tty != tty)
2613			return -ENOTTY;
2614		no_tty();
2615		return 0;
2616	case TIOCSCTTY:
2617		return tiocsctty(tty, arg);
2618	case TIOCGPGRP:
2619		return tiocgpgrp(tty, real_tty, p);
2620	case TIOCSPGRP:
2621		return tiocspgrp(tty, real_tty, p);
2622	case TIOCGSID:
2623		return tiocgsid(tty, real_tty, p);
2624	case TIOCGETD:
2625		return put_user(tty->ldisc->ops->num, (int __user *)p);
2626	case TIOCSETD:
2627		return tiocsetd(tty, p);
2628	case TIOCVHANGUP:
2629		if (!capable(CAP_SYS_ADMIN))
2630			return -EPERM;
2631		tty_vhangup(tty);
2632		return 0;
2633	case TIOCGDEV:
2634	{
2635		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
 
2636		return put_user(ret, (unsigned int __user *)p);
2637	}
2638	/*
2639	 * Break handling
2640	 */
2641	case TIOCSBRK:	/* Turn break on, unconditionally */
2642		if (tty->ops->break_ctl)
2643			return tty->ops->break_ctl(tty, -1);
2644		return 0;
2645	case TIOCCBRK:	/* Turn break off, unconditionally */
2646		if (tty->ops->break_ctl)
2647			return tty->ops->break_ctl(tty, 0);
2648		return 0;
2649	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2650		/* non-zero arg means wait for all output data
2651		 * to be sent (performed above) but don't send break.
2652		 * This is used by the tcdrain() termios function.
2653		 */
2654		if (!arg)
2655			return send_break(tty, 250);
2656		return 0;
2657	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2658		return send_break(tty, arg ? arg*100 : 250);
2659
2660	case TIOCMGET:
2661		return tty_tiocmget(tty, p);
2662	case TIOCMSET:
2663	case TIOCMBIC:
2664	case TIOCMBIS:
2665		return tty_tiocmset(tty, cmd, p);
2666	case TIOCGICOUNT:
2667		retval = tty_tiocgicount(tty, p);
2668		/* For the moment allow fall through to the old method */
2669        	if (retval != -EINVAL)
2670			return retval;
2671		break;
2672	case TCFLSH:
2673		switch (arg) {
2674		case TCIFLUSH:
2675		case TCIOFLUSH:
2676		/* flush tty buffer and allow ldisc to process ioctl */
2677			tty_buffer_flush(tty);
2678			break;
2679		}
2680		break;
 
 
 
 
 
 
 
 
 
 
 
2681	}
2682	if (tty->ops->ioctl) {
2683		retval = (tty->ops->ioctl)(tty, cmd, arg);
2684		if (retval != -ENOIOCTLCMD)
2685			return retval;
2686	}
2687	ld = tty_ldisc_ref_wait(tty);
 
 
2688	retval = -EINVAL;
2689	if (ld->ops->ioctl) {
2690		retval = ld->ops->ioctl(tty, file, cmd, arg);
2691		if (retval == -ENOIOCTLCMD)
2692			retval = -EINVAL;
2693	}
2694	tty_ldisc_deref(ld);
2695	return retval;
2696}
2697
2698#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2699static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2700				unsigned long arg)
2701{
2702	struct inode *inode = file->f_dentry->d_inode;
2703	struct tty_struct *tty = file_tty(file);
2704	struct tty_ldisc *ld;
2705	int retval = -ENOIOCTLCMD;
2706
2707	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2708		return -EINVAL;
2709
 
 
 
 
 
 
2710	if (tty->ops->compat_ioctl) {
2711		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2712		if (retval != -ENOIOCTLCMD)
2713			return retval;
2714	}
2715
2716	ld = tty_ldisc_ref_wait(tty);
 
 
2717	if (ld->ops->compat_ioctl)
2718		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
 
 
 
2719	tty_ldisc_deref(ld);
2720
2721	return retval;
2722}
2723#endif
2724
 
 
 
 
 
 
 
2725/*
2726 * This implements the "Secure Attention Key" ---  the idea is to
2727 * prevent trojan horses by killing all processes associated with this
2728 * tty when the user hits the "Secure Attention Key".  Required for
2729 * super-paranoid applications --- see the Orange Book for more details.
2730 *
2731 * This code could be nicer; ideally it should send a HUP, wait a few
2732 * seconds, then send a INT, and then a KILL signal.  But you then
2733 * have to coordinate with the init process, since all processes associated
2734 * with the current tty must be dead before the new getty is allowed
2735 * to spawn.
2736 *
2737 * Now, if it would be correct ;-/ The current code has a nasty hole -
2738 * it doesn't catch files in flight. We may send the descriptor to ourselves
2739 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2740 *
2741 * Nasty bug: do_SAK is being called in interrupt context.  This can
2742 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2743 */
2744void __do_SAK(struct tty_struct *tty)
2745{
2746#ifdef TTY_SOFT_SAK
2747	tty_hangup(tty);
2748#else
2749	struct task_struct *g, *p;
2750	struct pid *session;
2751	int		i;
2752	struct file	*filp;
2753	struct fdtable *fdt;
2754
2755	if (!tty)
2756		return;
2757	session = tty->session;
2758
2759	tty_ldisc_flush(tty);
2760
2761	tty_driver_flush_buffer(tty);
2762
2763	read_lock(&tasklist_lock);
2764	/* Kill the entire session */
2765	do_each_pid_task(session, PIDTYPE_SID, p) {
2766		printk(KERN_NOTICE "SAK: killed process %d"
2767			" (%s): task_session(p)==tty->session\n",
2768			task_pid_nr(p), p->comm);
2769		send_sig(SIGKILL, p, 1);
2770	} while_each_pid_task(session, PIDTYPE_SID, p);
2771	/* Now kill any processes that happen to have the
2772	 * tty open.
2773	 */
2774	do_each_thread(g, p) {
2775		if (p->signal->tty == tty) {
2776			printk(KERN_NOTICE "SAK: killed process %d"
2777			    " (%s): task_session(p)==tty->session\n",
2778			    task_pid_nr(p), p->comm);
2779			send_sig(SIGKILL, p, 1);
2780			continue;
2781		}
2782		task_lock(p);
2783		if (p->files) {
2784			/*
2785			 * We don't take a ref to the file, so we must
2786			 * hold ->file_lock instead.
2787			 */
2788			spin_lock(&p->files->file_lock);
2789			fdt = files_fdtable(p->files);
2790			for (i = 0; i < fdt->max_fds; i++) {
2791				filp = fcheck_files(p->files, i);
2792				if (!filp)
2793					continue;
2794				if (filp->f_op->read == tty_read &&
2795				    file_tty(filp) == tty) {
2796					printk(KERN_NOTICE "SAK: killed process %d"
2797					    " (%s): fd#%d opened to the tty\n",
2798					    task_pid_nr(p), p->comm, i);
2799					force_sig(SIGKILL, p);
2800					break;
2801				}
2802			}
2803			spin_unlock(&p->files->file_lock);
2804		}
2805		task_unlock(p);
2806	} while_each_thread(g, p);
2807	read_unlock(&tasklist_lock);
2808#endif
2809}
2810
2811static void do_SAK_work(struct work_struct *work)
2812{
2813	struct tty_struct *tty =
2814		container_of(work, struct tty_struct, SAK_work);
2815	__do_SAK(tty);
2816}
2817
2818/*
2819 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2820 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2821 * the values which we write to it will be identical to the values which it
2822 * already has. --akpm
2823 */
2824void do_SAK(struct tty_struct *tty)
2825{
2826	if (!tty)
2827		return;
2828	schedule_work(&tty->SAK_work);
2829}
2830
2831EXPORT_SYMBOL(do_SAK);
2832
2833static int dev_match_devt(struct device *dev, void *data)
2834{
2835	dev_t *devt = data;
2836	return dev->devt == *devt;
2837}
2838
2839/* Must put_device() after it's unused! */
2840static struct device *tty_get_device(struct tty_struct *tty)
2841{
2842	dev_t devt = tty_devnum(tty);
2843	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
 
2844}
2845
2846
2847/**
2848 *	initialize_tty_struct
2849 *	@tty: tty to initialize
 
2850 *
2851 *	This subroutine initializes a tty structure that has been newly
2852 *	allocated.
2853 *
2854 *	Locking: none - tty in question must not be exposed at this point
2855 */
2856
2857void initialize_tty_struct(struct tty_struct *tty,
2858		struct tty_driver *driver, int idx)
2859{
2860	memset(tty, 0, sizeof(struct tty_struct));
 
 
 
 
 
2861	kref_init(&tty->kref);
2862	tty->magic = TTY_MAGIC;
2863	tty_ldisc_init(tty);
2864	tty->session = NULL;
2865	tty->pgrp = NULL;
2866	tty->overrun_time = jiffies;
2867	tty->buf.head = tty->buf.tail = NULL;
2868	tty_buffer_init(tty);
2869	mutex_init(&tty->termios_mutex);
2870	mutex_init(&tty->ldisc_mutex);
 
 
2871	init_waitqueue_head(&tty->write_wait);
2872	init_waitqueue_head(&tty->read_wait);
2873	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2874	mutex_init(&tty->atomic_read_lock);
2875	mutex_init(&tty->atomic_write_lock);
2876	mutex_init(&tty->output_lock);
2877	mutex_init(&tty->echo_lock);
2878	spin_lock_init(&tty->read_lock);
2879	spin_lock_init(&tty->ctrl_lock);
2880	INIT_LIST_HEAD(&tty->tty_files);
2881	INIT_WORK(&tty->SAK_work, do_SAK_work);
2882
2883	tty->driver = driver;
2884	tty->ops = driver->ops;
2885	tty->index = idx;
2886	tty_line_name(driver, idx, tty->name);
2887	tty->dev = tty_get_device(tty);
 
 
2888}
2889
2890/**
2891 *	deinitialize_tty_struct
2892 *	@tty: tty to deinitialize
 
2893 *
2894 *	This subroutine deinitializes a tty structure that has been newly
2895 *	allocated but tty_release cannot be called on that yet.
2896 *
2897 *	Locking: none - tty in question must not be exposed at this point
 
 
 
2898 */
2899void deinitialize_tty_struct(struct tty_struct *tty)
2900{
2901	tty_ldisc_deinit(tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2902}
2903
2904/**
2905 *	tty_put_char	-	write one character to a tty
2906 *	@tty: tty
2907 *	@ch: character
 
 
 
 
 
 
 
 
2908 *
2909 *	Write one byte to the tty using the provided put_char method
2910 *	if present. Returns the number of characters successfully output.
2911 *
2912 *	Note: the specific put_char operation in the driver layer may go
2913 *	away soon. Don't call it directly, use this method
2914 */
2915
2916int tty_put_char(struct tty_struct *tty, unsigned char ch)
2917{
2918	if (tty->ops->put_char)
2919		return tty->ops->put_char(tty, ch);
2920	return tty->ops->write(tty, &ch, 1);
2921}
2922EXPORT_SYMBOL_GPL(tty_put_char);
2923
2924struct class *tty_class;
 
 
 
 
2925
2926/**
2927 *	tty_register_device - register a tty device
2928 *	@driver: the tty driver that describes the tty device
2929 *	@index: the index in the tty driver for this tty device
2930 *	@device: a struct device that is associated with this tty device.
2931 *		This field is optional, if there is no known struct device
2932 *		for this tty device it can be set to NULL safely.
 
 
2933 *
2934 *	Returns a pointer to the struct device for this tty device
2935 *	(or ERR_PTR(-EFOO) on error).
 
2936 *
2937 *	This call is required to be made to register an individual tty device
2938 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2939 *	that bit is not set, this function should not be called by a tty
2940 *	driver.
2941 *
2942 *	Locking: ??
 
2943 */
2944
2945struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2946				   struct device *device)
 
2947{
2948	char name[64];
2949	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
 
 
 
2950
2951	if (index >= driver->num) {
2952		printk(KERN_ERR "Attempt to register invalid tty line number "
2953		       " (%d).\n", index);
2954		return ERR_PTR(-EINVAL);
2955	}
2956
2957	if (driver->type == TTY_DRIVER_TYPE_PTY)
2958		pty_line_name(driver, index, name);
2959	else
2960		tty_line_name(driver, index, name);
2961
2962	return device_create(tty_class, device, dev, NULL, name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2963}
2964EXPORT_SYMBOL(tty_register_device);
2965
2966/**
2967 * 	tty_unregister_device - unregister a tty device
2968 * 	@driver: the tty driver that describes the tty device
2969 * 	@index: the index in the tty driver for this tty device
2970 *
2971 * 	If a tty device is registered with a call to tty_register_device() then
2972 *	this function must be called when the tty device is gone.
2973 *
2974 *	Locking: ??
2975 */
2976
2977void tty_unregister_device(struct tty_driver *driver, unsigned index)
2978{
2979	device_destroy(tty_class,
2980		MKDEV(driver->major, driver->minor_start) + index);
 
 
 
2981}
2982EXPORT_SYMBOL(tty_unregister_device);
2983
2984struct tty_driver *alloc_tty_driver(int lines)
 
 
 
 
 
 
 
 
 
 
2985{
2986	struct tty_driver *driver;
 
 
2987
2988	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2989	if (driver) {
2990		kref_init(&driver->kref);
2991		driver->magic = TTY_DRIVER_MAGIC;
2992		driver->num = lines;
2993		/* later we'll move allocation of tables here */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2994	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2995	return driver;
 
 
 
 
 
 
 
2996}
2997EXPORT_SYMBOL(alloc_tty_driver);
2998
2999static void destruct_tty_driver(struct kref *kref)
3000{
3001	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3002	int i;
3003	struct ktermios *tp;
3004	void *p;
3005
3006	if (driver->flags & TTY_DRIVER_INSTALLED) {
3007		/*
3008		 * Free the termios and termios_locked structures because
3009		 * we don't want to get memory leaks when modular tty
3010		 * drivers are removed from the kernel.
3011		 */
3012		for (i = 0; i < driver->num; i++) {
3013			tp = driver->termios[i];
3014			if (tp) {
3015				driver->termios[i] = NULL;
3016				kfree(tp);
3017			}
3018			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3019				tty_unregister_device(driver, i);
3020		}
3021		p = driver->ttys;
3022		proc_tty_unregister_driver(driver);
3023		driver->ttys = NULL;
3024		driver->termios = NULL;
3025		kfree(p);
3026		cdev_del(&driver->cdev);
3027	}
 
 
 
 
3028	kfree(driver);
3029}
3030
 
 
 
 
 
 
3031void tty_driver_kref_put(struct tty_driver *driver)
3032{
3033	kref_put(&driver->kref, destruct_tty_driver);
3034}
3035EXPORT_SYMBOL(tty_driver_kref_put);
3036
3037void tty_set_operations(struct tty_driver *driver,
3038			const struct tty_operations *op)
3039{
3040	driver->ops = op;
3041};
3042EXPORT_SYMBOL(tty_set_operations);
3043
3044void put_tty_driver(struct tty_driver *d)
3045{
3046	tty_driver_kref_put(d);
3047}
3048EXPORT_SYMBOL(put_tty_driver);
3049
3050/*
3051 * Called by a tty driver to register itself.
3052 */
3053int tty_register_driver(struct tty_driver *driver)
3054{
3055	int error;
3056	int i;
3057	dev_t dev;
3058	void **p = NULL;
3059	struct device *d;
3060
3061	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3062		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3063		if (!p)
3064			return -ENOMEM;
3065	}
3066
3067	if (!driver->major) {
3068		error = alloc_chrdev_region(&dev, driver->minor_start,
3069						driver->num, driver->name);
3070		if (!error) {
3071			driver->major = MAJOR(dev);
3072			driver->minor_start = MINOR(dev);
3073		}
3074	} else {
3075		dev = MKDEV(driver->major, driver->minor_start);
3076		error = register_chrdev_region(dev, driver->num, driver->name);
3077	}
3078	if (error < 0) {
3079		kfree(p);
3080		return error;
3081	}
3082
3083	if (p) {
3084		driver->ttys = (struct tty_struct **)p;
3085		driver->termios = (struct ktermios **)(p + driver->num);
3086	} else {
3087		driver->ttys = NULL;
3088		driver->termios = NULL;
3089	}
3090
3091	cdev_init(&driver->cdev, &tty_fops);
3092	driver->cdev.owner = driver->owner;
3093	error = cdev_add(&driver->cdev, dev, driver->num);
3094	if (error) {
3095		unregister_chrdev_region(dev, driver->num);
3096		driver->ttys = NULL;
3097		driver->termios = NULL;
3098		kfree(p);
3099		return error;
3100	}
3101
3102	mutex_lock(&tty_mutex);
3103	list_add(&driver->tty_drivers, &tty_drivers);
3104	mutex_unlock(&tty_mutex);
3105
3106	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3107		for (i = 0; i < driver->num; i++) {
3108			d = tty_register_device(driver, i, NULL);
3109			if (IS_ERR(d)) {
3110				error = PTR_ERR(d);
3111				goto err;
3112			}
3113		}
3114	}
3115	proc_tty_register_driver(driver);
3116	driver->flags |= TTY_DRIVER_INSTALLED;
3117	return 0;
3118
3119err:
3120	for (i--; i >= 0; i--)
3121		tty_unregister_device(driver, i);
3122
3123	mutex_lock(&tty_mutex);
3124	list_del(&driver->tty_drivers);
3125	mutex_unlock(&tty_mutex);
3126
 
3127	unregister_chrdev_region(dev, driver->num);
3128	driver->ttys = NULL;
3129	driver->termios = NULL;
3130	kfree(p);
3131	return error;
3132}
3133
3134EXPORT_SYMBOL(tty_register_driver);
3135
3136/*
 
 
 
3137 * Called by a tty driver to unregister itself.
3138 */
3139int tty_unregister_driver(struct tty_driver *driver)
3140{
3141#if 0
3142	/* FIXME */
3143	if (driver->refcount)
3144		return -EBUSY;
3145#endif
3146	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3147				driver->num);
3148	mutex_lock(&tty_mutex);
3149	list_del(&driver->tty_drivers);
3150	mutex_unlock(&tty_mutex);
3151	return 0;
3152}
3153
3154EXPORT_SYMBOL(tty_unregister_driver);
3155
3156dev_t tty_devnum(struct tty_struct *tty)
3157{
3158	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3159}
3160EXPORT_SYMBOL(tty_devnum);
3161
3162void proc_clear_tty(struct task_struct *p)
3163{
3164	unsigned long flags;
3165	struct tty_struct *tty;
3166	spin_lock_irqsave(&p->sighand->siglock, flags);
3167	tty = p->signal->tty;
3168	p->signal->tty = NULL;
3169	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3170	tty_kref_put(tty);
3171}
3172
3173/* Called under the sighand lock */
3174
3175static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3176{
3177	if (tty) {
3178		unsigned long flags;
3179		/* We should not have a session or pgrp to put here but.... */
3180		spin_lock_irqsave(&tty->ctrl_lock, flags);
3181		put_pid(tty->session);
3182		put_pid(tty->pgrp);
3183		tty->pgrp = get_pid(task_pgrp(tsk));
3184		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3185		tty->session = get_pid(task_session(tsk));
3186		if (tsk->signal->tty) {
3187			printk(KERN_DEBUG "tty not NULL!!\n");
3188			tty_kref_put(tsk->signal->tty);
3189		}
3190	}
3191	put_pid(tsk->signal->tty_old_pgrp);
3192	tsk->signal->tty = tty_kref_get(tty);
3193	tsk->signal->tty_old_pgrp = NULL;
3194}
3195
3196static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3197{
3198	spin_lock_irq(&tsk->sighand->siglock);
3199	__proc_set_tty(tsk, tty);
3200	spin_unlock_irq(&tsk->sighand->siglock);
3201}
3202
3203struct tty_struct *get_current_tty(void)
3204{
3205	struct tty_struct *tty;
3206	unsigned long flags;
3207
3208	spin_lock_irqsave(&current->sighand->siglock, flags);
3209	tty = tty_kref_get(current->signal->tty);
3210	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3211	return tty;
3212}
3213EXPORT_SYMBOL_GPL(get_current_tty);
3214
3215void tty_default_fops(struct file_operations *fops)
3216{
3217	*fops = tty_fops;
3218}
3219
3220/*
3221 * Initialize the console device. This is called *early*, so
3222 * we can't necessarily depend on lots of kernel help here.
3223 * Just do some early initializations, and do the complex setup
3224 * later.
3225 */
3226void __init console_init(void)
3227{
3228	initcall_t *call;
3229
3230	/* Setup the default TTY line discipline. */
3231	tty_ldisc_begin();
3232
3233	/*
3234	 * set up the console device so that later boot sequences can
3235	 * inform about problems etc..
3236	 */
3237	call = __con_initcall_start;
3238	while (call < __con_initcall_end) {
3239		(*call)();
3240		call++;
3241	}
3242}
3243
3244static char *tty_devnode(struct device *dev, mode_t *mode)
3245{
3246	if (!mode)
3247		return NULL;
3248	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3249	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3250		*mode = 0666;
3251	return NULL;
3252}
3253
 
 
 
 
 
3254static int __init tty_class_init(void)
3255{
3256	tty_class = class_create(THIS_MODULE, "tty");
3257	if (IS_ERR(tty_class))
3258		return PTR_ERR(tty_class);
3259	tty_class->devnode = tty_devnode;
3260	return 0;
3261}
3262
3263postcore_initcall(tty_class_init);
3264
3265/* 3/2004 jmc: why do these devices exist? */
3266static struct cdev tty_cdev, console_cdev;
3267
3268static ssize_t show_cons_active(struct device *dev,
3269				struct device_attribute *attr, char *buf)
3270{
3271	struct console *cs[16];
3272	int i = 0;
3273	struct console *c;
3274	ssize_t count = 0;
3275
3276	console_lock();
 
 
 
 
 
 
 
3277	for_each_console(c) {
3278		if (!c->device)
3279			continue;
3280		if (!c->write)
3281			continue;
3282		if ((c->flags & CON_ENABLED) == 0)
3283			continue;
3284		cs[i++] = c;
3285		if (i >= ARRAY_SIZE(cs))
3286			break;
3287	}
3288	while (i--)
3289		count += sprintf(buf + count, "%s%d%c",
3290				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3291	console_unlock();
3292
 
 
3293	return count;
3294}
3295static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3296
 
 
 
 
 
 
 
3297static struct device *consdev;
3298
3299void console_sysfs_notify(void)
3300{
3301	if (consdev)
3302		sysfs_notify(&consdev->kobj, NULL, "active");
3303}
3304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3305/*
3306 * Ok, now we can initialize the rest of the tty devices and can count
3307 * on memory allocations, interrupts etc..
3308 */
3309int __init tty_init(void)
3310{
 
3311	cdev_init(&tty_cdev, &tty_fops);
3312	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3313	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3314		panic("Couldn't register /dev/tty driver\n");
3315	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3316
3317	cdev_init(&console_cdev, &console_fops);
3318	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3319	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3320		panic("Couldn't register /dev/console driver\n");
3321	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3322			      "console");
 
3323	if (IS_ERR(consdev))
3324		consdev = NULL;
3325	else
3326		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3327
3328#ifdef CONFIG_VT
3329	vty_init(&console_fops);
3330#endif
3331	return 0;
3332}
3333
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 */
   5
   6/*
   7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   8 * or rs-channels. It also implements echoing, cooked mode etc.
   9 *
  10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  11 *
  12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  13 * tty_struct and tty_queue structures.  Previously there was an array
  14 * of 256 tty_struct's which was statically allocated, and the
  15 * tty_queue structures were allocated at boot time.  Both are now
  16 * dynamically allocated only when the tty is open.
  17 *
  18 * Also restructured routines so that there is more of a separation
  19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  20 * the low-level tty routines (serial.c, pty.c, console.c).  This
  21 * makes for cleaner and more compact code.  -TYT, 9/17/92
  22 *
  23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  24 * which can be dynamically activated and de-activated by the line
  25 * discipline handling modules (like SLIP).
  26 *
  27 * NOTE: pay no attention to the line discipline code (yet); its
  28 * interface is still subject to change in this version...
  29 * -- TYT, 1/31/92
  30 *
  31 * Added functionality to the OPOST tty handling.  No delays, but all
  32 * other bits should be there.
  33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  34 *
  35 * Rewrote canonical mode and added more termios flags.
  36 *	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  37 *
  38 * Reorganized FASYNC support so mouse code can share it.
  39 *	-- ctm@ardi.com, 9Sep95
  40 *
  41 * New TIOCLINUX variants added.
  42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  43 *
  44 * Restrict vt switching via ioctl()
  45 *      -- grif@cs.ucr.edu, 5-Dec-95
  46 *
  47 * Move console and virtual terminal code to more appropriate files,
  48 * implement CONFIG_VT and generalize console device interface.
  49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  50 *
  51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  52 *	-- Bill Hawes <whawes@star.net>, June 97
  53 *
  54 * Added devfs support.
  55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  56 *
  57 * Added support for a Unix98-style ptmx device.
  58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  59 *
  60 * Reduced memory usage for older ARM systems
  61 *      -- Russell King <rmk@arm.linux.org.uk>
  62 *
  63 * Move do_SAK() into process context.  Less stack use in devfs functions.
  64 * alloc_tty_struct() always uses kmalloc()
  65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  66 */
  67
  68#include <linux/types.h>
  69#include <linux/major.h>
  70#include <linux/errno.h>
  71#include <linux/signal.h>
  72#include <linux/fcntl.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sched/task.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/ppp-ioctl.h>
  91#include <linux/proc_fs.h>
  92#include <linux/init.h>
  93#include <linux/module.h>
  94#include <linux/device.h>
  95#include <linux/wait.h>
  96#include <linux/bitops.h>
  97#include <linux/delay.h>
  98#include <linux/seq_file.h>
  99#include <linux/serial.h>
 100#include <linux/ratelimit.h>
 101#include <linux/compat.h>
 102#include <linux/uaccess.h>
 103#include <linux/termios_internal.h>
 104#include <linux/fs.h>
 105
 106#include <linux/kbd_kern.h>
 107#include <linux/vt_kern.h>
 108#include <linux/selection.h>
 109
 110#include <linux/kmod.h>
 111#include <linux/nsproxy.h>
 112#include "tty.h"
 113
 114#undef TTY_DEBUG_HANGUP
 115#ifdef TTY_DEBUG_HANGUP
 116# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 117#else
 118# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 119#endif
 120
 121#define TTY_PARANOIA_CHECK 1
 122#define CHECK_TTY_COUNT 1
 123
 124struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 125	.c_iflag = ICRNL | IXON,
 126	.c_oflag = OPOST | ONLCR,
 127	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 128	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 129		   ECHOCTL | ECHOKE | IEXTEN,
 130	.c_cc = INIT_C_CC,
 131	.c_ispeed = 38400,
 132	.c_ospeed = 38400,
 133	/* .c_line = N_TTY, */
 134};
 
 135EXPORT_SYMBOL(tty_std_termios);
 136
 137/* This list gets poked at by procfs and various bits of boot up code. This
 138 * could do with some rationalisation such as pulling the tty proc function
 139 * into this file.
 140 */
 141
 142LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 143
 144/* Mutex to protect creating and releasing a tty */
 
 145DEFINE_MUTEX(tty_mutex);
 
 
 
 
 146
 147static ssize_t tty_read(struct kiocb *, struct iov_iter *);
 148static ssize_t tty_write(struct kiocb *, struct iov_iter *);
 149static __poll_t tty_poll(struct file *, poll_table *);
 
 
 150static int tty_open(struct inode *, struct file *);
 
 151#ifdef CONFIG_COMPAT
 152static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 153				unsigned long arg);
 154#else
 155#define tty_compat_ioctl NULL
 156#endif
 157static int __tty_fasync(int fd, struct file *filp, int on);
 158static int tty_fasync(int fd, struct file *filp, int on);
 159static void release_tty(struct tty_struct *tty, int idx);
 
 
 160
 161/**
 162 * free_tty_struct - free a disused tty
 163 * @tty: tty struct to free
 164 *
 165 * Free the write buffers, tty queue and tty memory itself.
 
 166 *
 167 * Locking: none. Must be called after tty is definitely unused
 168 */
 169static void free_tty_struct(struct tty_struct *tty)
 
 170{
 171	tty_ldisc_deinit(tty);
 172	put_device(tty->dev);
 173	kvfree(tty->write_buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174	kfree(tty);
 175}
 176
 177static inline struct tty_struct *file_tty(struct file *file)
 178{
 179	return ((struct tty_file_private *)file->private_data)->tty;
 180}
 181
 182int tty_alloc_file(struct file *file)
 
 183{
 184	struct tty_file_private *priv;
 185
 186	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 187	if (!priv)
 188		return -ENOMEM;
 189
 190	file->private_data = priv;
 191
 192	return 0;
 193}
 194
 195/* Associate a new file with the tty structure */
 196void tty_add_file(struct tty_struct *tty, struct file *file)
 197{
 198	struct tty_file_private *priv = file->private_data;
 199
 200	priv->tty = tty;
 201	priv->file = file;
 
 202
 203	spin_lock(&tty->files_lock);
 204	list_add(&priv->list, &tty->tty_files);
 205	spin_unlock(&tty->files_lock);
 
 
 206}
 207
 208/**
 209 * tty_free_file - free file->private_data
 210 * @file: to free private_data of
 211 *
 212 * This shall be used only for fail path handling when tty_add_file was not
 213 * called yet.
 214 */
 215void tty_free_file(struct file *file)
 216{
 217	struct tty_file_private *priv = file->private_data;
 218
 
 
 
 219	file->private_data = NULL;
 220	kfree(priv);
 221}
 222
 223/* Delete file from its tty */
 224static void tty_del_file(struct file *file)
 225{
 226	struct tty_file_private *priv = file->private_data;
 227	struct tty_struct *tty = priv->tty;
 228
 229	spin_lock(&tty->files_lock);
 230	list_del(&priv->list);
 231	spin_unlock(&tty->files_lock);
 232	tty_free_file(file);
 233}
 234
 235/**
 236 * tty_name - return tty naming
 237 * @tty: tty structure
 
 238 *
 239 * Convert a tty structure into a name. The name reflects the kernel naming
 240 * policy and if udev is in use may not reflect user space
 241 *
 242 * Locking: none
 243 */
 244const char *tty_name(const struct tty_struct *tty)
 
 245{
 246	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 247		return "NULL tty";
 248	return tty->name;
 
 
 249}
 
 250EXPORT_SYMBOL(tty_name);
 251
 252const char *tty_driver_name(const struct tty_struct *tty)
 253{
 254	if (!tty || !tty->driver)
 255		return "";
 256	return tty->driver->name;
 257}
 258
 259static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 260			      const char *routine)
 261{
 262#ifdef TTY_PARANOIA_CHECK
 263	if (!tty) {
 264		pr_warn("(%d:%d): %s: NULL tty\n",
 
 
 
 
 
 
 
 265			imajor(inode), iminor(inode), routine);
 266		return 1;
 267	}
 268#endif
 269	return 0;
 270}
 271
 272/* Caller must hold tty_lock */
 273static void check_tty_count(struct tty_struct *tty, const char *routine)
 274{
 275#ifdef CHECK_TTY_COUNT
 276	struct list_head *p;
 277	int count = 0, kopen_count = 0;
 278
 279	spin_lock(&tty->files_lock);
 280	list_for_each(p, &tty->tty_files) {
 281		count++;
 282	}
 283	spin_unlock(&tty->files_lock);
 284	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 285	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 286	    tty->link && tty->link->count)
 287		count++;
 288	if (tty_port_kopened(tty->port))
 289		kopen_count++;
 290	if (tty->count != (count + kopen_count)) {
 291		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
 292			 routine, tty->count, count, kopen_count);
 293	}
 294#endif
 
 295}
 296
 297/**
 298 * get_tty_driver - find device of a tty
 299 * @device: device identifier
 300 * @index: returns the index of the tty
 301 *
 302 * This routine returns a tty driver structure, given a device number and also
 303 * passes back the index number.
 304 *
 305 * Locking: caller must hold tty_mutex
 306 */
 
 307static struct tty_driver *get_tty_driver(dev_t device, int *index)
 308{
 309	struct tty_driver *p;
 310
 311	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 312		dev_t base = MKDEV(p->major, p->minor_start);
 313
 314		if (device < base || device >= base + p->num)
 315			continue;
 316		*index = device - base;
 317		return tty_driver_kref_get(p);
 318	}
 319	return NULL;
 320}
 321
 322/**
 323 * tty_dev_name_to_number - return dev_t for device name
 324 * @name: user space name of device under /dev
 325 * @number: pointer to dev_t that this function will populate
 326 *
 327 * This function converts device names like ttyS0 or ttyUSB1 into dev_t like
 328 * (4, 64) or (188, 1). If no corresponding driver is registered then the
 329 * function returns -%ENODEV.
 330 *
 331 * Locking: this acquires tty_mutex to protect the tty_drivers list from
 332 *	being modified while we are traversing it, and makes sure to
 333 *	release it before exiting.
 334 */
 335int tty_dev_name_to_number(const char *name, dev_t *number)
 336{
 337	struct tty_driver *p;
 338	int ret;
 339	int index, prefix_length = 0;
 340	const char *str;
 341
 342	for (str = name; *str && !isdigit(*str); str++)
 343		;
 344
 345	if (!*str)
 346		return -EINVAL;
 347
 348	ret = kstrtoint(str, 10, &index);
 349	if (ret)
 350		return ret;
 351
 352	prefix_length = str - name;
 353	mutex_lock(&tty_mutex);
 354
 355	list_for_each_entry(p, &tty_drivers, tty_drivers)
 356		if (prefix_length == strlen(p->name) && strncmp(name,
 357					p->name, prefix_length) == 0) {
 358			if (index < p->num) {
 359				*number = MKDEV(p->major, p->minor_start + index);
 360				goto out;
 361			}
 362		}
 363
 364	/* if here then driver wasn't found */
 365	ret = -ENODEV;
 366out:
 367	mutex_unlock(&tty_mutex);
 368	return ret;
 369}
 370EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
 371
 372#ifdef CONFIG_CONSOLE_POLL
 373
 374/**
 375 * tty_find_polling_driver - find device of a polled tty
 376 * @name: name string to match
 377 * @line: pointer to resulting tty line nr
 378 *
 379 * This routine returns a tty driver structure, given a name and the condition
 380 * that the tty driver is capable of polled operation.
 
 381 */
 382struct tty_driver *tty_find_polling_driver(char *name, int *line)
 383{
 384	struct tty_driver *p, *res = NULL;
 385	int tty_line = 0;
 386	int len;
 387	char *str, *stp;
 388
 389	for (str = name; *str; str++)
 390		if ((*str >= '0' && *str <= '9') || *str == ',')
 391			break;
 392	if (!*str)
 393		return NULL;
 394
 395	len = str - name;
 396	tty_line = simple_strtoul(str, &str, 10);
 397
 398	mutex_lock(&tty_mutex);
 399	/* Search through the tty devices to look for a match */
 400	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 401		if (!len || strncmp(name, p->name, len) != 0)
 402			continue;
 403		stp = str;
 404		if (*stp == ',')
 405			stp++;
 406		if (*stp == '\0')
 407			stp = NULL;
 408
 409		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 410		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 411			res = tty_driver_kref_get(p);
 412			*line = tty_line;
 413			break;
 414		}
 415	}
 416	mutex_unlock(&tty_mutex);
 417
 418	return res;
 419}
 420EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 421#endif
 422
 423static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424{
 425	return 0;
 426}
 427
 428static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
 
 429{
 430	return -EIO;
 431}
 432
 433/* No kernel lock held - none needed ;) */
 434static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
 435{
 436	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
 437}
 438
 439static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 440		unsigned long arg)
 441{
 442	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 443}
 444
 445static long hung_up_tty_compat_ioctl(struct file *file,
 446				     unsigned int cmd, unsigned long arg)
 447{
 448	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 449}
 450
 451static int hung_up_tty_fasync(int fd, struct file *file, int on)
 452{
 453	return -ENOTTY;
 454}
 455
 456static void tty_show_fdinfo(struct seq_file *m, struct file *file)
 457{
 458	struct tty_struct *tty = file_tty(file);
 459
 460	if (tty && tty->ops && tty->ops->show_fdinfo)
 461		tty->ops->show_fdinfo(tty, m);
 462}
 463
 464static const struct file_operations tty_fops = {
 465	.llseek		= no_llseek,
 466	.read_iter	= tty_read,
 467	.write_iter	= tty_write,
 468	.splice_read	= copy_splice_read,
 469	.splice_write	= iter_file_splice_write,
 470	.poll		= tty_poll,
 471	.unlocked_ioctl	= tty_ioctl,
 472	.compat_ioctl	= tty_compat_ioctl,
 473	.open		= tty_open,
 474	.release	= tty_release,
 475	.fasync		= tty_fasync,
 476	.show_fdinfo	= tty_show_fdinfo,
 477};
 478
 479static const struct file_operations console_fops = {
 480	.llseek		= no_llseek,
 481	.read_iter	= tty_read,
 482	.write_iter	= redirected_tty_write,
 483	.splice_read	= copy_splice_read,
 484	.splice_write	= iter_file_splice_write,
 485	.poll		= tty_poll,
 486	.unlocked_ioctl	= tty_ioctl,
 487	.compat_ioctl	= tty_compat_ioctl,
 488	.open		= tty_open,
 489	.release	= tty_release,
 490	.fasync		= tty_fasync,
 491};
 492
 493static const struct file_operations hung_up_tty_fops = {
 494	.llseek		= no_llseek,
 495	.read_iter	= hung_up_tty_read,
 496	.write_iter	= hung_up_tty_write,
 497	.poll		= hung_up_tty_poll,
 498	.unlocked_ioctl	= hung_up_tty_ioctl,
 499	.compat_ioctl	= hung_up_tty_compat_ioctl,
 500	.release	= tty_release,
 501	.fasync		= hung_up_tty_fasync,
 502};
 503
 504static DEFINE_SPINLOCK(redirect_lock);
 505static struct file *redirect;
 506
 507/**
 508 * tty_wakeup - request more data
 509 * @tty: terminal
 510 *
 511 * Internal and external helper for wakeups of tty. This function informs the
 512 * line discipline if present that the driver is ready to receive more output
 513 * data.
 514 */
 
 515void tty_wakeup(struct tty_struct *tty)
 516{
 517	struct tty_ldisc *ld;
 518
 519	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 520		ld = tty_ldisc_ref(tty);
 521		if (ld) {
 522			if (ld->ops->write_wakeup)
 523				ld->ops->write_wakeup(tty);
 524			tty_ldisc_deref(ld);
 525		}
 526	}
 527	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 528}
 
 529EXPORT_SYMBOL_GPL(tty_wakeup);
 530
 531/**
 532 * tty_release_redirect - Release a redirect on a pty if present
 533 * @tty: tty device
 534 *
 535 * This is available to the pty code so if the master closes, if the slave is a
 536 * redirect it can release the redirect.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 537 */
 538static struct file *tty_release_redirect(struct tty_struct *tty)
 539{
 540	struct file *f = NULL;
 541
 542	spin_lock(&redirect_lock);
 543	if (redirect && file_tty(redirect) == tty) {
 544		f = redirect;
 545		redirect = NULL;
 546	}
 547	spin_unlock(&redirect_lock);
 548
 549	return f;
 550}
 551
 552/**
 553 * __tty_hangup - actual handler for hangup events
 554 * @tty: tty device
 555 * @exit_session: if non-zero, signal all foreground group processes
 556 *
 557 * This can be called by a "kworker" kernel thread. That is process synchronous
 558 * but doesn't hold any locks, so we need to make sure we have the appropriate
 559 * locks for what we're doing.
 560 *
 561 * The hangup event clears any pending redirections onto the hung up device. It
 562 * ensures future writes will error and it does the needed line discipline
 563 * hangup and signal delivery. The tty object itself remains intact.
 564 *
 565 * Locking:
 566 *  * BTM
 567 *
 568 *   * redirect lock for undoing redirection
 569 *   * file list lock for manipulating list of ttys
 570 *   * tty_ldiscs_lock from called functions
 571 *   * termios_rwsem resetting termios data
 572 *   * tasklist_lock to walk task list for hangup event
 573 *
 574 *    * ->siglock to protect ->signal/->sighand
 575 *
 576 */
 577static void __tty_hangup(struct tty_struct *tty, int exit_session)
 578{
 579	struct file *cons_filp = NULL;
 580	struct file *filp, *f;
 
 581	struct tty_file_private *priv;
 582	int    closecount = 0, n;
 583	int refs;
 
 584
 585	if (!tty)
 586		return;
 587
 588	f = tty_release_redirect(tty);
 589
 590	tty_lock(tty);
 
 
 
 
 
 591
 592	if (test_bit(TTY_HUPPED, &tty->flags)) {
 593		tty_unlock(tty);
 594		return;
 595	}
 596
 597	/*
 598	 * Some console devices aren't actually hung up for technical and
 599	 * historical reasons, which can lead to indefinite interruptible
 600	 * sleep in n_tty_read().  The following explicitly tells
 601	 * n_tty_read() to abort readers.
 602	 */
 603	set_bit(TTY_HUPPING, &tty->flags);
 604
 605	/* inuse_filps is protected by the single tty lock,
 606	 * this really needs to change if we want to flush the
 607	 * workqueue with the lock held.
 608	 */
 609	check_tty_count(tty, "tty_hangup");
 610
 611	spin_lock(&tty->files_lock);
 612	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 613	list_for_each_entry(priv, &tty->tty_files, list) {
 614		filp = priv->file;
 615		if (filp->f_op->write_iter == redirected_tty_write)
 616			cons_filp = filp;
 617		if (filp->f_op->write_iter != tty_write)
 618			continue;
 619		closecount++;
 620		__tty_fasync(-1, filp, 0);	/* can't block */
 621		filp->f_op = &hung_up_tty_fops;
 622	}
 623	spin_unlock(&tty->files_lock);
 624
 625	refs = tty_signal_session_leader(tty, exit_session);
 626	/* Account for the p->signal references we killed */
 627	while (refs--)
 628		tty_kref_put(tty);
 
 629
 630	tty_ldisc_hangup(tty, cons_filp != NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 631
 632	spin_lock_irq(&tty->ctrl.lock);
 633	clear_bit(TTY_THROTTLED, &tty->flags);
 
 634	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 635	put_pid(tty->ctrl.session);
 636	put_pid(tty->ctrl.pgrp);
 637	tty->ctrl.session = NULL;
 638	tty->ctrl.pgrp = NULL;
 639	tty->ctrl.pktstatus = 0;
 640	spin_unlock_irq(&tty->ctrl.lock);
 
 
 
 
 641
 642	/*
 643	 * If one of the devices matches a console pointer, we
 644	 * cannot just call hangup() because that will cause
 645	 * tty->count and state->count to go out of sync.
 646	 * So we just call close() the right number of times.
 647	 */
 648	if (cons_filp) {
 649		if (tty->ops->close)
 650			for (n = 0; n < closecount; n++)
 651				tty->ops->close(tty, cons_filp);
 652	} else if (tty->ops->hangup)
 653		tty->ops->hangup(tty);
 654	/*
 655	 * We don't want to have driver/ldisc interactions beyond the ones
 656	 * we did here. The driver layer expects no calls after ->hangup()
 657	 * from the ldisc side, which is now guaranteed.
 
 658	 */
 659	set_bit(TTY_HUPPED, &tty->flags);
 660	clear_bit(TTY_HUPPING, &tty->flags);
 661	tty_unlock(tty);
 
 
 662
 663	if (f)
 664		fput(f);
 665}
 666
 667static void do_tty_hangup(struct work_struct *work)
 668{
 669	struct tty_struct *tty =
 670		container_of(work, struct tty_struct, hangup_work);
 671
 672	__tty_hangup(tty, 0);
 673}
 674
 675/**
 676 * tty_hangup - trigger a hangup event
 677 * @tty: tty to hangup
 678 *
 679 * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a
 680 * hangup sequence to run after this event.
 681 */
 
 682void tty_hangup(struct tty_struct *tty)
 683{
 684	tty_debug_hangup(tty, "hangup\n");
 
 
 
 685	schedule_work(&tty->hangup_work);
 686}
 
 687EXPORT_SYMBOL(tty_hangup);
 688
 689/**
 690 * tty_vhangup - process vhangup
 691 * @tty: tty to hangup
 692 *
 693 * The user has asked via system call for the terminal to be hung up. We do
 694 * this synchronously so that when the syscall returns the process is complete.
 695 * That guarantee is necessary for security reasons.
 696 */
 
 697void tty_vhangup(struct tty_struct *tty)
 698{
 699	tty_debug_hangup(tty, "vhangup\n");
 700	__tty_hangup(tty, 0);
 
 
 
 
 701}
 
 702EXPORT_SYMBOL(tty_vhangup);
 703
 704
 705/**
 706 * tty_vhangup_self - process vhangup for own ctty
 707 *
 708 * Perform a vhangup on the current controlling tty
 709 */
 
 710void tty_vhangup_self(void)
 711{
 712	struct tty_struct *tty;
 713
 714	tty = get_current_tty();
 715	if (tty) {
 716		tty_vhangup(tty);
 717		tty_kref_put(tty);
 718	}
 719}
 720
 721/**
 722 * tty_vhangup_session - hangup session leader exit
 723 * @tty: tty to hangup
 724 *
 725 * The session leader is exiting and hanging up its controlling terminal.
 726 * Every process in the foreground process group is signalled %SIGHUP.
 727 *
 728 * We do this synchronously so that when the syscall returns the process is
 729 * complete. That guarantee is necessary for security reasons.
 730 */
 731void tty_vhangup_session(struct tty_struct *tty)
 732{
 733	tty_debug_hangup(tty, "session hangup\n");
 734	__tty_hangup(tty, 1);
 735}
 736
 737/**
 738 * tty_hung_up_p - was tty hung up
 739 * @filp: file pointer of tty
 740 *
 741 * Return: true if the tty has been subject to a vhangup or a carrier loss
 742 */
 743int tty_hung_up_p(struct file *filp)
 744{
 745	return (filp && filp->f_op == &hung_up_tty_fops);
 746}
 
 747EXPORT_SYMBOL(tty_hung_up_p);
 748
 749void __stop_tty(struct tty_struct *tty)
 750{
 751	if (tty->flow.stopped)
 752		return;
 753	tty->flow.stopped = true;
 754	if (tty->ops->stop)
 755		tty->ops->stop(tty);
 756}
 757
 758/**
 759 * stop_tty - propagate flow control
 760 * @tty: tty to stop
 761 *
 762 * Perform flow control to the driver. May be called on an already stopped
 763 * device and will not re-call the &tty_driver->stop() method.
 764 *
 765 * This functionality is used by both the line disciplines for halting incoming
 766 * flow and by the driver. It may therefore be called from any context, may be
 767 * under the tty %atomic_write_lock but not always.
 768 *
 769 * Locking:
 770 *	flow.lock
 
 
 
 
 
 
 
 
 
 
 771 */
 772void stop_tty(struct tty_struct *tty)
 
 773{
 774	unsigned long flags;
 
 775
 776	spin_lock_irqsave(&tty->flow.lock, flags);
 777	__stop_tty(tty);
 778	spin_unlock_irqrestore(&tty->flow.lock, flags);
 779}
 780EXPORT_SYMBOL(stop_tty);
 781
 782void __start_tty(struct tty_struct *tty)
 783{
 784	if (!tty->flow.stopped || tty->flow.tco_stopped)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785		return;
 786	tty->flow.stopped = false;
 787	if (tty->ops->start)
 788		tty->ops->start(tty);
 789	tty_wakeup(tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790}
 791
 792/**
 793 * start_tty - propagate flow control
 794 * @tty: tty to start
 795 *
 796 * Start a tty that has been stopped if at all possible. If @tty was previously
 797 * stopped and is now being started, the &tty_driver->start() method is invoked
 798 * and the line discipline woken.
 799 *
 800 * Locking:
 801 *	flow.lock
 802 */
 803void start_tty(struct tty_struct *tty)
 804{
 805	unsigned long flags;
 806
 807	spin_lock_irqsave(&tty->flow.lock, flags);
 808	__start_tty(tty);
 809	spin_unlock_irqrestore(&tty->flow.lock, flags);
 810}
 811EXPORT_SYMBOL(start_tty);
 812
 813static void tty_update_time(struct tty_struct *tty, bool mtime)
 814{
 815	time64_t sec = ktime_get_real_seconds();
 816	struct tty_file_private *priv;
 817
 818	spin_lock(&tty->files_lock);
 819	list_for_each_entry(priv, &tty->tty_files, list) {
 820		struct inode *inode = file_inode(priv->file);
 821		struct timespec64 time = mtime ? inode_get_mtime(inode) : inode_get_atime(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 822
 823		/*
 824		 * We only care if the two values differ in anything other than the
 825		 * lower three bits (i.e every 8 seconds).  If so, then we can update
 826		 * the time of the tty device, otherwise it could be construded as a
 827		 * security leak to let userspace know the exact timing of the tty.
 828		 */
 829		if ((sec ^ time.tv_sec) & ~7) {
 830			if (mtime)
 831				inode_set_mtime(inode, sec, 0);
 832			else
 833				inode_set_atime(inode, sec, 0);
 834		}
 
 835	}
 836	spin_unlock(&tty->files_lock);
 
 
 837}
 838
 839/*
 840 * Iterate on the ldisc ->read() function until we've gotten all
 841 * the data the ldisc has for us.
 
 
 842 *
 843 * The "cookie" is something that the ldisc read function can fill
 844 * in to let us know that there is more data to be had.
 
 
 845 *
 846 * We promise to continue to call the ldisc until it stops returning
 847 * data or clears the cookie. The cookie may be something that the
 848 * ldisc maintains state for and needs to free.
 849 */
 850static ssize_t iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
 851				struct file *file, struct iov_iter *to)
 852{
 853	void *cookie = NULL;
 854	unsigned long offset = 0;
 855	ssize_t retval = 0;
 856	size_t copied, count = iov_iter_count(to);
 857	u8 kernel_buf[64];
 858
 859	do {
 860		ssize_t size = min(count, sizeof(kernel_buf));
 861
 862		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
 863		if (!size)
 864			break;
 865
 866		if (size < 0) {
 867			/* Did we have an earlier error (ie -EFAULT)? */
 868			if (retval)
 869				break;
 870			retval = size;
 871
 872			/*
 873			 * -EOVERFLOW means we didn't have enough space
 874			 * for a whole packet, and we shouldn't return
 875			 * a partial result.
 876			 */
 877			if (retval == -EOVERFLOW)
 878				offset = 0;
 879			break;
 880		}
 881
 882		copied = copy_to_iter(kernel_buf, size, to);
 883		offset += copied;
 884		count -= copied;
 885
 886		/*
 887		 * If the user copy failed, we still need to do another ->read()
 888		 * call if we had a cookie to let the ldisc clear up.
 889		 *
 890		 * But make sure size is zeroed.
 891		 */
 892		if (unlikely(copied != size)) {
 893			count = 0;
 894			retval = -EFAULT;
 895		}
 896	} while (cookie);
 897
 898	/* We always clear tty buffer in case they contained passwords */
 899	memzero_explicit(kernel_buf, sizeof(kernel_buf));
 900	return offset ? offset : retval;
 901}
 902
 
 903
 904/**
 905 * tty_read - read method for tty device files
 906 * @iocb: kernel I/O control block
 907 * @to: destination for the data read
 908 *
 909 * Perform the read system call function on this terminal device. Checks
 910 * for hung up devices before calling the line discipline method.
 911 *
 912 * Locking:
 913 *	Locks the line discipline internally while needed. Multiple read calls
 914 *	may be outstanding in parallel.
 
 
 915 */
 916static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
 
 
 917{
 918	struct file *file = iocb->ki_filp;
 919	struct inode *inode = file_inode(file);
 920	struct tty_struct *tty = file_tty(file);
 921	struct tty_ldisc *ld;
 922	ssize_t ret;
 923
 924	if (tty_paranoia_check(tty, inode, "tty_read"))
 925		return -EIO;
 926	if (!tty || tty_io_error(tty))
 927		return -EIO;
 928
 929	/* We want to wait for the line discipline to sort out in this
 930	 * situation.
 931	 */
 932	ld = tty_ldisc_ref_wait(tty);
 933	if (!ld)
 934		return hung_up_tty_read(iocb, to);
 935	ret = -EIO;
 936	if (ld->ops->read)
 937		ret = iterate_tty_read(ld, tty, file, to);
 
 
 938	tty_ldisc_deref(ld);
 939
 940	if (ret > 0)
 941		tty_update_time(tty, false);
 942
 943	return ret;
 944}
 945
 946void tty_write_unlock(struct tty_struct *tty)
 
 947{
 948	mutex_unlock(&tty->atomic_write_lock);
 949	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 950}
 951
 952int tty_write_lock(struct tty_struct *tty, bool ndelay)
 
 953{
 954	if (!mutex_trylock(&tty->atomic_write_lock)) {
 955		if (ndelay)
 956			return -EAGAIN;
 957		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 958			return -ERESTARTSYS;
 959	}
 960	return 0;
 961}
 962
 963/*
 964 * Split writes up in sane blocksizes to avoid
 965 * denial-of-service type attacks
 966 */
 967static ssize_t iterate_tty_write(struct tty_ldisc *ld, struct tty_struct *tty,
 968				 struct file *file, struct iov_iter *from)
 
 
 
 
 969{
 970	size_t chunk, count = iov_iter_count(from);
 971	ssize_t ret, written = 0;
 
 972
 973	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 974	if (ret < 0)
 975		return ret;
 976
 977	/*
 978	 * We chunk up writes into a temporary buffer. This
 979	 * simplifies low-level drivers immensely, since they
 980	 * don't have locking issues and user mode accesses.
 981	 *
 982	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
 983	 * big chunk-size..
 984	 *
 985	 * The default chunk-size is 2kB, because the NTTY
 986	 * layer has problems with bigger chunks. It will
 987	 * claim to be able to handle more characters than
 988	 * it actually does.
 
 
 
 989	 */
 990	chunk = 2048;
 991	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
 992		chunk = 65536;
 993	if (count < chunk)
 994		chunk = count;
 995
 996	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
 997	if (tty->write_cnt < chunk) {
 998		u8 *buf_chunk;
 999
1000		if (chunk < 1024)
1001			chunk = 1024;
1002
1003		buf_chunk = kvmalloc(chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1004		if (!buf_chunk) {
1005			ret = -ENOMEM;
1006			goto out;
1007		}
1008		kvfree(tty->write_buf);
1009		tty->write_cnt = chunk;
1010		tty->write_buf = buf_chunk;
1011	}
1012
1013	/* Do the write .. */
1014	for (;;) {
1015		size_t size = min(chunk, count);
1016
 
1017		ret = -EFAULT;
1018		if (copy_from_iter(tty->write_buf, size, from) != size)
1019			break;
1020
1021		ret = ld->ops->write(tty, file, tty->write_buf, size);
1022		if (ret <= 0)
1023			break;
1024
1025		written += ret;
1026		if (ret > size)
1027			break;
1028
1029		/* FIXME! Have Al check this! */
1030		if (ret != size)
1031			iov_iter_revert(from, size-ret);
1032
1033		count -= ret;
1034		if (!count)
1035			break;
1036		ret = -ERESTARTSYS;
1037		if (signal_pending(current))
1038			break;
1039		cond_resched();
1040	}
1041	if (written) {
1042		tty_update_time(tty, true);
 
1043		ret = written;
1044	}
1045out:
1046	tty_write_unlock(tty);
1047	return ret;
1048}
1049
1050#ifdef CONFIG_PRINT_QUOTA_WARNING
1051/**
1052 * tty_write_message - write a message to a certain tty, not just the console.
1053 * @tty: the destination tty_struct
1054 * @msg: the message to write
1055 *
1056 * This is used for messages that need to be redirected to a specific tty. We
1057 * don't put it into the syslog queue right now maybe in the future if really
1058 * needed.
1059 *
1060 * We must still hold the BTM and test the CLOSING flag for the moment.
1061 *
1062 * This function is DEPRECATED, do not use in new code.
1063 */
 
1064void tty_write_message(struct tty_struct *tty, char *msg)
1065{
1066	if (tty) {
1067		mutex_lock(&tty->atomic_write_lock);
1068		tty_lock(tty);
1069		if (tty->ops->write && tty->count > 0)
 
1070			tty->ops->write(tty, msg, strlen(msg));
1071		tty_unlock(tty);
 
1072		tty_write_unlock(tty);
1073	}
 
1074}
1075#endif
1076
1077static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078{
 
1079	struct tty_struct *tty = file_tty(file);
1080	struct tty_ldisc *ld;
1081	ssize_t ret;
1082
1083	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1084		return -EIO;
1085	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1086		return -EIO;
 
 
 
1087	/* Short term debug to catch buggy drivers */
1088	if (tty->ops->write_room == NULL)
1089		tty_err(tty, "missing write_room method\n");
 
1090	ld = tty_ldisc_ref_wait(tty);
1091	if (!ld)
1092		return hung_up_tty_write(iocb, from);
1093	if (!ld->ops->write)
1094		ret = -EIO;
1095	else
1096		ret = iterate_tty_write(ld, tty, file, from);
1097	tty_ldisc_deref(ld);
1098	return ret;
1099}
1100
1101/**
1102 * tty_write - write method for tty device file
1103 * @iocb: kernel I/O control block
1104 * @from: iov_iter with data to write
1105 *
1106 * Write data to a tty device via the line discipline.
1107 *
1108 * Locking:
1109 *	Locks the line discipline as required
1110 *	Writes to the tty driver are serialized by the atomic_write_lock
1111 *	and are then processed in chunks to the device. The line
1112 *	discipline write method will not be invoked in parallel for
1113 *	each device.
1114 */
1115static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1116{
1117	return file_tty_write(iocb->ki_filp, iocb, from);
1118}
1119
1120ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1121{
1122	struct file *p = NULL;
1123
1124	spin_lock(&redirect_lock);
1125	if (redirect)
1126		p = get_file(redirect);
 
 
1127	spin_unlock(&redirect_lock);
1128
1129	/*
1130	 * We know the redirected tty is just another tty, we can
1131	 * call file_tty_write() directly with that file pointer.
1132	 */
1133	if (p) {
1134		ssize_t res;
1135
1136		res = file_tty_write(p, iocb, iter);
1137		fput(p);
1138		return res;
1139	}
1140	return tty_write(iocb, iter);
1141}
1142
1143/**
1144 * tty_send_xchar - send priority character
1145 * @tty: the tty to send to
1146 * @ch: xchar to send
1147 *
1148 * Send a high priority character to the tty even if stopped.
1149 *
1150 * Locking: none for xchar method, write ordering for write method.
1151 */
1152int tty_send_xchar(struct tty_struct *tty, u8 ch)
1153{
1154	bool was_stopped = tty->flow.stopped;
1155
1156	if (tty->ops->send_xchar) {
1157		down_read(&tty->termios_rwsem);
1158		tty->ops->send_xchar(tty, ch);
1159		up_read(&tty->termios_rwsem);
1160		return 0;
1161	}
1162
1163	if (tty_write_lock(tty, false) < 0)
1164		return -ERESTARTSYS;
1165
1166	down_read(&tty->termios_rwsem);
1167	if (was_stopped)
1168		start_tty(tty);
1169	tty->ops->write(tty, &ch, 1);
1170	if (was_stopped)
1171		stop_tty(tty);
1172	up_read(&tty->termios_rwsem);
1173	tty_write_unlock(tty);
1174	return 0;
1175}
1176
1177/**
1178 * pty_line_name - generate name for a pty
1179 * @driver: the tty driver in use
1180 * @index: the minor number
1181 * @p: output buffer of at least 6 bytes
1182 *
1183 * Generate a name from a @driver reference and write it to the output buffer
1184 * @p.
1185 *
1186 * Locking: None
1187 */
1188static void pty_line_name(struct tty_driver *driver, int index, char *p)
1189{
1190	static const char ptychar[] = "pqrstuvwxyzabcde";
1191	int i = index + driver->name_base;
1192	/* ->name is initialized to "ttyp", but "tty" is expected */
1193	sprintf(p, "%s%c%x",
1194		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1195		ptychar[i >> 4 & 0xf], i & 0xf);
1196}
1197
1198/**
1199 * tty_line_name - generate name for a tty
1200 * @driver: the tty driver in use
1201 * @index: the minor number
1202 * @p: output buffer of at least 7 bytes
1203 *
1204 * Generate a name from a @driver reference and write it to the output buffer
1205 * @p.
1206 *
1207 * Locking: None
1208 */
1209static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1210{
1211	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1212		return sprintf(p, "%s", driver->name);
1213	else
1214		return sprintf(p, "%s%d", driver->name,
1215			       index + driver->name_base);
1216}
1217
1218/**
1219 * tty_driver_lookup_tty() - find an existing tty, if any
1220 * @driver: the driver for the tty
1221 * @file: file object
1222 * @idx: the minor number
1223 *
1224 * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the
1225 * driver lookup() method returns an error.
1226 *
1227 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
 
 
1228 */
1229static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1230		struct file *file, int idx)
1231{
1232	struct tty_struct *tty;
1233
1234	if (driver->ops->lookup) {
1235		if (!file)
1236			tty = ERR_PTR(-EIO);
1237		else
1238			tty = driver->ops->lookup(driver, file, idx);
1239	} else {
1240		if (idx >= driver->num)
1241			return ERR_PTR(-EINVAL);
1242		tty = driver->ttys[idx];
1243	}
1244	if (!IS_ERR(tty))
1245		tty_kref_get(tty);
1246	return tty;
1247}
1248
1249/**
1250 * tty_init_termios - helper for termios setup
1251 * @tty: the tty to set up
1252 *
1253 * Initialise the termios structure for this tty. This runs under the
1254 * %tty_mutex currently so we can be relaxed about ordering.
1255 */
1256void tty_init_termios(struct tty_struct *tty)
 
1257{
1258	struct ktermios *tp;
1259	int idx = tty->index;
1260
1261	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1262		tty->termios = tty->driver->init_termios;
1263	else {
1264		/* Check for lazy saved data */
1265		tp = tty->driver->termios[idx];
1266		if (tp != NULL) {
1267			tty->termios = *tp;
1268			tty->termios.c_line  = tty->driver->init_termios.c_line;
1269		} else
1270			tty->termios = tty->driver->init_termios;
1271	}
 
 
 
1272	/* Compatibility until drivers always set this */
1273	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1274	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
 
1275}
1276EXPORT_SYMBOL_GPL(tty_init_termios);
1277
1278/**
1279 * tty_standard_install - usual tty->ops->install
1280 * @driver: the driver for the tty
1281 * @tty: the tty
1282 *
1283 * If the @driver overrides @tty->ops->install, it still can call this function
1284 * to perform the standard install operations.
1285 */
1286int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1287{
1288	tty_init_termios(tty);
1289	tty_driver_kref_get(driver);
1290	tty->count++;
1291	driver->ttys[tty->index] = tty;
1292	return 0;
1293}
1294EXPORT_SYMBOL_GPL(tty_standard_install);
1295
1296/**
1297 * tty_driver_install_tty() - install a tty entry in the driver
1298 * @driver: the driver for the tty
1299 * @tty: the tty
1300 *
1301 * Install a tty object into the driver tables. The @tty->index field will be
1302 * set by the time this is called. This method is responsible for ensuring any
1303 * need additional structures are allocated and configured.
1304 *
1305 * Locking: tty_mutex for now
1306 */
1307static int tty_driver_install_tty(struct tty_driver *driver,
1308						struct tty_struct *tty)
1309{
1310	return driver->ops->install ? driver->ops->install(driver, tty) :
1311		tty_standard_install(driver, tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
1312}
1313
1314/**
1315 * tty_driver_remove_tty() - remove a tty from the driver tables
1316 * @driver: the driver for the tty
1317 * @tty: tty to remove
1318 *
1319 * Remove a tty object from the driver tables. The tty->index field will be set
1320 * by the time this is called.
1321 *
1322 * Locking: tty_mutex for now
1323 */
1324static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1325{
1326	if (driver->ops->remove)
1327		driver->ops->remove(driver, tty);
1328	else
1329		driver->ttys[tty->index] = NULL;
1330}
1331
1332/**
1333 * tty_reopen() - fast re-open of an open tty
1334 * @tty: the tty to open
1335 *
1336 * Re-opens on master ptys are not allowed and return -%EIO.
1337 *
1338 * Locking: Caller must hold tty_lock
1339 * Return: 0 on success, -errno on error.
1340 */
1341static int tty_reopen(struct tty_struct *tty)
1342{
1343	struct tty_driver *driver = tty->driver;
1344	struct tty_ldisc *ld;
1345	int retval = 0;
1346
1347	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1348	    driver->subtype == PTY_TYPE_MASTER)
 
1349		return -EIO;
1350
1351	if (!tty->count)
1352		return -EAGAIN;
1353
1354	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1355		return -EBUSY;
 
 
 
1356
1357	ld = tty_ldisc_ref_wait(tty);
1358	if (ld) {
1359		tty_ldisc_deref(ld);
1360	} else {
1361		retval = tty_ldisc_lock(tty, 5 * HZ);
1362		if (retval)
1363			return retval;
1364
1365		if (!tty->ldisc)
1366			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1367		tty_ldisc_unlock(tty);
1368	}
 
 
1369
1370	if (retval == 0)
1371		tty->count++;
 
1372
1373	return retval;
1374}
1375
1376/**
1377 * tty_init_dev - initialise a tty device
1378 * @driver: tty driver we are opening a device on
1379 * @idx: device index
1380 *
1381 * Prepare a tty device. This may not be a "new" clean device but could also be
1382 * an active device. The pty drivers require special handling because of this.
1383 *
1384 * Locking:
1385 *	The function is called under the tty_mutex, which protects us from the
1386 *	tty struct or driver itself going away.
1387 *
1388 * On exit the tty device has the line discipline attached and a reference
1389 * count of 1. If a pair was created for pty/tty use and the other was a pty
1390 * master then it too has a reference count of 1.
1391 *
1392 * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed
1393 * open. The new code protects the open with a mutex, so it's really quite
1394 * straightforward. The mutex locking can probably be relaxed for the (most
1395 * common) case of reopening a tty.
1396 *
1397 * Return: new tty structure
 
1398 */
1399struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
 
 
1400{
1401	struct tty_struct *tty;
1402	int retval;
1403
 
 
 
 
 
 
1404	/*
1405	 * First time open is complex, especially for PTY devices.
1406	 * This code guarantees that either everything succeeds and the
1407	 * TTY is ready for operation, or else the table slots are vacated
1408	 * and the allocated memory released.  (Except that the termios
1409	 * may be retained.)
1410	 */
1411
1412	if (!try_module_get(driver->owner))
1413		return ERR_PTR(-ENODEV);
1414
1415	tty = alloc_tty_struct(driver, idx);
1416	if (!tty) {
1417		retval = -ENOMEM;
1418		goto err_module_put;
1419	}
 
1420
1421	tty_lock(tty);
1422	retval = tty_driver_install_tty(driver, tty);
1423	if (retval < 0)
1424		goto err_free_tty;
1425
1426	if (!tty->port)
1427		tty->port = driver->ports[idx];
1428
1429	if (WARN_RATELIMIT(!tty->port,
1430			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1431			__func__, tty->driver->name)) {
1432		retval = -EINVAL;
1433		goto err_release_lock;
1434	}
1435
1436	retval = tty_ldisc_lock(tty, 5 * HZ);
1437	if (retval)
1438		goto err_release_lock;
1439	tty->port->itty = tty;
1440
1441	/*
1442	 * Structures all installed ... call the ldisc open routines.
1443	 * If we fail here just call release_tty to clean up.  No need
1444	 * to decrement the use counts, as release_tty doesn't care.
1445	 */
1446	retval = tty_ldisc_setup(tty, tty->link);
1447	if (retval)
1448		goto err_release_tty;
1449	tty_ldisc_unlock(tty);
1450	/* Return the tty locked so that it cannot vanish under the caller */
1451	return tty;
1452
1453err_free_tty:
1454	tty_unlock(tty);
1455	free_tty_struct(tty);
1456err_module_put:
1457	module_put(driver->owner);
1458	return ERR_PTR(retval);
1459
1460	/* call the tty release_tty routine to clean out this slot */
1461err_release_tty:
1462	tty_ldisc_unlock(tty);
1463	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1464			     retval, idx);
1465err_release_lock:
1466	tty_unlock(tty);
1467	release_tty(tty, idx);
1468	return ERR_PTR(retval);
1469}
1470
1471/**
1472 * tty_save_termios() - save tty termios data in driver table
1473 * @tty: tty whose termios data to save
1474 *
1475 * Locking: Caller guarantees serialisation with tty_init_termios().
1476 */
1477void tty_save_termios(struct tty_struct *tty)
1478{
1479	struct ktermios *tp;
1480	int idx = tty->index;
1481
1482	/* If the port is going to reset then it has no termios to save */
1483	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1484		return;
1485
1486	/* Stash the termios data */
1487	tp = tty->driver->termios[idx];
1488	if (tp == NULL) {
1489		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1490		if (tp == NULL)
1491			return;
1492		tty->driver->termios[idx] = tp;
1493	}
1494	*tp = tty->termios;
1495}
1496EXPORT_SYMBOL_GPL(tty_save_termios);
1497
1498/**
1499 * tty_flush_works - flush all works of a tty/pty pair
1500 * @tty: tty device to flush works for (or either end of a pty pair)
1501 *
1502 * Sync flush all works belonging to @tty (and the 'other' tty).
1503 */
1504static void tty_flush_works(struct tty_struct *tty)
1505{
1506	flush_work(&tty->SAK_work);
1507	flush_work(&tty->hangup_work);
1508	if (tty->link) {
1509		flush_work(&tty->link->SAK_work);
1510		flush_work(&tty->link->hangup_work);
1511	}
1512}
 
1513
1514/**
1515 * release_one_tty - release tty structure memory
1516 * @work: work of tty we are obliterating
1517 *
1518 * Releases memory associated with a tty structure, and clears out the
1519 * driver table slots. This function is called when a device is no longer
1520 * in use. It also gets called when setup of a device fails.
1521 *
1522 * Locking:
1523 *	takes the file list lock internally when working on the list of ttys
1524 *	that the driver keeps.
 
1525 *
1526 * This method gets called from a work queue so that the driver private
1527 * cleanup ops can sleep (needed for USB at least)
1528 */
1529static void release_one_tty(struct work_struct *work)
1530{
1531	struct tty_struct *tty =
1532		container_of(work, struct tty_struct, hangup_work);
1533	struct tty_driver *driver = tty->driver;
1534	struct module *owner = driver->owner;
1535
1536	if (tty->ops->cleanup)
1537		tty->ops->cleanup(tty);
1538
 
1539	tty_driver_kref_put(driver);
1540	module_put(owner);
1541
1542	spin_lock(&tty->files_lock);
1543	list_del_init(&tty->tty_files);
1544	spin_unlock(&tty->files_lock);
1545
1546	put_pid(tty->ctrl.pgrp);
1547	put_pid(tty->ctrl.session);
1548	free_tty_struct(tty);
1549}
1550
1551static void queue_release_one_tty(struct kref *kref)
1552{
1553	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1554
 
 
 
 
 
1555	/* The hangup queue is now free so we can reuse it rather than
1556	 *  waste a chunk of memory for each port.
1557	 */
1558	INIT_WORK(&tty->hangup_work, release_one_tty);
1559	schedule_work(&tty->hangup_work);
1560}
1561
1562/**
1563 * tty_kref_put - release a tty kref
1564 * @tty: tty device
1565 *
1566 * Release a reference to the @tty device and if need be let the kref layer
1567 * destruct the object for us.
1568 */
 
1569void tty_kref_put(struct tty_struct *tty)
1570{
1571	if (tty)
1572		kref_put(&tty->kref, queue_release_one_tty);
1573}
1574EXPORT_SYMBOL(tty_kref_put);
1575
1576/**
1577 * release_tty - release tty structure memory
1578 * @tty: tty device release
1579 * @idx: index of the tty device release
1580 *
1581 * Release both @tty and a possible linked partner (think pty pair),
1582 * and decrement the refcount of the backing module.
1583 *
1584 * Locking:
1585 *	tty_mutex
1586 *	takes the file list lock internally when working on the list of ttys
1587 *	that the driver keeps.
1588 */
1589static void release_tty(struct tty_struct *tty, int idx)
1590{
1591	/* This should always be true but check for the moment */
1592	WARN_ON(tty->index != idx);
1593	WARN_ON(!mutex_is_locked(&tty_mutex));
1594	if (tty->ops->shutdown)
1595		tty->ops->shutdown(tty);
1596	tty_save_termios(tty);
1597	tty_driver_remove_tty(tty->driver, tty);
1598	if (tty->port)
1599		tty->port->itty = NULL;
1600	if (tty->link)
1601		tty->link->port->itty = NULL;
1602	if (tty->port)
1603		tty_buffer_cancel_work(tty->port);
1604	if (tty->link)
1605		tty_buffer_cancel_work(tty->link->port);
1606
1607	tty_kref_put(tty->link);
1608	tty_kref_put(tty);
1609}
1610
1611/**
1612 * tty_release_checks - check a tty before real release
1613 * @tty: tty to check
1614 * @idx: index of the tty
1615 *
1616 * Performs some paranoid checking before true release of the @tty. This is a
1617 * no-op unless %TTY_PARANOIA_CHECK is defined.
1618 */
1619static int tty_release_checks(struct tty_struct *tty, int idx)
1620{
1621#ifdef TTY_PARANOIA_CHECK
1622	if (idx < 0 || idx >= tty->driver->num) {
1623		tty_debug(tty, "bad idx %d\n", idx);
1624		return -1;
1625	}
1626
1627	/* not much to check for devpts */
1628	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1629		return 0;
1630
1631	if (tty != tty->driver->ttys[idx]) {
1632		tty_debug(tty, "bad driver table[%d] = %p\n",
1633			  idx, tty->driver->ttys[idx]);
1634		return -1;
1635	}
1636	if (tty->driver->other) {
1637		struct tty_struct *o_tty = tty->link;
1638
1639		if (o_tty != tty->driver->other->ttys[idx]) {
1640			tty_debug(tty, "bad other table[%d] = %p\n",
1641				  idx, tty->driver->other->ttys[idx]);
1642			return -1;
1643		}
1644		if (o_tty->link != tty) {
1645			tty_debug(tty, "bad link = %p\n", o_tty->link);
1646			return -1;
1647		}
1648	}
1649#endif
1650	return 0;
1651}
1652
1653/**
1654 * tty_kclose - closes tty opened by tty_kopen
1655 * @tty: tty device
1656 *
1657 * Performs the final steps to release and free a tty device. It is the same as
1658 * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on
1659 * @tty->port.
1660 */
1661void tty_kclose(struct tty_struct *tty)
1662{
1663	/*
1664	 * Ask the line discipline code to release its structures
1665	 */
1666	tty_ldisc_release(tty);
1667
1668	/* Wait for pending work before tty destruction commences */
1669	tty_flush_works(tty);
1670
1671	tty_debug_hangup(tty, "freeing structure\n");
1672	/*
1673	 * The release_tty function takes care of the details of clearing
1674	 * the slots and preserving the termios structure.
1675	 */
1676	mutex_lock(&tty_mutex);
1677	tty_port_set_kopened(tty->port, 0);
1678	release_tty(tty, tty->index);
1679	mutex_unlock(&tty_mutex);
1680}
1681EXPORT_SYMBOL_GPL(tty_kclose);
1682
1683/**
1684 * tty_release_struct - release a tty struct
1685 * @tty: tty device
1686 * @idx: index of the tty
1687 *
1688 * Performs the final steps to release and free a tty device. It is roughly the
1689 * reverse of tty_init_dev().
1690 */
1691void tty_release_struct(struct tty_struct *tty, int idx)
1692{
1693	/*
1694	 * Ask the line discipline code to release its structures
1695	 */
1696	tty_ldisc_release(tty);
1697
1698	/* Wait for pending work before tty destruction commmences */
1699	tty_flush_works(tty);
1700
1701	tty_debug_hangup(tty, "freeing structure\n");
1702	/*
1703	 * The release_tty function takes care of the details of clearing
1704	 * the slots and preserving the termios structure.
1705	 */
1706	mutex_lock(&tty_mutex);
1707	release_tty(tty, idx);
1708	mutex_unlock(&tty_mutex);
1709}
1710EXPORT_SYMBOL_GPL(tty_release_struct);
1711
1712/**
1713 * tty_release - vfs callback for close
1714 * @inode: inode of tty
1715 * @filp: file pointer for handle to tty
1716 *
1717 * Called the last time each file handle is closed that references this tty.
1718 * There may however be several such references.
1719 *
1720 * Locking:
1721 *	Takes BKL. See tty_release_dev().
1722 *
1723 * Even releasing the tty structures is a tricky business. We have to be very
1724 * careful that the structures are all released at the same time, as interrupts
1725 * might otherwise get the wrong pointers.
1726 *
1727 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1728 * lead to double frees or releasing memory still in use.
1729 */
 
1730int tty_release(struct inode *inode, struct file *filp)
1731{
1732	struct tty_struct *tty = file_tty(filp);
1733	struct tty_struct *o_tty = NULL;
1734	int	do_sleep, final;
 
1735	int	idx;
1736	long	timeout = 0;
1737	int	once = 1;
1738
1739	if (tty_paranoia_check(tty, inode, __func__))
1740		return 0;
1741
1742	tty_lock(tty);
1743	check_tty_count(tty, __func__);
1744
1745	__tty_fasync(-1, filp, 0);
1746
1747	idx = tty->index;
1748	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1749	    tty->driver->subtype == PTY_TYPE_MASTER)
1750		o_tty = tty->link;
 
1751
1752	if (tty_release_checks(tty, idx)) {
1753		tty_unlock(tty);
 
 
 
1754		return 0;
1755	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1756
1757	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
 
 
 
1758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1759	if (tty->ops->close)
1760		tty->ops->close(tty, filp);
1761
1762	/* If tty is pty master, lock the slave pty (stable lock order) */
1763	tty_lock_slave(o_tty);
1764
1765	/*
1766	 * Sanity check: if tty->count is going to zero, there shouldn't be
1767	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1768	 * wait queues and kick everyone out _before_ actually starting to
1769	 * close.  This ensures that we won't block while releasing the tty
1770	 * structure.
1771	 *
1772	 * The test for the o_tty closing is necessary, since the master and
1773	 * slave sides may close in any order.  If the slave side closes out
1774	 * first, its count will be one, since the master side holds an open.
1775	 * Thus this test wouldn't be triggered at the time the slave closed,
1776	 * so we do it now.
 
 
 
 
1777	 */
1778	while (1) {
 
 
 
 
 
 
 
 
1779		do_sleep = 0;
1780
1781		if (tty->count <= 1) {
1782			if (waitqueue_active(&tty->read_wait)) {
1783				wake_up_poll(&tty->read_wait, EPOLLIN);
1784				do_sleep++;
1785			}
1786			if (waitqueue_active(&tty->write_wait)) {
1787				wake_up_poll(&tty->write_wait, EPOLLOUT);
1788				do_sleep++;
1789			}
1790		}
1791		if (o_tty && o_tty->count <= 1) {
1792			if (waitqueue_active(&o_tty->read_wait)) {
1793				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1794				do_sleep++;
1795			}
1796			if (waitqueue_active(&o_tty->write_wait)) {
1797				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1798				do_sleep++;
1799			}
1800		}
1801		if (!do_sleep)
1802			break;
1803
1804		if (once) {
1805			once = 0;
1806			tty_warn(tty, "read/write wait queue active!\n");
1807		}
1808		schedule_timeout_killable(timeout);
1809		if (timeout < 120 * HZ)
1810			timeout = 2 * timeout + 1;
1811		else
1812			timeout = MAX_SCHEDULE_TIMEOUT;
1813	}
1814
1815	if (o_tty) {
 
 
 
 
 
1816		if (--o_tty->count < 0) {
1817			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
 
 
1818			o_tty->count = 0;
1819		}
1820	}
1821	if (--tty->count < 0) {
1822		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
 
1823		tty->count = 0;
1824	}
1825
1826	/*
1827	 * We've decremented tty->count, so we need to remove this file
1828	 * descriptor off the tty->tty_files list; this serves two
1829	 * purposes:
1830	 *  - check_tty_count sees the correct number of file descriptors
1831	 *    associated with this tty.
1832	 *  - do_tty_hangup no longer sees this file descriptor as
1833	 *    something that needs to be handled for hangups.
1834	 */
1835	tty_del_file(filp);
1836
1837	/*
1838	 * Perform some housekeeping before deciding whether to return.
1839	 *
 
 
 
 
 
 
 
 
 
 
1840	 * If _either_ side is closing, make sure there aren't any
1841	 * processes that still think tty or o_tty is their controlling
1842	 * tty.
1843	 */
1844	if (!tty->count) {
1845		read_lock(&tasklist_lock);
1846		session_clear_tty(tty->ctrl.session);
1847		if (o_tty)
1848			session_clear_tty(o_tty->ctrl.session);
1849		read_unlock(&tasklist_lock);
1850	}
1851
 
 
1852	/* check whether both sides are closing ... */
1853	final = !tty->count && !(o_tty && o_tty->count);
 
 
 
1854
1855	tty_unlock_slave(o_tty);
1856	tty_unlock(tty);
1857
1858	/* At this point, the tty->count == 0 should ensure a dead tty
1859	 * cannot be re-opened by a racing opener.
 
 
 
 
 
1860	 */
 
1861
1862	if (!final)
1863		return 0;
1864
1865	tty_debug_hangup(tty, "final close\n");
1866
1867	tty_release_struct(tty, idx);
1868	return 0;
1869}
1870
1871/**
1872 * tty_open_current_tty - get locked tty of current task
1873 * @device: device number
1874 * @filp: file pointer to tty
1875 * @return: locked tty of the current task iff @device is /dev/tty
1876 *
1877 * Performs a re-open of the current task's controlling tty.
1878 *
1879 * We cannot return driver and index like for the other nodes because devpts
1880 * will not work then. It expects inodes to be from devpts FS.
 
 
 
 
 
 
 
 
 
1881 */
1882static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
 
1883{
1884	struct tty_struct *tty;
1885	int retval;
 
 
 
 
 
 
1886
1887	if (device != MKDEV(TTYAUX_MAJOR, 0))
1888		return NULL;
 
 
1889
1890	tty = get_current_tty();
1891	if (!tty)
1892		return ERR_PTR(-ENXIO);
1893
1894	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1895	/* noctty = 1; */
1896	tty_lock(tty);
1897	tty_kref_put(tty);	/* safe to drop the kref now */
1898
1899	retval = tty_reopen(tty);
1900	if (retval < 0) {
1901		tty_unlock(tty);
1902		tty = ERR_PTR(retval);
 
 
 
 
 
1903	}
1904	return tty;
1905}
1906
1907/**
1908 * tty_lookup_driver - lookup a tty driver for a given device file
1909 * @device: device number
1910 * @filp: file pointer to tty
1911 * @index: index for the device in the @return driver
1912 *
1913 * If returned value is not erroneous, the caller is responsible to decrement
1914 * the refcount by tty_driver_kref_put().
1915 *
1916 * Locking: %tty_mutex protects get_tty_driver()
1917 *
1918 * Return: driver for this inode (with increased refcount)
1919 */
1920static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1921		int *index)
1922{
1923	struct tty_driver *driver = NULL;
1924
1925	switch (device) {
1926#ifdef CONFIG_VT
1927	case MKDEV(TTY_MAJOR, 0): {
1928		extern struct tty_driver *console_driver;
1929
1930		driver = tty_driver_kref_get(console_driver);
1931		*index = fg_console;
1932		break;
 
1933	}
1934#endif
1935	case MKDEV(TTYAUX_MAJOR, 1): {
1936		struct tty_driver *console_driver = console_device(index);
1937
1938		if (console_driver) {
1939			driver = tty_driver_kref_get(console_driver);
1940			if (driver && filp) {
1941				/* Don't let /dev/console block */
1942				filp->f_flags |= O_NONBLOCK;
1943				break;
 
1944			}
1945		}
1946		if (driver)
1947			tty_driver_kref_put(driver);
1948		return ERR_PTR(-ENODEV);
1949	}
1950	default:
1951		driver = get_tty_driver(device, index);
1952		if (!driver)
1953			return ERR_PTR(-ENODEV);
1954		break;
1955	}
1956	return driver;
1957}
1958
1959static struct tty_struct *tty_kopen(dev_t device, int shared)
1960{
1961	struct tty_struct *tty;
1962	struct tty_driver *driver;
1963	int index = -1;
1964
1965	mutex_lock(&tty_mutex);
1966	driver = tty_lookup_driver(device, NULL, &index);
1967	if (IS_ERR(driver)) {
1968		mutex_unlock(&tty_mutex);
1969		return ERR_CAST(driver);
1970	}
1971
1972	/* check whether we're reopening an existing tty */
1973	tty = tty_driver_lookup_tty(driver, NULL, index);
1974	if (IS_ERR(tty) || shared)
1975		goto out;
1976
1977	if (tty) {
1978		/* drop kref from tty_driver_lookup_tty() */
1979		tty_kref_put(tty);
1980		tty = ERR_PTR(-EBUSY);
1981	} else { /* tty_init_dev returns tty with the tty_lock held */
1982		tty = tty_init_dev(driver, index);
1983		if (IS_ERR(tty))
1984			goto out;
1985		tty_port_set_kopened(tty->port, 1);
1986	}
1987out:
1988	mutex_unlock(&tty_mutex);
1989	tty_driver_kref_put(driver);
1990	return tty;
1991}
1992
1993/**
1994 * tty_kopen_exclusive - open a tty device for kernel
1995 * @device: dev_t of device to open
1996 *
1997 * Opens tty exclusively for kernel. Performs the driver lookup, makes sure
1998 * it's not already opened and performs the first-time tty initialization.
1999 *
2000 * Claims the global %tty_mutex to serialize:
2001 *  * concurrent first-time tty initialization
2002 *  * concurrent tty driver removal w/ lookup
2003 *  * concurrent tty removal from driver table
2004 *
2005 * Return: the locked initialized &tty_struct
2006 */
2007struct tty_struct *tty_kopen_exclusive(dev_t device)
2008{
2009	return tty_kopen(device, 0);
2010}
2011EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2012
2013/**
2014 * tty_kopen_shared - open a tty device for shared in-kernel use
2015 * @device: dev_t of device to open
2016 *
2017 * Opens an already existing tty for in-kernel use. Compared to
2018 * tty_kopen_exclusive() above it doesn't ensure to be the only user.
2019 *
2020 * Locking: identical to tty_kopen() above.
2021 */
2022struct tty_struct *tty_kopen_shared(dev_t device)
2023{
2024	return tty_kopen(device, 1);
2025}
2026EXPORT_SYMBOL_GPL(tty_kopen_shared);
2027
2028/**
2029 * tty_open_by_driver - open a tty device
2030 * @device: dev_t of device to open
2031 * @filp: file pointer to tty
2032 *
2033 * Performs the driver lookup, checks for a reopen, or otherwise performs the
2034 * first-time tty initialization.
2035 *
2036 *
2037 * Claims the global tty_mutex to serialize:
2038 *  * concurrent first-time tty initialization
2039 *  * concurrent tty driver removal w/ lookup
2040 *  * concurrent tty removal from driver table
2041 *
2042 * Return: the locked initialized or re-opened &tty_struct
2043 */
2044static struct tty_struct *tty_open_by_driver(dev_t device,
2045					     struct file *filp)
2046{
2047	struct tty_struct *tty;
2048	struct tty_driver *driver = NULL;
2049	int index = -1;
2050	int retval;
2051
2052	mutex_lock(&tty_mutex);
2053	driver = tty_lookup_driver(device, filp, &index);
2054	if (IS_ERR(driver)) {
2055		mutex_unlock(&tty_mutex);
2056		return ERR_CAST(driver);
2057	}
 
 
 
 
2058
2059	/* check whether we're reopening an existing tty */
2060	tty = tty_driver_lookup_tty(driver, filp, index);
2061	if (IS_ERR(tty)) {
2062		mutex_unlock(&tty_mutex);
2063		goto out;
2064	}
2065
2066	if (tty) {
2067		if (tty_port_kopened(tty->port)) {
2068			tty_kref_put(tty);
2069			mutex_unlock(&tty_mutex);
2070			tty = ERR_PTR(-EBUSY);
2071			goto out;
2072		}
2073		mutex_unlock(&tty_mutex);
2074		retval = tty_lock_interruptible(tty);
2075		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2076		if (retval) {
2077			if (retval == -EINTR)
2078				retval = -ERESTARTSYS;
2079			tty = ERR_PTR(retval);
2080			goto out;
2081		}
2082		retval = tty_reopen(tty);
2083		if (retval < 0) {
2084			tty_unlock(tty);
2085			tty = ERR_PTR(retval);
2086		}
2087	} else { /* Returns with the tty_lock held for now */
2088		tty = tty_init_dev(driver, index);
2089		mutex_unlock(&tty_mutex);
2090	}
2091out:
2092	tty_driver_kref_put(driver);
2093	return tty;
2094}
2095
2096/**
2097 * tty_open - open a tty device
2098 * @inode: inode of device file
2099 * @filp: file pointer to tty
2100 *
2101 * tty_open() and tty_release() keep up the tty count that contains the number
2102 * of opens done on a tty. We cannot use the inode-count, as different inodes
2103 * might point to the same tty.
2104 *
2105 * Open-counting is needed for pty masters, as well as for keeping track of
2106 * serial lines: DTR is dropped when the last close happens.
2107 * (This is not done solely through tty->count, now.  - Ted 1/27/92)
2108 *
2109 * The termios state of a pty is reset on the first open so that settings don't
2110 * persist across reuse.
2111 *
2112 * Locking:
2113 *  * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev().
2114 *  * @tty->count should protect the rest.
2115 *  * ->siglock protects ->signal/->sighand
2116 *
2117 * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex
2118 */
2119static int tty_open(struct inode *inode, struct file *filp)
2120{
2121	struct tty_struct *tty;
2122	int noctty, retval;
2123	dev_t device = inode->i_rdev;
2124	unsigned saved_flags = filp->f_flags;
2125
2126	nonseekable_open(inode, filp);
2127
2128retry_open:
2129	retval = tty_alloc_file(filp);
2130	if (retval)
2131		return -ENOMEM;
2132
2133	tty = tty_open_current_tty(device, filp);
2134	if (!tty)
2135		tty = tty_open_by_driver(device, filp);
2136
2137	if (IS_ERR(tty)) {
2138		tty_free_file(filp);
2139		retval = PTR_ERR(tty);
2140		if (retval != -EAGAIN || signal_pending(current))
2141			return retval;
2142		schedule();
2143		goto retry_open;
2144	}
2145
2146	tty_add_file(tty, filp);
2147
2148	check_tty_count(tty, __func__);
2149	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
 
 
2150
 
 
 
 
 
 
 
2151	if (tty->ops->open)
2152		retval = tty->ops->open(tty, filp);
2153	else
2154		retval = -ENODEV;
2155	filp->f_flags = saved_flags;
2156
 
 
 
 
2157	if (retval) {
2158		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2159
2160		tty_unlock(tty); /* need to call tty_release without BTM */
 
 
2161		tty_release(inode, filp);
2162		if (retval != -ERESTARTSYS)
2163			return retval;
2164
2165		if (signal_pending(current))
2166			return retval;
2167
2168		schedule();
2169		/*
2170		 * Need to reset f_op in case a hangup happened.
2171		 */
2172		if (tty_hung_up_p(filp))
 
2173			filp->f_op = &tty_fops;
 
2174		goto retry_open;
2175	}
2176	clear_bit(TTY_HUPPED, &tty->flags);
 
2177
2178	noctty = (filp->f_flags & O_NOCTTY) ||
2179		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2180		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2181		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2182		  tty->driver->subtype == PTY_TYPE_MASTER);
2183	if (!noctty)
2184		tty_open_proc_set_tty(filp, tty);
2185	tty_unlock(tty);
 
 
 
2186	return 0;
2187}
2188
2189
 
2190/**
2191 * tty_poll - check tty status
2192 * @filp: file being polled
2193 * @wait: poll wait structures to update
2194 *
2195 * Call the line discipline polling method to obtain the poll status of the
2196 * device.
2197 *
2198 * Locking: locks called line discipline but ldisc poll method may be
2199 * re-entered freely by other callers.
2200 */
2201static __poll_t tty_poll(struct file *filp, poll_table *wait)
 
2202{
2203	struct tty_struct *tty = file_tty(filp);
2204	struct tty_ldisc *ld;
2205	__poll_t ret = 0;
2206
2207	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2208		return 0;
2209
2210	ld = tty_ldisc_ref_wait(tty);
2211	if (!ld)
2212		return hung_up_tty_poll(filp, wait);
2213	if (ld->ops->poll)
2214		ret = ld->ops->poll(tty, filp, wait);
2215	tty_ldisc_deref(ld);
2216	return ret;
2217}
2218
2219static int __tty_fasync(int fd, struct file *filp, int on)
2220{
2221	struct tty_struct *tty = file_tty(filp);
2222	unsigned long flags;
2223	int retval = 0;
2224
2225	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2226		goto out;
2227
2228	retval = fasync_helper(fd, filp, on, &tty->fasync);
2229	if (retval <= 0)
2230		goto out;
2231
2232	if (on) {
2233		enum pid_type type;
2234		struct pid *pid;
2235
2236		spin_lock_irqsave(&tty->ctrl.lock, flags);
2237		if (tty->ctrl.pgrp) {
2238			pid = tty->ctrl.pgrp;
 
2239			type = PIDTYPE_PGID;
2240		} else {
2241			pid = task_pid(current);
2242			type = PIDTYPE_TGID;
2243		}
2244		get_pid(pid);
2245		spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2246		__f_setown(filp, pid, type, 0);
2247		put_pid(pid);
2248		retval = 0;
 
 
 
 
2249	}
 
2250out:
2251	return retval;
2252}
2253
2254static int tty_fasync(int fd, struct file *filp, int on)
2255{
2256	struct tty_struct *tty = file_tty(filp);
2257	int retval = -ENOTTY;
2258
2259	tty_lock(tty);
2260	if (!tty_hung_up_p(filp))
2261		retval = __tty_fasync(fd, filp, on);
2262	tty_unlock(tty);
2263
2264	return retval;
2265}
2266
2267static bool tty_legacy_tiocsti __read_mostly = IS_ENABLED(CONFIG_LEGACY_TIOCSTI);
2268/**
2269 * tiocsti - fake input character
2270 * @tty: tty to fake input into
2271 * @p: pointer to character
2272 *
2273 * Fake input to a tty device. Does the necessary locking and input management.
 
2274 *
2275 * FIXME: does not honour flow control ??
2276 *
2277 * Locking:
2278 *  * Called functions take tty_ldiscs_lock
2279 *  * current->signal->tty check is safe without locks
 
 
2280 */
2281static int tiocsti(struct tty_struct *tty, u8 __user *p)
 
2282{
 
2283	struct tty_ldisc *ld;
2284	u8 ch;
2285
2286	if (!tty_legacy_tiocsti && !capable(CAP_SYS_ADMIN))
2287		return -EIO;
2288
2289	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2290		return -EPERM;
2291	if (get_user(ch, p))
2292		return -EFAULT;
2293	tty_audit_tiocsti(tty, ch);
2294	ld = tty_ldisc_ref_wait(tty);
2295	if (!ld)
2296		return -EIO;
2297	tty_buffer_lock_exclusive(tty->port);
2298	if (ld->ops->receive_buf)
2299		ld->ops->receive_buf(tty, &ch, NULL, 1);
2300	tty_buffer_unlock_exclusive(tty->port);
2301	tty_ldisc_deref(ld);
2302	return 0;
2303}
2304
2305/**
2306 * tiocgwinsz - implement window query ioctl
2307 * @tty: tty
2308 * @arg: user buffer for result
2309 *
2310 * Copies the kernel idea of the window size into the user buffer.
2311 *
2312 * Locking: @tty->winsize_mutex is taken to ensure the winsize data is
2313 * consistent.
2314 */
 
2315static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2316{
2317	int err;
2318
2319	mutex_lock(&tty->winsize_mutex);
2320	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2321	mutex_unlock(&tty->winsize_mutex);
2322
2323	return err ? -EFAULT : 0;
2324}
2325
2326/**
2327 * tty_do_resize - resize event
2328 * @tty: tty being resized
2329 * @ws: new dimensions
 
2330 *
2331 * Update the termios variables and send the necessary signals to peform a
2332 * terminal resize correctly.
2333 */
 
2334int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2335{
2336	struct pid *pgrp;
 
2337
2338	/* Lock the tty */
2339	mutex_lock(&tty->winsize_mutex);
2340	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2341		goto done;
 
 
 
 
 
2342
2343	/* Signal the foreground process group */
2344	pgrp = tty_get_pgrp(tty);
2345	if (pgrp)
2346		kill_pgrp(pgrp, SIGWINCH, 1);
2347	put_pid(pgrp);
2348
2349	tty->winsize = *ws;
2350done:
2351	mutex_unlock(&tty->winsize_mutex);
2352	return 0;
2353}
2354EXPORT_SYMBOL(tty_do_resize);
2355
2356/**
2357 * tiocswinsz - implement window size set ioctl
2358 * @tty: tty side of tty
2359 * @arg: user buffer for result
2360 *
2361 * Copies the user idea of the window size to the kernel. Traditionally this is
2362 * just advisory information but for the Linux console it actually has driver
2363 * level meaning and triggers a VC resize.
2364 *
2365 * Locking:
2366 *	Driver dependent. The default do_resize method takes the tty termios
2367 *	mutex and ctrl.lock. The console takes its own lock then calls into the
2368 *	default method.
2369 */
 
2370static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2371{
2372	struct winsize tmp_ws;
2373
2374	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2375		return -EFAULT;
2376
2377	if (tty->ops->resize)
2378		return tty->ops->resize(tty, &tmp_ws);
2379	else
2380		return tty_do_resize(tty, &tmp_ws);
2381}
2382
2383/**
2384 * tioccons - allow admin to move logical console
2385 * @file: the file to become console
2386 *
2387 * Allow the administrator to move the redirected console device.
2388 *
2389 * Locking: uses redirect_lock to guard the redirect information
2390 */
 
2391static int tioccons(struct file *file)
2392{
2393	if (!capable(CAP_SYS_ADMIN))
2394		return -EPERM;
2395	if (file->f_op->write_iter == redirected_tty_write) {
2396		struct file *f;
2397
2398		spin_lock(&redirect_lock);
2399		f = redirect;
2400		redirect = NULL;
2401		spin_unlock(&redirect_lock);
2402		if (f)
2403			fput(f);
2404		return 0;
2405	}
2406	if (file->f_op->write_iter != tty_write)
2407		return -ENOTTY;
2408	if (!(file->f_mode & FMODE_WRITE))
2409		return -EBADF;
2410	if (!(file->f_mode & FMODE_CAN_WRITE))
2411		return -EINVAL;
2412	spin_lock(&redirect_lock);
2413	if (redirect) {
2414		spin_unlock(&redirect_lock);
2415		return -EBUSY;
2416	}
2417	redirect = get_file(file);
 
2418	spin_unlock(&redirect_lock);
2419	return 0;
2420}
2421
2422/**
2423 * tiocsetd - set line discipline
2424 * @tty: tty device
2425 * @p: pointer to user data
2426 *
2427 * Set the line discipline according to user request.
 
 
2428 *
2429 * Locking: see tty_set_ldisc(), this function is just a helper
2430 */
2431static int tiocsetd(struct tty_struct *tty, int __user *p)
 
2432{
2433	int disc;
2434	int ret;
2435
2436	if (get_user(disc, p))
2437		return -EFAULT;
2438
2439	ret = tty_set_ldisc(tty, disc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2441	return ret;
2442}
2443
2444/**
2445 * tiocgetd - get line discipline
2446 * @tty: tty device
2447 * @p: pointer to user data
2448 *
2449 * Retrieves the line discipline id directly from the ldisc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2450 *
2451 * Locking: waits for ldisc reference (in case the line discipline is changing
2452 * or the @tty is being hungup)
 
 
2453 */
2454static int tiocgetd(struct tty_struct *tty, int __user *p)
 
2455{
2456	struct tty_ldisc *ld;
2457	int ret;
 
 
 
 
 
 
 
 
 
 
 
2458
2459	ld = tty_ldisc_ref_wait(tty);
2460	if (!ld)
2461		return -EIO;
2462	ret = put_user(ld->ops->num, p);
2463	tty_ldisc_deref(ld);
2464	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2465}
2466
2467/**
2468 * send_break - performed time break
2469 * @tty: device to break on
2470 * @duration: timeout in mS
 
2471 *
2472 * Perform a timed break on hardware that lacks its own driver level timed
2473 * break functionality.
2474 *
2475 * Locking:
2476 *	@tty->atomic_write_lock serializes
2477 */
2478static int send_break(struct tty_struct *tty, unsigned int duration)
 
2479{
2480	int retval;
 
 
 
 
 
 
 
 
 
2481
2482	if (tty->ops->break_ctl == NULL)
2483		return 0;
 
 
 
 
 
 
 
2484
2485	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2486		return tty->ops->break_ctl(tty, duration);
 
 
2487
2488	/* Do the work ourselves */
2489	if (tty_write_lock(tty, false) < 0)
2490		return -EINTR;
2491
2492	retval = tty->ops->break_ctl(tty, -1);
2493	if (!retval) {
2494		msleep_interruptible(duration);
2495		retval = tty->ops->break_ctl(tty, 0);
2496	} else if (retval == -EOPNOTSUPP) {
2497		/* some drivers can tell only dynamically */
2498		retval = 0;
2499	}
2500	tty_write_unlock(tty);
2501
2502	if (signal_pending(current))
2503		retval = -EINTR;
2504
2505	return retval;
2506}
2507
2508/**
2509 * tty_get_tiocm - get tiocm status register
2510 * @tty: tty device
 
 
 
 
 
 
 
2511 *
2512 * Obtain the modem status bits from the tty driver if the feature
2513 * is supported.
2514 */
2515int tty_get_tiocm(struct tty_struct *tty)
 
2516{
2517	int retval = -ENOTTY;
2518
2519	if (tty->ops->tiocmget)
2520		retval = tty->ops->tiocmget(tty);
2521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2522	return retval;
2523}
2524EXPORT_SYMBOL_GPL(tty_get_tiocm);
2525
2526/**
2527 * tty_tiocmget - get modem status
2528 * @tty: tty device
2529 * @p: pointer to result
 
2530 *
2531 * Obtain the modem status bits from the tty driver if the feature is
2532 * supported. Return -%ENOTTY if it is not available.
2533 *
2534 * Locking: none (up to the driver)
2535 */
 
2536static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2537{
2538	int retval;
2539
2540	retval = tty_get_tiocm(tty);
2541	if (retval >= 0)
2542		retval = put_user(retval, p);
2543
 
 
 
2544	return retval;
2545}
2546
2547/**
2548 * tty_tiocmset - set modem status
2549 * @tty: tty device
2550 * @cmd: command - clear bits, set bits or set all
2551 * @p: pointer to desired bits
2552 *
2553 * Set the modem status bits from the tty driver if the feature
2554 * is supported. Return -%ENOTTY if it is not available.
2555 *
2556 * Locking: none (up to the driver)
2557 */
 
2558static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2559	     unsigned __user *p)
2560{
2561	int retval;
2562	unsigned int set, clear, val;
2563
2564	if (tty->ops->tiocmset == NULL)
2565		return -ENOTTY;
2566
2567	retval = get_user(val, p);
2568	if (retval)
2569		return retval;
2570	set = clear = 0;
2571	switch (cmd) {
2572	case TIOCMBIS:
2573		set = val;
2574		break;
2575	case TIOCMBIC:
2576		clear = val;
2577		break;
2578	case TIOCMSET:
2579		set = val;
2580		clear = ~val;
2581		break;
2582	}
2583	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2584	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2585	return tty->ops->tiocmset(tty, set, clear);
2586}
2587
2588/**
2589 * tty_get_icount - get tty statistics
2590 * @tty: tty device
2591 * @icount: output parameter
2592 *
2593 * Gets a copy of the @tty's icount statistics.
2594 *
2595 * Locking: none (up to the driver)
2596 */
2597int tty_get_icount(struct tty_struct *tty,
2598		   struct serial_icounter_struct *icount)
2599{
2600	memset(icount, 0, sizeof(*icount));
2601
2602	if (tty->ops->get_icount)
2603		return tty->ops->get_icount(tty, icount);
2604	else
2605		return -ENOTTY;
2606}
2607EXPORT_SYMBOL_GPL(tty_get_icount);
2608
2609static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2610{
 
2611	struct serial_icounter_struct icount;
2612	int retval;
2613
2614	retval = tty_get_icount(tty, &icount);
2615	if (retval != 0)
2616		return retval;
2617
2618	if (copy_to_user(arg, &icount, sizeof(icount)))
2619		return -EFAULT;
2620	return 0;
2621}
2622
2623static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2624{
2625	char comm[TASK_COMM_LEN];
2626	int flags;
2627
2628	flags = ss->flags & ASYNC_DEPRECATED;
2629
2630	if (flags)
2631		pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2632				__func__, get_task_comm(comm, current), flags);
2633
2634	if (!tty->ops->set_serial)
2635		return -ENOTTY;
2636
2637	return tty->ops->set_serial(tty, ss);
2638}
2639
2640static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2641{
2642	struct serial_struct v;
2643
2644	if (copy_from_user(&v, ss, sizeof(*ss)))
2645		return -EFAULT;
2646
2647	return tty_set_serial(tty, &v);
2648}
2649
2650static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2651{
2652	struct serial_struct v;
2653	int err;
2654
2655	memset(&v, 0, sizeof(v));
2656	if (!tty->ops->get_serial)
2657		return -ENOTTY;
2658	err = tty->ops->get_serial(tty, &v);
2659	if (!err && copy_to_user(ss, &v, sizeof(v)))
2660		err = -EFAULT;
2661	return err;
2662}
 
2663
2664/*
2665 * if pty, return the slave side (real_tty)
2666 * otherwise, return self
2667 */
2668static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2669{
2670	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2671	    tty->driver->subtype == PTY_TYPE_MASTER)
2672		tty = tty->link;
2673	return tty;
2674}
 
2675
2676/*
2677 * Split this up, as gcc can choke on it otherwise..
2678 */
2679long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2680{
2681	struct tty_struct *tty = file_tty(file);
2682	struct tty_struct *real_tty;
2683	void __user *p = (void __user *)arg;
2684	int retval;
2685	struct tty_ldisc *ld;
 
2686
2687	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2688		return -EINVAL;
2689
2690	real_tty = tty_pair_get_tty(tty);
2691
2692	/*
2693	 * Factor out some common prep work
2694	 */
2695	switch (cmd) {
2696	case TIOCSETD:
2697	case TIOCSBRK:
2698	case TIOCCBRK:
2699	case TCSBRK:
2700	case TCSBRKP:
2701		retval = tty_check_change(tty);
2702		if (retval)
2703			return retval;
2704		if (cmd != TIOCCBRK) {
2705			tty_wait_until_sent(tty, 0);
2706			if (signal_pending(current))
2707				return -EINTR;
2708		}
2709		break;
2710	}
2711
2712	/*
2713	 *	Now do the stuff.
2714	 */
2715	switch (cmd) {
2716	case TIOCSTI:
2717		return tiocsti(tty, p);
2718	case TIOCGWINSZ:
2719		return tiocgwinsz(real_tty, p);
2720	case TIOCSWINSZ:
2721		return tiocswinsz(real_tty, p);
2722	case TIOCCONS:
2723		return real_tty != tty ? -EINVAL : tioccons(file);
 
 
2724	case TIOCEXCL:
2725		set_bit(TTY_EXCLUSIVE, &tty->flags);
2726		return 0;
2727	case TIOCNXCL:
2728		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2729		return 0;
2730	case TIOCGEXCL:
2731	{
2732		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2733
2734		return put_user(excl, (int __user *)p);
2735	}
 
 
 
 
 
 
 
2736	case TIOCGETD:
2737		return tiocgetd(tty, p);
2738	case TIOCSETD:
2739		return tiocsetd(tty, p);
2740	case TIOCVHANGUP:
2741		if (!capable(CAP_SYS_ADMIN))
2742			return -EPERM;
2743		tty_vhangup(tty);
2744		return 0;
2745	case TIOCGDEV:
2746	{
2747		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2748
2749		return put_user(ret, (unsigned int __user *)p);
2750	}
2751	/*
2752	 * Break handling
2753	 */
2754	case TIOCSBRK:	/* Turn break on, unconditionally */
2755		if (tty->ops->break_ctl)
2756			return tty->ops->break_ctl(tty, -1);
2757		return 0;
2758	case TIOCCBRK:	/* Turn break off, unconditionally */
2759		if (tty->ops->break_ctl)
2760			return tty->ops->break_ctl(tty, 0);
2761		return 0;
2762	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2763		/* non-zero arg means wait for all output data
2764		 * to be sent (performed above) but don't send break.
2765		 * This is used by the tcdrain() termios function.
2766		 */
2767		if (!arg)
2768			return send_break(tty, 250);
2769		return 0;
2770	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2771		return send_break(tty, arg ? arg*100 : 250);
2772
2773	case TIOCMGET:
2774		return tty_tiocmget(tty, p);
2775	case TIOCMSET:
2776	case TIOCMBIC:
2777	case TIOCMBIS:
2778		return tty_tiocmset(tty, cmd, p);
2779	case TIOCGICOUNT:
2780		return tty_tiocgicount(tty, p);
 
 
 
 
2781	case TCFLSH:
2782		switch (arg) {
2783		case TCIFLUSH:
2784		case TCIOFLUSH:
2785		/* flush tty buffer and allow ldisc to process ioctl */
2786			tty_buffer_flush(tty, NULL);
2787			break;
2788		}
2789		break;
2790	case TIOCSSERIAL:
2791		return tty_tiocsserial(tty, p);
2792	case TIOCGSERIAL:
2793		return tty_tiocgserial(tty, p);
2794	case TIOCGPTPEER:
2795		/* Special because the struct file is needed */
2796		return ptm_open_peer(file, tty, (int)arg);
2797	default:
2798		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2799		if (retval != -ENOIOCTLCMD)
2800			return retval;
2801	}
2802	if (tty->ops->ioctl) {
2803		retval = tty->ops->ioctl(tty, cmd, arg);
2804		if (retval != -ENOIOCTLCMD)
2805			return retval;
2806	}
2807	ld = tty_ldisc_ref_wait(tty);
2808	if (!ld)
2809		return hung_up_tty_ioctl(file, cmd, arg);
2810	retval = -EINVAL;
2811	if (ld->ops->ioctl) {
2812		retval = ld->ops->ioctl(tty, cmd, arg);
2813		if (retval == -ENOIOCTLCMD)
2814			retval = -ENOTTY;
2815	}
2816	tty_ldisc_deref(ld);
2817	return retval;
2818}
2819
2820#ifdef CONFIG_COMPAT
2821
2822struct serial_struct32 {
2823	compat_int_t    type;
2824	compat_int_t    line;
2825	compat_uint_t   port;
2826	compat_int_t    irq;
2827	compat_int_t    flags;
2828	compat_int_t    xmit_fifo_size;
2829	compat_int_t    custom_divisor;
2830	compat_int_t    baud_base;
2831	unsigned short  close_delay;
2832	char    io_type;
2833	char    reserved_char;
2834	compat_int_t    hub6;
2835	unsigned short  closing_wait; /* time to wait before closing */
2836	unsigned short  closing_wait2; /* no longer used... */
2837	compat_uint_t   iomem_base;
2838	unsigned short  iomem_reg_shift;
2839	unsigned int    port_high;
2840	/* compat_ulong_t  iomap_base FIXME */
2841	compat_int_t    reserved;
2842};
2843
2844static int compat_tty_tiocsserial(struct tty_struct *tty,
2845		struct serial_struct32 __user *ss)
2846{
2847	struct serial_struct32 v32;
2848	struct serial_struct v;
2849
2850	if (copy_from_user(&v32, ss, sizeof(*ss)))
2851		return -EFAULT;
2852
2853	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2854	v.iomem_base = compat_ptr(v32.iomem_base);
2855	v.iomem_reg_shift = v32.iomem_reg_shift;
2856	v.port_high = v32.port_high;
2857	v.iomap_base = 0;
2858
2859	return tty_set_serial(tty, &v);
2860}
2861
2862static int compat_tty_tiocgserial(struct tty_struct *tty,
2863			struct serial_struct32 __user *ss)
2864{
2865	struct serial_struct32 v32;
2866	struct serial_struct v;
2867	int err;
2868
2869	memset(&v, 0, sizeof(v));
2870	memset(&v32, 0, sizeof(v32));
2871
2872	if (!tty->ops->get_serial)
2873		return -ENOTTY;
2874	err = tty->ops->get_serial(tty, &v);
2875	if (!err) {
2876		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2877		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2878			0xfffffff : ptr_to_compat(v.iomem_base);
2879		v32.iomem_reg_shift = v.iomem_reg_shift;
2880		v32.port_high = v.port_high;
2881		if (copy_to_user(ss, &v32, sizeof(v32)))
2882			err = -EFAULT;
2883	}
2884	return err;
2885}
2886static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2887				unsigned long arg)
2888{
 
2889	struct tty_struct *tty = file_tty(file);
2890	struct tty_ldisc *ld;
2891	int retval = -ENOIOCTLCMD;
2892
2893	switch (cmd) {
2894	case TIOCOUTQ:
2895	case TIOCSTI:
2896	case TIOCGWINSZ:
2897	case TIOCSWINSZ:
2898	case TIOCGEXCL:
2899	case TIOCGETD:
2900	case TIOCSETD:
2901	case TIOCGDEV:
2902	case TIOCMGET:
2903	case TIOCMSET:
2904	case TIOCMBIC:
2905	case TIOCMBIS:
2906	case TIOCGICOUNT:
2907	case TIOCGPGRP:
2908	case TIOCSPGRP:
2909	case TIOCGSID:
2910	case TIOCSERGETLSR:
2911	case TIOCGRS485:
2912	case TIOCSRS485:
2913#ifdef TIOCGETP
2914	case TIOCGETP:
2915	case TIOCSETP:
2916	case TIOCSETN:
2917#endif
2918#ifdef TIOCGETC
2919	case TIOCGETC:
2920	case TIOCSETC:
2921#endif
2922#ifdef TIOCGLTC
2923	case TIOCGLTC:
2924	case TIOCSLTC:
2925#endif
2926	case TCSETSF:
2927	case TCSETSW:
2928	case TCSETS:
2929	case TCGETS:
2930#ifdef TCGETS2
2931	case TCGETS2:
2932	case TCSETSF2:
2933	case TCSETSW2:
2934	case TCSETS2:
2935#endif
2936	case TCGETA:
2937	case TCSETAF:
2938	case TCSETAW:
2939	case TCSETA:
2940	case TIOCGLCKTRMIOS:
2941	case TIOCSLCKTRMIOS:
2942#ifdef TCGETX
2943	case TCGETX:
2944	case TCSETX:
2945	case TCSETXW:
2946	case TCSETXF:
2947#endif
2948	case TIOCGSOFTCAR:
2949	case TIOCSSOFTCAR:
2950
2951	case PPPIOCGCHAN:
2952	case PPPIOCGUNIT:
2953		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2954	case TIOCCONS:
2955	case TIOCEXCL:
2956	case TIOCNXCL:
2957	case TIOCVHANGUP:
2958	case TIOCSBRK:
2959	case TIOCCBRK:
2960	case TCSBRK:
2961	case TCSBRKP:
2962	case TCFLSH:
2963	case TIOCGPTPEER:
2964	case TIOCNOTTY:
2965	case TIOCSCTTY:
2966	case TCXONC:
2967	case TIOCMIWAIT:
2968	case TIOCSERCONFIG:
2969		return tty_ioctl(file, cmd, arg);
2970	}
2971
2972	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2973		return -EINVAL;
2974
2975	switch (cmd) {
2976	case TIOCSSERIAL:
2977		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2978	case TIOCGSERIAL:
2979		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2980	}
2981	if (tty->ops->compat_ioctl) {
2982		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2983		if (retval != -ENOIOCTLCMD)
2984			return retval;
2985	}
2986
2987	ld = tty_ldisc_ref_wait(tty);
2988	if (!ld)
2989		return hung_up_tty_compat_ioctl(file, cmd, arg);
2990	if (ld->ops->compat_ioctl)
2991		retval = ld->ops->compat_ioctl(tty, cmd, arg);
2992	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2993		retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(cmd),
2994				arg);
2995	tty_ldisc_deref(ld);
2996
2997	return retval;
2998}
2999#endif
3000
3001static int this_tty(const void *t, struct file *file, unsigned fd)
3002{
3003	if (likely(file->f_op->read_iter != tty_read))
3004		return 0;
3005	return file_tty(file) != t ? 0 : fd + 1;
3006}
3007
3008/*
3009 * This implements the "Secure Attention Key" ---  the idea is to
3010 * prevent trojan horses by killing all processes associated with this
3011 * tty when the user hits the "Secure Attention Key".  Required for
3012 * super-paranoid applications --- see the Orange Book for more details.
3013 *
3014 * This code could be nicer; ideally it should send a HUP, wait a few
3015 * seconds, then send a INT, and then a KILL signal.  But you then
3016 * have to coordinate with the init process, since all processes associated
3017 * with the current tty must be dead before the new getty is allowed
3018 * to spawn.
3019 *
3020 * Now, if it would be correct ;-/ The current code has a nasty hole -
3021 * it doesn't catch files in flight. We may send the descriptor to ourselves
3022 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3023 *
3024 * Nasty bug: do_SAK is being called in interrupt context.  This can
3025 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3026 */
3027void __do_SAK(struct tty_struct *tty)
3028{
 
 
 
3029	struct task_struct *g, *p;
3030	struct pid *session;
3031	int i;
3032	unsigned long flags;
 
3033
3034	spin_lock_irqsave(&tty->ctrl.lock, flags);
3035	session = get_pid(tty->ctrl.session);
3036	spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3037
3038	tty_ldisc_flush(tty);
3039
3040	tty_driver_flush_buffer(tty);
3041
3042	read_lock(&tasklist_lock);
3043	/* Kill the entire session */
3044	do_each_pid_task(session, PIDTYPE_SID, p) {
3045		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3046			   task_pid_nr(p), p->comm);
3047		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
 
3048	} while_each_pid_task(session, PIDTYPE_SID, p);
3049
3050	/* Now kill any processes that happen to have the tty open */
3051	for_each_process_thread(g, p) {
 
3052		if (p->signal->tty == tty) {
3053			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3054				   task_pid_nr(p), p->comm);
3055			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3056					PIDTYPE_SID);
3057			continue;
3058		}
3059		task_lock(p);
3060		i = iterate_fd(p->files, 0, this_tty, tty);
3061		if (i != 0) {
3062			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3063				   task_pid_nr(p), p->comm, i - 1);
3064			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3065					PIDTYPE_SID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3066		}
3067		task_unlock(p);
3068	}
3069	read_unlock(&tasklist_lock);
3070	put_pid(session);
3071}
3072
3073static void do_SAK_work(struct work_struct *work)
3074{
3075	struct tty_struct *tty =
3076		container_of(work, struct tty_struct, SAK_work);
3077	__do_SAK(tty);
3078}
3079
3080/*
3081 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3082 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3083 * the values which we write to it will be identical to the values which it
3084 * already has. --akpm
3085 */
3086void do_SAK(struct tty_struct *tty)
3087{
3088	if (!tty)
3089		return;
3090	schedule_work(&tty->SAK_work);
3091}
 
3092EXPORT_SYMBOL(do_SAK);
3093
 
 
 
 
 
 
3094/* Must put_device() after it's unused! */
3095static struct device *tty_get_device(struct tty_struct *tty)
3096{
3097	dev_t devt = tty_devnum(tty);
3098
3099	return class_find_device_by_devt(&tty_class, devt);
3100}
3101
3102
3103/**
3104 * alloc_tty_struct - allocate a new tty
3105 * @driver: driver which will handle the returned tty
3106 * @idx: minor of the tty
3107 *
3108 * This subroutine allocates and initializes a tty structure.
 
3109 *
3110 * Locking: none - @tty in question is not exposed at this point
3111 */
3112struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
 
 
3113{
3114	struct tty_struct *tty;
3115
3116	tty = kzalloc(sizeof(*tty), GFP_KERNEL_ACCOUNT);
3117	if (!tty)
3118		return NULL;
3119
3120	kref_init(&tty->kref);
3121	if (tty_ldisc_init(tty)) {
3122		kfree(tty);
3123		return NULL;
3124	}
3125	tty->ctrl.session = NULL;
3126	tty->ctrl.pgrp = NULL;
3127	mutex_init(&tty->legacy_mutex);
3128	mutex_init(&tty->throttle_mutex);
3129	init_rwsem(&tty->termios_rwsem);
3130	mutex_init(&tty->winsize_mutex);
3131	init_ldsem(&tty->ldisc_sem);
3132	init_waitqueue_head(&tty->write_wait);
3133	init_waitqueue_head(&tty->read_wait);
3134	INIT_WORK(&tty->hangup_work, do_tty_hangup);
 
3135	mutex_init(&tty->atomic_write_lock);
3136	spin_lock_init(&tty->ctrl.lock);
3137	spin_lock_init(&tty->flow.lock);
3138	spin_lock_init(&tty->files_lock);
 
3139	INIT_LIST_HEAD(&tty->tty_files);
3140	INIT_WORK(&tty->SAK_work, do_SAK_work);
3141
3142	tty->driver = driver;
3143	tty->ops = driver->ops;
3144	tty->index = idx;
3145	tty_line_name(driver, idx, tty->name);
3146	tty->dev = tty_get_device(tty);
3147
3148	return tty;
3149}
3150
3151/**
3152 * tty_put_char - write one character to a tty
3153 * @tty: tty
3154 * @ch: character to write
3155 *
3156 * Write one byte to the @tty using the provided @tty->ops->put_char() method
3157 * if present.
3158 *
3159 * Note: the specific put_char operation in the driver layer may go
3160 * away soon. Don't call it directly, use this method
3161 *
3162 * Return: the number of characters successfully output.
3163 */
3164int tty_put_char(struct tty_struct *tty, u8 ch)
3165{
3166	if (tty->ops->put_char)
3167		return tty->ops->put_char(tty, ch);
3168	return tty->ops->write(tty, &ch, 1);
3169}
3170EXPORT_SYMBOL_GPL(tty_put_char);
3171
3172static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3173		unsigned int index, unsigned int count)
3174{
3175	int err;
3176
3177	/* init here, since reused cdevs cause crashes */
3178	driver->cdevs[index] = cdev_alloc();
3179	if (!driver->cdevs[index])
3180		return -ENOMEM;
3181	driver->cdevs[index]->ops = &tty_fops;
3182	driver->cdevs[index]->owner = driver->owner;
3183	err = cdev_add(driver->cdevs[index], dev, count);
3184	if (err)
3185		kobject_put(&driver->cdevs[index]->kobj);
3186	return err;
3187}
3188
3189/**
3190 * tty_register_device - register a tty device
3191 * @driver: the tty driver that describes the tty device
3192 * @index: the index in the tty driver for this tty device
3193 * @device: a struct device that is associated with this tty device.
3194 *	This field is optional, if there is no known struct device
3195 *	for this tty device it can be set to NULL safely.
3196 *
3197 * This call is required to be made to register an individual tty device
3198 * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set.  If
3199 * that bit is not set, this function should not be called by a tty
3200 * driver.
3201 *
3202 * Locking: ??
 
3203 *
3204 * Return: A pointer to the struct device for this tty device (or
3205 * ERR_PTR(-EFOO) on error).
3206 */
3207struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3208				   struct device *device)
3209{
3210	return tty_register_device_attr(driver, index, device, NULL, NULL);
 
 
3211}
3212EXPORT_SYMBOL(tty_register_device);
3213
3214static void tty_device_create_release(struct device *dev)
3215{
3216	dev_dbg(dev, "releasing...\n");
3217	kfree(dev);
3218}
3219
3220/**
3221 * tty_register_device_attr - register a tty device
3222 * @driver: the tty driver that describes the tty device
3223 * @index: the index in the tty driver for this tty device
3224 * @device: a struct device that is associated with this tty device.
3225 *	This field is optional, if there is no known struct device
3226 *	for this tty device it can be set to %NULL safely.
3227 * @drvdata: Driver data to be set to device.
3228 * @attr_grp: Attribute group to be set on device.
3229 *
3230 * This call is required to be made to register an individual tty device if the
3231 * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is
3232 * not set, this function should not be called by a tty driver.
3233 *
3234 * Locking: ??
 
 
 
3235 *
3236 * Return: A pointer to the struct device for this tty device (or
3237 * ERR_PTR(-EFOO) on error).
3238 */
3239struct device *tty_register_device_attr(struct tty_driver *driver,
3240				   unsigned index, struct device *device,
3241				   void *drvdata,
3242				   const struct attribute_group **attr_grp)
3243{
3244	char name[64];
3245	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3246	struct ktermios *tp;
3247	struct device *dev;
3248	int retval;
3249
3250	if (index >= driver->num) {
3251		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3252		       driver->name, index);
3253		return ERR_PTR(-EINVAL);
3254	}
3255
3256	if (driver->type == TTY_DRIVER_TYPE_PTY)
3257		pty_line_name(driver, index, name);
3258	else
3259		tty_line_name(driver, index, name);
3260
3261	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3262	if (!dev)
3263		return ERR_PTR(-ENOMEM);
3264
3265	dev->devt = devt;
3266	dev->class = &tty_class;
3267	dev->parent = device;
3268	dev->release = tty_device_create_release;
3269	dev_set_name(dev, "%s", name);
3270	dev->groups = attr_grp;
3271	dev_set_drvdata(dev, drvdata);
3272
3273	dev_set_uevent_suppress(dev, 1);
3274
3275	retval = device_register(dev);
3276	if (retval)
3277		goto err_put;
3278
3279	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3280		/*
3281		 * Free any saved termios data so that the termios state is
3282		 * reset when reusing a minor number.
3283		 */
3284		tp = driver->termios[index];
3285		if (tp) {
3286			driver->termios[index] = NULL;
3287			kfree(tp);
3288		}
3289
3290		retval = tty_cdev_add(driver, devt, index, 1);
3291		if (retval)
3292			goto err_del;
3293	}
3294
3295	dev_set_uevent_suppress(dev, 0);
3296	kobject_uevent(&dev->kobj, KOBJ_ADD);
3297
3298	return dev;
3299
3300err_del:
3301	device_del(dev);
3302err_put:
3303	put_device(dev);
3304
3305	return ERR_PTR(retval);
3306}
3307EXPORT_SYMBOL_GPL(tty_register_device_attr);
3308
3309/**
3310 * tty_unregister_device - unregister a tty device
3311 * @driver: the tty driver that describes the tty device
3312 * @index: the index in the tty driver for this tty device
3313 *
3314 * If a tty device is registered with a call to tty_register_device() then
3315 * this function must be called when the tty device is gone.
3316 *
3317 * Locking: ??
3318 */
 
3319void tty_unregister_device(struct tty_driver *driver, unsigned index)
3320{
3321	device_destroy(&tty_class, MKDEV(driver->major, driver->minor_start) + index);
3322	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3323		cdev_del(driver->cdevs[index]);
3324		driver->cdevs[index] = NULL;
3325	}
3326}
3327EXPORT_SYMBOL(tty_unregister_device);
3328
3329/**
3330 * __tty_alloc_driver - allocate tty driver
3331 * @lines: count of lines this driver can handle at most
3332 * @owner: module which is responsible for this driver
3333 * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags
3334 *
3335 * This should not be called directly, some of the provided macros should be
3336 * used instead. Use IS_ERR() and friends on @retval.
3337 */
3338struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3339		unsigned long flags)
3340{
3341	struct tty_driver *driver;
3342	unsigned int cdevs = 1;
3343	int err;
3344
3345	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3346		return ERR_PTR(-EINVAL);
3347
3348	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3349	if (!driver)
3350		return ERR_PTR(-ENOMEM);
3351
3352	kref_init(&driver->kref);
3353	driver->num = lines;
3354	driver->owner = owner;
3355	driver->flags = flags;
3356
3357	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3358		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3359				GFP_KERNEL);
3360		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3361				GFP_KERNEL);
3362		if (!driver->ttys || !driver->termios) {
3363			err = -ENOMEM;
3364			goto err_free_all;
3365		}
3366	}
3367
3368	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3369		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3370				GFP_KERNEL);
3371		if (!driver->ports) {
3372			err = -ENOMEM;
3373			goto err_free_all;
3374		}
3375		cdevs = lines;
3376	}
3377
3378	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3379	if (!driver->cdevs) {
3380		err = -ENOMEM;
3381		goto err_free_all;
3382	}
3383
3384	return driver;
3385err_free_all:
3386	kfree(driver->ports);
3387	kfree(driver->ttys);
3388	kfree(driver->termios);
3389	kfree(driver->cdevs);
3390	kfree(driver);
3391	return ERR_PTR(err);
3392}
3393EXPORT_SYMBOL(__tty_alloc_driver);
3394
3395static void destruct_tty_driver(struct kref *kref)
3396{
3397	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3398	int i;
3399	struct ktermios *tp;
 
3400
3401	if (driver->flags & TTY_DRIVER_INSTALLED) {
 
 
 
 
 
3402		for (i = 0; i < driver->num; i++) {
3403			tp = driver->termios[i];
3404			if (tp) {
3405				driver->termios[i] = NULL;
3406				kfree(tp);
3407			}
3408			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3409				tty_unregister_device(driver, i);
3410		}
 
3411		proc_tty_unregister_driver(driver);
3412		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3413			cdev_del(driver->cdevs[0]);
 
 
3414	}
3415	kfree(driver->cdevs);
3416	kfree(driver->ports);
3417	kfree(driver->termios);
3418	kfree(driver->ttys);
3419	kfree(driver);
3420}
3421
3422/**
3423 * tty_driver_kref_put - drop a reference to a tty driver
3424 * @driver: driver of which to drop the reference
3425 *
3426 * The final put will destroy and free up the driver.
3427 */
3428void tty_driver_kref_put(struct tty_driver *driver)
3429{
3430	kref_put(&driver->kref, destruct_tty_driver);
3431}
3432EXPORT_SYMBOL(tty_driver_kref_put);
3433
3434/**
3435 * tty_register_driver - register a tty driver
3436 * @driver: driver to register
3437 *
 
 
 
 
 
 
 
 
 
 
3438 * Called by a tty driver to register itself.
3439 */
3440int tty_register_driver(struct tty_driver *driver)
3441{
3442	int error;
3443	int i;
3444	dev_t dev;
 
3445	struct device *d;
3446
 
 
 
 
 
 
3447	if (!driver->major) {
3448		error = alloc_chrdev_region(&dev, driver->minor_start,
3449						driver->num, driver->name);
3450		if (!error) {
3451			driver->major = MAJOR(dev);
3452			driver->minor_start = MINOR(dev);
3453		}
3454	} else {
3455		dev = MKDEV(driver->major, driver->minor_start);
3456		error = register_chrdev_region(dev, driver->num, driver->name);
3457	}
3458	if (error < 0)
3459		goto err;
 
 
 
 
 
 
 
 
 
 
3460
3461	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3462		error = tty_cdev_add(driver, dev, 0, driver->num);
3463		if (error)
3464			goto err_unreg_char;
 
 
 
 
 
3465	}
3466
3467	mutex_lock(&tty_mutex);
3468	list_add(&driver->tty_drivers, &tty_drivers);
3469	mutex_unlock(&tty_mutex);
3470
3471	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3472		for (i = 0; i < driver->num; i++) {
3473			d = tty_register_device(driver, i, NULL);
3474			if (IS_ERR(d)) {
3475				error = PTR_ERR(d);
3476				goto err_unreg_devs;
3477			}
3478		}
3479	}
3480	proc_tty_register_driver(driver);
3481	driver->flags |= TTY_DRIVER_INSTALLED;
3482	return 0;
3483
3484err_unreg_devs:
3485	for (i--; i >= 0; i--)
3486		tty_unregister_device(driver, i);
3487
3488	mutex_lock(&tty_mutex);
3489	list_del(&driver->tty_drivers);
3490	mutex_unlock(&tty_mutex);
3491
3492err_unreg_char:
3493	unregister_chrdev_region(dev, driver->num);
3494err:
 
 
3495	return error;
3496}
 
3497EXPORT_SYMBOL(tty_register_driver);
3498
3499/**
3500 * tty_unregister_driver - unregister a tty driver
3501 * @driver: driver to unregister
3502 *
3503 * Called by a tty driver to unregister itself.
3504 */
3505void tty_unregister_driver(struct tty_driver *driver)
3506{
 
 
 
 
 
3507	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3508				driver->num);
3509	mutex_lock(&tty_mutex);
3510	list_del(&driver->tty_drivers);
3511	mutex_unlock(&tty_mutex);
 
3512}
 
3513EXPORT_SYMBOL(tty_unregister_driver);
3514
3515dev_t tty_devnum(struct tty_struct *tty)
3516{
3517	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3518}
3519EXPORT_SYMBOL(tty_devnum);
3520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3521void tty_default_fops(struct file_operations *fops)
3522{
3523	*fops = tty_fops;
3524}
3525
3526static char *tty_devnode(const struct device *dev, umode_t *mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3527{
3528	if (!mode)
3529		return NULL;
3530	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3531	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3532		*mode = 0666;
3533	return NULL;
3534}
3535
3536const struct class tty_class = {
3537	.name		= "tty",
3538	.devnode	= tty_devnode,
3539};
3540
3541static int __init tty_class_init(void)
3542{
3543	return class_register(&tty_class);
 
 
 
 
3544}
3545
3546postcore_initcall(tty_class_init);
3547
3548/* 3/2004 jmc: why do these devices exist? */
3549static struct cdev tty_cdev, console_cdev;
3550
3551static ssize_t show_cons_active(struct device *dev,
3552				struct device_attribute *attr, char *buf)
3553{
3554	struct console *cs[16];
3555	int i = 0;
3556	struct console *c;
3557	ssize_t count = 0;
3558
3559	/*
3560	 * Hold the console_list_lock to guarantee that no consoles are
3561	 * unregistered until all console processing is complete.
3562	 * This also allows safe traversal of the console list and
3563	 * race-free reading of @flags.
3564	 */
3565	console_list_lock();
3566
3567	for_each_console(c) {
3568		if (!c->device)
3569			continue;
3570		if (!c->write)
3571			continue;
3572		if ((c->flags & CON_ENABLED) == 0)
3573			continue;
3574		cs[i++] = c;
3575		if (i >= ARRAY_SIZE(cs))
3576			break;
3577	}
3578
3579	/*
3580	 * Take console_lock to serialize device() callback with
3581	 * other console operations. For example, fg_console is
3582	 * modified under console_lock when switching vt.
3583	 */
3584	console_lock();
3585	while (i--) {
3586		int index = cs[i]->index;
3587		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3588
3589		/* don't resolve tty0 as some programs depend on it */
3590		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3591			count += tty_line_name(drv, index, buf + count);
3592		else
3593			count += sprintf(buf + count, "%s%d",
3594					 cs[i]->name, cs[i]->index);
3595
3596		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3597	}
3598	console_unlock();
3599
3600	console_list_unlock();
3601
3602	return count;
3603}
3604static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3605
3606static struct attribute *cons_dev_attrs[] = {
3607	&dev_attr_active.attr,
3608	NULL
3609};
3610
3611ATTRIBUTE_GROUPS(cons_dev);
3612
3613static struct device *consdev;
3614
3615void console_sysfs_notify(void)
3616{
3617	if (consdev)
3618		sysfs_notify(&consdev->kobj, NULL, "active");
3619}
3620
3621static struct ctl_table tty_table[] = {
3622	{
3623		.procname	= "legacy_tiocsti",
3624		.data		= &tty_legacy_tiocsti,
3625		.maxlen		= sizeof(tty_legacy_tiocsti),
3626		.mode		= 0644,
3627		.proc_handler	= proc_dobool,
3628	},
3629	{
3630		.procname	= "ldisc_autoload",
3631		.data		= &tty_ldisc_autoload,
3632		.maxlen		= sizeof(tty_ldisc_autoload),
3633		.mode		= 0644,
3634		.proc_handler	= proc_dointvec,
3635		.extra1		= SYSCTL_ZERO,
3636		.extra2		= SYSCTL_ONE,
3637	},
3638};
3639
3640/*
3641 * Ok, now we can initialize the rest of the tty devices and can count
3642 * on memory allocations, interrupts etc..
3643 */
3644int __init tty_init(void)
3645{
3646	register_sysctl_init("dev/tty", tty_table);
3647	cdev_init(&tty_cdev, &tty_fops);
3648	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3649	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3650		panic("Couldn't register /dev/tty driver\n");
3651	device_create(&tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3652
3653	cdev_init(&console_cdev, &console_fops);
3654	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3655	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3656		panic("Couldn't register /dev/console driver\n");
3657	consdev = device_create_with_groups(&tty_class, NULL,
3658					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3659					    cons_dev_groups, "console");
3660	if (IS_ERR(consdev))
3661		consdev = NULL;
 
 
3662
3663#ifdef CONFIG_VT
3664	vty_init(&console_fops);
3665#endif
3666	return 0;
3667}