Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
 
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
 
  98
  99#include <linux/uaccess.h>
 100#include <asm/system.h>
 101
 102#include <linux/kbd_kern.h>
 103#include <linux/vt_kern.h>
 104#include <linux/selection.h>
 105
 106#include <linux/kmod.h>
 107#include <linux/nsproxy.h>
 108
 109#undef TTY_DEBUG_HANGUP
 
 
 
 
 
 110
 111#define TTY_PARANOIA_CHECK 1
 112#define CHECK_TTY_COUNT 1
 113
 114struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 115	.c_iflag = ICRNL | IXON,
 116	.c_oflag = OPOST | ONLCR,
 117	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 118	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 119		   ECHOCTL | ECHOKE | IEXTEN,
 120	.c_cc = INIT_C_CC,
 121	.c_ispeed = 38400,
 122	.c_ospeed = 38400
 
 123};
 124
 125EXPORT_SYMBOL(tty_std_termios);
 126
 127/* This list gets poked at by procfs and various bits of boot up code. This
 128   could do with some rationalisation such as pulling the tty proc function
 129   into this file */
 130
 131LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 132
 133/* Mutex to protect creating and releasing a tty. This is shared with
 134   vt.c for deeply disgusting hack reasons */
 135DEFINE_MUTEX(tty_mutex);
 136EXPORT_SYMBOL(tty_mutex);
 137
 138/* Spinlock to protect the tty->tty_files list */
 139DEFINE_SPINLOCK(tty_files_lock);
 140
 141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 143ssize_t redirected_tty_write(struct file *, const char __user *,
 144							size_t, loff_t *);
 145static unsigned int tty_poll(struct file *, poll_table *);
 146static int tty_open(struct inode *, struct file *);
 147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 148#ifdef CONFIG_COMPAT
 149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 150				unsigned long arg);
 151#else
 152#define tty_compat_ioctl NULL
 153#endif
 154static int __tty_fasync(int fd, struct file *filp, int on);
 155static int tty_fasync(int fd, struct file *filp, int on);
 156static void release_tty(struct tty_struct *tty, int idx);
 157static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 158static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 159
 160/**
 161 *	alloc_tty_struct	-	allocate a tty object
 162 *
 163 *	Return a new empty tty structure. The data fields have not
 164 *	been initialized in any way but has been zeroed
 165 *
 166 *	Locking: none
 167 */
 168
 169struct tty_struct *alloc_tty_struct(void)
 170{
 171	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 172}
 173
 174/**
 175 *	free_tty_struct		-	free a disused tty
 176 *	@tty: tty struct to free
 177 *
 178 *	Free the write buffers, tty queue and tty memory itself.
 179 *
 180 *	Locking: none. Must be called after tty is definitely unused
 181 */
 182
 183void free_tty_struct(struct tty_struct *tty)
 184{
 185	if (tty->dev)
 186		put_device(tty->dev);
 187	kfree(tty->write_buf);
 188	tty_buffer_free_all(tty);
 189	kfree(tty);
 190}
 191
 192static inline struct tty_struct *file_tty(struct file *file)
 193{
 194	return ((struct tty_file_private *)file->private_data)->tty;
 195}
 196
 197/* Associate a new file with the tty structure */
 198int tty_add_file(struct tty_struct *tty, struct file *file)
 199{
 200	struct tty_file_private *priv;
 201
 202	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 203	if (!priv)
 204		return -ENOMEM;
 205
 
 
 
 
 
 
 
 
 
 
 206	priv->tty = tty;
 207	priv->file = file;
 208	file->private_data = priv;
 209
 210	spin_lock(&tty_files_lock);
 211	list_add(&priv->list, &tty->tty_files);
 212	spin_unlock(&tty_files_lock);
 213
 214	return 0;
 215}
 216
 217/* Delete file from its tty */
 218void tty_del_file(struct file *file)
 
 
 
 
 
 219{
 220	struct tty_file_private *priv = file->private_data;
 221
 222	spin_lock(&tty_files_lock);
 223	list_del(&priv->list);
 224	spin_unlock(&tty_files_lock);
 225	file->private_data = NULL;
 226	kfree(priv);
 227}
 228
 
 
 
 
 
 229
 230#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 
 
 
 
 231
 232/**
 233 *	tty_name	-	return tty naming
 234 *	@tty: tty structure
 235 *	@buf: buffer for output
 236 *
 237 *	Convert a tty structure into a name. The name reflects the kernel
 238 *	naming policy and if udev is in use may not reflect user space
 239 *
 240 *	Locking: none
 241 */
 242
 243char *tty_name(struct tty_struct *tty, char *buf)
 244{
 245	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 246		strcpy(buf, "NULL tty");
 247	else
 248		strcpy(buf, tty->name);
 249	return buf;
 250}
 251
 252EXPORT_SYMBOL(tty_name);
 253
 254int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 
 
 
 
 
 
 
 255			      const char *routine)
 256{
 257#ifdef TTY_PARANOIA_CHECK
 258	if (!tty) {
 259		printk(KERN_WARNING
 260			"null TTY for (%d:%d) in %s\n",
 261			imajor(inode), iminor(inode), routine);
 262		return 1;
 263	}
 264	if (tty->magic != TTY_MAGIC) {
 265		printk(KERN_WARNING
 266			"bad magic number for tty struct (%d:%d) in %s\n",
 267			imajor(inode), iminor(inode), routine);
 268		return 1;
 269	}
 270#endif
 271	return 0;
 272}
 273
 
 274static int check_tty_count(struct tty_struct *tty, const char *routine)
 275{
 276#ifdef CHECK_TTY_COUNT
 277	struct list_head *p;
 278	int count = 0;
 279
 280	spin_lock(&tty_files_lock);
 281	list_for_each(p, &tty->tty_files) {
 282		count++;
 283	}
 284	spin_unlock(&tty_files_lock);
 285	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 286	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 287	    tty->link && tty->link->count)
 288		count++;
 289	if (tty->count != count) {
 290		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 291				    "!= #fd's(%d) in %s\n",
 292		       tty->name, tty->count, count, routine);
 293		return count;
 
 294	}
 295#endif
 296	return 0;
 297}
 298
 299/**
 300 *	get_tty_driver		-	find device of a tty
 301 *	@dev_t: device identifier
 302 *	@index: returns the index of the tty
 303 *
 304 *	This routine returns a tty driver structure, given a device number
 305 *	and also passes back the index number.
 306 *
 307 *	Locking: caller must hold tty_mutex
 308 */
 309
 310static struct tty_driver *get_tty_driver(dev_t device, int *index)
 311{
 312	struct tty_driver *p;
 313
 314	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 315		dev_t base = MKDEV(p->major, p->minor_start);
 316		if (device < base || device >= base + p->num)
 317			continue;
 318		*index = device - base;
 319		return tty_driver_kref_get(p);
 320	}
 321	return NULL;
 322}
 323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324#ifdef CONFIG_CONSOLE_POLL
 325
 326/**
 327 *	tty_find_polling_driver	-	find device of a polled tty
 328 *	@name: name string to match
 329 *	@line: pointer to resulting tty line nr
 330 *
 331 *	This routine returns a tty driver structure, given a name
 332 *	and the condition that the tty driver is capable of polled
 333 *	operation.
 334 */
 335struct tty_driver *tty_find_polling_driver(char *name, int *line)
 336{
 337	struct tty_driver *p, *res = NULL;
 338	int tty_line = 0;
 339	int len;
 340	char *str, *stp;
 341
 342	for (str = name; *str; str++)
 343		if ((*str >= '0' && *str <= '9') || *str == ',')
 344			break;
 345	if (!*str)
 346		return NULL;
 347
 348	len = str - name;
 349	tty_line = simple_strtoul(str, &str, 10);
 350
 351	mutex_lock(&tty_mutex);
 352	/* Search through the tty devices to look for a match */
 353	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 354		if (strncmp(name, p->name, len) != 0)
 355			continue;
 356		stp = str;
 357		if (*stp == ',')
 358			stp++;
 359		if (*stp == '\0')
 360			stp = NULL;
 361
 362		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 363		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 364			res = tty_driver_kref_get(p);
 365			*line = tty_line;
 366			break;
 367		}
 368	}
 369	mutex_unlock(&tty_mutex);
 370
 371	return res;
 372}
 373EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 374#endif
 375
 376/**
 377 *	tty_check_change	-	check for POSIX terminal changes
 378 *	@tty: tty to check
 379 *
 380 *	If we try to write to, or set the state of, a terminal and we're
 381 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 382 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 383 *
 384 *	Locking: ctrl_lock
 385 */
 386
 387int tty_check_change(struct tty_struct *tty)
 388{
 389	unsigned long flags;
 390	int ret = 0;
 391
 392	if (current->signal->tty != tty)
 393		return 0;
 394
 395	spin_lock_irqsave(&tty->ctrl_lock, flags);
 396
 397	if (!tty->pgrp) {
 398		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 399		goto out_unlock;
 400	}
 401	if (task_pgrp(current) == tty->pgrp)
 402		goto out_unlock;
 403	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 404	if (is_ignored(SIGTTOU))
 405		goto out;
 406	if (is_current_pgrp_orphaned()) {
 407		ret = -EIO;
 408		goto out;
 409	}
 410	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 411	set_thread_flag(TIF_SIGPENDING);
 412	ret = -ERESTARTSYS;
 413out:
 414	return ret;
 415out_unlock:
 416	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 417	return ret;
 418}
 419
 420EXPORT_SYMBOL(tty_check_change);
 421
 422static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 423				size_t count, loff_t *ppos)
 424{
 425	return 0;
 426}
 427
 428static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 429				 size_t count, loff_t *ppos)
 430{
 431	return -EIO;
 432}
 433
 434/* No kernel lock held - none needed ;) */
 435static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 436{
 437	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 438}
 439
 440static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 441		unsigned long arg)
 442{
 443	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 444}
 445
 446static long hung_up_tty_compat_ioctl(struct file *file,
 447				     unsigned int cmd, unsigned long arg)
 448{
 449	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 450}
 451
 
 
 
 
 
 
 
 
 
 
 
 
 
 452static const struct file_operations tty_fops = {
 453	.llseek		= no_llseek,
 454	.read		= tty_read,
 455	.write		= tty_write,
 456	.poll		= tty_poll,
 457	.unlocked_ioctl	= tty_ioctl,
 458	.compat_ioctl	= tty_compat_ioctl,
 459	.open		= tty_open,
 460	.release	= tty_release,
 461	.fasync		= tty_fasync,
 
 462};
 463
 464static const struct file_operations console_fops = {
 465	.llseek		= no_llseek,
 466	.read		= tty_read,
 467	.write		= redirected_tty_write,
 468	.poll		= tty_poll,
 469	.unlocked_ioctl	= tty_ioctl,
 470	.compat_ioctl	= tty_compat_ioctl,
 471	.open		= tty_open,
 472	.release	= tty_release,
 473	.fasync		= tty_fasync,
 474};
 475
 476static const struct file_operations hung_up_tty_fops = {
 477	.llseek		= no_llseek,
 478	.read		= hung_up_tty_read,
 479	.write		= hung_up_tty_write,
 480	.poll		= hung_up_tty_poll,
 481	.unlocked_ioctl	= hung_up_tty_ioctl,
 482	.compat_ioctl	= hung_up_tty_compat_ioctl,
 483	.release	= tty_release,
 
 484};
 485
 486static DEFINE_SPINLOCK(redirect_lock);
 487static struct file *redirect;
 488
 
 
 489/**
 490 *	tty_wakeup	-	request more data
 491 *	@tty: terminal
 492 *
 493 *	Internal and external helper for wakeups of tty. This function
 494 *	informs the line discipline if present that the driver is ready
 495 *	to receive more output data.
 496 */
 497
 498void tty_wakeup(struct tty_struct *tty)
 499{
 500	struct tty_ldisc *ld;
 501
 502	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 503		ld = tty_ldisc_ref(tty);
 504		if (ld) {
 505			if (ld->ops->write_wakeup)
 506				ld->ops->write_wakeup(tty);
 507			tty_ldisc_deref(ld);
 508		}
 509	}
 510	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 511}
 512
 513EXPORT_SYMBOL_GPL(tty_wakeup);
 514
 515/**
 516 *	__tty_hangup		-	actual handler for hangup events
 517 *	@work: tty device
 518 *
 519 *	This can be called by the "eventd" kernel thread.  That is process
 520 *	synchronous but doesn't hold any locks, so we need to make sure we
 521 *	have the appropriate locks for what we're doing.
 522 *
 523 *	The hangup event clears any pending redirections onto the hung up
 524 *	device. It ensures future writes will error and it does the needed
 525 *	line discipline hangup and signal delivery. The tty object itself
 526 *	remains intact.
 527 *
 528 *	Locking:
 529 *		BTM
 530 *		  redirect lock for undoing redirection
 531 *		  file list lock for manipulating list of ttys
 532 *		  tty_ldisc_lock from called functions
 533 *		  termios_mutex resetting termios data
 534 *		  tasklist_lock to walk task list for hangup event
 535 *		    ->siglock to protect ->signal/->sighand
 536 */
 537void __tty_hangup(struct tty_struct *tty)
 538{
 539	struct file *cons_filp = NULL;
 540	struct file *filp, *f = NULL;
 541	struct task_struct *p;
 542	struct tty_file_private *priv;
 543	int    closecount = 0, n;
 544	unsigned long flags;
 545	int refs = 0;
 546
 547	if (!tty)
 548		return;
 549
 550
 551	spin_lock(&redirect_lock);
 552	if (redirect && file_tty(redirect) == tty) {
 553		f = redirect;
 554		redirect = NULL;
 555	}
 556	spin_unlock(&redirect_lock);
 557
 558	tty_lock();
 
 
 
 
 
 559
 560	/* some functions below drop BTM, so we need this bit */
 
 
 
 
 
 561	set_bit(TTY_HUPPING, &tty->flags);
 562
 563	/* inuse_filps is protected by the single tty lock,
 564	   this really needs to change if we want to flush the
 565	   workqueue with the lock held */
 566	check_tty_count(tty, "tty_hangup");
 567
 568	spin_lock(&tty_files_lock);
 569	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 570	list_for_each_entry(priv, &tty->tty_files, list) {
 571		filp = priv->file;
 572		if (filp->f_op->write == redirected_tty_write)
 573			cons_filp = filp;
 574		if (filp->f_op->write != tty_write)
 575			continue;
 576		closecount++;
 577		__tty_fasync(-1, filp, 0);	/* can't block */
 578		filp->f_op = &hung_up_tty_fops;
 579	}
 580	spin_unlock(&tty_files_lock);
 581
 582	/*
 583	 * it drops BTM and thus races with reopen
 584	 * we protect the race by TTY_HUPPING
 585	 */
 586	tty_ldisc_hangup(tty);
 587
 588	read_lock(&tasklist_lock);
 589	if (tty->session) {
 590		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 591			spin_lock_irq(&p->sighand->siglock);
 592			if (p->signal->tty == tty) {
 593				p->signal->tty = NULL;
 594				/* We defer the dereferences outside fo
 595				   the tasklist lock */
 596				refs++;
 597			}
 598			if (!p->signal->leader) {
 599				spin_unlock_irq(&p->sighand->siglock);
 600				continue;
 601			}
 602			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 603			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 604			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 605			spin_lock_irqsave(&tty->ctrl_lock, flags);
 606			if (tty->pgrp)
 607				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 608			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 609			spin_unlock_irq(&p->sighand->siglock);
 610		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 611	}
 612	read_unlock(&tasklist_lock);
 613
 614	spin_lock_irqsave(&tty->ctrl_lock, flags);
 615	clear_bit(TTY_THROTTLED, &tty->flags);
 616	clear_bit(TTY_PUSH, &tty->flags);
 617	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 618	put_pid(tty->session);
 619	put_pid(tty->pgrp);
 620	tty->session = NULL;
 621	tty->pgrp = NULL;
 622	tty->ctrl_status = 0;
 623	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 624
 625	/* Account for the p->signal references we killed */
 626	while (refs--)
 627		tty_kref_put(tty);
 628
 629	/*
 630	 * If one of the devices matches a console pointer, we
 631	 * cannot just call hangup() because that will cause
 632	 * tty->count and state->count to go out of sync.
 633	 * So we just call close() the right number of times.
 634	 */
 635	if (cons_filp) {
 636		if (tty->ops->close)
 637			for (n = 0; n < closecount; n++)
 638				tty->ops->close(tty, cons_filp);
 639	} else if (tty->ops->hangup)
 640		(tty->ops->hangup)(tty);
 641	/*
 642	 * We don't want to have driver/ldisc interactions beyond
 643	 * the ones we did here. The driver layer expects no
 644	 * calls after ->hangup() from the ldisc side. However we
 645	 * can't yet guarantee all that.
 646	 */
 647	set_bit(TTY_HUPPED, &tty->flags);
 648	clear_bit(TTY_HUPPING, &tty->flags);
 649	tty_ldisc_enable(tty);
 650
 651	tty_unlock();
 652
 653	if (f)
 654		fput(f);
 655}
 656
 657static void do_tty_hangup(struct work_struct *work)
 658{
 659	struct tty_struct *tty =
 660		container_of(work, struct tty_struct, hangup_work);
 661
 662	__tty_hangup(tty);
 663}
 664
 665/**
 666 *	tty_hangup		-	trigger a hangup event
 667 *	@tty: tty to hangup
 668 *
 669 *	A carrier loss (virtual or otherwise) has occurred on this like
 670 *	schedule a hangup sequence to run after this event.
 671 */
 672
 673void tty_hangup(struct tty_struct *tty)
 674{
 675#ifdef TTY_DEBUG_HANGUP
 676	char	buf[64];
 677	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 678#endif
 679	schedule_work(&tty->hangup_work);
 680}
 681
 682EXPORT_SYMBOL(tty_hangup);
 683
 684/**
 685 *	tty_vhangup		-	process vhangup
 686 *	@tty: tty to hangup
 687 *
 688 *	The user has asked via system call for the terminal to be hung up.
 689 *	We do this synchronously so that when the syscall returns the process
 690 *	is complete. That guarantee is necessary for security reasons.
 691 */
 692
 693void tty_vhangup(struct tty_struct *tty)
 694{
 695#ifdef TTY_DEBUG_HANGUP
 696	char	buf[64];
 697
 698	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 699#endif
 700	__tty_hangup(tty);
 701}
 702
 703EXPORT_SYMBOL(tty_vhangup);
 704
 705
 706/**
 707 *	tty_vhangup_self	-	process vhangup for own ctty
 708 *
 709 *	Perform a vhangup on the current controlling tty
 710 */
 711
 712void tty_vhangup_self(void)
 713{
 714	struct tty_struct *tty;
 715
 716	tty = get_current_tty();
 717	if (tty) {
 718		tty_vhangup(tty);
 719		tty_kref_put(tty);
 720	}
 721}
 722
 723/**
 724 *	tty_hung_up_p		-	was tty hung up
 725 *	@filp: file pointer of tty
 726 *
 727 *	Return true if the tty has been subject to a vhangup or a carrier
 728 *	loss
 729 */
 730
 731int tty_hung_up_p(struct file *filp)
 732{
 733	return (filp->f_op == &hung_up_tty_fops);
 734}
 735
 736EXPORT_SYMBOL(tty_hung_up_p);
 737
 738static void session_clear_tty(struct pid *session)
 739{
 740	struct task_struct *p;
 741	do_each_pid_task(session, PIDTYPE_SID, p) {
 742		proc_clear_tty(p);
 743	} while_each_pid_task(session, PIDTYPE_SID, p);
 744}
 745
 746/**
 747 *	disassociate_ctty	-	disconnect controlling tty
 748 *	@on_exit: true if exiting so need to "hang up" the session
 749 *
 750 *	This function is typically called only by the session leader, when
 751 *	it wants to disassociate itself from its controlling tty.
 752 *
 753 *	It performs the following functions:
 754 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 755 * 	(2)  Clears the tty from being controlling the session
 756 * 	(3)  Clears the controlling tty for all processes in the
 757 * 		session group.
 758 *
 759 *	The argument on_exit is set to 1 if called when a process is
 760 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 761 *
 762 *	Locking:
 763 *		BTM is taken for hysterical raisins, and held when
 764 *		  called from no_tty().
 765 *		  tty_mutex is taken to protect tty
 766 *		  ->siglock is taken to protect ->signal/->sighand
 767 *		  tasklist_lock is taken to walk process list for sessions
 768 *		    ->siglock is taken to protect ->signal/->sighand
 769 */
 770
 771void disassociate_ctty(int on_exit)
 772{
 773	struct tty_struct *tty;
 774	struct pid *tty_pgrp = NULL;
 775
 776	if (!current->signal->leader)
 777		return;
 778
 779	tty = get_current_tty();
 780	if (tty) {
 781		tty_pgrp = get_pid(tty->pgrp);
 782		if (on_exit) {
 783			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
 784				tty_vhangup(tty);
 785		}
 786		tty_kref_put(tty);
 787	} else if (on_exit) {
 788		struct pid *old_pgrp;
 789		spin_lock_irq(&current->sighand->siglock);
 790		old_pgrp = current->signal->tty_old_pgrp;
 791		current->signal->tty_old_pgrp = NULL;
 792		spin_unlock_irq(&current->sighand->siglock);
 793		if (old_pgrp) {
 794			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 795			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 796			put_pid(old_pgrp);
 797		}
 798		return;
 799	}
 800	if (tty_pgrp) {
 801		kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 802		if (!on_exit)
 803			kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 804		put_pid(tty_pgrp);
 805	}
 806
 807	spin_lock_irq(&current->sighand->siglock);
 808	put_pid(current->signal->tty_old_pgrp);
 809	current->signal->tty_old_pgrp = NULL;
 810	spin_unlock_irq(&current->sighand->siglock);
 811
 812	tty = get_current_tty();
 813	if (tty) {
 814		unsigned long flags;
 815		spin_lock_irqsave(&tty->ctrl_lock, flags);
 816		put_pid(tty->session);
 817		put_pid(tty->pgrp);
 818		tty->session = NULL;
 819		tty->pgrp = NULL;
 820		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 821		tty_kref_put(tty);
 822	} else {
 823#ifdef TTY_DEBUG_HANGUP
 824		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 825		       " = NULL", tty);
 826#endif
 827	}
 828
 829	/* Now clear signal->tty under the lock */
 830	read_lock(&tasklist_lock);
 831	session_clear_tty(task_session(current));
 832	read_unlock(&tasklist_lock);
 833}
 834
 835/**
 
 
 836 *
 837 *	no_tty	- Ensure the current process does not have a controlling tty
 
 838 */
 839void no_tty(void)
 
 840{
 841	struct task_struct *tsk = current;
 842	tty_lock();
 843	disassociate_ctty(0);
 844	tty_unlock();
 845	proc_clear_tty(tsk);
 846}
 847
 
 848
 849/**
 850 *	stop_tty	-	propagate flow control
 851 *	@tty: tty to stop
 852 *
 853 *	Perform flow control to the driver. For PTY/TTY pairs we
 854 *	must also propagate the TIOCKPKT status. May be called
 855 *	on an already stopped device and will not re-call the driver
 856 *	method.
 857 *
 858 *	This functionality is used by both the line disciplines for
 859 *	halting incoming flow and by the driver. It may therefore be
 860 *	called from any context, may be under the tty atomic_write_lock
 861 *	but not always.
 862 *
 863 *	Locking:
 864 *		Uses the tty control lock internally
 865 */
 866
 867void stop_tty(struct tty_struct *tty)
 868{
 869	unsigned long flags;
 870	spin_lock_irqsave(&tty->ctrl_lock, flags);
 871	if (tty->stopped) {
 872		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 873		return;
 874	}
 875	tty->stopped = 1;
 876	if (tty->link && tty->link->packet) {
 877		tty->ctrl_status &= ~TIOCPKT_START;
 878		tty->ctrl_status |= TIOCPKT_STOP;
 879		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 880	}
 881	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 882	if (tty->ops->stop)
 883		(tty->ops->stop)(tty);
 884}
 885
 
 
 
 
 
 
 
 
 886EXPORT_SYMBOL(stop_tty);
 887
 888/**
 889 *	start_tty	-	propagate flow control
 890 *	@tty: tty to start
 891 *
 892 *	Start a tty that has been stopped if at all possible. Perform
 893 *	any necessary wakeups and propagate the TIOCPKT status. If this
 894 *	is the tty was previous stopped and is being started then the
 895 *	driver start method is invoked and the line discipline woken.
 896 *
 897 *	Locking:
 898 *		ctrl_lock
 899 */
 900
 901void start_tty(struct tty_struct *tty)
 902{
 903	unsigned long flags;
 904	spin_lock_irqsave(&tty->ctrl_lock, flags);
 905	if (!tty->stopped || tty->flow_stopped) {
 906		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 907		return;
 908	}
 909	tty->stopped = 0;
 910	if (tty->link && tty->link->packet) {
 911		tty->ctrl_status &= ~TIOCPKT_STOP;
 912		tty->ctrl_status |= TIOCPKT_START;
 913		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 914	}
 915	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 916	if (tty->ops->start)
 917		(tty->ops->start)(tty);
 918	/* If we have a running line discipline it may need kicking */
 919	tty_wakeup(tty);
 920}
 921
 
 
 
 
 
 
 
 
 922EXPORT_SYMBOL(start_tty);
 923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924/**
 925 *	tty_read	-	read method for tty device files
 926 *	@file: pointer to tty file
 927 *	@buf: user buffer
 928 *	@count: size of user buffer
 929 *	@ppos: unused
 930 *
 931 *	Perform the read system call function on this terminal device. Checks
 932 *	for hung up devices before calling the line discipline method.
 933 *
 934 *	Locking:
 935 *		Locks the line discipline internally while needed. Multiple
 936 *	read calls may be outstanding in parallel.
 937 */
 938
 939static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 940			loff_t *ppos)
 941{
 942	int i;
 943	struct inode *inode = file->f_path.dentry->d_inode;
 944	struct tty_struct *tty = file_tty(file);
 945	struct tty_ldisc *ld;
 946
 947	if (tty_paranoia_check(tty, inode, "tty_read"))
 948		return -EIO;
 949	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
 950		return -EIO;
 951
 952	/* We want to wait for the line discipline to sort out in this
 953	   situation */
 954	ld = tty_ldisc_ref_wait(tty);
 
 
 955	if (ld->ops->read)
 956		i = (ld->ops->read)(tty, file, buf, count);
 957	else
 958		i = -EIO;
 959	tty_ldisc_deref(ld);
 
 960	if (i > 0)
 961		inode->i_atime = current_fs_time(inode->i_sb);
 
 962	return i;
 963}
 964
 965void tty_write_unlock(struct tty_struct *tty)
 966	__releases(&tty->atomic_write_lock)
 967{
 968	mutex_unlock(&tty->atomic_write_lock);
 969	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 970}
 971
 972int tty_write_lock(struct tty_struct *tty, int ndelay)
 973	__acquires(&tty->atomic_write_lock)
 974{
 975	if (!mutex_trylock(&tty->atomic_write_lock)) {
 976		if (ndelay)
 977			return -EAGAIN;
 978		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 979			return -ERESTARTSYS;
 980	}
 981	return 0;
 982}
 983
 984/*
 985 * Split writes up in sane blocksizes to avoid
 986 * denial-of-service type attacks
 987 */
 988static inline ssize_t do_tty_write(
 989	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 990	struct tty_struct *tty,
 991	struct file *file,
 992	const char __user *buf,
 993	size_t count)
 994{
 995	ssize_t ret, written = 0;
 996	unsigned int chunk;
 997
 998	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 999	if (ret < 0)
1000		return ret;
1001
1002	/*
1003	 * We chunk up writes into a temporary buffer. This
1004	 * simplifies low-level drivers immensely, since they
1005	 * don't have locking issues and user mode accesses.
1006	 *
1007	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1008	 * big chunk-size..
1009	 *
1010	 * The default chunk-size is 2kB, because the NTTY
1011	 * layer has problems with bigger chunks. It will
1012	 * claim to be able to handle more characters than
1013	 * it actually does.
1014	 *
1015	 * FIXME: This can probably go away now except that 64K chunks
1016	 * are too likely to fail unless switched to vmalloc...
1017	 */
1018	chunk = 2048;
1019	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1020		chunk = 65536;
1021	if (count < chunk)
1022		chunk = count;
1023
1024	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1025	if (tty->write_cnt < chunk) {
1026		unsigned char *buf_chunk;
1027
1028		if (chunk < 1024)
1029			chunk = 1024;
1030
1031		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1032		if (!buf_chunk) {
1033			ret = -ENOMEM;
1034			goto out;
1035		}
1036		kfree(tty->write_buf);
1037		tty->write_cnt = chunk;
1038		tty->write_buf = buf_chunk;
1039	}
1040
1041	/* Do the write .. */
1042	for (;;) {
1043		size_t size = count;
1044		if (size > chunk)
1045			size = chunk;
1046		ret = -EFAULT;
1047		if (copy_from_user(tty->write_buf, buf, size))
1048			break;
1049		ret = write(tty, file, tty->write_buf, size);
1050		if (ret <= 0)
1051			break;
1052		written += ret;
1053		buf += ret;
1054		count -= ret;
1055		if (!count)
1056			break;
1057		ret = -ERESTARTSYS;
1058		if (signal_pending(current))
1059			break;
1060		cond_resched();
1061	}
1062	if (written) {
1063		struct inode *inode = file->f_path.dentry->d_inode;
1064		inode->i_mtime = current_fs_time(inode->i_sb);
1065		ret = written;
1066	}
1067out:
1068	tty_write_unlock(tty);
1069	return ret;
1070}
1071
1072/**
1073 * tty_write_message - write a message to a certain tty, not just the console.
1074 * @tty: the destination tty_struct
1075 * @msg: the message to write
1076 *
1077 * This is used for messages that need to be redirected to a specific tty.
1078 * We don't put it into the syslog queue right now maybe in the future if
1079 * really needed.
1080 *
1081 * We must still hold the BTM and test the CLOSING flag for the moment.
1082 */
1083
1084void tty_write_message(struct tty_struct *tty, char *msg)
1085{
1086	if (tty) {
1087		mutex_lock(&tty->atomic_write_lock);
1088		tty_lock();
1089		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1090			tty_unlock();
1091			tty->ops->write(tty, msg, strlen(msg));
1092		} else
1093			tty_unlock();
1094		tty_write_unlock(tty);
1095	}
1096	return;
1097}
1098
1099
1100/**
1101 *	tty_write		-	write method for tty device file
1102 *	@file: tty file pointer
1103 *	@buf: user data to write
1104 *	@count: bytes to write
1105 *	@ppos: unused
1106 *
1107 *	Write data to a tty device via the line discipline.
1108 *
1109 *	Locking:
1110 *		Locks the line discipline as required
1111 *		Writes to the tty driver are serialized by the atomic_write_lock
1112 *	and are then processed in chunks to the device. The line discipline
1113 *	write method will not be invoked in parallel for each device.
1114 */
1115
1116static ssize_t tty_write(struct file *file, const char __user *buf,
1117						size_t count, loff_t *ppos)
1118{
1119	struct inode *inode = file->f_path.dentry->d_inode;
1120	struct tty_struct *tty = file_tty(file);
1121 	struct tty_ldisc *ld;
1122	ssize_t ret;
1123
1124	if (tty_paranoia_check(tty, inode, "tty_write"))
1125		return -EIO;
1126	if (!tty || !tty->ops->write ||
1127		(test_bit(TTY_IO_ERROR, &tty->flags)))
1128			return -EIO;
1129	/* Short term debug to catch buggy drivers */
1130	if (tty->ops->write_room == NULL)
1131		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1132			tty->driver->name);
1133	ld = tty_ldisc_ref_wait(tty);
 
 
1134	if (!ld->ops->write)
1135		ret = -EIO;
1136	else
1137		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1138	tty_ldisc_deref(ld);
1139	return ret;
1140}
1141
1142ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1143						size_t count, loff_t *ppos)
1144{
1145	struct file *p = NULL;
1146
1147	spin_lock(&redirect_lock);
1148	if (redirect) {
1149		get_file(redirect);
1150		p = redirect;
1151	}
1152	spin_unlock(&redirect_lock);
1153
1154	if (p) {
1155		ssize_t res;
1156		res = vfs_write(p, buf, count, &p->f_pos);
1157		fput(p);
1158		return res;
1159	}
1160	return tty_write(file, buf, count, ppos);
1161}
1162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163static char ptychar[] = "pqrstuvwxyzabcde";
1164
1165/**
1166 *	pty_line_name	-	generate name for a pty
1167 *	@driver: the tty driver in use
1168 *	@index: the minor number
1169 *	@p: output buffer of at least 6 bytes
1170 *
1171 *	Generate a name from a driver reference and write it to the output
1172 *	buffer.
1173 *
1174 *	Locking: None
1175 */
1176static void pty_line_name(struct tty_driver *driver, int index, char *p)
1177{
1178	int i = index + driver->name_base;
1179	/* ->name is initialized to "ttyp", but "tty" is expected */
1180	sprintf(p, "%s%c%x",
1181		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1182		ptychar[i >> 4 & 0xf], i & 0xf);
1183}
1184
1185/**
1186 *	tty_line_name	-	generate name for a tty
1187 *	@driver: the tty driver in use
1188 *	@index: the minor number
1189 *	@p: output buffer of at least 7 bytes
1190 *
1191 *	Generate a name from a driver reference and write it to the output
1192 *	buffer.
1193 *
1194 *	Locking: None
1195 */
1196static void tty_line_name(struct tty_driver *driver, int index, char *p)
1197{
1198	sprintf(p, "%s%d", driver->name, index + driver->name_base);
 
 
 
 
1199}
1200
1201/**
1202 *	tty_driver_lookup_tty() - find an existing tty, if any
1203 *	@driver: the driver for the tty
1204 *	@idx:	 the minor number
1205 *
1206 *	Return the tty, if found or ERR_PTR() otherwise.
 
1207 *
1208 *	Locking: tty_mutex must be held. If tty is found, the mutex must
1209 *	be held until the 'fast-open' is also done. Will change once we
1210 *	have refcounting in the driver and per driver locking
1211 */
1212static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1213		struct inode *inode, int idx)
1214{
1215	struct tty_struct *tty;
1216
1217	if (driver->ops->lookup)
1218		return driver->ops->lookup(driver, inode, idx);
 
 
 
 
 
1219
1220	tty = driver->ttys[idx];
 
1221	return tty;
1222}
1223
1224/**
1225 *	tty_init_termios	-  helper for termios setup
1226 *	@tty: the tty to set up
1227 *
1228 *	Initialise the termios structures for this tty. Thus runs under
1229 *	the tty_mutex currently so we can be relaxed about ordering.
1230 */
1231
1232int tty_init_termios(struct tty_struct *tty)
1233{
1234	struct ktermios *tp;
1235	int idx = tty->index;
1236
1237	tp = tty->driver->termios[idx];
1238	if (tp == NULL) {
1239		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1240		if (tp == NULL)
1241			return -ENOMEM;
1242		memcpy(tp, &tty->driver->init_termios,
1243						sizeof(struct ktermios));
1244		tty->driver->termios[idx] = tp;
 
 
1245	}
1246	tty->termios = tp;
1247	tty->termios_locked = tp + 1;
1248
1249	/* Compatibility until drivers always set this */
1250	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1251	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1252	return 0;
1253}
1254EXPORT_SYMBOL_GPL(tty_init_termios);
1255
 
 
 
 
 
 
 
 
 
 
1256/**
1257 *	tty_driver_install_tty() - install a tty entry in the driver
1258 *	@driver: the driver for the tty
1259 *	@tty: the tty
1260 *
1261 *	Install a tty object into the driver tables. The tty->index field
1262 *	will be set by the time this is called. This method is responsible
1263 *	for ensuring any need additional structures are allocated and
1264 *	configured.
1265 *
1266 *	Locking: tty_mutex for now
1267 */
1268static int tty_driver_install_tty(struct tty_driver *driver,
1269						struct tty_struct *tty)
1270{
1271	int idx = tty->index;
1272	int ret;
1273
1274	if (driver->ops->install) {
1275		ret = driver->ops->install(driver, tty);
1276		return ret;
1277	}
1278
1279	if (tty_init_termios(tty) == 0) {
1280		tty_driver_kref_get(driver);
1281		tty->count++;
1282		driver->ttys[idx] = tty;
1283		return 0;
1284	}
1285	return -ENOMEM;
1286}
1287
1288/**
1289 *	tty_driver_remove_tty() - remove a tty from the driver tables
1290 *	@driver: the driver for the tty
1291 *	@idx:	 the minor number
1292 *
1293 *	Remvoe a tty object from the driver tables. The tty->index field
1294 *	will be set by the time this is called.
1295 *
1296 *	Locking: tty_mutex for now
1297 */
1298void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1299{
1300	if (driver->ops->remove)
1301		driver->ops->remove(driver, tty);
1302	else
1303		driver->ttys[tty->index] = NULL;
1304}
1305
1306/*
1307 * 	tty_reopen()	- fast re-open of an open tty
1308 * 	@tty	- the tty to open
1309 *
1310 *	Return 0 on success, -errno on error.
 
1311 *
1312 *	Locking: tty_mutex must be held from the time the tty was found
1313 *		 till this open completes.
1314 */
1315static int tty_reopen(struct tty_struct *tty)
1316{
1317	struct tty_driver *driver = tty->driver;
 
 
1318
1319	if (test_bit(TTY_CLOSING, &tty->flags) ||
1320			test_bit(TTY_HUPPING, &tty->flags) ||
1321			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1322		return -EIO;
1323
1324	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1325	    driver->subtype == PTY_TYPE_MASTER) {
1326		/*
1327		 * special case for PTY masters: only one open permitted,
1328		 * and the slave side open count is incremented as well.
1329		 */
1330		if (tty->count)
1331			return -EIO;
1332
1333		tty->link->count++;
 
 
 
 
 
 
 
 
 
 
1334	}
1335	tty->count++;
1336	tty->driver = driver; /* N.B. why do this every time?? */
1337
1338	mutex_lock(&tty->ldisc_mutex);
1339	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1340	mutex_unlock(&tty->ldisc_mutex);
1341
1342	return 0;
1343}
1344
1345/**
1346 *	tty_init_dev		-	initialise a tty device
1347 *	@driver: tty driver we are opening a device on
1348 *	@idx: device index
1349 *	@ret_tty: returned tty structure
1350 *	@first_ok: ok to open a new device (used by ptmx)
1351 *
1352 *	Prepare a tty device. This may not be a "new" clean device but
1353 *	could also be an active device. The pty drivers require special
1354 *	handling because of this.
1355 *
1356 *	Locking:
1357 *		The function is called under the tty_mutex, which
1358 *	protects us from the tty struct or driver itself going away.
1359 *
1360 *	On exit the tty device has the line discipline attached and
1361 *	a reference count of 1. If a pair was created for pty/tty use
1362 *	and the other was a pty master then it too has a reference count of 1.
1363 *
1364 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1365 * failed open.  The new code protects the open with a mutex, so it's
1366 * really quite straightforward.  The mutex locking can probably be
1367 * relaxed for the (most common) case of reopening a tty.
1368 */
1369
1370struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1371								int first_ok)
1372{
1373	struct tty_struct *tty;
1374	int retval;
1375
1376	/* Check if pty master is being opened multiple times */
1377	if (driver->subtype == PTY_TYPE_MASTER &&
1378		(driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1379		return ERR_PTR(-EIO);
1380	}
1381
1382	/*
1383	 * First time open is complex, especially for PTY devices.
1384	 * This code guarantees that either everything succeeds and the
1385	 * TTY is ready for operation, or else the table slots are vacated
1386	 * and the allocated memory released.  (Except that the termios
1387	 * and locked termios may be retained.)
1388	 */
1389
1390	if (!try_module_get(driver->owner))
1391		return ERR_PTR(-ENODEV);
1392
1393	tty = alloc_tty_struct();
1394	if (!tty) {
1395		retval = -ENOMEM;
1396		goto err_module_put;
1397	}
1398	initialize_tty_struct(tty, driver, idx);
1399
 
1400	retval = tty_driver_install_tty(driver, tty);
1401	if (retval < 0)
1402		goto err_deinit_tty;
 
 
 
 
 
 
 
 
 
 
 
 
1403
1404	/*
1405	 * Structures all installed ... call the ldisc open routines.
1406	 * If we fail here just call release_tty to clean up.  No need
1407	 * to decrement the use counts, as release_tty doesn't care.
1408	 */
1409	retval = tty_ldisc_setup(tty, tty->link);
1410	if (retval)
1411		goto err_release_tty;
 
 
1412	return tty;
1413
1414err_deinit_tty:
1415	deinitialize_tty_struct(tty);
1416	free_tty_struct(tty);
1417err_module_put:
1418	module_put(driver->owner);
1419	return ERR_PTR(retval);
1420
1421	/* call the tty release_tty routine to clean out this slot */
1422err_release_tty:
1423	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1424				 "clearing slot %d\n", idx);
 
 
 
1425	release_tty(tty, idx);
1426	return ERR_PTR(retval);
1427}
1428
1429void tty_free_termios(struct tty_struct *tty)
 
 
 
 
 
 
1430{
1431	struct ktermios *tp;
1432	int idx = tty->index;
1433	/* Kill this flag and push into drivers for locking etc */
1434	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1435		/* FIXME: Locking on ->termios array */
1436		tp = tty->termios;
1437		tty->driver->termios[idx] = NULL;
1438		kfree(tp);
 
 
 
 
 
 
1439	}
 
1440}
1441EXPORT_SYMBOL(tty_free_termios);
1442
1443void tty_shutdown(struct tty_struct *tty)
 
 
 
 
 
 
1444{
1445	tty_driver_remove_tty(tty->driver, tty);
1446	tty_free_termios(tty);
 
 
 
 
1447}
1448EXPORT_SYMBOL(tty_shutdown);
1449
1450/**
1451 *	release_one_tty		-	release tty structure memory
1452 *	@kref: kref of tty we are obliterating
1453 *
1454 *	Releases memory associated with a tty structure, and clears out the
1455 *	driver table slots. This function is called when a device is no longer
1456 *	in use. It also gets called when setup of a device fails.
1457 *
1458 *	Locking:
1459 *		tty_mutex - sometimes only
1460 *		takes the file list lock internally when working on the list
1461 *	of ttys that the driver keeps.
1462 *
1463 *	This method gets called from a work queue so that the driver private
1464 *	cleanup ops can sleep (needed for USB at least)
1465 */
1466static void release_one_tty(struct work_struct *work)
1467{
1468	struct tty_struct *tty =
1469		container_of(work, struct tty_struct, hangup_work);
1470	struct tty_driver *driver = tty->driver;
 
1471
1472	if (tty->ops->cleanup)
1473		tty->ops->cleanup(tty);
1474
1475	tty->magic = 0;
1476	tty_driver_kref_put(driver);
1477	module_put(driver->owner);
1478
1479	spin_lock(&tty_files_lock);
1480	list_del_init(&tty->tty_files);
1481	spin_unlock(&tty_files_lock);
1482
1483	put_pid(tty->pgrp);
1484	put_pid(tty->session);
1485	free_tty_struct(tty);
1486}
1487
1488static void queue_release_one_tty(struct kref *kref)
1489{
1490	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1491
1492	if (tty->ops->shutdown)
1493		tty->ops->shutdown(tty);
1494	else
1495		tty_shutdown(tty);
1496
1497	/* The hangup queue is now free so we can reuse it rather than
1498	   waste a chunk of memory for each port */
1499	INIT_WORK(&tty->hangup_work, release_one_tty);
1500	schedule_work(&tty->hangup_work);
1501}
1502
1503/**
1504 *	tty_kref_put		-	release a tty kref
1505 *	@tty: tty device
1506 *
1507 *	Release a reference to a tty device and if need be let the kref
1508 *	layer destruct the object for us
1509 */
1510
1511void tty_kref_put(struct tty_struct *tty)
1512{
1513	if (tty)
1514		kref_put(&tty->kref, queue_release_one_tty);
1515}
1516EXPORT_SYMBOL(tty_kref_put);
1517
1518/**
1519 *	release_tty		-	release tty structure memory
1520 *
1521 *	Release both @tty and a possible linked partner (think pty pair),
1522 *	and decrement the refcount of the backing module.
1523 *
1524 *	Locking:
1525 *		tty_mutex - sometimes only
1526 *		takes the file list lock internally when working on the list
1527 *	of ttys that the driver keeps.
1528 *		FIXME: should we require tty_mutex is held here ??
1529 *
1530 */
1531static void release_tty(struct tty_struct *tty, int idx)
1532{
1533	/* This should always be true but check for the moment */
1534	WARN_ON(tty->index != idx);
1535
 
 
 
 
 
 
 
 
1536	if (tty->link)
1537		tty_kref_put(tty->link);
 
 
1538	tty_kref_put(tty);
1539}
1540
1541/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1542 *	tty_release		-	vfs callback for close
1543 *	@inode: inode of tty
1544 *	@filp: file pointer for handle to tty
1545 *
1546 *	Called the last time each file handle is closed that references
1547 *	this tty. There may however be several such references.
1548 *
1549 *	Locking:
1550 *		Takes bkl. See tty_release_dev
1551 *
1552 * Even releasing the tty structures is a tricky business.. We have
1553 * to be very careful that the structures are all released at the
1554 * same time, as interrupts might otherwise get the wrong pointers.
1555 *
1556 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1557 * lead to double frees or releasing memory still in use.
1558 */
1559
1560int tty_release(struct inode *inode, struct file *filp)
1561{
1562	struct tty_struct *tty = file_tty(filp);
1563	struct tty_struct *o_tty;
1564	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1565	int	devpts;
1566	int	idx;
1567	char	buf[64];
 
1568
1569	if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1570		return 0;
1571
1572	tty_lock();
1573	check_tty_count(tty, "tty_release_dev");
1574
1575	__tty_fasync(-1, filp, 0);
1576
1577	idx = tty->index;
1578	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1579		      tty->driver->subtype == PTY_TYPE_MASTER);
1580	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1581	o_tty = tty->link;
1582
1583#ifdef TTY_PARANOIA_CHECK
1584	if (idx < 0 || idx >= tty->driver->num) {
1585		printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1586				  "free (%s)\n", tty->name);
1587		tty_unlock();
1588		return 0;
1589	}
1590	if (!devpts) {
1591		if (tty != tty->driver->ttys[idx]) {
1592			tty_unlock();
1593			printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1594			       "for (%s)\n", idx, tty->name);
1595			return 0;
1596		}
1597		if (tty->termios != tty->driver->termios[idx]) {
1598			tty_unlock();
1599			printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1600			       "for (%s)\n",
1601			       idx, tty->name);
1602			return 0;
1603		}
1604	}
1605#endif
1606
1607#ifdef TTY_DEBUG_HANGUP
1608	printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1609	       tty_name(tty, buf), tty->count);
1610#endif
1611
1612#ifdef TTY_PARANOIA_CHECK
1613	if (tty->driver->other &&
1614	     !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1615		if (o_tty != tty->driver->other->ttys[idx]) {
1616			tty_unlock();
1617			printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1618					  "not o_tty for (%s)\n",
1619			       idx, tty->name);
1620			return 0 ;
1621		}
1622		if (o_tty->termios != tty->driver->other->termios[idx]) {
1623			tty_unlock();
1624			printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1625					  "not o_termios for (%s)\n",
1626			       idx, tty->name);
1627			return 0;
1628		}
1629		if (o_tty->link != tty) {
1630			tty_unlock();
1631			printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1632			return 0;
1633		}
1634	}
1635#endif
1636	if (tty->ops->close)
1637		tty->ops->close(tty, filp);
1638
1639	tty_unlock();
 
 
1640	/*
1641	 * Sanity check: if tty->count is going to zero, there shouldn't be
1642	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1643	 * wait queues and kick everyone out _before_ actually starting to
1644	 * close.  This ensures that we won't block while releasing the tty
1645	 * structure.
1646	 *
1647	 * The test for the o_tty closing is necessary, since the master and
1648	 * slave sides may close in any order.  If the slave side closes out
1649	 * first, its count will be one, since the master side holds an open.
1650	 * Thus this test wouldn't be triggered at the time the slave closes,
1651	 * so we do it now.
1652	 *
1653	 * Note that it's possible for the tty to be opened again while we're
1654	 * flushing out waiters.  By recalculating the closing flags before
1655	 * each iteration we avoid any problems.
1656	 */
1657	while (1) {
1658		/* Guard against races with tty->count changes elsewhere and
1659		   opens on /dev/tty */
1660
1661		mutex_lock(&tty_mutex);
1662		tty_lock();
1663		tty_closing = tty->count <= 1;
1664		o_tty_closing = o_tty &&
1665			(o_tty->count <= (pty_master ? 1 : 0));
1666		do_sleep = 0;
1667
1668		if (tty_closing) {
1669			if (waitqueue_active(&tty->read_wait)) {
1670				wake_up_poll(&tty->read_wait, POLLIN);
1671				do_sleep++;
1672			}
1673			if (waitqueue_active(&tty->write_wait)) {
1674				wake_up_poll(&tty->write_wait, POLLOUT);
1675				do_sleep++;
1676			}
1677		}
1678		if (o_tty_closing) {
1679			if (waitqueue_active(&o_tty->read_wait)) {
1680				wake_up_poll(&o_tty->read_wait, POLLIN);
1681				do_sleep++;
1682			}
1683			if (waitqueue_active(&o_tty->write_wait)) {
1684				wake_up_poll(&o_tty->write_wait, POLLOUT);
1685				do_sleep++;
1686			}
1687		}
1688		if (!do_sleep)
1689			break;
1690
1691		printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1692				    "active!\n", tty_name(tty, buf));
1693		tty_unlock();
1694		mutex_unlock(&tty_mutex);
1695		schedule();
 
 
 
 
1696	}
1697
1698	/*
1699	 * The closing flags are now consistent with the open counts on
1700	 * both sides, and we've completed the last operation that could
1701	 * block, so it's safe to proceed with closing.
1702	 */
1703	if (pty_master) {
1704		if (--o_tty->count < 0) {
1705			printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1706					    "(%d) for %s\n",
1707			       o_tty->count, tty_name(o_tty, buf));
1708			o_tty->count = 0;
1709		}
1710	}
1711	if (--tty->count < 0) {
1712		printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1713		       tty->count, tty_name(tty, buf));
1714		tty->count = 0;
1715	}
1716
1717	/*
1718	 * We've decremented tty->count, so we need to remove this file
1719	 * descriptor off the tty->tty_files list; this serves two
1720	 * purposes:
1721	 *  - check_tty_count sees the correct number of file descriptors
1722	 *    associated with this tty.
1723	 *  - do_tty_hangup no longer sees this file descriptor as
1724	 *    something that needs to be handled for hangups.
1725	 */
1726	tty_del_file(filp);
1727
1728	/*
1729	 * Perform some housekeeping before deciding whether to return.
1730	 *
1731	 * Set the TTY_CLOSING flag if this was the last open.  In the
1732	 * case of a pty we may have to wait around for the other side
1733	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1734	 */
1735	if (tty_closing)
1736		set_bit(TTY_CLOSING, &tty->flags);
1737	if (o_tty_closing)
1738		set_bit(TTY_CLOSING, &o_tty->flags);
1739
1740	/*
1741	 * If _either_ side is closing, make sure there aren't any
1742	 * processes that still think tty or o_tty is their controlling
1743	 * tty.
1744	 */
1745	if (tty_closing || o_tty_closing) {
1746		read_lock(&tasklist_lock);
1747		session_clear_tty(tty->session);
1748		if (o_tty)
1749			session_clear_tty(o_tty->session);
1750		read_unlock(&tasklist_lock);
1751	}
1752
1753	mutex_unlock(&tty_mutex);
1754
1755	/* check whether both sides are closing ... */
1756	if (!tty_closing || (o_tty && !o_tty_closing)) {
1757		tty_unlock();
 
 
 
 
 
 
 
1758		return 0;
1759	}
1760
1761#ifdef TTY_DEBUG_HANGUP
1762	printk(KERN_DEBUG "freeing tty structure...");
1763#endif
1764	/*
1765	 * Ask the line discipline code to release its structures
1766	 */
1767	tty_ldisc_release(tty, o_tty);
1768	/*
1769	 * The release_tty function takes care of the details of clearing
1770	 * the slots and preserving the termios structure.
1771	 */
1772	release_tty(tty, idx);
1773
1774	/* Make this pty number available for reallocation */
1775	if (devpts)
1776		devpts_kill_index(inode, idx);
1777	tty_unlock();
1778	return 0;
1779}
1780
1781/**
1782 *	tty_open		-	open a tty device
1783 *	@inode: inode of device file
1784 *	@filp: file pointer to tty
 
1785 *
1786 *	tty_open and tty_release keep up the tty count that contains the
1787 *	number of opens done on a tty. We cannot use the inode-count, as
1788 *	different inodes might point to the same tty.
1789 *
1790 *	Open-counting is needed for pty masters, as well as for keeping
1791 *	track of serial lines: DTR is dropped when the last close happens.
1792 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1793 *
1794 *	The termios state of a pty is reset on first open so that
1795 *	settings don't persist across reuse.
1796 *
1797 *	Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1798 *		 tty->count should protect the rest.
1799 *		 ->siglock protects ->signal/->sighand
1800 */
1801
1802static int tty_open(struct inode *inode, struct file *filp)
1803{
1804	struct tty_struct *tty = NULL;
1805	int noctty, retval;
1806	struct tty_driver *driver;
1807	int index;
1808	dev_t device = inode->i_rdev;
1809	unsigned saved_flags = filp->f_flags;
1810
1811	nonseekable_open(inode, filp);
1812
1813retry_open:
1814	noctty = filp->f_flags & O_NOCTTY;
1815	index  = -1;
1816	retval = 0;
1817
1818	mutex_lock(&tty_mutex);
1819	tty_lock();
 
1820
1821	if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1822		tty = get_current_tty();
1823		if (!tty) {
1824			tty_unlock();
1825			mutex_unlock(&tty_mutex);
1826			return -ENXIO;
1827		}
1828		driver = tty_driver_kref_get(tty->driver);
1829		index = tty->index;
1830		filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1831		/* noctty = 1; */
1832		/* FIXME: Should we take a driver reference ? */
1833		tty_kref_put(tty);
1834		goto got_driver;
1835	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1836#ifdef CONFIG_VT
1837	if (device == MKDEV(TTY_MAJOR, 0)) {
1838		extern struct tty_driver *console_driver;
1839		driver = tty_driver_kref_get(console_driver);
1840		index = fg_console;
1841		noctty = 1;
1842		goto got_driver;
1843	}
1844#endif
1845	if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1846		struct tty_driver *console_driver = console_device(&index);
1847		if (console_driver) {
1848			driver = tty_driver_kref_get(console_driver);
1849			if (driver) {
1850				/* Don't let /dev/console block */
1851				filp->f_flags |= O_NONBLOCK;
1852				noctty = 1;
1853				goto got_driver;
1854			}
1855		}
1856		tty_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1857		mutex_unlock(&tty_mutex);
1858		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1859	}
 
 
 
 
 
 
1860
1861	driver = get_tty_driver(device, &index);
1862	if (!driver) {
1863		tty_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1864		mutex_unlock(&tty_mutex);
1865		return -ENODEV;
1866	}
1867got_driver:
1868	if (!tty) {
1869		/* check whether we're reopening an existing tty */
1870		tty = tty_driver_lookup_tty(driver, inode, index);
1871
1872		if (IS_ERR(tty)) {
1873			tty_unlock();
1874			mutex_unlock(&tty_mutex);
1875			return PTR_ERR(tty);
1876		}
1877	}
1878
1879	if (tty) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1880		retval = tty_reopen(tty);
1881		if (retval)
 
1882			tty = ERR_PTR(retval);
1883	} else
1884		tty = tty_init_dev(driver, index, 0);
1885
1886	mutex_unlock(&tty_mutex);
 
 
1887	tty_driver_kref_put(driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1888	if (IS_ERR(tty)) {
1889		tty_unlock();
1890		return PTR_ERR(tty);
 
 
 
 
1891	}
1892
1893	retval = tty_add_file(tty, filp);
1894	if (retval) {
1895		tty_unlock();
1896		tty_release(inode, filp);
1897		return retval;
1898	}
1899
1900	check_tty_count(tty, "tty_open");
1901	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1902	    tty->driver->subtype == PTY_TYPE_MASTER)
1903		noctty = 1;
1904#ifdef TTY_DEBUG_HANGUP
1905	printk(KERN_DEBUG "opening %s...", tty->name);
1906#endif
1907	if (tty->ops->open)
1908		retval = tty->ops->open(tty, filp);
1909	else
1910		retval = -ENODEV;
1911	filp->f_flags = saved_flags;
1912
1913	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1914						!capable(CAP_SYS_ADMIN))
1915		retval = -EBUSY;
1916
1917	if (retval) {
1918#ifdef TTY_DEBUG_HANGUP
1919		printk(KERN_DEBUG "error %d in opening %s...", retval,
1920		       tty->name);
1921#endif
1922		tty_unlock(); /* need to call tty_release without BTM */
1923		tty_release(inode, filp);
1924		if (retval != -ERESTARTSYS)
1925			return retval;
1926
1927		if (signal_pending(current))
1928			return retval;
1929
1930		schedule();
1931		/*
1932		 * Need to reset f_op in case a hangup happened.
1933		 */
1934		tty_lock();
1935		if (filp->f_op == &hung_up_tty_fops)
1936			filp->f_op = &tty_fops;
1937		tty_unlock();
1938		goto retry_open;
1939	}
1940	tty_unlock();
1941
1942
1943	mutex_lock(&tty_mutex);
1944	tty_lock();
1945	spin_lock_irq(&current->sighand->siglock);
1946	if (!noctty &&
1947	    current->signal->leader &&
1948	    !current->signal->tty &&
1949	    tty->session == NULL)
1950		__proc_set_tty(current, tty);
1951	spin_unlock_irq(&current->sighand->siglock);
1952	tty_unlock();
1953	mutex_unlock(&tty_mutex);
1954	return 0;
1955}
1956
1957
1958
1959/**
1960 *	tty_poll	-	check tty status
1961 *	@filp: file being polled
1962 *	@wait: poll wait structures to update
1963 *
1964 *	Call the line discipline polling method to obtain the poll
1965 *	status of the device.
1966 *
1967 *	Locking: locks called line discipline but ldisc poll method
1968 *	may be re-entered freely by other callers.
1969 */
1970
1971static unsigned int tty_poll(struct file *filp, poll_table *wait)
1972{
1973	struct tty_struct *tty = file_tty(filp);
1974	struct tty_ldisc *ld;
1975	int ret = 0;
1976
1977	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1978		return 0;
1979
1980	ld = tty_ldisc_ref_wait(tty);
 
 
1981	if (ld->ops->poll)
1982		ret = (ld->ops->poll)(tty, filp, wait);
1983	tty_ldisc_deref(ld);
1984	return ret;
1985}
1986
1987static int __tty_fasync(int fd, struct file *filp, int on)
1988{
1989	struct tty_struct *tty = file_tty(filp);
1990	unsigned long flags;
1991	int retval = 0;
1992
1993	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1994		goto out;
1995
1996	retval = fasync_helper(fd, filp, on, &tty->fasync);
1997	if (retval <= 0)
1998		goto out;
1999
2000	if (on) {
2001		enum pid_type type;
2002		struct pid *pid;
2003		if (!waitqueue_active(&tty->read_wait))
2004			tty->minimum_to_wake = 1;
2005		spin_lock_irqsave(&tty->ctrl_lock, flags);
2006		if (tty->pgrp) {
2007			pid = tty->pgrp;
2008			type = PIDTYPE_PGID;
2009		} else {
2010			pid = task_pid(current);
2011			type = PIDTYPE_PID;
2012		}
2013		get_pid(pid);
2014		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2015		retval = __f_setown(filp, pid, type, 0);
2016		put_pid(pid);
2017		if (retval)
2018			goto out;
2019	} else {
2020		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2021			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2022	}
2023	retval = 0;
2024out:
2025	return retval;
2026}
2027
2028static int tty_fasync(int fd, struct file *filp, int on)
2029{
2030	int retval;
2031	tty_lock();
2032	retval = __tty_fasync(fd, filp, on);
2033	tty_unlock();
 
 
 
 
2034	return retval;
2035}
2036
2037/**
2038 *	tiocsti			-	fake input character
2039 *	@tty: tty to fake input into
2040 *	@p: pointer to character
2041 *
2042 *	Fake input to a tty device. Does the necessary locking and
2043 *	input management.
2044 *
2045 *	FIXME: does not honour flow control ??
2046 *
2047 *	Locking:
2048 *		Called functions take tty_ldisc_lock
2049 *		current->signal->tty check is safe without locks
2050 *
2051 *	FIXME: may race normal receive processing
2052 */
2053
2054static int tiocsti(struct tty_struct *tty, char __user *p)
2055{
2056	char ch, mbz = 0;
2057	struct tty_ldisc *ld;
2058
2059	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2060		return -EPERM;
2061	if (get_user(ch, p))
2062		return -EFAULT;
2063	tty_audit_tiocsti(tty, ch);
2064	ld = tty_ldisc_ref_wait(tty);
2065	ld->ops->receive_buf(tty, &ch, &mbz, 1);
 
 
 
2066	tty_ldisc_deref(ld);
2067	return 0;
2068}
2069
2070/**
2071 *	tiocgwinsz		-	implement window query ioctl
2072 *	@tty; tty
2073 *	@arg: user buffer for result
2074 *
2075 *	Copies the kernel idea of the window size into the user buffer.
2076 *
2077 *	Locking: tty->termios_mutex is taken to ensure the winsize data
2078 *		is consistent.
2079 */
2080
2081static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2082{
2083	int err;
2084
2085	mutex_lock(&tty->termios_mutex);
2086	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2087	mutex_unlock(&tty->termios_mutex);
2088
2089	return err ? -EFAULT: 0;
2090}
2091
2092/**
2093 *	tty_do_resize		-	resize event
2094 *	@tty: tty being resized
2095 *	@rows: rows (character)
2096 *	@cols: cols (character)
2097 *
2098 *	Update the termios variables and send the necessary signals to
2099 *	peform a terminal resize correctly
2100 */
2101
2102int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2103{
2104	struct pid *pgrp;
2105	unsigned long flags;
2106
2107	/* Lock the tty */
2108	mutex_lock(&tty->termios_mutex);
2109	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2110		goto done;
2111	/* Get the PID values and reference them so we can
2112	   avoid holding the tty ctrl lock while sending signals */
2113	spin_lock_irqsave(&tty->ctrl_lock, flags);
2114	pgrp = get_pid(tty->pgrp);
2115	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2116
 
 
2117	if (pgrp)
2118		kill_pgrp(pgrp, SIGWINCH, 1);
2119	put_pid(pgrp);
2120
2121	tty->winsize = *ws;
2122done:
2123	mutex_unlock(&tty->termios_mutex);
2124	return 0;
2125}
 
2126
2127/**
2128 *	tiocswinsz		-	implement window size set ioctl
2129 *	@tty; tty side of tty
2130 *	@arg: user buffer for result
2131 *
2132 *	Copies the user idea of the window size to the kernel. Traditionally
2133 *	this is just advisory information but for the Linux console it
2134 *	actually has driver level meaning and triggers a VC resize.
2135 *
2136 *	Locking:
2137 *		Driver dependent. The default do_resize method takes the
2138 *	tty termios mutex and ctrl_lock. The console takes its own lock
2139 *	then calls into the default method.
2140 */
2141
2142static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2143{
2144	struct winsize tmp_ws;
2145	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2146		return -EFAULT;
2147
2148	if (tty->ops->resize)
2149		return tty->ops->resize(tty, &tmp_ws);
2150	else
2151		return tty_do_resize(tty, &tmp_ws);
2152}
2153
2154/**
2155 *	tioccons	-	allow admin to move logical console
2156 *	@file: the file to become console
2157 *
2158 *	Allow the administrator to move the redirected console device
2159 *
2160 *	Locking: uses redirect_lock to guard the redirect information
2161 */
2162
2163static int tioccons(struct file *file)
2164{
2165	if (!capable(CAP_SYS_ADMIN))
2166		return -EPERM;
2167	if (file->f_op->write == redirected_tty_write) {
2168		struct file *f;
2169		spin_lock(&redirect_lock);
2170		f = redirect;
2171		redirect = NULL;
2172		spin_unlock(&redirect_lock);
2173		if (f)
2174			fput(f);
2175		return 0;
2176	}
2177	spin_lock(&redirect_lock);
2178	if (redirect) {
2179		spin_unlock(&redirect_lock);
2180		return -EBUSY;
2181	}
2182	get_file(file);
2183	redirect = file;
2184	spin_unlock(&redirect_lock);
2185	return 0;
2186}
2187
2188/**
2189 *	fionbio		-	non blocking ioctl
2190 *	@file: file to set blocking value
2191 *	@p: user parameter
2192 *
2193 *	Historical tty interfaces had a blocking control ioctl before
2194 *	the generic functionality existed. This piece of history is preserved
2195 *	in the expected tty API of posix OS's.
2196 *
2197 *	Locking: none, the open file handle ensures it won't go away.
2198 */
2199
2200static int fionbio(struct file *file, int __user *p)
2201{
2202	int nonblock;
2203
2204	if (get_user(nonblock, p))
2205		return -EFAULT;
2206
2207	spin_lock(&file->f_lock);
2208	if (nonblock)
2209		file->f_flags |= O_NONBLOCK;
2210	else
2211		file->f_flags &= ~O_NONBLOCK;
2212	spin_unlock(&file->f_lock);
2213	return 0;
2214}
2215
2216/**
2217 *	tiocsctty	-	set controlling tty
2218 *	@tty: tty structure
2219 *	@arg: user argument
2220 *
2221 *	This ioctl is used to manage job control. It permits a session
2222 *	leader to set this tty as the controlling tty for the session.
2223 *
2224 *	Locking:
2225 *		Takes tty_mutex() to protect tty instance
2226 *		Takes tasklist_lock internally to walk sessions
2227 *		Takes ->siglock() when updating signal->tty
2228 */
2229
2230static int tiocsctty(struct tty_struct *tty, int arg)
2231{
2232	int ret = 0;
2233	if (current->signal->leader && (task_session(current) == tty->session))
2234		return ret;
2235
2236	mutex_lock(&tty_mutex);
2237	/*
2238	 * The process must be a session leader and
2239	 * not have a controlling tty already.
2240	 */
2241	if (!current->signal->leader || current->signal->tty) {
2242		ret = -EPERM;
2243		goto unlock;
2244	}
2245
2246	if (tty->session) {
2247		/*
2248		 * This tty is already the controlling
2249		 * tty for another session group!
2250		 */
2251		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2252			/*
2253			 * Steal it away
2254			 */
2255			read_lock(&tasklist_lock);
2256			session_clear_tty(tty->session);
2257			read_unlock(&tasklist_lock);
2258		} else {
2259			ret = -EPERM;
2260			goto unlock;
2261		}
2262	}
2263	proc_set_tty(current, tty);
2264unlock:
2265	mutex_unlock(&tty_mutex);
2266	return ret;
2267}
2268
2269/**
2270 *	tty_get_pgrp	-	return a ref counted pgrp pid
2271 *	@tty: tty to read
2272 *
2273 *	Returns a refcounted instance of the pid struct for the process
2274 *	group controlling the tty.
2275 */
2276
2277struct pid *tty_get_pgrp(struct tty_struct *tty)
2278{
2279	unsigned long flags;
2280	struct pid *pgrp;
2281
2282	spin_lock_irqsave(&tty->ctrl_lock, flags);
2283	pgrp = get_pid(tty->pgrp);
2284	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2285
2286	return pgrp;
2287}
2288EXPORT_SYMBOL_GPL(tty_get_pgrp);
2289
2290/**
2291 *	tiocgpgrp		-	get process group
2292 *	@tty: tty passed by user
2293 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2294 *	@p: returned pid
2295 *
2296 *	Obtain the process group of the tty. If there is no process group
2297 *	return an error.
2298 *
2299 *	Locking: none. Reference to current->signal->tty is safe.
2300 */
2301
2302static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2303{
2304	struct pid *pid;
2305	int ret;
2306	/*
2307	 * (tty == real_tty) is a cheap way of
2308	 * testing if the tty is NOT a master pty.
2309	 */
2310	if (tty == real_tty && current->signal->tty != real_tty)
2311		return -ENOTTY;
2312	pid = tty_get_pgrp(real_tty);
2313	ret =  put_user(pid_vnr(pid), p);
2314	put_pid(pid);
2315	return ret;
2316}
2317
2318/**
2319 *	tiocspgrp		-	attempt to set process group
2320 *	@tty: tty passed by user
2321 *	@real_tty: tty side device matching tty passed by user
2322 *	@p: pid pointer
2323 *
2324 *	Set the process group of the tty to the session passed. Only
2325 *	permitted where the tty session is our session.
2326 *
2327 *	Locking: RCU, ctrl lock
2328 */
2329
2330static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2331{
2332	struct pid *pgrp;
2333	pid_t pgrp_nr;
2334	int retval = tty_check_change(real_tty);
2335	unsigned long flags;
2336
2337	if (retval == -EIO)
2338		return -ENOTTY;
2339	if (retval)
2340		return retval;
2341	if (!current->signal->tty ||
2342	    (current->signal->tty != real_tty) ||
2343	    (real_tty->session != task_session(current)))
2344		return -ENOTTY;
2345	if (get_user(pgrp_nr, p))
2346		return -EFAULT;
2347	if (pgrp_nr < 0)
2348		return -EINVAL;
2349	rcu_read_lock();
2350	pgrp = find_vpid(pgrp_nr);
2351	retval = -ESRCH;
2352	if (!pgrp)
2353		goto out_unlock;
2354	retval = -EPERM;
2355	if (session_of_pgrp(pgrp) != task_session(current))
2356		goto out_unlock;
2357	retval = 0;
2358	spin_lock_irqsave(&tty->ctrl_lock, flags);
2359	put_pid(real_tty->pgrp);
2360	real_tty->pgrp = get_pid(pgrp);
2361	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2362out_unlock:
2363	rcu_read_unlock();
2364	return retval;
2365}
2366
2367/**
2368 *	tiocgsid		-	get session id
2369 *	@tty: tty passed by user
2370 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2371 *	@p: pointer to returned session id
2372 *
2373 *	Obtain the session id of the tty. If there is no session
2374 *	return an error.
2375 *
2376 *	Locking: none. Reference to current->signal->tty is safe.
2377 */
2378
2379static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2380{
2381	/*
2382	 * (tty == real_tty) is a cheap way of
2383	 * testing if the tty is NOT a master pty.
2384	*/
2385	if (tty == real_tty && current->signal->tty != real_tty)
2386		return -ENOTTY;
2387	if (!real_tty->session)
2388		return -ENOTTY;
2389	return put_user(pid_vnr(real_tty->session), p);
2390}
2391
2392/**
2393 *	tiocsetd	-	set line discipline
2394 *	@tty: tty device
2395 *	@p: pointer to user data
2396 *
2397 *	Set the line discipline according to user request.
2398 *
2399 *	Locking: see tty_set_ldisc, this function is just a helper
 
2400 */
2401
2402static int tiocsetd(struct tty_struct *tty, int __user *p)
2403{
2404	int ldisc;
2405	int ret;
2406
2407	if (get_user(ldisc, p))
2408		return -EFAULT;
2409
2410	ret = tty_set_ldisc(tty, ldisc);
2411
2412	return ret;
2413}
2414
2415/**
2416 *	send_break	-	performed time break
2417 *	@tty: device to break on
2418 *	@duration: timeout in mS
2419 *
2420 *	Perform a timed break on hardware that lacks its own driver level
2421 *	timed break functionality.
2422 *
2423 *	Locking:
2424 *		atomic_write_lock serializes
2425 *
2426 */
2427
2428static int send_break(struct tty_struct *tty, unsigned int duration)
2429{
2430	int retval;
2431
2432	if (tty->ops->break_ctl == NULL)
2433		return 0;
2434
2435	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2436		retval = tty->ops->break_ctl(tty, duration);
2437	else {
2438		/* Do the work ourselves */
2439		if (tty_write_lock(tty, 0) < 0)
2440			return -EINTR;
2441		retval = tty->ops->break_ctl(tty, -1);
2442		if (retval)
2443			goto out;
2444		if (!signal_pending(current))
2445			msleep_interruptible(duration);
2446		retval = tty->ops->break_ctl(tty, 0);
2447out:
2448		tty_write_unlock(tty);
2449		if (signal_pending(current))
2450			retval = -EINTR;
2451	}
2452	return retval;
2453}
2454
2455/**
2456 *	tty_tiocmget		-	get modem status
2457 *	@tty: tty device
2458 *	@file: user file pointer
2459 *	@p: pointer to result
2460 *
2461 *	Obtain the modem status bits from the tty driver if the feature
2462 *	is supported. Return -EINVAL if it is not available.
2463 *
2464 *	Locking: none (up to the driver)
2465 */
2466
2467static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2468{
2469	int retval = -EINVAL;
2470
2471	if (tty->ops->tiocmget) {
2472		retval = tty->ops->tiocmget(tty);
2473
2474		if (retval >= 0)
2475			retval = put_user(retval, p);
2476	}
2477	return retval;
2478}
2479
2480/**
2481 *	tty_tiocmset		-	set modem status
2482 *	@tty: tty device
2483 *	@cmd: command - clear bits, set bits or set all
2484 *	@p: pointer to desired bits
2485 *
2486 *	Set the modem status bits from the tty driver if the feature
2487 *	is supported. Return -EINVAL if it is not available.
2488 *
2489 *	Locking: none (up to the driver)
2490 */
2491
2492static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2493	     unsigned __user *p)
2494{
2495	int retval;
2496	unsigned int set, clear, val;
2497
2498	if (tty->ops->tiocmset == NULL)
2499		return -EINVAL;
2500
2501	retval = get_user(val, p);
2502	if (retval)
2503		return retval;
2504	set = clear = 0;
2505	switch (cmd) {
2506	case TIOCMBIS:
2507		set = val;
2508		break;
2509	case TIOCMBIC:
2510		clear = val;
2511		break;
2512	case TIOCMSET:
2513		set = val;
2514		clear = ~val;
2515		break;
2516	}
2517	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2518	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2519	return tty->ops->tiocmset(tty, set, clear);
2520}
2521
2522static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2523{
2524	int retval = -EINVAL;
2525	struct serial_icounter_struct icount;
2526	memset(&icount, 0, sizeof(icount));
2527	if (tty->ops->get_icount)
2528		retval = tty->ops->get_icount(tty, &icount);
2529	if (retval != 0)
2530		return retval;
2531	if (copy_to_user(arg, &icount, sizeof(icount)))
2532		return -EFAULT;
2533	return 0;
2534}
2535
2536struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2537{
2538	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2539	    tty->driver->subtype == PTY_TYPE_MASTER)
2540		tty = tty->link;
2541	return tty;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2542}
2543EXPORT_SYMBOL(tty_pair_get_tty);
2544
2545struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
 
 
 
 
2546{
2547	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2548	    tty->driver->subtype == PTY_TYPE_MASTER)
2549	    return tty;
2550	return tty->link;
2551}
2552EXPORT_SYMBOL(tty_pair_get_pty);
2553
2554/*
2555 * Split this up, as gcc can choke on it otherwise..
2556 */
2557long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2558{
2559	struct tty_struct *tty = file_tty(file);
2560	struct tty_struct *real_tty;
2561	void __user *p = (void __user *)arg;
2562	int retval;
2563	struct tty_ldisc *ld;
2564	struct inode *inode = file->f_dentry->d_inode;
2565
2566	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2567		return -EINVAL;
2568
2569	real_tty = tty_pair_get_tty(tty);
2570
2571	/*
2572	 * Factor out some common prep work
2573	 */
2574	switch (cmd) {
2575	case TIOCSETD:
2576	case TIOCSBRK:
2577	case TIOCCBRK:
2578	case TCSBRK:
2579	case TCSBRKP:
2580		retval = tty_check_change(tty);
2581		if (retval)
2582			return retval;
2583		if (cmd != TIOCCBRK) {
2584			tty_wait_until_sent(tty, 0);
2585			if (signal_pending(current))
2586				return -EINTR;
2587		}
2588		break;
2589	}
2590
2591	/*
2592	 *	Now do the stuff.
2593	 */
2594	switch (cmd) {
2595	case TIOCSTI:
2596		return tiocsti(tty, p);
2597	case TIOCGWINSZ:
2598		return tiocgwinsz(real_tty, p);
2599	case TIOCSWINSZ:
2600		return tiocswinsz(real_tty, p);
2601	case TIOCCONS:
2602		return real_tty != tty ? -EINVAL : tioccons(file);
2603	case FIONBIO:
2604		return fionbio(file, p);
2605	case TIOCEXCL:
2606		set_bit(TTY_EXCLUSIVE, &tty->flags);
2607		return 0;
2608	case TIOCNXCL:
2609		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2610		return 0;
2611	case TIOCNOTTY:
2612		if (current->signal->tty != tty)
2613			return -ENOTTY;
2614		no_tty();
2615		return 0;
2616	case TIOCSCTTY:
2617		return tiocsctty(tty, arg);
2618	case TIOCGPGRP:
2619		return tiocgpgrp(tty, real_tty, p);
2620	case TIOCSPGRP:
2621		return tiocspgrp(tty, real_tty, p);
2622	case TIOCGSID:
2623		return tiocgsid(tty, real_tty, p);
2624	case TIOCGETD:
2625		return put_user(tty->ldisc->ops->num, (int __user *)p);
2626	case TIOCSETD:
2627		return tiocsetd(tty, p);
2628	case TIOCVHANGUP:
2629		if (!capable(CAP_SYS_ADMIN))
2630			return -EPERM;
2631		tty_vhangup(tty);
2632		return 0;
2633	case TIOCGDEV:
2634	{
2635		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2636		return put_user(ret, (unsigned int __user *)p);
2637	}
2638	/*
2639	 * Break handling
2640	 */
2641	case TIOCSBRK:	/* Turn break on, unconditionally */
2642		if (tty->ops->break_ctl)
2643			return tty->ops->break_ctl(tty, -1);
2644		return 0;
2645	case TIOCCBRK:	/* Turn break off, unconditionally */
2646		if (tty->ops->break_ctl)
2647			return tty->ops->break_ctl(tty, 0);
2648		return 0;
2649	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2650		/* non-zero arg means wait for all output data
2651		 * to be sent (performed above) but don't send break.
2652		 * This is used by the tcdrain() termios function.
2653		 */
2654		if (!arg)
2655			return send_break(tty, 250);
2656		return 0;
2657	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2658		return send_break(tty, arg ? arg*100 : 250);
2659
2660	case TIOCMGET:
2661		return tty_tiocmget(tty, p);
2662	case TIOCMSET:
2663	case TIOCMBIC:
2664	case TIOCMBIS:
2665		return tty_tiocmset(tty, cmd, p);
2666	case TIOCGICOUNT:
2667		retval = tty_tiocgicount(tty, p);
2668		/* For the moment allow fall through to the old method */
2669        	if (retval != -EINVAL)
2670			return retval;
2671		break;
2672	case TCFLSH:
2673		switch (arg) {
2674		case TCIFLUSH:
2675		case TCIOFLUSH:
2676		/* flush tty buffer and allow ldisc to process ioctl */
2677			tty_buffer_flush(tty);
2678			break;
2679		}
2680		break;
 
 
 
 
 
 
 
 
 
 
 
2681	}
2682	if (tty->ops->ioctl) {
2683		retval = (tty->ops->ioctl)(tty, cmd, arg);
2684		if (retval != -ENOIOCTLCMD)
2685			return retval;
2686	}
2687	ld = tty_ldisc_ref_wait(tty);
 
 
2688	retval = -EINVAL;
2689	if (ld->ops->ioctl) {
2690		retval = ld->ops->ioctl(tty, file, cmd, arg);
2691		if (retval == -ENOIOCTLCMD)
2692			retval = -EINVAL;
2693	}
2694	tty_ldisc_deref(ld);
2695	return retval;
2696}
2697
2698#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2699static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2700				unsigned long arg)
2701{
2702	struct inode *inode = file->f_dentry->d_inode;
2703	struct tty_struct *tty = file_tty(file);
2704	struct tty_ldisc *ld;
2705	int retval = -ENOIOCTLCMD;
2706
2707	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2708		return -EINVAL;
2709
 
 
 
 
 
 
2710	if (tty->ops->compat_ioctl) {
2711		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2712		if (retval != -ENOIOCTLCMD)
2713			return retval;
2714	}
2715
2716	ld = tty_ldisc_ref_wait(tty);
 
 
2717	if (ld->ops->compat_ioctl)
2718		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
 
 
 
2719	tty_ldisc_deref(ld);
2720
2721	return retval;
2722}
2723#endif
2724
 
 
 
 
 
 
 
2725/*
2726 * This implements the "Secure Attention Key" ---  the idea is to
2727 * prevent trojan horses by killing all processes associated with this
2728 * tty when the user hits the "Secure Attention Key".  Required for
2729 * super-paranoid applications --- see the Orange Book for more details.
2730 *
2731 * This code could be nicer; ideally it should send a HUP, wait a few
2732 * seconds, then send a INT, and then a KILL signal.  But you then
2733 * have to coordinate with the init process, since all processes associated
2734 * with the current tty must be dead before the new getty is allowed
2735 * to spawn.
2736 *
2737 * Now, if it would be correct ;-/ The current code has a nasty hole -
2738 * it doesn't catch files in flight. We may send the descriptor to ourselves
2739 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2740 *
2741 * Nasty bug: do_SAK is being called in interrupt context.  This can
2742 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2743 */
2744void __do_SAK(struct tty_struct *tty)
2745{
2746#ifdef TTY_SOFT_SAK
2747	tty_hangup(tty);
2748#else
2749	struct task_struct *g, *p;
2750	struct pid *session;
2751	int		i;
2752	struct file	*filp;
2753	struct fdtable *fdt;
2754
2755	if (!tty)
2756		return;
2757	session = tty->session;
2758
2759	tty_ldisc_flush(tty);
2760
2761	tty_driver_flush_buffer(tty);
2762
2763	read_lock(&tasklist_lock);
2764	/* Kill the entire session */
2765	do_each_pid_task(session, PIDTYPE_SID, p) {
2766		printk(KERN_NOTICE "SAK: killed process %d"
2767			" (%s): task_session(p)==tty->session\n",
2768			task_pid_nr(p), p->comm);
2769		send_sig(SIGKILL, p, 1);
2770	} while_each_pid_task(session, PIDTYPE_SID, p);
2771	/* Now kill any processes that happen to have the
2772	 * tty open.
2773	 */
2774	do_each_thread(g, p) {
2775		if (p->signal->tty == tty) {
2776			printk(KERN_NOTICE "SAK: killed process %d"
2777			    " (%s): task_session(p)==tty->session\n",
2778			    task_pid_nr(p), p->comm);
2779			send_sig(SIGKILL, p, 1);
2780			continue;
2781		}
2782		task_lock(p);
2783		if (p->files) {
2784			/*
2785			 * We don't take a ref to the file, so we must
2786			 * hold ->file_lock instead.
2787			 */
2788			spin_lock(&p->files->file_lock);
2789			fdt = files_fdtable(p->files);
2790			for (i = 0; i < fdt->max_fds; i++) {
2791				filp = fcheck_files(p->files, i);
2792				if (!filp)
2793					continue;
2794				if (filp->f_op->read == tty_read &&
2795				    file_tty(filp) == tty) {
2796					printk(KERN_NOTICE "SAK: killed process %d"
2797					    " (%s): fd#%d opened to the tty\n",
2798					    task_pid_nr(p), p->comm, i);
2799					force_sig(SIGKILL, p);
2800					break;
2801				}
2802			}
2803			spin_unlock(&p->files->file_lock);
2804		}
2805		task_unlock(p);
2806	} while_each_thread(g, p);
2807	read_unlock(&tasklist_lock);
2808#endif
2809}
2810
2811static void do_SAK_work(struct work_struct *work)
2812{
2813	struct tty_struct *tty =
2814		container_of(work, struct tty_struct, SAK_work);
2815	__do_SAK(tty);
2816}
2817
2818/*
2819 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2820 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2821 * the values which we write to it will be identical to the values which it
2822 * already has. --akpm
2823 */
2824void do_SAK(struct tty_struct *tty)
2825{
2826	if (!tty)
2827		return;
2828	schedule_work(&tty->SAK_work);
2829}
2830
2831EXPORT_SYMBOL(do_SAK);
2832
2833static int dev_match_devt(struct device *dev, void *data)
2834{
2835	dev_t *devt = data;
2836	return dev->devt == *devt;
2837}
2838
2839/* Must put_device() after it's unused! */
2840static struct device *tty_get_device(struct tty_struct *tty)
2841{
2842	dev_t devt = tty_devnum(tty);
2843	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2844}
2845
2846
2847/**
2848 *	initialize_tty_struct
2849 *	@tty: tty to initialize
2850 *
2851 *	This subroutine initializes a tty structure that has been newly
2852 *	allocated.
2853 *
2854 *	Locking: none - tty in question must not be exposed at this point
2855 */
2856
2857void initialize_tty_struct(struct tty_struct *tty,
2858		struct tty_driver *driver, int idx)
2859{
2860	memset(tty, 0, sizeof(struct tty_struct));
 
 
 
 
 
2861	kref_init(&tty->kref);
2862	tty->magic = TTY_MAGIC;
2863	tty_ldisc_init(tty);
 
 
 
2864	tty->session = NULL;
2865	tty->pgrp = NULL;
2866	tty->overrun_time = jiffies;
2867	tty->buf.head = tty->buf.tail = NULL;
2868	tty_buffer_init(tty);
2869	mutex_init(&tty->termios_mutex);
2870	mutex_init(&tty->ldisc_mutex);
2871	init_waitqueue_head(&tty->write_wait);
2872	init_waitqueue_head(&tty->read_wait);
2873	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2874	mutex_init(&tty->atomic_read_lock);
2875	mutex_init(&tty->atomic_write_lock);
2876	mutex_init(&tty->output_lock);
2877	mutex_init(&tty->echo_lock);
2878	spin_lock_init(&tty->read_lock);
2879	spin_lock_init(&tty->ctrl_lock);
 
 
2880	INIT_LIST_HEAD(&tty->tty_files);
2881	INIT_WORK(&tty->SAK_work, do_SAK_work);
2882
2883	tty->driver = driver;
2884	tty->ops = driver->ops;
2885	tty->index = idx;
2886	tty_line_name(driver, idx, tty->name);
2887	tty->dev = tty_get_device(tty);
2888}
2889
2890/**
2891 *	deinitialize_tty_struct
2892 *	@tty: tty to deinitialize
2893 *
2894 *	This subroutine deinitializes a tty structure that has been newly
2895 *	allocated but tty_release cannot be called on that yet.
2896 *
2897 *	Locking: none - tty in question must not be exposed at this point
2898 */
2899void deinitialize_tty_struct(struct tty_struct *tty)
2900{
2901	tty_ldisc_deinit(tty);
2902}
2903
2904/**
2905 *	tty_put_char	-	write one character to a tty
2906 *	@tty: tty
2907 *	@ch: character
2908 *
2909 *	Write one byte to the tty using the provided put_char method
2910 *	if present. Returns the number of characters successfully output.
2911 *
2912 *	Note: the specific put_char operation in the driver layer may go
2913 *	away soon. Don't call it directly, use this method
2914 */
2915
2916int tty_put_char(struct tty_struct *tty, unsigned char ch)
2917{
2918	if (tty->ops->put_char)
2919		return tty->ops->put_char(tty, ch);
2920	return tty->ops->write(tty, &ch, 1);
2921}
2922EXPORT_SYMBOL_GPL(tty_put_char);
2923
2924struct class *tty_class;
2925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2926/**
2927 *	tty_register_device - register a tty device
2928 *	@driver: the tty driver that describes the tty device
2929 *	@index: the index in the tty driver for this tty device
2930 *	@device: a struct device that is associated with this tty device.
2931 *		This field is optional, if there is no known struct device
2932 *		for this tty device it can be set to NULL safely.
2933 *
2934 *	Returns a pointer to the struct device for this tty device
2935 *	(or ERR_PTR(-EFOO) on error).
2936 *
2937 *	This call is required to be made to register an individual tty device
2938 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2939 *	that bit is not set, this function should not be called by a tty
2940 *	driver.
2941 *
2942 *	Locking: ??
2943 */
2944
2945struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2946				   struct device *device)
2947{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2948	char name[64];
2949	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
 
 
 
2950
2951	if (index >= driver->num) {
2952		printk(KERN_ERR "Attempt to register invalid tty line number "
2953		       " (%d).\n", index);
2954		return ERR_PTR(-EINVAL);
2955	}
2956
2957	if (driver->type == TTY_DRIVER_TYPE_PTY)
2958		pty_line_name(driver, index, name);
2959	else
2960		tty_line_name(driver, index, name);
2961
2962	return device_create(tty_class, device, dev, NULL, name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2963}
2964EXPORT_SYMBOL(tty_register_device);
2965
2966/**
2967 * 	tty_unregister_device - unregister a tty device
2968 * 	@driver: the tty driver that describes the tty device
2969 * 	@index: the index in the tty driver for this tty device
2970 *
2971 * 	If a tty device is registered with a call to tty_register_device() then
2972 *	this function must be called when the tty device is gone.
2973 *
2974 *	Locking: ??
2975 */
2976
2977void tty_unregister_device(struct tty_driver *driver, unsigned index)
2978{
2979	device_destroy(tty_class,
2980		MKDEV(driver->major, driver->minor_start) + index);
 
 
 
 
2981}
2982EXPORT_SYMBOL(tty_unregister_device);
2983
2984struct tty_driver *alloc_tty_driver(int lines)
 
 
 
 
 
 
 
 
 
 
2985{
2986	struct tty_driver *driver;
 
 
 
 
 
2987
2988	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2989	if (driver) {
2990		kref_init(&driver->kref);
2991		driver->magic = TTY_DRIVER_MAGIC;
2992		driver->num = lines;
2993		/* later we'll move allocation of tables here */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2994	}
 
2995	return driver;
 
 
 
 
 
 
 
2996}
2997EXPORT_SYMBOL(alloc_tty_driver);
2998
2999static void destruct_tty_driver(struct kref *kref)
3000{
3001	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3002	int i;
3003	struct ktermios *tp;
3004	void *p;
3005
3006	if (driver->flags & TTY_DRIVER_INSTALLED) {
3007		/*
3008		 * Free the termios and termios_locked structures because
3009		 * we don't want to get memory leaks when modular tty
3010		 * drivers are removed from the kernel.
3011		 */
3012		for (i = 0; i < driver->num; i++) {
3013			tp = driver->termios[i];
3014			if (tp) {
3015				driver->termios[i] = NULL;
3016				kfree(tp);
3017			}
3018			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3019				tty_unregister_device(driver, i);
3020		}
3021		p = driver->ttys;
3022		proc_tty_unregister_driver(driver);
3023		driver->ttys = NULL;
3024		driver->termios = NULL;
3025		kfree(p);
3026		cdev_del(&driver->cdev);
3027	}
 
 
 
 
3028	kfree(driver);
3029}
3030
3031void tty_driver_kref_put(struct tty_driver *driver)
3032{
3033	kref_put(&driver->kref, destruct_tty_driver);
3034}
3035EXPORT_SYMBOL(tty_driver_kref_put);
3036
3037void tty_set_operations(struct tty_driver *driver,
3038			const struct tty_operations *op)
3039{
3040	driver->ops = op;
3041};
3042EXPORT_SYMBOL(tty_set_operations);
3043
3044void put_tty_driver(struct tty_driver *d)
3045{
3046	tty_driver_kref_put(d);
3047}
3048EXPORT_SYMBOL(put_tty_driver);
3049
3050/*
3051 * Called by a tty driver to register itself.
3052 */
3053int tty_register_driver(struct tty_driver *driver)
3054{
3055	int error;
3056	int i;
3057	dev_t dev;
3058	void **p = NULL;
3059	struct device *d;
3060
3061	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3062		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3063		if (!p)
3064			return -ENOMEM;
3065	}
3066
3067	if (!driver->major) {
3068		error = alloc_chrdev_region(&dev, driver->minor_start,
3069						driver->num, driver->name);
3070		if (!error) {
3071			driver->major = MAJOR(dev);
3072			driver->minor_start = MINOR(dev);
3073		}
3074	} else {
3075		dev = MKDEV(driver->major, driver->minor_start);
3076		error = register_chrdev_region(dev, driver->num, driver->name);
3077	}
3078	if (error < 0) {
3079		kfree(p);
3080		return error;
3081	}
3082
3083	if (p) {
3084		driver->ttys = (struct tty_struct **)p;
3085		driver->termios = (struct ktermios **)(p + driver->num);
3086	} else {
3087		driver->ttys = NULL;
3088		driver->termios = NULL;
3089	}
3090
3091	cdev_init(&driver->cdev, &tty_fops);
3092	driver->cdev.owner = driver->owner;
3093	error = cdev_add(&driver->cdev, dev, driver->num);
3094	if (error) {
3095		unregister_chrdev_region(dev, driver->num);
3096		driver->ttys = NULL;
3097		driver->termios = NULL;
3098		kfree(p);
3099		return error;
3100	}
3101
3102	mutex_lock(&tty_mutex);
3103	list_add(&driver->tty_drivers, &tty_drivers);
3104	mutex_unlock(&tty_mutex);
3105
3106	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3107		for (i = 0; i < driver->num; i++) {
3108			d = tty_register_device(driver, i, NULL);
3109			if (IS_ERR(d)) {
3110				error = PTR_ERR(d);
3111				goto err;
3112			}
3113		}
3114	}
3115	proc_tty_register_driver(driver);
3116	driver->flags |= TTY_DRIVER_INSTALLED;
3117	return 0;
3118
3119err:
3120	for (i--; i >= 0; i--)
3121		tty_unregister_device(driver, i);
3122
3123	mutex_lock(&tty_mutex);
3124	list_del(&driver->tty_drivers);
3125	mutex_unlock(&tty_mutex);
3126
 
3127	unregister_chrdev_region(dev, driver->num);
3128	driver->ttys = NULL;
3129	driver->termios = NULL;
3130	kfree(p);
3131	return error;
3132}
3133
3134EXPORT_SYMBOL(tty_register_driver);
3135
3136/*
3137 * Called by a tty driver to unregister itself.
3138 */
3139int tty_unregister_driver(struct tty_driver *driver)
3140{
3141#if 0
3142	/* FIXME */
3143	if (driver->refcount)
3144		return -EBUSY;
3145#endif
3146	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3147				driver->num);
3148	mutex_lock(&tty_mutex);
3149	list_del(&driver->tty_drivers);
3150	mutex_unlock(&tty_mutex);
3151	return 0;
3152}
3153
3154EXPORT_SYMBOL(tty_unregister_driver);
3155
3156dev_t tty_devnum(struct tty_struct *tty)
3157{
3158	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3159}
3160EXPORT_SYMBOL(tty_devnum);
3161
3162void proc_clear_tty(struct task_struct *p)
3163{
3164	unsigned long flags;
3165	struct tty_struct *tty;
3166	spin_lock_irqsave(&p->sighand->siglock, flags);
3167	tty = p->signal->tty;
3168	p->signal->tty = NULL;
3169	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3170	tty_kref_put(tty);
3171}
3172
3173/* Called under the sighand lock */
3174
3175static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3176{
3177	if (tty) {
3178		unsigned long flags;
3179		/* We should not have a session or pgrp to put here but.... */
3180		spin_lock_irqsave(&tty->ctrl_lock, flags);
3181		put_pid(tty->session);
3182		put_pid(tty->pgrp);
3183		tty->pgrp = get_pid(task_pgrp(tsk));
3184		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3185		tty->session = get_pid(task_session(tsk));
3186		if (tsk->signal->tty) {
3187			printk(KERN_DEBUG "tty not NULL!!\n");
3188			tty_kref_put(tsk->signal->tty);
3189		}
3190	}
3191	put_pid(tsk->signal->tty_old_pgrp);
3192	tsk->signal->tty = tty_kref_get(tty);
3193	tsk->signal->tty_old_pgrp = NULL;
3194}
3195
3196static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3197{
3198	spin_lock_irq(&tsk->sighand->siglock);
3199	__proc_set_tty(tsk, tty);
3200	spin_unlock_irq(&tsk->sighand->siglock);
3201}
3202
3203struct tty_struct *get_current_tty(void)
3204{
3205	struct tty_struct *tty;
3206	unsigned long flags;
3207
3208	spin_lock_irqsave(&current->sighand->siglock, flags);
3209	tty = tty_kref_get(current->signal->tty);
3210	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3211	return tty;
3212}
3213EXPORT_SYMBOL_GPL(get_current_tty);
3214
3215void tty_default_fops(struct file_operations *fops)
3216{
3217	*fops = tty_fops;
3218}
3219
3220/*
3221 * Initialize the console device. This is called *early*, so
3222 * we can't necessarily depend on lots of kernel help here.
3223 * Just do some early initializations, and do the complex setup
3224 * later.
3225 */
3226void __init console_init(void)
3227{
3228	initcall_t *call;
3229
3230	/* Setup the default TTY line discipline. */
3231	tty_ldisc_begin();
3232
3233	/*
3234	 * set up the console device so that later boot sequences can
3235	 * inform about problems etc..
3236	 */
3237	call = __con_initcall_start;
3238	while (call < __con_initcall_end) {
3239		(*call)();
3240		call++;
3241	}
3242}
3243
3244static char *tty_devnode(struct device *dev, mode_t *mode)
3245{
3246	if (!mode)
3247		return NULL;
3248	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3249	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3250		*mode = 0666;
3251	return NULL;
3252}
3253
3254static int __init tty_class_init(void)
3255{
3256	tty_class = class_create(THIS_MODULE, "tty");
3257	if (IS_ERR(tty_class))
3258		return PTR_ERR(tty_class);
3259	tty_class->devnode = tty_devnode;
3260	return 0;
3261}
3262
3263postcore_initcall(tty_class_init);
3264
3265/* 3/2004 jmc: why do these devices exist? */
3266static struct cdev tty_cdev, console_cdev;
3267
3268static ssize_t show_cons_active(struct device *dev,
3269				struct device_attribute *attr, char *buf)
3270{
3271	struct console *cs[16];
3272	int i = 0;
3273	struct console *c;
3274	ssize_t count = 0;
3275
3276	console_lock();
3277	for_each_console(c) {
3278		if (!c->device)
3279			continue;
3280		if (!c->write)
3281			continue;
3282		if ((c->flags & CON_ENABLED) == 0)
3283			continue;
3284		cs[i++] = c;
3285		if (i >= ARRAY_SIZE(cs))
3286			break;
3287	}
3288	while (i--)
3289		count += sprintf(buf + count, "%s%d%c",
3290				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
 
 
 
 
 
 
 
 
 
 
3291	console_unlock();
3292
3293	return count;
3294}
3295static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3296
 
 
 
 
 
 
 
3297static struct device *consdev;
3298
3299void console_sysfs_notify(void)
3300{
3301	if (consdev)
3302		sysfs_notify(&consdev->kobj, NULL, "active");
3303}
3304
3305/*
3306 * Ok, now we can initialize the rest of the tty devices and can count
3307 * on memory allocations, interrupts etc..
3308 */
3309int __init tty_init(void)
3310{
 
3311	cdev_init(&tty_cdev, &tty_fops);
3312	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3313	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3314		panic("Couldn't register /dev/tty driver\n");
3315	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3316
3317	cdev_init(&console_cdev, &console_fops);
3318	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3319	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3320		panic("Couldn't register /dev/console driver\n");
3321	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3322			      "console");
 
3323	if (IS_ERR(consdev))
3324		consdev = NULL;
3325	else
3326		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3327
3328#ifdef CONFIG_VT
3329	vty_init(&console_fops);
3330#endif
3331	return 0;
3332}
3333
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 */
   5
   6/*
   7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   8 * or rs-channels. It also implements echoing, cooked mode etc.
   9 *
  10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  11 *
  12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  13 * tty_struct and tty_queue structures.  Previously there was an array
  14 * of 256 tty_struct's which was statically allocated, and the
  15 * tty_queue structures were allocated at boot time.  Both are now
  16 * dynamically allocated only when the tty is open.
  17 *
  18 * Also restructured routines so that there is more of a separation
  19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  20 * the low-level tty routines (serial.c, pty.c, console.c).  This
  21 * makes for cleaner and more compact code.  -TYT, 9/17/92
  22 *
  23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  24 * which can be dynamically activated and de-activated by the line
  25 * discipline handling modules (like SLIP).
  26 *
  27 * NOTE: pay no attention to the line discipline code (yet); its
  28 * interface is still subject to change in this version...
  29 * -- TYT, 1/31/92
  30 *
  31 * Added functionality to the OPOST tty handling.  No delays, but all
  32 * other bits should be there.
  33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  34 *
  35 * Rewrote canonical mode and added more termios flags.
  36 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  37 *
  38 * Reorganized FASYNC support so mouse code can share it.
  39 *	-- ctm@ardi.com, 9Sep95
  40 *
  41 * New TIOCLINUX variants added.
  42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  43 *
  44 * Restrict vt switching via ioctl()
  45 *      -- grif@cs.ucr.edu, 5-Dec-95
  46 *
  47 * Move console and virtual terminal code to more appropriate files,
  48 * implement CONFIG_VT and generalize console device interface.
  49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  50 *
  51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  52 *	-- Bill Hawes <whawes@star.net>, June 97
  53 *
  54 * Added devfs support.
  55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  56 *
  57 * Added support for a Unix98-style ptmx device.
  58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  59 *
  60 * Reduced memory usage for older ARM systems
  61 *      -- Russell King <rmk@arm.linux.org.uk>
  62 *
  63 * Move do_SAK() into process context.  Less stack use in devfs functions.
  64 * alloc_tty_struct() always uses kmalloc()
  65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  66 */
  67
  68#include <linux/types.h>
  69#include <linux/major.h>
  70#include <linux/errno.h>
  71#include <linux/signal.h>
  72#include <linux/fcntl.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sched/task.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/proc_fs.h>
  91#include <linux/init.h>
  92#include <linux/module.h>
  93#include <linux/device.h>
  94#include <linux/wait.h>
  95#include <linux/bitops.h>
  96#include <linux/delay.h>
  97#include <linux/seq_file.h>
  98#include <linux/serial.h>
  99#include <linux/ratelimit.h>
 100#include <linux/compat.h>
 101
 102#include <linux/uaccess.h>
 
 103
 104#include <linux/kbd_kern.h>
 105#include <linux/vt_kern.h>
 106#include <linux/selection.h>
 107
 108#include <linux/kmod.h>
 109#include <linux/nsproxy.h>
 110
 111#undef TTY_DEBUG_HANGUP
 112#ifdef TTY_DEBUG_HANGUP
 113# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 114#else
 115# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 116#endif
 117
 118#define TTY_PARANOIA_CHECK 1
 119#define CHECK_TTY_COUNT 1
 120
 121struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 122	.c_iflag = ICRNL | IXON,
 123	.c_oflag = OPOST | ONLCR,
 124	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 125	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 126		   ECHOCTL | ECHOKE | IEXTEN,
 127	.c_cc = INIT_C_CC,
 128	.c_ispeed = 38400,
 129	.c_ospeed = 38400,
 130	/* .c_line = N_TTY, */
 131};
 132
 133EXPORT_SYMBOL(tty_std_termios);
 134
 135/* This list gets poked at by procfs and various bits of boot up code. This
 136   could do with some rationalisation such as pulling the tty proc function
 137   into this file */
 138
 139LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 140
 141/* Mutex to protect creating and releasing a tty */
 
 142DEFINE_MUTEX(tty_mutex);
 
 
 
 
 143
 144static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 145static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 146ssize_t redirected_tty_write(struct file *, const char __user *,
 147							size_t, loff_t *);
 148static __poll_t tty_poll(struct file *, poll_table *);
 149static int tty_open(struct inode *, struct file *);
 150long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 151#ifdef CONFIG_COMPAT
 152static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 153				unsigned long arg);
 154#else
 155#define tty_compat_ioctl NULL
 156#endif
 157static int __tty_fasync(int fd, struct file *filp, int on);
 158static int tty_fasync(int fd, struct file *filp, int on);
 159static void release_tty(struct tty_struct *tty, int idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160
 161/**
 162 *	free_tty_struct		-	free a disused tty
 163 *	@tty: tty struct to free
 164 *
 165 *	Free the write buffers, tty queue and tty memory itself.
 166 *
 167 *	Locking: none. Must be called after tty is definitely unused
 168 */
 169
 170static void free_tty_struct(struct tty_struct *tty)
 171{
 172	tty_ldisc_deinit(tty);
 173	put_device(tty->dev);
 174	kfree(tty->write_buf);
 175	tty->magic = 0xDEADDEAD;
 176	kfree(tty);
 177}
 178
 179static inline struct tty_struct *file_tty(struct file *file)
 180{
 181	return ((struct tty_file_private *)file->private_data)->tty;
 182}
 183
 184int tty_alloc_file(struct file *file)
 
 185{
 186	struct tty_file_private *priv;
 187
 188	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 189	if (!priv)
 190		return -ENOMEM;
 191
 192	file->private_data = priv;
 193
 194	return 0;
 195}
 196
 197/* Associate a new file with the tty structure */
 198void tty_add_file(struct tty_struct *tty, struct file *file)
 199{
 200	struct tty_file_private *priv = file->private_data;
 201
 202	priv->tty = tty;
 203	priv->file = file;
 
 204
 205	spin_lock(&tty->files_lock);
 206	list_add(&priv->list, &tty->tty_files);
 207	spin_unlock(&tty->files_lock);
 
 
 208}
 209
 210/**
 211 * tty_free_file - free file->private_data
 212 *
 213 * This shall be used only for fail path handling when tty_add_file was not
 214 * called yet.
 215 */
 216void tty_free_file(struct file *file)
 217{
 218	struct tty_file_private *priv = file->private_data;
 219
 
 
 
 220	file->private_data = NULL;
 221	kfree(priv);
 222}
 223
 224/* Delete file from its tty */
 225static void tty_del_file(struct file *file)
 226{
 227	struct tty_file_private *priv = file->private_data;
 228	struct tty_struct *tty = priv->tty;
 229
 230	spin_lock(&tty->files_lock);
 231	list_del(&priv->list);
 232	spin_unlock(&tty->files_lock);
 233	tty_free_file(file);
 234}
 235
 236/**
 237 *	tty_name	-	return tty naming
 238 *	@tty: tty structure
 
 239 *
 240 *	Convert a tty structure into a name. The name reflects the kernel
 241 *	naming policy and if udev is in use may not reflect user space
 242 *
 243 *	Locking: none
 244 */
 245
 246const char *tty_name(const struct tty_struct *tty)
 247{
 248	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 249		return "NULL tty";
 250	return tty->name;
 
 
 251}
 252
 253EXPORT_SYMBOL(tty_name);
 254
 255const char *tty_driver_name(const struct tty_struct *tty)
 256{
 257	if (!tty || !tty->driver)
 258		return "";
 259	return tty->driver->name;
 260}
 261
 262static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 263			      const char *routine)
 264{
 265#ifdef TTY_PARANOIA_CHECK
 266	if (!tty) {
 267		pr_warn("(%d:%d): %s: NULL tty\n",
 
 268			imajor(inode), iminor(inode), routine);
 269		return 1;
 270	}
 271	if (tty->magic != TTY_MAGIC) {
 272		pr_warn("(%d:%d): %s: bad magic number\n",
 
 273			imajor(inode), iminor(inode), routine);
 274		return 1;
 275	}
 276#endif
 277	return 0;
 278}
 279
 280/* Caller must hold tty_lock */
 281static int check_tty_count(struct tty_struct *tty, const char *routine)
 282{
 283#ifdef CHECK_TTY_COUNT
 284	struct list_head *p;
 285	int count = 0, kopen_count = 0;
 286
 287	spin_lock(&tty->files_lock);
 288	list_for_each(p, &tty->tty_files) {
 289		count++;
 290	}
 291	spin_unlock(&tty->files_lock);
 292	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 293	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 294	    tty->link && tty->link->count)
 295		count++;
 296	if (tty_port_kopened(tty->port))
 297		kopen_count++;
 298	if (tty->count != (count + kopen_count)) {
 299		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
 300			 routine, tty->count, count, kopen_count);
 301		return (count + kopen_count);
 302	}
 303#endif
 304	return 0;
 305}
 306
 307/**
 308 *	get_tty_driver		-	find device of a tty
 309 *	@dev_t: device identifier
 310 *	@index: returns the index of the tty
 311 *
 312 *	This routine returns a tty driver structure, given a device number
 313 *	and also passes back the index number.
 314 *
 315 *	Locking: caller must hold tty_mutex
 316 */
 317
 318static struct tty_driver *get_tty_driver(dev_t device, int *index)
 319{
 320	struct tty_driver *p;
 321
 322	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 323		dev_t base = MKDEV(p->major, p->minor_start);
 324		if (device < base || device >= base + p->num)
 325			continue;
 326		*index = device - base;
 327		return tty_driver_kref_get(p);
 328	}
 329	return NULL;
 330}
 331
 332/**
 333 *	tty_dev_name_to_number	-	return dev_t for device name
 334 *	@name: user space name of device under /dev
 335 *	@number: pointer to dev_t that this function will populate
 336 *
 337 *	This function converts device names like ttyS0 or ttyUSB1 into dev_t
 338 *	like (4, 64) or (188, 1). If no corresponding driver is registered then
 339 *	the function returns -ENODEV.
 340 *
 341 *	Locking: this acquires tty_mutex to protect the tty_drivers list from
 342 *		being modified while we are traversing it, and makes sure to
 343 *		release it before exiting.
 344 */
 345int tty_dev_name_to_number(const char *name, dev_t *number)
 346{
 347	struct tty_driver *p;
 348	int ret;
 349	int index, prefix_length = 0;
 350	const char *str;
 351
 352	for (str = name; *str && !isdigit(*str); str++)
 353		;
 354
 355	if (!*str)
 356		return -EINVAL;
 357
 358	ret = kstrtoint(str, 10, &index);
 359	if (ret)
 360		return ret;
 361
 362	prefix_length = str - name;
 363	mutex_lock(&tty_mutex);
 364
 365	list_for_each_entry(p, &tty_drivers, tty_drivers)
 366		if (prefix_length == strlen(p->name) && strncmp(name,
 367					p->name, prefix_length) == 0) {
 368			if (index < p->num) {
 369				*number = MKDEV(p->major, p->minor_start + index);
 370				goto out;
 371			}
 372		}
 373
 374	/* if here then driver wasn't found */
 375	ret = -ENODEV;
 376out:
 377	mutex_unlock(&tty_mutex);
 378	return ret;
 379}
 380EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
 381
 382#ifdef CONFIG_CONSOLE_POLL
 383
 384/**
 385 *	tty_find_polling_driver	-	find device of a polled tty
 386 *	@name: name string to match
 387 *	@line: pointer to resulting tty line nr
 388 *
 389 *	This routine returns a tty driver structure, given a name
 390 *	and the condition that the tty driver is capable of polled
 391 *	operation.
 392 */
 393struct tty_driver *tty_find_polling_driver(char *name, int *line)
 394{
 395	struct tty_driver *p, *res = NULL;
 396	int tty_line = 0;
 397	int len;
 398	char *str, *stp;
 399
 400	for (str = name; *str; str++)
 401		if ((*str >= '0' && *str <= '9') || *str == ',')
 402			break;
 403	if (!*str)
 404		return NULL;
 405
 406	len = str - name;
 407	tty_line = simple_strtoul(str, &str, 10);
 408
 409	mutex_lock(&tty_mutex);
 410	/* Search through the tty devices to look for a match */
 411	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 412		if (!len || strncmp(name, p->name, len) != 0)
 413			continue;
 414		stp = str;
 415		if (*stp == ',')
 416			stp++;
 417		if (*stp == '\0')
 418			stp = NULL;
 419
 420		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 421		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 422			res = tty_driver_kref_get(p);
 423			*line = tty_line;
 424			break;
 425		}
 426	}
 427	mutex_unlock(&tty_mutex);
 428
 429	return res;
 430}
 431EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 432#endif
 433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 434static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 435				size_t count, loff_t *ppos)
 436{
 437	return 0;
 438}
 439
 440static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 441				 size_t count, loff_t *ppos)
 442{
 443	return -EIO;
 444}
 445
 446/* No kernel lock held - none needed ;) */
 447static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
 448{
 449	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
 450}
 451
 452static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 453		unsigned long arg)
 454{
 455	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 456}
 457
 458static long hung_up_tty_compat_ioctl(struct file *file,
 459				     unsigned int cmd, unsigned long arg)
 460{
 461	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 462}
 463
 464static int hung_up_tty_fasync(int fd, struct file *file, int on)
 465{
 466	return -ENOTTY;
 467}
 468
 469static void tty_show_fdinfo(struct seq_file *m, struct file *file)
 470{
 471	struct tty_struct *tty = file_tty(file);
 472
 473	if (tty && tty->ops && tty->ops->show_fdinfo)
 474		tty->ops->show_fdinfo(tty, m);
 475}
 476
 477static const struct file_operations tty_fops = {
 478	.llseek		= no_llseek,
 479	.read		= tty_read,
 480	.write		= tty_write,
 481	.poll		= tty_poll,
 482	.unlocked_ioctl	= tty_ioctl,
 483	.compat_ioctl	= tty_compat_ioctl,
 484	.open		= tty_open,
 485	.release	= tty_release,
 486	.fasync		= tty_fasync,
 487	.show_fdinfo	= tty_show_fdinfo,
 488};
 489
 490static const struct file_operations console_fops = {
 491	.llseek		= no_llseek,
 492	.read		= tty_read,
 493	.write		= redirected_tty_write,
 494	.poll		= tty_poll,
 495	.unlocked_ioctl	= tty_ioctl,
 496	.compat_ioctl	= tty_compat_ioctl,
 497	.open		= tty_open,
 498	.release	= tty_release,
 499	.fasync		= tty_fasync,
 500};
 501
 502static const struct file_operations hung_up_tty_fops = {
 503	.llseek		= no_llseek,
 504	.read		= hung_up_tty_read,
 505	.write		= hung_up_tty_write,
 506	.poll		= hung_up_tty_poll,
 507	.unlocked_ioctl	= hung_up_tty_ioctl,
 508	.compat_ioctl	= hung_up_tty_compat_ioctl,
 509	.release	= tty_release,
 510	.fasync		= hung_up_tty_fasync,
 511};
 512
 513static DEFINE_SPINLOCK(redirect_lock);
 514static struct file *redirect;
 515
 516extern void tty_sysctl_init(void);
 517
 518/**
 519 *	tty_wakeup	-	request more data
 520 *	@tty: terminal
 521 *
 522 *	Internal and external helper for wakeups of tty. This function
 523 *	informs the line discipline if present that the driver is ready
 524 *	to receive more output data.
 525 */
 526
 527void tty_wakeup(struct tty_struct *tty)
 528{
 529	struct tty_ldisc *ld;
 530
 531	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 532		ld = tty_ldisc_ref(tty);
 533		if (ld) {
 534			if (ld->ops->write_wakeup)
 535				ld->ops->write_wakeup(tty);
 536			tty_ldisc_deref(ld);
 537		}
 538	}
 539	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 540}
 541
 542EXPORT_SYMBOL_GPL(tty_wakeup);
 543
 544/**
 545 *	__tty_hangup		-	actual handler for hangup events
 546 *	@work: tty device
 547 *
 548 *	This can be called by a "kworker" kernel thread.  That is process
 549 *	synchronous but doesn't hold any locks, so we need to make sure we
 550 *	have the appropriate locks for what we're doing.
 551 *
 552 *	The hangup event clears any pending redirections onto the hung up
 553 *	device. It ensures future writes will error and it does the needed
 554 *	line discipline hangup and signal delivery. The tty object itself
 555 *	remains intact.
 556 *
 557 *	Locking:
 558 *		BTM
 559 *		  redirect lock for undoing redirection
 560 *		  file list lock for manipulating list of ttys
 561 *		  tty_ldiscs_lock from called functions
 562 *		  termios_rwsem resetting termios data
 563 *		  tasklist_lock to walk task list for hangup event
 564 *		    ->siglock to protect ->signal/->sighand
 565 */
 566static void __tty_hangup(struct tty_struct *tty, int exit_session)
 567{
 568	struct file *cons_filp = NULL;
 569	struct file *filp, *f = NULL;
 
 570	struct tty_file_private *priv;
 571	int    closecount = 0, n;
 572	int refs;
 
 573
 574	if (!tty)
 575		return;
 576
 577
 578	spin_lock(&redirect_lock);
 579	if (redirect && file_tty(redirect) == tty) {
 580		f = redirect;
 581		redirect = NULL;
 582	}
 583	spin_unlock(&redirect_lock);
 584
 585	tty_lock(tty);
 586
 587	if (test_bit(TTY_HUPPED, &tty->flags)) {
 588		tty_unlock(tty);
 589		return;
 590	}
 591
 592	/*
 593	 * Some console devices aren't actually hung up for technical and
 594	 * historical reasons, which can lead to indefinite interruptible
 595	 * sleep in n_tty_read().  The following explicitly tells
 596	 * n_tty_read() to abort readers.
 597	 */
 598	set_bit(TTY_HUPPING, &tty->flags);
 599
 600	/* inuse_filps is protected by the single tty lock,
 601	   this really needs to change if we want to flush the
 602	   workqueue with the lock held */
 603	check_tty_count(tty, "tty_hangup");
 604
 605	spin_lock(&tty->files_lock);
 606	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 607	list_for_each_entry(priv, &tty->tty_files, list) {
 608		filp = priv->file;
 609		if (filp->f_op->write == redirected_tty_write)
 610			cons_filp = filp;
 611		if (filp->f_op->write != tty_write)
 612			continue;
 613		closecount++;
 614		__tty_fasync(-1, filp, 0);	/* can't block */
 615		filp->f_op = &hung_up_tty_fops;
 616	}
 617	spin_unlock(&tty->files_lock);
 618
 619	refs = tty_signal_session_leader(tty, exit_session);
 620	/* Account for the p->signal references we killed */
 621	while (refs--)
 622		tty_kref_put(tty);
 
 623
 624	tty_ldisc_hangup(tty, cons_filp != NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 625
 626	spin_lock_irq(&tty->ctrl_lock);
 627	clear_bit(TTY_THROTTLED, &tty->flags);
 
 628	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 629	put_pid(tty->session);
 630	put_pid(tty->pgrp);
 631	tty->session = NULL;
 632	tty->pgrp = NULL;
 633	tty->ctrl_status = 0;
 634	spin_unlock_irq(&tty->ctrl_lock);
 
 
 
 
 635
 636	/*
 637	 * If one of the devices matches a console pointer, we
 638	 * cannot just call hangup() because that will cause
 639	 * tty->count and state->count to go out of sync.
 640	 * So we just call close() the right number of times.
 641	 */
 642	if (cons_filp) {
 643		if (tty->ops->close)
 644			for (n = 0; n < closecount; n++)
 645				tty->ops->close(tty, cons_filp);
 646	} else if (tty->ops->hangup)
 647		tty->ops->hangup(tty);
 648	/*
 649	 * We don't want to have driver/ldisc interactions beyond the ones
 650	 * we did here. The driver layer expects no calls after ->hangup()
 651	 * from the ldisc side, which is now guaranteed.
 
 652	 */
 653	set_bit(TTY_HUPPED, &tty->flags);
 654	clear_bit(TTY_HUPPING, &tty->flags);
 655	tty_unlock(tty);
 
 
 656
 657	if (f)
 658		fput(f);
 659}
 660
 661static void do_tty_hangup(struct work_struct *work)
 662{
 663	struct tty_struct *tty =
 664		container_of(work, struct tty_struct, hangup_work);
 665
 666	__tty_hangup(tty, 0);
 667}
 668
 669/**
 670 *	tty_hangup		-	trigger a hangup event
 671 *	@tty: tty to hangup
 672 *
 673 *	A carrier loss (virtual or otherwise) has occurred on this like
 674 *	schedule a hangup sequence to run after this event.
 675 */
 676
 677void tty_hangup(struct tty_struct *tty)
 678{
 679	tty_debug_hangup(tty, "hangup\n");
 
 
 
 680	schedule_work(&tty->hangup_work);
 681}
 682
 683EXPORT_SYMBOL(tty_hangup);
 684
 685/**
 686 *	tty_vhangup		-	process vhangup
 687 *	@tty: tty to hangup
 688 *
 689 *	The user has asked via system call for the terminal to be hung up.
 690 *	We do this synchronously so that when the syscall returns the process
 691 *	is complete. That guarantee is necessary for security reasons.
 692 */
 693
 694void tty_vhangup(struct tty_struct *tty)
 695{
 696	tty_debug_hangup(tty, "vhangup\n");
 697	__tty_hangup(tty, 0);
 
 
 
 
 698}
 699
 700EXPORT_SYMBOL(tty_vhangup);
 701
 702
 703/**
 704 *	tty_vhangup_self	-	process vhangup for own ctty
 705 *
 706 *	Perform a vhangup on the current controlling tty
 707 */
 708
 709void tty_vhangup_self(void)
 710{
 711	struct tty_struct *tty;
 712
 713	tty = get_current_tty();
 714	if (tty) {
 715		tty_vhangup(tty);
 716		tty_kref_put(tty);
 717	}
 718}
 719
 720/**
 721 *	tty_vhangup_session		-	hangup session leader exit
 722 *	@tty: tty to hangup
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 723 *
 724 *	The session leader is exiting and hanging up its controlling terminal.
 725 *	Every process in the foreground process group is signalled SIGHUP.
 726 *
 727 *	We do this synchronously so that when the syscall returns the process
 728 *	is complete. That guarantee is necessary for security reasons.
 
 
 
 
 
 729 */
 730
 731void tty_vhangup_session(struct tty_struct *tty)
 732{
 733	tty_debug_hangup(tty, "session hangup\n");
 734	__tty_hangup(tty, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 735}
 736
 737/**
 738 *	tty_hung_up_p		-	was tty hung up
 739 *	@filp: file pointer of tty
 740 *
 741 *	Return true if the tty has been subject to a vhangup or a carrier
 742 *	loss
 743 */
 744
 745int tty_hung_up_p(struct file *filp)
 746{
 747	return (filp && filp->f_op == &hung_up_tty_fops);
 
 
 
 
 748}
 749
 750EXPORT_SYMBOL(tty_hung_up_p);
 751
 752/**
 753 *	stop_tty	-	propagate flow control
 754 *	@tty: tty to stop
 755 *
 756 *	Perform flow control to the driver. May be called
 
 757 *	on an already stopped device and will not re-call the driver
 758 *	method.
 759 *
 760 *	This functionality is used by both the line disciplines for
 761 *	halting incoming flow and by the driver. It may therefore be
 762 *	called from any context, may be under the tty atomic_write_lock
 763 *	but not always.
 764 *
 765 *	Locking:
 766 *		flow_lock
 767 */
 768
 769void __stop_tty(struct tty_struct *tty)
 770{
 771	if (tty->stopped)
 
 
 
 772		return;
 
 773	tty->stopped = 1;
 
 
 
 
 
 
 774	if (tty->ops->stop)
 775		tty->ops->stop(tty);
 776}
 777
 778void stop_tty(struct tty_struct *tty)
 779{
 780	unsigned long flags;
 781
 782	spin_lock_irqsave(&tty->flow_lock, flags);
 783	__stop_tty(tty);
 784	spin_unlock_irqrestore(&tty->flow_lock, flags);
 785}
 786EXPORT_SYMBOL(stop_tty);
 787
 788/**
 789 *	start_tty	-	propagate flow control
 790 *	@tty: tty to start
 791 *
 792 *	Start a tty that has been stopped if at all possible. If this
 793 *	tty was previous stopped and is now being started, the driver
 794 *	start method is invoked and the line discipline woken.
 
 795 *
 796 *	Locking:
 797 *		flow_lock
 798 */
 799
 800void __start_tty(struct tty_struct *tty)
 801{
 802	if (!tty->stopped || tty->flow_stopped)
 
 
 
 803		return;
 
 804	tty->stopped = 0;
 
 
 
 
 
 
 805	if (tty->ops->start)
 806		tty->ops->start(tty);
 
 807	tty_wakeup(tty);
 808}
 809
 810void start_tty(struct tty_struct *tty)
 811{
 812	unsigned long flags;
 813
 814	spin_lock_irqsave(&tty->flow_lock, flags);
 815	__start_tty(tty);
 816	spin_unlock_irqrestore(&tty->flow_lock, flags);
 817}
 818EXPORT_SYMBOL(start_tty);
 819
 820static void tty_update_time(struct timespec64 *time)
 821{
 822	time64_t sec = ktime_get_real_seconds();
 823
 824	/*
 825	 * We only care if the two values differ in anything other than the
 826	 * lower three bits (i.e every 8 seconds).  If so, then we can update
 827	 * the time of the tty device, otherwise it could be construded as a
 828	 * security leak to let userspace know the exact timing of the tty.
 829	 */
 830	if ((sec ^ time->tv_sec) & ~7)
 831		time->tv_sec = sec;
 832}
 833
 834/**
 835 *	tty_read	-	read method for tty device files
 836 *	@file: pointer to tty file
 837 *	@buf: user buffer
 838 *	@count: size of user buffer
 839 *	@ppos: unused
 840 *
 841 *	Perform the read system call function on this terminal device. Checks
 842 *	for hung up devices before calling the line discipline method.
 843 *
 844 *	Locking:
 845 *		Locks the line discipline internally while needed. Multiple
 846 *	read calls may be outstanding in parallel.
 847 */
 848
 849static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 850			loff_t *ppos)
 851{
 852	int i;
 853	struct inode *inode = file_inode(file);
 854	struct tty_struct *tty = file_tty(file);
 855	struct tty_ldisc *ld;
 856
 857	if (tty_paranoia_check(tty, inode, "tty_read"))
 858		return -EIO;
 859	if (!tty || tty_io_error(tty))
 860		return -EIO;
 861
 862	/* We want to wait for the line discipline to sort out in this
 863	   situation */
 864	ld = tty_ldisc_ref_wait(tty);
 865	if (!ld)
 866		return hung_up_tty_read(file, buf, count, ppos);
 867	if (ld->ops->read)
 868		i = ld->ops->read(tty, file, buf, count);
 869	else
 870		i = -EIO;
 871	tty_ldisc_deref(ld);
 872
 873	if (i > 0)
 874		tty_update_time(&inode->i_atime);
 875
 876	return i;
 877}
 878
 879static void tty_write_unlock(struct tty_struct *tty)
 
 880{
 881	mutex_unlock(&tty->atomic_write_lock);
 882	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 883}
 884
 885static int tty_write_lock(struct tty_struct *tty, int ndelay)
 
 886{
 887	if (!mutex_trylock(&tty->atomic_write_lock)) {
 888		if (ndelay)
 889			return -EAGAIN;
 890		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 891			return -ERESTARTSYS;
 892	}
 893	return 0;
 894}
 895
 896/*
 897 * Split writes up in sane blocksizes to avoid
 898 * denial-of-service type attacks
 899 */
 900static inline ssize_t do_tty_write(
 901	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 902	struct tty_struct *tty,
 903	struct file *file,
 904	const char __user *buf,
 905	size_t count)
 906{
 907	ssize_t ret, written = 0;
 908	unsigned int chunk;
 909
 910	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 911	if (ret < 0)
 912		return ret;
 913
 914	/*
 915	 * We chunk up writes into a temporary buffer. This
 916	 * simplifies low-level drivers immensely, since they
 917	 * don't have locking issues and user mode accesses.
 918	 *
 919	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
 920	 * big chunk-size..
 921	 *
 922	 * The default chunk-size is 2kB, because the NTTY
 923	 * layer has problems with bigger chunks. It will
 924	 * claim to be able to handle more characters than
 925	 * it actually does.
 926	 *
 927	 * FIXME: This can probably go away now except that 64K chunks
 928	 * are too likely to fail unless switched to vmalloc...
 929	 */
 930	chunk = 2048;
 931	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
 932		chunk = 65536;
 933	if (count < chunk)
 934		chunk = count;
 935
 936	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
 937	if (tty->write_cnt < chunk) {
 938		unsigned char *buf_chunk;
 939
 940		if (chunk < 1024)
 941			chunk = 1024;
 942
 943		buf_chunk = kmalloc(chunk, GFP_KERNEL);
 944		if (!buf_chunk) {
 945			ret = -ENOMEM;
 946			goto out;
 947		}
 948		kfree(tty->write_buf);
 949		tty->write_cnt = chunk;
 950		tty->write_buf = buf_chunk;
 951	}
 952
 953	/* Do the write .. */
 954	for (;;) {
 955		size_t size = count;
 956		if (size > chunk)
 957			size = chunk;
 958		ret = -EFAULT;
 959		if (copy_from_user(tty->write_buf, buf, size))
 960			break;
 961		ret = write(tty, file, tty->write_buf, size);
 962		if (ret <= 0)
 963			break;
 964		written += ret;
 965		buf += ret;
 966		count -= ret;
 967		if (!count)
 968			break;
 969		ret = -ERESTARTSYS;
 970		if (signal_pending(current))
 971			break;
 972		cond_resched();
 973	}
 974	if (written) {
 975		tty_update_time(&file_inode(file)->i_mtime);
 
 976		ret = written;
 977	}
 978out:
 979	tty_write_unlock(tty);
 980	return ret;
 981}
 982
 983/**
 984 * tty_write_message - write a message to a certain tty, not just the console.
 985 * @tty: the destination tty_struct
 986 * @msg: the message to write
 987 *
 988 * This is used for messages that need to be redirected to a specific tty.
 989 * We don't put it into the syslog queue right now maybe in the future if
 990 * really needed.
 991 *
 992 * We must still hold the BTM and test the CLOSING flag for the moment.
 993 */
 994
 995void tty_write_message(struct tty_struct *tty, char *msg)
 996{
 997	if (tty) {
 998		mutex_lock(&tty->atomic_write_lock);
 999		tty_lock(tty);
1000		if (tty->ops->write && tty->count > 0)
 
1001			tty->ops->write(tty, msg, strlen(msg));
1002		tty_unlock(tty);
 
1003		tty_write_unlock(tty);
1004	}
1005	return;
1006}
1007
1008
1009/**
1010 *	tty_write		-	write method for tty device file
1011 *	@file: tty file pointer
1012 *	@buf: user data to write
1013 *	@count: bytes to write
1014 *	@ppos: unused
1015 *
1016 *	Write data to a tty device via the line discipline.
1017 *
1018 *	Locking:
1019 *		Locks the line discipline as required
1020 *		Writes to the tty driver are serialized by the atomic_write_lock
1021 *	and are then processed in chunks to the device. The line discipline
1022 *	write method will not be invoked in parallel for each device.
1023 */
1024
1025static ssize_t tty_write(struct file *file, const char __user *buf,
1026						size_t count, loff_t *ppos)
1027{
 
1028	struct tty_struct *tty = file_tty(file);
1029 	struct tty_ldisc *ld;
1030	ssize_t ret;
1031
1032	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1033		return -EIO;
1034	if (!tty || !tty->ops->write ||	tty_io_error(tty))
 
1035			return -EIO;
1036	/* Short term debug to catch buggy drivers */
1037	if (tty->ops->write_room == NULL)
1038		tty_err(tty, "missing write_room method\n");
 
1039	ld = tty_ldisc_ref_wait(tty);
1040	if (!ld)
1041		return hung_up_tty_write(file, buf, count, ppos);
1042	if (!ld->ops->write)
1043		ret = -EIO;
1044	else
1045		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1046	tty_ldisc_deref(ld);
1047	return ret;
1048}
1049
1050ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1051						size_t count, loff_t *ppos)
1052{
1053	struct file *p = NULL;
1054
1055	spin_lock(&redirect_lock);
1056	if (redirect)
1057		p = get_file(redirect);
 
 
1058	spin_unlock(&redirect_lock);
1059
1060	if (p) {
1061		ssize_t res;
1062		res = vfs_write(p, buf, count, &p->f_pos);
1063		fput(p);
1064		return res;
1065	}
1066	return tty_write(file, buf, count, ppos);
1067}
1068
1069/**
1070 *	tty_send_xchar	-	send priority character
1071 *
1072 *	Send a high priority character to the tty even if stopped
1073 *
1074 *	Locking: none for xchar method, write ordering for write method.
1075 */
1076
1077int tty_send_xchar(struct tty_struct *tty, char ch)
1078{
1079	int	was_stopped = tty->stopped;
1080
1081	if (tty->ops->send_xchar) {
1082		down_read(&tty->termios_rwsem);
1083		tty->ops->send_xchar(tty, ch);
1084		up_read(&tty->termios_rwsem);
1085		return 0;
1086	}
1087
1088	if (tty_write_lock(tty, 0) < 0)
1089		return -ERESTARTSYS;
1090
1091	down_read(&tty->termios_rwsem);
1092	if (was_stopped)
1093		start_tty(tty);
1094	tty->ops->write(tty, &ch, 1);
1095	if (was_stopped)
1096		stop_tty(tty);
1097	up_read(&tty->termios_rwsem);
1098	tty_write_unlock(tty);
1099	return 0;
1100}
1101
1102static char ptychar[] = "pqrstuvwxyzabcde";
1103
1104/**
1105 *	pty_line_name	-	generate name for a pty
1106 *	@driver: the tty driver in use
1107 *	@index: the minor number
1108 *	@p: output buffer of at least 6 bytes
1109 *
1110 *	Generate a name from a driver reference and write it to the output
1111 *	buffer.
1112 *
1113 *	Locking: None
1114 */
1115static void pty_line_name(struct tty_driver *driver, int index, char *p)
1116{
1117	int i = index + driver->name_base;
1118	/* ->name is initialized to "ttyp", but "tty" is expected */
1119	sprintf(p, "%s%c%x",
1120		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1121		ptychar[i >> 4 & 0xf], i & 0xf);
1122}
1123
1124/**
1125 *	tty_line_name	-	generate name for a tty
1126 *	@driver: the tty driver in use
1127 *	@index: the minor number
1128 *	@p: output buffer of at least 7 bytes
1129 *
1130 *	Generate a name from a driver reference and write it to the output
1131 *	buffer.
1132 *
1133 *	Locking: None
1134 */
1135static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1136{
1137	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1138		return sprintf(p, "%s", driver->name);
1139	else
1140		return sprintf(p, "%s%d", driver->name,
1141			       index + driver->name_base);
1142}
1143
1144/**
1145 *	tty_driver_lookup_tty() - find an existing tty, if any
1146 *	@driver: the driver for the tty
1147 *	@idx:	 the minor number
1148 *
1149 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1150 *	driver lookup() method returns an error.
1151 *
1152 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
 
 
1153 */
1154static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1155		struct file *file, int idx)
1156{
1157	struct tty_struct *tty;
1158
1159	if (driver->ops->lookup)
1160		if (!file)
1161			tty = ERR_PTR(-EIO);
1162		else
1163			tty = driver->ops->lookup(driver, file, idx);
1164	else
1165		tty = driver->ttys[idx];
1166
1167	if (!IS_ERR(tty))
1168		tty_kref_get(tty);
1169	return tty;
1170}
1171
1172/**
1173 *	tty_init_termios	-  helper for termios setup
1174 *	@tty: the tty to set up
1175 *
1176 *	Initialise the termios structure for this tty. This runs under
1177 *	the tty_mutex currently so we can be relaxed about ordering.
1178 */
1179
1180void tty_init_termios(struct tty_struct *tty)
1181{
1182	struct ktermios *tp;
1183	int idx = tty->index;
1184
1185	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1186		tty->termios = tty->driver->init_termios;
1187	else {
1188		/* Check for lazy saved data */
1189		tp = tty->driver->termios[idx];
1190		if (tp != NULL) {
1191			tty->termios = *tp;
1192			tty->termios.c_line  = tty->driver->init_termios.c_line;
1193		} else
1194			tty->termios = tty->driver->init_termios;
1195	}
 
 
 
1196	/* Compatibility until drivers always set this */
1197	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1198	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
 
1199}
1200EXPORT_SYMBOL_GPL(tty_init_termios);
1201
1202int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1203{
1204	tty_init_termios(tty);
1205	tty_driver_kref_get(driver);
1206	tty->count++;
1207	driver->ttys[tty->index] = tty;
1208	return 0;
1209}
1210EXPORT_SYMBOL_GPL(tty_standard_install);
1211
1212/**
1213 *	tty_driver_install_tty() - install a tty entry in the driver
1214 *	@driver: the driver for the tty
1215 *	@tty: the tty
1216 *
1217 *	Install a tty object into the driver tables. The tty->index field
1218 *	will be set by the time this is called. This method is responsible
1219 *	for ensuring any need additional structures are allocated and
1220 *	configured.
1221 *
1222 *	Locking: tty_mutex for now
1223 */
1224static int tty_driver_install_tty(struct tty_driver *driver,
1225						struct tty_struct *tty)
1226{
1227	return driver->ops->install ? driver->ops->install(driver, tty) :
1228		tty_standard_install(driver, tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
1229}
1230
1231/**
1232 *	tty_driver_remove_tty() - remove a tty from the driver tables
1233 *	@driver: the driver for the tty
1234 *	@idx:	 the minor number
1235 *
1236 *	Remvoe a tty object from the driver tables. The tty->index field
1237 *	will be set by the time this is called.
1238 *
1239 *	Locking: tty_mutex for now
1240 */
1241static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1242{
1243	if (driver->ops->remove)
1244		driver->ops->remove(driver, tty);
1245	else
1246		driver->ttys[tty->index] = NULL;
1247}
1248
1249/*
1250 * 	tty_reopen()	- fast re-open of an open tty
1251 * 	@tty	- the tty to open
1252 *
1253 *	Return 0 on success, -errno on error.
1254 *	Re-opens on master ptys are not allowed and return -EIO.
1255 *
1256 *	Locking: Caller must hold tty_lock
 
1257 */
1258static int tty_reopen(struct tty_struct *tty)
1259{
1260	struct tty_driver *driver = tty->driver;
1261	struct tty_ldisc *ld;
1262	int retval = 0;
1263
1264	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1265	    driver->subtype == PTY_TYPE_MASTER)
 
1266		return -EIO;
1267
1268	if (!tty->count)
1269		return -EAGAIN;
1270
1271	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1272		return -EBUSY;
 
 
 
1273
1274	ld = tty_ldisc_ref_wait(tty);
1275	if (ld) {
1276		tty_ldisc_deref(ld);
1277	} else {
1278		retval = tty_ldisc_lock(tty, 5 * HZ);
1279		if (retval)
1280			return retval;
1281
1282		if (!tty->ldisc)
1283			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1284		tty_ldisc_unlock(tty);
1285	}
 
 
1286
1287	if (retval == 0)
1288		tty->count++;
 
1289
1290	return retval;
1291}
1292
1293/**
1294 *	tty_init_dev		-	initialise a tty device
1295 *	@driver: tty driver we are opening a device on
1296 *	@idx: device index
1297 *	@ret_tty: returned tty structure
 
1298 *
1299 *	Prepare a tty device. This may not be a "new" clean device but
1300 *	could also be an active device. The pty drivers require special
1301 *	handling because of this.
1302 *
1303 *	Locking:
1304 *		The function is called under the tty_mutex, which
1305 *	protects us from the tty struct or driver itself going away.
1306 *
1307 *	On exit the tty device has the line discipline attached and
1308 *	a reference count of 1. If a pair was created for pty/tty use
1309 *	and the other was a pty master then it too has a reference count of 1.
1310 *
1311 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1312 * failed open.  The new code protects the open with a mutex, so it's
1313 * really quite straightforward.  The mutex locking can probably be
1314 * relaxed for the (most common) case of reopening a tty.
1315 */
1316
1317struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
 
1318{
1319	struct tty_struct *tty;
1320	int retval;
1321
 
 
 
 
 
 
1322	/*
1323	 * First time open is complex, especially for PTY devices.
1324	 * This code guarantees that either everything succeeds and the
1325	 * TTY is ready for operation, or else the table slots are vacated
1326	 * and the allocated memory released.  (Except that the termios
1327	 * may be retained.)
1328	 */
1329
1330	if (!try_module_get(driver->owner))
1331		return ERR_PTR(-ENODEV);
1332
1333	tty = alloc_tty_struct(driver, idx);
1334	if (!tty) {
1335		retval = -ENOMEM;
1336		goto err_module_put;
1337	}
 
1338
1339	tty_lock(tty);
1340	retval = tty_driver_install_tty(driver, tty);
1341	if (retval < 0)
1342		goto err_free_tty;
1343
1344	if (!tty->port)
1345		tty->port = driver->ports[idx];
1346
1347	WARN_RATELIMIT(!tty->port,
1348			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1349			__func__, tty->driver->name);
1350
1351	retval = tty_ldisc_lock(tty, 5 * HZ);
1352	if (retval)
1353		goto err_release_lock;
1354	tty->port->itty = tty;
1355
1356	/*
1357	 * Structures all installed ... call the ldisc open routines.
1358	 * If we fail here just call release_tty to clean up.  No need
1359	 * to decrement the use counts, as release_tty doesn't care.
1360	 */
1361	retval = tty_ldisc_setup(tty, tty->link);
1362	if (retval)
1363		goto err_release_tty;
1364	tty_ldisc_unlock(tty);
1365	/* Return the tty locked so that it cannot vanish under the caller */
1366	return tty;
1367
1368err_free_tty:
1369	tty_unlock(tty);
1370	free_tty_struct(tty);
1371err_module_put:
1372	module_put(driver->owner);
1373	return ERR_PTR(retval);
1374
1375	/* call the tty release_tty routine to clean out this slot */
1376err_release_tty:
1377	tty_ldisc_unlock(tty);
1378	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1379			     retval, idx);
1380err_release_lock:
1381	tty_unlock(tty);
1382	release_tty(tty, idx);
1383	return ERR_PTR(retval);
1384}
1385
1386/**
1387 * tty_save_termios() - save tty termios data in driver table
1388 * @tty: tty whose termios data to save
1389 *
1390 * Locking: Caller guarantees serialisation with tty_init_termios().
1391 */
1392void tty_save_termios(struct tty_struct *tty)
1393{
1394	struct ktermios *tp;
1395	int idx = tty->index;
1396
1397	/* If the port is going to reset then it has no termios to save */
1398	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1399		return;
1400
1401	/* Stash the termios data */
1402	tp = tty->driver->termios[idx];
1403	if (tp == NULL) {
1404		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1405		if (tp == NULL)
1406			return;
1407		tty->driver->termios[idx] = tp;
1408	}
1409	*tp = tty->termios;
1410}
1411EXPORT_SYMBOL_GPL(tty_save_termios);
1412
1413/**
1414 *	tty_flush_works		-	flush all works of a tty/pty pair
1415 *	@tty: tty device to flush works for (or either end of a pty pair)
1416 *
1417 *	Sync flush all works belonging to @tty (and the 'other' tty).
1418 */
1419static void tty_flush_works(struct tty_struct *tty)
1420{
1421	flush_work(&tty->SAK_work);
1422	flush_work(&tty->hangup_work);
1423	if (tty->link) {
1424		flush_work(&tty->link->SAK_work);
1425		flush_work(&tty->link->hangup_work);
1426	}
1427}
 
1428
1429/**
1430 *	release_one_tty		-	release tty structure memory
1431 *	@kref: kref of tty we are obliterating
1432 *
1433 *	Releases memory associated with a tty structure, and clears out the
1434 *	driver table slots. This function is called when a device is no longer
1435 *	in use. It also gets called when setup of a device fails.
1436 *
1437 *	Locking:
 
1438 *		takes the file list lock internally when working on the list
1439 *	of ttys that the driver keeps.
1440 *
1441 *	This method gets called from a work queue so that the driver private
1442 *	cleanup ops can sleep (needed for USB at least)
1443 */
1444static void release_one_tty(struct work_struct *work)
1445{
1446	struct tty_struct *tty =
1447		container_of(work, struct tty_struct, hangup_work);
1448	struct tty_driver *driver = tty->driver;
1449	struct module *owner = driver->owner;
1450
1451	if (tty->ops->cleanup)
1452		tty->ops->cleanup(tty);
1453
1454	tty->magic = 0;
1455	tty_driver_kref_put(driver);
1456	module_put(owner);
1457
1458	spin_lock(&tty->files_lock);
1459	list_del_init(&tty->tty_files);
1460	spin_unlock(&tty->files_lock);
1461
1462	put_pid(tty->pgrp);
1463	put_pid(tty->session);
1464	free_tty_struct(tty);
1465}
1466
1467static void queue_release_one_tty(struct kref *kref)
1468{
1469	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1470
 
 
 
 
 
1471	/* The hangup queue is now free so we can reuse it rather than
1472	   waste a chunk of memory for each port */
1473	INIT_WORK(&tty->hangup_work, release_one_tty);
1474	schedule_work(&tty->hangup_work);
1475}
1476
1477/**
1478 *	tty_kref_put		-	release a tty kref
1479 *	@tty: tty device
1480 *
1481 *	Release a reference to a tty device and if need be let the kref
1482 *	layer destruct the object for us
1483 */
1484
1485void tty_kref_put(struct tty_struct *tty)
1486{
1487	if (tty)
1488		kref_put(&tty->kref, queue_release_one_tty);
1489}
1490EXPORT_SYMBOL(tty_kref_put);
1491
1492/**
1493 *	release_tty		-	release tty structure memory
1494 *
1495 *	Release both @tty and a possible linked partner (think pty pair),
1496 *	and decrement the refcount of the backing module.
1497 *
1498 *	Locking:
1499 *		tty_mutex
1500 *		takes the file list lock internally when working on the list
1501 *	of ttys that the driver keeps.
 
1502 *
1503 */
1504static void release_tty(struct tty_struct *tty, int idx)
1505{
1506	/* This should always be true but check for the moment */
1507	WARN_ON(tty->index != idx);
1508	WARN_ON(!mutex_is_locked(&tty_mutex));
1509	if (tty->ops->shutdown)
1510		tty->ops->shutdown(tty);
1511	tty_save_termios(tty);
1512	tty_driver_remove_tty(tty->driver, tty);
1513	tty->port->itty = NULL;
1514	if (tty->link)
1515		tty->link->port->itty = NULL;
1516	tty_buffer_cancel_work(tty->port);
1517	if (tty->link)
1518		tty_buffer_cancel_work(tty->link->port);
1519
1520	tty_kref_put(tty->link);
1521	tty_kref_put(tty);
1522}
1523
1524/**
1525 *	tty_release_checks - check a tty before real release
1526 *	@tty: tty to check
1527 *	@o_tty: link of @tty (if any)
1528 *	@idx: index of the tty
1529 *
1530 *	Performs some paranoid checking before true release of the @tty.
1531 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1532 */
1533static int tty_release_checks(struct tty_struct *tty, int idx)
1534{
1535#ifdef TTY_PARANOIA_CHECK
1536	if (idx < 0 || idx >= tty->driver->num) {
1537		tty_debug(tty, "bad idx %d\n", idx);
1538		return -1;
1539	}
1540
1541	/* not much to check for devpts */
1542	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1543		return 0;
1544
1545	if (tty != tty->driver->ttys[idx]) {
1546		tty_debug(tty, "bad driver table[%d] = %p\n",
1547			  idx, tty->driver->ttys[idx]);
1548		return -1;
1549	}
1550	if (tty->driver->other) {
1551		struct tty_struct *o_tty = tty->link;
1552
1553		if (o_tty != tty->driver->other->ttys[idx]) {
1554			tty_debug(tty, "bad other table[%d] = %p\n",
1555				  idx, tty->driver->other->ttys[idx]);
1556			return -1;
1557		}
1558		if (o_tty->link != tty) {
1559			tty_debug(tty, "bad link = %p\n", o_tty->link);
1560			return -1;
1561		}
1562	}
1563#endif
1564	return 0;
1565}
1566
1567/**
1568 *      tty_kclose      -       closes tty opened by tty_kopen
1569 *      @tty: tty device
1570 *
1571 *      Performs the final steps to release and free a tty device. It is the
1572 *      same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1573 *      flag on tty->port.
1574 */
1575void tty_kclose(struct tty_struct *tty)
1576{
1577	/*
1578	 * Ask the line discipline code to release its structures
1579	 */
1580	tty_ldisc_release(tty);
1581
1582	/* Wait for pending work before tty destruction commmences */
1583	tty_flush_works(tty);
1584
1585	tty_debug_hangup(tty, "freeing structure\n");
1586	/*
1587	 * The release_tty function takes care of the details of clearing
1588	 * the slots and preserving the termios structure. The tty_unlock_pair
1589	 * should be safe as we keep a kref while the tty is locked (so the
1590	 * unlock never unlocks a freed tty).
1591	 */
1592	mutex_lock(&tty_mutex);
1593	tty_port_set_kopened(tty->port, 0);
1594	release_tty(tty, tty->index);
1595	mutex_unlock(&tty_mutex);
1596}
1597EXPORT_SYMBOL_GPL(tty_kclose);
1598
1599/**
1600 *	tty_release_struct	-	release a tty struct
1601 *	@tty: tty device
1602 *	@idx: index of the tty
1603 *
1604 *	Performs the final steps to release and free a tty device. It is
1605 *	roughly the reverse of tty_init_dev.
1606 */
1607void tty_release_struct(struct tty_struct *tty, int idx)
1608{
1609	/*
1610	 * Ask the line discipline code to release its structures
1611	 */
1612	tty_ldisc_release(tty);
1613
1614	/* Wait for pending work before tty destruction commmences */
1615	tty_flush_works(tty);
1616
1617	tty_debug_hangup(tty, "freeing structure\n");
1618	/*
1619	 * The release_tty function takes care of the details of clearing
1620	 * the slots and preserving the termios structure. The tty_unlock_pair
1621	 * should be safe as we keep a kref while the tty is locked (so the
1622	 * unlock never unlocks a freed tty).
1623	 */
1624	mutex_lock(&tty_mutex);
1625	release_tty(tty, idx);
1626	mutex_unlock(&tty_mutex);
1627}
1628EXPORT_SYMBOL_GPL(tty_release_struct);
1629
1630/**
1631 *	tty_release		-	vfs callback for close
1632 *	@inode: inode of tty
1633 *	@filp: file pointer for handle to tty
1634 *
1635 *	Called the last time each file handle is closed that references
1636 *	this tty. There may however be several such references.
1637 *
1638 *	Locking:
1639 *		Takes bkl. See tty_release_dev
1640 *
1641 * Even releasing the tty structures is a tricky business.. We have
1642 * to be very careful that the structures are all released at the
1643 * same time, as interrupts might otherwise get the wrong pointers.
1644 *
1645 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1646 * lead to double frees or releasing memory still in use.
1647 */
1648
1649int tty_release(struct inode *inode, struct file *filp)
1650{
1651	struct tty_struct *tty = file_tty(filp);
1652	struct tty_struct *o_tty = NULL;
1653	int	do_sleep, final;
 
1654	int	idx;
1655	long	timeout = 0;
1656	int	once = 1;
1657
1658	if (tty_paranoia_check(tty, inode, __func__))
1659		return 0;
1660
1661	tty_lock(tty);
1662	check_tty_count(tty, __func__);
1663
1664	__tty_fasync(-1, filp, 0);
1665
1666	idx = tty->index;
1667	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1668	    tty->driver->subtype == PTY_TYPE_MASTER)
1669		o_tty = tty->link;
 
1670
1671	if (tty_release_checks(tty, idx)) {
1672		tty_unlock(tty);
 
 
 
1673		return 0;
1674	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1675
1676	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
 
 
 
1677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1678	if (tty->ops->close)
1679		tty->ops->close(tty, filp);
1680
1681	/* If tty is pty master, lock the slave pty (stable lock order) */
1682	tty_lock_slave(o_tty);
1683
1684	/*
1685	 * Sanity check: if tty->count is going to zero, there shouldn't be
1686	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1687	 * wait queues and kick everyone out _before_ actually starting to
1688	 * close.  This ensures that we won't block while releasing the tty
1689	 * structure.
1690	 *
1691	 * The test for the o_tty closing is necessary, since the master and
1692	 * slave sides may close in any order.  If the slave side closes out
1693	 * first, its count will be one, since the master side holds an open.
1694	 * Thus this test wouldn't be triggered at the time the slave closed,
1695	 * so we do it now.
 
 
 
 
1696	 */
1697	while (1) {
 
 
 
 
 
 
 
 
1698		do_sleep = 0;
1699
1700		if (tty->count <= 1) {
1701			if (waitqueue_active(&tty->read_wait)) {
1702				wake_up_poll(&tty->read_wait, EPOLLIN);
1703				do_sleep++;
1704			}
1705			if (waitqueue_active(&tty->write_wait)) {
1706				wake_up_poll(&tty->write_wait, EPOLLOUT);
1707				do_sleep++;
1708			}
1709		}
1710		if (o_tty && o_tty->count <= 1) {
1711			if (waitqueue_active(&o_tty->read_wait)) {
1712				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1713				do_sleep++;
1714			}
1715			if (waitqueue_active(&o_tty->write_wait)) {
1716				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1717				do_sleep++;
1718			}
1719		}
1720		if (!do_sleep)
1721			break;
1722
1723		if (once) {
1724			once = 0;
1725			tty_warn(tty, "read/write wait queue active!\n");
1726		}
1727		schedule_timeout_killable(timeout);
1728		if (timeout < 120 * HZ)
1729			timeout = 2 * timeout + 1;
1730		else
1731			timeout = MAX_SCHEDULE_TIMEOUT;
1732	}
1733
1734	if (o_tty) {
 
 
 
 
 
1735		if (--o_tty->count < 0) {
1736			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
 
 
1737			o_tty->count = 0;
1738		}
1739	}
1740	if (--tty->count < 0) {
1741		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
 
1742		tty->count = 0;
1743	}
1744
1745	/*
1746	 * We've decremented tty->count, so we need to remove this file
1747	 * descriptor off the tty->tty_files list; this serves two
1748	 * purposes:
1749	 *  - check_tty_count sees the correct number of file descriptors
1750	 *    associated with this tty.
1751	 *  - do_tty_hangup no longer sees this file descriptor as
1752	 *    something that needs to be handled for hangups.
1753	 */
1754	tty_del_file(filp);
1755
1756	/*
1757	 * Perform some housekeeping before deciding whether to return.
1758	 *
 
 
 
 
 
 
 
 
 
 
1759	 * If _either_ side is closing, make sure there aren't any
1760	 * processes that still think tty or o_tty is their controlling
1761	 * tty.
1762	 */
1763	if (!tty->count) {
1764		read_lock(&tasklist_lock);
1765		session_clear_tty(tty->session);
1766		if (o_tty)
1767			session_clear_tty(o_tty->session);
1768		read_unlock(&tasklist_lock);
1769	}
1770
 
 
1771	/* check whether both sides are closing ... */
1772	final = !tty->count && !(o_tty && o_tty->count);
1773
1774	tty_unlock_slave(o_tty);
1775	tty_unlock(tty);
1776
1777	/* At this point, the tty->count == 0 should ensure a dead tty
1778	   cannot be re-opened by a racing opener */
1779
1780	if (!final)
1781		return 0;
 
1782
1783	tty_debug_hangup(tty, "final close\n");
 
 
 
 
 
 
 
 
 
 
 
1784
1785	tty_release_struct(tty, idx);
 
 
 
1786	return 0;
1787}
1788
1789/**
1790 *	tty_open_current_tty - get locked tty of current task
1791 *	@device: device number
1792 *	@filp: file pointer to tty
1793 *	@return: locked tty of the current task iff @device is /dev/tty
1794 *
1795 *	Performs a re-open of the current task's controlling tty.
 
 
 
 
 
 
 
 
 
1796 *
1797 *	We cannot return driver and index like for the other nodes because
1798 *	devpts will not work then. It expects inodes to be from devpts FS.
 
1799 */
1800static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
 
1801{
1802	struct tty_struct *tty;
1803	int retval;
 
 
 
 
 
 
1804
1805	if (device != MKDEV(TTYAUX_MAJOR, 0))
1806		return NULL;
 
 
1807
1808	tty = get_current_tty();
1809	if (!tty)
1810		return ERR_PTR(-ENXIO);
1811
1812	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1813	/* noctty = 1; */
1814	tty_lock(tty);
1815	tty_kref_put(tty);	/* safe to drop the kref now */
1816
1817	retval = tty_reopen(tty);
1818	if (retval < 0) {
1819		tty_unlock(tty);
1820		tty = ERR_PTR(retval);
 
 
 
 
 
1821	}
1822	return tty;
1823}
1824
1825/**
1826 *	tty_lookup_driver - lookup a tty driver for a given device file
1827 *	@device: device number
1828 *	@filp: file pointer to tty
1829 *	@index: index for the device in the @return driver
1830 *	@return: driver for this inode (with increased refcount)
1831 *
1832 * 	If @return is not erroneous, the caller is responsible to decrement the
1833 * 	refcount by tty_driver_kref_put.
1834 *
1835 *	Locking: tty_mutex protects get_tty_driver
1836 */
1837static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1838		int *index)
1839{
1840	struct tty_driver *driver = NULL;
1841
1842	switch (device) {
1843#ifdef CONFIG_VT
1844	case MKDEV(TTY_MAJOR, 0): {
1845		extern struct tty_driver *console_driver;
1846		driver = tty_driver_kref_get(console_driver);
1847		*index = fg_console;
1848		break;
 
1849	}
1850#endif
1851	case MKDEV(TTYAUX_MAJOR, 1): {
1852		struct tty_driver *console_driver = console_device(index);
1853		if (console_driver) {
1854			driver = tty_driver_kref_get(console_driver);
1855			if (driver && filp) {
1856				/* Don't let /dev/console block */
1857				filp->f_flags |= O_NONBLOCK;
1858				break;
 
1859			}
1860		}
1861		if (driver)
1862			tty_driver_kref_put(driver);
1863		return ERR_PTR(-ENODEV);
1864	}
1865	default:
1866		driver = get_tty_driver(device, index);
1867		if (!driver)
1868			return ERR_PTR(-ENODEV);
1869		break;
1870	}
1871	return driver;
1872}
1873
1874/**
1875 *	tty_kopen	-	open a tty device for kernel
1876 *	@device: dev_t of device to open
1877 *
1878 *	Opens tty exclusively for kernel. Performs the driver lookup,
1879 *	makes sure it's not already opened and performs the first-time
1880 *	tty initialization.
1881 *
1882 *	Returns the locked initialized &tty_struct
1883 *
1884 *	Claims the global tty_mutex to serialize:
1885 *	  - concurrent first-time tty initialization
1886 *	  - concurrent tty driver removal w/ lookup
1887 *	  - concurrent tty removal from driver table
1888 */
1889struct tty_struct *tty_kopen(dev_t device)
1890{
1891	struct tty_struct *tty;
1892	struct tty_driver *driver = NULL;
1893	int index = -1;
1894
1895	mutex_lock(&tty_mutex);
1896	driver = tty_lookup_driver(device, NULL, &index);
1897	if (IS_ERR(driver)) {
1898		mutex_unlock(&tty_mutex);
1899		return ERR_CAST(driver);
1900	}
1901
1902	/* check whether we're reopening an existing tty */
1903	tty = tty_driver_lookup_tty(driver, NULL, index);
1904	if (IS_ERR(tty))
1905		goto out;
1906
1907	if (tty) {
1908		/* drop kref from tty_driver_lookup_tty() */
1909		tty_kref_put(tty);
1910		tty = ERR_PTR(-EBUSY);
1911	} else { /* tty_init_dev returns tty with the tty_lock held */
1912		tty = tty_init_dev(driver, index);
1913		if (IS_ERR(tty))
1914			goto out;
1915		tty_port_set_kopened(tty->port, 1);
1916	}
1917out:
1918	mutex_unlock(&tty_mutex);
1919	tty_driver_kref_put(driver);
1920	return tty;
1921}
1922EXPORT_SYMBOL_GPL(tty_kopen);
1923
1924/**
1925 *	tty_open_by_driver	-	open a tty device
1926 *	@device: dev_t of device to open
1927 *	@inode: inode of device file
1928 *	@filp: file pointer to tty
1929 *
1930 *	Performs the driver lookup, checks for a reopen, or otherwise
1931 *	performs the first-time tty initialization.
1932 *
1933 *	Returns the locked initialized or re-opened &tty_struct
1934 *
1935 *	Claims the global tty_mutex to serialize:
1936 *	  - concurrent first-time tty initialization
1937 *	  - concurrent tty driver removal w/ lookup
1938 *	  - concurrent tty removal from driver table
1939 */
1940static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
1941					     struct file *filp)
1942{
1943	struct tty_struct *tty;
1944	struct tty_driver *driver = NULL;
1945	int index = -1;
1946	int retval;
1947
1948	mutex_lock(&tty_mutex);
1949	driver = tty_lookup_driver(device, filp, &index);
1950	if (IS_ERR(driver)) {
1951		mutex_unlock(&tty_mutex);
1952		return ERR_CAST(driver);
1953	}
 
 
 
 
1954
1955	/* check whether we're reopening an existing tty */
1956	tty = tty_driver_lookup_tty(driver, filp, index);
1957	if (IS_ERR(tty)) {
1958		mutex_unlock(&tty_mutex);
1959		goto out;
1960	}
1961
1962	if (tty) {
1963		if (tty_port_kopened(tty->port)) {
1964			tty_kref_put(tty);
1965			mutex_unlock(&tty_mutex);
1966			tty = ERR_PTR(-EBUSY);
1967			goto out;
1968		}
1969		mutex_unlock(&tty_mutex);
1970		retval = tty_lock_interruptible(tty);
1971		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
1972		if (retval) {
1973			if (retval == -EINTR)
1974				retval = -ERESTARTSYS;
1975			tty = ERR_PTR(retval);
1976			goto out;
1977		}
1978		retval = tty_reopen(tty);
1979		if (retval < 0) {
1980			tty_unlock(tty);
1981			tty = ERR_PTR(retval);
1982		}
1983	} else { /* Returns with the tty_lock held for now */
1984		tty = tty_init_dev(driver, index);
1985		mutex_unlock(&tty_mutex);
1986	}
1987out:
1988	tty_driver_kref_put(driver);
1989	return tty;
1990}
1991
1992/**
1993 *	tty_open		-	open a tty device
1994 *	@inode: inode of device file
1995 *	@filp: file pointer to tty
1996 *
1997 *	tty_open and tty_release keep up the tty count that contains the
1998 *	number of opens done on a tty. We cannot use the inode-count, as
1999 *	different inodes might point to the same tty.
2000 *
2001 *	Open-counting is needed for pty masters, as well as for keeping
2002 *	track of serial lines: DTR is dropped when the last close happens.
2003 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2004 *
2005 *	The termios state of a pty is reset on first open so that
2006 *	settings don't persist across reuse.
2007 *
2008 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2009 *		 tty->count should protect the rest.
2010 *		 ->siglock protects ->signal/->sighand
2011 *
2012 *	Note: the tty_unlock/lock cases without a ref are only safe due to
2013 *	tty_mutex
2014 */
2015
2016static int tty_open(struct inode *inode, struct file *filp)
2017{
2018	struct tty_struct *tty;
2019	int noctty, retval;
2020	dev_t device = inode->i_rdev;
2021	unsigned saved_flags = filp->f_flags;
2022
2023	nonseekable_open(inode, filp);
2024
2025retry_open:
2026	retval = tty_alloc_file(filp);
2027	if (retval)
2028		return -ENOMEM;
2029
2030	tty = tty_open_current_tty(device, filp);
2031	if (!tty)
2032		tty = tty_open_by_driver(device, inode, filp);
2033
2034	if (IS_ERR(tty)) {
2035		tty_free_file(filp);
2036		retval = PTR_ERR(tty);
2037		if (retval != -EAGAIN || signal_pending(current))
2038			return retval;
2039		schedule();
2040		goto retry_open;
2041	}
2042
2043	tty_add_file(tty, filp);
2044
2045	check_tty_count(tty, __func__);
2046	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
 
 
2047
 
 
 
 
 
 
 
2048	if (tty->ops->open)
2049		retval = tty->ops->open(tty, filp);
2050	else
2051		retval = -ENODEV;
2052	filp->f_flags = saved_flags;
2053
 
 
 
 
2054	if (retval) {
2055		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2056
2057		tty_unlock(tty); /* need to call tty_release without BTM */
 
 
2058		tty_release(inode, filp);
2059		if (retval != -ERESTARTSYS)
2060			return retval;
2061
2062		if (signal_pending(current))
2063			return retval;
2064
2065		schedule();
2066		/*
2067		 * Need to reset f_op in case a hangup happened.
2068		 */
2069		if (tty_hung_up_p(filp))
 
2070			filp->f_op = &tty_fops;
 
2071		goto retry_open;
2072	}
2073	clear_bit(TTY_HUPPED, &tty->flags);
2074
2075	noctty = (filp->f_flags & O_NOCTTY) ||
2076		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2077		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2078		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2079		  tty->driver->subtype == PTY_TYPE_MASTER);
2080	if (!noctty)
2081		tty_open_proc_set_tty(filp, tty);
2082	tty_unlock(tty);
 
 
 
 
2083	return 0;
2084}
2085
2086
2087
2088/**
2089 *	tty_poll	-	check tty status
2090 *	@filp: file being polled
2091 *	@wait: poll wait structures to update
2092 *
2093 *	Call the line discipline polling method to obtain the poll
2094 *	status of the device.
2095 *
2096 *	Locking: locks called line discipline but ldisc poll method
2097 *	may be re-entered freely by other callers.
2098 */
2099
2100static __poll_t tty_poll(struct file *filp, poll_table *wait)
2101{
2102	struct tty_struct *tty = file_tty(filp);
2103	struct tty_ldisc *ld;
2104	__poll_t ret = 0;
2105
2106	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2107		return 0;
2108
2109	ld = tty_ldisc_ref_wait(tty);
2110	if (!ld)
2111		return hung_up_tty_poll(filp, wait);
2112	if (ld->ops->poll)
2113		ret = ld->ops->poll(tty, filp, wait);
2114	tty_ldisc_deref(ld);
2115	return ret;
2116}
2117
2118static int __tty_fasync(int fd, struct file *filp, int on)
2119{
2120	struct tty_struct *tty = file_tty(filp);
2121	unsigned long flags;
2122	int retval = 0;
2123
2124	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2125		goto out;
2126
2127	retval = fasync_helper(fd, filp, on, &tty->fasync);
2128	if (retval <= 0)
2129		goto out;
2130
2131	if (on) {
2132		enum pid_type type;
2133		struct pid *pid;
2134
 
2135		spin_lock_irqsave(&tty->ctrl_lock, flags);
2136		if (tty->pgrp) {
2137			pid = tty->pgrp;
2138			type = PIDTYPE_PGID;
2139		} else {
2140			pid = task_pid(current);
2141			type = PIDTYPE_TGID;
2142		}
2143		get_pid(pid);
2144		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2145		__f_setown(filp, pid, type, 0);
2146		put_pid(pid);
2147		retval = 0;
 
 
 
 
2148	}
 
2149out:
2150	return retval;
2151}
2152
2153static int tty_fasync(int fd, struct file *filp, int on)
2154{
2155	struct tty_struct *tty = file_tty(filp);
2156	int retval = -ENOTTY;
2157
2158	tty_lock(tty);
2159	if (!tty_hung_up_p(filp))
2160		retval = __tty_fasync(fd, filp, on);
2161	tty_unlock(tty);
2162
2163	return retval;
2164}
2165
2166/**
2167 *	tiocsti			-	fake input character
2168 *	@tty: tty to fake input into
2169 *	@p: pointer to character
2170 *
2171 *	Fake input to a tty device. Does the necessary locking and
2172 *	input management.
2173 *
2174 *	FIXME: does not honour flow control ??
2175 *
2176 *	Locking:
2177 *		Called functions take tty_ldiscs_lock
2178 *		current->signal->tty check is safe without locks
2179 *
2180 *	FIXME: may race normal receive processing
2181 */
2182
2183static int tiocsti(struct tty_struct *tty, char __user *p)
2184{
2185	char ch, mbz = 0;
2186	struct tty_ldisc *ld;
2187
2188	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2189		return -EPERM;
2190	if (get_user(ch, p))
2191		return -EFAULT;
2192	tty_audit_tiocsti(tty, ch);
2193	ld = tty_ldisc_ref_wait(tty);
2194	if (!ld)
2195		return -EIO;
2196	if (ld->ops->receive_buf)
2197		ld->ops->receive_buf(tty, &ch, &mbz, 1);
2198	tty_ldisc_deref(ld);
2199	return 0;
2200}
2201
2202/**
2203 *	tiocgwinsz		-	implement window query ioctl
2204 *	@tty; tty
2205 *	@arg: user buffer for result
2206 *
2207 *	Copies the kernel idea of the window size into the user buffer.
2208 *
2209 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2210 *		is consistent.
2211 */
2212
2213static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2214{
2215	int err;
2216
2217	mutex_lock(&tty->winsize_mutex);
2218	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2219	mutex_unlock(&tty->winsize_mutex);
2220
2221	return err ? -EFAULT: 0;
2222}
2223
2224/**
2225 *	tty_do_resize		-	resize event
2226 *	@tty: tty being resized
2227 *	@rows: rows (character)
2228 *	@cols: cols (character)
2229 *
2230 *	Update the termios variables and send the necessary signals to
2231 *	peform a terminal resize correctly
2232 */
2233
2234int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2235{
2236	struct pid *pgrp;
 
2237
2238	/* Lock the tty */
2239	mutex_lock(&tty->winsize_mutex);
2240	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2241		goto done;
 
 
 
 
 
2242
2243	/* Signal the foreground process group */
2244	pgrp = tty_get_pgrp(tty);
2245	if (pgrp)
2246		kill_pgrp(pgrp, SIGWINCH, 1);
2247	put_pid(pgrp);
2248
2249	tty->winsize = *ws;
2250done:
2251	mutex_unlock(&tty->winsize_mutex);
2252	return 0;
2253}
2254EXPORT_SYMBOL(tty_do_resize);
2255
2256/**
2257 *	tiocswinsz		-	implement window size set ioctl
2258 *	@tty; tty side of tty
2259 *	@arg: user buffer for result
2260 *
2261 *	Copies the user idea of the window size to the kernel. Traditionally
2262 *	this is just advisory information but for the Linux console it
2263 *	actually has driver level meaning and triggers a VC resize.
2264 *
2265 *	Locking:
2266 *		Driver dependent. The default do_resize method takes the
2267 *	tty termios mutex and ctrl_lock. The console takes its own lock
2268 *	then calls into the default method.
2269 */
2270
2271static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2272{
2273	struct winsize tmp_ws;
2274	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2275		return -EFAULT;
2276
2277	if (tty->ops->resize)
2278		return tty->ops->resize(tty, &tmp_ws);
2279	else
2280		return tty_do_resize(tty, &tmp_ws);
2281}
2282
2283/**
2284 *	tioccons	-	allow admin to move logical console
2285 *	@file: the file to become console
2286 *
2287 *	Allow the administrator to move the redirected console device
2288 *
2289 *	Locking: uses redirect_lock to guard the redirect information
2290 */
2291
2292static int tioccons(struct file *file)
2293{
2294	if (!capable(CAP_SYS_ADMIN))
2295		return -EPERM;
2296	if (file->f_op->write == redirected_tty_write) {
2297		struct file *f;
2298		spin_lock(&redirect_lock);
2299		f = redirect;
2300		redirect = NULL;
2301		spin_unlock(&redirect_lock);
2302		if (f)
2303			fput(f);
2304		return 0;
2305	}
2306	spin_lock(&redirect_lock);
2307	if (redirect) {
2308		spin_unlock(&redirect_lock);
2309		return -EBUSY;
2310	}
2311	redirect = get_file(file);
 
2312	spin_unlock(&redirect_lock);
2313	return 0;
2314}
2315
2316/**
2317 *	tiocsetd	-	set line discipline
2318 *	@tty: tty device
2319 *	@p: pointer to user data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2320 *
2321 *	Set the line discipline according to user request.
 
2322 *
2323 *	Locking: see tty_set_ldisc, this function is just a helper
2324 */
2325
2326static int tiocsetd(struct tty_struct *tty, int __user *p)
2327{
2328	int disc;
2329	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2330
2331	if (get_user(disc, p))
 
 
 
 
 
 
 
 
2332		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2333
2334	ret = tty_set_ldisc(tty, disc);
 
 
 
 
 
 
 
 
 
 
2335
2336	return ret;
 
 
 
 
 
 
 
 
 
 
2337}
2338
2339/**
2340 *	tiocgetd	-	get line discipline
2341 *	@tty: tty device
2342 *	@p: pointer to user data
2343 *
2344 *	Retrieves the line discipline id directly from the ldisc.
2345 *
2346 *	Locking: waits for ldisc reference (in case the line discipline
2347 *		is changing or the tty is being hungup)
2348 */
2349
2350static int tiocgetd(struct tty_struct *tty, int __user *p)
2351{
2352	struct tty_ldisc *ld;
2353	int ret;
2354
2355	ld = tty_ldisc_ref_wait(tty);
2356	if (!ld)
2357		return -EIO;
2358	ret = put_user(ld->ops->num, p);
2359	tty_ldisc_deref(ld);
2360	return ret;
2361}
2362
2363/**
2364 *	send_break	-	performed time break
2365 *	@tty: device to break on
2366 *	@duration: timeout in mS
2367 *
2368 *	Perform a timed break on hardware that lacks its own driver level
2369 *	timed break functionality.
2370 *
2371 *	Locking:
2372 *		atomic_write_lock serializes
2373 *
2374 */
2375
2376static int send_break(struct tty_struct *tty, unsigned int duration)
2377{
2378	int retval;
2379
2380	if (tty->ops->break_ctl == NULL)
2381		return 0;
2382
2383	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2384		retval = tty->ops->break_ctl(tty, duration);
2385	else {
2386		/* Do the work ourselves */
2387		if (tty_write_lock(tty, 0) < 0)
2388			return -EINTR;
2389		retval = tty->ops->break_ctl(tty, -1);
2390		if (retval)
2391			goto out;
2392		if (!signal_pending(current))
2393			msleep_interruptible(duration);
2394		retval = tty->ops->break_ctl(tty, 0);
2395out:
2396		tty_write_unlock(tty);
2397		if (signal_pending(current))
2398			retval = -EINTR;
2399	}
2400	return retval;
2401}
2402
2403/**
2404 *	tty_tiocmget		-	get modem status
2405 *	@tty: tty device
2406 *	@file: user file pointer
2407 *	@p: pointer to result
2408 *
2409 *	Obtain the modem status bits from the tty driver if the feature
2410 *	is supported. Return -EINVAL if it is not available.
2411 *
2412 *	Locking: none (up to the driver)
2413 */
2414
2415static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2416{
2417	int retval = -EINVAL;
2418
2419	if (tty->ops->tiocmget) {
2420		retval = tty->ops->tiocmget(tty);
2421
2422		if (retval >= 0)
2423			retval = put_user(retval, p);
2424	}
2425	return retval;
2426}
2427
2428/**
2429 *	tty_tiocmset		-	set modem status
2430 *	@tty: tty device
2431 *	@cmd: command - clear bits, set bits or set all
2432 *	@p: pointer to desired bits
2433 *
2434 *	Set the modem status bits from the tty driver if the feature
2435 *	is supported. Return -EINVAL if it is not available.
2436 *
2437 *	Locking: none (up to the driver)
2438 */
2439
2440static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2441	     unsigned __user *p)
2442{
2443	int retval;
2444	unsigned int set, clear, val;
2445
2446	if (tty->ops->tiocmset == NULL)
2447		return -EINVAL;
2448
2449	retval = get_user(val, p);
2450	if (retval)
2451		return retval;
2452	set = clear = 0;
2453	switch (cmd) {
2454	case TIOCMBIS:
2455		set = val;
2456		break;
2457	case TIOCMBIC:
2458		clear = val;
2459		break;
2460	case TIOCMSET:
2461		set = val;
2462		clear = ~val;
2463		break;
2464	}
2465	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2466	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2467	return tty->ops->tiocmset(tty, set, clear);
2468}
2469
2470static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2471{
2472	int retval = -EINVAL;
2473	struct serial_icounter_struct icount;
2474	memset(&icount, 0, sizeof(icount));
2475	if (tty->ops->get_icount)
2476		retval = tty->ops->get_icount(tty, &icount);
2477	if (retval != 0)
2478		return retval;
2479	if (copy_to_user(arg, &icount, sizeof(icount)))
2480		return -EFAULT;
2481	return 0;
2482}
2483
2484static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2485{
2486	static DEFINE_RATELIMIT_STATE(depr_flags,
2487			DEFAULT_RATELIMIT_INTERVAL,
2488			DEFAULT_RATELIMIT_BURST);
2489	char comm[TASK_COMM_LEN];
2490	struct serial_struct v;
2491	int flags;
2492
2493	if (copy_from_user(&v, ss, sizeof(struct serial_struct)))
2494		return -EFAULT;
2495
2496	flags = v.flags & ASYNC_DEPRECATED;
2497
2498	if (flags && __ratelimit(&depr_flags))
2499		pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2500			__func__, get_task_comm(comm, current), flags);
2501	if (!tty->ops->set_serial)
2502		return -ENOTTY;
2503	return tty->ops->set_serial(tty, &v);
2504}
2505
2506static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2507{
2508	struct serial_struct v;
2509	int err;
2510
2511	memset(&v, 0, sizeof(struct serial_struct));
2512	if (!tty->ops->get_serial)
2513		return -ENOTTY;
2514	err = tty->ops->get_serial(tty, &v);
2515	if (!err && copy_to_user(ss, &v, sizeof(struct serial_struct)))
2516		err = -EFAULT;
2517	return err;
2518}
 
2519
2520/*
2521 * if pty, return the slave side (real_tty)
2522 * otherwise, return self
2523 */
2524static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2525{
2526	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2527	    tty->driver->subtype == PTY_TYPE_MASTER)
2528		tty = tty->link;
2529	return tty;
2530}
 
2531
2532/*
2533 * Split this up, as gcc can choke on it otherwise..
2534 */
2535long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2536{
2537	struct tty_struct *tty = file_tty(file);
2538	struct tty_struct *real_tty;
2539	void __user *p = (void __user *)arg;
2540	int retval;
2541	struct tty_ldisc *ld;
 
2542
2543	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2544		return -EINVAL;
2545
2546	real_tty = tty_pair_get_tty(tty);
2547
2548	/*
2549	 * Factor out some common prep work
2550	 */
2551	switch (cmd) {
2552	case TIOCSETD:
2553	case TIOCSBRK:
2554	case TIOCCBRK:
2555	case TCSBRK:
2556	case TCSBRKP:
2557		retval = tty_check_change(tty);
2558		if (retval)
2559			return retval;
2560		if (cmd != TIOCCBRK) {
2561			tty_wait_until_sent(tty, 0);
2562			if (signal_pending(current))
2563				return -EINTR;
2564		}
2565		break;
2566	}
2567
2568	/*
2569	 *	Now do the stuff.
2570	 */
2571	switch (cmd) {
2572	case TIOCSTI:
2573		return tiocsti(tty, p);
2574	case TIOCGWINSZ:
2575		return tiocgwinsz(real_tty, p);
2576	case TIOCSWINSZ:
2577		return tiocswinsz(real_tty, p);
2578	case TIOCCONS:
2579		return real_tty != tty ? -EINVAL : tioccons(file);
 
 
2580	case TIOCEXCL:
2581		set_bit(TTY_EXCLUSIVE, &tty->flags);
2582		return 0;
2583	case TIOCNXCL:
2584		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2585		return 0;
2586	case TIOCGEXCL:
2587	{
2588		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2589		return put_user(excl, (int __user *)p);
2590	}
 
 
 
 
 
 
 
 
2591	case TIOCGETD:
2592		return tiocgetd(tty, p);
2593	case TIOCSETD:
2594		return tiocsetd(tty, p);
2595	case TIOCVHANGUP:
2596		if (!capable(CAP_SYS_ADMIN))
2597			return -EPERM;
2598		tty_vhangup(tty);
2599		return 0;
2600	case TIOCGDEV:
2601	{
2602		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2603		return put_user(ret, (unsigned int __user *)p);
2604	}
2605	/*
2606	 * Break handling
2607	 */
2608	case TIOCSBRK:	/* Turn break on, unconditionally */
2609		if (tty->ops->break_ctl)
2610			return tty->ops->break_ctl(tty, -1);
2611		return 0;
2612	case TIOCCBRK:	/* Turn break off, unconditionally */
2613		if (tty->ops->break_ctl)
2614			return tty->ops->break_ctl(tty, 0);
2615		return 0;
2616	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2617		/* non-zero arg means wait for all output data
2618		 * to be sent (performed above) but don't send break.
2619		 * This is used by the tcdrain() termios function.
2620		 */
2621		if (!arg)
2622			return send_break(tty, 250);
2623		return 0;
2624	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2625		return send_break(tty, arg ? arg*100 : 250);
2626
2627	case TIOCMGET:
2628		return tty_tiocmget(tty, p);
2629	case TIOCMSET:
2630	case TIOCMBIC:
2631	case TIOCMBIS:
2632		return tty_tiocmset(tty, cmd, p);
2633	case TIOCGICOUNT:
2634		return tty_tiocgicount(tty, p);
 
 
 
 
2635	case TCFLSH:
2636		switch (arg) {
2637		case TCIFLUSH:
2638		case TCIOFLUSH:
2639		/* flush tty buffer and allow ldisc to process ioctl */
2640			tty_buffer_flush(tty, NULL);
2641			break;
2642		}
2643		break;
2644	case TIOCSSERIAL:
2645		return tty_tiocsserial(tty, p);
2646	case TIOCGSERIAL:
2647		return tty_tiocgserial(tty, p);
2648	case TIOCGPTPEER:
2649		/* Special because the struct file is needed */
2650		return ptm_open_peer(file, tty, (int)arg);
2651	default:
2652		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2653		if (retval != -ENOIOCTLCMD)
2654			return retval;
2655	}
2656	if (tty->ops->ioctl) {
2657		retval = tty->ops->ioctl(tty, cmd, arg);
2658		if (retval != -ENOIOCTLCMD)
2659			return retval;
2660	}
2661	ld = tty_ldisc_ref_wait(tty);
2662	if (!ld)
2663		return hung_up_tty_ioctl(file, cmd, arg);
2664	retval = -EINVAL;
2665	if (ld->ops->ioctl) {
2666		retval = ld->ops->ioctl(tty, file, cmd, arg);
2667		if (retval == -ENOIOCTLCMD)
2668			retval = -ENOTTY;
2669	}
2670	tty_ldisc_deref(ld);
2671	return retval;
2672}
2673
2674#ifdef CONFIG_COMPAT
2675
2676struct serial_struct32 {
2677        compat_int_t    type;
2678        compat_int_t    line;
2679        compat_uint_t   port;
2680        compat_int_t    irq;
2681        compat_int_t    flags;
2682        compat_int_t    xmit_fifo_size;
2683        compat_int_t    custom_divisor;
2684        compat_int_t    baud_base;
2685        unsigned short  close_delay;
2686        char    io_type;
2687        char    reserved_char[1];
2688        compat_int_t    hub6;
2689        unsigned short  closing_wait; /* time to wait before closing */
2690        unsigned short  closing_wait2; /* no longer used... */
2691        compat_uint_t   iomem_base;
2692        unsigned short  iomem_reg_shift;
2693        unsigned int    port_high;
2694     /* compat_ulong_t  iomap_base FIXME */
2695        compat_int_t    reserved[1];
2696};
2697
2698static int compat_tty_tiocsserial(struct tty_struct *tty,
2699		struct serial_struct32 __user *ss)
2700{
2701	static DEFINE_RATELIMIT_STATE(depr_flags,
2702			DEFAULT_RATELIMIT_INTERVAL,
2703			DEFAULT_RATELIMIT_BURST);
2704	char comm[TASK_COMM_LEN];
2705	struct serial_struct32 v32;
2706	struct serial_struct v;
2707	int flags;
2708
2709	if (copy_from_user(&v32, ss, sizeof(struct serial_struct32)))
2710		return -EFAULT;
2711
2712	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2713	v.iomem_base = compat_ptr(v32.iomem_base);
2714	v.iomem_reg_shift = v32.iomem_reg_shift;
2715	v.port_high = v32.port_high;
2716	v.iomap_base = 0;
2717
2718	flags = v.flags & ASYNC_DEPRECATED;
2719
2720	if (flags && __ratelimit(&depr_flags))
2721		pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2722			__func__, get_task_comm(comm, current), flags);
2723	if (!tty->ops->set_serial)
2724		return -ENOTTY;
2725	return tty->ops->set_serial(tty, &v);
2726}
2727
2728static int compat_tty_tiocgserial(struct tty_struct *tty,
2729			struct serial_struct32 __user *ss)
2730{
2731	struct serial_struct32 v32;
2732	struct serial_struct v;
2733	int err;
2734	memset(&v, 0, sizeof(struct serial_struct));
2735
2736	if (!tty->ops->set_serial)
2737		return -ENOTTY;
2738	err = tty->ops->get_serial(tty, &v);
2739	if (!err) {
2740		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2741		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2742			0xfffffff : ptr_to_compat(v.iomem_base);
2743		v32.iomem_reg_shift = v.iomem_reg_shift;
2744		v32.port_high = v.port_high;
2745		if (copy_to_user(ss, &v32, sizeof(struct serial_struct32)))
2746			err = -EFAULT;
2747	}
2748	return err;
2749}
2750static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2751				unsigned long arg)
2752{
 
2753	struct tty_struct *tty = file_tty(file);
2754	struct tty_ldisc *ld;
2755	int retval = -ENOIOCTLCMD;
2756
2757	switch (cmd) {
2758	case TIOCSTI:
2759	case TIOCGWINSZ:
2760	case TIOCSWINSZ:
2761	case TIOCGEXCL:
2762	case TIOCGETD:
2763	case TIOCSETD:
2764	case TIOCGDEV:
2765	case TIOCMGET:
2766	case TIOCMSET:
2767	case TIOCMBIC:
2768	case TIOCMBIS:
2769	case TIOCGICOUNT:
2770	case TIOCGPGRP:
2771	case TIOCSPGRP:
2772	case TIOCGSID:
2773	case TIOCSERGETLSR:
2774	case TIOCGRS485:
2775	case TIOCSRS485:
2776#ifdef TIOCGETP
2777	case TIOCGETP:
2778	case TIOCSETP:
2779	case TIOCSETN:
2780#endif
2781#ifdef TIOCGETC
2782	case TIOCGETC:
2783	case TIOCSETC:
2784#endif
2785#ifdef TIOCGLTC
2786	case TIOCGLTC:
2787	case TIOCSLTC:
2788#endif
2789	case TCSETSF:
2790	case TCSETSW:
2791	case TCSETS:
2792	case TCGETS:
2793#ifdef TCGETS2
2794	case TCGETS2:
2795	case TCSETSF2:
2796	case TCSETSW2:
2797	case TCSETS2:
2798#endif
2799	case TCGETA:
2800	case TCSETAF:
2801	case TCSETAW:
2802	case TCSETA:
2803	case TIOCGLCKTRMIOS:
2804	case TIOCSLCKTRMIOS:
2805#ifdef TCGETX
2806	case TCGETX:
2807	case TCSETX:
2808	case TCSETXW:
2809	case TCSETXF:
2810#endif
2811	case TIOCGSOFTCAR:
2812	case TIOCSSOFTCAR:
2813		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2814	case TIOCCONS:
2815	case TIOCEXCL:
2816	case TIOCNXCL:
2817	case TIOCVHANGUP:
2818	case TIOCSBRK:
2819	case TIOCCBRK:
2820	case TCSBRK:
2821	case TCSBRKP:
2822	case TCFLSH:
2823	case TIOCGPTPEER:
2824	case TIOCNOTTY:
2825	case TIOCSCTTY:
2826	case TCXONC:
2827	case TIOCMIWAIT:
2828	case TIOCSERCONFIG:
2829		return tty_ioctl(file, cmd, arg);
2830	}
2831
2832	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2833		return -EINVAL;
2834
2835	switch (cmd) {
2836	case TIOCSSERIAL:
2837		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2838	case TIOCGSERIAL:
2839		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2840	}
2841	if (tty->ops->compat_ioctl) {
2842		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2843		if (retval != -ENOIOCTLCMD)
2844			return retval;
2845	}
2846
2847	ld = tty_ldisc_ref_wait(tty);
2848	if (!ld)
2849		return hung_up_tty_compat_ioctl(file, cmd, arg);
2850	if (ld->ops->compat_ioctl)
2851		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2852	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2853		retval = ld->ops->ioctl(tty, file,
2854				(unsigned long)compat_ptr(cmd), arg);
2855	tty_ldisc_deref(ld);
2856
2857	return retval;
2858}
2859#endif
2860
2861static int this_tty(const void *t, struct file *file, unsigned fd)
2862{
2863	if (likely(file->f_op->read != tty_read))
2864		return 0;
2865	return file_tty(file) != t ? 0 : fd + 1;
2866}
2867	
2868/*
2869 * This implements the "Secure Attention Key" ---  the idea is to
2870 * prevent trojan horses by killing all processes associated with this
2871 * tty when the user hits the "Secure Attention Key".  Required for
2872 * super-paranoid applications --- see the Orange Book for more details.
2873 *
2874 * This code could be nicer; ideally it should send a HUP, wait a few
2875 * seconds, then send a INT, and then a KILL signal.  But you then
2876 * have to coordinate with the init process, since all processes associated
2877 * with the current tty must be dead before the new getty is allowed
2878 * to spawn.
2879 *
2880 * Now, if it would be correct ;-/ The current code has a nasty hole -
2881 * it doesn't catch files in flight. We may send the descriptor to ourselves
2882 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2883 *
2884 * Nasty bug: do_SAK is being called in interrupt context.  This can
2885 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2886 */
2887void __do_SAK(struct tty_struct *tty)
2888{
2889#ifdef TTY_SOFT_SAK
2890	tty_hangup(tty);
2891#else
2892	struct task_struct *g, *p;
2893	struct pid *session;
2894	int		i;
 
 
2895
2896	if (!tty)
2897		return;
2898	session = tty->session;
2899
2900	tty_ldisc_flush(tty);
2901
2902	tty_driver_flush_buffer(tty);
2903
2904	read_lock(&tasklist_lock);
2905	/* Kill the entire session */
2906	do_each_pid_task(session, PIDTYPE_SID, p) {
2907		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
2908			   task_pid_nr(p), p->comm);
2909		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
 
2910	} while_each_pid_task(session, PIDTYPE_SID, p);
2911
2912	/* Now kill any processes that happen to have the tty open */
 
2913	do_each_thread(g, p) {
2914		if (p->signal->tty == tty) {
2915			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
2916				   task_pid_nr(p), p->comm);
2917			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
 
2918			continue;
2919		}
2920		task_lock(p);
2921		i = iterate_fd(p->files, 0, this_tty, tty);
2922		if (i != 0) {
2923			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
2924				   task_pid_nr(p), p->comm, i - 1);
2925			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2926		}
2927		task_unlock(p);
2928	} while_each_thread(g, p);
2929	read_unlock(&tasklist_lock);
2930#endif
2931}
2932
2933static void do_SAK_work(struct work_struct *work)
2934{
2935	struct tty_struct *tty =
2936		container_of(work, struct tty_struct, SAK_work);
2937	__do_SAK(tty);
2938}
2939
2940/*
2941 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2942 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2943 * the values which we write to it will be identical to the values which it
2944 * already has. --akpm
2945 */
2946void do_SAK(struct tty_struct *tty)
2947{
2948	if (!tty)
2949		return;
2950	schedule_work(&tty->SAK_work);
2951}
2952
2953EXPORT_SYMBOL(do_SAK);
2954
 
 
 
 
 
 
2955/* Must put_device() after it's unused! */
2956static struct device *tty_get_device(struct tty_struct *tty)
2957{
2958	dev_t devt = tty_devnum(tty);
2959	return class_find_device_by_devt(tty_class, devt);
2960}
2961
2962
2963/**
2964 *	alloc_tty_struct
 
2965 *
2966 *	This subroutine allocates and initializes a tty structure.
 
2967 *
2968 *	Locking: none - tty in question is not exposed at this point
2969 */
2970
2971struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
 
2972{
2973	struct tty_struct *tty;
2974
2975	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
2976	if (!tty)
2977		return NULL;
2978
2979	kref_init(&tty->kref);
2980	tty->magic = TTY_MAGIC;
2981	if (tty_ldisc_init(tty)) {
2982		kfree(tty);
2983		return NULL;
2984	}
2985	tty->session = NULL;
2986	tty->pgrp = NULL;
2987	mutex_init(&tty->legacy_mutex);
2988	mutex_init(&tty->throttle_mutex);
2989	init_rwsem(&tty->termios_rwsem);
2990	mutex_init(&tty->winsize_mutex);
2991	init_ldsem(&tty->ldisc_sem);
2992	init_waitqueue_head(&tty->write_wait);
2993	init_waitqueue_head(&tty->read_wait);
2994	INIT_WORK(&tty->hangup_work, do_tty_hangup);
 
2995	mutex_init(&tty->atomic_write_lock);
 
 
 
2996	spin_lock_init(&tty->ctrl_lock);
2997	spin_lock_init(&tty->flow_lock);
2998	spin_lock_init(&tty->files_lock);
2999	INIT_LIST_HEAD(&tty->tty_files);
3000	INIT_WORK(&tty->SAK_work, do_SAK_work);
3001
3002	tty->driver = driver;
3003	tty->ops = driver->ops;
3004	tty->index = idx;
3005	tty_line_name(driver, idx, tty->name);
3006	tty->dev = tty_get_device(tty);
 
3007
3008	return tty;
 
 
 
 
 
 
 
 
 
 
 
3009}
3010
3011/**
3012 *	tty_put_char	-	write one character to a tty
3013 *	@tty: tty
3014 *	@ch: character
3015 *
3016 *	Write one byte to the tty using the provided put_char method
3017 *	if present. Returns the number of characters successfully output.
3018 *
3019 *	Note: the specific put_char operation in the driver layer may go
3020 *	away soon. Don't call it directly, use this method
3021 */
3022
3023int tty_put_char(struct tty_struct *tty, unsigned char ch)
3024{
3025	if (tty->ops->put_char)
3026		return tty->ops->put_char(tty, ch);
3027	return tty->ops->write(tty, &ch, 1);
3028}
3029EXPORT_SYMBOL_GPL(tty_put_char);
3030
3031struct class *tty_class;
3032
3033static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3034		unsigned int index, unsigned int count)
3035{
3036	int err;
3037
3038	/* init here, since reused cdevs cause crashes */
3039	driver->cdevs[index] = cdev_alloc();
3040	if (!driver->cdevs[index])
3041		return -ENOMEM;
3042	driver->cdevs[index]->ops = &tty_fops;
3043	driver->cdevs[index]->owner = driver->owner;
3044	err = cdev_add(driver->cdevs[index], dev, count);
3045	if (err)
3046		kobject_put(&driver->cdevs[index]->kobj);
3047	return err;
3048}
3049
3050/**
3051 *	tty_register_device - register a tty device
3052 *	@driver: the tty driver that describes the tty device
3053 *	@index: the index in the tty driver for this tty device
3054 *	@device: a struct device that is associated with this tty device.
3055 *		This field is optional, if there is no known struct device
3056 *		for this tty device it can be set to NULL safely.
3057 *
3058 *	Returns a pointer to the struct device for this tty device
3059 *	(or ERR_PTR(-EFOO) on error).
3060 *
3061 *	This call is required to be made to register an individual tty device
3062 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3063 *	that bit is not set, this function should not be called by a tty
3064 *	driver.
3065 *
3066 *	Locking: ??
3067 */
3068
3069struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3070				   struct device *device)
3071{
3072	return tty_register_device_attr(driver, index, device, NULL, NULL);
3073}
3074EXPORT_SYMBOL(tty_register_device);
3075
3076static void tty_device_create_release(struct device *dev)
3077{
3078	dev_dbg(dev, "releasing...\n");
3079	kfree(dev);
3080}
3081
3082/**
3083 *	tty_register_device_attr - register a tty device
3084 *	@driver: the tty driver that describes the tty device
3085 *	@index: the index in the tty driver for this tty device
3086 *	@device: a struct device that is associated with this tty device.
3087 *		This field is optional, if there is no known struct device
3088 *		for this tty device it can be set to NULL safely.
3089 *	@drvdata: Driver data to be set to device.
3090 *	@attr_grp: Attribute group to be set on device.
3091 *
3092 *	Returns a pointer to the struct device for this tty device
3093 *	(or ERR_PTR(-EFOO) on error).
3094 *
3095 *	This call is required to be made to register an individual tty device
3096 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3097 *	that bit is not set, this function should not be called by a tty
3098 *	driver.
3099 *
3100 *	Locking: ??
3101 */
3102struct device *tty_register_device_attr(struct tty_driver *driver,
3103				   unsigned index, struct device *device,
3104				   void *drvdata,
3105				   const struct attribute_group **attr_grp)
3106{
3107	char name[64];
3108	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3109	struct ktermios *tp;
3110	struct device *dev;
3111	int retval;
3112
3113	if (index >= driver->num) {
3114		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3115		       driver->name, index);
3116		return ERR_PTR(-EINVAL);
3117	}
3118
3119	if (driver->type == TTY_DRIVER_TYPE_PTY)
3120		pty_line_name(driver, index, name);
3121	else
3122		tty_line_name(driver, index, name);
3123
3124	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3125	if (!dev)
3126		return ERR_PTR(-ENOMEM);
3127
3128	dev->devt = devt;
3129	dev->class = tty_class;
3130	dev->parent = device;
3131	dev->release = tty_device_create_release;
3132	dev_set_name(dev, "%s", name);
3133	dev->groups = attr_grp;
3134	dev_set_drvdata(dev, drvdata);
3135
3136	dev_set_uevent_suppress(dev, 1);
3137
3138	retval = device_register(dev);
3139	if (retval)
3140		goto err_put;
3141
3142	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3143		/*
3144		 * Free any saved termios data so that the termios state is
3145		 * reset when reusing a minor number.
3146		 */
3147		tp = driver->termios[index];
3148		if (tp) {
3149			driver->termios[index] = NULL;
3150			kfree(tp);
3151		}
3152
3153		retval = tty_cdev_add(driver, devt, index, 1);
3154		if (retval)
3155			goto err_del;
3156	}
3157
3158	dev_set_uevent_suppress(dev, 0);
3159	kobject_uevent(&dev->kobj, KOBJ_ADD);
3160
3161	return dev;
3162
3163err_del:
3164	device_del(dev);
3165err_put:
3166	put_device(dev);
3167
3168	return ERR_PTR(retval);
3169}
3170EXPORT_SYMBOL_GPL(tty_register_device_attr);
3171
3172/**
3173 * 	tty_unregister_device - unregister a tty device
3174 * 	@driver: the tty driver that describes the tty device
3175 * 	@index: the index in the tty driver for this tty device
3176 *
3177 * 	If a tty device is registered with a call to tty_register_device() then
3178 *	this function must be called when the tty device is gone.
3179 *
3180 *	Locking: ??
3181 */
3182
3183void tty_unregister_device(struct tty_driver *driver, unsigned index)
3184{
3185	device_destroy(tty_class,
3186		MKDEV(driver->major, driver->minor_start) + index);
3187	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3188		cdev_del(driver->cdevs[index]);
3189		driver->cdevs[index] = NULL;
3190	}
3191}
3192EXPORT_SYMBOL(tty_unregister_device);
3193
3194/**
3195 * __tty_alloc_driver -- allocate tty driver
3196 * @lines: count of lines this driver can handle at most
3197 * @owner: module which is responsible for this driver
3198 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3199 *
3200 * This should not be called directly, some of the provided macros should be
3201 * used instead. Use IS_ERR and friends on @retval.
3202 */
3203struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3204		unsigned long flags)
3205{
3206	struct tty_driver *driver;
3207	unsigned int cdevs = 1;
3208	int err;
3209
3210	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3211		return ERR_PTR(-EINVAL);
3212
3213	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3214	if (!driver)
3215		return ERR_PTR(-ENOMEM);
3216
3217	kref_init(&driver->kref);
3218	driver->magic = TTY_DRIVER_MAGIC;
3219	driver->num = lines;
3220	driver->owner = owner;
3221	driver->flags = flags;
3222
3223	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3224		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3225				GFP_KERNEL);
3226		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3227				GFP_KERNEL);
3228		if (!driver->ttys || !driver->termios) {
3229			err = -ENOMEM;
3230			goto err_free_all;
3231		}
3232	}
3233
3234	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3235		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3236				GFP_KERNEL);
3237		if (!driver->ports) {
3238			err = -ENOMEM;
3239			goto err_free_all;
3240		}
3241		cdevs = lines;
3242	}
3243
3244	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3245	if (!driver->cdevs) {
3246		err = -ENOMEM;
3247		goto err_free_all;
3248	}
3249
3250	return driver;
3251err_free_all:
3252	kfree(driver->ports);
3253	kfree(driver->ttys);
3254	kfree(driver->termios);
3255	kfree(driver->cdevs);
3256	kfree(driver);
3257	return ERR_PTR(err);
3258}
3259EXPORT_SYMBOL(__tty_alloc_driver);
3260
3261static void destruct_tty_driver(struct kref *kref)
3262{
3263	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3264	int i;
3265	struct ktermios *tp;
 
3266
3267	if (driver->flags & TTY_DRIVER_INSTALLED) {
 
 
 
 
 
3268		for (i = 0; i < driver->num; i++) {
3269			tp = driver->termios[i];
3270			if (tp) {
3271				driver->termios[i] = NULL;
3272				kfree(tp);
3273			}
3274			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3275				tty_unregister_device(driver, i);
3276		}
 
3277		proc_tty_unregister_driver(driver);
3278		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3279			cdev_del(driver->cdevs[0]);
 
 
3280	}
3281	kfree(driver->cdevs);
3282	kfree(driver->ports);
3283	kfree(driver->termios);
3284	kfree(driver->ttys);
3285	kfree(driver);
3286}
3287
3288void tty_driver_kref_put(struct tty_driver *driver)
3289{
3290	kref_put(&driver->kref, destruct_tty_driver);
3291}
3292EXPORT_SYMBOL(tty_driver_kref_put);
3293
3294void tty_set_operations(struct tty_driver *driver,
3295			const struct tty_operations *op)
3296{
3297	driver->ops = op;
3298};
3299EXPORT_SYMBOL(tty_set_operations);
3300
3301void put_tty_driver(struct tty_driver *d)
3302{
3303	tty_driver_kref_put(d);
3304}
3305EXPORT_SYMBOL(put_tty_driver);
3306
3307/*
3308 * Called by a tty driver to register itself.
3309 */
3310int tty_register_driver(struct tty_driver *driver)
3311{
3312	int error;
3313	int i;
3314	dev_t dev;
 
3315	struct device *d;
3316
 
 
 
 
 
 
3317	if (!driver->major) {
3318		error = alloc_chrdev_region(&dev, driver->minor_start,
3319						driver->num, driver->name);
3320		if (!error) {
3321			driver->major = MAJOR(dev);
3322			driver->minor_start = MINOR(dev);
3323		}
3324	} else {
3325		dev = MKDEV(driver->major, driver->minor_start);
3326		error = register_chrdev_region(dev, driver->num, driver->name);
3327	}
3328	if (error < 0)
3329		goto err;
 
 
3330
3331	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3332		error = tty_cdev_add(driver, dev, 0, driver->num);
3333		if (error)
3334			goto err_unreg_char;
 
 
 
 
 
 
 
 
 
 
 
 
 
3335	}
3336
3337	mutex_lock(&tty_mutex);
3338	list_add(&driver->tty_drivers, &tty_drivers);
3339	mutex_unlock(&tty_mutex);
3340
3341	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3342		for (i = 0; i < driver->num; i++) {
3343			d = tty_register_device(driver, i, NULL);
3344			if (IS_ERR(d)) {
3345				error = PTR_ERR(d);
3346				goto err_unreg_devs;
3347			}
3348		}
3349	}
3350	proc_tty_register_driver(driver);
3351	driver->flags |= TTY_DRIVER_INSTALLED;
3352	return 0;
3353
3354err_unreg_devs:
3355	for (i--; i >= 0; i--)
3356		tty_unregister_device(driver, i);
3357
3358	mutex_lock(&tty_mutex);
3359	list_del(&driver->tty_drivers);
3360	mutex_unlock(&tty_mutex);
3361
3362err_unreg_char:
3363	unregister_chrdev_region(dev, driver->num);
3364err:
 
 
3365	return error;
3366}
 
3367EXPORT_SYMBOL(tty_register_driver);
3368
3369/*
3370 * Called by a tty driver to unregister itself.
3371 */
3372int tty_unregister_driver(struct tty_driver *driver)
3373{
3374#if 0
3375	/* FIXME */
3376	if (driver->refcount)
3377		return -EBUSY;
3378#endif
3379	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3380				driver->num);
3381	mutex_lock(&tty_mutex);
3382	list_del(&driver->tty_drivers);
3383	mutex_unlock(&tty_mutex);
3384	return 0;
3385}
3386
3387EXPORT_SYMBOL(tty_unregister_driver);
3388
3389dev_t tty_devnum(struct tty_struct *tty)
3390{
3391	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3392}
3393EXPORT_SYMBOL(tty_devnum);
3394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3395void tty_default_fops(struct file_operations *fops)
3396{
3397	*fops = tty_fops;
3398}
3399
3400static char *tty_devnode(struct device *dev, umode_t *mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3401{
3402	if (!mode)
3403		return NULL;
3404	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3405	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3406		*mode = 0666;
3407	return NULL;
3408}
3409
3410static int __init tty_class_init(void)
3411{
3412	tty_class = class_create(THIS_MODULE, "tty");
3413	if (IS_ERR(tty_class))
3414		return PTR_ERR(tty_class);
3415	tty_class->devnode = tty_devnode;
3416	return 0;
3417}
3418
3419postcore_initcall(tty_class_init);
3420
3421/* 3/2004 jmc: why do these devices exist? */
3422static struct cdev tty_cdev, console_cdev;
3423
3424static ssize_t show_cons_active(struct device *dev,
3425				struct device_attribute *attr, char *buf)
3426{
3427	struct console *cs[16];
3428	int i = 0;
3429	struct console *c;
3430	ssize_t count = 0;
3431
3432	console_lock();
3433	for_each_console(c) {
3434		if (!c->device)
3435			continue;
3436		if (!c->write)
3437			continue;
3438		if ((c->flags & CON_ENABLED) == 0)
3439			continue;
3440		cs[i++] = c;
3441		if (i >= ARRAY_SIZE(cs))
3442			break;
3443	}
3444	while (i--) {
3445		int index = cs[i]->index;
3446		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3447
3448		/* don't resolve tty0 as some programs depend on it */
3449		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3450			count += tty_line_name(drv, index, buf + count);
3451		else
3452			count += sprintf(buf + count, "%s%d",
3453					 cs[i]->name, cs[i]->index);
3454
3455		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3456	}
3457	console_unlock();
3458
3459	return count;
3460}
3461static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3462
3463static struct attribute *cons_dev_attrs[] = {
3464	&dev_attr_active.attr,
3465	NULL
3466};
3467
3468ATTRIBUTE_GROUPS(cons_dev);
3469
3470static struct device *consdev;
3471
3472void console_sysfs_notify(void)
3473{
3474	if (consdev)
3475		sysfs_notify(&consdev->kobj, NULL, "active");
3476}
3477
3478/*
3479 * Ok, now we can initialize the rest of the tty devices and can count
3480 * on memory allocations, interrupts etc..
3481 */
3482int __init tty_init(void)
3483{
3484	tty_sysctl_init();
3485	cdev_init(&tty_cdev, &tty_fops);
3486	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3487	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3488		panic("Couldn't register /dev/tty driver\n");
3489	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3490
3491	cdev_init(&console_cdev, &console_fops);
3492	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3493	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3494		panic("Couldn't register /dev/console driver\n");
3495	consdev = device_create_with_groups(tty_class, NULL,
3496					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3497					    cons_dev_groups, "console");
3498	if (IS_ERR(consdev))
3499		consdev = NULL;
 
 
3500
3501#ifdef CONFIG_VT
3502	vty_init(&console_fops);
3503#endif
3504	return 0;
3505}
3506