Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 100#include <asm/system.h>
 101
 102#include <linux/kbd_kern.h>
 103#include <linux/vt_kern.h>
 104#include <linux/selection.h>
 105
 106#include <linux/kmod.h>
 107#include <linux/nsproxy.h>
 108
 109#undef TTY_DEBUG_HANGUP
 
 
 
 
 
 110
 111#define TTY_PARANOIA_CHECK 1
 112#define CHECK_TTY_COUNT 1
 113
 114struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 115	.c_iflag = ICRNL | IXON,
 116	.c_oflag = OPOST | ONLCR,
 117	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 118	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 119		   ECHOCTL | ECHOKE | IEXTEN,
 120	.c_cc = INIT_C_CC,
 121	.c_ispeed = 38400,
 122	.c_ospeed = 38400
 
 123};
 124
 125EXPORT_SYMBOL(tty_std_termios);
 126
 127/* This list gets poked at by procfs and various bits of boot up code. This
 128   could do with some rationalisation such as pulling the tty proc function
 129   into this file */
 130
 131LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 132
 133/* Mutex to protect creating and releasing a tty. This is shared with
 134   vt.c for deeply disgusting hack reasons */
 135DEFINE_MUTEX(tty_mutex);
 136EXPORT_SYMBOL(tty_mutex);
 137
 138/* Spinlock to protect the tty->tty_files list */
 139DEFINE_SPINLOCK(tty_files_lock);
 140
 141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 143ssize_t redirected_tty_write(struct file *, const char __user *,
 144							size_t, loff_t *);
 145static unsigned int tty_poll(struct file *, poll_table *);
 146static int tty_open(struct inode *, struct file *);
 147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 148#ifdef CONFIG_COMPAT
 149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 150				unsigned long arg);
 151#else
 152#define tty_compat_ioctl NULL
 153#endif
 154static int __tty_fasync(int fd, struct file *filp, int on);
 155static int tty_fasync(int fd, struct file *filp, int on);
 156static void release_tty(struct tty_struct *tty, int idx);
 157static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 158static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 159
 160/**
 161 *	alloc_tty_struct	-	allocate a tty object
 162 *
 163 *	Return a new empty tty structure. The data fields have not
 164 *	been initialized in any way but has been zeroed
 165 *
 166 *	Locking: none
 167 */
 168
 169struct tty_struct *alloc_tty_struct(void)
 170{
 171	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 172}
 173
 174/**
 175 *	free_tty_struct		-	free a disused tty
 176 *	@tty: tty struct to free
 177 *
 178 *	Free the write buffers, tty queue and tty memory itself.
 179 *
 180 *	Locking: none. Must be called after tty is definitely unused
 181 */
 182
 183void free_tty_struct(struct tty_struct *tty)
 184{
 185	if (tty->dev)
 186		put_device(tty->dev);
 187	kfree(tty->write_buf);
 188	tty_buffer_free_all(tty);
 189	kfree(tty);
 190}
 191
 192static inline struct tty_struct *file_tty(struct file *file)
 193{
 194	return ((struct tty_file_private *)file->private_data)->tty;
 195}
 196
 197/* Associate a new file with the tty structure */
 198int tty_add_file(struct tty_struct *tty, struct file *file)
 199{
 200	struct tty_file_private *priv;
 201
 202	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 203	if (!priv)
 204		return -ENOMEM;
 205
 
 
 
 
 
 
 
 
 
 
 206	priv->tty = tty;
 207	priv->file = file;
 208	file->private_data = priv;
 209
 210	spin_lock(&tty_files_lock);
 211	list_add(&priv->list, &tty->tty_files);
 212	spin_unlock(&tty_files_lock);
 213
 214	return 0;
 215}
 216
 217/* Delete file from its tty */
 218void tty_del_file(struct file *file)
 
 
 
 
 
 219{
 220	struct tty_file_private *priv = file->private_data;
 221
 222	spin_lock(&tty_files_lock);
 223	list_del(&priv->list);
 224	spin_unlock(&tty_files_lock);
 225	file->private_data = NULL;
 226	kfree(priv);
 227}
 228
 
 
 
 
 
 229
 230#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 
 
 
 
 231
 232/**
 233 *	tty_name	-	return tty naming
 234 *	@tty: tty structure
 235 *	@buf: buffer for output
 236 *
 237 *	Convert a tty structure into a name. The name reflects the kernel
 238 *	naming policy and if udev is in use may not reflect user space
 239 *
 240 *	Locking: none
 241 */
 242
 243char *tty_name(struct tty_struct *tty, char *buf)
 244{
 245	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 246		strcpy(buf, "NULL tty");
 247	else
 248		strcpy(buf, tty->name);
 249	return buf;
 250}
 251
 252EXPORT_SYMBOL(tty_name);
 253
 254int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 
 
 
 
 
 
 
 255			      const char *routine)
 256{
 257#ifdef TTY_PARANOIA_CHECK
 258	if (!tty) {
 259		printk(KERN_WARNING
 260			"null TTY for (%d:%d) in %s\n",
 261			imajor(inode), iminor(inode), routine);
 262		return 1;
 263	}
 264	if (tty->magic != TTY_MAGIC) {
 265		printk(KERN_WARNING
 266			"bad magic number for tty struct (%d:%d) in %s\n",
 267			imajor(inode), iminor(inode), routine);
 268		return 1;
 269	}
 270#endif
 271	return 0;
 272}
 273
 
 274static int check_tty_count(struct tty_struct *tty, const char *routine)
 275{
 276#ifdef CHECK_TTY_COUNT
 277	struct list_head *p;
 278	int count = 0;
 279
 280	spin_lock(&tty_files_lock);
 281	list_for_each(p, &tty->tty_files) {
 282		count++;
 283	}
 284	spin_unlock(&tty_files_lock);
 285	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 286	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 287	    tty->link && tty->link->count)
 288		count++;
 289	if (tty->count != count) {
 290		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 291				    "!= #fd's(%d) in %s\n",
 292		       tty->name, tty->count, count, routine);
 293		return count;
 294	}
 295#endif
 296	return 0;
 297}
 298
 299/**
 300 *	get_tty_driver		-	find device of a tty
 301 *	@dev_t: device identifier
 302 *	@index: returns the index of the tty
 303 *
 304 *	This routine returns a tty driver structure, given a device number
 305 *	and also passes back the index number.
 306 *
 307 *	Locking: caller must hold tty_mutex
 308 */
 309
 310static struct tty_driver *get_tty_driver(dev_t device, int *index)
 311{
 312	struct tty_driver *p;
 313
 314	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 315		dev_t base = MKDEV(p->major, p->minor_start);
 316		if (device < base || device >= base + p->num)
 317			continue;
 318		*index = device - base;
 319		return tty_driver_kref_get(p);
 320	}
 321	return NULL;
 322}
 323
 324#ifdef CONFIG_CONSOLE_POLL
 325
 326/**
 327 *	tty_find_polling_driver	-	find device of a polled tty
 328 *	@name: name string to match
 329 *	@line: pointer to resulting tty line nr
 330 *
 331 *	This routine returns a tty driver structure, given a name
 332 *	and the condition that the tty driver is capable of polled
 333 *	operation.
 334 */
 335struct tty_driver *tty_find_polling_driver(char *name, int *line)
 336{
 337	struct tty_driver *p, *res = NULL;
 338	int tty_line = 0;
 339	int len;
 340	char *str, *stp;
 341
 342	for (str = name; *str; str++)
 343		if ((*str >= '0' && *str <= '9') || *str == ',')
 344			break;
 345	if (!*str)
 346		return NULL;
 347
 348	len = str - name;
 349	tty_line = simple_strtoul(str, &str, 10);
 350
 351	mutex_lock(&tty_mutex);
 352	/* Search through the tty devices to look for a match */
 353	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 354		if (strncmp(name, p->name, len) != 0)
 355			continue;
 356		stp = str;
 357		if (*stp == ',')
 358			stp++;
 359		if (*stp == '\0')
 360			stp = NULL;
 361
 362		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 363		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 364			res = tty_driver_kref_get(p);
 365			*line = tty_line;
 366			break;
 367		}
 368	}
 369	mutex_unlock(&tty_mutex);
 370
 371	return res;
 372}
 373EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 374#endif
 375
 
 
 
 
 
 
 376/**
 377 *	tty_check_change	-	check for POSIX terminal changes
 378 *	@tty: tty to check
 379 *
 380 *	If we try to write to, or set the state of, a terminal and we're
 381 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 382 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 383 *
 384 *	Locking: ctrl_lock
 385 */
 386
 387int tty_check_change(struct tty_struct *tty)
 388{
 389	unsigned long flags;
 
 390	int ret = 0;
 391
 392	if (current->signal->tty != tty)
 393		return 0;
 394
 395	spin_lock_irqsave(&tty->ctrl_lock, flags);
 
 396
 397	if (!tty->pgrp) {
 398		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 399		goto out_unlock;
 400	}
 401	if (task_pgrp(current) == tty->pgrp)
 402		goto out_unlock;
 403	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 404	if (is_ignored(SIGTTOU))
 405		goto out;
 406	if (is_current_pgrp_orphaned()) {
 407		ret = -EIO;
 408		goto out;
 
 
 
 
 
 
 
 409	}
 410	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 411	set_thread_flag(TIF_SIGPENDING);
 412	ret = -ERESTARTSYS;
 413out:
 414	return ret;
 415out_unlock:
 416	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 417	return ret;
 418}
 419
 
 
 
 
 420EXPORT_SYMBOL(tty_check_change);
 421
 422static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 423				size_t count, loff_t *ppos)
 424{
 425	return 0;
 426}
 427
 428static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 429				 size_t count, loff_t *ppos)
 430{
 431	return -EIO;
 432}
 433
 434/* No kernel lock held - none needed ;) */
 435static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 436{
 437	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 438}
 439
 440static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 441		unsigned long arg)
 442{
 443	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 444}
 445
 446static long hung_up_tty_compat_ioctl(struct file *file,
 447				     unsigned int cmd, unsigned long arg)
 448{
 449	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 450}
 451
 
 
 
 
 
 452static const struct file_operations tty_fops = {
 453	.llseek		= no_llseek,
 454	.read		= tty_read,
 455	.write		= tty_write,
 456	.poll		= tty_poll,
 457	.unlocked_ioctl	= tty_ioctl,
 458	.compat_ioctl	= tty_compat_ioctl,
 459	.open		= tty_open,
 460	.release	= tty_release,
 461	.fasync		= tty_fasync,
 462};
 463
 464static const struct file_operations console_fops = {
 465	.llseek		= no_llseek,
 466	.read		= tty_read,
 467	.write		= redirected_tty_write,
 468	.poll		= tty_poll,
 469	.unlocked_ioctl	= tty_ioctl,
 470	.compat_ioctl	= tty_compat_ioctl,
 471	.open		= tty_open,
 472	.release	= tty_release,
 473	.fasync		= tty_fasync,
 474};
 475
 476static const struct file_operations hung_up_tty_fops = {
 477	.llseek		= no_llseek,
 478	.read		= hung_up_tty_read,
 479	.write		= hung_up_tty_write,
 480	.poll		= hung_up_tty_poll,
 481	.unlocked_ioctl	= hung_up_tty_ioctl,
 482	.compat_ioctl	= hung_up_tty_compat_ioctl,
 483	.release	= tty_release,
 
 484};
 485
 486static DEFINE_SPINLOCK(redirect_lock);
 487static struct file *redirect;
 488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 489/**
 490 *	tty_wakeup	-	request more data
 491 *	@tty: terminal
 492 *
 493 *	Internal and external helper for wakeups of tty. This function
 494 *	informs the line discipline if present that the driver is ready
 495 *	to receive more output data.
 496 */
 497
 498void tty_wakeup(struct tty_struct *tty)
 499{
 500	struct tty_ldisc *ld;
 501
 502	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 503		ld = tty_ldisc_ref(tty);
 504		if (ld) {
 505			if (ld->ops->write_wakeup)
 506				ld->ops->write_wakeup(tty);
 507			tty_ldisc_deref(ld);
 508		}
 509	}
 510	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 511}
 512
 513EXPORT_SYMBOL_GPL(tty_wakeup);
 514
 515/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516 *	__tty_hangup		-	actual handler for hangup events
 517 *	@work: tty device
 518 *
 519 *	This can be called by the "eventd" kernel thread.  That is process
 520 *	synchronous but doesn't hold any locks, so we need to make sure we
 521 *	have the appropriate locks for what we're doing.
 522 *
 523 *	The hangup event clears any pending redirections onto the hung up
 524 *	device. It ensures future writes will error and it does the needed
 525 *	line discipline hangup and signal delivery. The tty object itself
 526 *	remains intact.
 527 *
 528 *	Locking:
 529 *		BTM
 530 *		  redirect lock for undoing redirection
 531 *		  file list lock for manipulating list of ttys
 532 *		  tty_ldisc_lock from called functions
 533 *		  termios_mutex resetting termios data
 534 *		  tasklist_lock to walk task list for hangup event
 535 *		    ->siglock to protect ->signal/->sighand
 536 */
 537void __tty_hangup(struct tty_struct *tty)
 538{
 539	struct file *cons_filp = NULL;
 540	struct file *filp, *f = NULL;
 541	struct task_struct *p;
 542	struct tty_file_private *priv;
 543	int    closecount = 0, n;
 544	unsigned long flags;
 545	int refs = 0;
 546
 547	if (!tty)
 548		return;
 549
 550
 551	spin_lock(&redirect_lock);
 552	if (redirect && file_tty(redirect) == tty) {
 553		f = redirect;
 554		redirect = NULL;
 555	}
 556	spin_unlock(&redirect_lock);
 557
 558	tty_lock();
 559
 560	/* some functions below drop BTM, so we need this bit */
 561	set_bit(TTY_HUPPING, &tty->flags);
 
 
 562
 563	/* inuse_filps is protected by the single tty lock,
 564	   this really needs to change if we want to flush the
 565	   workqueue with the lock held */
 566	check_tty_count(tty, "tty_hangup");
 567
 568	spin_lock(&tty_files_lock);
 569	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 570	list_for_each_entry(priv, &tty->tty_files, list) {
 571		filp = priv->file;
 572		if (filp->f_op->write == redirected_tty_write)
 573			cons_filp = filp;
 574		if (filp->f_op->write != tty_write)
 575			continue;
 576		closecount++;
 577		__tty_fasync(-1, filp, 0);	/* can't block */
 578		filp->f_op = &hung_up_tty_fops;
 579	}
 580	spin_unlock(&tty_files_lock);
 581
 582	/*
 583	 * it drops BTM and thus races with reopen
 584	 * we protect the race by TTY_HUPPING
 585	 */
 586	tty_ldisc_hangup(tty);
 587
 588	read_lock(&tasklist_lock);
 589	if (tty->session) {
 590		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 591			spin_lock_irq(&p->sighand->siglock);
 592			if (p->signal->tty == tty) {
 593				p->signal->tty = NULL;
 594				/* We defer the dereferences outside fo
 595				   the tasklist lock */
 596				refs++;
 597			}
 598			if (!p->signal->leader) {
 599				spin_unlock_irq(&p->sighand->siglock);
 600				continue;
 601			}
 602			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 603			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 604			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 605			spin_lock_irqsave(&tty->ctrl_lock, flags);
 606			if (tty->pgrp)
 607				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 608			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 609			spin_unlock_irq(&p->sighand->siglock);
 610		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 611	}
 612	read_unlock(&tasklist_lock);
 613
 614	spin_lock_irqsave(&tty->ctrl_lock, flags);
 615	clear_bit(TTY_THROTTLED, &tty->flags);
 616	clear_bit(TTY_PUSH, &tty->flags);
 617	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 618	put_pid(tty->session);
 619	put_pid(tty->pgrp);
 620	tty->session = NULL;
 621	tty->pgrp = NULL;
 622	tty->ctrl_status = 0;
 623	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 624
 625	/* Account for the p->signal references we killed */
 626	while (refs--)
 627		tty_kref_put(tty);
 628
 629	/*
 630	 * If one of the devices matches a console pointer, we
 631	 * cannot just call hangup() because that will cause
 632	 * tty->count and state->count to go out of sync.
 633	 * So we just call close() the right number of times.
 634	 */
 635	if (cons_filp) {
 636		if (tty->ops->close)
 637			for (n = 0; n < closecount; n++)
 638				tty->ops->close(tty, cons_filp);
 639	} else if (tty->ops->hangup)
 640		(tty->ops->hangup)(tty);
 641	/*
 642	 * We don't want to have driver/ldisc interactions beyond
 643	 * the ones we did here. The driver layer expects no
 644	 * calls after ->hangup() from the ldisc side. However we
 645	 * can't yet guarantee all that.
 646	 */
 647	set_bit(TTY_HUPPED, &tty->flags);
 648	clear_bit(TTY_HUPPING, &tty->flags);
 649	tty_ldisc_enable(tty);
 650
 651	tty_unlock();
 652
 653	if (f)
 654		fput(f);
 655}
 656
 657static void do_tty_hangup(struct work_struct *work)
 658{
 659	struct tty_struct *tty =
 660		container_of(work, struct tty_struct, hangup_work);
 661
 662	__tty_hangup(tty);
 663}
 664
 665/**
 666 *	tty_hangup		-	trigger a hangup event
 667 *	@tty: tty to hangup
 668 *
 669 *	A carrier loss (virtual or otherwise) has occurred on this like
 670 *	schedule a hangup sequence to run after this event.
 671 */
 672
 673void tty_hangup(struct tty_struct *tty)
 674{
 675#ifdef TTY_DEBUG_HANGUP
 676	char	buf[64];
 677	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 678#endif
 679	schedule_work(&tty->hangup_work);
 680}
 681
 682EXPORT_SYMBOL(tty_hangup);
 683
 684/**
 685 *	tty_vhangup		-	process vhangup
 686 *	@tty: tty to hangup
 687 *
 688 *	The user has asked via system call for the terminal to be hung up.
 689 *	We do this synchronously so that when the syscall returns the process
 690 *	is complete. That guarantee is necessary for security reasons.
 691 */
 692
 693void tty_vhangup(struct tty_struct *tty)
 694{
 695#ifdef TTY_DEBUG_HANGUP
 696	char	buf[64];
 697
 698	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 699#endif
 700	__tty_hangup(tty);
 701}
 702
 703EXPORT_SYMBOL(tty_vhangup);
 704
 705
 706/**
 707 *	tty_vhangup_self	-	process vhangup for own ctty
 708 *
 709 *	Perform a vhangup on the current controlling tty
 710 */
 711
 712void tty_vhangup_self(void)
 713{
 714	struct tty_struct *tty;
 715
 716	tty = get_current_tty();
 717	if (tty) {
 718		tty_vhangup(tty);
 719		tty_kref_put(tty);
 720	}
 721}
 722
 723/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 724 *	tty_hung_up_p		-	was tty hung up
 725 *	@filp: file pointer of tty
 726 *
 727 *	Return true if the tty has been subject to a vhangup or a carrier
 728 *	loss
 729 */
 730
 731int tty_hung_up_p(struct file *filp)
 732{
 733	return (filp->f_op == &hung_up_tty_fops);
 734}
 735
 736EXPORT_SYMBOL(tty_hung_up_p);
 737
 738static void session_clear_tty(struct pid *session)
 739{
 740	struct task_struct *p;
 741	do_each_pid_task(session, PIDTYPE_SID, p) {
 742		proc_clear_tty(p);
 743	} while_each_pid_task(session, PIDTYPE_SID, p);
 744}
 745
 746/**
 747 *	disassociate_ctty	-	disconnect controlling tty
 748 *	@on_exit: true if exiting so need to "hang up" the session
 749 *
 750 *	This function is typically called only by the session leader, when
 751 *	it wants to disassociate itself from its controlling tty.
 752 *
 753 *	It performs the following functions:
 754 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 755 * 	(2)  Clears the tty from being controlling the session
 756 * 	(3)  Clears the controlling tty for all processes in the
 757 * 		session group.
 758 *
 759 *	The argument on_exit is set to 1 if called when a process is
 760 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 761 *
 762 *	Locking:
 763 *		BTM is taken for hysterical raisins, and held when
 764 *		  called from no_tty().
 765 *		  tty_mutex is taken to protect tty
 766 *		  ->siglock is taken to protect ->signal/->sighand
 767 *		  tasklist_lock is taken to walk process list for sessions
 768 *		    ->siglock is taken to protect ->signal/->sighand
 769 */
 770
 771void disassociate_ctty(int on_exit)
 772{
 773	struct tty_struct *tty;
 774	struct pid *tty_pgrp = NULL;
 775
 776	if (!current->signal->leader)
 777		return;
 778
 779	tty = get_current_tty();
 780	if (tty) {
 781		tty_pgrp = get_pid(tty->pgrp);
 782		if (on_exit) {
 783			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
 784				tty_vhangup(tty);
 
 
 
 
 
 
 785		}
 786		tty_kref_put(tty);
 
 787	} else if (on_exit) {
 788		struct pid *old_pgrp;
 789		spin_lock_irq(&current->sighand->siglock);
 790		old_pgrp = current->signal->tty_old_pgrp;
 791		current->signal->tty_old_pgrp = NULL;
 792		spin_unlock_irq(&current->sighand->siglock);
 793		if (old_pgrp) {
 794			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 795			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 796			put_pid(old_pgrp);
 797		}
 798		return;
 799	}
 800	if (tty_pgrp) {
 801		kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 802		if (!on_exit)
 803			kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 804		put_pid(tty_pgrp);
 805	}
 806
 807	spin_lock_irq(&current->sighand->siglock);
 808	put_pid(current->signal->tty_old_pgrp);
 809	current->signal->tty_old_pgrp = NULL;
 810	spin_unlock_irq(&current->sighand->siglock);
 811
 812	tty = get_current_tty();
 813	if (tty) {
 814		unsigned long flags;
 815		spin_lock_irqsave(&tty->ctrl_lock, flags);
 816		put_pid(tty->session);
 817		put_pid(tty->pgrp);
 818		tty->session = NULL;
 819		tty->pgrp = NULL;
 820		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 821		tty_kref_put(tty);
 822	} else {
 823#ifdef TTY_DEBUG_HANGUP
 824		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 825		       " = NULL", tty);
 826#endif
 827	}
 828
 
 829	/* Now clear signal->tty under the lock */
 830	read_lock(&tasklist_lock);
 831	session_clear_tty(task_session(current));
 832	read_unlock(&tasklist_lock);
 833}
 834
 835/**
 836 *
 837 *	no_tty	- Ensure the current process does not have a controlling tty
 838 */
 839void no_tty(void)
 840{
 
 
 
 841	struct task_struct *tsk = current;
 842	tty_lock();
 843	disassociate_ctty(0);
 844	tty_unlock();
 845	proc_clear_tty(tsk);
 846}
 847
 848
 849/**
 850 *	stop_tty	-	propagate flow control
 851 *	@tty: tty to stop
 852 *
 853 *	Perform flow control to the driver. For PTY/TTY pairs we
 854 *	must also propagate the TIOCKPKT status. May be called
 855 *	on an already stopped device and will not re-call the driver
 856 *	method.
 857 *
 858 *	This functionality is used by both the line disciplines for
 859 *	halting incoming flow and by the driver. It may therefore be
 860 *	called from any context, may be under the tty atomic_write_lock
 861 *	but not always.
 862 *
 863 *	Locking:
 864 *		Uses the tty control lock internally
 865 */
 866
 867void stop_tty(struct tty_struct *tty)
 868{
 869	unsigned long flags;
 870	spin_lock_irqsave(&tty->ctrl_lock, flags);
 871	if (tty->stopped) {
 872		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 873		return;
 874	}
 875	tty->stopped = 1;
 876	if (tty->link && tty->link->packet) {
 877		tty->ctrl_status &= ~TIOCPKT_START;
 878		tty->ctrl_status |= TIOCPKT_STOP;
 879		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 880	}
 881	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 882	if (tty->ops->stop)
 883		(tty->ops->stop)(tty);
 884}
 885
 
 
 
 
 
 
 
 
 886EXPORT_SYMBOL(stop_tty);
 887
 888/**
 889 *	start_tty	-	propagate flow control
 890 *	@tty: tty to start
 891 *
 892 *	Start a tty that has been stopped if at all possible. Perform
 893 *	any necessary wakeups and propagate the TIOCPKT status. If this
 894 *	is the tty was previous stopped and is being started then the
 895 *	driver start method is invoked and the line discipline woken.
 896 *
 897 *	Locking:
 898 *		ctrl_lock
 899 */
 900
 901void start_tty(struct tty_struct *tty)
 902{
 903	unsigned long flags;
 904	spin_lock_irqsave(&tty->ctrl_lock, flags);
 905	if (!tty->stopped || tty->flow_stopped) {
 906		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 907		return;
 908	}
 909	tty->stopped = 0;
 910	if (tty->link && tty->link->packet) {
 911		tty->ctrl_status &= ~TIOCPKT_STOP;
 912		tty->ctrl_status |= TIOCPKT_START;
 913		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 914	}
 915	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 916	if (tty->ops->start)
 917		(tty->ops->start)(tty);
 918	/* If we have a running line discipline it may need kicking */
 919	tty_wakeup(tty);
 920}
 921
 
 
 
 
 
 
 
 
 922EXPORT_SYMBOL(start_tty);
 923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924/**
 925 *	tty_read	-	read method for tty device files
 926 *	@file: pointer to tty file
 927 *	@buf: user buffer
 928 *	@count: size of user buffer
 929 *	@ppos: unused
 930 *
 931 *	Perform the read system call function on this terminal device. Checks
 932 *	for hung up devices before calling the line discipline method.
 933 *
 934 *	Locking:
 935 *		Locks the line discipline internally while needed. Multiple
 936 *	read calls may be outstanding in parallel.
 937 */
 938
 939static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 940			loff_t *ppos)
 941{
 942	int i;
 943	struct inode *inode = file->f_path.dentry->d_inode;
 944	struct tty_struct *tty = file_tty(file);
 945	struct tty_ldisc *ld;
 946
 947	if (tty_paranoia_check(tty, inode, "tty_read"))
 948		return -EIO;
 949	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
 950		return -EIO;
 951
 952	/* We want to wait for the line discipline to sort out in this
 953	   situation */
 954	ld = tty_ldisc_ref_wait(tty);
 
 
 955	if (ld->ops->read)
 956		i = (ld->ops->read)(tty, file, buf, count);
 957	else
 958		i = -EIO;
 959	tty_ldisc_deref(ld);
 
 960	if (i > 0)
 961		inode->i_atime = current_fs_time(inode->i_sb);
 
 962	return i;
 963}
 964
 965void tty_write_unlock(struct tty_struct *tty)
 966	__releases(&tty->atomic_write_lock)
 967{
 968	mutex_unlock(&tty->atomic_write_lock);
 969	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 970}
 971
 972int tty_write_lock(struct tty_struct *tty, int ndelay)
 973	__acquires(&tty->atomic_write_lock)
 974{
 975	if (!mutex_trylock(&tty->atomic_write_lock)) {
 976		if (ndelay)
 977			return -EAGAIN;
 978		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 979			return -ERESTARTSYS;
 980	}
 981	return 0;
 982}
 983
 984/*
 985 * Split writes up in sane blocksizes to avoid
 986 * denial-of-service type attacks
 987 */
 988static inline ssize_t do_tty_write(
 989	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 990	struct tty_struct *tty,
 991	struct file *file,
 992	const char __user *buf,
 993	size_t count)
 994{
 995	ssize_t ret, written = 0;
 996	unsigned int chunk;
 997
 998	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 999	if (ret < 0)
1000		return ret;
1001
1002	/*
1003	 * We chunk up writes into a temporary buffer. This
1004	 * simplifies low-level drivers immensely, since they
1005	 * don't have locking issues and user mode accesses.
1006	 *
1007	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1008	 * big chunk-size..
1009	 *
1010	 * The default chunk-size is 2kB, because the NTTY
1011	 * layer has problems with bigger chunks. It will
1012	 * claim to be able to handle more characters than
1013	 * it actually does.
1014	 *
1015	 * FIXME: This can probably go away now except that 64K chunks
1016	 * are too likely to fail unless switched to vmalloc...
1017	 */
1018	chunk = 2048;
1019	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1020		chunk = 65536;
1021	if (count < chunk)
1022		chunk = count;
1023
1024	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1025	if (tty->write_cnt < chunk) {
1026		unsigned char *buf_chunk;
1027
1028		if (chunk < 1024)
1029			chunk = 1024;
1030
1031		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1032		if (!buf_chunk) {
1033			ret = -ENOMEM;
1034			goto out;
1035		}
1036		kfree(tty->write_buf);
1037		tty->write_cnt = chunk;
1038		tty->write_buf = buf_chunk;
1039	}
1040
1041	/* Do the write .. */
1042	for (;;) {
1043		size_t size = count;
1044		if (size > chunk)
1045			size = chunk;
1046		ret = -EFAULT;
1047		if (copy_from_user(tty->write_buf, buf, size))
1048			break;
1049		ret = write(tty, file, tty->write_buf, size);
1050		if (ret <= 0)
1051			break;
1052		written += ret;
1053		buf += ret;
1054		count -= ret;
1055		if (!count)
1056			break;
1057		ret = -ERESTARTSYS;
1058		if (signal_pending(current))
1059			break;
1060		cond_resched();
1061	}
1062	if (written) {
1063		struct inode *inode = file->f_path.dentry->d_inode;
1064		inode->i_mtime = current_fs_time(inode->i_sb);
1065		ret = written;
1066	}
1067out:
1068	tty_write_unlock(tty);
1069	return ret;
1070}
1071
1072/**
1073 * tty_write_message - write a message to a certain tty, not just the console.
1074 * @tty: the destination tty_struct
1075 * @msg: the message to write
1076 *
1077 * This is used for messages that need to be redirected to a specific tty.
1078 * We don't put it into the syslog queue right now maybe in the future if
1079 * really needed.
1080 *
1081 * We must still hold the BTM and test the CLOSING flag for the moment.
1082 */
1083
1084void tty_write_message(struct tty_struct *tty, char *msg)
1085{
1086	if (tty) {
1087		mutex_lock(&tty->atomic_write_lock);
1088		tty_lock();
1089		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1090			tty_unlock();
1091			tty->ops->write(tty, msg, strlen(msg));
1092		} else
1093			tty_unlock();
1094		tty_write_unlock(tty);
1095	}
1096	return;
1097}
1098
1099
1100/**
1101 *	tty_write		-	write method for tty device file
1102 *	@file: tty file pointer
1103 *	@buf: user data to write
1104 *	@count: bytes to write
1105 *	@ppos: unused
1106 *
1107 *	Write data to a tty device via the line discipline.
1108 *
1109 *	Locking:
1110 *		Locks the line discipline as required
1111 *		Writes to the tty driver are serialized by the atomic_write_lock
1112 *	and are then processed in chunks to the device. The line discipline
1113 *	write method will not be invoked in parallel for each device.
1114 */
1115
1116static ssize_t tty_write(struct file *file, const char __user *buf,
1117						size_t count, loff_t *ppos)
1118{
1119	struct inode *inode = file->f_path.dentry->d_inode;
1120	struct tty_struct *tty = file_tty(file);
1121 	struct tty_ldisc *ld;
1122	ssize_t ret;
1123
1124	if (tty_paranoia_check(tty, inode, "tty_write"))
1125		return -EIO;
1126	if (!tty || !tty->ops->write ||
1127		(test_bit(TTY_IO_ERROR, &tty->flags)))
1128			return -EIO;
1129	/* Short term debug to catch buggy drivers */
1130	if (tty->ops->write_room == NULL)
1131		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1132			tty->driver->name);
1133	ld = tty_ldisc_ref_wait(tty);
 
 
1134	if (!ld->ops->write)
1135		ret = -EIO;
1136	else
1137		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1138	tty_ldisc_deref(ld);
1139	return ret;
1140}
1141
1142ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1143						size_t count, loff_t *ppos)
1144{
1145	struct file *p = NULL;
1146
1147	spin_lock(&redirect_lock);
1148	if (redirect) {
1149		get_file(redirect);
1150		p = redirect;
1151	}
1152	spin_unlock(&redirect_lock);
1153
1154	if (p) {
1155		ssize_t res;
1156		res = vfs_write(p, buf, count, &p->f_pos);
1157		fput(p);
1158		return res;
1159	}
1160	return tty_write(file, buf, count, ppos);
1161}
1162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163static char ptychar[] = "pqrstuvwxyzabcde";
1164
1165/**
1166 *	pty_line_name	-	generate name for a pty
1167 *	@driver: the tty driver in use
1168 *	@index: the minor number
1169 *	@p: output buffer of at least 6 bytes
1170 *
1171 *	Generate a name from a driver reference and write it to the output
1172 *	buffer.
1173 *
1174 *	Locking: None
1175 */
1176static void pty_line_name(struct tty_driver *driver, int index, char *p)
1177{
1178	int i = index + driver->name_base;
1179	/* ->name is initialized to "ttyp", but "tty" is expected */
1180	sprintf(p, "%s%c%x",
1181		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1182		ptychar[i >> 4 & 0xf], i & 0xf);
1183}
1184
1185/**
1186 *	tty_line_name	-	generate name for a tty
1187 *	@driver: the tty driver in use
1188 *	@index: the minor number
1189 *	@p: output buffer of at least 7 bytes
1190 *
1191 *	Generate a name from a driver reference and write it to the output
1192 *	buffer.
1193 *
1194 *	Locking: None
1195 */
1196static void tty_line_name(struct tty_driver *driver, int index, char *p)
1197{
1198	sprintf(p, "%s%d", driver->name, index + driver->name_base);
 
 
 
 
1199}
1200
1201/**
1202 *	tty_driver_lookup_tty() - find an existing tty, if any
1203 *	@driver: the driver for the tty
1204 *	@idx:	 the minor number
1205 *
1206 *	Return the tty, if found or ERR_PTR() otherwise.
 
1207 *
1208 *	Locking: tty_mutex must be held. If tty is found, the mutex must
1209 *	be held until the 'fast-open' is also done. Will change once we
1210 *	have refcounting in the driver and per driver locking
1211 */
1212static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1213		struct inode *inode, int idx)
1214{
1215	struct tty_struct *tty;
1216
1217	if (driver->ops->lookup)
1218		return driver->ops->lookup(driver, inode, idx);
 
 
1219
1220	tty = driver->ttys[idx];
 
1221	return tty;
1222}
1223
1224/**
1225 *	tty_init_termios	-  helper for termios setup
1226 *	@tty: the tty to set up
1227 *
1228 *	Initialise the termios structures for this tty. Thus runs under
1229 *	the tty_mutex currently so we can be relaxed about ordering.
1230 */
1231
1232int tty_init_termios(struct tty_struct *tty)
1233{
1234	struct ktermios *tp;
1235	int idx = tty->index;
1236
1237	tp = tty->driver->termios[idx];
1238	if (tp == NULL) {
1239		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1240		if (tp == NULL)
1241			return -ENOMEM;
1242		memcpy(tp, &tty->driver->init_termios,
1243						sizeof(struct ktermios));
1244		tty->driver->termios[idx] = tp;
 
 
1245	}
1246	tty->termios = tp;
1247	tty->termios_locked = tp + 1;
1248
1249	/* Compatibility until drivers always set this */
1250	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1251	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1252	return 0;
1253}
1254EXPORT_SYMBOL_GPL(tty_init_termios);
1255
 
 
 
 
 
 
 
 
 
 
1256/**
1257 *	tty_driver_install_tty() - install a tty entry in the driver
1258 *	@driver: the driver for the tty
1259 *	@tty: the tty
1260 *
1261 *	Install a tty object into the driver tables. The tty->index field
1262 *	will be set by the time this is called. This method is responsible
1263 *	for ensuring any need additional structures are allocated and
1264 *	configured.
1265 *
1266 *	Locking: tty_mutex for now
1267 */
1268static int tty_driver_install_tty(struct tty_driver *driver,
1269						struct tty_struct *tty)
1270{
1271	int idx = tty->index;
1272	int ret;
1273
1274	if (driver->ops->install) {
1275		ret = driver->ops->install(driver, tty);
1276		return ret;
1277	}
1278
1279	if (tty_init_termios(tty) == 0) {
1280		tty_driver_kref_get(driver);
1281		tty->count++;
1282		driver->ttys[idx] = tty;
1283		return 0;
1284	}
1285	return -ENOMEM;
1286}
1287
1288/**
1289 *	tty_driver_remove_tty() - remove a tty from the driver tables
1290 *	@driver: the driver for the tty
1291 *	@idx:	 the minor number
1292 *
1293 *	Remvoe a tty object from the driver tables. The tty->index field
1294 *	will be set by the time this is called.
1295 *
1296 *	Locking: tty_mutex for now
1297 */
1298void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1299{
1300	if (driver->ops->remove)
1301		driver->ops->remove(driver, tty);
1302	else
1303		driver->ttys[tty->index] = NULL;
1304}
1305
1306/*
1307 * 	tty_reopen()	- fast re-open of an open tty
1308 * 	@tty	- the tty to open
1309 *
1310 *	Return 0 on success, -errno on error.
 
1311 *
1312 *	Locking: tty_mutex must be held from the time the tty was found
1313 *		 till this open completes.
1314 */
1315static int tty_reopen(struct tty_struct *tty)
1316{
1317	struct tty_driver *driver = tty->driver;
1318
1319	if (test_bit(TTY_CLOSING, &tty->flags) ||
1320			test_bit(TTY_HUPPING, &tty->flags) ||
1321			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1322		return -EIO;
1323
1324	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1325	    driver->subtype == PTY_TYPE_MASTER) {
1326		/*
1327		 * special case for PTY masters: only one open permitted,
1328		 * and the slave side open count is incremented as well.
1329		 */
1330		if (tty->count)
1331			return -EIO;
1332
1333		tty->link->count++;
1334	}
1335	tty->count++;
1336	tty->driver = driver; /* N.B. why do this every time?? */
1337
1338	mutex_lock(&tty->ldisc_mutex);
1339	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1340	mutex_unlock(&tty->ldisc_mutex);
1341
1342	return 0;
1343}
1344
1345/**
1346 *	tty_init_dev		-	initialise a tty device
1347 *	@driver: tty driver we are opening a device on
1348 *	@idx: device index
1349 *	@ret_tty: returned tty structure
1350 *	@first_ok: ok to open a new device (used by ptmx)
1351 *
1352 *	Prepare a tty device. This may not be a "new" clean device but
1353 *	could also be an active device. The pty drivers require special
1354 *	handling because of this.
1355 *
1356 *	Locking:
1357 *		The function is called under the tty_mutex, which
1358 *	protects us from the tty struct or driver itself going away.
1359 *
1360 *	On exit the tty device has the line discipline attached and
1361 *	a reference count of 1. If a pair was created for pty/tty use
1362 *	and the other was a pty master then it too has a reference count of 1.
1363 *
1364 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1365 * failed open.  The new code protects the open with a mutex, so it's
1366 * really quite straightforward.  The mutex locking can probably be
1367 * relaxed for the (most common) case of reopening a tty.
1368 */
1369
1370struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1371								int first_ok)
1372{
1373	struct tty_struct *tty;
1374	int retval;
1375
1376	/* Check if pty master is being opened multiple times */
1377	if (driver->subtype == PTY_TYPE_MASTER &&
1378		(driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1379		return ERR_PTR(-EIO);
1380	}
1381
1382	/*
1383	 * First time open is complex, especially for PTY devices.
1384	 * This code guarantees that either everything succeeds and the
1385	 * TTY is ready for operation, or else the table slots are vacated
1386	 * and the allocated memory released.  (Except that the termios
1387	 * and locked termios may be retained.)
1388	 */
1389
1390	if (!try_module_get(driver->owner))
1391		return ERR_PTR(-ENODEV);
1392
1393	tty = alloc_tty_struct();
1394	if (!tty) {
1395		retval = -ENOMEM;
1396		goto err_module_put;
1397	}
1398	initialize_tty_struct(tty, driver, idx);
1399
 
1400	retval = tty_driver_install_tty(driver, tty);
1401	if (retval < 0)
1402		goto err_deinit_tty;
 
 
 
 
 
 
 
 
 
1403
1404	/*
1405	 * Structures all installed ... call the ldisc open routines.
1406	 * If we fail here just call release_tty to clean up.  No need
1407	 * to decrement the use counts, as release_tty doesn't care.
1408	 */
1409	retval = tty_ldisc_setup(tty, tty->link);
1410	if (retval)
1411		goto err_release_tty;
 
1412	return tty;
1413
1414err_deinit_tty:
1415	deinitialize_tty_struct(tty);
1416	free_tty_struct(tty);
1417err_module_put:
1418	module_put(driver->owner);
1419	return ERR_PTR(retval);
1420
1421	/* call the tty release_tty routine to clean out this slot */
1422err_release_tty:
1423	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1424				 "clearing slot %d\n", idx);
 
1425	release_tty(tty, idx);
1426	return ERR_PTR(retval);
1427}
1428
1429void tty_free_termios(struct tty_struct *tty)
1430{
1431	struct ktermios *tp;
1432	int idx = tty->index;
1433	/* Kill this flag and push into drivers for locking etc */
1434	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1435		/* FIXME: Locking on ->termios array */
1436		tp = tty->termios;
1437		tty->driver->termios[idx] = NULL;
1438		kfree(tp);
 
 
 
 
 
 
1439	}
 
1440}
1441EXPORT_SYMBOL(tty_free_termios);
1442
1443void tty_shutdown(struct tty_struct *tty)
 
 
 
 
 
 
1444{
1445	tty_driver_remove_tty(tty->driver, tty);
1446	tty_free_termios(tty);
 
 
 
 
1447}
1448EXPORT_SYMBOL(tty_shutdown);
1449
1450/**
1451 *	release_one_tty		-	release tty structure memory
1452 *	@kref: kref of tty we are obliterating
1453 *
1454 *	Releases memory associated with a tty structure, and clears out the
1455 *	driver table slots. This function is called when a device is no longer
1456 *	in use. It also gets called when setup of a device fails.
1457 *
1458 *	Locking:
1459 *		tty_mutex - sometimes only
1460 *		takes the file list lock internally when working on the list
1461 *	of ttys that the driver keeps.
1462 *
1463 *	This method gets called from a work queue so that the driver private
1464 *	cleanup ops can sleep (needed for USB at least)
1465 */
1466static void release_one_tty(struct work_struct *work)
1467{
1468	struct tty_struct *tty =
1469		container_of(work, struct tty_struct, hangup_work);
1470	struct tty_driver *driver = tty->driver;
 
1471
1472	if (tty->ops->cleanup)
1473		tty->ops->cleanup(tty);
1474
1475	tty->magic = 0;
1476	tty_driver_kref_put(driver);
1477	module_put(driver->owner);
1478
1479	spin_lock(&tty_files_lock);
1480	list_del_init(&tty->tty_files);
1481	spin_unlock(&tty_files_lock);
1482
1483	put_pid(tty->pgrp);
1484	put_pid(tty->session);
1485	free_tty_struct(tty);
1486}
1487
1488static void queue_release_one_tty(struct kref *kref)
1489{
1490	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1491
1492	if (tty->ops->shutdown)
1493		tty->ops->shutdown(tty);
1494	else
1495		tty_shutdown(tty);
1496
1497	/* The hangup queue is now free so we can reuse it rather than
1498	   waste a chunk of memory for each port */
1499	INIT_WORK(&tty->hangup_work, release_one_tty);
1500	schedule_work(&tty->hangup_work);
1501}
1502
1503/**
1504 *	tty_kref_put		-	release a tty kref
1505 *	@tty: tty device
1506 *
1507 *	Release a reference to a tty device and if need be let the kref
1508 *	layer destruct the object for us
1509 */
1510
1511void tty_kref_put(struct tty_struct *tty)
1512{
1513	if (tty)
1514		kref_put(&tty->kref, queue_release_one_tty);
1515}
1516EXPORT_SYMBOL(tty_kref_put);
1517
1518/**
1519 *	release_tty		-	release tty structure memory
1520 *
1521 *	Release both @tty and a possible linked partner (think pty pair),
1522 *	and decrement the refcount of the backing module.
1523 *
1524 *	Locking:
1525 *		tty_mutex - sometimes only
1526 *		takes the file list lock internally when working on the list
1527 *	of ttys that the driver keeps.
1528 *		FIXME: should we require tty_mutex is held here ??
1529 *
1530 */
1531static void release_tty(struct tty_struct *tty, int idx)
1532{
1533	/* This should always be true but check for the moment */
1534	WARN_ON(tty->index != idx);
1535
 
 
 
 
 
1536	if (tty->link)
1537		tty_kref_put(tty->link);
 
 
 
1538	tty_kref_put(tty);
1539}
1540
1541/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1542 *	tty_release		-	vfs callback for close
1543 *	@inode: inode of tty
1544 *	@filp: file pointer for handle to tty
1545 *
1546 *	Called the last time each file handle is closed that references
1547 *	this tty. There may however be several such references.
1548 *
1549 *	Locking:
1550 *		Takes bkl. See tty_release_dev
1551 *
1552 * Even releasing the tty structures is a tricky business.. We have
1553 * to be very careful that the structures are all released at the
1554 * same time, as interrupts might otherwise get the wrong pointers.
1555 *
1556 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1557 * lead to double frees or releasing memory still in use.
1558 */
1559
1560int tty_release(struct inode *inode, struct file *filp)
1561{
1562	struct tty_struct *tty = file_tty(filp);
1563	struct tty_struct *o_tty;
1564	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1565	int	devpts;
1566	int	idx;
1567	char	buf[64];
 
1568
1569	if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1570		return 0;
1571
1572	tty_lock();
1573	check_tty_count(tty, "tty_release_dev");
1574
1575	__tty_fasync(-1, filp, 0);
1576
1577	idx = tty->index;
1578	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1579		      tty->driver->subtype == PTY_TYPE_MASTER);
1580	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1581	o_tty = tty->link;
1582
1583#ifdef TTY_PARANOIA_CHECK
1584	if (idx < 0 || idx >= tty->driver->num) {
1585		printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1586				  "free (%s)\n", tty->name);
1587		tty_unlock();
1588		return 0;
1589	}
1590	if (!devpts) {
1591		if (tty != tty->driver->ttys[idx]) {
1592			tty_unlock();
1593			printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1594			       "for (%s)\n", idx, tty->name);
1595			return 0;
1596		}
1597		if (tty->termios != tty->driver->termios[idx]) {
1598			tty_unlock();
1599			printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1600			       "for (%s)\n",
1601			       idx, tty->name);
1602			return 0;
1603		}
1604	}
1605#endif
1606
1607#ifdef TTY_DEBUG_HANGUP
1608	printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1609	       tty_name(tty, buf), tty->count);
1610#endif
1611
1612#ifdef TTY_PARANOIA_CHECK
1613	if (tty->driver->other &&
1614	     !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1615		if (o_tty != tty->driver->other->ttys[idx]) {
1616			tty_unlock();
1617			printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1618					  "not o_tty for (%s)\n",
1619			       idx, tty->name);
1620			return 0 ;
1621		}
1622		if (o_tty->termios != tty->driver->other->termios[idx]) {
1623			tty_unlock();
1624			printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1625					  "not o_termios for (%s)\n",
1626			       idx, tty->name);
1627			return 0;
1628		}
1629		if (o_tty->link != tty) {
1630			tty_unlock();
1631			printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1632			return 0;
1633		}
1634	}
1635#endif
1636	if (tty->ops->close)
1637		tty->ops->close(tty, filp);
1638
1639	tty_unlock();
 
 
1640	/*
1641	 * Sanity check: if tty->count is going to zero, there shouldn't be
1642	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1643	 * wait queues and kick everyone out _before_ actually starting to
1644	 * close.  This ensures that we won't block while releasing the tty
1645	 * structure.
1646	 *
1647	 * The test for the o_tty closing is necessary, since the master and
1648	 * slave sides may close in any order.  If the slave side closes out
1649	 * first, its count will be one, since the master side holds an open.
1650	 * Thus this test wouldn't be triggered at the time the slave closes,
1651	 * so we do it now.
1652	 *
1653	 * Note that it's possible for the tty to be opened again while we're
1654	 * flushing out waiters.  By recalculating the closing flags before
1655	 * each iteration we avoid any problems.
1656	 */
1657	while (1) {
1658		/* Guard against races with tty->count changes elsewhere and
1659		   opens on /dev/tty */
1660
1661		mutex_lock(&tty_mutex);
1662		tty_lock();
1663		tty_closing = tty->count <= 1;
1664		o_tty_closing = o_tty &&
1665			(o_tty->count <= (pty_master ? 1 : 0));
1666		do_sleep = 0;
1667
1668		if (tty_closing) {
1669			if (waitqueue_active(&tty->read_wait)) {
1670				wake_up_poll(&tty->read_wait, POLLIN);
1671				do_sleep++;
1672			}
1673			if (waitqueue_active(&tty->write_wait)) {
1674				wake_up_poll(&tty->write_wait, POLLOUT);
1675				do_sleep++;
1676			}
1677		}
1678		if (o_tty_closing) {
1679			if (waitqueue_active(&o_tty->read_wait)) {
1680				wake_up_poll(&o_tty->read_wait, POLLIN);
1681				do_sleep++;
1682			}
1683			if (waitqueue_active(&o_tty->write_wait)) {
1684				wake_up_poll(&o_tty->write_wait, POLLOUT);
1685				do_sleep++;
1686			}
1687		}
1688		if (!do_sleep)
1689			break;
1690
1691		printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1692				    "active!\n", tty_name(tty, buf));
1693		tty_unlock();
1694		mutex_unlock(&tty_mutex);
1695		schedule();
 
 
 
 
1696	}
1697
1698	/*
1699	 * The closing flags are now consistent with the open counts on
1700	 * both sides, and we've completed the last operation that could
1701	 * block, so it's safe to proceed with closing.
1702	 */
1703	if (pty_master) {
1704		if (--o_tty->count < 0) {
1705			printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1706					    "(%d) for %s\n",
1707			       o_tty->count, tty_name(o_tty, buf));
1708			o_tty->count = 0;
1709		}
1710	}
1711	if (--tty->count < 0) {
1712		printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1713		       tty->count, tty_name(tty, buf));
1714		tty->count = 0;
1715	}
1716
1717	/*
1718	 * We've decremented tty->count, so we need to remove this file
1719	 * descriptor off the tty->tty_files list; this serves two
1720	 * purposes:
1721	 *  - check_tty_count sees the correct number of file descriptors
1722	 *    associated with this tty.
1723	 *  - do_tty_hangup no longer sees this file descriptor as
1724	 *    something that needs to be handled for hangups.
1725	 */
1726	tty_del_file(filp);
1727
1728	/*
1729	 * Perform some housekeeping before deciding whether to return.
1730	 *
1731	 * Set the TTY_CLOSING flag if this was the last open.  In the
1732	 * case of a pty we may have to wait around for the other side
1733	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1734	 */
1735	if (tty_closing)
1736		set_bit(TTY_CLOSING, &tty->flags);
1737	if (o_tty_closing)
1738		set_bit(TTY_CLOSING, &o_tty->flags);
1739
1740	/*
1741	 * If _either_ side is closing, make sure there aren't any
1742	 * processes that still think tty or o_tty is their controlling
1743	 * tty.
1744	 */
1745	if (tty_closing || o_tty_closing) {
1746		read_lock(&tasklist_lock);
1747		session_clear_tty(tty->session);
1748		if (o_tty)
1749			session_clear_tty(o_tty->session);
1750		read_unlock(&tasklist_lock);
1751	}
1752
1753	mutex_unlock(&tty_mutex);
1754
1755	/* check whether both sides are closing ... */
1756	if (!tty_closing || (o_tty && !o_tty_closing)) {
1757		tty_unlock();
 
 
 
 
 
 
 
1758		return 0;
1759	}
1760
1761#ifdef TTY_DEBUG_HANGUP
1762	printk(KERN_DEBUG "freeing tty structure...");
1763#endif
1764	/*
1765	 * Ask the line discipline code to release its structures
1766	 */
1767	tty_ldisc_release(tty, o_tty);
 
 
 
 
 
1768	/*
1769	 * The release_tty function takes care of the details of clearing
1770	 * the slots and preserving the termios structure.
 
 
1771	 */
 
1772	release_tty(tty, idx);
 
1773
1774	/* Make this pty number available for reallocation */
1775	if (devpts)
1776		devpts_kill_index(inode, idx);
1777	tty_unlock();
1778	return 0;
1779}
1780
1781/**
1782 *	tty_open		-	open a tty device
1783 *	@inode: inode of device file
1784 *	@filp: file pointer to tty
 
1785 *
1786 *	tty_open and tty_release keep up the tty count that contains the
1787 *	number of opens done on a tty. We cannot use the inode-count, as
1788 *	different inodes might point to the same tty.
1789 *
1790 *	Open-counting is needed for pty masters, as well as for keeping
1791 *	track of serial lines: DTR is dropped when the last close happens.
1792 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1793 *
1794 *	The termios state of a pty is reset on first open so that
1795 *	settings don't persist across reuse.
1796 *
1797 *	Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1798 *		 tty->count should protect the rest.
1799 *		 ->siglock protects ->signal/->sighand
1800 */
1801
1802static int tty_open(struct inode *inode, struct file *filp)
1803{
1804	struct tty_struct *tty = NULL;
1805	int noctty, retval;
1806	struct tty_driver *driver;
1807	int index;
1808	dev_t device = inode->i_rdev;
1809	unsigned saved_flags = filp->f_flags;
1810
1811	nonseekable_open(inode, filp);
1812
1813retry_open:
1814	noctty = filp->f_flags & O_NOCTTY;
1815	index  = -1;
1816	retval = 0;
1817
1818	mutex_lock(&tty_mutex);
1819	tty_lock();
 
1820
1821	if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1822		tty = get_current_tty();
1823		if (!tty) {
1824			tty_unlock();
1825			mutex_unlock(&tty_mutex);
1826			return -ENXIO;
1827		}
1828		driver = tty_driver_kref_get(tty->driver);
1829		index = tty->index;
1830		filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1831		/* noctty = 1; */
1832		/* FIXME: Should we take a driver reference ? */
1833		tty_kref_put(tty);
1834		goto got_driver;
1835	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1836#ifdef CONFIG_VT
1837	if (device == MKDEV(TTY_MAJOR, 0)) {
1838		extern struct tty_driver *console_driver;
1839		driver = tty_driver_kref_get(console_driver);
1840		index = fg_console;
1841		noctty = 1;
1842		goto got_driver;
1843	}
1844#endif
1845	if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1846		struct tty_driver *console_driver = console_device(&index);
1847		if (console_driver) {
1848			driver = tty_driver_kref_get(console_driver);
1849			if (driver) {
1850				/* Don't let /dev/console block */
1851				filp->f_flags |= O_NONBLOCK;
1852				noctty = 1;
1853				goto got_driver;
1854			}
1855		}
1856		tty_unlock();
1857		mutex_unlock(&tty_mutex);
1858		return -ENODEV;
1859	}
 
 
 
 
 
 
 
 
1860
1861	driver = get_tty_driver(device, &index);
1862	if (!driver) {
1863		tty_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1864		mutex_unlock(&tty_mutex);
1865		return -ENODEV;
1866	}
1867got_driver:
1868	if (!tty) {
1869		/* check whether we're reopening an existing tty */
1870		tty = tty_driver_lookup_tty(driver, inode, index);
1871
1872		if (IS_ERR(tty)) {
1873			tty_unlock();
1874			mutex_unlock(&tty_mutex);
1875			return PTR_ERR(tty);
1876		}
1877	}
1878
1879	if (tty) {
 
 
 
 
 
 
 
 
 
1880		retval = tty_reopen(tty);
1881		if (retval)
 
1882			tty = ERR_PTR(retval);
1883	} else
1884		tty = tty_init_dev(driver, index, 0);
1885
1886	mutex_unlock(&tty_mutex);
 
 
1887	tty_driver_kref_put(driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1888	if (IS_ERR(tty)) {
1889		tty_unlock();
1890		return PTR_ERR(tty);
 
 
 
 
1891	}
1892
1893	retval = tty_add_file(tty, filp);
1894	if (retval) {
1895		tty_unlock();
1896		tty_release(inode, filp);
1897		return retval;
1898	}
1899
1900	check_tty_count(tty, "tty_open");
1901	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1902	    tty->driver->subtype == PTY_TYPE_MASTER)
1903		noctty = 1;
1904#ifdef TTY_DEBUG_HANGUP
1905	printk(KERN_DEBUG "opening %s...", tty->name);
1906#endif
1907	if (tty->ops->open)
1908		retval = tty->ops->open(tty, filp);
1909	else
1910		retval = -ENODEV;
1911	filp->f_flags = saved_flags;
1912
1913	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1914						!capable(CAP_SYS_ADMIN))
1915		retval = -EBUSY;
1916
1917	if (retval) {
1918#ifdef TTY_DEBUG_HANGUP
1919		printk(KERN_DEBUG "error %d in opening %s...", retval,
1920		       tty->name);
1921#endif
1922		tty_unlock(); /* need to call tty_release without BTM */
1923		tty_release(inode, filp);
1924		if (retval != -ERESTARTSYS)
1925			return retval;
1926
1927		if (signal_pending(current))
1928			return retval;
1929
1930		schedule();
1931		/*
1932		 * Need to reset f_op in case a hangup happened.
1933		 */
1934		tty_lock();
1935		if (filp->f_op == &hung_up_tty_fops)
1936			filp->f_op = &tty_fops;
1937		tty_unlock();
1938		goto retry_open;
1939	}
1940	tty_unlock();
1941
1942
1943	mutex_lock(&tty_mutex);
1944	tty_lock();
1945	spin_lock_irq(&current->sighand->siglock);
 
 
 
 
 
 
1946	if (!noctty &&
1947	    current->signal->leader &&
1948	    !current->signal->tty &&
1949	    tty->session == NULL)
1950		__proc_set_tty(current, tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1951	spin_unlock_irq(&current->sighand->siglock);
1952	tty_unlock();
1953	mutex_unlock(&tty_mutex);
1954	return 0;
1955}
1956
1957
1958
1959/**
1960 *	tty_poll	-	check tty status
1961 *	@filp: file being polled
1962 *	@wait: poll wait structures to update
1963 *
1964 *	Call the line discipline polling method to obtain the poll
1965 *	status of the device.
1966 *
1967 *	Locking: locks called line discipline but ldisc poll method
1968 *	may be re-entered freely by other callers.
1969 */
1970
1971static unsigned int tty_poll(struct file *filp, poll_table *wait)
1972{
1973	struct tty_struct *tty = file_tty(filp);
1974	struct tty_ldisc *ld;
1975	int ret = 0;
1976
1977	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1978		return 0;
1979
1980	ld = tty_ldisc_ref_wait(tty);
 
 
1981	if (ld->ops->poll)
1982		ret = (ld->ops->poll)(tty, filp, wait);
1983	tty_ldisc_deref(ld);
1984	return ret;
1985}
1986
1987static int __tty_fasync(int fd, struct file *filp, int on)
1988{
1989	struct tty_struct *tty = file_tty(filp);
1990	unsigned long flags;
1991	int retval = 0;
1992
1993	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1994		goto out;
1995
1996	retval = fasync_helper(fd, filp, on, &tty->fasync);
1997	if (retval <= 0)
1998		goto out;
1999
2000	if (on) {
2001		enum pid_type type;
2002		struct pid *pid;
2003		if (!waitqueue_active(&tty->read_wait))
2004			tty->minimum_to_wake = 1;
2005		spin_lock_irqsave(&tty->ctrl_lock, flags);
2006		if (tty->pgrp) {
2007			pid = tty->pgrp;
2008			type = PIDTYPE_PGID;
2009		} else {
2010			pid = task_pid(current);
2011			type = PIDTYPE_PID;
2012		}
2013		get_pid(pid);
2014		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2015		retval = __f_setown(filp, pid, type, 0);
2016		put_pid(pid);
2017		if (retval)
2018			goto out;
2019	} else {
2020		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2021			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2022	}
2023	retval = 0;
2024out:
2025	return retval;
2026}
2027
2028static int tty_fasync(int fd, struct file *filp, int on)
2029{
2030	int retval;
2031	tty_lock();
2032	retval = __tty_fasync(fd, filp, on);
2033	tty_unlock();
 
 
 
 
2034	return retval;
2035}
2036
2037/**
2038 *	tiocsti			-	fake input character
2039 *	@tty: tty to fake input into
2040 *	@p: pointer to character
2041 *
2042 *	Fake input to a tty device. Does the necessary locking and
2043 *	input management.
2044 *
2045 *	FIXME: does not honour flow control ??
2046 *
2047 *	Locking:
2048 *		Called functions take tty_ldisc_lock
2049 *		current->signal->tty check is safe without locks
2050 *
2051 *	FIXME: may race normal receive processing
2052 */
2053
2054static int tiocsti(struct tty_struct *tty, char __user *p)
2055{
2056	char ch, mbz = 0;
2057	struct tty_ldisc *ld;
2058
2059	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2060		return -EPERM;
2061	if (get_user(ch, p))
2062		return -EFAULT;
2063	tty_audit_tiocsti(tty, ch);
2064	ld = tty_ldisc_ref_wait(tty);
 
 
2065	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2066	tty_ldisc_deref(ld);
2067	return 0;
2068}
2069
2070/**
2071 *	tiocgwinsz		-	implement window query ioctl
2072 *	@tty; tty
2073 *	@arg: user buffer for result
2074 *
2075 *	Copies the kernel idea of the window size into the user buffer.
2076 *
2077 *	Locking: tty->termios_mutex is taken to ensure the winsize data
2078 *		is consistent.
2079 */
2080
2081static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2082{
2083	int err;
2084
2085	mutex_lock(&tty->termios_mutex);
2086	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2087	mutex_unlock(&tty->termios_mutex);
2088
2089	return err ? -EFAULT: 0;
2090}
2091
2092/**
2093 *	tty_do_resize		-	resize event
2094 *	@tty: tty being resized
2095 *	@rows: rows (character)
2096 *	@cols: cols (character)
2097 *
2098 *	Update the termios variables and send the necessary signals to
2099 *	peform a terminal resize correctly
2100 */
2101
2102int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2103{
2104	struct pid *pgrp;
2105	unsigned long flags;
2106
2107	/* Lock the tty */
2108	mutex_lock(&tty->termios_mutex);
2109	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2110		goto done;
2111	/* Get the PID values and reference them so we can
2112	   avoid holding the tty ctrl lock while sending signals */
2113	spin_lock_irqsave(&tty->ctrl_lock, flags);
2114	pgrp = get_pid(tty->pgrp);
2115	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2116
 
 
2117	if (pgrp)
2118		kill_pgrp(pgrp, SIGWINCH, 1);
2119	put_pid(pgrp);
2120
2121	tty->winsize = *ws;
2122done:
2123	mutex_unlock(&tty->termios_mutex);
2124	return 0;
2125}
 
2126
2127/**
2128 *	tiocswinsz		-	implement window size set ioctl
2129 *	@tty; tty side of tty
2130 *	@arg: user buffer for result
2131 *
2132 *	Copies the user idea of the window size to the kernel. Traditionally
2133 *	this is just advisory information but for the Linux console it
2134 *	actually has driver level meaning and triggers a VC resize.
2135 *
2136 *	Locking:
2137 *		Driver dependent. The default do_resize method takes the
2138 *	tty termios mutex and ctrl_lock. The console takes its own lock
2139 *	then calls into the default method.
2140 */
2141
2142static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2143{
2144	struct winsize tmp_ws;
2145	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2146		return -EFAULT;
2147
2148	if (tty->ops->resize)
2149		return tty->ops->resize(tty, &tmp_ws);
2150	else
2151		return tty_do_resize(tty, &tmp_ws);
2152}
2153
2154/**
2155 *	tioccons	-	allow admin to move logical console
2156 *	@file: the file to become console
2157 *
2158 *	Allow the administrator to move the redirected console device
2159 *
2160 *	Locking: uses redirect_lock to guard the redirect information
2161 */
2162
2163static int tioccons(struct file *file)
2164{
2165	if (!capable(CAP_SYS_ADMIN))
2166		return -EPERM;
2167	if (file->f_op->write == redirected_tty_write) {
2168		struct file *f;
2169		spin_lock(&redirect_lock);
2170		f = redirect;
2171		redirect = NULL;
2172		spin_unlock(&redirect_lock);
2173		if (f)
2174			fput(f);
2175		return 0;
2176	}
2177	spin_lock(&redirect_lock);
2178	if (redirect) {
2179		spin_unlock(&redirect_lock);
2180		return -EBUSY;
2181	}
2182	get_file(file);
2183	redirect = file;
2184	spin_unlock(&redirect_lock);
2185	return 0;
2186}
2187
2188/**
2189 *	fionbio		-	non blocking ioctl
2190 *	@file: file to set blocking value
2191 *	@p: user parameter
2192 *
2193 *	Historical tty interfaces had a blocking control ioctl before
2194 *	the generic functionality existed. This piece of history is preserved
2195 *	in the expected tty API of posix OS's.
2196 *
2197 *	Locking: none, the open file handle ensures it won't go away.
2198 */
2199
2200static int fionbio(struct file *file, int __user *p)
2201{
2202	int nonblock;
2203
2204	if (get_user(nonblock, p))
2205		return -EFAULT;
2206
2207	spin_lock(&file->f_lock);
2208	if (nonblock)
2209		file->f_flags |= O_NONBLOCK;
2210	else
2211		file->f_flags &= ~O_NONBLOCK;
2212	spin_unlock(&file->f_lock);
2213	return 0;
2214}
2215
2216/**
2217 *	tiocsctty	-	set controlling tty
2218 *	@tty: tty structure
2219 *	@arg: user argument
2220 *
2221 *	This ioctl is used to manage job control. It permits a session
2222 *	leader to set this tty as the controlling tty for the session.
2223 *
2224 *	Locking:
2225 *		Takes tty_mutex() to protect tty instance
2226 *		Takes tasklist_lock internally to walk sessions
2227 *		Takes ->siglock() when updating signal->tty
2228 */
2229
2230static int tiocsctty(struct tty_struct *tty, int arg)
2231{
2232	int ret = 0;
 
 
 
 
2233	if (current->signal->leader && (task_session(current) == tty->session))
2234		return ret;
2235
2236	mutex_lock(&tty_mutex);
2237	/*
2238	 * The process must be a session leader and
2239	 * not have a controlling tty already.
2240	 */
2241	if (!current->signal->leader || current->signal->tty) {
2242		ret = -EPERM;
2243		goto unlock;
2244	}
2245
2246	if (tty->session) {
2247		/*
2248		 * This tty is already the controlling
2249		 * tty for another session group!
2250		 */
2251		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2252			/*
2253			 * Steal it away
2254			 */
2255			read_lock(&tasklist_lock);
2256			session_clear_tty(tty->session);
2257			read_unlock(&tasklist_lock);
2258		} else {
2259			ret = -EPERM;
2260			goto unlock;
2261		}
2262	}
2263	proc_set_tty(current, tty);
 
 
 
 
 
 
 
2264unlock:
2265	mutex_unlock(&tty_mutex);
 
2266	return ret;
2267}
2268
2269/**
2270 *	tty_get_pgrp	-	return a ref counted pgrp pid
2271 *	@tty: tty to read
2272 *
2273 *	Returns a refcounted instance of the pid struct for the process
2274 *	group controlling the tty.
2275 */
2276
2277struct pid *tty_get_pgrp(struct tty_struct *tty)
2278{
2279	unsigned long flags;
2280	struct pid *pgrp;
2281
2282	spin_lock_irqsave(&tty->ctrl_lock, flags);
2283	pgrp = get_pid(tty->pgrp);
2284	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2285
2286	return pgrp;
2287}
2288EXPORT_SYMBOL_GPL(tty_get_pgrp);
2289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2290/**
2291 *	tiocgpgrp		-	get process group
2292 *	@tty: tty passed by user
2293 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2294 *	@p: returned pid
2295 *
2296 *	Obtain the process group of the tty. If there is no process group
2297 *	return an error.
2298 *
2299 *	Locking: none. Reference to current->signal->tty is safe.
2300 */
2301
2302static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2303{
2304	struct pid *pid;
2305	int ret;
2306	/*
2307	 * (tty == real_tty) is a cheap way of
2308	 * testing if the tty is NOT a master pty.
2309	 */
2310	if (tty == real_tty && current->signal->tty != real_tty)
2311		return -ENOTTY;
2312	pid = tty_get_pgrp(real_tty);
2313	ret =  put_user(pid_vnr(pid), p);
2314	put_pid(pid);
2315	return ret;
2316}
2317
2318/**
2319 *	tiocspgrp		-	attempt to set process group
2320 *	@tty: tty passed by user
2321 *	@real_tty: tty side device matching tty passed by user
2322 *	@p: pid pointer
2323 *
2324 *	Set the process group of the tty to the session passed. Only
2325 *	permitted where the tty session is our session.
2326 *
2327 *	Locking: RCU, ctrl lock
2328 */
2329
2330static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2331{
2332	struct pid *pgrp;
2333	pid_t pgrp_nr;
2334	int retval = tty_check_change(real_tty);
2335	unsigned long flags;
2336
2337	if (retval == -EIO)
2338		return -ENOTTY;
2339	if (retval)
2340		return retval;
2341	if (!current->signal->tty ||
2342	    (current->signal->tty != real_tty) ||
2343	    (real_tty->session != task_session(current)))
2344		return -ENOTTY;
2345	if (get_user(pgrp_nr, p))
2346		return -EFAULT;
2347	if (pgrp_nr < 0)
2348		return -EINVAL;
2349	rcu_read_lock();
2350	pgrp = find_vpid(pgrp_nr);
2351	retval = -ESRCH;
2352	if (!pgrp)
2353		goto out_unlock;
2354	retval = -EPERM;
2355	if (session_of_pgrp(pgrp) != task_session(current))
2356		goto out_unlock;
2357	retval = 0;
2358	spin_lock_irqsave(&tty->ctrl_lock, flags);
2359	put_pid(real_tty->pgrp);
2360	real_tty->pgrp = get_pid(pgrp);
2361	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2362out_unlock:
2363	rcu_read_unlock();
2364	return retval;
2365}
2366
2367/**
2368 *	tiocgsid		-	get session id
2369 *	@tty: tty passed by user
2370 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2371 *	@p: pointer to returned session id
2372 *
2373 *	Obtain the session id of the tty. If there is no session
2374 *	return an error.
2375 *
2376 *	Locking: none. Reference to current->signal->tty is safe.
2377 */
2378
2379static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2380{
2381	/*
2382	 * (tty == real_tty) is a cheap way of
2383	 * testing if the tty is NOT a master pty.
2384	*/
2385	if (tty == real_tty && current->signal->tty != real_tty)
2386		return -ENOTTY;
2387	if (!real_tty->session)
2388		return -ENOTTY;
2389	return put_user(pid_vnr(real_tty->session), p);
2390}
2391
2392/**
2393 *	tiocsetd	-	set line discipline
2394 *	@tty: tty device
2395 *	@p: pointer to user data
2396 *
2397 *	Set the line discipline according to user request.
2398 *
2399 *	Locking: see tty_set_ldisc, this function is just a helper
2400 */
2401
2402static int tiocsetd(struct tty_struct *tty, int __user *p)
2403{
2404	int ldisc;
2405	int ret;
2406
2407	if (get_user(ldisc, p))
2408		return -EFAULT;
2409
2410	ret = tty_set_ldisc(tty, ldisc);
2411
2412	return ret;
2413}
2414
2415/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2416 *	send_break	-	performed time break
2417 *	@tty: device to break on
2418 *	@duration: timeout in mS
2419 *
2420 *	Perform a timed break on hardware that lacks its own driver level
2421 *	timed break functionality.
2422 *
2423 *	Locking:
2424 *		atomic_write_lock serializes
2425 *
2426 */
2427
2428static int send_break(struct tty_struct *tty, unsigned int duration)
2429{
2430	int retval;
2431
2432	if (tty->ops->break_ctl == NULL)
2433		return 0;
2434
2435	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2436		retval = tty->ops->break_ctl(tty, duration);
2437	else {
2438		/* Do the work ourselves */
2439		if (tty_write_lock(tty, 0) < 0)
2440			return -EINTR;
2441		retval = tty->ops->break_ctl(tty, -1);
2442		if (retval)
2443			goto out;
2444		if (!signal_pending(current))
2445			msleep_interruptible(duration);
2446		retval = tty->ops->break_ctl(tty, 0);
2447out:
2448		tty_write_unlock(tty);
2449		if (signal_pending(current))
2450			retval = -EINTR;
2451	}
2452	return retval;
2453}
2454
2455/**
2456 *	tty_tiocmget		-	get modem status
2457 *	@tty: tty device
2458 *	@file: user file pointer
2459 *	@p: pointer to result
2460 *
2461 *	Obtain the modem status bits from the tty driver if the feature
2462 *	is supported. Return -EINVAL if it is not available.
2463 *
2464 *	Locking: none (up to the driver)
2465 */
2466
2467static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2468{
2469	int retval = -EINVAL;
2470
2471	if (tty->ops->tiocmget) {
2472		retval = tty->ops->tiocmget(tty);
2473
2474		if (retval >= 0)
2475			retval = put_user(retval, p);
2476	}
2477	return retval;
2478}
2479
2480/**
2481 *	tty_tiocmset		-	set modem status
2482 *	@tty: tty device
2483 *	@cmd: command - clear bits, set bits or set all
2484 *	@p: pointer to desired bits
2485 *
2486 *	Set the modem status bits from the tty driver if the feature
2487 *	is supported. Return -EINVAL if it is not available.
2488 *
2489 *	Locking: none (up to the driver)
2490 */
2491
2492static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2493	     unsigned __user *p)
2494{
2495	int retval;
2496	unsigned int set, clear, val;
2497
2498	if (tty->ops->tiocmset == NULL)
2499		return -EINVAL;
2500
2501	retval = get_user(val, p);
2502	if (retval)
2503		return retval;
2504	set = clear = 0;
2505	switch (cmd) {
2506	case TIOCMBIS:
2507		set = val;
2508		break;
2509	case TIOCMBIC:
2510		clear = val;
2511		break;
2512	case TIOCMSET:
2513		set = val;
2514		clear = ~val;
2515		break;
2516	}
2517	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2518	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2519	return tty->ops->tiocmset(tty, set, clear);
2520}
2521
2522static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2523{
2524	int retval = -EINVAL;
2525	struct serial_icounter_struct icount;
2526	memset(&icount, 0, sizeof(icount));
2527	if (tty->ops->get_icount)
2528		retval = tty->ops->get_icount(tty, &icount);
2529	if (retval != 0)
2530		return retval;
2531	if (copy_to_user(arg, &icount, sizeof(icount)))
2532		return -EFAULT;
2533	return 0;
2534}
2535
2536struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2537{
2538	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2539	    tty->driver->subtype == PTY_TYPE_MASTER)
2540		tty = tty->link;
2541	return tty;
 
 
 
 
 
 
 
 
 
 
2542}
2543EXPORT_SYMBOL(tty_pair_get_tty);
2544
2545struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
 
 
 
 
2546{
2547	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2548	    tty->driver->subtype == PTY_TYPE_MASTER)
2549	    return tty;
2550	return tty->link;
2551}
2552EXPORT_SYMBOL(tty_pair_get_pty);
2553
2554/*
2555 * Split this up, as gcc can choke on it otherwise..
2556 */
2557long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2558{
2559	struct tty_struct *tty = file_tty(file);
2560	struct tty_struct *real_tty;
2561	void __user *p = (void __user *)arg;
2562	int retval;
2563	struct tty_ldisc *ld;
2564	struct inode *inode = file->f_dentry->d_inode;
2565
2566	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2567		return -EINVAL;
2568
2569	real_tty = tty_pair_get_tty(tty);
2570
2571	/*
2572	 * Factor out some common prep work
2573	 */
2574	switch (cmd) {
2575	case TIOCSETD:
2576	case TIOCSBRK:
2577	case TIOCCBRK:
2578	case TCSBRK:
2579	case TCSBRKP:
2580		retval = tty_check_change(tty);
2581		if (retval)
2582			return retval;
2583		if (cmd != TIOCCBRK) {
2584			tty_wait_until_sent(tty, 0);
2585			if (signal_pending(current))
2586				return -EINTR;
2587		}
2588		break;
2589	}
2590
2591	/*
2592	 *	Now do the stuff.
2593	 */
2594	switch (cmd) {
2595	case TIOCSTI:
2596		return tiocsti(tty, p);
2597	case TIOCGWINSZ:
2598		return tiocgwinsz(real_tty, p);
2599	case TIOCSWINSZ:
2600		return tiocswinsz(real_tty, p);
2601	case TIOCCONS:
2602		return real_tty != tty ? -EINVAL : tioccons(file);
2603	case FIONBIO:
2604		return fionbio(file, p);
2605	case TIOCEXCL:
2606		set_bit(TTY_EXCLUSIVE, &tty->flags);
2607		return 0;
2608	case TIOCNXCL:
2609		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2610		return 0;
 
 
 
 
 
2611	case TIOCNOTTY:
2612		if (current->signal->tty != tty)
2613			return -ENOTTY;
2614		no_tty();
2615		return 0;
2616	case TIOCSCTTY:
2617		return tiocsctty(tty, arg);
2618	case TIOCGPGRP:
2619		return tiocgpgrp(tty, real_tty, p);
2620	case TIOCSPGRP:
2621		return tiocspgrp(tty, real_tty, p);
2622	case TIOCGSID:
2623		return tiocgsid(tty, real_tty, p);
2624	case TIOCGETD:
2625		return put_user(tty->ldisc->ops->num, (int __user *)p);
2626	case TIOCSETD:
2627		return tiocsetd(tty, p);
2628	case TIOCVHANGUP:
2629		if (!capable(CAP_SYS_ADMIN))
2630			return -EPERM;
2631		tty_vhangup(tty);
2632		return 0;
2633	case TIOCGDEV:
2634	{
2635		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2636		return put_user(ret, (unsigned int __user *)p);
2637	}
2638	/*
2639	 * Break handling
2640	 */
2641	case TIOCSBRK:	/* Turn break on, unconditionally */
2642		if (tty->ops->break_ctl)
2643			return tty->ops->break_ctl(tty, -1);
2644		return 0;
2645	case TIOCCBRK:	/* Turn break off, unconditionally */
2646		if (tty->ops->break_ctl)
2647			return tty->ops->break_ctl(tty, 0);
2648		return 0;
2649	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2650		/* non-zero arg means wait for all output data
2651		 * to be sent (performed above) but don't send break.
2652		 * This is used by the tcdrain() termios function.
2653		 */
2654		if (!arg)
2655			return send_break(tty, 250);
2656		return 0;
2657	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2658		return send_break(tty, arg ? arg*100 : 250);
2659
2660	case TIOCMGET:
2661		return tty_tiocmget(tty, p);
2662	case TIOCMSET:
2663	case TIOCMBIC:
2664	case TIOCMBIS:
2665		return tty_tiocmset(tty, cmd, p);
2666	case TIOCGICOUNT:
2667		retval = tty_tiocgicount(tty, p);
2668		/* For the moment allow fall through to the old method */
2669        	if (retval != -EINVAL)
2670			return retval;
2671		break;
2672	case TCFLSH:
2673		switch (arg) {
2674		case TCIFLUSH:
2675		case TCIOFLUSH:
2676		/* flush tty buffer and allow ldisc to process ioctl */
2677			tty_buffer_flush(tty);
2678			break;
2679		}
2680		break;
 
 
 
2681	}
2682	if (tty->ops->ioctl) {
2683		retval = (tty->ops->ioctl)(tty, cmd, arg);
2684		if (retval != -ENOIOCTLCMD)
2685			return retval;
2686	}
2687	ld = tty_ldisc_ref_wait(tty);
 
 
2688	retval = -EINVAL;
2689	if (ld->ops->ioctl) {
2690		retval = ld->ops->ioctl(tty, file, cmd, arg);
2691		if (retval == -ENOIOCTLCMD)
2692			retval = -EINVAL;
2693	}
2694	tty_ldisc_deref(ld);
2695	return retval;
2696}
2697
2698#ifdef CONFIG_COMPAT
2699static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2700				unsigned long arg)
2701{
2702	struct inode *inode = file->f_dentry->d_inode;
2703	struct tty_struct *tty = file_tty(file);
2704	struct tty_ldisc *ld;
2705	int retval = -ENOIOCTLCMD;
2706
2707	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2708		return -EINVAL;
2709
2710	if (tty->ops->compat_ioctl) {
2711		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2712		if (retval != -ENOIOCTLCMD)
2713			return retval;
2714	}
2715
2716	ld = tty_ldisc_ref_wait(tty);
 
 
2717	if (ld->ops->compat_ioctl)
2718		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
 
 
2719	tty_ldisc_deref(ld);
2720
2721	return retval;
2722}
2723#endif
2724
 
 
 
 
 
 
 
2725/*
2726 * This implements the "Secure Attention Key" ---  the idea is to
2727 * prevent trojan horses by killing all processes associated with this
2728 * tty when the user hits the "Secure Attention Key".  Required for
2729 * super-paranoid applications --- see the Orange Book for more details.
2730 *
2731 * This code could be nicer; ideally it should send a HUP, wait a few
2732 * seconds, then send a INT, and then a KILL signal.  But you then
2733 * have to coordinate with the init process, since all processes associated
2734 * with the current tty must be dead before the new getty is allowed
2735 * to spawn.
2736 *
2737 * Now, if it would be correct ;-/ The current code has a nasty hole -
2738 * it doesn't catch files in flight. We may send the descriptor to ourselves
2739 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2740 *
2741 * Nasty bug: do_SAK is being called in interrupt context.  This can
2742 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2743 */
2744void __do_SAK(struct tty_struct *tty)
2745{
2746#ifdef TTY_SOFT_SAK
2747	tty_hangup(tty);
2748#else
2749	struct task_struct *g, *p;
2750	struct pid *session;
2751	int		i;
2752	struct file	*filp;
2753	struct fdtable *fdt;
2754
2755	if (!tty)
2756		return;
2757	session = tty->session;
2758
2759	tty_ldisc_flush(tty);
2760
2761	tty_driver_flush_buffer(tty);
2762
2763	read_lock(&tasklist_lock);
2764	/* Kill the entire session */
2765	do_each_pid_task(session, PIDTYPE_SID, p) {
2766		printk(KERN_NOTICE "SAK: killed process %d"
2767			" (%s): task_session(p)==tty->session\n",
2768			task_pid_nr(p), p->comm);
2769		send_sig(SIGKILL, p, 1);
2770	} while_each_pid_task(session, PIDTYPE_SID, p);
2771	/* Now kill any processes that happen to have the
2772	 * tty open.
2773	 */
2774	do_each_thread(g, p) {
2775		if (p->signal->tty == tty) {
2776			printk(KERN_NOTICE "SAK: killed process %d"
2777			    " (%s): task_session(p)==tty->session\n",
2778			    task_pid_nr(p), p->comm);
2779			send_sig(SIGKILL, p, 1);
2780			continue;
2781		}
2782		task_lock(p);
2783		if (p->files) {
2784			/*
2785			 * We don't take a ref to the file, so we must
2786			 * hold ->file_lock instead.
2787			 */
2788			spin_lock(&p->files->file_lock);
2789			fdt = files_fdtable(p->files);
2790			for (i = 0; i < fdt->max_fds; i++) {
2791				filp = fcheck_files(p->files, i);
2792				if (!filp)
2793					continue;
2794				if (filp->f_op->read == tty_read &&
2795				    file_tty(filp) == tty) {
2796					printk(KERN_NOTICE "SAK: killed process %d"
2797					    " (%s): fd#%d opened to the tty\n",
2798					    task_pid_nr(p), p->comm, i);
2799					force_sig(SIGKILL, p);
2800					break;
2801				}
2802			}
2803			spin_unlock(&p->files->file_lock);
2804		}
2805		task_unlock(p);
2806	} while_each_thread(g, p);
2807	read_unlock(&tasklist_lock);
2808#endif
2809}
2810
2811static void do_SAK_work(struct work_struct *work)
2812{
2813	struct tty_struct *tty =
2814		container_of(work, struct tty_struct, SAK_work);
2815	__do_SAK(tty);
2816}
2817
2818/*
2819 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2820 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2821 * the values which we write to it will be identical to the values which it
2822 * already has. --akpm
2823 */
2824void do_SAK(struct tty_struct *tty)
2825{
2826	if (!tty)
2827		return;
2828	schedule_work(&tty->SAK_work);
2829}
2830
2831EXPORT_SYMBOL(do_SAK);
2832
2833static int dev_match_devt(struct device *dev, void *data)
2834{
2835	dev_t *devt = data;
2836	return dev->devt == *devt;
2837}
2838
2839/* Must put_device() after it's unused! */
2840static struct device *tty_get_device(struct tty_struct *tty)
2841{
2842	dev_t devt = tty_devnum(tty);
2843	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2844}
2845
2846
2847/**
2848 *	initialize_tty_struct
2849 *	@tty: tty to initialize
2850 *
2851 *	This subroutine initializes a tty structure that has been newly
2852 *	allocated.
2853 *
2854 *	Locking: none - tty in question must not be exposed at this point
2855 */
2856
2857void initialize_tty_struct(struct tty_struct *tty,
2858		struct tty_driver *driver, int idx)
2859{
2860	memset(tty, 0, sizeof(struct tty_struct));
 
 
 
 
 
2861	kref_init(&tty->kref);
2862	tty->magic = TTY_MAGIC;
2863	tty_ldisc_init(tty);
2864	tty->session = NULL;
2865	tty->pgrp = NULL;
2866	tty->overrun_time = jiffies;
2867	tty->buf.head = tty->buf.tail = NULL;
2868	tty_buffer_init(tty);
2869	mutex_init(&tty->termios_mutex);
2870	mutex_init(&tty->ldisc_mutex);
2871	init_waitqueue_head(&tty->write_wait);
2872	init_waitqueue_head(&tty->read_wait);
2873	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2874	mutex_init(&tty->atomic_read_lock);
2875	mutex_init(&tty->atomic_write_lock);
2876	mutex_init(&tty->output_lock);
2877	mutex_init(&tty->echo_lock);
2878	spin_lock_init(&tty->read_lock);
2879	spin_lock_init(&tty->ctrl_lock);
 
 
2880	INIT_LIST_HEAD(&tty->tty_files);
2881	INIT_WORK(&tty->SAK_work, do_SAK_work);
2882
2883	tty->driver = driver;
2884	tty->ops = driver->ops;
2885	tty->index = idx;
2886	tty_line_name(driver, idx, tty->name);
2887	tty->dev = tty_get_device(tty);
2888}
2889
2890/**
2891 *	deinitialize_tty_struct
2892 *	@tty: tty to deinitialize
2893 *
2894 *	This subroutine deinitializes a tty structure that has been newly
2895 *	allocated but tty_release cannot be called on that yet.
2896 *
2897 *	Locking: none - tty in question must not be exposed at this point
2898 */
2899void deinitialize_tty_struct(struct tty_struct *tty)
2900{
2901	tty_ldisc_deinit(tty);
2902}
2903
2904/**
2905 *	tty_put_char	-	write one character to a tty
2906 *	@tty: tty
2907 *	@ch: character
2908 *
2909 *	Write one byte to the tty using the provided put_char method
2910 *	if present. Returns the number of characters successfully output.
2911 *
2912 *	Note: the specific put_char operation in the driver layer may go
2913 *	away soon. Don't call it directly, use this method
2914 */
2915
2916int tty_put_char(struct tty_struct *tty, unsigned char ch)
2917{
2918	if (tty->ops->put_char)
2919		return tty->ops->put_char(tty, ch);
2920	return tty->ops->write(tty, &ch, 1);
2921}
2922EXPORT_SYMBOL_GPL(tty_put_char);
2923
2924struct class *tty_class;
2925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2926/**
2927 *	tty_register_device - register a tty device
2928 *	@driver: the tty driver that describes the tty device
2929 *	@index: the index in the tty driver for this tty device
2930 *	@device: a struct device that is associated with this tty device.
2931 *		This field is optional, if there is no known struct device
2932 *		for this tty device it can be set to NULL safely.
2933 *
2934 *	Returns a pointer to the struct device for this tty device
2935 *	(or ERR_PTR(-EFOO) on error).
2936 *
2937 *	This call is required to be made to register an individual tty device
2938 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2939 *	that bit is not set, this function should not be called by a tty
2940 *	driver.
2941 *
2942 *	Locking: ??
2943 */
2944
2945struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2946				   struct device *device)
2947{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2948	char name[64];
2949	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
 
 
 
2950
2951	if (index >= driver->num) {
2952		printk(KERN_ERR "Attempt to register invalid tty line number "
2953		       " (%d).\n", index);
2954		return ERR_PTR(-EINVAL);
2955	}
2956
2957	if (driver->type == TTY_DRIVER_TYPE_PTY)
2958		pty_line_name(driver, index, name);
2959	else
2960		tty_line_name(driver, index, name);
2961
2962	return device_create(tty_class, device, dev, NULL, name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2963}
2964EXPORT_SYMBOL(tty_register_device);
2965
2966/**
2967 * 	tty_unregister_device - unregister a tty device
2968 * 	@driver: the tty driver that describes the tty device
2969 * 	@index: the index in the tty driver for this tty device
2970 *
2971 * 	If a tty device is registered with a call to tty_register_device() then
2972 *	this function must be called when the tty device is gone.
2973 *
2974 *	Locking: ??
2975 */
2976
2977void tty_unregister_device(struct tty_driver *driver, unsigned index)
2978{
2979	device_destroy(tty_class,
2980		MKDEV(driver->major, driver->minor_start) + index);
 
 
 
 
2981}
2982EXPORT_SYMBOL(tty_unregister_device);
2983
2984struct tty_driver *alloc_tty_driver(int lines)
 
 
 
 
 
 
 
 
 
 
2985{
2986	struct tty_driver *driver;
 
 
 
 
 
2987
2988	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2989	if (driver) {
2990		kref_init(&driver->kref);
2991		driver->magic = TTY_DRIVER_MAGIC;
2992		driver->num = lines;
2993		/* later we'll move allocation of tables here */
 
 
 
 
 
 
 
 
 
 
 
 
 
2994	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2995	return driver;
 
 
 
 
 
 
 
2996}
2997EXPORT_SYMBOL(alloc_tty_driver);
2998
2999static void destruct_tty_driver(struct kref *kref)
3000{
3001	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3002	int i;
3003	struct ktermios *tp;
3004	void *p;
3005
3006	if (driver->flags & TTY_DRIVER_INSTALLED) {
3007		/*
3008		 * Free the termios and termios_locked structures because
3009		 * we don't want to get memory leaks when modular tty
3010		 * drivers are removed from the kernel.
3011		 */
3012		for (i = 0; i < driver->num; i++) {
3013			tp = driver->termios[i];
3014			if (tp) {
3015				driver->termios[i] = NULL;
3016				kfree(tp);
3017			}
3018			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3019				tty_unregister_device(driver, i);
3020		}
3021		p = driver->ttys;
3022		proc_tty_unregister_driver(driver);
3023		driver->ttys = NULL;
3024		driver->termios = NULL;
3025		kfree(p);
3026		cdev_del(&driver->cdev);
3027	}
 
 
 
 
3028	kfree(driver);
3029}
3030
3031void tty_driver_kref_put(struct tty_driver *driver)
3032{
3033	kref_put(&driver->kref, destruct_tty_driver);
3034}
3035EXPORT_SYMBOL(tty_driver_kref_put);
3036
3037void tty_set_operations(struct tty_driver *driver,
3038			const struct tty_operations *op)
3039{
3040	driver->ops = op;
3041};
3042EXPORT_SYMBOL(tty_set_operations);
3043
3044void put_tty_driver(struct tty_driver *d)
3045{
3046	tty_driver_kref_put(d);
3047}
3048EXPORT_SYMBOL(put_tty_driver);
3049
3050/*
3051 * Called by a tty driver to register itself.
3052 */
3053int tty_register_driver(struct tty_driver *driver)
3054{
3055	int error;
3056	int i;
3057	dev_t dev;
3058	void **p = NULL;
3059	struct device *d;
3060
3061	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3062		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3063		if (!p)
3064			return -ENOMEM;
3065	}
3066
3067	if (!driver->major) {
3068		error = alloc_chrdev_region(&dev, driver->minor_start,
3069						driver->num, driver->name);
3070		if (!error) {
3071			driver->major = MAJOR(dev);
3072			driver->minor_start = MINOR(dev);
3073		}
3074	} else {
3075		dev = MKDEV(driver->major, driver->minor_start);
3076		error = register_chrdev_region(dev, driver->num, driver->name);
3077	}
3078	if (error < 0) {
3079		kfree(p);
3080		return error;
3081	}
3082
3083	if (p) {
3084		driver->ttys = (struct tty_struct **)p;
3085		driver->termios = (struct ktermios **)(p + driver->num);
3086	} else {
3087		driver->ttys = NULL;
3088		driver->termios = NULL;
3089	}
3090
3091	cdev_init(&driver->cdev, &tty_fops);
3092	driver->cdev.owner = driver->owner;
3093	error = cdev_add(&driver->cdev, dev, driver->num);
3094	if (error) {
3095		unregister_chrdev_region(dev, driver->num);
3096		driver->ttys = NULL;
3097		driver->termios = NULL;
3098		kfree(p);
3099		return error;
3100	}
3101
3102	mutex_lock(&tty_mutex);
3103	list_add(&driver->tty_drivers, &tty_drivers);
3104	mutex_unlock(&tty_mutex);
3105
3106	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3107		for (i = 0; i < driver->num; i++) {
3108			d = tty_register_device(driver, i, NULL);
3109			if (IS_ERR(d)) {
3110				error = PTR_ERR(d);
3111				goto err;
3112			}
3113		}
3114	}
3115	proc_tty_register_driver(driver);
3116	driver->flags |= TTY_DRIVER_INSTALLED;
3117	return 0;
3118
3119err:
3120	for (i--; i >= 0; i--)
3121		tty_unregister_device(driver, i);
3122
3123	mutex_lock(&tty_mutex);
3124	list_del(&driver->tty_drivers);
3125	mutex_unlock(&tty_mutex);
3126
 
3127	unregister_chrdev_region(dev, driver->num);
3128	driver->ttys = NULL;
3129	driver->termios = NULL;
3130	kfree(p);
3131	return error;
3132}
3133
3134EXPORT_SYMBOL(tty_register_driver);
3135
3136/*
3137 * Called by a tty driver to unregister itself.
3138 */
3139int tty_unregister_driver(struct tty_driver *driver)
3140{
3141#if 0
3142	/* FIXME */
3143	if (driver->refcount)
3144		return -EBUSY;
3145#endif
3146	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3147				driver->num);
3148	mutex_lock(&tty_mutex);
3149	list_del(&driver->tty_drivers);
3150	mutex_unlock(&tty_mutex);
3151	return 0;
3152}
3153
3154EXPORT_SYMBOL(tty_unregister_driver);
3155
3156dev_t tty_devnum(struct tty_struct *tty)
3157{
3158	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3159}
3160EXPORT_SYMBOL(tty_devnum);
3161
3162void proc_clear_tty(struct task_struct *p)
3163{
3164	unsigned long flags;
3165	struct tty_struct *tty;
3166	spin_lock_irqsave(&p->sighand->siglock, flags);
3167	tty = p->signal->tty;
3168	p->signal->tty = NULL;
3169	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3170	tty_kref_put(tty);
3171}
3172
3173/* Called under the sighand lock */
3174
3175static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3176{
3177	if (tty) {
3178		unsigned long flags;
3179		/* We should not have a session or pgrp to put here but.... */
3180		spin_lock_irqsave(&tty->ctrl_lock, flags);
3181		put_pid(tty->session);
3182		put_pid(tty->pgrp);
3183		tty->pgrp = get_pid(task_pgrp(tsk));
3184		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3185		tty->session = get_pid(task_session(tsk));
3186		if (tsk->signal->tty) {
3187			printk(KERN_DEBUG "tty not NULL!!\n");
3188			tty_kref_put(tsk->signal->tty);
3189		}
3190	}
3191	put_pid(tsk->signal->tty_old_pgrp);
3192	tsk->signal->tty = tty_kref_get(tty);
3193	tsk->signal->tty_old_pgrp = NULL;
3194}
3195
3196static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3197{
3198	spin_lock_irq(&tsk->sighand->siglock);
3199	__proc_set_tty(tsk, tty);
3200	spin_unlock_irq(&tsk->sighand->siglock);
3201}
3202
3203struct tty_struct *get_current_tty(void)
3204{
3205	struct tty_struct *tty;
3206	unsigned long flags;
3207
3208	spin_lock_irqsave(&current->sighand->siglock, flags);
3209	tty = tty_kref_get(current->signal->tty);
3210	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3211	return tty;
3212}
3213EXPORT_SYMBOL_GPL(get_current_tty);
3214
3215void tty_default_fops(struct file_operations *fops)
3216{
3217	*fops = tty_fops;
3218}
3219
3220/*
3221 * Initialize the console device. This is called *early*, so
3222 * we can't necessarily depend on lots of kernel help here.
3223 * Just do some early initializations, and do the complex setup
3224 * later.
3225 */
3226void __init console_init(void)
3227{
3228	initcall_t *call;
3229
3230	/* Setup the default TTY line discipline. */
3231	tty_ldisc_begin();
3232
3233	/*
3234	 * set up the console device so that later boot sequences can
3235	 * inform about problems etc..
3236	 */
3237	call = __con_initcall_start;
3238	while (call < __con_initcall_end) {
3239		(*call)();
3240		call++;
3241	}
3242}
3243
3244static char *tty_devnode(struct device *dev, mode_t *mode)
3245{
3246	if (!mode)
3247		return NULL;
3248	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3249	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3250		*mode = 0666;
3251	return NULL;
3252}
3253
3254static int __init tty_class_init(void)
3255{
3256	tty_class = class_create(THIS_MODULE, "tty");
3257	if (IS_ERR(tty_class))
3258		return PTR_ERR(tty_class);
3259	tty_class->devnode = tty_devnode;
3260	return 0;
3261}
3262
3263postcore_initcall(tty_class_init);
3264
3265/* 3/2004 jmc: why do these devices exist? */
3266static struct cdev tty_cdev, console_cdev;
3267
3268static ssize_t show_cons_active(struct device *dev,
3269				struct device_attribute *attr, char *buf)
3270{
3271	struct console *cs[16];
3272	int i = 0;
3273	struct console *c;
3274	ssize_t count = 0;
3275
3276	console_lock();
3277	for_each_console(c) {
3278		if (!c->device)
3279			continue;
3280		if (!c->write)
3281			continue;
3282		if ((c->flags & CON_ENABLED) == 0)
3283			continue;
3284		cs[i++] = c;
3285		if (i >= ARRAY_SIZE(cs))
3286			break;
3287	}
3288	while (i--)
3289		count += sprintf(buf + count, "%s%d%c",
3290				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
 
 
 
 
 
 
 
 
 
 
3291	console_unlock();
3292
3293	return count;
3294}
3295static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3296
 
 
 
 
 
 
 
3297static struct device *consdev;
3298
3299void console_sysfs_notify(void)
3300{
3301	if (consdev)
3302		sysfs_notify(&consdev->kobj, NULL, "active");
3303}
3304
3305/*
3306 * Ok, now we can initialize the rest of the tty devices and can count
3307 * on memory allocations, interrupts etc..
3308 */
3309int __init tty_init(void)
3310{
3311	cdev_init(&tty_cdev, &tty_fops);
3312	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3313	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3314		panic("Couldn't register /dev/tty driver\n");
3315	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3316
3317	cdev_init(&console_cdev, &console_fops);
3318	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3319	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3320		panic("Couldn't register /dev/console driver\n");
3321	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3322			      "console");
 
3323	if (IS_ERR(consdev))
3324		consdev = NULL;
3325	else
3326		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3327
3328#ifdef CONFIG_VT
3329	vty_init(&console_fops);
3330#endif
3331	return 0;
3332}
3333
v4.10.11
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 107
 108#undef TTY_DEBUG_HANGUP
 109#ifdef TTY_DEBUG_HANGUP
 110# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 111#else
 112# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 113#endif
 114
 115#define TTY_PARANOIA_CHECK 1
 116#define CHECK_TTY_COUNT 1
 117
 118struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 119	.c_iflag = ICRNL | IXON,
 120	.c_oflag = OPOST | ONLCR,
 121	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 122	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 123		   ECHOCTL | ECHOKE | IEXTEN,
 124	.c_cc = INIT_C_CC,
 125	.c_ispeed = 38400,
 126	.c_ospeed = 38400,
 127	/* .c_line = N_TTY, */
 128};
 129
 130EXPORT_SYMBOL(tty_std_termios);
 131
 132/* This list gets poked at by procfs and various bits of boot up code. This
 133   could do with some rationalisation such as pulling the tty proc function
 134   into this file */
 135
 136LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 137
 138/* Mutex to protect creating and releasing a tty */
 
 139DEFINE_MUTEX(tty_mutex);
 
 
 
 
 140
 141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 143ssize_t redirected_tty_write(struct file *, const char __user *,
 144							size_t, loff_t *);
 145static unsigned int tty_poll(struct file *, poll_table *);
 146static int tty_open(struct inode *, struct file *);
 147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 148#ifdef CONFIG_COMPAT
 149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 150				unsigned long arg);
 151#else
 152#define tty_compat_ioctl NULL
 153#endif
 154static int __tty_fasync(int fd, struct file *filp, int on);
 155static int tty_fasync(int fd, struct file *filp, int on);
 156static void release_tty(struct tty_struct *tty, int idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157
 158/**
 159 *	free_tty_struct		-	free a disused tty
 160 *	@tty: tty struct to free
 161 *
 162 *	Free the write buffers, tty queue and tty memory itself.
 163 *
 164 *	Locking: none. Must be called after tty is definitely unused
 165 */
 166
 167static void free_tty_struct(struct tty_struct *tty)
 168{
 169	tty_ldisc_deinit(tty);
 170	put_device(tty->dev);
 171	kfree(tty->write_buf);
 172	tty->magic = 0xDEADDEAD;
 173	kfree(tty);
 174}
 175
 176static inline struct tty_struct *file_tty(struct file *file)
 177{
 178	return ((struct tty_file_private *)file->private_data)->tty;
 179}
 180
 181int tty_alloc_file(struct file *file)
 
 182{
 183	struct tty_file_private *priv;
 184
 185	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 186	if (!priv)
 187		return -ENOMEM;
 188
 189	file->private_data = priv;
 190
 191	return 0;
 192}
 193
 194/* Associate a new file with the tty structure */
 195void tty_add_file(struct tty_struct *tty, struct file *file)
 196{
 197	struct tty_file_private *priv = file->private_data;
 198
 199	priv->tty = tty;
 200	priv->file = file;
 
 201
 202	spin_lock(&tty->files_lock);
 203	list_add(&priv->list, &tty->tty_files);
 204	spin_unlock(&tty->files_lock);
 
 
 205}
 206
 207/**
 208 * tty_free_file - free file->private_data
 209 *
 210 * This shall be used only for fail path handling when tty_add_file was not
 211 * called yet.
 212 */
 213void tty_free_file(struct file *file)
 214{
 215	struct tty_file_private *priv = file->private_data;
 216
 
 
 
 217	file->private_data = NULL;
 218	kfree(priv);
 219}
 220
 221/* Delete file from its tty */
 222static void tty_del_file(struct file *file)
 223{
 224	struct tty_file_private *priv = file->private_data;
 225	struct tty_struct *tty = priv->tty;
 226
 227	spin_lock(&tty->files_lock);
 228	list_del(&priv->list);
 229	spin_unlock(&tty->files_lock);
 230	tty_free_file(file);
 231}
 232
 233/**
 234 *	tty_name	-	return tty naming
 235 *	@tty: tty structure
 
 236 *
 237 *	Convert a tty structure into a name. The name reflects the kernel
 238 *	naming policy and if udev is in use may not reflect user space
 239 *
 240 *	Locking: none
 241 */
 242
 243const char *tty_name(const struct tty_struct *tty)
 244{
 245	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 246		return "NULL tty";
 247	return tty->name;
 
 
 248}
 249
 250EXPORT_SYMBOL(tty_name);
 251
 252const char *tty_driver_name(const struct tty_struct *tty)
 253{
 254	if (!tty || !tty->driver)
 255		return "";
 256	return tty->driver->name;
 257}
 258
 259static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 260			      const char *routine)
 261{
 262#ifdef TTY_PARANOIA_CHECK
 263	if (!tty) {
 264		pr_warn("(%d:%d): %s: NULL tty\n",
 
 265			imajor(inode), iminor(inode), routine);
 266		return 1;
 267	}
 268	if (tty->magic != TTY_MAGIC) {
 269		pr_warn("(%d:%d): %s: bad magic number\n",
 
 270			imajor(inode), iminor(inode), routine);
 271		return 1;
 272	}
 273#endif
 274	return 0;
 275}
 276
 277/* Caller must hold tty_lock */
 278static int check_tty_count(struct tty_struct *tty, const char *routine)
 279{
 280#ifdef CHECK_TTY_COUNT
 281	struct list_head *p;
 282	int count = 0;
 283
 284	spin_lock(&tty->files_lock);
 285	list_for_each(p, &tty->tty_files) {
 286		count++;
 287	}
 288	spin_unlock(&tty->files_lock);
 289	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 290	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 291	    tty->link && tty->link->count)
 292		count++;
 293	if (tty->count != count) {
 294		tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
 295			 routine, tty->count, count);
 
 296		return count;
 297	}
 298#endif
 299	return 0;
 300}
 301
 302/**
 303 *	get_tty_driver		-	find device of a tty
 304 *	@dev_t: device identifier
 305 *	@index: returns the index of the tty
 306 *
 307 *	This routine returns a tty driver structure, given a device number
 308 *	and also passes back the index number.
 309 *
 310 *	Locking: caller must hold tty_mutex
 311 */
 312
 313static struct tty_driver *get_tty_driver(dev_t device, int *index)
 314{
 315	struct tty_driver *p;
 316
 317	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 318		dev_t base = MKDEV(p->major, p->minor_start);
 319		if (device < base || device >= base + p->num)
 320			continue;
 321		*index = device - base;
 322		return tty_driver_kref_get(p);
 323	}
 324	return NULL;
 325}
 326
 327#ifdef CONFIG_CONSOLE_POLL
 328
 329/**
 330 *	tty_find_polling_driver	-	find device of a polled tty
 331 *	@name: name string to match
 332 *	@line: pointer to resulting tty line nr
 333 *
 334 *	This routine returns a tty driver structure, given a name
 335 *	and the condition that the tty driver is capable of polled
 336 *	operation.
 337 */
 338struct tty_driver *tty_find_polling_driver(char *name, int *line)
 339{
 340	struct tty_driver *p, *res = NULL;
 341	int tty_line = 0;
 342	int len;
 343	char *str, *stp;
 344
 345	for (str = name; *str; str++)
 346		if ((*str >= '0' && *str <= '9') || *str == ',')
 347			break;
 348	if (!*str)
 349		return NULL;
 350
 351	len = str - name;
 352	tty_line = simple_strtoul(str, &str, 10);
 353
 354	mutex_lock(&tty_mutex);
 355	/* Search through the tty devices to look for a match */
 356	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 357		if (strncmp(name, p->name, len) != 0)
 358			continue;
 359		stp = str;
 360		if (*stp == ',')
 361			stp++;
 362		if (*stp == '\0')
 363			stp = NULL;
 364
 365		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 366		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 367			res = tty_driver_kref_get(p);
 368			*line = tty_line;
 369			break;
 370		}
 371	}
 372	mutex_unlock(&tty_mutex);
 373
 374	return res;
 375}
 376EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 377#endif
 378
 379static int is_ignored(int sig)
 380{
 381	return (sigismember(&current->blocked, sig) ||
 382		current->sighand->action[sig-1].sa.sa_handler == SIG_IGN);
 383}
 384
 385/**
 386 *	tty_check_change	-	check for POSIX terminal changes
 387 *	@tty: tty to check
 388 *
 389 *	If we try to write to, or set the state of, a terminal and we're
 390 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 391 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 392 *
 393 *	Locking: ctrl_lock
 394 */
 395
 396int __tty_check_change(struct tty_struct *tty, int sig)
 397{
 398	unsigned long flags;
 399	struct pid *pgrp, *tty_pgrp;
 400	int ret = 0;
 401
 402	if (current->signal->tty != tty)
 403		return 0;
 404
 405	rcu_read_lock();
 406	pgrp = task_pgrp(current);
 407
 408	spin_lock_irqsave(&tty->ctrl_lock, flags);
 409	tty_pgrp = tty->pgrp;
 
 
 
 
 410	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 411
 412	if (tty_pgrp && pgrp != tty->pgrp) {
 413		if (is_ignored(sig)) {
 414			if (sig == SIGTTIN)
 415				ret = -EIO;
 416		} else if (is_current_pgrp_orphaned())
 417			ret = -EIO;
 418		else {
 419			kill_pgrp(pgrp, sig, 1);
 420			set_thread_flag(TIF_SIGPENDING);
 421			ret = -ERESTARTSYS;
 422		}
 423	}
 424	rcu_read_unlock();
 425
 426	if (!tty_pgrp)
 427		tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
 428
 
 
 429	return ret;
 430}
 431
 432int tty_check_change(struct tty_struct *tty)
 433{
 434	return __tty_check_change(tty, SIGTTOU);
 435}
 436EXPORT_SYMBOL(tty_check_change);
 437
 438static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 439				size_t count, loff_t *ppos)
 440{
 441	return 0;
 442}
 443
 444static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 445				 size_t count, loff_t *ppos)
 446{
 447	return -EIO;
 448}
 449
 450/* No kernel lock held - none needed ;) */
 451static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 452{
 453	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 454}
 455
 456static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 457		unsigned long arg)
 458{
 459	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 460}
 461
 462static long hung_up_tty_compat_ioctl(struct file *file,
 463				     unsigned int cmd, unsigned long arg)
 464{
 465	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 466}
 467
 468static int hung_up_tty_fasync(int fd, struct file *file, int on)
 469{
 470	return -ENOTTY;
 471}
 472
 473static const struct file_operations tty_fops = {
 474	.llseek		= no_llseek,
 475	.read		= tty_read,
 476	.write		= tty_write,
 477	.poll		= tty_poll,
 478	.unlocked_ioctl	= tty_ioctl,
 479	.compat_ioctl	= tty_compat_ioctl,
 480	.open		= tty_open,
 481	.release	= tty_release,
 482	.fasync		= tty_fasync,
 483};
 484
 485static const struct file_operations console_fops = {
 486	.llseek		= no_llseek,
 487	.read		= tty_read,
 488	.write		= redirected_tty_write,
 489	.poll		= tty_poll,
 490	.unlocked_ioctl	= tty_ioctl,
 491	.compat_ioctl	= tty_compat_ioctl,
 492	.open		= tty_open,
 493	.release	= tty_release,
 494	.fasync		= tty_fasync,
 495};
 496
 497static const struct file_operations hung_up_tty_fops = {
 498	.llseek		= no_llseek,
 499	.read		= hung_up_tty_read,
 500	.write		= hung_up_tty_write,
 501	.poll		= hung_up_tty_poll,
 502	.unlocked_ioctl	= hung_up_tty_ioctl,
 503	.compat_ioctl	= hung_up_tty_compat_ioctl,
 504	.release	= tty_release,
 505	.fasync		= hung_up_tty_fasync,
 506};
 507
 508static DEFINE_SPINLOCK(redirect_lock);
 509static struct file *redirect;
 510
 511
 512void proc_clear_tty(struct task_struct *p)
 513{
 514	unsigned long flags;
 515	struct tty_struct *tty;
 516	spin_lock_irqsave(&p->sighand->siglock, flags);
 517	tty = p->signal->tty;
 518	p->signal->tty = NULL;
 519	spin_unlock_irqrestore(&p->sighand->siglock, flags);
 520	tty_kref_put(tty);
 521}
 522
 523/**
 524 * proc_set_tty -  set the controlling terminal
 525 *
 526 * Only callable by the session leader and only if it does not already have
 527 * a controlling terminal.
 528 *
 529 * Caller must hold:  tty_lock()
 530 *		      a readlock on tasklist_lock
 531 *		      sighand lock
 532 */
 533static void __proc_set_tty(struct tty_struct *tty)
 534{
 535	unsigned long flags;
 536
 537	spin_lock_irqsave(&tty->ctrl_lock, flags);
 538	/*
 539	 * The session and fg pgrp references will be non-NULL if
 540	 * tiocsctty() is stealing the controlling tty
 541	 */
 542	put_pid(tty->session);
 543	put_pid(tty->pgrp);
 544	tty->pgrp = get_pid(task_pgrp(current));
 545	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 546	tty->session = get_pid(task_session(current));
 547	if (current->signal->tty) {
 548		tty_debug(tty, "current tty %s not NULL!!\n",
 549			  current->signal->tty->name);
 550		tty_kref_put(current->signal->tty);
 551	}
 552	put_pid(current->signal->tty_old_pgrp);
 553	current->signal->tty = tty_kref_get(tty);
 554	current->signal->tty_old_pgrp = NULL;
 555}
 556
 557static void proc_set_tty(struct tty_struct *tty)
 558{
 559	spin_lock_irq(&current->sighand->siglock);
 560	__proc_set_tty(tty);
 561	spin_unlock_irq(&current->sighand->siglock);
 562}
 563
 564struct tty_struct *get_current_tty(void)
 565{
 566	struct tty_struct *tty;
 567	unsigned long flags;
 568
 569	spin_lock_irqsave(&current->sighand->siglock, flags);
 570	tty = tty_kref_get(current->signal->tty);
 571	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 572	return tty;
 573}
 574EXPORT_SYMBOL_GPL(get_current_tty);
 575
 576static void session_clear_tty(struct pid *session)
 577{
 578	struct task_struct *p;
 579	do_each_pid_task(session, PIDTYPE_SID, p) {
 580		proc_clear_tty(p);
 581	} while_each_pid_task(session, PIDTYPE_SID, p);
 582}
 583
 584/**
 585 *	tty_wakeup	-	request more data
 586 *	@tty: terminal
 587 *
 588 *	Internal and external helper for wakeups of tty. This function
 589 *	informs the line discipline if present that the driver is ready
 590 *	to receive more output data.
 591 */
 592
 593void tty_wakeup(struct tty_struct *tty)
 594{
 595	struct tty_ldisc *ld;
 596
 597	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 598		ld = tty_ldisc_ref(tty);
 599		if (ld) {
 600			if (ld->ops->write_wakeup)
 601				ld->ops->write_wakeup(tty);
 602			tty_ldisc_deref(ld);
 603		}
 604	}
 605	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 606}
 607
 608EXPORT_SYMBOL_GPL(tty_wakeup);
 609
 610/**
 611 *	tty_signal_session_leader	- sends SIGHUP to session leader
 612 *	@tty		controlling tty
 613 *	@exit_session	if non-zero, signal all foreground group processes
 614 *
 615 *	Send SIGHUP and SIGCONT to the session leader and its process group.
 616 *	Optionally, signal all processes in the foreground process group.
 617 *
 618 *	Returns the number of processes in the session with this tty
 619 *	as their controlling terminal. This value is used to drop
 620 *	tty references for those processes.
 621 */
 622static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
 623{
 624	struct task_struct *p;
 625	int refs = 0;
 626	struct pid *tty_pgrp = NULL;
 627
 628	read_lock(&tasklist_lock);
 629	if (tty->session) {
 630		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 631			spin_lock_irq(&p->sighand->siglock);
 632			if (p->signal->tty == tty) {
 633				p->signal->tty = NULL;
 634				/* We defer the dereferences outside fo
 635				   the tasklist lock */
 636				refs++;
 637			}
 638			if (!p->signal->leader) {
 639				spin_unlock_irq(&p->sighand->siglock);
 640				continue;
 641			}
 642			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 643			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 644			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 645			spin_lock(&tty->ctrl_lock);
 646			tty_pgrp = get_pid(tty->pgrp);
 647			if (tty->pgrp)
 648				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 649			spin_unlock(&tty->ctrl_lock);
 650			spin_unlock_irq(&p->sighand->siglock);
 651		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 652	}
 653	read_unlock(&tasklist_lock);
 654
 655	if (tty_pgrp) {
 656		if (exit_session)
 657			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
 658		put_pid(tty_pgrp);
 659	}
 660
 661	return refs;
 662}
 663
 664/**
 665 *	__tty_hangup		-	actual handler for hangup events
 666 *	@work: tty device
 667 *
 668 *	This can be called by a "kworker" kernel thread.  That is process
 669 *	synchronous but doesn't hold any locks, so we need to make sure we
 670 *	have the appropriate locks for what we're doing.
 671 *
 672 *	The hangup event clears any pending redirections onto the hung up
 673 *	device. It ensures future writes will error and it does the needed
 674 *	line discipline hangup and signal delivery. The tty object itself
 675 *	remains intact.
 676 *
 677 *	Locking:
 678 *		BTM
 679 *		  redirect lock for undoing redirection
 680 *		  file list lock for manipulating list of ttys
 681 *		  tty_ldiscs_lock from called functions
 682 *		  termios_rwsem resetting termios data
 683 *		  tasklist_lock to walk task list for hangup event
 684 *		    ->siglock to protect ->signal/->sighand
 685 */
 686static void __tty_hangup(struct tty_struct *tty, int exit_session)
 687{
 688	struct file *cons_filp = NULL;
 689	struct file *filp, *f = NULL;
 
 690	struct tty_file_private *priv;
 691	int    closecount = 0, n;
 692	int refs;
 
 693
 694	if (!tty)
 695		return;
 696
 697
 698	spin_lock(&redirect_lock);
 699	if (redirect && file_tty(redirect) == tty) {
 700		f = redirect;
 701		redirect = NULL;
 702	}
 703	spin_unlock(&redirect_lock);
 704
 705	tty_lock(tty);
 706
 707	if (test_bit(TTY_HUPPED, &tty->flags)) {
 708		tty_unlock(tty);
 709		return;
 710	}
 711
 712	/* inuse_filps is protected by the single tty lock,
 713	   this really needs to change if we want to flush the
 714	   workqueue with the lock held */
 715	check_tty_count(tty, "tty_hangup");
 716
 717	spin_lock(&tty->files_lock);
 718	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 719	list_for_each_entry(priv, &tty->tty_files, list) {
 720		filp = priv->file;
 721		if (filp->f_op->write == redirected_tty_write)
 722			cons_filp = filp;
 723		if (filp->f_op->write != tty_write)
 724			continue;
 725		closecount++;
 726		__tty_fasync(-1, filp, 0);	/* can't block */
 727		filp->f_op = &hung_up_tty_fops;
 728	}
 729	spin_unlock(&tty->files_lock);
 730
 731	refs = tty_signal_session_leader(tty, exit_session);
 732	/* Account for the p->signal references we killed */
 733	while (refs--)
 734		tty_kref_put(tty);
 
 735
 736	tty_ldisc_hangup(tty, cons_filp != NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 737
 738	spin_lock_irq(&tty->ctrl_lock);
 739	clear_bit(TTY_THROTTLED, &tty->flags);
 
 740	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 741	put_pid(tty->session);
 742	put_pid(tty->pgrp);
 743	tty->session = NULL;
 744	tty->pgrp = NULL;
 745	tty->ctrl_status = 0;
 746	spin_unlock_irq(&tty->ctrl_lock);
 
 
 
 
 747
 748	/*
 749	 * If one of the devices matches a console pointer, we
 750	 * cannot just call hangup() because that will cause
 751	 * tty->count and state->count to go out of sync.
 752	 * So we just call close() the right number of times.
 753	 */
 754	if (cons_filp) {
 755		if (tty->ops->close)
 756			for (n = 0; n < closecount; n++)
 757				tty->ops->close(tty, cons_filp);
 758	} else if (tty->ops->hangup)
 759		tty->ops->hangup(tty);
 760	/*
 761	 * We don't want to have driver/ldisc interactions beyond the ones
 762	 * we did here. The driver layer expects no calls after ->hangup()
 763	 * from the ldisc side, which is now guaranteed.
 
 764	 */
 765	set_bit(TTY_HUPPED, &tty->flags);
 766	tty_unlock(tty);
 
 
 
 767
 768	if (f)
 769		fput(f);
 770}
 771
 772static void do_tty_hangup(struct work_struct *work)
 773{
 774	struct tty_struct *tty =
 775		container_of(work, struct tty_struct, hangup_work);
 776
 777	__tty_hangup(tty, 0);
 778}
 779
 780/**
 781 *	tty_hangup		-	trigger a hangup event
 782 *	@tty: tty to hangup
 783 *
 784 *	A carrier loss (virtual or otherwise) has occurred on this like
 785 *	schedule a hangup sequence to run after this event.
 786 */
 787
 788void tty_hangup(struct tty_struct *tty)
 789{
 790	tty_debug_hangup(tty, "hangup\n");
 
 
 
 791	schedule_work(&tty->hangup_work);
 792}
 793
 794EXPORT_SYMBOL(tty_hangup);
 795
 796/**
 797 *	tty_vhangup		-	process vhangup
 798 *	@tty: tty to hangup
 799 *
 800 *	The user has asked via system call for the terminal to be hung up.
 801 *	We do this synchronously so that when the syscall returns the process
 802 *	is complete. That guarantee is necessary for security reasons.
 803 */
 804
 805void tty_vhangup(struct tty_struct *tty)
 806{
 807	tty_debug_hangup(tty, "vhangup\n");
 808	__tty_hangup(tty, 0);
 
 
 
 
 809}
 810
 811EXPORT_SYMBOL(tty_vhangup);
 812
 813
 814/**
 815 *	tty_vhangup_self	-	process vhangup for own ctty
 816 *
 817 *	Perform a vhangup on the current controlling tty
 818 */
 819
 820void tty_vhangup_self(void)
 821{
 822	struct tty_struct *tty;
 823
 824	tty = get_current_tty();
 825	if (tty) {
 826		tty_vhangup(tty);
 827		tty_kref_put(tty);
 828	}
 829}
 830
 831/**
 832 *	tty_vhangup_session		-	hangup session leader exit
 833 *	@tty: tty to hangup
 834 *
 835 *	The session leader is exiting and hanging up its controlling terminal.
 836 *	Every process in the foreground process group is signalled SIGHUP.
 837 *
 838 *	We do this synchronously so that when the syscall returns the process
 839 *	is complete. That guarantee is necessary for security reasons.
 840 */
 841
 842static void tty_vhangup_session(struct tty_struct *tty)
 843{
 844	tty_debug_hangup(tty, "session hangup\n");
 845	__tty_hangup(tty, 1);
 846}
 847
 848/**
 849 *	tty_hung_up_p		-	was tty hung up
 850 *	@filp: file pointer of tty
 851 *
 852 *	Return true if the tty has been subject to a vhangup or a carrier
 853 *	loss
 854 */
 855
 856int tty_hung_up_p(struct file *filp)
 857{
 858	return (filp->f_op == &hung_up_tty_fops);
 859}
 860
 861EXPORT_SYMBOL(tty_hung_up_p);
 862
 
 
 
 
 
 
 
 
 863/**
 864 *	disassociate_ctty	-	disconnect controlling tty
 865 *	@on_exit: true if exiting so need to "hang up" the session
 866 *
 867 *	This function is typically called only by the session leader, when
 868 *	it wants to disassociate itself from its controlling tty.
 869 *
 870 *	It performs the following functions:
 871 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 872 * 	(2)  Clears the tty from being controlling the session
 873 * 	(3)  Clears the controlling tty for all processes in the
 874 * 		session group.
 875 *
 876 *	The argument on_exit is set to 1 if called when a process is
 877 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 878 *
 879 *	Locking:
 880 *		BTM is taken for hysterical raisins, and held when
 881 *		  called from no_tty().
 882 *		  tty_mutex is taken to protect tty
 883 *		  ->siglock is taken to protect ->signal/->sighand
 884 *		  tasklist_lock is taken to walk process list for sessions
 885 *		    ->siglock is taken to protect ->signal/->sighand
 886 */
 887
 888void disassociate_ctty(int on_exit)
 889{
 890	struct tty_struct *tty;
 
 891
 892	if (!current->signal->leader)
 893		return;
 894
 895	tty = get_current_tty();
 896	if (tty) {
 897		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
 898			tty_vhangup_session(tty);
 899		} else {
 900			struct pid *tty_pgrp = tty_get_pgrp(tty);
 901			if (tty_pgrp) {
 902				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 903				if (!on_exit)
 904					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 905				put_pid(tty_pgrp);
 906			}
 907		}
 908		tty_kref_put(tty);
 909
 910	} else if (on_exit) {
 911		struct pid *old_pgrp;
 912		spin_lock_irq(&current->sighand->siglock);
 913		old_pgrp = current->signal->tty_old_pgrp;
 914		current->signal->tty_old_pgrp = NULL;
 915		spin_unlock_irq(&current->sighand->siglock);
 916		if (old_pgrp) {
 917			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 918			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 919			put_pid(old_pgrp);
 920		}
 921		return;
 922	}
 
 
 
 
 
 
 923
 924	spin_lock_irq(&current->sighand->siglock);
 925	put_pid(current->signal->tty_old_pgrp);
 926	current->signal->tty_old_pgrp = NULL;
 
 927
 928	tty = tty_kref_get(current->signal->tty);
 929	if (tty) {
 930		unsigned long flags;
 931		spin_lock_irqsave(&tty->ctrl_lock, flags);
 932		put_pid(tty->session);
 933		put_pid(tty->pgrp);
 934		tty->session = NULL;
 935		tty->pgrp = NULL;
 936		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 937		tty_kref_put(tty);
 938	} else
 939		tty_debug_hangup(tty, "no current tty\n");
 
 
 
 
 940
 941	spin_unlock_irq(&current->sighand->siglock);
 942	/* Now clear signal->tty under the lock */
 943	read_lock(&tasklist_lock);
 944	session_clear_tty(task_session(current));
 945	read_unlock(&tasklist_lock);
 946}
 947
 948/**
 949 *
 950 *	no_tty	- Ensure the current process does not have a controlling tty
 951 */
 952void no_tty(void)
 953{
 954	/* FIXME: Review locking here. The tty_lock never covered any race
 955	   between a new association and proc_clear_tty but possible we need
 956	   to protect against this anyway */
 957	struct task_struct *tsk = current;
 
 958	disassociate_ctty(0);
 
 959	proc_clear_tty(tsk);
 960}
 961
 962
 963/**
 964 *	stop_tty	-	propagate flow control
 965 *	@tty: tty to stop
 966 *
 967 *	Perform flow control to the driver. May be called
 
 968 *	on an already stopped device and will not re-call the driver
 969 *	method.
 970 *
 971 *	This functionality is used by both the line disciplines for
 972 *	halting incoming flow and by the driver. It may therefore be
 973 *	called from any context, may be under the tty atomic_write_lock
 974 *	but not always.
 975 *
 976 *	Locking:
 977 *		flow_lock
 978 */
 979
 980void __stop_tty(struct tty_struct *tty)
 981{
 982	if (tty->stopped)
 
 
 
 983		return;
 
 984	tty->stopped = 1;
 
 
 
 
 
 
 985	if (tty->ops->stop)
 986		tty->ops->stop(tty);
 987}
 988
 989void stop_tty(struct tty_struct *tty)
 990{
 991	unsigned long flags;
 992
 993	spin_lock_irqsave(&tty->flow_lock, flags);
 994	__stop_tty(tty);
 995	spin_unlock_irqrestore(&tty->flow_lock, flags);
 996}
 997EXPORT_SYMBOL(stop_tty);
 998
 999/**
1000 *	start_tty	-	propagate flow control
1001 *	@tty: tty to start
1002 *
1003 *	Start a tty that has been stopped if at all possible. If this
1004 *	tty was previous stopped and is now being started, the driver
1005 *	start method is invoked and the line discipline woken.
 
1006 *
1007 *	Locking:
1008 *		flow_lock
1009 */
1010
1011void __start_tty(struct tty_struct *tty)
1012{
1013	if (!tty->stopped || tty->flow_stopped)
 
 
 
1014		return;
 
1015	tty->stopped = 0;
 
 
 
 
 
 
1016	if (tty->ops->start)
1017		tty->ops->start(tty);
 
1018	tty_wakeup(tty);
1019}
1020
1021void start_tty(struct tty_struct *tty)
1022{
1023	unsigned long flags;
1024
1025	spin_lock_irqsave(&tty->flow_lock, flags);
1026	__start_tty(tty);
1027	spin_unlock_irqrestore(&tty->flow_lock, flags);
1028}
1029EXPORT_SYMBOL(start_tty);
1030
1031static void tty_update_time(struct timespec *time)
1032{
1033	unsigned long sec = get_seconds();
1034
1035	/*
1036	 * We only care if the two values differ in anything other than the
1037	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1038	 * the time of the tty device, otherwise it could be construded as a
1039	 * security leak to let userspace know the exact timing of the tty.
1040	 */
1041	if ((sec ^ time->tv_sec) & ~7)
1042		time->tv_sec = sec;
1043}
1044
1045/**
1046 *	tty_read	-	read method for tty device files
1047 *	@file: pointer to tty file
1048 *	@buf: user buffer
1049 *	@count: size of user buffer
1050 *	@ppos: unused
1051 *
1052 *	Perform the read system call function on this terminal device. Checks
1053 *	for hung up devices before calling the line discipline method.
1054 *
1055 *	Locking:
1056 *		Locks the line discipline internally while needed. Multiple
1057 *	read calls may be outstanding in parallel.
1058 */
1059
1060static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1061			loff_t *ppos)
1062{
1063	int i;
1064	struct inode *inode = file_inode(file);
1065	struct tty_struct *tty = file_tty(file);
1066	struct tty_ldisc *ld;
1067
1068	if (tty_paranoia_check(tty, inode, "tty_read"))
1069		return -EIO;
1070	if (!tty || tty_io_error(tty))
1071		return -EIO;
1072
1073	/* We want to wait for the line discipline to sort out in this
1074	   situation */
1075	ld = tty_ldisc_ref_wait(tty);
1076	if (!ld)
1077		return hung_up_tty_read(file, buf, count, ppos);
1078	if (ld->ops->read)
1079		i = ld->ops->read(tty, file, buf, count);
1080	else
1081		i = -EIO;
1082	tty_ldisc_deref(ld);
1083
1084	if (i > 0)
1085		tty_update_time(&inode->i_atime);
1086
1087	return i;
1088}
1089
1090static void tty_write_unlock(struct tty_struct *tty)
 
1091{
1092	mutex_unlock(&tty->atomic_write_lock);
1093	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1094}
1095
1096static int tty_write_lock(struct tty_struct *tty, int ndelay)
 
1097{
1098	if (!mutex_trylock(&tty->atomic_write_lock)) {
1099		if (ndelay)
1100			return -EAGAIN;
1101		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1102			return -ERESTARTSYS;
1103	}
1104	return 0;
1105}
1106
1107/*
1108 * Split writes up in sane blocksizes to avoid
1109 * denial-of-service type attacks
1110 */
1111static inline ssize_t do_tty_write(
1112	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1113	struct tty_struct *tty,
1114	struct file *file,
1115	const char __user *buf,
1116	size_t count)
1117{
1118	ssize_t ret, written = 0;
1119	unsigned int chunk;
1120
1121	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1122	if (ret < 0)
1123		return ret;
1124
1125	/*
1126	 * We chunk up writes into a temporary buffer. This
1127	 * simplifies low-level drivers immensely, since they
1128	 * don't have locking issues and user mode accesses.
1129	 *
1130	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1131	 * big chunk-size..
1132	 *
1133	 * The default chunk-size is 2kB, because the NTTY
1134	 * layer has problems with bigger chunks. It will
1135	 * claim to be able to handle more characters than
1136	 * it actually does.
1137	 *
1138	 * FIXME: This can probably go away now except that 64K chunks
1139	 * are too likely to fail unless switched to vmalloc...
1140	 */
1141	chunk = 2048;
1142	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1143		chunk = 65536;
1144	if (count < chunk)
1145		chunk = count;
1146
1147	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1148	if (tty->write_cnt < chunk) {
1149		unsigned char *buf_chunk;
1150
1151		if (chunk < 1024)
1152			chunk = 1024;
1153
1154		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1155		if (!buf_chunk) {
1156			ret = -ENOMEM;
1157			goto out;
1158		}
1159		kfree(tty->write_buf);
1160		tty->write_cnt = chunk;
1161		tty->write_buf = buf_chunk;
1162	}
1163
1164	/* Do the write .. */
1165	for (;;) {
1166		size_t size = count;
1167		if (size > chunk)
1168			size = chunk;
1169		ret = -EFAULT;
1170		if (copy_from_user(tty->write_buf, buf, size))
1171			break;
1172		ret = write(tty, file, tty->write_buf, size);
1173		if (ret <= 0)
1174			break;
1175		written += ret;
1176		buf += ret;
1177		count -= ret;
1178		if (!count)
1179			break;
1180		ret = -ERESTARTSYS;
1181		if (signal_pending(current))
1182			break;
1183		cond_resched();
1184	}
1185	if (written) {
1186		tty_update_time(&file_inode(file)->i_mtime);
 
1187		ret = written;
1188	}
1189out:
1190	tty_write_unlock(tty);
1191	return ret;
1192}
1193
1194/**
1195 * tty_write_message - write a message to a certain tty, not just the console.
1196 * @tty: the destination tty_struct
1197 * @msg: the message to write
1198 *
1199 * This is used for messages that need to be redirected to a specific tty.
1200 * We don't put it into the syslog queue right now maybe in the future if
1201 * really needed.
1202 *
1203 * We must still hold the BTM and test the CLOSING flag for the moment.
1204 */
1205
1206void tty_write_message(struct tty_struct *tty, char *msg)
1207{
1208	if (tty) {
1209		mutex_lock(&tty->atomic_write_lock);
1210		tty_lock(tty);
1211		if (tty->ops->write && tty->count > 0)
 
1212			tty->ops->write(tty, msg, strlen(msg));
1213		tty_unlock(tty);
 
1214		tty_write_unlock(tty);
1215	}
1216	return;
1217}
1218
1219
1220/**
1221 *	tty_write		-	write method for tty device file
1222 *	@file: tty file pointer
1223 *	@buf: user data to write
1224 *	@count: bytes to write
1225 *	@ppos: unused
1226 *
1227 *	Write data to a tty device via the line discipline.
1228 *
1229 *	Locking:
1230 *		Locks the line discipline as required
1231 *		Writes to the tty driver are serialized by the atomic_write_lock
1232 *	and are then processed in chunks to the device. The line discipline
1233 *	write method will not be invoked in parallel for each device.
1234 */
1235
1236static ssize_t tty_write(struct file *file, const char __user *buf,
1237						size_t count, loff_t *ppos)
1238{
 
1239	struct tty_struct *tty = file_tty(file);
1240 	struct tty_ldisc *ld;
1241	ssize_t ret;
1242
1243	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1244		return -EIO;
1245	if (!tty || !tty->ops->write ||	tty_io_error(tty))
 
1246			return -EIO;
1247	/* Short term debug to catch buggy drivers */
1248	if (tty->ops->write_room == NULL)
1249		tty_err(tty, "missing write_room method\n");
 
1250	ld = tty_ldisc_ref_wait(tty);
1251	if (!ld)
1252		return hung_up_tty_write(file, buf, count, ppos);
1253	if (!ld->ops->write)
1254		ret = -EIO;
1255	else
1256		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1257	tty_ldisc_deref(ld);
1258	return ret;
1259}
1260
1261ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1262						size_t count, loff_t *ppos)
1263{
1264	struct file *p = NULL;
1265
1266	spin_lock(&redirect_lock);
1267	if (redirect)
1268		p = get_file(redirect);
 
 
1269	spin_unlock(&redirect_lock);
1270
1271	if (p) {
1272		ssize_t res;
1273		res = vfs_write(p, buf, count, &p->f_pos);
1274		fput(p);
1275		return res;
1276	}
1277	return tty_write(file, buf, count, ppos);
1278}
1279
1280/**
1281 *	tty_send_xchar	-	send priority character
1282 *
1283 *	Send a high priority character to the tty even if stopped
1284 *
1285 *	Locking: none for xchar method, write ordering for write method.
1286 */
1287
1288int tty_send_xchar(struct tty_struct *tty, char ch)
1289{
1290	int	was_stopped = tty->stopped;
1291
1292	if (tty->ops->send_xchar) {
1293		down_read(&tty->termios_rwsem);
1294		tty->ops->send_xchar(tty, ch);
1295		up_read(&tty->termios_rwsem);
1296		return 0;
1297	}
1298
1299	if (tty_write_lock(tty, 0) < 0)
1300		return -ERESTARTSYS;
1301
1302	down_read(&tty->termios_rwsem);
1303	if (was_stopped)
1304		start_tty(tty);
1305	tty->ops->write(tty, &ch, 1);
1306	if (was_stopped)
1307		stop_tty(tty);
1308	up_read(&tty->termios_rwsem);
1309	tty_write_unlock(tty);
1310	return 0;
1311}
1312
1313static char ptychar[] = "pqrstuvwxyzabcde";
1314
1315/**
1316 *	pty_line_name	-	generate name for a pty
1317 *	@driver: the tty driver in use
1318 *	@index: the minor number
1319 *	@p: output buffer of at least 6 bytes
1320 *
1321 *	Generate a name from a driver reference and write it to the output
1322 *	buffer.
1323 *
1324 *	Locking: None
1325 */
1326static void pty_line_name(struct tty_driver *driver, int index, char *p)
1327{
1328	int i = index + driver->name_base;
1329	/* ->name is initialized to "ttyp", but "tty" is expected */
1330	sprintf(p, "%s%c%x",
1331		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1332		ptychar[i >> 4 & 0xf], i & 0xf);
1333}
1334
1335/**
1336 *	tty_line_name	-	generate name for a tty
1337 *	@driver: the tty driver in use
1338 *	@index: the minor number
1339 *	@p: output buffer of at least 7 bytes
1340 *
1341 *	Generate a name from a driver reference and write it to the output
1342 *	buffer.
1343 *
1344 *	Locking: None
1345 */
1346static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1347{
1348	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1349		return sprintf(p, "%s", driver->name);
1350	else
1351		return sprintf(p, "%s%d", driver->name,
1352			       index + driver->name_base);
1353}
1354
1355/**
1356 *	tty_driver_lookup_tty() - find an existing tty, if any
1357 *	@driver: the driver for the tty
1358 *	@idx:	 the minor number
1359 *
1360 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1361 *	driver lookup() method returns an error.
1362 *
1363 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
 
 
1364 */
1365static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1366		struct file *file, int idx)
1367{
1368	struct tty_struct *tty;
1369
1370	if (driver->ops->lookup)
1371		tty = driver->ops->lookup(driver, file, idx);
1372	else
1373		tty = driver->ttys[idx];
1374
1375	if (!IS_ERR(tty))
1376		tty_kref_get(tty);
1377	return tty;
1378}
1379
1380/**
1381 *	tty_init_termios	-  helper for termios setup
1382 *	@tty: the tty to set up
1383 *
1384 *	Initialise the termios structures for this tty. Thus runs under
1385 *	the tty_mutex currently so we can be relaxed about ordering.
1386 */
1387
1388void tty_init_termios(struct tty_struct *tty)
1389{
1390	struct ktermios *tp;
1391	int idx = tty->index;
1392
1393	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1394		tty->termios = tty->driver->init_termios;
1395	else {
1396		/* Check for lazy saved data */
1397		tp = tty->driver->termios[idx];
1398		if (tp != NULL) {
1399			tty->termios = *tp;
1400			tty->termios.c_line  = tty->driver->init_termios.c_line;
1401		} else
1402			tty->termios = tty->driver->init_termios;
1403	}
 
 
 
1404	/* Compatibility until drivers always set this */
1405	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1406	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
 
1407}
1408EXPORT_SYMBOL_GPL(tty_init_termios);
1409
1410int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1411{
1412	tty_init_termios(tty);
1413	tty_driver_kref_get(driver);
1414	tty->count++;
1415	driver->ttys[tty->index] = tty;
1416	return 0;
1417}
1418EXPORT_SYMBOL_GPL(tty_standard_install);
1419
1420/**
1421 *	tty_driver_install_tty() - install a tty entry in the driver
1422 *	@driver: the driver for the tty
1423 *	@tty: the tty
1424 *
1425 *	Install a tty object into the driver tables. The tty->index field
1426 *	will be set by the time this is called. This method is responsible
1427 *	for ensuring any need additional structures are allocated and
1428 *	configured.
1429 *
1430 *	Locking: tty_mutex for now
1431 */
1432static int tty_driver_install_tty(struct tty_driver *driver,
1433						struct tty_struct *tty)
1434{
1435	return driver->ops->install ? driver->ops->install(driver, tty) :
1436		tty_standard_install(driver, tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
1437}
1438
1439/**
1440 *	tty_driver_remove_tty() - remove a tty from the driver tables
1441 *	@driver: the driver for the tty
1442 *	@idx:	 the minor number
1443 *
1444 *	Remvoe a tty object from the driver tables. The tty->index field
1445 *	will be set by the time this is called.
1446 *
1447 *	Locking: tty_mutex for now
1448 */
1449static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1450{
1451	if (driver->ops->remove)
1452		driver->ops->remove(driver, tty);
1453	else
1454		driver->ttys[tty->index] = NULL;
1455}
1456
1457/*
1458 * 	tty_reopen()	- fast re-open of an open tty
1459 * 	@tty	- the tty to open
1460 *
1461 *	Return 0 on success, -errno on error.
1462 *	Re-opens on master ptys are not allowed and return -EIO.
1463 *
1464 *	Locking: Caller must hold tty_lock
 
1465 */
1466static int tty_reopen(struct tty_struct *tty)
1467{
1468	struct tty_driver *driver = tty->driver;
1469
1470	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1471	    driver->subtype == PTY_TYPE_MASTER)
 
1472		return -EIO;
1473
1474	if (!tty->count)
1475		return -EAGAIN;
1476
1477	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1478		return -EBUSY;
 
 
 
1479
 
 
1480	tty->count++;
 
1481
1482	if (!tty->ldisc)
1483		return tty_ldisc_reinit(tty, tty->termios.c_line);
 
1484
1485	return 0;
1486}
1487
1488/**
1489 *	tty_init_dev		-	initialise a tty device
1490 *	@driver: tty driver we are opening a device on
1491 *	@idx: device index
1492 *	@ret_tty: returned tty structure
 
1493 *
1494 *	Prepare a tty device. This may not be a "new" clean device but
1495 *	could also be an active device. The pty drivers require special
1496 *	handling because of this.
1497 *
1498 *	Locking:
1499 *		The function is called under the tty_mutex, which
1500 *	protects us from the tty struct or driver itself going away.
1501 *
1502 *	On exit the tty device has the line discipline attached and
1503 *	a reference count of 1. If a pair was created for pty/tty use
1504 *	and the other was a pty master then it too has a reference count of 1.
1505 *
1506 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1507 * failed open.  The new code protects the open with a mutex, so it's
1508 * really quite straightforward.  The mutex locking can probably be
1509 * relaxed for the (most common) case of reopening a tty.
1510 */
1511
1512struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
 
1513{
1514	struct tty_struct *tty;
1515	int retval;
1516
 
 
 
 
 
 
1517	/*
1518	 * First time open is complex, especially for PTY devices.
1519	 * This code guarantees that either everything succeeds and the
1520	 * TTY is ready for operation, or else the table slots are vacated
1521	 * and the allocated memory released.  (Except that the termios
1522	 * and locked termios may be retained.)
1523	 */
1524
1525	if (!try_module_get(driver->owner))
1526		return ERR_PTR(-ENODEV);
1527
1528	tty = alloc_tty_struct(driver, idx);
1529	if (!tty) {
1530		retval = -ENOMEM;
1531		goto err_module_put;
1532	}
 
1533
1534	tty_lock(tty);
1535	retval = tty_driver_install_tty(driver, tty);
1536	if (retval < 0)
1537		goto err_free_tty;
1538
1539	if (!tty->port)
1540		tty->port = driver->ports[idx];
1541
1542	WARN_RATELIMIT(!tty->port,
1543			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1544			__func__, tty->driver->name);
1545
1546	tty->port->itty = tty;
1547
1548	/*
1549	 * Structures all installed ... call the ldisc open routines.
1550	 * If we fail here just call release_tty to clean up.  No need
1551	 * to decrement the use counts, as release_tty doesn't care.
1552	 */
1553	retval = tty_ldisc_setup(tty, tty->link);
1554	if (retval)
1555		goto err_release_tty;
1556	/* Return the tty locked so that it cannot vanish under the caller */
1557	return tty;
1558
1559err_free_tty:
1560	tty_unlock(tty);
1561	free_tty_struct(tty);
1562err_module_put:
1563	module_put(driver->owner);
1564	return ERR_PTR(retval);
1565
1566	/* call the tty release_tty routine to clean out this slot */
1567err_release_tty:
1568	tty_unlock(tty);
1569	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1570			     retval, idx);
1571	release_tty(tty, idx);
1572	return ERR_PTR(retval);
1573}
1574
1575static void tty_free_termios(struct tty_struct *tty)
1576{
1577	struct ktermios *tp;
1578	int idx = tty->index;
1579
1580	/* If the port is going to reset then it has no termios to save */
1581	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1582		return;
1583
1584	/* Stash the termios data */
1585	tp = tty->driver->termios[idx];
1586	if (tp == NULL) {
1587		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1588		if (tp == NULL)
1589			return;
1590		tty->driver->termios[idx] = tp;
1591	}
1592	*tp = tty->termios;
1593}
 
1594
1595/**
1596 *	tty_flush_works		-	flush all works of a tty/pty pair
1597 *	@tty: tty device to flush works for (or either end of a pty pair)
1598 *
1599 *	Sync flush all works belonging to @tty (and the 'other' tty).
1600 */
1601static void tty_flush_works(struct tty_struct *tty)
1602{
1603	flush_work(&tty->SAK_work);
1604	flush_work(&tty->hangup_work);
1605	if (tty->link) {
1606		flush_work(&tty->link->SAK_work);
1607		flush_work(&tty->link->hangup_work);
1608	}
1609}
 
1610
1611/**
1612 *	release_one_tty		-	release tty structure memory
1613 *	@kref: kref of tty we are obliterating
1614 *
1615 *	Releases memory associated with a tty structure, and clears out the
1616 *	driver table slots. This function is called when a device is no longer
1617 *	in use. It also gets called when setup of a device fails.
1618 *
1619 *	Locking:
 
1620 *		takes the file list lock internally when working on the list
1621 *	of ttys that the driver keeps.
1622 *
1623 *	This method gets called from a work queue so that the driver private
1624 *	cleanup ops can sleep (needed for USB at least)
1625 */
1626static void release_one_tty(struct work_struct *work)
1627{
1628	struct tty_struct *tty =
1629		container_of(work, struct tty_struct, hangup_work);
1630	struct tty_driver *driver = tty->driver;
1631	struct module *owner = driver->owner;
1632
1633	if (tty->ops->cleanup)
1634		tty->ops->cleanup(tty);
1635
1636	tty->magic = 0;
1637	tty_driver_kref_put(driver);
1638	module_put(owner);
1639
1640	spin_lock(&tty->files_lock);
1641	list_del_init(&tty->tty_files);
1642	spin_unlock(&tty->files_lock);
1643
1644	put_pid(tty->pgrp);
1645	put_pid(tty->session);
1646	free_tty_struct(tty);
1647}
1648
1649static void queue_release_one_tty(struct kref *kref)
1650{
1651	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1652
 
 
 
 
 
1653	/* The hangup queue is now free so we can reuse it rather than
1654	   waste a chunk of memory for each port */
1655	INIT_WORK(&tty->hangup_work, release_one_tty);
1656	schedule_work(&tty->hangup_work);
1657}
1658
1659/**
1660 *	tty_kref_put		-	release a tty kref
1661 *	@tty: tty device
1662 *
1663 *	Release a reference to a tty device and if need be let the kref
1664 *	layer destruct the object for us
1665 */
1666
1667void tty_kref_put(struct tty_struct *tty)
1668{
1669	if (tty)
1670		kref_put(&tty->kref, queue_release_one_tty);
1671}
1672EXPORT_SYMBOL(tty_kref_put);
1673
1674/**
1675 *	release_tty		-	release tty structure memory
1676 *
1677 *	Release both @tty and a possible linked partner (think pty pair),
1678 *	and decrement the refcount of the backing module.
1679 *
1680 *	Locking:
1681 *		tty_mutex
1682 *		takes the file list lock internally when working on the list
1683 *	of ttys that the driver keeps.
 
1684 *
1685 */
1686static void release_tty(struct tty_struct *tty, int idx)
1687{
1688	/* This should always be true but check for the moment */
1689	WARN_ON(tty->index != idx);
1690	WARN_ON(!mutex_is_locked(&tty_mutex));
1691	if (tty->ops->shutdown)
1692		tty->ops->shutdown(tty);
1693	tty_free_termios(tty);
1694	tty_driver_remove_tty(tty->driver, tty);
1695	tty->port->itty = NULL;
1696	if (tty->link)
1697		tty->link->port->itty = NULL;
1698	tty_buffer_cancel_work(tty->port);
1699
1700	tty_kref_put(tty->link);
1701	tty_kref_put(tty);
1702}
1703
1704/**
1705 *	tty_release_checks - check a tty before real release
1706 *	@tty: tty to check
1707 *	@o_tty: link of @tty (if any)
1708 *	@idx: index of the tty
1709 *
1710 *	Performs some paranoid checking before true release of the @tty.
1711 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1712 */
1713static int tty_release_checks(struct tty_struct *tty, int idx)
1714{
1715#ifdef TTY_PARANOIA_CHECK
1716	if (idx < 0 || idx >= tty->driver->num) {
1717		tty_debug(tty, "bad idx %d\n", idx);
1718		return -1;
1719	}
1720
1721	/* not much to check for devpts */
1722	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1723		return 0;
1724
1725	if (tty != tty->driver->ttys[idx]) {
1726		tty_debug(tty, "bad driver table[%d] = %p\n",
1727			  idx, tty->driver->ttys[idx]);
1728		return -1;
1729	}
1730	if (tty->driver->other) {
1731		struct tty_struct *o_tty = tty->link;
1732
1733		if (o_tty != tty->driver->other->ttys[idx]) {
1734			tty_debug(tty, "bad other table[%d] = %p\n",
1735				  idx, tty->driver->other->ttys[idx]);
1736			return -1;
1737		}
1738		if (o_tty->link != tty) {
1739			tty_debug(tty, "bad link = %p\n", o_tty->link);
1740			return -1;
1741		}
1742	}
1743#endif
1744	return 0;
1745}
1746
1747/**
1748 *	tty_release		-	vfs callback for close
1749 *	@inode: inode of tty
1750 *	@filp: file pointer for handle to tty
1751 *
1752 *	Called the last time each file handle is closed that references
1753 *	this tty. There may however be several such references.
1754 *
1755 *	Locking:
1756 *		Takes bkl. See tty_release_dev
1757 *
1758 * Even releasing the tty structures is a tricky business.. We have
1759 * to be very careful that the structures are all released at the
1760 * same time, as interrupts might otherwise get the wrong pointers.
1761 *
1762 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1763 * lead to double frees or releasing memory still in use.
1764 */
1765
1766int tty_release(struct inode *inode, struct file *filp)
1767{
1768	struct tty_struct *tty = file_tty(filp);
1769	struct tty_struct *o_tty = NULL;
1770	int	do_sleep, final;
 
1771	int	idx;
1772	long	timeout = 0;
1773	int	once = 1;
1774
1775	if (tty_paranoia_check(tty, inode, __func__))
1776		return 0;
1777
1778	tty_lock(tty);
1779	check_tty_count(tty, __func__);
1780
1781	__tty_fasync(-1, filp, 0);
1782
1783	idx = tty->index;
1784	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1785	    tty->driver->subtype == PTY_TYPE_MASTER)
1786		o_tty = tty->link;
 
1787
1788	if (tty_release_checks(tty, idx)) {
1789		tty_unlock(tty);
 
 
 
1790		return 0;
1791	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1792
1793	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
 
 
 
1794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1795	if (tty->ops->close)
1796		tty->ops->close(tty, filp);
1797
1798	/* If tty is pty master, lock the slave pty (stable lock order) */
1799	tty_lock_slave(o_tty);
1800
1801	/*
1802	 * Sanity check: if tty->count is going to zero, there shouldn't be
1803	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1804	 * wait queues and kick everyone out _before_ actually starting to
1805	 * close.  This ensures that we won't block while releasing the tty
1806	 * structure.
1807	 *
1808	 * The test for the o_tty closing is necessary, since the master and
1809	 * slave sides may close in any order.  If the slave side closes out
1810	 * first, its count will be one, since the master side holds an open.
1811	 * Thus this test wouldn't be triggered at the time the slave closed,
1812	 * so we do it now.
 
 
 
 
1813	 */
1814	while (1) {
 
 
 
 
 
 
 
 
1815		do_sleep = 0;
1816
1817		if (tty->count <= 1) {
1818			if (waitqueue_active(&tty->read_wait)) {
1819				wake_up_poll(&tty->read_wait, POLLIN);
1820				do_sleep++;
1821			}
1822			if (waitqueue_active(&tty->write_wait)) {
1823				wake_up_poll(&tty->write_wait, POLLOUT);
1824				do_sleep++;
1825			}
1826		}
1827		if (o_tty && o_tty->count <= 1) {
1828			if (waitqueue_active(&o_tty->read_wait)) {
1829				wake_up_poll(&o_tty->read_wait, POLLIN);
1830				do_sleep++;
1831			}
1832			if (waitqueue_active(&o_tty->write_wait)) {
1833				wake_up_poll(&o_tty->write_wait, POLLOUT);
1834				do_sleep++;
1835			}
1836		}
1837		if (!do_sleep)
1838			break;
1839
1840		if (once) {
1841			once = 0;
1842			tty_warn(tty, "read/write wait queue active!\n");
1843		}
1844		schedule_timeout_killable(timeout);
1845		if (timeout < 120 * HZ)
1846			timeout = 2 * timeout + 1;
1847		else
1848			timeout = MAX_SCHEDULE_TIMEOUT;
1849	}
1850
1851	if (o_tty) {
 
 
 
 
 
1852		if (--o_tty->count < 0) {
1853			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
 
 
1854			o_tty->count = 0;
1855		}
1856	}
1857	if (--tty->count < 0) {
1858		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
 
1859		tty->count = 0;
1860	}
1861
1862	/*
1863	 * We've decremented tty->count, so we need to remove this file
1864	 * descriptor off the tty->tty_files list; this serves two
1865	 * purposes:
1866	 *  - check_tty_count sees the correct number of file descriptors
1867	 *    associated with this tty.
1868	 *  - do_tty_hangup no longer sees this file descriptor as
1869	 *    something that needs to be handled for hangups.
1870	 */
1871	tty_del_file(filp);
1872
1873	/*
1874	 * Perform some housekeeping before deciding whether to return.
1875	 *
 
 
 
 
 
 
 
 
 
 
1876	 * If _either_ side is closing, make sure there aren't any
1877	 * processes that still think tty or o_tty is their controlling
1878	 * tty.
1879	 */
1880	if (!tty->count) {
1881		read_lock(&tasklist_lock);
1882		session_clear_tty(tty->session);
1883		if (o_tty)
1884			session_clear_tty(o_tty->session);
1885		read_unlock(&tasklist_lock);
1886	}
1887
 
 
1888	/* check whether both sides are closing ... */
1889	final = !tty->count && !(o_tty && o_tty->count);
1890
1891	tty_unlock_slave(o_tty);
1892	tty_unlock(tty);
1893
1894	/* At this point, the tty->count == 0 should ensure a dead tty
1895	   cannot be re-opened by a racing opener */
1896
1897	if (!final)
1898		return 0;
 
1899
1900	tty_debug_hangup(tty, "final close\n");
 
 
1901	/*
1902	 * Ask the line discipline code to release its structures
1903	 */
1904	tty_ldisc_release(tty);
1905
1906	/* Wait for pending work before tty destruction commmences */
1907	tty_flush_works(tty);
1908
1909	tty_debug_hangup(tty, "freeing structure\n");
1910	/*
1911	 * The release_tty function takes care of the details of clearing
1912	 * the slots and preserving the termios structure. The tty_unlock_pair
1913	 * should be safe as we keep a kref while the tty is locked (so the
1914	 * unlock never unlocks a freed tty).
1915	 */
1916	mutex_lock(&tty_mutex);
1917	release_tty(tty, idx);
1918	mutex_unlock(&tty_mutex);
1919
 
 
 
 
1920	return 0;
1921}
1922
1923/**
1924 *	tty_open_current_tty - get locked tty of current task
1925 *	@device: device number
1926 *	@filp: file pointer to tty
1927 *	@return: locked tty of the current task iff @device is /dev/tty
1928 *
1929 *	Performs a re-open of the current task's controlling tty.
 
 
 
 
 
 
 
 
 
1930 *
1931 *	We cannot return driver and index like for the other nodes because
1932 *	devpts will not work then. It expects inodes to be from devpts FS.
 
1933 */
1934static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
 
1935{
1936	struct tty_struct *tty;
1937	int retval;
 
 
 
 
 
 
1938
1939	if (device != MKDEV(TTYAUX_MAJOR, 0))
1940		return NULL;
 
 
1941
1942	tty = get_current_tty();
1943	if (!tty)
1944		return ERR_PTR(-ENXIO);
1945
1946	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1947	/* noctty = 1; */
1948	tty_lock(tty);
1949	tty_kref_put(tty);	/* safe to drop the kref now */
1950
1951	retval = tty_reopen(tty);
1952	if (retval < 0) {
1953		tty_unlock(tty);
1954		tty = ERR_PTR(retval);
 
 
 
 
 
1955	}
1956	return tty;
1957}
1958
1959/**
1960 *	tty_lookup_driver - lookup a tty driver for a given device file
1961 *	@device: device number
1962 *	@filp: file pointer to tty
1963 *	@index: index for the device in the @return driver
1964 *	@return: driver for this inode (with increased refcount)
1965 *
1966 * 	If @return is not erroneous, the caller is responsible to decrement the
1967 * 	refcount by tty_driver_kref_put.
1968 *
1969 *	Locking: tty_mutex protects get_tty_driver
1970 */
1971static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1972		int *index)
1973{
1974	struct tty_driver *driver;
1975
1976	switch (device) {
1977#ifdef CONFIG_VT
1978	case MKDEV(TTY_MAJOR, 0): {
1979		extern struct tty_driver *console_driver;
1980		driver = tty_driver_kref_get(console_driver);
1981		*index = fg_console;
1982		break;
 
1983	}
1984#endif
1985	case MKDEV(TTYAUX_MAJOR, 1): {
1986		struct tty_driver *console_driver = console_device(index);
1987		if (console_driver) {
1988			driver = tty_driver_kref_get(console_driver);
1989			if (driver) {
1990				/* Don't let /dev/console block */
1991				filp->f_flags |= O_NONBLOCK;
1992				break;
 
1993			}
1994		}
1995		return ERR_PTR(-ENODEV);
 
 
1996	}
1997	default:
1998		driver = get_tty_driver(device, index);
1999		if (!driver)
2000			return ERR_PTR(-ENODEV);
2001		break;
2002	}
2003	return driver;
2004}
2005
2006/**
2007 *	tty_open_by_driver	-	open a tty device
2008 *	@device: dev_t of device to open
2009 *	@inode: inode of device file
2010 *	@filp: file pointer to tty
2011 *
2012 *	Performs the driver lookup, checks for a reopen, or otherwise
2013 *	performs the first-time tty initialization.
2014 *
2015 *	Returns the locked initialized or re-opened &tty_struct
2016 *
2017 *	Claims the global tty_mutex to serialize:
2018 *	  - concurrent first-time tty initialization
2019 *	  - concurrent tty driver removal w/ lookup
2020 *	  - concurrent tty removal from driver table
2021 */
2022static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
2023					     struct file *filp)
2024{
2025	struct tty_struct *tty;
2026	struct tty_driver *driver = NULL;
2027	int index = -1;
2028	int retval;
2029
2030	mutex_lock(&tty_mutex);
2031	driver = tty_lookup_driver(device, filp, &index);
2032	if (IS_ERR(driver)) {
2033		mutex_unlock(&tty_mutex);
2034		return ERR_CAST(driver);
2035	}
 
 
 
 
2036
2037	/* check whether we're reopening an existing tty */
2038	tty = tty_driver_lookup_tty(driver, filp, index);
2039	if (IS_ERR(tty)) {
2040		mutex_unlock(&tty_mutex);
2041		goto out;
2042	}
2043
2044	if (tty) {
2045		mutex_unlock(&tty_mutex);
2046		retval = tty_lock_interruptible(tty);
2047		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2048		if (retval) {
2049			if (retval == -EINTR)
2050				retval = -ERESTARTSYS;
2051			tty = ERR_PTR(retval);
2052			goto out;
2053		}
2054		retval = tty_reopen(tty);
2055		if (retval < 0) {
2056			tty_unlock(tty);
2057			tty = ERR_PTR(retval);
2058		}
2059	} else { /* Returns with the tty_lock held for now */
2060		tty = tty_init_dev(driver, index);
2061		mutex_unlock(&tty_mutex);
2062	}
2063out:
2064	tty_driver_kref_put(driver);
2065	return tty;
2066}
2067
2068/**
2069 *	tty_open		-	open a tty device
2070 *	@inode: inode of device file
2071 *	@filp: file pointer to tty
2072 *
2073 *	tty_open and tty_release keep up the tty count that contains the
2074 *	number of opens done on a tty. We cannot use the inode-count, as
2075 *	different inodes might point to the same tty.
2076 *
2077 *	Open-counting is needed for pty masters, as well as for keeping
2078 *	track of serial lines: DTR is dropped when the last close happens.
2079 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2080 *
2081 *	The termios state of a pty is reset on first open so that
2082 *	settings don't persist across reuse.
2083 *
2084 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2085 *		 tty->count should protect the rest.
2086 *		 ->siglock protects ->signal/->sighand
2087 *
2088 *	Note: the tty_unlock/lock cases without a ref are only safe due to
2089 *	tty_mutex
2090 */
2091
2092static int tty_open(struct inode *inode, struct file *filp)
2093{
2094	struct tty_struct *tty;
2095	int noctty, retval;
2096	dev_t device = inode->i_rdev;
2097	unsigned saved_flags = filp->f_flags;
2098
2099	nonseekable_open(inode, filp);
2100
2101retry_open:
2102	retval = tty_alloc_file(filp);
2103	if (retval)
2104		return -ENOMEM;
2105
2106	tty = tty_open_current_tty(device, filp);
2107	if (!tty)
2108		tty = tty_open_by_driver(device, inode, filp);
2109
2110	if (IS_ERR(tty)) {
2111		tty_free_file(filp);
2112		retval = PTR_ERR(tty);
2113		if (retval != -EAGAIN || signal_pending(current))
2114			return retval;
2115		schedule();
2116		goto retry_open;
2117	}
2118
2119	tty_add_file(tty, filp);
2120
2121	check_tty_count(tty, __func__);
2122	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
 
 
2123
 
 
 
 
 
 
 
2124	if (tty->ops->open)
2125		retval = tty->ops->open(tty, filp);
2126	else
2127		retval = -ENODEV;
2128	filp->f_flags = saved_flags;
2129
 
 
 
 
2130	if (retval) {
2131		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2132
2133		tty_unlock(tty); /* need to call tty_release without BTM */
 
 
2134		tty_release(inode, filp);
2135		if (retval != -ERESTARTSYS)
2136			return retval;
2137
2138		if (signal_pending(current))
2139			return retval;
2140
2141		schedule();
2142		/*
2143		 * Need to reset f_op in case a hangup happened.
2144		 */
2145		if (tty_hung_up_p(filp))
 
2146			filp->f_op = &tty_fops;
 
2147		goto retry_open;
2148	}
2149	clear_bit(TTY_HUPPED, &tty->flags);
2150
2151
2152	read_lock(&tasklist_lock);
 
2153	spin_lock_irq(&current->sighand->siglock);
2154	noctty = (filp->f_flags & O_NOCTTY) ||
2155			(IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2156			device == MKDEV(TTYAUX_MAJOR, 1) ||
2157			(tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2158			 tty->driver->subtype == PTY_TYPE_MASTER);
2159
2160	if (!noctty &&
2161	    current->signal->leader &&
2162	    !current->signal->tty &&
2163	    tty->session == NULL) {
2164		/*
2165		 * Don't let a process that only has write access to the tty
2166		 * obtain the privileges associated with having a tty as
2167		 * controlling terminal (being able to reopen it with full
2168		 * access through /dev/tty, being able to perform pushback).
2169		 * Many distributions set the group of all ttys to "tty" and
2170		 * grant write-only access to all terminals for setgid tty
2171		 * binaries, which should not imply full privileges on all ttys.
2172		 *
2173		 * This could theoretically break old code that performs open()
2174		 * on a write-only file descriptor. In that case, it might be
2175		 * necessary to also permit this if
2176		 * inode_permission(inode, MAY_READ) == 0.
2177		 */
2178		if (filp->f_mode & FMODE_READ)
2179			__proc_set_tty(tty);
2180	}
2181	spin_unlock_irq(&current->sighand->siglock);
2182	read_unlock(&tasklist_lock);
2183	tty_unlock(tty);
2184	return 0;
2185}
2186
2187
2188
2189/**
2190 *	tty_poll	-	check tty status
2191 *	@filp: file being polled
2192 *	@wait: poll wait structures to update
2193 *
2194 *	Call the line discipline polling method to obtain the poll
2195 *	status of the device.
2196 *
2197 *	Locking: locks called line discipline but ldisc poll method
2198 *	may be re-entered freely by other callers.
2199 */
2200
2201static unsigned int tty_poll(struct file *filp, poll_table *wait)
2202{
2203	struct tty_struct *tty = file_tty(filp);
2204	struct tty_ldisc *ld;
2205	int ret = 0;
2206
2207	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2208		return 0;
2209
2210	ld = tty_ldisc_ref_wait(tty);
2211	if (!ld)
2212		return hung_up_tty_poll(filp, wait);
2213	if (ld->ops->poll)
2214		ret = ld->ops->poll(tty, filp, wait);
2215	tty_ldisc_deref(ld);
2216	return ret;
2217}
2218
2219static int __tty_fasync(int fd, struct file *filp, int on)
2220{
2221	struct tty_struct *tty = file_tty(filp);
2222	unsigned long flags;
2223	int retval = 0;
2224
2225	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2226		goto out;
2227
2228	retval = fasync_helper(fd, filp, on, &tty->fasync);
2229	if (retval <= 0)
2230		goto out;
2231
2232	if (on) {
2233		enum pid_type type;
2234		struct pid *pid;
2235
 
2236		spin_lock_irqsave(&tty->ctrl_lock, flags);
2237		if (tty->pgrp) {
2238			pid = tty->pgrp;
2239			type = PIDTYPE_PGID;
2240		} else {
2241			pid = task_pid(current);
2242			type = PIDTYPE_PID;
2243		}
2244		get_pid(pid);
2245		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2246		__f_setown(filp, pid, type, 0);
2247		put_pid(pid);
2248		retval = 0;
 
 
 
 
2249	}
 
2250out:
2251	return retval;
2252}
2253
2254static int tty_fasync(int fd, struct file *filp, int on)
2255{
2256	struct tty_struct *tty = file_tty(filp);
2257	int retval = -ENOTTY;
2258
2259	tty_lock(tty);
2260	if (!tty_hung_up_p(filp))
2261		retval = __tty_fasync(fd, filp, on);
2262	tty_unlock(tty);
2263
2264	return retval;
2265}
2266
2267/**
2268 *	tiocsti			-	fake input character
2269 *	@tty: tty to fake input into
2270 *	@p: pointer to character
2271 *
2272 *	Fake input to a tty device. Does the necessary locking and
2273 *	input management.
2274 *
2275 *	FIXME: does not honour flow control ??
2276 *
2277 *	Locking:
2278 *		Called functions take tty_ldiscs_lock
2279 *		current->signal->tty check is safe without locks
2280 *
2281 *	FIXME: may race normal receive processing
2282 */
2283
2284static int tiocsti(struct tty_struct *tty, char __user *p)
2285{
2286	char ch, mbz = 0;
2287	struct tty_ldisc *ld;
2288
2289	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2290		return -EPERM;
2291	if (get_user(ch, p))
2292		return -EFAULT;
2293	tty_audit_tiocsti(tty, ch);
2294	ld = tty_ldisc_ref_wait(tty);
2295	if (!ld)
2296		return -EIO;
2297	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2298	tty_ldisc_deref(ld);
2299	return 0;
2300}
2301
2302/**
2303 *	tiocgwinsz		-	implement window query ioctl
2304 *	@tty; tty
2305 *	@arg: user buffer for result
2306 *
2307 *	Copies the kernel idea of the window size into the user buffer.
2308 *
2309 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2310 *		is consistent.
2311 */
2312
2313static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2314{
2315	int err;
2316
2317	mutex_lock(&tty->winsize_mutex);
2318	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2319	mutex_unlock(&tty->winsize_mutex);
2320
2321	return err ? -EFAULT: 0;
2322}
2323
2324/**
2325 *	tty_do_resize		-	resize event
2326 *	@tty: tty being resized
2327 *	@rows: rows (character)
2328 *	@cols: cols (character)
2329 *
2330 *	Update the termios variables and send the necessary signals to
2331 *	peform a terminal resize correctly
2332 */
2333
2334int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2335{
2336	struct pid *pgrp;
 
2337
2338	/* Lock the tty */
2339	mutex_lock(&tty->winsize_mutex);
2340	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2341		goto done;
 
 
 
 
 
2342
2343	/* Signal the foreground process group */
2344	pgrp = tty_get_pgrp(tty);
2345	if (pgrp)
2346		kill_pgrp(pgrp, SIGWINCH, 1);
2347	put_pid(pgrp);
2348
2349	tty->winsize = *ws;
2350done:
2351	mutex_unlock(&tty->winsize_mutex);
2352	return 0;
2353}
2354EXPORT_SYMBOL(tty_do_resize);
2355
2356/**
2357 *	tiocswinsz		-	implement window size set ioctl
2358 *	@tty; tty side of tty
2359 *	@arg: user buffer for result
2360 *
2361 *	Copies the user idea of the window size to the kernel. Traditionally
2362 *	this is just advisory information but for the Linux console it
2363 *	actually has driver level meaning and triggers a VC resize.
2364 *
2365 *	Locking:
2366 *		Driver dependent. The default do_resize method takes the
2367 *	tty termios mutex and ctrl_lock. The console takes its own lock
2368 *	then calls into the default method.
2369 */
2370
2371static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2372{
2373	struct winsize tmp_ws;
2374	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2375		return -EFAULT;
2376
2377	if (tty->ops->resize)
2378		return tty->ops->resize(tty, &tmp_ws);
2379	else
2380		return tty_do_resize(tty, &tmp_ws);
2381}
2382
2383/**
2384 *	tioccons	-	allow admin to move logical console
2385 *	@file: the file to become console
2386 *
2387 *	Allow the administrator to move the redirected console device
2388 *
2389 *	Locking: uses redirect_lock to guard the redirect information
2390 */
2391
2392static int tioccons(struct file *file)
2393{
2394	if (!capable(CAP_SYS_ADMIN))
2395		return -EPERM;
2396	if (file->f_op->write == redirected_tty_write) {
2397		struct file *f;
2398		spin_lock(&redirect_lock);
2399		f = redirect;
2400		redirect = NULL;
2401		spin_unlock(&redirect_lock);
2402		if (f)
2403			fput(f);
2404		return 0;
2405	}
2406	spin_lock(&redirect_lock);
2407	if (redirect) {
2408		spin_unlock(&redirect_lock);
2409		return -EBUSY;
2410	}
2411	redirect = get_file(file);
 
2412	spin_unlock(&redirect_lock);
2413	return 0;
2414}
2415
2416/**
2417 *	fionbio		-	non blocking ioctl
2418 *	@file: file to set blocking value
2419 *	@p: user parameter
2420 *
2421 *	Historical tty interfaces had a blocking control ioctl before
2422 *	the generic functionality existed. This piece of history is preserved
2423 *	in the expected tty API of posix OS's.
2424 *
2425 *	Locking: none, the open file handle ensures it won't go away.
2426 */
2427
2428static int fionbio(struct file *file, int __user *p)
2429{
2430	int nonblock;
2431
2432	if (get_user(nonblock, p))
2433		return -EFAULT;
2434
2435	spin_lock(&file->f_lock);
2436	if (nonblock)
2437		file->f_flags |= O_NONBLOCK;
2438	else
2439		file->f_flags &= ~O_NONBLOCK;
2440	spin_unlock(&file->f_lock);
2441	return 0;
2442}
2443
2444/**
2445 *	tiocsctty	-	set controlling tty
2446 *	@tty: tty structure
2447 *	@arg: user argument
2448 *
2449 *	This ioctl is used to manage job control. It permits a session
2450 *	leader to set this tty as the controlling tty for the session.
2451 *
2452 *	Locking:
2453 *		Takes tty_lock() to serialize proc_set_tty() for this tty
2454 *		Takes tasklist_lock internally to walk sessions
2455 *		Takes ->siglock() when updating signal->tty
2456 */
2457
2458static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2459{
2460	int ret = 0;
2461
2462	tty_lock(tty);
2463	read_lock(&tasklist_lock);
2464
2465	if (current->signal->leader && (task_session(current) == tty->session))
2466		goto unlock;
2467
 
2468	/*
2469	 * The process must be a session leader and
2470	 * not have a controlling tty already.
2471	 */
2472	if (!current->signal->leader || current->signal->tty) {
2473		ret = -EPERM;
2474		goto unlock;
2475	}
2476
2477	if (tty->session) {
2478		/*
2479		 * This tty is already the controlling
2480		 * tty for another session group!
2481		 */
2482		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2483			/*
2484			 * Steal it away
2485			 */
 
2486			session_clear_tty(tty->session);
 
2487		} else {
2488			ret = -EPERM;
2489			goto unlock;
2490		}
2491	}
2492
2493	/* See the comment in tty_open(). */
2494	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2495		ret = -EPERM;
2496		goto unlock;
2497	}
2498
2499	proc_set_tty(tty);
2500unlock:
2501	read_unlock(&tasklist_lock);
2502	tty_unlock(tty);
2503	return ret;
2504}
2505
2506/**
2507 *	tty_get_pgrp	-	return a ref counted pgrp pid
2508 *	@tty: tty to read
2509 *
2510 *	Returns a refcounted instance of the pid struct for the process
2511 *	group controlling the tty.
2512 */
2513
2514struct pid *tty_get_pgrp(struct tty_struct *tty)
2515{
2516	unsigned long flags;
2517	struct pid *pgrp;
2518
2519	spin_lock_irqsave(&tty->ctrl_lock, flags);
2520	pgrp = get_pid(tty->pgrp);
2521	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2522
2523	return pgrp;
2524}
2525EXPORT_SYMBOL_GPL(tty_get_pgrp);
2526
2527/*
2528 * This checks not only the pgrp, but falls back on the pid if no
2529 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2530 * without this...
2531 *
2532 * The caller must hold rcu lock or the tasklist lock.
2533 */
2534static struct pid *session_of_pgrp(struct pid *pgrp)
2535{
2536	struct task_struct *p;
2537	struct pid *sid = NULL;
2538
2539	p = pid_task(pgrp, PIDTYPE_PGID);
2540	if (p == NULL)
2541		p = pid_task(pgrp, PIDTYPE_PID);
2542	if (p != NULL)
2543		sid = task_session(p);
2544
2545	return sid;
2546}
2547
2548/**
2549 *	tiocgpgrp		-	get process group
2550 *	@tty: tty passed by user
2551 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2552 *	@p: returned pid
2553 *
2554 *	Obtain the process group of the tty. If there is no process group
2555 *	return an error.
2556 *
2557 *	Locking: none. Reference to current->signal->tty is safe.
2558 */
2559
2560static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2561{
2562	struct pid *pid;
2563	int ret;
2564	/*
2565	 * (tty == real_tty) is a cheap way of
2566	 * testing if the tty is NOT a master pty.
2567	 */
2568	if (tty == real_tty && current->signal->tty != real_tty)
2569		return -ENOTTY;
2570	pid = tty_get_pgrp(real_tty);
2571	ret =  put_user(pid_vnr(pid), p);
2572	put_pid(pid);
2573	return ret;
2574}
2575
2576/**
2577 *	tiocspgrp		-	attempt to set process group
2578 *	@tty: tty passed by user
2579 *	@real_tty: tty side device matching tty passed by user
2580 *	@p: pid pointer
2581 *
2582 *	Set the process group of the tty to the session passed. Only
2583 *	permitted where the tty session is our session.
2584 *
2585 *	Locking: RCU, ctrl lock
2586 */
2587
2588static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2589{
2590	struct pid *pgrp;
2591	pid_t pgrp_nr;
2592	int retval = tty_check_change(real_tty);
 
2593
2594	if (retval == -EIO)
2595		return -ENOTTY;
2596	if (retval)
2597		return retval;
2598	if (!current->signal->tty ||
2599	    (current->signal->tty != real_tty) ||
2600	    (real_tty->session != task_session(current)))
2601		return -ENOTTY;
2602	if (get_user(pgrp_nr, p))
2603		return -EFAULT;
2604	if (pgrp_nr < 0)
2605		return -EINVAL;
2606	rcu_read_lock();
2607	pgrp = find_vpid(pgrp_nr);
2608	retval = -ESRCH;
2609	if (!pgrp)
2610		goto out_unlock;
2611	retval = -EPERM;
2612	if (session_of_pgrp(pgrp) != task_session(current))
2613		goto out_unlock;
2614	retval = 0;
2615	spin_lock_irq(&tty->ctrl_lock);
2616	put_pid(real_tty->pgrp);
2617	real_tty->pgrp = get_pid(pgrp);
2618	spin_unlock_irq(&tty->ctrl_lock);
2619out_unlock:
2620	rcu_read_unlock();
2621	return retval;
2622}
2623
2624/**
2625 *	tiocgsid		-	get session id
2626 *	@tty: tty passed by user
2627 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2628 *	@p: pointer to returned session id
2629 *
2630 *	Obtain the session id of the tty. If there is no session
2631 *	return an error.
2632 *
2633 *	Locking: none. Reference to current->signal->tty is safe.
2634 */
2635
2636static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2637{
2638	/*
2639	 * (tty == real_tty) is a cheap way of
2640	 * testing if the tty is NOT a master pty.
2641	*/
2642	if (tty == real_tty && current->signal->tty != real_tty)
2643		return -ENOTTY;
2644	if (!real_tty->session)
2645		return -ENOTTY;
2646	return put_user(pid_vnr(real_tty->session), p);
2647}
2648
2649/**
2650 *	tiocsetd	-	set line discipline
2651 *	@tty: tty device
2652 *	@p: pointer to user data
2653 *
2654 *	Set the line discipline according to user request.
2655 *
2656 *	Locking: see tty_set_ldisc, this function is just a helper
2657 */
2658
2659static int tiocsetd(struct tty_struct *tty, int __user *p)
2660{
2661	int disc;
2662	int ret;
2663
2664	if (get_user(disc, p))
2665		return -EFAULT;
2666
2667	ret = tty_set_ldisc(tty, disc);
2668
2669	return ret;
2670}
2671
2672/**
2673 *	tiocgetd	-	get line discipline
2674 *	@tty: tty device
2675 *	@p: pointer to user data
2676 *
2677 *	Retrieves the line discipline id directly from the ldisc.
2678 *
2679 *	Locking: waits for ldisc reference (in case the line discipline
2680 *		is changing or the tty is being hungup)
2681 */
2682
2683static int tiocgetd(struct tty_struct *tty, int __user *p)
2684{
2685	struct tty_ldisc *ld;
2686	int ret;
2687
2688	ld = tty_ldisc_ref_wait(tty);
2689	if (!ld)
2690		return -EIO;
2691	ret = put_user(ld->ops->num, p);
2692	tty_ldisc_deref(ld);
2693	return ret;
2694}
2695
2696/**
2697 *	send_break	-	performed time break
2698 *	@tty: device to break on
2699 *	@duration: timeout in mS
2700 *
2701 *	Perform a timed break on hardware that lacks its own driver level
2702 *	timed break functionality.
2703 *
2704 *	Locking:
2705 *		atomic_write_lock serializes
2706 *
2707 */
2708
2709static int send_break(struct tty_struct *tty, unsigned int duration)
2710{
2711	int retval;
2712
2713	if (tty->ops->break_ctl == NULL)
2714		return 0;
2715
2716	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2717		retval = tty->ops->break_ctl(tty, duration);
2718	else {
2719		/* Do the work ourselves */
2720		if (tty_write_lock(tty, 0) < 0)
2721			return -EINTR;
2722		retval = tty->ops->break_ctl(tty, -1);
2723		if (retval)
2724			goto out;
2725		if (!signal_pending(current))
2726			msleep_interruptible(duration);
2727		retval = tty->ops->break_ctl(tty, 0);
2728out:
2729		tty_write_unlock(tty);
2730		if (signal_pending(current))
2731			retval = -EINTR;
2732	}
2733	return retval;
2734}
2735
2736/**
2737 *	tty_tiocmget		-	get modem status
2738 *	@tty: tty device
2739 *	@file: user file pointer
2740 *	@p: pointer to result
2741 *
2742 *	Obtain the modem status bits from the tty driver if the feature
2743 *	is supported. Return -EINVAL if it is not available.
2744 *
2745 *	Locking: none (up to the driver)
2746 */
2747
2748static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2749{
2750	int retval = -EINVAL;
2751
2752	if (tty->ops->tiocmget) {
2753		retval = tty->ops->tiocmget(tty);
2754
2755		if (retval >= 0)
2756			retval = put_user(retval, p);
2757	}
2758	return retval;
2759}
2760
2761/**
2762 *	tty_tiocmset		-	set modem status
2763 *	@tty: tty device
2764 *	@cmd: command - clear bits, set bits or set all
2765 *	@p: pointer to desired bits
2766 *
2767 *	Set the modem status bits from the tty driver if the feature
2768 *	is supported. Return -EINVAL if it is not available.
2769 *
2770 *	Locking: none (up to the driver)
2771 */
2772
2773static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2774	     unsigned __user *p)
2775{
2776	int retval;
2777	unsigned int set, clear, val;
2778
2779	if (tty->ops->tiocmset == NULL)
2780		return -EINVAL;
2781
2782	retval = get_user(val, p);
2783	if (retval)
2784		return retval;
2785	set = clear = 0;
2786	switch (cmd) {
2787	case TIOCMBIS:
2788		set = val;
2789		break;
2790	case TIOCMBIC:
2791		clear = val;
2792		break;
2793	case TIOCMSET:
2794		set = val;
2795		clear = ~val;
2796		break;
2797	}
2798	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2799	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2800	return tty->ops->tiocmset(tty, set, clear);
2801}
2802
2803static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2804{
2805	int retval = -EINVAL;
2806	struct serial_icounter_struct icount;
2807	memset(&icount, 0, sizeof(icount));
2808	if (tty->ops->get_icount)
2809		retval = tty->ops->get_icount(tty, &icount);
2810	if (retval != 0)
2811		return retval;
2812	if (copy_to_user(arg, &icount, sizeof(icount)))
2813		return -EFAULT;
2814	return 0;
2815}
2816
2817static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2818{
2819	static DEFINE_RATELIMIT_STATE(depr_flags,
2820			DEFAULT_RATELIMIT_INTERVAL,
2821			DEFAULT_RATELIMIT_BURST);
2822	char comm[TASK_COMM_LEN];
2823	int flags;
2824
2825	if (get_user(flags, &ss->flags))
2826		return;
2827
2828	flags &= ASYNC_DEPRECATED;
2829
2830	if (flags && __ratelimit(&depr_flags))
2831		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2832				__func__, get_task_comm(comm, current), flags);
2833}
 
2834
2835/*
2836 * if pty, return the slave side (real_tty)
2837 * otherwise, return self
2838 */
2839static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2840{
2841	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2842	    tty->driver->subtype == PTY_TYPE_MASTER)
2843		tty = tty->link;
2844	return tty;
2845}
 
2846
2847/*
2848 * Split this up, as gcc can choke on it otherwise..
2849 */
2850long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2851{
2852	struct tty_struct *tty = file_tty(file);
2853	struct tty_struct *real_tty;
2854	void __user *p = (void __user *)arg;
2855	int retval;
2856	struct tty_ldisc *ld;
 
2857
2858	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2859		return -EINVAL;
2860
2861	real_tty = tty_pair_get_tty(tty);
2862
2863	/*
2864	 * Factor out some common prep work
2865	 */
2866	switch (cmd) {
2867	case TIOCSETD:
2868	case TIOCSBRK:
2869	case TIOCCBRK:
2870	case TCSBRK:
2871	case TCSBRKP:
2872		retval = tty_check_change(tty);
2873		if (retval)
2874			return retval;
2875		if (cmd != TIOCCBRK) {
2876			tty_wait_until_sent(tty, 0);
2877			if (signal_pending(current))
2878				return -EINTR;
2879		}
2880		break;
2881	}
2882
2883	/*
2884	 *	Now do the stuff.
2885	 */
2886	switch (cmd) {
2887	case TIOCSTI:
2888		return tiocsti(tty, p);
2889	case TIOCGWINSZ:
2890		return tiocgwinsz(real_tty, p);
2891	case TIOCSWINSZ:
2892		return tiocswinsz(real_tty, p);
2893	case TIOCCONS:
2894		return real_tty != tty ? -EINVAL : tioccons(file);
2895	case FIONBIO:
2896		return fionbio(file, p);
2897	case TIOCEXCL:
2898		set_bit(TTY_EXCLUSIVE, &tty->flags);
2899		return 0;
2900	case TIOCNXCL:
2901		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2902		return 0;
2903	case TIOCGEXCL:
2904	{
2905		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2906		return put_user(excl, (int __user *)p);
2907	}
2908	case TIOCNOTTY:
2909		if (current->signal->tty != tty)
2910			return -ENOTTY;
2911		no_tty();
2912		return 0;
2913	case TIOCSCTTY:
2914		return tiocsctty(real_tty, file, arg);
2915	case TIOCGPGRP:
2916		return tiocgpgrp(tty, real_tty, p);
2917	case TIOCSPGRP:
2918		return tiocspgrp(tty, real_tty, p);
2919	case TIOCGSID:
2920		return tiocgsid(tty, real_tty, p);
2921	case TIOCGETD:
2922		return tiocgetd(tty, p);
2923	case TIOCSETD:
2924		return tiocsetd(tty, p);
2925	case TIOCVHANGUP:
2926		if (!capable(CAP_SYS_ADMIN))
2927			return -EPERM;
2928		tty_vhangup(tty);
2929		return 0;
2930	case TIOCGDEV:
2931	{
2932		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2933		return put_user(ret, (unsigned int __user *)p);
2934	}
2935	/*
2936	 * Break handling
2937	 */
2938	case TIOCSBRK:	/* Turn break on, unconditionally */
2939		if (tty->ops->break_ctl)
2940			return tty->ops->break_ctl(tty, -1);
2941		return 0;
2942	case TIOCCBRK:	/* Turn break off, unconditionally */
2943		if (tty->ops->break_ctl)
2944			return tty->ops->break_ctl(tty, 0);
2945		return 0;
2946	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2947		/* non-zero arg means wait for all output data
2948		 * to be sent (performed above) but don't send break.
2949		 * This is used by the tcdrain() termios function.
2950		 */
2951		if (!arg)
2952			return send_break(tty, 250);
2953		return 0;
2954	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2955		return send_break(tty, arg ? arg*100 : 250);
2956
2957	case TIOCMGET:
2958		return tty_tiocmget(tty, p);
2959	case TIOCMSET:
2960	case TIOCMBIC:
2961	case TIOCMBIS:
2962		return tty_tiocmset(tty, cmd, p);
2963	case TIOCGICOUNT:
2964		retval = tty_tiocgicount(tty, p);
2965		/* For the moment allow fall through to the old method */
2966        	if (retval != -EINVAL)
2967			return retval;
2968		break;
2969	case TCFLSH:
2970		switch (arg) {
2971		case TCIFLUSH:
2972		case TCIOFLUSH:
2973		/* flush tty buffer and allow ldisc to process ioctl */
2974			tty_buffer_flush(tty, NULL);
2975			break;
2976		}
2977		break;
2978	case TIOCSSERIAL:
2979		tty_warn_deprecated_flags(p);
2980		break;
2981	}
2982	if (tty->ops->ioctl) {
2983		retval = tty->ops->ioctl(tty, cmd, arg);
2984		if (retval != -ENOIOCTLCMD)
2985			return retval;
2986	}
2987	ld = tty_ldisc_ref_wait(tty);
2988	if (!ld)
2989		return hung_up_tty_ioctl(file, cmd, arg);
2990	retval = -EINVAL;
2991	if (ld->ops->ioctl) {
2992		retval = ld->ops->ioctl(tty, file, cmd, arg);
2993		if (retval == -ENOIOCTLCMD)
2994			retval = -ENOTTY;
2995	}
2996	tty_ldisc_deref(ld);
2997	return retval;
2998}
2999
3000#ifdef CONFIG_COMPAT
3001static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3002				unsigned long arg)
3003{
 
3004	struct tty_struct *tty = file_tty(file);
3005	struct tty_ldisc *ld;
3006	int retval = -ENOIOCTLCMD;
3007
3008	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3009		return -EINVAL;
3010
3011	if (tty->ops->compat_ioctl) {
3012		retval = tty->ops->compat_ioctl(tty, cmd, arg);
3013		if (retval != -ENOIOCTLCMD)
3014			return retval;
3015	}
3016
3017	ld = tty_ldisc_ref_wait(tty);
3018	if (!ld)
3019		return hung_up_tty_compat_ioctl(file, cmd, arg);
3020	if (ld->ops->compat_ioctl)
3021		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3022	else
3023		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
3024	tty_ldisc_deref(ld);
3025
3026	return retval;
3027}
3028#endif
3029
3030static int this_tty(const void *t, struct file *file, unsigned fd)
3031{
3032	if (likely(file->f_op->read != tty_read))
3033		return 0;
3034	return file_tty(file) != t ? 0 : fd + 1;
3035}
3036	
3037/*
3038 * This implements the "Secure Attention Key" ---  the idea is to
3039 * prevent trojan horses by killing all processes associated with this
3040 * tty when the user hits the "Secure Attention Key".  Required for
3041 * super-paranoid applications --- see the Orange Book for more details.
3042 *
3043 * This code could be nicer; ideally it should send a HUP, wait a few
3044 * seconds, then send a INT, and then a KILL signal.  But you then
3045 * have to coordinate with the init process, since all processes associated
3046 * with the current tty must be dead before the new getty is allowed
3047 * to spawn.
3048 *
3049 * Now, if it would be correct ;-/ The current code has a nasty hole -
3050 * it doesn't catch files in flight. We may send the descriptor to ourselves
3051 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3052 *
3053 * Nasty bug: do_SAK is being called in interrupt context.  This can
3054 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3055 */
3056void __do_SAK(struct tty_struct *tty)
3057{
3058#ifdef TTY_SOFT_SAK
3059	tty_hangup(tty);
3060#else
3061	struct task_struct *g, *p;
3062	struct pid *session;
3063	int		i;
 
 
3064
3065	if (!tty)
3066		return;
3067	session = tty->session;
3068
3069	tty_ldisc_flush(tty);
3070
3071	tty_driver_flush_buffer(tty);
3072
3073	read_lock(&tasklist_lock);
3074	/* Kill the entire session */
3075	do_each_pid_task(session, PIDTYPE_SID, p) {
3076		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3077			   task_pid_nr(p), p->comm);
 
3078		send_sig(SIGKILL, p, 1);
3079	} while_each_pid_task(session, PIDTYPE_SID, p);
3080
3081	/* Now kill any processes that happen to have the tty open */
 
3082	do_each_thread(g, p) {
3083		if (p->signal->tty == tty) {
3084			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3085				   task_pid_nr(p), p->comm);
 
3086			send_sig(SIGKILL, p, 1);
3087			continue;
3088		}
3089		task_lock(p);
3090		i = iterate_fd(p->files, 0, this_tty, tty);
3091		if (i != 0) {
3092			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3093				   task_pid_nr(p), p->comm, i - 1);
3094			force_sig(SIGKILL, p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3095		}
3096		task_unlock(p);
3097	} while_each_thread(g, p);
3098	read_unlock(&tasklist_lock);
3099#endif
3100}
3101
3102static void do_SAK_work(struct work_struct *work)
3103{
3104	struct tty_struct *tty =
3105		container_of(work, struct tty_struct, SAK_work);
3106	__do_SAK(tty);
3107}
3108
3109/*
3110 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3111 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3112 * the values which we write to it will be identical to the values which it
3113 * already has. --akpm
3114 */
3115void do_SAK(struct tty_struct *tty)
3116{
3117	if (!tty)
3118		return;
3119	schedule_work(&tty->SAK_work);
3120}
3121
3122EXPORT_SYMBOL(do_SAK);
3123
3124static int dev_match_devt(struct device *dev, const void *data)
3125{
3126	const dev_t *devt = data;
3127	return dev->devt == *devt;
3128}
3129
3130/* Must put_device() after it's unused! */
3131static struct device *tty_get_device(struct tty_struct *tty)
3132{
3133	dev_t devt = tty_devnum(tty);
3134	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3135}
3136
3137
3138/**
3139 *	alloc_tty_struct
 
3140 *
3141 *	This subroutine allocates and initializes a tty structure.
 
3142 *
3143 *	Locking: none - tty in question is not exposed at this point
3144 */
3145
3146struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
 
3147{
3148	struct tty_struct *tty;
3149
3150	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3151	if (!tty)
3152		return NULL;
3153
3154	kref_init(&tty->kref);
3155	tty->magic = TTY_MAGIC;
3156	tty_ldisc_init(tty);
3157	tty->session = NULL;
3158	tty->pgrp = NULL;
3159	mutex_init(&tty->legacy_mutex);
3160	mutex_init(&tty->throttle_mutex);
3161	init_rwsem(&tty->termios_rwsem);
3162	mutex_init(&tty->winsize_mutex);
3163	init_ldsem(&tty->ldisc_sem);
3164	init_waitqueue_head(&tty->write_wait);
3165	init_waitqueue_head(&tty->read_wait);
3166	INIT_WORK(&tty->hangup_work, do_tty_hangup);
 
3167	mutex_init(&tty->atomic_write_lock);
 
 
 
3168	spin_lock_init(&tty->ctrl_lock);
3169	spin_lock_init(&tty->flow_lock);
3170	spin_lock_init(&tty->files_lock);
3171	INIT_LIST_HEAD(&tty->tty_files);
3172	INIT_WORK(&tty->SAK_work, do_SAK_work);
3173
3174	tty->driver = driver;
3175	tty->ops = driver->ops;
3176	tty->index = idx;
3177	tty_line_name(driver, idx, tty->name);
3178	tty->dev = tty_get_device(tty);
 
3179
3180	return tty;
 
 
 
 
 
 
 
 
 
 
 
3181}
3182
3183/**
3184 *	tty_put_char	-	write one character to a tty
3185 *	@tty: tty
3186 *	@ch: character
3187 *
3188 *	Write one byte to the tty using the provided put_char method
3189 *	if present. Returns the number of characters successfully output.
3190 *
3191 *	Note: the specific put_char operation in the driver layer may go
3192 *	away soon. Don't call it directly, use this method
3193 */
3194
3195int tty_put_char(struct tty_struct *tty, unsigned char ch)
3196{
3197	if (tty->ops->put_char)
3198		return tty->ops->put_char(tty, ch);
3199	return tty->ops->write(tty, &ch, 1);
3200}
3201EXPORT_SYMBOL_GPL(tty_put_char);
3202
3203struct class *tty_class;
3204
3205static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3206		unsigned int index, unsigned int count)
3207{
3208	int err;
3209
3210	/* init here, since reused cdevs cause crashes */
3211	driver->cdevs[index] = cdev_alloc();
3212	if (!driver->cdevs[index])
3213		return -ENOMEM;
3214	driver->cdevs[index]->ops = &tty_fops;
3215	driver->cdevs[index]->owner = driver->owner;
3216	err = cdev_add(driver->cdevs[index], dev, count);
3217	if (err)
3218		kobject_put(&driver->cdevs[index]->kobj);
3219	return err;
3220}
3221
3222/**
3223 *	tty_register_device - register a tty device
3224 *	@driver: the tty driver that describes the tty device
3225 *	@index: the index in the tty driver for this tty device
3226 *	@device: a struct device that is associated with this tty device.
3227 *		This field is optional, if there is no known struct device
3228 *		for this tty device it can be set to NULL safely.
3229 *
3230 *	Returns a pointer to the struct device for this tty device
3231 *	(or ERR_PTR(-EFOO) on error).
3232 *
3233 *	This call is required to be made to register an individual tty device
3234 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3235 *	that bit is not set, this function should not be called by a tty
3236 *	driver.
3237 *
3238 *	Locking: ??
3239 */
3240
3241struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3242				   struct device *device)
3243{
3244	return tty_register_device_attr(driver, index, device, NULL, NULL);
3245}
3246EXPORT_SYMBOL(tty_register_device);
3247
3248static void tty_device_create_release(struct device *dev)
3249{
3250	dev_dbg(dev, "releasing...\n");
3251	kfree(dev);
3252}
3253
3254/**
3255 *	tty_register_device_attr - register a tty device
3256 *	@driver: the tty driver that describes the tty device
3257 *	@index: the index in the tty driver for this tty device
3258 *	@device: a struct device that is associated with this tty device.
3259 *		This field is optional, if there is no known struct device
3260 *		for this tty device it can be set to NULL safely.
3261 *	@drvdata: Driver data to be set to device.
3262 *	@attr_grp: Attribute group to be set on device.
3263 *
3264 *	Returns a pointer to the struct device for this tty device
3265 *	(or ERR_PTR(-EFOO) on error).
3266 *
3267 *	This call is required to be made to register an individual tty device
3268 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3269 *	that bit is not set, this function should not be called by a tty
3270 *	driver.
3271 *
3272 *	Locking: ??
3273 */
3274struct device *tty_register_device_attr(struct tty_driver *driver,
3275				   unsigned index, struct device *device,
3276				   void *drvdata,
3277				   const struct attribute_group **attr_grp)
3278{
3279	char name[64];
3280	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3281	struct device *dev = NULL;
3282	int retval = -ENODEV;
3283	bool cdev = false;
3284
3285	if (index >= driver->num) {
3286		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3287		       driver->name, index);
3288		return ERR_PTR(-EINVAL);
3289	}
3290
3291	if (driver->type == TTY_DRIVER_TYPE_PTY)
3292		pty_line_name(driver, index, name);
3293	else
3294		tty_line_name(driver, index, name);
3295
3296	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3297		retval = tty_cdev_add(driver, devt, index, 1);
3298		if (retval)
3299			goto error;
3300		cdev = true;
3301	}
3302
3303	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3304	if (!dev) {
3305		retval = -ENOMEM;
3306		goto error;
3307	}
3308
3309	dev->devt = devt;
3310	dev->class = tty_class;
3311	dev->parent = device;
3312	dev->release = tty_device_create_release;
3313	dev_set_name(dev, "%s", name);
3314	dev->groups = attr_grp;
3315	dev_set_drvdata(dev, drvdata);
3316
3317	retval = device_register(dev);
3318	if (retval)
3319		goto error;
3320
3321	return dev;
3322
3323error:
3324	put_device(dev);
3325	if (cdev) {
3326		cdev_del(driver->cdevs[index]);
3327		driver->cdevs[index] = NULL;
3328	}
3329	return ERR_PTR(retval);
3330}
3331EXPORT_SYMBOL_GPL(tty_register_device_attr);
3332
3333/**
3334 * 	tty_unregister_device - unregister a tty device
3335 * 	@driver: the tty driver that describes the tty device
3336 * 	@index: the index in the tty driver for this tty device
3337 *
3338 * 	If a tty device is registered with a call to tty_register_device() then
3339 *	this function must be called when the tty device is gone.
3340 *
3341 *	Locking: ??
3342 */
3343
3344void tty_unregister_device(struct tty_driver *driver, unsigned index)
3345{
3346	device_destroy(tty_class,
3347		MKDEV(driver->major, driver->minor_start) + index);
3348	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3349		cdev_del(driver->cdevs[index]);
3350		driver->cdevs[index] = NULL;
3351	}
3352}
3353EXPORT_SYMBOL(tty_unregister_device);
3354
3355/**
3356 * __tty_alloc_driver -- allocate tty driver
3357 * @lines: count of lines this driver can handle at most
3358 * @owner: module which is repsonsible for this driver
3359 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3360 *
3361 * This should not be called directly, some of the provided macros should be
3362 * used instead. Use IS_ERR and friends on @retval.
3363 */
3364struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3365		unsigned long flags)
3366{
3367	struct tty_driver *driver;
3368	unsigned int cdevs = 1;
3369	int err;
3370
3371	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3372		return ERR_PTR(-EINVAL);
3373
3374	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3375	if (!driver)
3376		return ERR_PTR(-ENOMEM);
3377
3378	kref_init(&driver->kref);
3379	driver->magic = TTY_DRIVER_MAGIC;
3380	driver->num = lines;
3381	driver->owner = owner;
3382	driver->flags = flags;
3383
3384	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3385		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3386				GFP_KERNEL);
3387		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3388				GFP_KERNEL);
3389		if (!driver->ttys || !driver->termios) {
3390			err = -ENOMEM;
3391			goto err_free_all;
3392		}
3393	}
3394
3395	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3396		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3397				GFP_KERNEL);
3398		if (!driver->ports) {
3399			err = -ENOMEM;
3400			goto err_free_all;
3401		}
3402		cdevs = lines;
3403	}
3404
3405	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3406	if (!driver->cdevs) {
3407		err = -ENOMEM;
3408		goto err_free_all;
3409	}
3410
3411	return driver;
3412err_free_all:
3413	kfree(driver->ports);
3414	kfree(driver->ttys);
3415	kfree(driver->termios);
3416	kfree(driver->cdevs);
3417	kfree(driver);
3418	return ERR_PTR(err);
3419}
3420EXPORT_SYMBOL(__tty_alloc_driver);
3421
3422static void destruct_tty_driver(struct kref *kref)
3423{
3424	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3425	int i;
3426	struct ktermios *tp;
 
3427
3428	if (driver->flags & TTY_DRIVER_INSTALLED) {
3429		/*
3430		 * Free the termios and termios_locked structures because
3431		 * we don't want to get memory leaks when modular tty
3432		 * drivers are removed from the kernel.
3433		 */
3434		for (i = 0; i < driver->num; i++) {
3435			tp = driver->termios[i];
3436			if (tp) {
3437				driver->termios[i] = NULL;
3438				kfree(tp);
3439			}
3440			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3441				tty_unregister_device(driver, i);
3442		}
 
3443		proc_tty_unregister_driver(driver);
3444		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3445			cdev_del(driver->cdevs[0]);
 
 
3446	}
3447	kfree(driver->cdevs);
3448	kfree(driver->ports);
3449	kfree(driver->termios);
3450	kfree(driver->ttys);
3451	kfree(driver);
3452}
3453
3454void tty_driver_kref_put(struct tty_driver *driver)
3455{
3456	kref_put(&driver->kref, destruct_tty_driver);
3457}
3458EXPORT_SYMBOL(tty_driver_kref_put);
3459
3460void tty_set_operations(struct tty_driver *driver,
3461			const struct tty_operations *op)
3462{
3463	driver->ops = op;
3464};
3465EXPORT_SYMBOL(tty_set_operations);
3466
3467void put_tty_driver(struct tty_driver *d)
3468{
3469	tty_driver_kref_put(d);
3470}
3471EXPORT_SYMBOL(put_tty_driver);
3472
3473/*
3474 * Called by a tty driver to register itself.
3475 */
3476int tty_register_driver(struct tty_driver *driver)
3477{
3478	int error;
3479	int i;
3480	dev_t dev;
 
3481	struct device *d;
3482
 
 
 
 
 
 
3483	if (!driver->major) {
3484		error = alloc_chrdev_region(&dev, driver->minor_start,
3485						driver->num, driver->name);
3486		if (!error) {
3487			driver->major = MAJOR(dev);
3488			driver->minor_start = MINOR(dev);
3489		}
3490	} else {
3491		dev = MKDEV(driver->major, driver->minor_start);
3492		error = register_chrdev_region(dev, driver->num, driver->name);
3493	}
3494	if (error < 0)
3495		goto err;
 
 
 
 
 
 
 
 
 
 
3496
3497	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3498		error = tty_cdev_add(driver, dev, 0, driver->num);
3499		if (error)
3500			goto err_unreg_char;
 
 
 
 
 
3501	}
3502
3503	mutex_lock(&tty_mutex);
3504	list_add(&driver->tty_drivers, &tty_drivers);
3505	mutex_unlock(&tty_mutex);
3506
3507	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3508		for (i = 0; i < driver->num; i++) {
3509			d = tty_register_device(driver, i, NULL);
3510			if (IS_ERR(d)) {
3511				error = PTR_ERR(d);
3512				goto err_unreg_devs;
3513			}
3514		}
3515	}
3516	proc_tty_register_driver(driver);
3517	driver->flags |= TTY_DRIVER_INSTALLED;
3518	return 0;
3519
3520err_unreg_devs:
3521	for (i--; i >= 0; i--)
3522		tty_unregister_device(driver, i);
3523
3524	mutex_lock(&tty_mutex);
3525	list_del(&driver->tty_drivers);
3526	mutex_unlock(&tty_mutex);
3527
3528err_unreg_char:
3529	unregister_chrdev_region(dev, driver->num);
3530err:
 
 
3531	return error;
3532}
 
3533EXPORT_SYMBOL(tty_register_driver);
3534
3535/*
3536 * Called by a tty driver to unregister itself.
3537 */
3538int tty_unregister_driver(struct tty_driver *driver)
3539{
3540#if 0
3541	/* FIXME */
3542	if (driver->refcount)
3543		return -EBUSY;
3544#endif
3545	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3546				driver->num);
3547	mutex_lock(&tty_mutex);
3548	list_del(&driver->tty_drivers);
3549	mutex_unlock(&tty_mutex);
3550	return 0;
3551}
3552
3553EXPORT_SYMBOL(tty_unregister_driver);
3554
3555dev_t tty_devnum(struct tty_struct *tty)
3556{
3557	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3558}
3559EXPORT_SYMBOL(tty_devnum);
3560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3561void tty_default_fops(struct file_operations *fops)
3562{
3563	*fops = tty_fops;
3564}
3565
3566/*
3567 * Initialize the console device. This is called *early*, so
3568 * we can't necessarily depend on lots of kernel help here.
3569 * Just do some early initializations, and do the complex setup
3570 * later.
3571 */
3572void __init console_init(void)
3573{
3574	initcall_t *call;
3575
3576	/* Setup the default TTY line discipline. */
3577	n_tty_init();
3578
3579	/*
3580	 * set up the console device so that later boot sequences can
3581	 * inform about problems etc..
3582	 */
3583	call = __con_initcall_start;
3584	while (call < __con_initcall_end) {
3585		(*call)();
3586		call++;
3587	}
3588}
3589
3590static char *tty_devnode(struct device *dev, umode_t *mode)
3591{
3592	if (!mode)
3593		return NULL;
3594	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3595	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3596		*mode = 0666;
3597	return NULL;
3598}
3599
3600static int __init tty_class_init(void)
3601{
3602	tty_class = class_create(THIS_MODULE, "tty");
3603	if (IS_ERR(tty_class))
3604		return PTR_ERR(tty_class);
3605	tty_class->devnode = tty_devnode;
3606	return 0;
3607}
3608
3609postcore_initcall(tty_class_init);
3610
3611/* 3/2004 jmc: why do these devices exist? */
3612static struct cdev tty_cdev, console_cdev;
3613
3614static ssize_t show_cons_active(struct device *dev,
3615				struct device_attribute *attr, char *buf)
3616{
3617	struct console *cs[16];
3618	int i = 0;
3619	struct console *c;
3620	ssize_t count = 0;
3621
3622	console_lock();
3623	for_each_console(c) {
3624		if (!c->device)
3625			continue;
3626		if (!c->write)
3627			continue;
3628		if ((c->flags & CON_ENABLED) == 0)
3629			continue;
3630		cs[i++] = c;
3631		if (i >= ARRAY_SIZE(cs))
3632			break;
3633	}
3634	while (i--) {
3635		int index = cs[i]->index;
3636		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3637
3638		/* don't resolve tty0 as some programs depend on it */
3639		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3640			count += tty_line_name(drv, index, buf + count);
3641		else
3642			count += sprintf(buf + count, "%s%d",
3643					 cs[i]->name, cs[i]->index);
3644
3645		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3646	}
3647	console_unlock();
3648
3649	return count;
3650}
3651static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3652
3653static struct attribute *cons_dev_attrs[] = {
3654	&dev_attr_active.attr,
3655	NULL
3656};
3657
3658ATTRIBUTE_GROUPS(cons_dev);
3659
3660static struct device *consdev;
3661
3662void console_sysfs_notify(void)
3663{
3664	if (consdev)
3665		sysfs_notify(&consdev->kobj, NULL, "active");
3666}
3667
3668/*
3669 * Ok, now we can initialize the rest of the tty devices and can count
3670 * on memory allocations, interrupts etc..
3671 */
3672int __init tty_init(void)
3673{
3674	cdev_init(&tty_cdev, &tty_fops);
3675	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3676	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3677		panic("Couldn't register /dev/tty driver\n");
3678	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3679
3680	cdev_init(&console_cdev, &console_fops);
3681	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3682	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3683		panic("Couldn't register /dev/console driver\n");
3684	consdev = device_create_with_groups(tty_class, NULL,
3685					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3686					    cons_dev_groups, "console");
3687	if (IS_ERR(consdev))
3688		consdev = NULL;
 
 
3689
3690#ifdef CONFIG_VT
3691	vty_init(&console_fops);
3692#endif
3693	return 0;
3694}
3695