Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 HVS module.
   8 *
   9 * The Hardware Video Scaler (HVS) is the piece of hardware that does
  10 * translation, scaling, colorspace conversion, and compositing of
  11 * pixels stored in framebuffers into a FIFO of pixels going out to
  12 * the Pixel Valve (CRTC).  It operates at the system clock rate (the
  13 * system audio clock gate, specifically), which is much higher than
  14 * the pixel clock rate.
  15 *
  16 * There is a single global HVS, with multiple output FIFOs that can
  17 * be consumed by the PVs.  This file just manages the resources for
  18 * the HVS, while the vc4_crtc.c code actually drives HVS setup for
  19 * each CRTC.
  20 */
  21
  22#include <linux/bitfield.h>
  23#include <linux/clk.h>
  24#include <linux/component.h>
  25#include <linux/platform_device.h>
  26
  27#include <drm/drm_atomic_helper.h>
  28#include <drm/drm_drv.h>
  29#include <drm/drm_vblank.h>
  30
  31#include <soc/bcm2835/raspberrypi-firmware.h>
  32
  33#include "vc4_drv.h"
  34#include "vc4_regs.h"
  35
  36static const struct debugfs_reg32 hvs_regs[] = {
  37	VC4_REG32(SCALER_DISPCTRL),
  38	VC4_REG32(SCALER_DISPSTAT),
  39	VC4_REG32(SCALER_DISPID),
  40	VC4_REG32(SCALER_DISPECTRL),
  41	VC4_REG32(SCALER_DISPPROF),
  42	VC4_REG32(SCALER_DISPDITHER),
  43	VC4_REG32(SCALER_DISPEOLN),
  44	VC4_REG32(SCALER_DISPLIST0),
  45	VC4_REG32(SCALER_DISPLIST1),
  46	VC4_REG32(SCALER_DISPLIST2),
  47	VC4_REG32(SCALER_DISPLSTAT),
  48	VC4_REG32(SCALER_DISPLACT0),
  49	VC4_REG32(SCALER_DISPLACT1),
  50	VC4_REG32(SCALER_DISPLACT2),
  51	VC4_REG32(SCALER_DISPCTRL0),
  52	VC4_REG32(SCALER_DISPBKGND0),
  53	VC4_REG32(SCALER_DISPSTAT0),
  54	VC4_REG32(SCALER_DISPBASE0),
  55	VC4_REG32(SCALER_DISPCTRL1),
  56	VC4_REG32(SCALER_DISPBKGND1),
  57	VC4_REG32(SCALER_DISPSTAT1),
  58	VC4_REG32(SCALER_DISPBASE1),
  59	VC4_REG32(SCALER_DISPCTRL2),
  60	VC4_REG32(SCALER_DISPBKGND2),
  61	VC4_REG32(SCALER_DISPSTAT2),
  62	VC4_REG32(SCALER_DISPBASE2),
  63	VC4_REG32(SCALER_DISPALPHA2),
  64	VC4_REG32(SCALER_OLEDOFFS),
  65	VC4_REG32(SCALER_OLEDCOEF0),
  66	VC4_REG32(SCALER_OLEDCOEF1),
  67	VC4_REG32(SCALER_OLEDCOEF2),
  68};
  69
  70void vc4_hvs_dump_state(struct vc4_hvs *hvs)
  71{
  72	struct drm_device *drm = &hvs->vc4->base;
  73	struct drm_printer p = drm_info_printer(&hvs->pdev->dev);
  74	int idx, i;
  75
  76	if (!drm_dev_enter(drm, &idx))
  77		return;
  78
  79	drm_print_regset32(&p, &hvs->regset);
  80
  81	DRM_INFO("HVS ctx:\n");
  82	for (i = 0; i < 64; i += 4) {
  83		DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
  84			 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
  85			 readl((u32 __iomem *)hvs->dlist + i + 0),
  86			 readl((u32 __iomem *)hvs->dlist + i + 1),
  87			 readl((u32 __iomem *)hvs->dlist + i + 2),
  88			 readl((u32 __iomem *)hvs->dlist + i + 3));
  89	}
  90
  91	drm_dev_exit(idx);
  92}
  93
  94static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
  95{
  96	struct drm_debugfs_entry *entry = m->private;
  97	struct drm_device *dev = entry->dev;
  98	struct vc4_dev *vc4 = to_vc4_dev(dev);
  99	struct drm_printer p = drm_seq_file_printer(m);
 100
 101	drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
 102
 103	return 0;
 104}
 105
 106static int vc4_hvs_debugfs_dlist(struct seq_file *m, void *data)
 107{
 108	struct drm_debugfs_entry *entry = m->private;
 109	struct drm_device *dev = entry->dev;
 110	struct vc4_dev *vc4 = to_vc4_dev(dev);
 111	struct vc4_hvs *hvs = vc4->hvs;
 112	struct drm_printer p = drm_seq_file_printer(m);
 113	unsigned int next_entry_start = 0;
 114	unsigned int i, j;
 115	u32 dlist_word, dispstat;
 116
 117	for (i = 0; i < SCALER_CHANNELS_COUNT; i++) {
 118		dispstat = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(i)),
 119					 SCALER_DISPSTATX_MODE);
 120		if (dispstat == SCALER_DISPSTATX_MODE_DISABLED ||
 121		    dispstat == SCALER_DISPSTATX_MODE_EOF) {
 122			drm_printf(&p, "HVS chan %u disabled\n", i);
 123			continue;
 124		}
 125
 126		drm_printf(&p, "HVS chan %u:\n", i);
 127
 128		for (j = HVS_READ(SCALER_DISPLISTX(i)); j < 256; j++) {
 129			dlist_word = readl((u32 __iomem *)vc4->hvs->dlist + j);
 130			drm_printf(&p, "dlist: %02d: 0x%08x\n", j,
 131				   dlist_word);
 132			if (!next_entry_start ||
 133			    next_entry_start == j) {
 134				if (dlist_word & SCALER_CTL0_END)
 135					break;
 136				next_entry_start = j +
 137					VC4_GET_FIELD(dlist_word,
 138						      SCALER_CTL0_SIZE);
 139			}
 140		}
 141	}
 142
 143	return 0;
 144}
 145
 146/* The filter kernel is composed of dwords each containing 3 9-bit
 147 * signed integers packed next to each other.
 148 */
 149#define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
 150#define VC4_PPF_FILTER_WORD(c0, c1, c2)				\
 151	((((c0) & 0x1ff) << 0) |				\
 152	 (((c1) & 0x1ff) << 9) |				\
 153	 (((c2) & 0x1ff) << 18))
 154
 155/* The whole filter kernel is arranged as the coefficients 0-16 going
 156 * up, then a pad, then 17-31 going down and reversed within the
 157 * dwords.  This means that a linear phase kernel (where it's
 158 * symmetrical at the boundary between 15 and 16) has the last 5
 159 * dwords matching the first 5, but reversed.
 160 */
 161#define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8,	\
 162				c9, c10, c11, c12, c13, c14, c15)	\
 163	{VC4_PPF_FILTER_WORD(c0, c1, c2),				\
 164	 VC4_PPF_FILTER_WORD(c3, c4, c5),				\
 165	 VC4_PPF_FILTER_WORD(c6, c7, c8),				\
 166	 VC4_PPF_FILTER_WORD(c9, c10, c11),				\
 167	 VC4_PPF_FILTER_WORD(c12, c13, c14),				\
 168	 VC4_PPF_FILTER_WORD(c15, c15, 0)}
 169
 170#define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
 171#define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
 172
 173/* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
 174 * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
 175 */
 176static const u32 mitchell_netravali_1_3_1_3_kernel[] =
 177	VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
 178				50, 82, 119, 155, 187, 213, 227);
 179
 180static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
 181					struct drm_mm_node *space,
 182					const u32 *kernel)
 183{
 184	int ret, i;
 185	u32 __iomem *dst_kernel;
 186
 187	/*
 188	 * NOTE: We don't need a call to drm_dev_enter()/drm_dev_exit()
 189	 * here since that function is only called from vc4_hvs_bind().
 190	 */
 191
 192	ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
 193	if (ret) {
 194		DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
 195			  ret);
 196		return ret;
 197	}
 198
 199	dst_kernel = hvs->dlist + space->start;
 200
 201	for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
 202		if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
 203			writel(kernel[i], &dst_kernel[i]);
 204		else {
 205			writel(kernel[VC4_KERNEL_DWORDS - i - 1],
 206			       &dst_kernel[i]);
 207		}
 208	}
 209
 210	return 0;
 211}
 212
 213static void vc4_hvs_lut_load(struct vc4_hvs *hvs,
 214			     struct vc4_crtc *vc4_crtc)
 215{
 216	struct drm_device *drm = &hvs->vc4->base;
 217	struct drm_crtc *crtc = &vc4_crtc->base;
 218	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 219	int idx;
 220	u32 i;
 221
 222	if (!drm_dev_enter(drm, &idx))
 223		return;
 224
 225	/* The LUT memory is laid out with each HVS channel in order,
 226	 * each of which takes 256 writes for R, 256 for G, then 256
 227	 * for B.
 228	 */
 229	HVS_WRITE(SCALER_GAMADDR,
 230		  SCALER_GAMADDR_AUTOINC |
 231		  (vc4_state->assigned_channel * 3 * crtc->gamma_size));
 232
 233	for (i = 0; i < crtc->gamma_size; i++)
 234		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
 235	for (i = 0; i < crtc->gamma_size; i++)
 236		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
 237	for (i = 0; i < crtc->gamma_size; i++)
 238		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
 239
 240	drm_dev_exit(idx);
 241}
 242
 243static void vc4_hvs_update_gamma_lut(struct vc4_hvs *hvs,
 244				     struct vc4_crtc *vc4_crtc)
 245{
 246	struct drm_crtc_state *crtc_state = vc4_crtc->base.state;
 247	struct drm_color_lut *lut = crtc_state->gamma_lut->data;
 248	u32 length = drm_color_lut_size(crtc_state->gamma_lut);
 249	u32 i;
 250
 251	for (i = 0; i < length; i++) {
 252		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
 253		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
 254		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
 255	}
 256
 257	vc4_hvs_lut_load(hvs, vc4_crtc);
 258}
 259
 260u8 vc4_hvs_get_fifo_frame_count(struct vc4_hvs *hvs, unsigned int fifo)
 261{
 262	struct drm_device *drm = &hvs->vc4->base;
 263	u8 field = 0;
 264	int idx;
 265
 266	if (!drm_dev_enter(drm, &idx))
 267		return 0;
 268
 269	switch (fifo) {
 270	case 0:
 271		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
 272				      SCALER_DISPSTAT1_FRCNT0);
 273		break;
 274	case 1:
 275		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
 276				      SCALER_DISPSTAT1_FRCNT1);
 277		break;
 278	case 2:
 279		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2),
 280				      SCALER_DISPSTAT2_FRCNT2);
 281		break;
 282	}
 283
 284	drm_dev_exit(idx);
 285	return field;
 286}
 287
 288int vc4_hvs_get_fifo_from_output(struct vc4_hvs *hvs, unsigned int output)
 289{
 290	struct vc4_dev *vc4 = hvs->vc4;
 291	u32 reg;
 292	int ret;
 293
 294	if (!vc4->is_vc5)
 295		return output;
 296
 297	/*
 298	 * NOTE: We should probably use drm_dev_enter()/drm_dev_exit()
 299	 * here, but this function is only used during the DRM device
 300	 * initialization, so we should be fine.
 301	 */
 302
 303	switch (output) {
 304	case 0:
 305		return 0;
 306
 307	case 1:
 308		return 1;
 309
 310	case 2:
 311		reg = HVS_READ(SCALER_DISPECTRL);
 312		ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
 313		if (ret == 0)
 314			return 2;
 315
 316		return 0;
 317
 318	case 3:
 319		reg = HVS_READ(SCALER_DISPCTRL);
 320		ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
 321		if (ret == 3)
 322			return -EPIPE;
 323
 324		return ret;
 325
 326	case 4:
 327		reg = HVS_READ(SCALER_DISPEOLN);
 328		ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
 329		if (ret == 3)
 330			return -EPIPE;
 331
 332		return ret;
 333
 334	case 5:
 335		reg = HVS_READ(SCALER_DISPDITHER);
 336		ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
 337		if (ret == 3)
 338			return -EPIPE;
 339
 340		return ret;
 341
 342	default:
 343		return -EPIPE;
 344	}
 345}
 346
 347static int vc4_hvs_init_channel(struct vc4_hvs *hvs, struct drm_crtc *crtc,
 348				struct drm_display_mode *mode, bool oneshot)
 349{
 350	struct vc4_dev *vc4 = hvs->vc4;
 351	struct drm_device *drm = &vc4->base;
 352	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 353	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
 354	unsigned int chan = vc4_crtc_state->assigned_channel;
 355	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 356	u32 dispbkgndx;
 357	u32 dispctrl;
 358	int idx;
 359
 360	if (!drm_dev_enter(drm, &idx))
 361		return -ENODEV;
 362
 363	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
 364	HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
 365	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
 366
 367	/* Turn on the scaler, which will wait for vstart to start
 368	 * compositing.
 369	 * When feeding the transposer, we should operate in oneshot
 370	 * mode.
 371	 */
 372	dispctrl = SCALER_DISPCTRLX_ENABLE;
 373	dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
 374
 375	if (!vc4->is_vc5) {
 376		dispctrl |= VC4_SET_FIELD(mode->hdisplay,
 377					  SCALER_DISPCTRLX_WIDTH) |
 378			    VC4_SET_FIELD(mode->vdisplay,
 379					  SCALER_DISPCTRLX_HEIGHT) |
 380			    (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
 381		dispbkgndx |= SCALER_DISPBKGND_AUTOHS;
 382	} else {
 383		dispctrl |= VC4_SET_FIELD(mode->hdisplay,
 384					  SCALER5_DISPCTRLX_WIDTH) |
 385			    VC4_SET_FIELD(mode->vdisplay,
 386					  SCALER5_DISPCTRLX_HEIGHT) |
 387			    (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
 388		dispbkgndx &= ~SCALER5_DISPBKGND_BCK2BCK;
 389	}
 390
 391	HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
 392
 393	dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
 394	dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
 395
 396	HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
 397		  ((!vc4->is_vc5) ? SCALER_DISPBKGND_GAMMA : 0) |
 398		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
 399
 400	/* Reload the LUT, since the SRAMs would have been disabled if
 401	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
 402	 */
 403	vc4_hvs_lut_load(hvs, vc4_crtc);
 404
 405	drm_dev_exit(idx);
 406
 407	return 0;
 408}
 409
 410void vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan)
 411{
 412	struct drm_device *drm = &hvs->vc4->base;
 413	int idx;
 414
 415	if (!drm_dev_enter(drm, &idx))
 416		return;
 417
 418	if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE)
 419		goto out;
 420
 421	HVS_WRITE(SCALER_DISPCTRLX(chan),
 422		  HVS_READ(SCALER_DISPCTRLX(chan)) | SCALER_DISPCTRLX_RESET);
 423	HVS_WRITE(SCALER_DISPCTRLX(chan),
 424		  HVS_READ(SCALER_DISPCTRLX(chan)) & ~SCALER_DISPCTRLX_ENABLE);
 425
 426	/* Once we leave, the scaler should be disabled and its fifo empty. */
 427	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
 428
 429	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
 430				   SCALER_DISPSTATX_MODE) !=
 431		     SCALER_DISPSTATX_MODE_DISABLED);
 432
 433	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
 434		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
 435		     SCALER_DISPSTATX_EMPTY);
 436
 437out:
 438	drm_dev_exit(idx);
 439}
 440
 441int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
 442{
 443	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
 444	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
 445	struct drm_device *dev = crtc->dev;
 446	struct vc4_dev *vc4 = to_vc4_dev(dev);
 447	struct drm_plane *plane;
 448	unsigned long flags;
 449	const struct drm_plane_state *plane_state;
 450	u32 dlist_count = 0;
 451	int ret;
 452
 453	/* The pixelvalve can only feed one encoder (and encoders are
 454	 * 1:1 with connectors.)
 455	 */
 456	if (hweight32(crtc_state->connector_mask) > 1)
 457		return -EINVAL;
 458
 459	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state)
 460		dlist_count += vc4_plane_dlist_size(plane_state);
 461
 462	dlist_count++; /* Account for SCALER_CTL0_END. */
 463
 464	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
 465	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
 466				 dlist_count);
 467	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
 468	if (ret)
 469		return ret;
 470
 471	return 0;
 472}
 473
 474static void vc4_hvs_install_dlist(struct drm_crtc *crtc)
 475{
 476	struct drm_device *dev = crtc->dev;
 477	struct vc4_dev *vc4 = to_vc4_dev(dev);
 478	struct vc4_hvs *hvs = vc4->hvs;
 479	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 480	int idx;
 481
 482	if (!drm_dev_enter(dev, &idx))
 483		return;
 484
 485	HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
 486		  vc4_state->mm.start);
 487
 488	drm_dev_exit(idx);
 489}
 490
 491static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
 492{
 493	struct drm_device *dev = crtc->dev;
 494	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 495	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 496	unsigned long flags;
 497
 498	if (crtc->state->event) {
 499		crtc->state->event->pipe = drm_crtc_index(crtc);
 500
 501		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 502
 503		spin_lock_irqsave(&dev->event_lock, flags);
 504
 505		if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) {
 506			vc4_crtc->event = crtc->state->event;
 507			crtc->state->event = NULL;
 508		}
 509
 510		spin_unlock_irqrestore(&dev->event_lock, flags);
 511	}
 512
 513	spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
 514	vc4_crtc->current_dlist = vc4_state->mm.start;
 515	spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
 516}
 517
 518void vc4_hvs_atomic_begin(struct drm_crtc *crtc,
 519			  struct drm_atomic_state *state)
 520{
 521	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 522	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 523	unsigned long flags;
 524
 525	spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
 526	vc4_crtc->current_hvs_channel = vc4_state->assigned_channel;
 527	spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
 528}
 529
 530void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
 531			   struct drm_atomic_state *state)
 532{
 533	struct drm_device *dev = crtc->dev;
 534	struct vc4_dev *vc4 = to_vc4_dev(dev);
 535	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
 536	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 537	bool oneshot = vc4_crtc->feeds_txp;
 538
 539	vc4_hvs_install_dlist(crtc);
 540	vc4_hvs_update_dlist(crtc);
 541	vc4_hvs_init_channel(vc4->hvs, crtc, mode, oneshot);
 542}
 543
 544void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
 545			    struct drm_atomic_state *state)
 546{
 547	struct drm_device *dev = crtc->dev;
 548	struct vc4_dev *vc4 = to_vc4_dev(dev);
 549	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc);
 550	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
 551	unsigned int chan = vc4_state->assigned_channel;
 552
 553	vc4_hvs_stop_channel(vc4->hvs, chan);
 554}
 555
 556void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
 557			  struct drm_atomic_state *state)
 558{
 559	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
 560									 crtc);
 561	struct drm_device *dev = crtc->dev;
 562	struct vc4_dev *vc4 = to_vc4_dev(dev);
 563	struct vc4_hvs *hvs = vc4->hvs;
 564	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 565	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 566	unsigned int channel = vc4_state->assigned_channel;
 567	struct drm_plane *plane;
 568	struct vc4_plane_state *vc4_plane_state;
 569	bool debug_dump_regs = false;
 570	bool enable_bg_fill = false;
 571	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
 572	u32 __iomem *dlist_next = dlist_start;
 573	unsigned int zpos = 0;
 574	bool found = false;
 575	int idx;
 576
 577	if (!drm_dev_enter(dev, &idx)) {
 578		vc4_crtc_send_vblank(crtc);
 579		return;
 580	}
 581
 582	if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
 583		return;
 584
 585	if (debug_dump_regs) {
 586		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
 587		vc4_hvs_dump_state(hvs);
 588	}
 589
 590	/* Copy all the active planes' dlist contents to the hardware dlist. */
 591	do {
 592		found = false;
 593
 594		drm_atomic_crtc_for_each_plane(plane, crtc) {
 595			if (plane->state->normalized_zpos != zpos)
 596				continue;
 597
 598			/* Is this the first active plane? */
 599			if (dlist_next == dlist_start) {
 600				/* We need to enable background fill when a plane
 601				 * could be alpha blending from the background, i.e.
 602				 * where no other plane is underneath. It suffices to
 603				 * consider the first active plane here since we set
 604				 * needs_bg_fill such that either the first plane
 605				 * already needs it or all planes on top blend from
 606				 * the first or a lower plane.
 607				 */
 608				vc4_plane_state = to_vc4_plane_state(plane->state);
 609				enable_bg_fill = vc4_plane_state->needs_bg_fill;
 610			}
 611
 612			dlist_next += vc4_plane_write_dlist(plane, dlist_next);
 613
 614			found = true;
 615		}
 616
 617		zpos++;
 618	} while (found);
 619
 620	writel(SCALER_CTL0_END, dlist_next);
 621	dlist_next++;
 622
 623	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
 624
 625	if (enable_bg_fill)
 626		/* This sets a black background color fill, as is the case
 627		 * with other DRM drivers.
 628		 */
 629		HVS_WRITE(SCALER_DISPBKGNDX(channel),
 630			  HVS_READ(SCALER_DISPBKGNDX(channel)) |
 631			  SCALER_DISPBKGND_FILL);
 632
 633	/* Only update DISPLIST if the CRTC was already running and is not
 634	 * being disabled.
 635	 * vc4_crtc_enable() takes care of updating the dlist just after
 636	 * re-enabling VBLANK interrupts and before enabling the engine.
 637	 * If the CRTC is being disabled, there's no point in updating this
 638	 * information.
 639	 */
 640	if (crtc->state->active && old_state->active) {
 641		vc4_hvs_install_dlist(crtc);
 642		vc4_hvs_update_dlist(crtc);
 643	}
 644
 645	if (crtc->state->color_mgmt_changed) {
 646		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(channel));
 647
 648		if (crtc->state->gamma_lut) {
 649			vc4_hvs_update_gamma_lut(hvs, vc4_crtc);
 650			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
 651		} else {
 652			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
 653			 * in hardware, which is the same as a linear lut that
 654			 * DRM expects us to use in absence of a user lut.
 655			 */
 656			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
 657		}
 658		HVS_WRITE(SCALER_DISPBKGNDX(channel), dispbkgndx);
 659	}
 660
 661	if (debug_dump_regs) {
 662		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
 663		vc4_hvs_dump_state(hvs);
 664	}
 665
 666	drm_dev_exit(idx);
 667}
 668
 669void vc4_hvs_mask_underrun(struct vc4_hvs *hvs, int channel)
 670{
 671	struct drm_device *drm = &hvs->vc4->base;
 672	u32 dispctrl;
 673	int idx;
 674
 675	if (!drm_dev_enter(drm, &idx))
 676		return;
 677
 678	dispctrl = HVS_READ(SCALER_DISPCTRL);
 679	dispctrl &= ~(hvs->vc4->is_vc5 ? SCALER5_DISPCTRL_DSPEISLUR(channel) :
 680					 SCALER_DISPCTRL_DSPEISLUR(channel));
 681
 682	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
 683
 684	drm_dev_exit(idx);
 685}
 686
 687void vc4_hvs_unmask_underrun(struct vc4_hvs *hvs, int channel)
 688{
 689	struct drm_device *drm = &hvs->vc4->base;
 690	u32 dispctrl;
 691	int idx;
 692
 693	if (!drm_dev_enter(drm, &idx))
 694		return;
 695
 696	dispctrl = HVS_READ(SCALER_DISPCTRL);
 697	dispctrl |= (hvs->vc4->is_vc5 ? SCALER5_DISPCTRL_DSPEISLUR(channel) :
 698					SCALER_DISPCTRL_DSPEISLUR(channel));
 699
 700	HVS_WRITE(SCALER_DISPSTAT,
 701		  SCALER_DISPSTAT_EUFLOW(channel));
 702	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
 703
 704	drm_dev_exit(idx);
 705}
 706
 707static void vc4_hvs_report_underrun(struct drm_device *dev)
 708{
 709	struct vc4_dev *vc4 = to_vc4_dev(dev);
 710
 711	atomic_inc(&vc4->underrun);
 712	DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
 713}
 714
 715static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
 716{
 717	struct drm_device *dev = data;
 718	struct vc4_dev *vc4 = to_vc4_dev(dev);
 719	struct vc4_hvs *hvs = vc4->hvs;
 720	irqreturn_t irqret = IRQ_NONE;
 721	int channel;
 722	u32 control;
 723	u32 status;
 724	u32 dspeislur;
 725
 726	/*
 727	 * NOTE: We don't need to protect the register access using
 728	 * drm_dev_enter() there because the interrupt handler lifetime
 729	 * is tied to the device itself, and not to the DRM device.
 730	 *
 731	 * So when the device will be gone, one of the first thing we
 732	 * will be doing will be to unregister the interrupt handler,
 733	 * and then unregister the DRM device. drm_dev_enter() would
 734	 * thus always succeed if we are here.
 735	 */
 736
 737	status = HVS_READ(SCALER_DISPSTAT);
 738	control = HVS_READ(SCALER_DISPCTRL);
 739
 740	for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
 741		dspeislur = vc4->is_vc5 ? SCALER5_DISPCTRL_DSPEISLUR(channel) :
 742					  SCALER_DISPCTRL_DSPEISLUR(channel);
 743		/* Interrupt masking is not always honored, so check it here. */
 744		if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
 745		    control & dspeislur) {
 746			vc4_hvs_mask_underrun(hvs, channel);
 747			vc4_hvs_report_underrun(dev);
 748
 749			irqret = IRQ_HANDLED;
 750		}
 751	}
 752
 753	/* Clear every per-channel interrupt flag. */
 754	HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
 755				   SCALER_DISPSTAT_IRQMASK(1) |
 756				   SCALER_DISPSTAT_IRQMASK(2));
 757
 758	return irqret;
 759}
 760
 761int vc4_hvs_debugfs_init(struct drm_minor *minor)
 762{
 763	struct drm_device *drm = minor->dev;
 764	struct vc4_dev *vc4 = to_vc4_dev(drm);
 765	struct vc4_hvs *hvs = vc4->hvs;
 766
 767	if (!vc4->hvs)
 768		return -ENODEV;
 769
 770	if (!vc4->is_vc5)
 771		debugfs_create_bool("hvs_load_tracker", S_IRUGO | S_IWUSR,
 772				    minor->debugfs_root,
 773				    &vc4->load_tracker_enabled);
 774
 775	drm_debugfs_add_file(drm, "hvs_dlists", vc4_hvs_debugfs_dlist, NULL);
 776
 777	drm_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun, NULL);
 778
 779	vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
 780
 781	return 0;
 782}
 783
 784struct vc4_hvs *__vc4_hvs_alloc(struct vc4_dev *vc4, struct platform_device *pdev)
 785{
 786	struct drm_device *drm = &vc4->base;
 787	struct vc4_hvs *hvs;
 788
 789	hvs = drmm_kzalloc(drm, sizeof(*hvs), GFP_KERNEL);
 790	if (!hvs)
 791		return ERR_PTR(-ENOMEM);
 792
 793	hvs->vc4 = vc4;
 794	hvs->pdev = pdev;
 795
 796	spin_lock_init(&hvs->mm_lock);
 797
 798	/* Set up the HVS display list memory manager.  We never
 799	 * overwrite the setup from the bootloader (just 128b out of
 800	 * our 16K), since we don't want to scramble the screen when
 801	 * transitioning from the firmware's boot setup to runtime.
 802	 */
 803	drm_mm_init(&hvs->dlist_mm,
 804		    HVS_BOOTLOADER_DLIST_END,
 805		    (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
 806
 807	/* Set up the HVS LBM memory manager.  We could have some more
 808	 * complicated data structure that allowed reuse of LBM areas
 809	 * between planes when they don't overlap on the screen, but
 810	 * for now we just allocate globally.
 811	 */
 812	if (!vc4->is_vc5)
 813		/* 48k words of 2x12-bit pixels */
 814		drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024);
 815	else
 816		/* 60k words of 4x12-bit pixels */
 817		drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024);
 818
 819	vc4->hvs = hvs;
 820
 821	return hvs;
 822}
 823
 824static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
 825{
 826	struct platform_device *pdev = to_platform_device(dev);
 827	struct drm_device *drm = dev_get_drvdata(master);
 828	struct vc4_dev *vc4 = to_vc4_dev(drm);
 829	struct vc4_hvs *hvs = NULL;
 830	int ret;
 831	u32 dispctrl;
 832	u32 reg, top;
 833
 834	hvs = __vc4_hvs_alloc(vc4, NULL);
 835	if (IS_ERR(hvs))
 836		return PTR_ERR(hvs);
 837
 838	hvs->regs = vc4_ioremap_regs(pdev, 0);
 839	if (IS_ERR(hvs->regs))
 840		return PTR_ERR(hvs->regs);
 841
 842	hvs->regset.base = hvs->regs;
 843	hvs->regset.regs = hvs_regs;
 844	hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
 845
 846	if (vc4->is_vc5) {
 847		struct rpi_firmware *firmware;
 848		struct device_node *node;
 849		unsigned int max_rate;
 850
 851		node = rpi_firmware_find_node();
 852		if (!node)
 853			return -EINVAL;
 854
 855		firmware = rpi_firmware_get(node);
 856		of_node_put(node);
 857		if (!firmware)
 858			return -EPROBE_DEFER;
 859
 860		hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
 861		if (IS_ERR(hvs->core_clk)) {
 862			dev_err(&pdev->dev, "Couldn't get core clock\n");
 863			return PTR_ERR(hvs->core_clk);
 864		}
 865
 866		max_rate = rpi_firmware_clk_get_max_rate(firmware,
 867							 RPI_FIRMWARE_CORE_CLK_ID);
 868		rpi_firmware_put(firmware);
 869		if (max_rate >= 550000000)
 870			hvs->vc5_hdmi_enable_hdmi_20 = true;
 871
 872		if (max_rate >= 600000000)
 873			hvs->vc5_hdmi_enable_4096by2160 = true;
 874
 875		hvs->max_core_rate = max_rate;
 876
 877		ret = clk_prepare_enable(hvs->core_clk);
 878		if (ret) {
 879			dev_err(&pdev->dev, "Couldn't enable the core clock\n");
 880			return ret;
 881		}
 882	}
 883
 884	if (!vc4->is_vc5)
 885		hvs->dlist = hvs->regs + SCALER_DLIST_START;
 886	else
 887		hvs->dlist = hvs->regs + SCALER5_DLIST_START;
 888
 889	/* Upload filter kernels.  We only have the one for now, so we
 890	 * keep it around for the lifetime of the driver.
 891	 */
 892	ret = vc4_hvs_upload_linear_kernel(hvs,
 893					   &hvs->mitchell_netravali_filter,
 894					   mitchell_netravali_1_3_1_3_kernel);
 895	if (ret)
 896		return ret;
 897
 898	reg = HVS_READ(SCALER_DISPECTRL);
 899	reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK;
 900	HVS_WRITE(SCALER_DISPECTRL,
 901		  reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX));
 902
 903	reg = HVS_READ(SCALER_DISPCTRL);
 904	reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
 905	HVS_WRITE(SCALER_DISPCTRL,
 906		  reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX));
 907
 908	reg = HVS_READ(SCALER_DISPEOLN);
 909	reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK;
 910	HVS_WRITE(SCALER_DISPEOLN,
 911		  reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX));
 912
 913	reg = HVS_READ(SCALER_DISPDITHER);
 914	reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK;
 915	HVS_WRITE(SCALER_DISPDITHER,
 916		  reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX));
 917
 918	dispctrl = HVS_READ(SCALER_DISPCTRL);
 919
 920	dispctrl |= SCALER_DISPCTRL_ENABLE;
 921	dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
 922		    SCALER_DISPCTRL_DISPEIRQ(1) |
 923		    SCALER_DISPCTRL_DISPEIRQ(2);
 924
 925	if (!vc4->is_vc5)
 926		dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
 927			      SCALER_DISPCTRL_SLVWREIRQ |
 928			      SCALER_DISPCTRL_SLVRDEIRQ |
 929			      SCALER_DISPCTRL_DSPEIEOF(0) |
 930			      SCALER_DISPCTRL_DSPEIEOF(1) |
 931			      SCALER_DISPCTRL_DSPEIEOF(2) |
 932			      SCALER_DISPCTRL_DSPEIEOLN(0) |
 933			      SCALER_DISPCTRL_DSPEIEOLN(1) |
 934			      SCALER_DISPCTRL_DSPEIEOLN(2) |
 935			      SCALER_DISPCTRL_DSPEISLUR(0) |
 936			      SCALER_DISPCTRL_DSPEISLUR(1) |
 937			      SCALER_DISPCTRL_DSPEISLUR(2) |
 938			      SCALER_DISPCTRL_SCLEIRQ);
 939	else
 940		dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
 941			      SCALER5_DISPCTRL_SLVEIRQ |
 942			      SCALER5_DISPCTRL_DSPEIEOF(0) |
 943			      SCALER5_DISPCTRL_DSPEIEOF(1) |
 944			      SCALER5_DISPCTRL_DSPEIEOF(2) |
 945			      SCALER5_DISPCTRL_DSPEIEOLN(0) |
 946			      SCALER5_DISPCTRL_DSPEIEOLN(1) |
 947			      SCALER5_DISPCTRL_DSPEIEOLN(2) |
 948			      SCALER5_DISPCTRL_DSPEISLUR(0) |
 949			      SCALER5_DISPCTRL_DSPEISLUR(1) |
 950			      SCALER5_DISPCTRL_DSPEISLUR(2) |
 951			      SCALER_DISPCTRL_SCLEIRQ);
 952
 953
 954	/* Set AXI panic mode.
 955	 * VC4 panics when < 2 lines in FIFO.
 956	 * VC5 panics when less than 1 line in the FIFO.
 957	 */
 958	dispctrl &= ~(SCALER_DISPCTRL_PANIC0_MASK |
 959		      SCALER_DISPCTRL_PANIC1_MASK |
 960		      SCALER_DISPCTRL_PANIC2_MASK);
 961	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC0);
 962	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC1);
 963	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC2);
 964
 965	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
 966
 967	/* Recompute Composite Output Buffer (COB) allocations for the displays
 968	 */
 969	if (!vc4->is_vc5) {
 970		/* The COB is 20736 pixels, or just over 10 lines at 2048 wide.
 971		 * The bottom 2048 pixels are full 32bpp RGBA (intended for the
 972		 * TXP composing RGBA to memory), whilst the remainder are only
 973		 * 24bpp RGB.
 974		 *
 975		 * Assign 3 lines to channels 1 & 2, and just over 4 lines to
 976		 * channel 0.
 977		 */
 978		#define VC4_COB_SIZE		20736
 979		#define VC4_COB_LINE_WIDTH	2048
 980		#define VC4_COB_NUM_LINES	3
 981		reg = 0;
 982		top = VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES;
 983		reg |= (top - 1) << 16;
 984		HVS_WRITE(SCALER_DISPBASE2, reg);
 985		reg = top;
 986		top += VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES;
 987		reg |= (top - 1) << 16;
 988		HVS_WRITE(SCALER_DISPBASE1, reg);
 989		reg = top;
 990		top = VC4_COB_SIZE;
 991		reg |= (top - 1) << 16;
 992		HVS_WRITE(SCALER_DISPBASE0, reg);
 993	} else {
 994		/* The COB is 44416 pixels, or 10.8 lines at 4096 wide.
 995		 * The bottom 4096 pixels are full RGBA (intended for the TXP
 996		 * composing RGBA to memory), whilst the remainder are only
 997		 * RGB. Addressing is always pixel wide.
 998		 *
 999		 * Assign 3 lines of 4096 to channels 1 & 2, and just over 4
1000		 * lines. to channel 0.
1001		 */
1002		#define VC5_COB_SIZE		44416
1003		#define VC5_COB_LINE_WIDTH	4096
1004		#define VC5_COB_NUM_LINES	3
1005		reg = 0;
1006		top = VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES;
1007		reg |= top << 16;
1008		HVS_WRITE(SCALER_DISPBASE2, reg);
1009		top += 16;
1010		reg = top;
1011		top += VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES;
1012		reg |= top << 16;
1013		HVS_WRITE(SCALER_DISPBASE1, reg);
1014		top += 16;
1015		reg = top;
1016		top = VC5_COB_SIZE;
1017		reg |= top << 16;
1018		HVS_WRITE(SCALER_DISPBASE0, reg);
1019	}
1020
1021	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1022			       vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
1023	if (ret)
1024		return ret;
1025
1026	return 0;
1027}
1028
1029static void vc4_hvs_unbind(struct device *dev, struct device *master,
1030			   void *data)
1031{
1032	struct drm_device *drm = dev_get_drvdata(master);
1033	struct vc4_dev *vc4 = to_vc4_dev(drm);
1034	struct vc4_hvs *hvs = vc4->hvs;
1035	struct drm_mm_node *node, *next;
1036
1037	if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
1038		drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
1039
1040	drm_mm_for_each_node_safe(node, next, &vc4->hvs->dlist_mm)
1041		drm_mm_remove_node(node);
1042
1043	drm_mm_takedown(&vc4->hvs->dlist_mm);
1044
1045	drm_mm_for_each_node_safe(node, next, &vc4->hvs->lbm_mm)
1046		drm_mm_remove_node(node);
1047	drm_mm_takedown(&vc4->hvs->lbm_mm);
1048
1049	clk_disable_unprepare(hvs->core_clk);
1050
1051	vc4->hvs = NULL;
1052}
1053
1054static const struct component_ops vc4_hvs_ops = {
1055	.bind   = vc4_hvs_bind,
1056	.unbind = vc4_hvs_unbind,
1057};
1058
1059static int vc4_hvs_dev_probe(struct platform_device *pdev)
1060{
1061	return component_add(&pdev->dev, &vc4_hvs_ops);
1062}
1063
1064static void vc4_hvs_dev_remove(struct platform_device *pdev)
1065{
1066	component_del(&pdev->dev, &vc4_hvs_ops);
1067}
1068
1069static const struct of_device_id vc4_hvs_dt_match[] = {
1070	{ .compatible = "brcm,bcm2711-hvs" },
1071	{ .compatible = "brcm,bcm2835-hvs" },
1072	{}
1073};
1074
1075struct platform_driver vc4_hvs_driver = {
1076	.probe = vc4_hvs_dev_probe,
1077	.remove_new = vc4_hvs_dev_remove,
1078	.driver = {
1079		.name = "vc4_hvs",
1080		.of_match_table = vc4_hvs_dt_match,
1081	},
1082};