Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2015 Broadcom
  4 */
  5
  6/**
  7 * DOC: VC4 HVS module.
  8 *
  9 * The Hardware Video Scaler (HVS) is the piece of hardware that does
 10 * translation, scaling, colorspace conversion, and compositing of
 11 * pixels stored in framebuffers into a FIFO of pixels going out to
 12 * the Pixel Valve (CRTC).  It operates at the system clock rate (the
 13 * system audio clock gate, specifically), which is much higher than
 14 * the pixel clock rate.
 15 *
 16 * There is a single global HVS, with multiple output FIFOs that can
 17 * be consumed by the PVs.  This file just manages the resources for
 18 * the HVS, while the vc4_crtc.c code actually drives HVS setup for
 19 * each CRTC.
 20 */
 21
 22#include <linux/bitfield.h>
 23#include <linux/clk.h>
 24#include <linux/component.h>
 25#include <linux/platform_device.h>
 26
 27#include <drm/drm_atomic_helper.h>
 28#include <drm/drm_vblank.h>
 29
 30#include "vc4_drv.h"
 31#include "vc4_regs.h"
 32
 33static const struct debugfs_reg32 hvs_regs[] = {
 34	VC4_REG32(SCALER_DISPCTRL),
 35	VC4_REG32(SCALER_DISPSTAT),
 36	VC4_REG32(SCALER_DISPID),
 37	VC4_REG32(SCALER_DISPECTRL),
 38	VC4_REG32(SCALER_DISPPROF),
 39	VC4_REG32(SCALER_DISPDITHER),
 40	VC4_REG32(SCALER_DISPEOLN),
 41	VC4_REG32(SCALER_DISPLIST0),
 42	VC4_REG32(SCALER_DISPLIST1),
 43	VC4_REG32(SCALER_DISPLIST2),
 44	VC4_REG32(SCALER_DISPLSTAT),
 45	VC4_REG32(SCALER_DISPLACT0),
 46	VC4_REG32(SCALER_DISPLACT1),
 47	VC4_REG32(SCALER_DISPLACT2),
 48	VC4_REG32(SCALER_DISPCTRL0),
 49	VC4_REG32(SCALER_DISPBKGND0),
 50	VC4_REG32(SCALER_DISPSTAT0),
 51	VC4_REG32(SCALER_DISPBASE0),
 52	VC4_REG32(SCALER_DISPCTRL1),
 53	VC4_REG32(SCALER_DISPBKGND1),
 54	VC4_REG32(SCALER_DISPSTAT1),
 55	VC4_REG32(SCALER_DISPBASE1),
 56	VC4_REG32(SCALER_DISPCTRL2),
 57	VC4_REG32(SCALER_DISPBKGND2),
 58	VC4_REG32(SCALER_DISPSTAT2),
 59	VC4_REG32(SCALER_DISPBASE2),
 60	VC4_REG32(SCALER_DISPALPHA2),
 61	VC4_REG32(SCALER_OLEDOFFS),
 62	VC4_REG32(SCALER_OLEDCOEF0),
 63	VC4_REG32(SCALER_OLEDCOEF1),
 64	VC4_REG32(SCALER_OLEDCOEF2),
 65};
 66
 67void vc4_hvs_dump_state(struct drm_device *dev)
 68{
 69	struct vc4_dev *vc4 = to_vc4_dev(dev);
 70	struct drm_printer p = drm_info_printer(&vc4->hvs->pdev->dev);
 71	int i;
 72
 73	drm_print_regset32(&p, &vc4->hvs->regset);
 74
 75	DRM_INFO("HVS ctx:\n");
 76	for (i = 0; i < 64; i += 4) {
 77		DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
 78			 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
 79			 readl((u32 __iomem *)vc4->hvs->dlist + i + 0),
 80			 readl((u32 __iomem *)vc4->hvs->dlist + i + 1),
 81			 readl((u32 __iomem *)vc4->hvs->dlist + i + 2),
 82			 readl((u32 __iomem *)vc4->hvs->dlist + i + 3));
 83	}
 84}
 85
 86static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
 87{
 88	struct drm_info_node *node = m->private;
 89	struct drm_device *dev = node->minor->dev;
 90	struct vc4_dev *vc4 = to_vc4_dev(dev);
 91	struct drm_printer p = drm_seq_file_printer(m);
 92
 93	drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
 94
 95	return 0;
 96}
 97
 98/* The filter kernel is composed of dwords each containing 3 9-bit
 99 * signed integers packed next to each other.
100 */
101#define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
102#define VC4_PPF_FILTER_WORD(c0, c1, c2)				\
103	((((c0) & 0x1ff) << 0) |				\
104	 (((c1) & 0x1ff) << 9) |				\
105	 (((c2) & 0x1ff) << 18))
106
107/* The whole filter kernel is arranged as the coefficients 0-16 going
108 * up, then a pad, then 17-31 going down and reversed within the
109 * dwords.  This means that a linear phase kernel (where it's
110 * symmetrical at the boundary between 15 and 16) has the last 5
111 * dwords matching the first 5, but reversed.
112 */
113#define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8,	\
114				c9, c10, c11, c12, c13, c14, c15)	\
115	{VC4_PPF_FILTER_WORD(c0, c1, c2),				\
116	 VC4_PPF_FILTER_WORD(c3, c4, c5),				\
117	 VC4_PPF_FILTER_WORD(c6, c7, c8),				\
118	 VC4_PPF_FILTER_WORD(c9, c10, c11),				\
119	 VC4_PPF_FILTER_WORD(c12, c13, c14),				\
120	 VC4_PPF_FILTER_WORD(c15, c15, 0)}
121
122#define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
123#define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
124
125/* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
126 * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
127 */
128static const u32 mitchell_netravali_1_3_1_3_kernel[] =
129	VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
130				50, 82, 119, 155, 187, 213, 227);
131
132static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
133					struct drm_mm_node *space,
134					const u32 *kernel)
135{
136	int ret, i;
137	u32 __iomem *dst_kernel;
138
139	ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
140	if (ret) {
141		DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
142			  ret);
143		return ret;
144	}
145
146	dst_kernel = hvs->dlist + space->start;
147
148	for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
149		if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
150			writel(kernel[i], &dst_kernel[i]);
151		else {
152			writel(kernel[VC4_KERNEL_DWORDS - i - 1],
153			       &dst_kernel[i]);
154		}
155	}
156
157	return 0;
158}
159
160static void vc4_hvs_lut_load(struct drm_crtc *crtc)
161{
162	struct drm_device *dev = crtc->dev;
163	struct vc4_dev *vc4 = to_vc4_dev(dev);
164	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
165	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
166	u32 i;
167
168	/* The LUT memory is laid out with each HVS channel in order,
169	 * each of which takes 256 writes for R, 256 for G, then 256
170	 * for B.
171	 */
172	HVS_WRITE(SCALER_GAMADDR,
173		  SCALER_GAMADDR_AUTOINC |
174		  (vc4_state->assigned_channel * 3 * crtc->gamma_size));
175
176	for (i = 0; i < crtc->gamma_size; i++)
177		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
178	for (i = 0; i < crtc->gamma_size; i++)
179		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
180	for (i = 0; i < crtc->gamma_size; i++)
181		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
182}
183
184static void vc4_hvs_update_gamma_lut(struct drm_crtc *crtc)
185{
186	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
187	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
188	u32 length = drm_color_lut_size(crtc->state->gamma_lut);
189	u32 i;
190
191	for (i = 0; i < length; i++) {
192		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
193		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
194		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
195	}
196
197	vc4_hvs_lut_load(crtc);
198}
199
200int vc4_hvs_get_fifo_from_output(struct drm_device *dev, unsigned int output)
201{
202	struct vc4_dev *vc4 = to_vc4_dev(dev);
203	u32 reg;
204	int ret;
205
206	if (!vc4->hvs->hvs5)
207		return output;
208
209	switch (output) {
210	case 0:
211		return 0;
212
213	case 1:
214		return 1;
215
216	case 2:
217		reg = HVS_READ(SCALER_DISPECTRL);
218		ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
219		if (ret == 0)
220			return 2;
221
222		return 0;
223
224	case 3:
225		reg = HVS_READ(SCALER_DISPCTRL);
226		ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
227		if (ret == 3)
228			return -EPIPE;
229
230		return ret;
231
232	case 4:
233		reg = HVS_READ(SCALER_DISPEOLN);
234		ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
235		if (ret == 3)
236			return -EPIPE;
237
238		return ret;
239
240	case 5:
241		reg = HVS_READ(SCALER_DISPDITHER);
242		ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
243		if (ret == 3)
244			return -EPIPE;
245
246		return ret;
247
248	default:
249		return -EPIPE;
250	}
251}
252
253static int vc4_hvs_init_channel(struct vc4_dev *vc4, struct drm_crtc *crtc,
254				struct drm_display_mode *mode, bool oneshot)
255{
256	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
257	unsigned int chan = vc4_crtc_state->assigned_channel;
258	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
259	u32 dispbkgndx;
260	u32 dispctrl;
261
262	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
263	HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
264	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
265
266	/* Turn on the scaler, which will wait for vstart to start
267	 * compositing.
268	 * When feeding the transposer, we should operate in oneshot
269	 * mode.
270	 */
271	dispctrl = SCALER_DISPCTRLX_ENABLE;
272
273	if (!vc4->hvs->hvs5)
274		dispctrl |= VC4_SET_FIELD(mode->hdisplay,
275					  SCALER_DISPCTRLX_WIDTH) |
276			    VC4_SET_FIELD(mode->vdisplay,
277					  SCALER_DISPCTRLX_HEIGHT) |
278			    (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
279	else
280		dispctrl |= VC4_SET_FIELD(mode->hdisplay,
281					  SCALER5_DISPCTRLX_WIDTH) |
282			    VC4_SET_FIELD(mode->vdisplay,
283					  SCALER5_DISPCTRLX_HEIGHT) |
284			    (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
285
286	HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
287
288	dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
289	dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
290	dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
291
292	HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
293		  SCALER_DISPBKGND_AUTOHS |
294		  ((!vc4->hvs->hvs5) ? SCALER_DISPBKGND_GAMMA : 0) |
295		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
296
297	/* Reload the LUT, since the SRAMs would have been disabled if
298	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
299	 */
300	vc4_hvs_lut_load(crtc);
301
302	return 0;
303}
304
305void vc4_hvs_stop_channel(struct drm_device *dev, unsigned int chan)
306{
307	struct vc4_dev *vc4 = to_vc4_dev(dev);
308
309	if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE)
310		return;
311
312	HVS_WRITE(SCALER_DISPCTRLX(chan),
313		  HVS_READ(SCALER_DISPCTRLX(chan)) | SCALER_DISPCTRLX_RESET);
314	HVS_WRITE(SCALER_DISPCTRLX(chan),
315		  HVS_READ(SCALER_DISPCTRLX(chan)) & ~SCALER_DISPCTRLX_ENABLE);
316
317	/* Once we leave, the scaler should be disabled and its fifo empty. */
318	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
319
320	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
321				   SCALER_DISPSTATX_MODE) !=
322		     SCALER_DISPSTATX_MODE_DISABLED);
323
324	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
325		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
326		     SCALER_DISPSTATX_EMPTY);
327}
328
329int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
330{
331	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
332	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
333	struct drm_device *dev = crtc->dev;
334	struct vc4_dev *vc4 = to_vc4_dev(dev);
335	struct drm_plane *plane;
336	unsigned long flags;
337	const struct drm_plane_state *plane_state;
338	u32 dlist_count = 0;
339	int ret;
340
341	/* The pixelvalve can only feed one encoder (and encoders are
342	 * 1:1 with connectors.)
343	 */
344	if (hweight32(crtc_state->connector_mask) > 1)
345		return -EINVAL;
346
347	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state)
348		dlist_count += vc4_plane_dlist_size(plane_state);
349
350	dlist_count++; /* Account for SCALER_CTL0_END. */
351
352	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
353	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
354				 dlist_count);
355	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
356	if (ret)
357		return ret;
358
359	return 0;
360}
361
362static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
363{
364	struct drm_device *dev = crtc->dev;
365	struct vc4_dev *vc4 = to_vc4_dev(dev);
366	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
367	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
368
369	if (crtc->state->event) {
370		unsigned long flags;
371
372		crtc->state->event->pipe = drm_crtc_index(crtc);
373
374		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
375
376		spin_lock_irqsave(&dev->event_lock, flags);
377
378		if (!vc4_state->feed_txp || vc4_state->txp_armed) {
379			vc4_crtc->event = crtc->state->event;
380			crtc->state->event = NULL;
381		}
382
383		HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
384			  vc4_state->mm.start);
385
386		spin_unlock_irqrestore(&dev->event_lock, flags);
387	} else {
388		HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
389			  vc4_state->mm.start);
390	}
391}
392
393void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
394			   struct drm_atomic_state *state)
395{
396	struct drm_device *dev = crtc->dev;
397	struct vc4_dev *vc4 = to_vc4_dev(dev);
398	struct drm_crtc_state *new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
399	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(new_crtc_state);
400	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
401	bool oneshot = vc4_state->feed_txp;
402
403	vc4_hvs_update_dlist(crtc);
404	vc4_hvs_init_channel(vc4, crtc, mode, oneshot);
405}
406
407void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
408			    struct drm_atomic_state *state)
409{
410	struct drm_device *dev = crtc->dev;
411	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc);
412	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
413	unsigned int chan = vc4_state->assigned_channel;
414
415	vc4_hvs_stop_channel(dev, chan);
416}
417
418void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
419			  struct drm_atomic_state *state)
420{
421	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
422									 crtc);
423	struct drm_device *dev = crtc->dev;
424	struct vc4_dev *vc4 = to_vc4_dev(dev);
425	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
426	struct drm_plane *plane;
427	struct vc4_plane_state *vc4_plane_state;
428	bool debug_dump_regs = false;
429	bool enable_bg_fill = false;
430	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
431	u32 __iomem *dlist_next = dlist_start;
432
433	if (debug_dump_regs) {
434		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
435		vc4_hvs_dump_state(dev);
436	}
437
438	/* Copy all the active planes' dlist contents to the hardware dlist. */
439	drm_atomic_crtc_for_each_plane(plane, crtc) {
440		/* Is this the first active plane? */
441		if (dlist_next == dlist_start) {
442			/* We need to enable background fill when a plane
443			 * could be alpha blending from the background, i.e.
444			 * where no other plane is underneath. It suffices to
445			 * consider the first active plane here since we set
446			 * needs_bg_fill such that either the first plane
447			 * already needs it or all planes on top blend from
448			 * the first or a lower plane.
449			 */
450			vc4_plane_state = to_vc4_plane_state(plane->state);
451			enable_bg_fill = vc4_plane_state->needs_bg_fill;
452		}
453
454		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
455	}
456
457	writel(SCALER_CTL0_END, dlist_next);
458	dlist_next++;
459
460	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
461
462	if (enable_bg_fill)
463		/* This sets a black background color fill, as is the case
464		 * with other DRM drivers.
465		 */
466		HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel),
467			  HVS_READ(SCALER_DISPBKGNDX(vc4_state->assigned_channel)) |
468			  SCALER_DISPBKGND_FILL);
469
470	/* Only update DISPLIST if the CRTC was already running and is not
471	 * being disabled.
472	 * vc4_crtc_enable() takes care of updating the dlist just after
473	 * re-enabling VBLANK interrupts and before enabling the engine.
474	 * If the CRTC is being disabled, there's no point in updating this
475	 * information.
476	 */
477	if (crtc->state->active && old_state->active)
478		vc4_hvs_update_dlist(crtc);
479
480	if (crtc->state->color_mgmt_changed) {
481		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_state->assigned_channel));
482
483		if (crtc->state->gamma_lut) {
484			vc4_hvs_update_gamma_lut(crtc);
485			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
486		} else {
487			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
488			 * in hardware, which is the same as a linear lut that
489			 * DRM expects us to use in absence of a user lut.
490			 */
491			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
492		}
493		HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel), dispbkgndx);
494	}
495
496	if (debug_dump_regs) {
497		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
498		vc4_hvs_dump_state(dev);
499	}
500}
501
502void vc4_hvs_mask_underrun(struct drm_device *dev, int channel)
503{
504	struct vc4_dev *vc4 = to_vc4_dev(dev);
505	u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
506
507	dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel);
508
509	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
510}
511
512void vc4_hvs_unmask_underrun(struct drm_device *dev, int channel)
513{
514	struct vc4_dev *vc4 = to_vc4_dev(dev);
515	u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
516
517	dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel);
518
519	HVS_WRITE(SCALER_DISPSTAT,
520		  SCALER_DISPSTAT_EUFLOW(channel));
521	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
522}
523
524static void vc4_hvs_report_underrun(struct drm_device *dev)
525{
526	struct vc4_dev *vc4 = to_vc4_dev(dev);
527
528	atomic_inc(&vc4->underrun);
529	DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
530}
531
532static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
533{
534	struct drm_device *dev = data;
535	struct vc4_dev *vc4 = to_vc4_dev(dev);
536	irqreturn_t irqret = IRQ_NONE;
537	int channel;
538	u32 control;
539	u32 status;
540
541	status = HVS_READ(SCALER_DISPSTAT);
542	control = HVS_READ(SCALER_DISPCTRL);
543
544	for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
545		/* Interrupt masking is not always honored, so check it here. */
546		if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
547		    control & SCALER_DISPCTRL_DSPEISLUR(channel)) {
548			vc4_hvs_mask_underrun(dev, channel);
549			vc4_hvs_report_underrun(dev);
550
551			irqret = IRQ_HANDLED;
552		}
553	}
554
555	/* Clear every per-channel interrupt flag. */
556	HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
557				   SCALER_DISPSTAT_IRQMASK(1) |
558				   SCALER_DISPSTAT_IRQMASK(2));
559
560	return irqret;
561}
562
563static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
564{
565	struct platform_device *pdev = to_platform_device(dev);
566	struct drm_device *drm = dev_get_drvdata(master);
567	struct vc4_dev *vc4 = to_vc4_dev(drm);
568	struct vc4_hvs *hvs = NULL;
569	int ret;
570	u32 dispctrl;
571
572	hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL);
573	if (!hvs)
574		return -ENOMEM;
575
576	hvs->pdev = pdev;
577
578	if (of_device_is_compatible(pdev->dev.of_node, "brcm,bcm2711-hvs"))
579		hvs->hvs5 = true;
580
581	hvs->regs = vc4_ioremap_regs(pdev, 0);
582	if (IS_ERR(hvs->regs))
583		return PTR_ERR(hvs->regs);
584
585	hvs->regset.base = hvs->regs;
586	hvs->regset.regs = hvs_regs;
587	hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
588
589	if (hvs->hvs5) {
590		hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
591		if (IS_ERR(hvs->core_clk)) {
592			dev_err(&pdev->dev, "Couldn't get core clock\n");
593			return PTR_ERR(hvs->core_clk);
594		}
595
596		ret = clk_prepare_enable(hvs->core_clk);
597		if (ret) {
598			dev_err(&pdev->dev, "Couldn't enable the core clock\n");
599			return ret;
600		}
601	}
602
603	if (!hvs->hvs5)
604		hvs->dlist = hvs->regs + SCALER_DLIST_START;
605	else
606		hvs->dlist = hvs->regs + SCALER5_DLIST_START;
607
608	spin_lock_init(&hvs->mm_lock);
609
610	/* Set up the HVS display list memory manager.  We never
611	 * overwrite the setup from the bootloader (just 128b out of
612	 * our 16K), since we don't want to scramble the screen when
613	 * transitioning from the firmware's boot setup to runtime.
614	 */
615	drm_mm_init(&hvs->dlist_mm,
616		    HVS_BOOTLOADER_DLIST_END,
617		    (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
618
619	/* Set up the HVS LBM memory manager.  We could have some more
620	 * complicated data structure that allowed reuse of LBM areas
621	 * between planes when they don't overlap on the screen, but
622	 * for now we just allocate globally.
623	 */
624	if (!hvs->hvs5)
625		/* 48k words of 2x12-bit pixels */
626		drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024);
627	else
628		/* 60k words of 4x12-bit pixels */
629		drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024);
630
631	/* Upload filter kernels.  We only have the one for now, so we
632	 * keep it around for the lifetime of the driver.
633	 */
634	ret = vc4_hvs_upload_linear_kernel(hvs,
635					   &hvs->mitchell_netravali_filter,
636					   mitchell_netravali_1_3_1_3_kernel);
637	if (ret)
638		return ret;
639
640	vc4->hvs = hvs;
641
642	dispctrl = HVS_READ(SCALER_DISPCTRL);
643
644	dispctrl |= SCALER_DISPCTRL_ENABLE;
645	dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
646		    SCALER_DISPCTRL_DISPEIRQ(1) |
647		    SCALER_DISPCTRL_DISPEIRQ(2);
648
649	/* Set DSP3 (PV1) to use HVS channel 2, which would otherwise
650	 * be unused.
651	 */
652	dispctrl &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
653	dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
654		      SCALER_DISPCTRL_SLVWREIRQ |
655		      SCALER_DISPCTRL_SLVRDEIRQ |
656		      SCALER_DISPCTRL_DSPEIEOF(0) |
657		      SCALER_DISPCTRL_DSPEIEOF(1) |
658		      SCALER_DISPCTRL_DSPEIEOF(2) |
659		      SCALER_DISPCTRL_DSPEIEOLN(0) |
660		      SCALER_DISPCTRL_DSPEIEOLN(1) |
661		      SCALER_DISPCTRL_DSPEIEOLN(2) |
662		      SCALER_DISPCTRL_DSPEISLUR(0) |
663		      SCALER_DISPCTRL_DSPEISLUR(1) |
664		      SCALER_DISPCTRL_DSPEISLUR(2) |
665		      SCALER_DISPCTRL_SCLEIRQ);
666	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
667
668	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
669
670	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
671			       vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
672	if (ret)
673		return ret;
674
675	vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
676	vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun,
677			     NULL);
678
679	return 0;
680}
681
682static void vc4_hvs_unbind(struct device *dev, struct device *master,
683			   void *data)
684{
685	struct drm_device *drm = dev_get_drvdata(master);
686	struct vc4_dev *vc4 = to_vc4_dev(drm);
687	struct vc4_hvs *hvs = vc4->hvs;
688
689	if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
690		drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
691
692	drm_mm_takedown(&vc4->hvs->dlist_mm);
693	drm_mm_takedown(&vc4->hvs->lbm_mm);
694
695	clk_disable_unprepare(hvs->core_clk);
696
697	vc4->hvs = NULL;
698}
699
700static const struct component_ops vc4_hvs_ops = {
701	.bind   = vc4_hvs_bind,
702	.unbind = vc4_hvs_unbind,
703};
704
705static int vc4_hvs_dev_probe(struct platform_device *pdev)
706{
707	return component_add(&pdev->dev, &vc4_hvs_ops);
708}
709
710static int vc4_hvs_dev_remove(struct platform_device *pdev)
711{
712	component_del(&pdev->dev, &vc4_hvs_ops);
713	return 0;
714}
715
716static const struct of_device_id vc4_hvs_dt_match[] = {
717	{ .compatible = "brcm,bcm2711-hvs" },
718	{ .compatible = "brcm,bcm2835-hvs" },
719	{}
720};
721
722struct platform_driver vc4_hvs_driver = {
723	.probe = vc4_hvs_dev_probe,
724	.remove = vc4_hvs_dev_remove,
725	.driver = {
726		.name = "vc4_hvs",
727		.of_match_table = vc4_hvs_dt_match,
728	},
729};