Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 HVS module.
   8 *
   9 * The Hardware Video Scaler (HVS) is the piece of hardware that does
  10 * translation, scaling, colorspace conversion, and compositing of
  11 * pixels stored in framebuffers into a FIFO of pixels going out to
  12 * the Pixel Valve (CRTC).  It operates at the system clock rate (the
  13 * system audio clock gate, specifically), which is much higher than
  14 * the pixel clock rate.
  15 *
  16 * There is a single global HVS, with multiple output FIFOs that can
  17 * be consumed by the PVs.  This file just manages the resources for
  18 * the HVS, while the vc4_crtc.c code actually drives HVS setup for
  19 * each CRTC.
  20 */
  21
  22#include <linux/bitfield.h>
  23#include <linux/clk.h>
  24#include <linux/component.h>
  25#include <linux/platform_device.h>
  26
  27#include <drm/drm_atomic_helper.h>
  28#include <drm/drm_drv.h>
  29#include <drm/drm_vblank.h>
  30
  31#include <soc/bcm2835/raspberrypi-firmware.h>
  32
  33#include "vc4_drv.h"
  34#include "vc4_regs.h"
  35
  36static const struct debugfs_reg32 vc4_hvs_regs[] = {
  37	VC4_REG32(SCALER_DISPCTRL),
  38	VC4_REG32(SCALER_DISPSTAT),
  39	VC4_REG32(SCALER_DISPID),
  40	VC4_REG32(SCALER_DISPECTRL),
  41	VC4_REG32(SCALER_DISPPROF),
  42	VC4_REG32(SCALER_DISPDITHER),
  43	VC4_REG32(SCALER_DISPEOLN),
  44	VC4_REG32(SCALER_DISPLIST0),
  45	VC4_REG32(SCALER_DISPLIST1),
  46	VC4_REG32(SCALER_DISPLIST2),
  47	VC4_REG32(SCALER_DISPLSTAT),
  48	VC4_REG32(SCALER_DISPLACT0),
  49	VC4_REG32(SCALER_DISPLACT1),
  50	VC4_REG32(SCALER_DISPLACT2),
  51	VC4_REG32(SCALER_DISPCTRL0),
  52	VC4_REG32(SCALER_DISPBKGND0),
  53	VC4_REG32(SCALER_DISPSTAT0),
  54	VC4_REG32(SCALER_DISPBASE0),
  55	VC4_REG32(SCALER_DISPCTRL1),
  56	VC4_REG32(SCALER_DISPBKGND1),
  57	VC4_REG32(SCALER_DISPSTAT1),
  58	VC4_REG32(SCALER_DISPBASE1),
  59	VC4_REG32(SCALER_DISPCTRL2),
  60	VC4_REG32(SCALER_DISPBKGND2),
  61	VC4_REG32(SCALER_DISPSTAT2),
  62	VC4_REG32(SCALER_DISPBASE2),
  63	VC4_REG32(SCALER_DISPALPHA2),
  64	VC4_REG32(SCALER_OLEDOFFS),
  65	VC4_REG32(SCALER_OLEDCOEF0),
  66	VC4_REG32(SCALER_OLEDCOEF1),
  67	VC4_REG32(SCALER_OLEDCOEF2),
  68};
  69
  70void vc4_hvs_dump_state(struct vc4_hvs *hvs)
  71{
  72	struct drm_device *drm = &hvs->vc4->base;
  73	struct drm_printer p = drm_info_printer(&hvs->pdev->dev);
  74	int idx, i;
  75
  76	if (!drm_dev_enter(drm, &idx))
  77		return;
  78
  79	drm_print_regset32(&p, &hvs->regset);
  80
  81	DRM_INFO("HVS ctx:\n");
  82	for (i = 0; i < 64; i += 4) {
  83		DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
  84			 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
  85			 readl((u32 __iomem *)hvs->dlist + i + 0),
  86			 readl((u32 __iomem *)hvs->dlist + i + 1),
  87			 readl((u32 __iomem *)hvs->dlist + i + 2),
  88			 readl((u32 __iomem *)hvs->dlist + i + 3));
  89	}
  90
  91	drm_dev_exit(idx);
  92}
  93
  94static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
  95{
  96	struct drm_debugfs_entry *entry = m->private;
  97	struct drm_device *dev = entry->dev;
  98	struct vc4_dev *vc4 = to_vc4_dev(dev);
  99	struct drm_printer p = drm_seq_file_printer(m);
 100
 101	drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
 102
 103	return 0;
 104}
 105
 106static int vc4_hvs_debugfs_dlist(struct seq_file *m, void *data)
 107{
 108	struct drm_debugfs_entry *entry = m->private;
 109	struct drm_device *dev = entry->dev;
 110	struct vc4_dev *vc4 = to_vc4_dev(dev);
 111	struct vc4_hvs *hvs = vc4->hvs;
 112	struct drm_printer p = drm_seq_file_printer(m);
 113	unsigned int dlist_mem_size = hvs->dlist_mem_size;
 114	unsigned int next_entry_start;
 115	unsigned int i, j;
 116	u32 dlist_word, dispstat;
 117
 118	for (i = 0; i < SCALER_CHANNELS_COUNT; i++) {
 119		dispstat = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(i)),
 120					 SCALER_DISPSTATX_MODE);
 121		if (dispstat == SCALER_DISPSTATX_MODE_DISABLED ||
 122		    dispstat == SCALER_DISPSTATX_MODE_EOF) {
 123			drm_printf(&p, "HVS chan %u disabled\n", i);
 124			continue;
 125		}
 126
 127		drm_printf(&p, "HVS chan %u:\n", i);
 128		next_entry_start = 0;
 129
 130		for (j = HVS_READ(SCALER_DISPLISTX(i)); j < dlist_mem_size; j++) {
 131			dlist_word = readl((u32 __iomem *)vc4->hvs->dlist + j);
 132			drm_printf(&p, "dlist: %02d: 0x%08x\n", j,
 133				   dlist_word);
 134			if (!next_entry_start ||
 135			    next_entry_start == j) {
 136				if (dlist_word & SCALER_CTL0_END)
 137					break;
 138				next_entry_start = j +
 139					VC4_GET_FIELD(dlist_word,
 140						      SCALER_CTL0_SIZE);
 141			}
 142		}
 143	}
 144
 145	return 0;
 146}
 147
 148/* The filter kernel is composed of dwords each containing 3 9-bit
 149 * signed integers packed next to each other.
 150 */
 151#define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
 152#define VC4_PPF_FILTER_WORD(c0, c1, c2)				\
 153	((((c0) & 0x1ff) << 0) |				\
 154	 (((c1) & 0x1ff) << 9) |				\
 155	 (((c2) & 0x1ff) << 18))
 156
 157/* The whole filter kernel is arranged as the coefficients 0-16 going
 158 * up, then a pad, then 17-31 going down and reversed within the
 159 * dwords.  This means that a linear phase kernel (where it's
 160 * symmetrical at the boundary between 15 and 16) has the last 5
 161 * dwords matching the first 5, but reversed.
 162 */
 163#define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8,	\
 164				c9, c10, c11, c12, c13, c14, c15)	\
 165	{VC4_PPF_FILTER_WORD(c0, c1, c2),				\
 166	 VC4_PPF_FILTER_WORD(c3, c4, c5),				\
 167	 VC4_PPF_FILTER_WORD(c6, c7, c8),				\
 168	 VC4_PPF_FILTER_WORD(c9, c10, c11),				\
 169	 VC4_PPF_FILTER_WORD(c12, c13, c14),				\
 170	 VC4_PPF_FILTER_WORD(c15, c15, 0)}
 171
 172#define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
 173#define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
 174
 175/* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
 176 * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
 177 */
 178static const u32 mitchell_netravali_1_3_1_3_kernel[] =
 179	VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
 180				50, 82, 119, 155, 187, 213, 227);
 181
 182static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
 183					struct drm_mm_node *space,
 184					const u32 *kernel)
 185{
 186	int ret, i;
 187	u32 __iomem *dst_kernel;
 188
 189	/*
 190	 * NOTE: We don't need a call to drm_dev_enter()/drm_dev_exit()
 191	 * here since that function is only called from vc4_hvs_bind().
 192	 */
 193
 194	ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
 195	if (ret) {
 196		drm_err(&hvs->vc4->base, "Failed to allocate space for filter kernel: %d\n",
 197			ret);
 198		return ret;
 199	}
 200
 201	dst_kernel = hvs->dlist + space->start;
 202
 203	for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
 204		if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
 205			writel(kernel[i], &dst_kernel[i]);
 206		else {
 207			writel(kernel[VC4_KERNEL_DWORDS - i - 1],
 208			       &dst_kernel[i]);
 209		}
 210	}
 211
 212	return 0;
 213}
 214
 215static void vc4_hvs_lut_load(struct vc4_hvs *hvs,
 216			     struct vc4_crtc *vc4_crtc)
 217{
 218	struct drm_device *drm = &hvs->vc4->base;
 219	struct drm_crtc *crtc = &vc4_crtc->base;
 220	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 221	int idx;
 222	u32 i;
 223
 224	if (!drm_dev_enter(drm, &idx))
 225		return;
 226
 227	if (hvs->vc4->gen != VC4_GEN_4)
 228		goto exit;
 229
 230	/* The LUT memory is laid out with each HVS channel in order,
 231	 * each of which takes 256 writes for R, 256 for G, then 256
 232	 * for B.
 233	 */
 234	HVS_WRITE(SCALER_GAMADDR,
 235		  SCALER_GAMADDR_AUTOINC |
 236		  (vc4_state->assigned_channel * 3 * crtc->gamma_size));
 237
 238	for (i = 0; i < crtc->gamma_size; i++)
 239		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
 240	for (i = 0; i < crtc->gamma_size; i++)
 241		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
 242	for (i = 0; i < crtc->gamma_size; i++)
 243		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
 244
 245exit:
 246	drm_dev_exit(idx);
 247}
 248
 249static void vc4_hvs_update_gamma_lut(struct vc4_hvs *hvs,
 250				     struct vc4_crtc *vc4_crtc)
 251{
 252	struct drm_crtc_state *crtc_state = vc4_crtc->base.state;
 253	struct drm_color_lut *lut = crtc_state->gamma_lut->data;
 254	u32 length = drm_color_lut_size(crtc_state->gamma_lut);
 255	u32 i;
 256
 257	for (i = 0; i < length; i++) {
 258		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
 259		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
 260		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
 261	}
 262
 263	vc4_hvs_lut_load(hvs, vc4_crtc);
 264}
 265
 266u8 vc4_hvs_get_fifo_frame_count(struct vc4_hvs *hvs, unsigned int fifo)
 267{
 268	struct drm_device *drm = &hvs->vc4->base;
 269	u8 field = 0;
 270	int idx;
 271
 272	if (!drm_dev_enter(drm, &idx))
 273		return 0;
 274
 275	switch (fifo) {
 276	case 0:
 277		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
 278				      SCALER_DISPSTAT1_FRCNT0);
 279		break;
 280	case 1:
 281		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
 282				      SCALER_DISPSTAT1_FRCNT1);
 283		break;
 284	case 2:
 285		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2),
 286				      SCALER_DISPSTAT2_FRCNT2);
 287		break;
 288	}
 289
 290	drm_dev_exit(idx);
 291	return field;
 292}
 293
 294int vc4_hvs_get_fifo_from_output(struct vc4_hvs *hvs, unsigned int output)
 295{
 296	struct vc4_dev *vc4 = hvs->vc4;
 297	u32 reg;
 298	int ret;
 299
 300	switch (vc4->gen) {
 301	case VC4_GEN_4:
 302		return output;
 303
 304	case VC4_GEN_5:
 305		/*
 306		 * NOTE: We should probably use
 307		 * drm_dev_enter()/drm_dev_exit() here, but this
 308		 * function is only used during the DRM device
 309		 * initialization, so we should be fine.
 310		 */
 311
 312		switch (output) {
 313		case 0:
 314			return 0;
 315
 316		case 1:
 317			return 1;
 318
 319		case 2:
 320			reg = HVS_READ(SCALER_DISPECTRL);
 321			ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
 322			if (ret == 0)
 323				return 2;
 324
 325			return 0;
 326
 327		case 3:
 328			reg = HVS_READ(SCALER_DISPCTRL);
 329			ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
 330			if (ret == 3)
 331				return -EPIPE;
 332
 333			return ret;
 334
 335		case 4:
 336			reg = HVS_READ(SCALER_DISPEOLN);
 337			ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
 338			if (ret == 3)
 339				return -EPIPE;
 340
 341			return ret;
 342
 343		case 5:
 344			reg = HVS_READ(SCALER_DISPDITHER);
 345			ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
 346			if (ret == 3)
 347				return -EPIPE;
 348
 349			return ret;
 350
 351		default:
 352			return -EPIPE;
 353		}
 354
 355	default:
 356		return -EPIPE;
 357	}
 358}
 359
 360static int vc4_hvs_init_channel(struct vc4_hvs *hvs, struct drm_crtc *crtc,
 361				struct drm_display_mode *mode, bool oneshot)
 362{
 363	struct vc4_dev *vc4 = hvs->vc4;
 364	struct drm_device *drm = &vc4->base;
 365	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 366	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
 367	unsigned int chan = vc4_crtc_state->assigned_channel;
 368	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 369	u32 dispbkgndx;
 370	u32 dispctrl;
 371	int idx;
 372
 373	if (!drm_dev_enter(drm, &idx))
 374		return -ENODEV;
 375
 376	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
 377	HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
 378	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
 379
 380	/* Turn on the scaler, which will wait for vstart to start
 381	 * compositing.
 382	 * When feeding the transposer, we should operate in oneshot
 383	 * mode.
 384	 */
 385	dispctrl = SCALER_DISPCTRLX_ENABLE;
 386	dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
 387
 388	if (vc4->gen == VC4_GEN_4) {
 389		dispctrl |= VC4_SET_FIELD(mode->hdisplay,
 390					  SCALER_DISPCTRLX_WIDTH) |
 391			    VC4_SET_FIELD(mode->vdisplay,
 392					  SCALER_DISPCTRLX_HEIGHT) |
 393			    (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
 394		dispbkgndx |= SCALER_DISPBKGND_AUTOHS;
 395	} else {
 396		dispctrl |= VC4_SET_FIELD(mode->hdisplay,
 397					  SCALER5_DISPCTRLX_WIDTH) |
 398			    VC4_SET_FIELD(mode->vdisplay,
 399					  SCALER5_DISPCTRLX_HEIGHT) |
 400			    (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
 401		dispbkgndx &= ~SCALER5_DISPBKGND_BCK2BCK;
 402	}
 403
 404	HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
 405
 406	dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
 407	dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
 408
 409	HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
 410		  ((vc4->gen == VC4_GEN_4) ? SCALER_DISPBKGND_GAMMA : 0) |
 411		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
 412
 413	/* Reload the LUT, since the SRAMs would have been disabled if
 414	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
 415	 */
 416	vc4_hvs_lut_load(hvs, vc4_crtc);
 417
 418	drm_dev_exit(idx);
 419
 420	return 0;
 421}
 422
 423void vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan)
 424{
 425	struct drm_device *drm = &hvs->vc4->base;
 426	int idx;
 427
 428	if (!drm_dev_enter(drm, &idx))
 429		return;
 430
 431	if (!(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE))
 432		goto out;
 433
 434	HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
 435	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
 436
 437	/* Once we leave, the scaler should be disabled and its fifo empty. */
 438	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
 439
 440	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
 441				   SCALER_DISPSTATX_MODE) !=
 442		     SCALER_DISPSTATX_MODE_DISABLED);
 443
 444	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
 445		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
 446		     SCALER_DISPSTATX_EMPTY);
 447
 448out:
 449	drm_dev_exit(idx);
 450}
 451
 452int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
 453{
 454	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
 455	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
 456	struct drm_device *dev = crtc->dev;
 457	struct vc4_dev *vc4 = to_vc4_dev(dev);
 458	struct drm_plane *plane;
 459	unsigned long flags;
 460	const struct drm_plane_state *plane_state;
 461	u32 dlist_count = 0;
 462	int ret;
 463
 464	/* The pixelvalve can only feed one encoder (and encoders are
 465	 * 1:1 with connectors.)
 466	 */
 467	if (hweight32(crtc_state->connector_mask) > 1)
 468		return -EINVAL;
 469
 470	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
 471		u32 plane_dlist_count = vc4_plane_dlist_size(plane_state);
 472
 473		drm_dbg_driver(dev, "[CRTC:%d:%s] Found [PLANE:%d:%s] with DLIST size: %u\n",
 474			       crtc->base.id, crtc->name,
 475			       plane->base.id, plane->name,
 476			       plane_dlist_count);
 477
 478		dlist_count += plane_dlist_count;
 479	}
 480
 481	dlist_count++; /* Account for SCALER_CTL0_END. */
 482
 483	drm_dbg_driver(dev, "[CRTC:%d:%s] Allocating DLIST block with size: %u\n",
 484		       crtc->base.id, crtc->name, dlist_count);
 485	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
 486	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
 487				 dlist_count);
 488	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
 489	if (ret) {
 490		drm_err(dev, "Failed to allocate DLIST entry: %d\n", ret);
 491		return ret;
 492	}
 493
 494	return 0;
 495}
 496
 497static void vc4_hvs_install_dlist(struct drm_crtc *crtc)
 498{
 499	struct drm_device *dev = crtc->dev;
 500	struct vc4_dev *vc4 = to_vc4_dev(dev);
 501	struct vc4_hvs *hvs = vc4->hvs;
 502	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 503	int idx;
 504
 505	if (!drm_dev_enter(dev, &idx))
 506		return;
 507
 508	HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
 509		  vc4_state->mm.start);
 510
 511	drm_dev_exit(idx);
 512}
 513
 514static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
 515{
 516	struct drm_device *dev = crtc->dev;
 517	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 518	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 519	unsigned long flags;
 520
 521	if (crtc->state->event) {
 522		crtc->state->event->pipe = drm_crtc_index(crtc);
 523
 524		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 525
 526		spin_lock_irqsave(&dev->event_lock, flags);
 527
 528		if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) {
 529			vc4_crtc->event = crtc->state->event;
 530			crtc->state->event = NULL;
 531		}
 532
 533		spin_unlock_irqrestore(&dev->event_lock, flags);
 534	}
 535
 536	spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
 537	vc4_crtc->current_dlist = vc4_state->mm.start;
 538	spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
 539}
 540
 541void vc4_hvs_atomic_begin(struct drm_crtc *crtc,
 542			  struct drm_atomic_state *state)
 543{
 544	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 545	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 546	unsigned long flags;
 547
 548	spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
 549	vc4_crtc->current_hvs_channel = vc4_state->assigned_channel;
 550	spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
 551}
 552
 553void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
 554			   struct drm_atomic_state *state)
 555{
 556	struct drm_device *dev = crtc->dev;
 557	struct vc4_dev *vc4 = to_vc4_dev(dev);
 558	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
 559	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 560	bool oneshot = vc4_crtc->feeds_txp;
 561
 562	vc4_hvs_install_dlist(crtc);
 563	vc4_hvs_update_dlist(crtc);
 564	vc4_hvs_init_channel(vc4->hvs, crtc, mode, oneshot);
 565}
 566
 567void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
 568			    struct drm_atomic_state *state)
 569{
 570	struct drm_device *dev = crtc->dev;
 571	struct vc4_dev *vc4 = to_vc4_dev(dev);
 572	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc);
 573	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
 574	unsigned int chan = vc4_state->assigned_channel;
 575
 576	vc4_hvs_stop_channel(vc4->hvs, chan);
 577}
 578
 579void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
 580			  struct drm_atomic_state *state)
 581{
 582	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
 583									 crtc);
 584	struct drm_device *dev = crtc->dev;
 585	struct vc4_dev *vc4 = to_vc4_dev(dev);
 586	struct vc4_hvs *hvs = vc4->hvs;
 587	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 588	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 589	unsigned int channel = vc4_state->assigned_channel;
 590	struct drm_plane *plane;
 591	struct vc4_plane_state *vc4_plane_state;
 592	bool debug_dump_regs = false;
 593	bool enable_bg_fill = false;
 594	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
 595	u32 __iomem *dlist_next = dlist_start;
 596	unsigned int zpos = 0;
 597	bool found = false;
 598	int idx;
 599
 600	if (!drm_dev_enter(dev, &idx)) {
 601		vc4_crtc_send_vblank(crtc);
 602		return;
 603	}
 604
 605	if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
 606		goto exit;
 607
 608	if (debug_dump_regs) {
 609		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
 610		vc4_hvs_dump_state(hvs);
 611	}
 612
 613	/* Copy all the active planes' dlist contents to the hardware dlist. */
 614	do {
 615		found = false;
 616
 617		drm_atomic_crtc_for_each_plane(plane, crtc) {
 618			if (plane->state->normalized_zpos != zpos)
 619				continue;
 620
 621			/* Is this the first active plane? */
 622			if (dlist_next == dlist_start) {
 623				/* We need to enable background fill when a plane
 624				 * could be alpha blending from the background, i.e.
 625				 * where no other plane is underneath. It suffices to
 626				 * consider the first active plane here since we set
 627				 * needs_bg_fill such that either the first plane
 628				 * already needs it or all planes on top blend from
 629				 * the first or a lower plane.
 630				 */
 631				vc4_plane_state = to_vc4_plane_state(plane->state);
 632				enable_bg_fill = vc4_plane_state->needs_bg_fill;
 633			}
 634
 635			dlist_next += vc4_plane_write_dlist(plane, dlist_next);
 636
 637			found = true;
 638		}
 639
 640		zpos++;
 641	} while (found);
 642
 643	writel(SCALER_CTL0_END, dlist_next);
 644	dlist_next++;
 645
 646	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
 647
 648	if (enable_bg_fill)
 649		/* This sets a black background color fill, as is the case
 650		 * with other DRM drivers.
 651		 */
 652		HVS_WRITE(SCALER_DISPBKGNDX(channel),
 653			  HVS_READ(SCALER_DISPBKGNDX(channel)) |
 654			  SCALER_DISPBKGND_FILL);
 655
 656	/* Only update DISPLIST if the CRTC was already running and is not
 657	 * being disabled.
 658	 * vc4_crtc_enable() takes care of updating the dlist just after
 659	 * re-enabling VBLANK interrupts and before enabling the engine.
 660	 * If the CRTC is being disabled, there's no point in updating this
 661	 * information.
 662	 */
 663	if (crtc->state->active && old_state->active) {
 664		vc4_hvs_install_dlist(crtc);
 665		vc4_hvs_update_dlist(crtc);
 666	}
 667
 668	if (crtc->state->color_mgmt_changed) {
 669		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(channel));
 670
 671		if (crtc->state->gamma_lut) {
 672			vc4_hvs_update_gamma_lut(hvs, vc4_crtc);
 673			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
 674		} else {
 675			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
 676			 * in hardware, which is the same as a linear lut that
 677			 * DRM expects us to use in absence of a user lut.
 678			 */
 679			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
 680		}
 681		HVS_WRITE(SCALER_DISPBKGNDX(channel), dispbkgndx);
 682	}
 683
 684	if (debug_dump_regs) {
 685		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
 686		vc4_hvs_dump_state(hvs);
 687	}
 688
 689exit:
 690	drm_dev_exit(idx);
 691}
 692
 693void vc4_hvs_mask_underrun(struct vc4_hvs *hvs, int channel)
 694{
 695	struct vc4_dev *vc4 = hvs->vc4;
 696	struct drm_device *drm = &vc4->base;
 697	u32 dispctrl;
 698	int idx;
 699
 700	if (!drm_dev_enter(drm, &idx))
 701		return;
 702
 703	dispctrl = HVS_READ(SCALER_DISPCTRL);
 704	dispctrl &= ~((vc4->gen == VC4_GEN_5) ?
 705		      SCALER5_DISPCTRL_DSPEISLUR(channel) :
 706		      SCALER_DISPCTRL_DSPEISLUR(channel));
 707
 708	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
 709
 710	drm_dev_exit(idx);
 711}
 712
 713void vc4_hvs_unmask_underrun(struct vc4_hvs *hvs, int channel)
 714{
 715	struct vc4_dev *vc4 = hvs->vc4;
 716	struct drm_device *drm = &vc4->base;
 717	u32 dispctrl;
 718	int idx;
 719
 720	if (!drm_dev_enter(drm, &idx))
 721		return;
 722
 723	dispctrl = HVS_READ(SCALER_DISPCTRL);
 724	dispctrl |= ((vc4->gen == VC4_GEN_5) ?
 725		     SCALER5_DISPCTRL_DSPEISLUR(channel) :
 726		     SCALER_DISPCTRL_DSPEISLUR(channel));
 727
 728	HVS_WRITE(SCALER_DISPSTAT,
 729		  SCALER_DISPSTAT_EUFLOW(channel));
 730	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
 731
 732	drm_dev_exit(idx);
 733}
 734
 735static void vc4_hvs_report_underrun(struct drm_device *dev)
 736{
 737	struct vc4_dev *vc4 = to_vc4_dev(dev);
 738
 739	atomic_inc(&vc4->underrun);
 740	DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
 741}
 742
 743static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
 744{
 745	struct drm_device *dev = data;
 746	struct vc4_dev *vc4 = to_vc4_dev(dev);
 747	struct vc4_hvs *hvs = vc4->hvs;
 748	irqreturn_t irqret = IRQ_NONE;
 749	int channel;
 750	u32 control;
 751	u32 status;
 752	u32 dspeislur;
 753
 754	/*
 755	 * NOTE: We don't need to protect the register access using
 756	 * drm_dev_enter() there because the interrupt handler lifetime
 757	 * is tied to the device itself, and not to the DRM device.
 758	 *
 759	 * So when the device will be gone, one of the first thing we
 760	 * will be doing will be to unregister the interrupt handler,
 761	 * and then unregister the DRM device. drm_dev_enter() would
 762	 * thus always succeed if we are here.
 763	 */
 764
 765	status = HVS_READ(SCALER_DISPSTAT);
 766	control = HVS_READ(SCALER_DISPCTRL);
 767
 768	for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
 769		dspeislur = (vc4->gen == VC4_GEN_5) ?
 770			SCALER5_DISPCTRL_DSPEISLUR(channel) :
 771			SCALER_DISPCTRL_DSPEISLUR(channel);
 772
 773		/* Interrupt masking is not always honored, so check it here. */
 774		if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
 775		    control & dspeislur) {
 776			vc4_hvs_mask_underrun(hvs, channel);
 777			vc4_hvs_report_underrun(dev);
 778
 779			irqret = IRQ_HANDLED;
 780		}
 781	}
 782
 783	/* Clear every per-channel interrupt flag. */
 784	HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
 785				   SCALER_DISPSTAT_IRQMASK(1) |
 786				   SCALER_DISPSTAT_IRQMASK(2));
 787
 788	return irqret;
 789}
 790
 791int vc4_hvs_debugfs_init(struct drm_minor *minor)
 792{
 793	struct drm_device *drm = minor->dev;
 794	struct vc4_dev *vc4 = to_vc4_dev(drm);
 795	struct vc4_hvs *hvs = vc4->hvs;
 796
 797	if (!vc4->hvs)
 798		return -ENODEV;
 799
 800	if (vc4->gen == VC4_GEN_4)
 801		debugfs_create_bool("hvs_load_tracker", S_IRUGO | S_IWUSR,
 802				    minor->debugfs_root,
 803				    &vc4->load_tracker_enabled);
 804
 805	drm_debugfs_add_file(drm, "hvs_dlists", vc4_hvs_debugfs_dlist, NULL);
 806
 807	drm_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun, NULL);
 808
 809	vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
 810
 811	return 0;
 812}
 813
 814struct vc4_hvs *__vc4_hvs_alloc(struct vc4_dev *vc4,
 815				void __iomem *regs,
 816				struct platform_device *pdev)
 817{
 818	struct drm_device *drm = &vc4->base;
 819	struct vc4_hvs *hvs;
 820
 821	hvs = drmm_kzalloc(drm, sizeof(*hvs), GFP_KERNEL);
 822	if (!hvs)
 823		return ERR_PTR(-ENOMEM);
 824
 825	hvs->vc4 = vc4;
 826	hvs->regs = regs;
 827	hvs->pdev = pdev;
 828
 829	spin_lock_init(&hvs->mm_lock);
 830
 831	/* Set up the HVS display list memory manager.  We never
 832	 * overwrite the setup from the bootloader (just 128b out of
 833	 * our 16K), since we don't want to scramble the screen when
 834	 * transitioning from the firmware's boot setup to runtime.
 835	 */
 836	hvs->dlist_mem_size = (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END;
 837	drm_mm_init(&hvs->dlist_mm,
 838		    HVS_BOOTLOADER_DLIST_END,
 839		    hvs->dlist_mem_size);
 840
 841	/* Set up the HVS LBM memory manager.  We could have some more
 842	 * complicated data structure that allowed reuse of LBM areas
 843	 * between planes when they don't overlap on the screen, but
 844	 * for now we just allocate globally.
 845	 */
 846	if (vc4->gen == VC4_GEN_4)
 847		/* 48k words of 2x12-bit pixels */
 848		drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024);
 849	else
 850		/* 60k words of 4x12-bit pixels */
 851		drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024);
 852
 853	vc4->hvs = hvs;
 854
 855	return hvs;
 856}
 857
 858static int vc4_hvs_hw_init(struct vc4_hvs *hvs)
 859{
 860	struct vc4_dev *vc4 = hvs->vc4;
 861	u32 dispctrl, reg;
 862
 863	dispctrl = HVS_READ(SCALER_DISPCTRL);
 864	dispctrl |= SCALER_DISPCTRL_ENABLE;
 865	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
 866
 867	reg = HVS_READ(SCALER_DISPECTRL);
 868	reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK;
 869	HVS_WRITE(SCALER_DISPECTRL,
 870		  reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX));
 871
 872	reg = HVS_READ(SCALER_DISPCTRL);
 873	reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
 874	HVS_WRITE(SCALER_DISPCTRL,
 875		  reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX));
 876
 877	reg = HVS_READ(SCALER_DISPEOLN);
 878	reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK;
 879	HVS_WRITE(SCALER_DISPEOLN,
 880		  reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX));
 881
 882	reg = HVS_READ(SCALER_DISPDITHER);
 883	reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK;
 884	HVS_WRITE(SCALER_DISPDITHER,
 885		  reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX));
 886
 887	dispctrl = HVS_READ(SCALER_DISPCTRL);
 888	dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
 889		    SCALER_DISPCTRL_DISPEIRQ(1) |
 890		    SCALER_DISPCTRL_DISPEIRQ(2);
 891
 892	if (vc4->gen == VC4_GEN_4)
 893		dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
 894			      SCALER_DISPCTRL_SLVWREIRQ |
 895			      SCALER_DISPCTRL_SLVRDEIRQ |
 896			      SCALER_DISPCTRL_DSPEIEOF(0) |
 897			      SCALER_DISPCTRL_DSPEIEOF(1) |
 898			      SCALER_DISPCTRL_DSPEIEOF(2) |
 899			      SCALER_DISPCTRL_DSPEIEOLN(0) |
 900			      SCALER_DISPCTRL_DSPEIEOLN(1) |
 901			      SCALER_DISPCTRL_DSPEIEOLN(2) |
 902			      SCALER_DISPCTRL_DSPEISLUR(0) |
 903			      SCALER_DISPCTRL_DSPEISLUR(1) |
 904			      SCALER_DISPCTRL_DSPEISLUR(2) |
 905			      SCALER_DISPCTRL_SCLEIRQ);
 906	else
 907		dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
 908			      SCALER5_DISPCTRL_SLVEIRQ |
 909			      SCALER5_DISPCTRL_DSPEIEOF(0) |
 910			      SCALER5_DISPCTRL_DSPEIEOF(1) |
 911			      SCALER5_DISPCTRL_DSPEIEOF(2) |
 912			      SCALER5_DISPCTRL_DSPEIEOLN(0) |
 913			      SCALER5_DISPCTRL_DSPEIEOLN(1) |
 914			      SCALER5_DISPCTRL_DSPEIEOLN(2) |
 915			      SCALER5_DISPCTRL_DSPEISLUR(0) |
 916			      SCALER5_DISPCTRL_DSPEISLUR(1) |
 917			      SCALER5_DISPCTRL_DSPEISLUR(2) |
 918			      SCALER_DISPCTRL_SCLEIRQ);
 919
 920
 921	/* Set AXI panic mode.
 922	 * VC4 panics when < 2 lines in FIFO.
 923	 * VC5 panics when less than 1 line in the FIFO.
 924	 */
 925	dispctrl &= ~(SCALER_DISPCTRL_PANIC0_MASK |
 926		      SCALER_DISPCTRL_PANIC1_MASK |
 927		      SCALER_DISPCTRL_PANIC2_MASK);
 928	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC0);
 929	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC1);
 930	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC2);
 931
 932	/* Set AXI panic mode.
 933	 * VC4 panics when < 2 lines in FIFO.
 934	 * VC5 panics when less than 1 line in the FIFO.
 935	 */
 936	dispctrl &= ~(SCALER_DISPCTRL_PANIC0_MASK |
 937		      SCALER_DISPCTRL_PANIC1_MASK |
 938		      SCALER_DISPCTRL_PANIC2_MASK);
 939	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC0);
 940	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC1);
 941	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC2);
 942
 943	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
 944
 945	return 0;
 946}
 947
 948static int vc4_hvs_cob_init(struct vc4_hvs *hvs)
 949{
 950	struct vc4_dev *vc4 = hvs->vc4;
 951	u32 reg, top;
 952
 953	/*
 954	 * Recompute Composite Output Buffer (COB) allocations for the
 955	 * displays
 956	 */
 957	switch (vc4->gen) {
 958	case VC4_GEN_4:
 959		/* The COB is 20736 pixels, or just over 10 lines at 2048 wide.
 960		 * The bottom 2048 pixels are full 32bpp RGBA (intended for the
 961		 * TXP composing RGBA to memory), whilst the remainder are only
 962		 * 24bpp RGB.
 963		 *
 964		 * Assign 3 lines to channels 1 & 2, and just over 4 lines to
 965		 * channel 0.
 966		 */
 967		#define VC4_COB_SIZE		20736
 968		#define VC4_COB_LINE_WIDTH	2048
 969		#define VC4_COB_NUM_LINES	3
 970		reg = 0;
 971		top = VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES;
 972		reg |= (top - 1) << 16;
 973		HVS_WRITE(SCALER_DISPBASE2, reg);
 974		reg = top;
 975		top += VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES;
 976		reg |= (top - 1) << 16;
 977		HVS_WRITE(SCALER_DISPBASE1, reg);
 978		reg = top;
 979		top = VC4_COB_SIZE;
 980		reg |= (top - 1) << 16;
 981		HVS_WRITE(SCALER_DISPBASE0, reg);
 982		break;
 983
 984	case VC4_GEN_5:
 985		/* The COB is 44416 pixels, or 10.8 lines at 4096 wide.
 986		 * The bottom 4096 pixels are full RGBA (intended for the TXP
 987		 * composing RGBA to memory), whilst the remainder are only
 988		 * RGB. Addressing is always pixel wide.
 989		 *
 990		 * Assign 3 lines of 4096 to channels 1 & 2, and just over 4
 991		 * lines. to channel 0.
 992		 */
 993		#define VC5_COB_SIZE		44416
 994		#define VC5_COB_LINE_WIDTH	4096
 995		#define VC5_COB_NUM_LINES	3
 996		reg = 0;
 997		top = VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES;
 998		reg |= top << 16;
 999		HVS_WRITE(SCALER_DISPBASE2, reg);
1000		top += 16;
1001		reg = top;
1002		top += VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES;
1003		reg |= top << 16;
1004		HVS_WRITE(SCALER_DISPBASE1, reg);
1005		top += 16;
1006		reg = top;
1007		top = VC5_COB_SIZE;
1008		reg |= top << 16;
1009		HVS_WRITE(SCALER_DISPBASE0, reg);
1010		break;
1011
1012	default:
1013		return -EINVAL;
1014	}
1015
1016	return 0;
1017}
1018
1019static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
1020{
1021	struct platform_device *pdev = to_platform_device(dev);
1022	struct drm_device *drm = dev_get_drvdata(master);
1023	struct vc4_dev *vc4 = to_vc4_dev(drm);
1024	struct vc4_hvs *hvs = NULL;
1025	void __iomem *regs;
1026	int ret;
1027
1028	regs = vc4_ioremap_regs(pdev, 0);
1029	if (IS_ERR(regs))
1030		return PTR_ERR(regs);
1031
1032	hvs = __vc4_hvs_alloc(vc4, regs, pdev);
1033	if (IS_ERR(hvs))
1034		return PTR_ERR(hvs);
1035
1036	hvs->regset.base = hvs->regs;
1037	hvs->regset.regs = vc4_hvs_regs;
1038	hvs->regset.nregs = ARRAY_SIZE(vc4_hvs_regs);
1039
1040	if (vc4->gen == VC4_GEN_5) {
1041		struct rpi_firmware *firmware;
1042		struct device_node *node;
1043		unsigned int max_rate;
1044
1045		node = rpi_firmware_find_node();
1046		if (!node)
1047			return -EINVAL;
1048
1049		firmware = rpi_firmware_get(node);
1050		of_node_put(node);
1051		if (!firmware)
1052			return -EPROBE_DEFER;
1053
1054		hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
1055		if (IS_ERR(hvs->core_clk)) {
1056			dev_err(&pdev->dev, "Couldn't get core clock\n");
1057			return PTR_ERR(hvs->core_clk);
1058		}
1059
1060		max_rate = rpi_firmware_clk_get_max_rate(firmware,
1061							 RPI_FIRMWARE_CORE_CLK_ID);
1062		rpi_firmware_put(firmware);
1063		if (max_rate >= 550000000)
1064			hvs->vc5_hdmi_enable_hdmi_20 = true;
1065
1066		if (max_rate >= 600000000)
1067			hvs->vc5_hdmi_enable_4096by2160 = true;
1068
1069		hvs->max_core_rate = max_rate;
1070
1071		ret = clk_prepare_enable(hvs->core_clk);
1072		if (ret) {
1073			dev_err(&pdev->dev, "Couldn't enable the core clock\n");
1074			return ret;
1075		}
1076	}
1077
1078	if (vc4->gen == VC4_GEN_4)
1079		hvs->dlist = hvs->regs + SCALER_DLIST_START;
1080	else
1081		hvs->dlist = hvs->regs + SCALER5_DLIST_START;
1082
1083	ret = vc4_hvs_hw_init(hvs);
1084	if (ret)
1085		return ret;
1086
1087	/* Upload filter kernels.  We only have the one for now, so we
1088	 * keep it around for the lifetime of the driver.
1089	 */
1090	ret = vc4_hvs_upload_linear_kernel(hvs,
1091					   &hvs->mitchell_netravali_filter,
1092					   mitchell_netravali_1_3_1_3_kernel);
1093	if (ret)
1094		return ret;
1095
1096	ret = vc4_hvs_cob_init(hvs);
1097	if (ret)
1098		return ret;
1099
1100	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1101			       vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
1102	if (ret)
1103		return ret;
1104
1105	return 0;
1106}
1107
1108static void vc4_hvs_unbind(struct device *dev, struct device *master,
1109			   void *data)
1110{
1111	struct drm_device *drm = dev_get_drvdata(master);
1112	struct vc4_dev *vc4 = to_vc4_dev(drm);
1113	struct vc4_hvs *hvs = vc4->hvs;
1114	struct drm_mm_node *node, *next;
1115
1116	if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
1117		drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
1118
1119	drm_mm_for_each_node_safe(node, next, &vc4->hvs->dlist_mm)
1120		drm_mm_remove_node(node);
1121
1122	drm_mm_takedown(&vc4->hvs->dlist_mm);
1123
1124	drm_mm_for_each_node_safe(node, next, &vc4->hvs->lbm_mm)
1125		drm_mm_remove_node(node);
1126	drm_mm_takedown(&vc4->hvs->lbm_mm);
1127
1128	clk_disable_unprepare(hvs->core_clk);
1129
1130	vc4->hvs = NULL;
1131}
1132
1133static const struct component_ops vc4_hvs_ops = {
1134	.bind   = vc4_hvs_bind,
1135	.unbind = vc4_hvs_unbind,
1136};
1137
1138static int vc4_hvs_dev_probe(struct platform_device *pdev)
1139{
1140	return component_add(&pdev->dev, &vc4_hvs_ops);
1141}
1142
1143static void vc4_hvs_dev_remove(struct platform_device *pdev)
1144{
1145	component_del(&pdev->dev, &vc4_hvs_ops);
1146}
1147
1148static const struct of_device_id vc4_hvs_dt_match[] = {
1149	{ .compatible = "brcm,bcm2711-hvs" },
1150	{ .compatible = "brcm,bcm2835-hvs" },
1151	{}
1152};
1153
1154struct platform_driver vc4_hvs_driver = {
1155	.probe = vc4_hvs_dev_probe,
1156	.remove = vc4_hvs_dev_remove,
1157	.driver = {
1158		.name = "vc4_hvs",
1159		.of_match_table = vc4_hvs_dt_match,
1160	},
1161};