Linux Audio

Check our new training course

Loading...
v3.1
 
  1#include <linux/types.h>
  2#include <linux/string.h>
  3#include <linux/init.h>
  4#include <linux/module.h>
  5#include <linux/ctype.h>
  6#include <linux/dmi.h>
  7#include <linux/efi.h>
  8#include <linux/bootmem.h>
 
  9#include <asm/dmi.h>
 
 
 
 
 
 
 
 
 10
 11/*
 12 * DMI stands for "Desktop Management Interface".  It is part
 13 * of and an antecedent to, SMBIOS, which stands for System
 14 * Management BIOS.  See further: http://www.dmtf.org/standards
 15 */
 16static char dmi_empty_string[] = "        ";
 17
 18/*
 19 * Catch too early calls to dmi_check_system():
 20 */
 21static int dmi_initialized;
 
 
 
 
 
 
 
 
 
 
 
 
 
 22
 23static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
 24{
 25	const u8 *bp = ((u8 *) dm) + dm->length;
 
 26
 27	if (s) {
 28		s--;
 29		while (s > 0 && *bp) {
 30			bp += strlen(bp) + 1;
 31			s--;
 32		}
 33
 34		if (*bp != 0) {
 35			size_t len = strlen(bp)+1;
 36			size_t cmp_len = len > 8 ? 8 : len;
 37
 38			if (!memcmp(bp, dmi_empty_string, cmp_len))
 39				return dmi_empty_string;
 
 
 
 40			return bp;
 41		}
 42	}
 43
 44	return "";
 45}
 46
 47static char * __init dmi_string(const struct dmi_header *dm, u8 s)
 48{
 49	const char *bp = dmi_string_nosave(dm, s);
 50	char *str;
 51	size_t len;
 52
 53	if (bp == dmi_empty_string)
 54		return dmi_empty_string;
 55
 56	len = strlen(bp) + 1;
 57	str = dmi_alloc(len);
 58	if (str != NULL)
 59		strcpy(str, bp);
 60	else
 61		printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
 62
 63	return str;
 64}
 65
 66/*
 67 *	We have to be cautious here. We have seen BIOSes with DMI pointers
 68 *	pointing to completely the wrong place for example
 69 */
 70static void dmi_table(u8 *buf, int len, int num,
 71		      void (*decode)(const struct dmi_header *, void *),
 72		      void *private_data)
 73{
 74	u8 *data = buf;
 75	int i = 0;
 76
 77	/*
 78	 *	Stop when we see all the items the table claimed to have
 79	 *	OR we run off the end of the table (also happens)
 
 
 80	 */
 81	while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
 
 82		const struct dmi_header *dm = (const struct dmi_header *)data;
 83
 84		/*
 85		 *  We want to know the total length (formatted area and
 86		 *  strings) before decoding to make sure we won't run off the
 87		 *  table in dmi_decode or dmi_string
 88		 */
 89		data += dm->length;
 90		while ((data - buf < len - 1) && (data[0] || data[1]))
 91			data++;
 92		if (data - buf < len - 1)
 93			decode(dm, private_data);
 
 94		data += 2;
 95		i++;
 
 
 
 
 
 
 
 
 
 
 
 96	}
 
 
 
 
 97}
 98
 99static u32 dmi_base;
100static u16 dmi_len;
101static u16 dmi_num;
102
103static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
104		void *))
105{
106	u8 *buf;
 
107
108	buf = dmi_ioremap(dmi_base, dmi_len);
109	if (buf == NULL)
110		return -1;
 
 
111
112	dmi_table(buf, dmi_len, dmi_num, decode, NULL);
113
114	dmi_iounmap(buf, dmi_len);
115	return 0;
116}
117
118static int __init dmi_checksum(const u8 *buf)
119{
120	u8 sum = 0;
121	int a;
122
123	for (a = 0; a < 15; a++)
124		sum += buf[a];
125
126	return sum == 0;
127}
128
129static char *dmi_ident[DMI_STRING_MAX];
130static LIST_HEAD(dmi_devices);
131int dmi_available;
 
132
133/*
134 *	Save a DMI string
135 */
136static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
 
137{
138	const char *d = (const char*) dm;
139	char *p;
140
141	if (dmi_ident[slot])
142		return;
143
144	p = dmi_string(dm, d[string]);
145	if (p == NULL)
146		return;
147
148	dmi_ident[slot] = p;
149}
150
151static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
 
152{
153	const u8 *d = (u8*) dm + index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154	char *s;
155	int is_ff = 1, is_00 = 1, i;
156
157	if (dmi_ident[slot])
158		return;
159
 
160	for (i = 0; i < 16 && (is_ff || is_00); i++) {
161		if(d[i] != 0x00) is_ff = 0;
162		if(d[i] != 0xFF) is_00 = 0;
 
 
163	}
164
165	if (is_ff || is_00)
166		return;
167
168	s = dmi_alloc(16*2+4+1);
169	if (!s)
170		return;
171
172	sprintf(s, "%pUB", d);
 
 
 
 
 
 
 
 
173
174        dmi_ident[slot] = s;
175}
176
177static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
 
178{
179	const u8 *d = (u8*) dm + index;
180	char *s;
181
182	if (dmi_ident[slot])
183		return;
184
185	s = dmi_alloc(4);
186	if (!s)
187		return;
188
 
189	sprintf(s, "%u", *d & 0x7F);
190	dmi_ident[slot] = s;
191}
192
193static void __init dmi_save_one_device(int type, const char *name)
194{
195	struct dmi_device *dev;
196
197	/* No duplicate device */
198	if (dmi_find_device(type, name, NULL))
199		return;
200
201	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
202	if (!dev) {
203		printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
204		return;
205	}
206
207	dev->type = type;
208	strcpy((char *)(dev + 1), name);
209	dev->name = (char *)(dev + 1);
210	dev->device_data = NULL;
211	list_add(&dev->list, &dmi_devices);
212}
213
214static void __init dmi_save_devices(const struct dmi_header *dm)
215{
216	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
217
218	for (i = 0; i < count; i++) {
219		const char *d = (char *)(dm + 1) + (i * 2);
220
221		/* Skip disabled device */
222		if ((*d & 0x80) == 0)
223			continue;
224
225		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
226	}
227}
228
229static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
230{
231	int i, count = *(u8 *)(dm + 1);
232	struct dmi_device *dev;
233
 
 
 
 
234	for (i = 1; i <= count; i++) {
235		char *devname = dmi_string(dm, i);
236
237		if (devname == dmi_empty_string)
238			continue;
239
240		dev = dmi_alloc(sizeof(*dev));
241		if (!dev) {
242			printk(KERN_ERR
243			   "dmi_save_oem_strings_devices: out of memory.\n");
244			break;
245		}
246
247		dev->type = DMI_DEV_TYPE_OEM_STRING;
248		dev->name = devname;
249		dev->device_data = NULL;
250
251		list_add(&dev->list, &dmi_devices);
252	}
253}
254
255static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
256{
257	struct dmi_device *dev;
258	void * data;
259
260	data = dmi_alloc(dm->length);
261	if (data == NULL) {
262		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
263		return;
264	}
265
266	memcpy(data, dm, dm->length);
267
268	dev = dmi_alloc(sizeof(*dev));
269	if (!dev) {
270		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
271		return;
272	}
273
274	dev->type = DMI_DEV_TYPE_IPMI;
275	dev->name = "IPMI controller";
276	dev->device_data = data;
277
278	list_add_tail(&dev->list, &dmi_devices);
279}
280
281static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
282					int devfn, const char *name)
283{
284	struct dmi_dev_onboard *onboard_dev;
285
286	onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
287	if (!onboard_dev) {
288		printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n");
289		return;
290	}
291	onboard_dev->instance = instance;
292	onboard_dev->segment = segment;
293	onboard_dev->bus = bus;
294	onboard_dev->devfn = devfn;
295
296	strcpy((char *)&onboard_dev[1], name);
297	onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
298	onboard_dev->dev.name = (char *)&onboard_dev[1];
299	onboard_dev->dev.device_data = onboard_dev;
300
301	list_add(&onboard_dev->dev.list, &dmi_devices);
 
 
 
 
 
 
 
 
 
 
302}
303
304static void __init dmi_save_extended_devices(const struct dmi_header *dm)
305{
306	const u8 *d = (u8*) dm + 5;
 
 
 
 
307
308	/* Skip disabled device */
309	if ((*d & 0x80) == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311
312	dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
313			     dmi_string_nosave(dm, *(d-1)));
314	dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
 
 
 
 
 
 
 
 
315}
316
317/*
318 *	Process a DMI table entry. Right now all we care about are the BIOS
319 *	and machine entries. For 2.5 we should pull the smbus controller info
320 *	out of here.
321 */
322static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
323{
324	switch(dm->type) {
325	case 0:		/* BIOS Information */
326		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
327		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
328		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
 
 
329		break;
330	case 1:		/* System Information */
331		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
332		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
333		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
334		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
335		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
 
 
336		break;
337	case 2:		/* Base Board Information */
338		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
339		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
340		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
341		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
342		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
343		break;
344	case 3:		/* Chassis Information */
345		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
346		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
347		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
348		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
349		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
350		break;
 
 
 
351	case 10:	/* Onboard Devices Information */
352		dmi_save_devices(dm);
353		break;
354	case 11:	/* OEM Strings */
355		dmi_save_oem_strings_devices(dm);
356		break;
357	case 38:	/* IPMI Device Information */
358		dmi_save_ipmi_device(dm);
359		break;
360	case 41:	/* Onboard Devices Extended Information */
361		dmi_save_extended_devices(dm);
362	}
363}
364
365static void __init print_filtered(const char *info)
366{
 
367	const char *p;
368
369	if (!info)
370		return;
371
372	for (p = info; *p; p++)
373		if (isprint(*p))
374			printk(KERN_CONT "%c", *p);
375		else
376			printk(KERN_CONT "\\x%02x", *p & 0xff);
 
377}
378
379static void __init dmi_dump_ids(void)
380{
 
381	const char *board;	/* Board Name is optional */
382
383	printk(KERN_DEBUG "DMI: ");
384	print_filtered(dmi_get_system_info(DMI_SYS_VENDOR));
385	printk(KERN_CONT " ");
386	print_filtered(dmi_get_system_info(DMI_PRODUCT_NAME));
 
 
387	board = dmi_get_system_info(DMI_BOARD_NAME);
388	if (board) {
389		printk(KERN_CONT "/");
390		print_filtered(board);
391	}
392	printk(KERN_CONT ", BIOS ");
393	print_filtered(dmi_get_system_info(DMI_BIOS_VERSION));
394	printk(KERN_CONT " ");
395	print_filtered(dmi_get_system_info(DMI_BIOS_DATE));
396	printk(KERN_CONT "\n");
397}
398
399static int __init dmi_present(const char __iomem *p)
400{
401	u8 buf[15];
402
403	memcpy_fromio(buf, p, 15);
404	if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
405		dmi_num = (buf[13] << 8) | buf[12];
406		dmi_len = (buf[7] << 8) | buf[6];
407		dmi_base = (buf[11] << 24) | (buf[10] << 16) |
408			(buf[9] << 8) | buf[8];
409
410		/*
411		 * DMI version 0.0 means that the real version is taken from
412		 * the SMBIOS version, which we don't know at this point.
413		 */
414		if (buf[14] != 0)
415			printk(KERN_INFO "DMI %d.%d present.\n",
416			       buf[14] >> 4, buf[14] & 0xF);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
417		else
418			printk(KERN_INFO "DMI present.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419		if (dmi_walk_early(dmi_decode) == 0) {
420			dmi_dump_ids();
 
 
 
 
421			return 0;
422		}
423	}
424	return 1;
425}
426
427void __init dmi_scan_machine(void)
428{
429	char __iomem *p, *q;
430	int rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431
432	if (efi_enabled) {
 
 
 
 
433		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
434			goto error;
435
436		/* This is called as a core_initcall() because it isn't
437		 * needed during early boot.  This also means we can
438		 * iounmap the space when we're done with it.
439		 */
440		p = dmi_ioremap(efi.smbios, 32);
441		if (p == NULL)
442			goto error;
 
 
443
444		rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
445		dmi_iounmap(p, 32);
446		if (!rc) {
447			dmi_available = 1;
448			goto out;
449		}
450	}
451	else {
452		/*
453		 * no iounmap() for that ioremap(); it would be a no-op, but
454		 * it's so early in setup that sucker gets confused into doing
455		 * what it shouldn't if we actually call it.
456		 */
457		p = dmi_ioremap(0xF0000, 0x10000);
458		if (p == NULL)
459			goto error;
460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461		for (q = p; q < p + 0x10000; q += 16) {
462			rc = dmi_present(q);
463			if (!rc) {
464				dmi_available = 1;
465				dmi_iounmap(p, 0x10000);
466				goto out;
467			}
 
468		}
469		dmi_iounmap(p, 0x10000);
470	}
471 error:
472	printk(KERN_INFO "DMI not present or invalid.\n");
473 out:
474	dmi_initialized = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
475}
476
477/**
478 *	dmi_matches - check if dmi_system_id structure matches system DMI data
479 *	@dmi: pointer to the dmi_system_id structure to check
480 */
481static bool dmi_matches(const struct dmi_system_id *dmi)
482{
483	int i;
484
485	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
486
487	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
488		int s = dmi->matches[i].slot;
489		if (s == DMI_NONE)
490			break;
491		if (dmi_ident[s]
492		    && strstr(dmi_ident[s], dmi->matches[i].substr))
493			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
494		/* No match */
495		return false;
496	}
497	return true;
498}
499
500/**
501 *	dmi_is_end_of_table - check for end-of-table marker
502 *	@dmi: pointer to the dmi_system_id structure to check
503 */
504static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
505{
506	return dmi->matches[0].slot == DMI_NONE;
507}
508
509/**
510 *	dmi_check_system - check system DMI data
511 *	@list: array of dmi_system_id structures to match against
512 *		All non-null elements of the list must match
513 *		their slot's (field index's) data (i.e., each
514 *		list string must be a substring of the specified
515 *		DMI slot's string data) to be considered a
516 *		successful match.
517 *
518 *	Walk the blacklist table running matching functions until someone
519 *	returns non zero or we hit the end. Callback function is called for
520 *	each successful match. Returns the number of matches.
 
 
521 */
522int dmi_check_system(const struct dmi_system_id *list)
523{
524	int count = 0;
525	const struct dmi_system_id *d;
526
527	for (d = list; !dmi_is_end_of_table(d); d++)
528		if (dmi_matches(d)) {
529			count++;
530			if (d->callback && d->callback(d))
531				break;
532		}
533
534	return count;
535}
536EXPORT_SYMBOL(dmi_check_system);
537
538/**
539 *	dmi_first_match - find dmi_system_id structure matching system DMI data
540 *	@list: array of dmi_system_id structures to match against
541 *		All non-null elements of the list must match
542 *		their slot's (field index's) data (i.e., each
543 *		list string must be a substring of the specified
544 *		DMI slot's string data) to be considered a
545 *		successful match.
546 *
547 *	Walk the blacklist table until the first match is found.  Return the
548 *	pointer to the matching entry or NULL if there's no match.
 
 
549 */
550const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
551{
552	const struct dmi_system_id *d;
553
554	for (d = list; !dmi_is_end_of_table(d); d++)
555		if (dmi_matches(d))
556			return d;
557
558	return NULL;
559}
560EXPORT_SYMBOL(dmi_first_match);
561
562/**
563 *	dmi_get_system_info - return DMI data value
564 *	@field: data index (see enum dmi_field)
565 *
566 *	Returns one DMI data value, can be used to perform
567 *	complex DMI data checks.
568 */
569const char *dmi_get_system_info(int field)
570{
571	return dmi_ident[field];
572}
573EXPORT_SYMBOL(dmi_get_system_info);
574
575/**
576 * dmi_name_in_serial - Check if string is in the DMI product serial information
577 * @str: string to check for
578 */
579int dmi_name_in_serial(const char *str)
580{
581	int f = DMI_PRODUCT_SERIAL;
582	if (dmi_ident[f] && strstr(dmi_ident[f], str))
583		return 1;
584	return 0;
585}
586
587/**
588 *	dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
589 *	@str: 	Case sensitive Name
590 */
591int dmi_name_in_vendors(const char *str)
592{
593	static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
594				DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
595				DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
596	int i;
597	for (i = 0; fields[i] != DMI_NONE; i++) {
598		int f = fields[i];
599		if (dmi_ident[f] && strstr(dmi_ident[f], str))
600			return 1;
601	}
602	return 0;
603}
604EXPORT_SYMBOL(dmi_name_in_vendors);
605
606/**
607 *	dmi_find_device - find onboard device by type/name
608 *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
609 *	@name: device name string or %NULL to match all
610 *	@from: previous device found in search, or %NULL for new search.
611 *
612 *	Iterates through the list of known onboard devices. If a device is
613 *	found with a matching @vendor and @device, a pointer to its device
614 *	structure is returned.  Otherwise, %NULL is returned.
615 *	A new search is initiated by passing %NULL as the @from argument.
616 *	If @from is not %NULL, searches continue from next device.
617 */
618const struct dmi_device * dmi_find_device(int type, const char *name,
619				    const struct dmi_device *from)
620{
621	const struct list_head *head = from ? &from->list : &dmi_devices;
622	struct list_head *d;
623
624	for(d = head->next; d != &dmi_devices; d = d->next) {
625		const struct dmi_device *dev =
626			list_entry(d, struct dmi_device, list);
627
628		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
629		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
630			return dev;
631	}
632
633	return NULL;
634}
635EXPORT_SYMBOL(dmi_find_device);
636
637/**
638 *	dmi_get_date - parse a DMI date
639 *	@field:	data index (see enum dmi_field)
640 *	@yearp: optional out parameter for the year
641 *	@monthp: optional out parameter for the month
642 *	@dayp: optional out parameter for the day
643 *
644 *	The date field is assumed to be in the form resembling
645 *	[mm[/dd]]/yy[yy] and the result is stored in the out
646 *	parameters any or all of which can be omitted.
647 *
648 *	If the field doesn't exist, all out parameters are set to zero
649 *	and false is returned.  Otherwise, true is returned with any
650 *	invalid part of date set to zero.
651 *
652 *	On return, year, month and day are guaranteed to be in the
653 *	range of [0,9999], [0,12] and [0,31] respectively.
654 */
655bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
656{
657	int year = 0, month = 0, day = 0;
658	bool exists;
659	const char *s, *y;
660	char *e;
661
662	s = dmi_get_system_info(field);
663	exists = s;
664	if (!exists)
665		goto out;
666
667	/*
668	 * Determine year first.  We assume the date string resembles
669	 * mm/dd/yy[yy] but the original code extracted only the year
670	 * from the end.  Keep the behavior in the spirit of no
671	 * surprises.
672	 */
673	y = strrchr(s, '/');
674	if (!y)
675		goto out;
676
677	y++;
678	year = simple_strtoul(y, &e, 10);
679	if (y != e && year < 100) {	/* 2-digit year */
680		year += 1900;
681		if (year < 1996)	/* no dates < spec 1.0 */
682			year += 100;
683	}
684	if (year > 9999)		/* year should fit in %04d */
685		year = 0;
686
687	/* parse the mm and dd */
688	month = simple_strtoul(s, &e, 10);
689	if (s == e || *e != '/' || !month || month > 12) {
690		month = 0;
691		goto out;
692	}
693
694	s = e + 1;
695	day = simple_strtoul(s, &e, 10);
696	if (s == y || s == e || *e != '/' || day > 31)
697		day = 0;
698out:
699	if (yearp)
700		*yearp = year;
701	if (monthp)
702		*monthp = month;
703	if (dayp)
704		*dayp = day;
705	return exists;
706}
707EXPORT_SYMBOL(dmi_get_date);
708
709/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
710 *	dmi_walk - Walk the DMI table and get called back for every record
711 *	@decode: Callback function
712 *	@private_data: Private data to be passed to the callback function
713 *
714 *	Returns -1 when the DMI table can't be reached, 0 on success.
 
715 */
716int dmi_walk(void (*decode)(const struct dmi_header *, void *),
717	     void *private_data)
718{
719	u8 *buf;
720
721	if (!dmi_available)
722		return -1;
723
724	buf = ioremap(dmi_base, dmi_len);
725	if (buf == NULL)
726		return -1;
727
728	dmi_table(buf, dmi_len, dmi_num, decode, private_data);
729
730	iounmap(buf);
731	return 0;
732}
733EXPORT_SYMBOL_GPL(dmi_walk);
734
735/**
736 * dmi_match - compare a string to the dmi field (if exists)
737 * @f: DMI field identifier
738 * @str: string to compare the DMI field to
739 *
740 * Returns true if the requested field equals to the str (including NULL).
741 */
742bool dmi_match(enum dmi_field f, const char *str)
743{
744	const char *info = dmi_get_system_info(f);
745
746	if (info == NULL || str == NULL)
747		return info == str;
748
749	return !strcmp(info, str);
750}
751EXPORT_SYMBOL_GPL(dmi_match);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/types.h>
   3#include <linux/string.h>
   4#include <linux/init.h>
   5#include <linux/module.h>
   6#include <linux/ctype.h>
   7#include <linux/dmi.h>
   8#include <linux/efi.h>
   9#include <linux/memblock.h>
  10#include <linux/random.h>
  11#include <asm/dmi.h>
  12#include <asm/unaligned.h>
  13
  14#ifndef SMBIOS_ENTRY_POINT_SCAN_START
  15#define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000
  16#endif
  17
  18struct kobject *dmi_kobj;
  19EXPORT_SYMBOL_GPL(dmi_kobj);
  20
  21/*
  22 * DMI stands for "Desktop Management Interface".  It is part
  23 * of and an antecedent to, SMBIOS, which stands for System
  24 * Management BIOS.  See further: https://www.dmtf.org/standards
  25 */
  26static const char dmi_empty_string[] = "";
  27
  28static u32 dmi_ver __initdata;
  29static u32 dmi_len;
  30static u16 dmi_num;
  31static u8 smbios_entry_point[32];
  32static int smbios_entry_point_size;
  33
  34/* DMI system identification string used during boot */
  35static char dmi_ids_string[128] __initdata;
  36
  37static struct dmi_memdev_info {
  38	const char *device;
  39	const char *bank;
  40	u64 size;		/* bytes */
  41	u16 handle;
  42	u8 type;		/* DDR2, DDR3, DDR4 etc */
  43} *dmi_memdev;
  44static int dmi_memdev_nr;
  45
  46static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
  47{
  48	const u8 *bp = ((u8 *) dm) + dm->length;
  49	const u8 *nsp;
  50
  51	if (s) {
  52		while (--s > 0 && *bp)
 
  53			bp += strlen(bp) + 1;
 
 
 
 
 
 
  54
  55		/* Strings containing only spaces are considered empty */
  56		nsp = bp;
  57		while (*nsp == ' ')
  58			nsp++;
  59		if (*nsp != '\0')
  60			return bp;
 
  61	}
  62
  63	return dmi_empty_string;
  64}
  65
  66static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
  67{
  68	const char *bp = dmi_string_nosave(dm, s);
  69	char *str;
  70	size_t len;
  71
  72	if (bp == dmi_empty_string)
  73		return dmi_empty_string;
  74
  75	len = strlen(bp) + 1;
  76	str = dmi_alloc(len);
  77	if (str != NULL)
  78		strcpy(str, bp);
 
 
  79
  80	return str;
  81}
  82
  83/*
  84 *	We have to be cautious here. We have seen BIOSes with DMI pointers
  85 *	pointing to completely the wrong place for example
  86 */
  87static void dmi_decode_table(u8 *buf,
  88			     void (*decode)(const struct dmi_header *, void *),
  89			     void *private_data)
  90{
  91	u8 *data = buf;
  92	int i = 0;
  93
  94	/*
  95	 * Stop when we have seen all the items the table claimed to have
  96	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
  97	 * >= 3.0 only) OR we run off the end of the table (should never
  98	 * happen but sometimes does on bogus implementations.)
  99	 */
 100	while ((!dmi_num || i < dmi_num) &&
 101	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
 102		const struct dmi_header *dm = (const struct dmi_header *)data;
 103
 104		/*
 105		 *  We want to know the total length (formatted area and
 106		 *  strings) before decoding to make sure we won't run off the
 107		 *  table in dmi_decode or dmi_string
 108		 */
 109		data += dm->length;
 110		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
 111			data++;
 112		if (data - buf < dmi_len - 1)
 113			decode(dm, private_data);
 114
 115		data += 2;
 116		i++;
 117
 118		/*
 119		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
 120		 * For tables behind a 64-bit entry point, we have no item
 121		 * count and no exact table length, so stop on end-of-table
 122		 * marker. For tables behind a 32-bit entry point, we have
 123		 * seen OEM structures behind the end-of-table marker on
 124		 * some systems, so don't trust it.
 125		 */
 126		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
 127			break;
 128	}
 129
 130	/* Trim DMI table length if needed */
 131	if (dmi_len > data - buf)
 132		dmi_len = data - buf;
 133}
 134
 135static phys_addr_t dmi_base;
 
 
 136
 137static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
 138		void *))
 139{
 140	u8 *buf;
 141	u32 orig_dmi_len = dmi_len;
 142
 143	buf = dmi_early_remap(dmi_base, orig_dmi_len);
 144	if (buf == NULL)
 145		return -ENOMEM;
 146
 147	dmi_decode_table(buf, decode, NULL);
 148
 149	add_device_randomness(buf, dmi_len);
 150
 151	dmi_early_unmap(buf, orig_dmi_len);
 152	return 0;
 153}
 154
 155static int __init dmi_checksum(const u8 *buf, u8 len)
 156{
 157	u8 sum = 0;
 158	int a;
 159
 160	for (a = 0; a < len; a++)
 161		sum += buf[a];
 162
 163	return sum == 0;
 164}
 165
 166static const char *dmi_ident[DMI_STRING_MAX];
 167static LIST_HEAD(dmi_devices);
 168int dmi_available;
 169EXPORT_SYMBOL_GPL(dmi_available);
 170
 171/*
 172 *	Save a DMI string
 173 */
 174static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
 175		int string)
 176{
 177	const char *d = (const char *) dm;
 178	const char *p;
 179
 180	if (dmi_ident[slot] || dm->length <= string)
 181		return;
 182
 183	p = dmi_string(dm, d[string]);
 184	if (p == NULL)
 185		return;
 186
 187	dmi_ident[slot] = p;
 188}
 189
 190static void __init dmi_save_release(const struct dmi_header *dm, int slot,
 191		int index)
 192{
 193	const u8 *minor, *major;
 194	char *s;
 195
 196	/* If the table doesn't have the field, let's return */
 197	if (dmi_ident[slot] || dm->length < index)
 198		return;
 199
 200	minor = (u8 *) dm + index;
 201	major = (u8 *) dm + index - 1;
 202
 203	/* As per the spec, if the system doesn't support this field,
 204	 * the value is FF
 205	 */
 206	if (*major == 0xFF && *minor == 0xFF)
 207		return;
 208
 209	s = dmi_alloc(8);
 210	if (!s)
 211		return;
 212
 213	sprintf(s, "%u.%u", *major, *minor);
 214
 215	dmi_ident[slot] = s;
 216}
 217
 218static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
 219		int index)
 220{
 221	const u8 *d;
 222	char *s;
 223	int is_ff = 1, is_00 = 1, i;
 224
 225	if (dmi_ident[slot] || dm->length < index + 16)
 226		return;
 227
 228	d = (u8 *) dm + index;
 229	for (i = 0; i < 16 && (is_ff || is_00); i++) {
 230		if (d[i] != 0x00)
 231			is_00 = 0;
 232		if (d[i] != 0xFF)
 233			is_ff = 0;
 234	}
 235
 236	if (is_ff || is_00)
 237		return;
 238
 239	s = dmi_alloc(16*2+4+1);
 240	if (!s)
 241		return;
 242
 243	/*
 244	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
 245	 * the UUID are supposed to be little-endian encoded.  The specification
 246	 * says that this is the defacto standard.
 247	 */
 248	if (dmi_ver >= 0x020600)
 249		sprintf(s, "%pUl", d);
 250	else
 251		sprintf(s, "%pUb", d);
 252
 253	dmi_ident[slot] = s;
 254}
 255
 256static void __init dmi_save_type(const struct dmi_header *dm, int slot,
 257		int index)
 258{
 259	const u8 *d;
 260	char *s;
 261
 262	if (dmi_ident[slot] || dm->length <= index)
 263		return;
 264
 265	s = dmi_alloc(4);
 266	if (!s)
 267		return;
 268
 269	d = (u8 *) dm + index;
 270	sprintf(s, "%u", *d & 0x7F);
 271	dmi_ident[slot] = s;
 272}
 273
 274static void __init dmi_save_one_device(int type, const char *name)
 275{
 276	struct dmi_device *dev;
 277
 278	/* No duplicate device */
 279	if (dmi_find_device(type, name, NULL))
 280		return;
 281
 282	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
 283	if (!dev)
 
 284		return;
 
 285
 286	dev->type = type;
 287	strcpy((char *)(dev + 1), name);
 288	dev->name = (char *)(dev + 1);
 289	dev->device_data = NULL;
 290	list_add(&dev->list, &dmi_devices);
 291}
 292
 293static void __init dmi_save_devices(const struct dmi_header *dm)
 294{
 295	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
 296
 297	for (i = 0; i < count; i++) {
 298		const char *d = (char *)(dm + 1) + (i * 2);
 299
 300		/* Skip disabled device */
 301		if ((*d & 0x80) == 0)
 302			continue;
 303
 304		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
 305	}
 306}
 307
 308static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
 309{
 310	int i, count;
 311	struct dmi_device *dev;
 312
 313	if (dm->length < 0x05)
 314		return;
 315
 316	count = *(u8 *)(dm + 1);
 317	for (i = 1; i <= count; i++) {
 318		const char *devname = dmi_string(dm, i);
 319
 320		if (devname == dmi_empty_string)
 321			continue;
 322
 323		dev = dmi_alloc(sizeof(*dev));
 324		if (!dev)
 
 
 325			break;
 
 326
 327		dev->type = DMI_DEV_TYPE_OEM_STRING;
 328		dev->name = devname;
 329		dev->device_data = NULL;
 330
 331		list_add(&dev->list, &dmi_devices);
 332	}
 333}
 334
 335static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
 336{
 337	struct dmi_device *dev;
 338	void *data;
 339
 340	data = dmi_alloc(dm->length);
 341	if (data == NULL)
 
 342		return;
 
 343
 344	memcpy(data, dm, dm->length);
 345
 346	dev = dmi_alloc(sizeof(*dev));
 347	if (!dev)
 
 348		return;
 
 349
 350	dev->type = DMI_DEV_TYPE_IPMI;
 351	dev->name = "IPMI controller";
 352	dev->device_data = data;
 353
 354	list_add_tail(&dev->list, &dmi_devices);
 355}
 356
 357static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
 358					int devfn, const char *name, int type)
 359{
 360	struct dmi_dev_onboard *dev;
 361
 362	/* Ignore invalid values */
 363	if (type == DMI_DEV_TYPE_DEV_SLOT &&
 364	    segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
 365		return;
 
 
 
 
 
 366
 367	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
 368	if (!dev)
 369		return;
 
 370
 371	dev->instance = instance;
 372	dev->segment = segment;
 373	dev->bus = bus;
 374	dev->devfn = devfn;
 375
 376	strcpy((char *)&dev[1], name);
 377	dev->dev.type = type;
 378	dev->dev.name = (char *)&dev[1];
 379	dev->dev.device_data = dev;
 380
 381	list_add(&dev->dev.list, &dmi_devices);
 382}
 383
 384static void __init dmi_save_extended_devices(const struct dmi_header *dm)
 385{
 386	const char *name;
 387	const u8 *d = (u8 *)dm;
 388
 389	if (dm->length < 0x0B)
 390		return;
 391
 392	/* Skip disabled device */
 393	if ((d[0x5] & 0x80) == 0)
 394		return;
 395
 396	name = dmi_string_nosave(dm, d[0x4]);
 397	dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
 398			     DMI_DEV_TYPE_DEV_ONBOARD);
 399	dmi_save_one_device(d[0x5] & 0x7f, name);
 400}
 401
 402static void __init dmi_save_system_slot(const struct dmi_header *dm)
 403{
 404	const u8 *d = (u8 *)dm;
 405
 406	/* Need SMBIOS 2.6+ structure */
 407	if (dm->length < 0x11)
 408		return;
 409	dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
 410			     d[0x10], dmi_string_nosave(dm, d[0x4]),
 411			     DMI_DEV_TYPE_DEV_SLOT);
 412}
 413
 414static void __init count_mem_devices(const struct dmi_header *dm, void *v)
 415{
 416	if (dm->type != DMI_ENTRY_MEM_DEVICE)
 417		return;
 418	dmi_memdev_nr++;
 419}
 420
 421static void __init save_mem_devices(const struct dmi_header *dm, void *v)
 422{
 423	const char *d = (const char *)dm;
 424	static int nr;
 425	u64 bytes;
 426	u16 size;
 427
 428	if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13)
 429		return;
 430	if (nr >= dmi_memdev_nr) {
 431		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
 432		return;
 433	}
 434	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
 435	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
 436	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
 437	dmi_memdev[nr].type = d[0x12];
 438
 439	size = get_unaligned((u16 *)&d[0xC]);
 440	if (size == 0)
 441		bytes = 0;
 442	else if (size == 0xffff)
 443		bytes = ~0ull;
 444	else if (size & 0x8000)
 445		bytes = (u64)(size & 0x7fff) << 10;
 446	else if (size != 0x7fff || dm->length < 0x20)
 447		bytes = (u64)size << 20;
 448	else
 449		bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
 450
 451	dmi_memdev[nr].size = bytes;
 452	nr++;
 453}
 454
 455static void __init dmi_memdev_walk(void)
 456{
 457	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
 458		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
 459		if (dmi_memdev)
 460			dmi_walk_early(save_mem_devices);
 461	}
 462}
 463
 464/*
 465 *	Process a DMI table entry. Right now all we care about are the BIOS
 466 *	and machine entries. For 2.5 we should pull the smbus controller info
 467 *	out of here.
 468 */
 469static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
 470{
 471	switch (dm->type) {
 472	case 0:		/* BIOS Information */
 473		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
 474		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
 475		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
 476		dmi_save_release(dm, DMI_BIOS_RELEASE, 21);
 477		dmi_save_release(dm, DMI_EC_FIRMWARE_RELEASE, 23);
 478		break;
 479	case 1:		/* System Information */
 480		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
 481		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
 482		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
 483		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
 484		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
 485		dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
 486		dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
 487		break;
 488	case 2:		/* Base Board Information */
 489		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
 490		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
 491		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
 492		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
 493		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
 494		break;
 495	case 3:		/* Chassis Information */
 496		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
 497		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
 498		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
 499		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
 500		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
 501		break;
 502	case 9:		/* System Slots */
 503		dmi_save_system_slot(dm);
 504		break;
 505	case 10:	/* Onboard Devices Information */
 506		dmi_save_devices(dm);
 507		break;
 508	case 11:	/* OEM Strings */
 509		dmi_save_oem_strings_devices(dm);
 510		break;
 511	case 38:	/* IPMI Device Information */
 512		dmi_save_ipmi_device(dm);
 513		break;
 514	case 41:	/* Onboard Devices Extended Information */
 515		dmi_save_extended_devices(dm);
 516	}
 517}
 518
 519static int __init print_filtered(char *buf, size_t len, const char *info)
 520{
 521	int c = 0;
 522	const char *p;
 523
 524	if (!info)
 525		return c;
 526
 527	for (p = info; *p; p++)
 528		if (isprint(*p))
 529			c += scnprintf(buf + c, len - c, "%c", *p);
 530		else
 531			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
 532	return c;
 533}
 534
 535static void __init dmi_format_ids(char *buf, size_t len)
 536{
 537	int c = 0;
 538	const char *board;	/* Board Name is optional */
 539
 540	c += print_filtered(buf + c, len - c,
 541			    dmi_get_system_info(DMI_SYS_VENDOR));
 542	c += scnprintf(buf + c, len - c, " ");
 543	c += print_filtered(buf + c, len - c,
 544			    dmi_get_system_info(DMI_PRODUCT_NAME));
 545
 546	board = dmi_get_system_info(DMI_BOARD_NAME);
 547	if (board) {
 548		c += scnprintf(buf + c, len - c, "/");
 549		c += print_filtered(buf + c, len - c, board);
 550	}
 551	c += scnprintf(buf + c, len - c, ", BIOS ");
 552	c += print_filtered(buf + c, len - c,
 553			    dmi_get_system_info(DMI_BIOS_VERSION));
 554	c += scnprintf(buf + c, len - c, " ");
 555	c += print_filtered(buf + c, len - c,
 556			    dmi_get_system_info(DMI_BIOS_DATE));
 557}
 
 
 
 
 
 
 
 
 
 
 558
 559/*
 560 * Check for DMI/SMBIOS headers in the system firmware image.  Any
 561 * SMBIOS header must start 16 bytes before the DMI header, so take a
 562 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
 563 * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
 564 * takes precedence) and return 0.  Otherwise return 1.
 565 */
 566static int __init dmi_present(const u8 *buf)
 567{
 568	u32 smbios_ver;
 569
 570	/*
 571	 * The size of this structure is 31 bytes, but we also accept value
 572	 * 30 due to a mistake in SMBIOS specification version 2.1.
 573	 */
 574	if (memcmp(buf, "_SM_", 4) == 0 &&
 575	    buf[5] >= 30 && buf[5] <= 32 &&
 576	    dmi_checksum(buf, buf[5])) {
 577		smbios_ver = get_unaligned_be16(buf + 6);
 578		smbios_entry_point_size = buf[5];
 579		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
 580
 581		/* Some BIOS report weird SMBIOS version, fix that up */
 582		switch (smbios_ver) {
 583		case 0x021F:
 584		case 0x0221:
 585			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
 586				 smbios_ver & 0xFF, 3);
 587			smbios_ver = 0x0203;
 588			break;
 589		case 0x0233:
 590			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
 591			smbios_ver = 0x0206;
 592			break;
 593		}
 594	} else {
 595		smbios_ver = 0;
 596	}
 597
 598	buf += 16;
 599
 600	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
 601		if (smbios_ver)
 602			dmi_ver = smbios_ver;
 603		else
 604			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
 605		dmi_ver <<= 8;
 606		dmi_num = get_unaligned_le16(buf + 12);
 607		dmi_len = get_unaligned_le16(buf + 6);
 608		dmi_base = get_unaligned_le32(buf + 8);
 609
 610		if (dmi_walk_early(dmi_decode) == 0) {
 611			if (smbios_ver) {
 612				pr_info("SMBIOS %d.%d present.\n",
 613					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
 614			} else {
 615				smbios_entry_point_size = 15;
 616				memcpy(smbios_entry_point, buf,
 617				       smbios_entry_point_size);
 618				pr_info("Legacy DMI %d.%d present.\n",
 619					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
 620			}
 621			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
 622			pr_info("DMI: %s\n", dmi_ids_string);
 623			return 0;
 624		}
 625	}
 626
 627	return 1;
 628}
 629
 630/*
 631 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
 632 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
 633 */
 634static int __init dmi_smbios3_present(const u8 *buf)
 635{
 636	if (memcmp(buf, "_SM3_", 5) == 0 &&
 637	    buf[6] >= 24 && buf[6] <= 32 &&
 638	    dmi_checksum(buf, buf[6])) {
 639		dmi_ver = get_unaligned_be24(buf + 7);
 640		dmi_num = 0;			/* No longer specified */
 641		dmi_len = get_unaligned_le32(buf + 12);
 642		dmi_base = get_unaligned_le64(buf + 16);
 643		smbios_entry_point_size = buf[6];
 644		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
 645
 646		if (dmi_walk_early(dmi_decode) == 0) {
 647			pr_info("SMBIOS %d.%d.%d present.\n",
 648				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
 649				dmi_ver & 0xFF);
 650			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
 651			pr_info("DMI: %s\n", dmi_ids_string);
 652			return 0;
 653		}
 654	}
 655	return 1;
 656}
 657
 658static void __init dmi_scan_machine(void)
 659{
 660	char __iomem *p, *q;
 661	char buf[32];
 662
 663	if (efi_enabled(EFI_CONFIG_TABLES)) {
 664		/*
 665		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
 666		 * allowed to define both the 64-bit entry point (smbios3) and
 667		 * the 32-bit entry point (smbios), in which case they should
 668		 * either both point to the same SMBIOS structure table, or the
 669		 * table pointed to by the 64-bit entry point should contain a
 670		 * superset of the table contents pointed to by the 32-bit entry
 671		 * point (section 5.2)
 672		 * This implies that the 64-bit entry point should have
 673		 * precedence if it is defined and supported by the OS. If we
 674		 * have the 64-bit entry point, but fail to decode it, fall
 675		 * back to the legacy one (if available)
 676		 */
 677		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
 678			p = dmi_early_remap(efi.smbios3, 32);
 679			if (p == NULL)
 680				goto error;
 681			memcpy_fromio(buf, p, 32);
 682			dmi_early_unmap(p, 32);
 683
 684			if (!dmi_smbios3_present(buf)) {
 685				dmi_available = 1;
 686				return;
 687			}
 688		}
 689		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
 690			goto error;
 691
 692		/* This is called as a core_initcall() because it isn't
 693		 * needed during early boot.  This also means we can
 694		 * iounmap the space when we're done with it.
 695		 */
 696		p = dmi_early_remap(efi.smbios, 32);
 697		if (p == NULL)
 698			goto error;
 699		memcpy_fromio(buf, p, 32);
 700		dmi_early_unmap(p, 32);
 701
 702		if (!dmi_present(buf)) {
 
 
 703			dmi_available = 1;
 704			return;
 705		}
 706	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
 707		p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000);
 
 
 
 
 
 
 708		if (p == NULL)
 709			goto error;
 710
 711		/*
 712		 * Same logic as above, look for a 64-bit entry point
 713		 * first, and if not found, fall back to 32-bit entry point.
 714		 */
 715		memcpy_fromio(buf, p, 16);
 716		for (q = p + 16; q < p + 0x10000; q += 16) {
 717			memcpy_fromio(buf + 16, q, 16);
 718			if (!dmi_smbios3_present(buf)) {
 719				dmi_available = 1;
 720				dmi_early_unmap(p, 0x10000);
 721				return;
 722			}
 723			memcpy(buf, buf + 16, 16);
 724		}
 725
 726		/*
 727		 * Iterate over all possible DMI header addresses q.
 728		 * Maintain the 32 bytes around q in buf.  On the
 729		 * first iteration, substitute zero for the
 730		 * out-of-range bytes so there is no chance of falsely
 731		 * detecting an SMBIOS header.
 732		 */
 733		memset(buf, 0, 16);
 734		for (q = p; q < p + 0x10000; q += 16) {
 735			memcpy_fromio(buf + 16, q, 16);
 736			if (!dmi_present(buf)) {
 737				dmi_available = 1;
 738				dmi_early_unmap(p, 0x10000);
 739				return;
 740			}
 741			memcpy(buf, buf + 16, 16);
 742		}
 743		dmi_early_unmap(p, 0x10000);
 744	}
 745 error:
 746	pr_info("DMI not present or invalid.\n");
 747}
 748
 749static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
 750			      struct bin_attribute *attr, char *buf,
 751			      loff_t pos, size_t count)
 752{
 753	memcpy(buf, attr->private + pos, count);
 754	return count;
 755}
 756
 757static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
 758static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
 759
 760static int __init dmi_init(void)
 761{
 762	struct kobject *tables_kobj;
 763	u8 *dmi_table;
 764	int ret = -ENOMEM;
 765
 766	if (!dmi_available)
 767		return 0;
 768
 769	/*
 770	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
 771	 * even after farther error, as it can be used by other modules like
 772	 * dmi-sysfs.
 773	 */
 774	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
 775	if (!dmi_kobj)
 776		goto err;
 777
 778	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
 779	if (!tables_kobj)
 780		goto err;
 781
 782	dmi_table = dmi_remap(dmi_base, dmi_len);
 783	if (!dmi_table)
 784		goto err_tables;
 785
 786	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
 787	bin_attr_smbios_entry_point.private = smbios_entry_point;
 788	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
 789	if (ret)
 790		goto err_unmap;
 791
 792	bin_attr_DMI.size = dmi_len;
 793	bin_attr_DMI.private = dmi_table;
 794	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
 795	if (!ret)
 796		return 0;
 797
 798	sysfs_remove_bin_file(tables_kobj,
 799			      &bin_attr_smbios_entry_point);
 800 err_unmap:
 801	dmi_unmap(dmi_table);
 802 err_tables:
 803	kobject_del(tables_kobj);
 804	kobject_put(tables_kobj);
 805 err:
 806	pr_err("dmi: Firmware registration failed.\n");
 807
 808	return ret;
 809}
 810subsys_initcall(dmi_init);
 811
 812/**
 813 *	dmi_setup - scan and setup DMI system information
 814 *
 815 *	Scan the DMI system information. This setups DMI identifiers
 816 *	(dmi_system_id) for printing it out on task dumps and prepares
 817 *	DIMM entry information (dmi_memdev_info) from the SMBIOS table
 818 *	for using this when reporting memory errors.
 819 */
 820void __init dmi_setup(void)
 821{
 822	dmi_scan_machine();
 823	if (!dmi_available)
 824		return;
 825
 826	dmi_memdev_walk();
 827	dump_stack_set_arch_desc("%s", dmi_ids_string);
 828}
 829
 830/**
 831 *	dmi_matches - check if dmi_system_id structure matches system DMI data
 832 *	@dmi: pointer to the dmi_system_id structure to check
 833 */
 834static bool dmi_matches(const struct dmi_system_id *dmi)
 835{
 836	int i;
 837
 
 
 838	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
 839		int s = dmi->matches[i].slot;
 840		if (s == DMI_NONE)
 841			break;
 842		if (s == DMI_OEM_STRING) {
 843			/* DMI_OEM_STRING must be exact match */
 844			const struct dmi_device *valid;
 845
 846			valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
 847						dmi->matches[i].substr, NULL);
 848			if (valid)
 849				continue;
 850		} else if (dmi_ident[s]) {
 851			if (dmi->matches[i].exact_match) {
 852				if (!strcmp(dmi_ident[s],
 853					    dmi->matches[i].substr))
 854					continue;
 855			} else {
 856				if (strstr(dmi_ident[s],
 857					   dmi->matches[i].substr))
 858					continue;
 859			}
 860		}
 861
 862		/* No match */
 863		return false;
 864	}
 865	return true;
 866}
 867
 868/**
 869 *	dmi_is_end_of_table - check for end-of-table marker
 870 *	@dmi: pointer to the dmi_system_id structure to check
 871 */
 872static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
 873{
 874	return dmi->matches[0].slot == DMI_NONE;
 875}
 876
 877/**
 878 *	dmi_check_system - check system DMI data
 879 *	@list: array of dmi_system_id structures to match against
 880 *		All non-null elements of the list must match
 881 *		their slot's (field index's) data (i.e., each
 882 *		list string must be a substring of the specified
 883 *		DMI slot's string data) to be considered a
 884 *		successful match.
 885 *
 886 *	Walk the blacklist table running matching functions until someone
 887 *	returns non zero or we hit the end. Callback function is called for
 888 *	each successful match. Returns the number of matches.
 889 *
 890 *	dmi_setup must be called before this function is called.
 891 */
 892int dmi_check_system(const struct dmi_system_id *list)
 893{
 894	int count = 0;
 895	const struct dmi_system_id *d;
 896
 897	for (d = list; !dmi_is_end_of_table(d); d++)
 898		if (dmi_matches(d)) {
 899			count++;
 900			if (d->callback && d->callback(d))
 901				break;
 902		}
 903
 904	return count;
 905}
 906EXPORT_SYMBOL(dmi_check_system);
 907
 908/**
 909 *	dmi_first_match - find dmi_system_id structure matching system DMI data
 910 *	@list: array of dmi_system_id structures to match against
 911 *		All non-null elements of the list must match
 912 *		their slot's (field index's) data (i.e., each
 913 *		list string must be a substring of the specified
 914 *		DMI slot's string data) to be considered a
 915 *		successful match.
 916 *
 917 *	Walk the blacklist table until the first match is found.  Return the
 918 *	pointer to the matching entry or NULL if there's no match.
 919 *
 920 *	dmi_setup must be called before this function is called.
 921 */
 922const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
 923{
 924	const struct dmi_system_id *d;
 925
 926	for (d = list; !dmi_is_end_of_table(d); d++)
 927		if (dmi_matches(d))
 928			return d;
 929
 930	return NULL;
 931}
 932EXPORT_SYMBOL(dmi_first_match);
 933
 934/**
 935 *	dmi_get_system_info - return DMI data value
 936 *	@field: data index (see enum dmi_field)
 937 *
 938 *	Returns one DMI data value, can be used to perform
 939 *	complex DMI data checks.
 940 */
 941const char *dmi_get_system_info(int field)
 942{
 943	return dmi_ident[field];
 944}
 945EXPORT_SYMBOL(dmi_get_system_info);
 946
 947/**
 948 * dmi_name_in_serial - Check if string is in the DMI product serial information
 949 * @str: string to check for
 950 */
 951int dmi_name_in_serial(const char *str)
 952{
 953	int f = DMI_PRODUCT_SERIAL;
 954	if (dmi_ident[f] && strstr(dmi_ident[f], str))
 955		return 1;
 956	return 0;
 957}
 958
 959/**
 960 *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
 961 *	@str: Case sensitive Name
 962 */
 963int dmi_name_in_vendors(const char *str)
 964{
 965	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
 
 
 966	int i;
 967	for (i = 0; fields[i] != DMI_NONE; i++) {
 968		int f = fields[i];
 969		if (dmi_ident[f] && strstr(dmi_ident[f], str))
 970			return 1;
 971	}
 972	return 0;
 973}
 974EXPORT_SYMBOL(dmi_name_in_vendors);
 975
 976/**
 977 *	dmi_find_device - find onboard device by type/name
 978 *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
 979 *	@name: device name string or %NULL to match all
 980 *	@from: previous device found in search, or %NULL for new search.
 981 *
 982 *	Iterates through the list of known onboard devices. If a device is
 983 *	found with a matching @type and @name, a pointer to its device
 984 *	structure is returned.  Otherwise, %NULL is returned.
 985 *	A new search is initiated by passing %NULL as the @from argument.
 986 *	If @from is not %NULL, searches continue from next device.
 987 */
 988const struct dmi_device *dmi_find_device(int type, const char *name,
 989				    const struct dmi_device *from)
 990{
 991	const struct list_head *head = from ? &from->list : &dmi_devices;
 992	struct list_head *d;
 993
 994	for (d = head->next; d != &dmi_devices; d = d->next) {
 995		const struct dmi_device *dev =
 996			list_entry(d, struct dmi_device, list);
 997
 998		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
 999		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
1000			return dev;
1001	}
1002
1003	return NULL;
1004}
1005EXPORT_SYMBOL(dmi_find_device);
1006
1007/**
1008 *	dmi_get_date - parse a DMI date
1009 *	@field:	data index (see enum dmi_field)
1010 *	@yearp: optional out parameter for the year
1011 *	@monthp: optional out parameter for the month
1012 *	@dayp: optional out parameter for the day
1013 *
1014 *	The date field is assumed to be in the form resembling
1015 *	[mm[/dd]]/yy[yy] and the result is stored in the out
1016 *	parameters any or all of which can be omitted.
1017 *
1018 *	If the field doesn't exist, all out parameters are set to zero
1019 *	and false is returned.  Otherwise, true is returned with any
1020 *	invalid part of date set to zero.
1021 *
1022 *	On return, year, month and day are guaranteed to be in the
1023 *	range of [0,9999], [0,12] and [0,31] respectively.
1024 */
1025bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
1026{
1027	int year = 0, month = 0, day = 0;
1028	bool exists;
1029	const char *s, *y;
1030	char *e;
1031
1032	s = dmi_get_system_info(field);
1033	exists = s;
1034	if (!exists)
1035		goto out;
1036
1037	/*
1038	 * Determine year first.  We assume the date string resembles
1039	 * mm/dd/yy[yy] but the original code extracted only the year
1040	 * from the end.  Keep the behavior in the spirit of no
1041	 * surprises.
1042	 */
1043	y = strrchr(s, '/');
1044	if (!y)
1045		goto out;
1046
1047	y++;
1048	year = simple_strtoul(y, &e, 10);
1049	if (y != e && year < 100) {	/* 2-digit year */
1050		year += 1900;
1051		if (year < 1996)	/* no dates < spec 1.0 */
1052			year += 100;
1053	}
1054	if (year > 9999)		/* year should fit in %04d */
1055		year = 0;
1056
1057	/* parse the mm and dd */
1058	month = simple_strtoul(s, &e, 10);
1059	if (s == e || *e != '/' || !month || month > 12) {
1060		month = 0;
1061		goto out;
1062	}
1063
1064	s = e + 1;
1065	day = simple_strtoul(s, &e, 10);
1066	if (s == y || s == e || *e != '/' || day > 31)
1067		day = 0;
1068out:
1069	if (yearp)
1070		*yearp = year;
1071	if (monthp)
1072		*monthp = month;
1073	if (dayp)
1074		*dayp = day;
1075	return exists;
1076}
1077EXPORT_SYMBOL(dmi_get_date);
1078
1079/**
1080 *	dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1081 *
1082 *	Returns year on success, -ENXIO if DMI is not selected,
1083 *	or a different negative error code if DMI field is not present
1084 *	or not parseable.
1085 */
1086int dmi_get_bios_year(void)
1087{
1088	bool exists;
1089	int year;
1090
1091	exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1092	if (!exists)
1093		return -ENODATA;
1094
1095	return year ? year : -ERANGE;
1096}
1097EXPORT_SYMBOL(dmi_get_bios_year);
1098
1099/**
1100 *	dmi_walk - Walk the DMI table and get called back for every record
1101 *	@decode: Callback function
1102 *	@private_data: Private data to be passed to the callback function
1103 *
1104 *	Returns 0 on success, -ENXIO if DMI is not selected or not present,
1105 *	or a different negative error code if DMI walking fails.
1106 */
1107int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1108	     void *private_data)
1109{
1110	u8 *buf;
1111
1112	if (!dmi_available)
1113		return -ENXIO;
1114
1115	buf = dmi_remap(dmi_base, dmi_len);
1116	if (buf == NULL)
1117		return -ENOMEM;
1118
1119	dmi_decode_table(buf, decode, private_data);
1120
1121	dmi_unmap(buf);
1122	return 0;
1123}
1124EXPORT_SYMBOL_GPL(dmi_walk);
1125
1126/**
1127 * dmi_match - compare a string to the dmi field (if exists)
1128 * @f: DMI field identifier
1129 * @str: string to compare the DMI field to
1130 *
1131 * Returns true if the requested field equals to the str (including NULL).
1132 */
1133bool dmi_match(enum dmi_field f, const char *str)
1134{
1135	const char *info = dmi_get_system_info(f);
1136
1137	if (info == NULL || str == NULL)
1138		return info == str;
1139
1140	return !strcmp(info, str);
1141}
1142EXPORT_SYMBOL_GPL(dmi_match);
1143
1144void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1145{
1146	int n;
1147
1148	if (dmi_memdev == NULL)
1149		return;
1150
1151	for (n = 0; n < dmi_memdev_nr; n++) {
1152		if (handle == dmi_memdev[n].handle) {
1153			*bank = dmi_memdev[n].bank;
1154			*device = dmi_memdev[n].device;
1155			break;
1156		}
1157	}
1158}
1159EXPORT_SYMBOL_GPL(dmi_memdev_name);
1160
1161u64 dmi_memdev_size(u16 handle)
1162{
1163	int n;
1164
1165	if (dmi_memdev) {
1166		for (n = 0; n < dmi_memdev_nr; n++) {
1167			if (handle == dmi_memdev[n].handle)
1168				return dmi_memdev[n].size;
1169		}
1170	}
1171	return ~0ull;
1172}
1173EXPORT_SYMBOL_GPL(dmi_memdev_size);
1174
1175/**
1176 * dmi_memdev_type - get the memory type
1177 * @handle: DMI structure handle
1178 *
1179 * Return the DMI memory type of the module in the slot associated with the
1180 * given DMI handle, or 0x0 if no such DMI handle exists.
1181 */
1182u8 dmi_memdev_type(u16 handle)
1183{
1184	int n;
1185
1186	if (dmi_memdev) {
1187		for (n = 0; n < dmi_memdev_nr; n++) {
1188			if (handle == dmi_memdev[n].handle)
1189				return dmi_memdev[n].type;
1190		}
1191	}
1192	return 0x0;	/* Not a valid value */
1193}
1194EXPORT_SYMBOL_GPL(dmi_memdev_type);
1195
1196/**
1197 *	dmi_memdev_handle - get the DMI handle of a memory slot
1198 *	@slot: slot number
1199 *
1200 *	Return the DMI handle associated with a given memory slot, or %0xFFFF
1201 *      if there is no such slot.
1202 */
1203u16 dmi_memdev_handle(int slot)
1204{
1205	if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr)
1206		return dmi_memdev[slot].handle;
1207
1208	return 0xffff;	/* Not a valid value */
1209}
1210EXPORT_SYMBOL_GPL(dmi_memdev_handle);