Linux Audio

Check our new training course

Loading...
v3.1
  1#include <linux/types.h>
  2#include <linux/string.h>
  3#include <linux/init.h>
  4#include <linux/module.h>
  5#include <linux/ctype.h>
  6#include <linux/dmi.h>
  7#include <linux/efi.h>
  8#include <linux/bootmem.h>
 
  9#include <asm/dmi.h>
 
 
 
 
 10
 11/*
 12 * DMI stands for "Desktop Management Interface".  It is part
 13 * of and an antecedent to, SMBIOS, which stands for System
 14 * Management BIOS.  See further: http://www.dmtf.org/standards
 15 */
 16static char dmi_empty_string[] = "        ";
 
 
 
 
 
 
 17
 18/*
 19 * Catch too early calls to dmi_check_system():
 20 */
 21static int dmi_initialized;
 22
 
 
 
 
 
 
 
 
 
 
 23static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
 24{
 25	const u8 *bp = ((u8 *) dm) + dm->length;
 26
 27	if (s) {
 28		s--;
 29		while (s > 0 && *bp) {
 30			bp += strlen(bp) + 1;
 31			s--;
 32		}
 33
 34		if (*bp != 0) {
 35			size_t len = strlen(bp)+1;
 36			size_t cmp_len = len > 8 ? 8 : len;
 37
 38			if (!memcmp(bp, dmi_empty_string, cmp_len))
 39				return dmi_empty_string;
 40			return bp;
 41		}
 42	}
 43
 44	return "";
 45}
 46
 47static char * __init dmi_string(const struct dmi_header *dm, u8 s)
 48{
 49	const char *bp = dmi_string_nosave(dm, s);
 50	char *str;
 51	size_t len;
 52
 53	if (bp == dmi_empty_string)
 54		return dmi_empty_string;
 55
 56	len = strlen(bp) + 1;
 57	str = dmi_alloc(len);
 58	if (str != NULL)
 59		strcpy(str, bp);
 60	else
 61		printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
 62
 63	return str;
 64}
 65
 66/*
 67 *	We have to be cautious here. We have seen BIOSes with DMI pointers
 68 *	pointing to completely the wrong place for example
 69 */
 70static void dmi_table(u8 *buf, int len, int num,
 71		      void (*decode)(const struct dmi_header *, void *),
 72		      void *private_data)
 73{
 74	u8 *data = buf;
 75	int i = 0;
 76
 77	/*
 78	 *	Stop when we see all the items the table claimed to have
 79	 *	OR we run off the end of the table (also happens)
 
 
 80	 */
 81	while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
 
 82		const struct dmi_header *dm = (const struct dmi_header *)data;
 83
 84		/*
 85		 *  We want to know the total length (formatted area and
 86		 *  strings) before decoding to make sure we won't run off the
 87		 *  table in dmi_decode or dmi_string
 88		 */
 89		data += dm->length;
 90		while ((data - buf < len - 1) && (data[0] || data[1]))
 91			data++;
 92		if (data - buf < len - 1)
 93			decode(dm, private_data);
 
 94		data += 2;
 95		i++;
 
 
 
 
 
 
 
 
 
 
 
 96	}
 
 
 
 
 97}
 98
 99static u32 dmi_base;
100static u16 dmi_len;
101static u16 dmi_num;
102
103static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
104		void *))
105{
106	u8 *buf;
 
107
108	buf = dmi_ioremap(dmi_base, dmi_len);
109	if (buf == NULL)
110		return -1;
111
112	dmi_table(buf, dmi_len, dmi_num, decode, NULL);
 
 
113
114	dmi_iounmap(buf, dmi_len);
115	return 0;
116}
117
118static int __init dmi_checksum(const u8 *buf)
119{
120	u8 sum = 0;
121	int a;
122
123	for (a = 0; a < 15; a++)
124		sum += buf[a];
125
126	return sum == 0;
127}
128
129static char *dmi_ident[DMI_STRING_MAX];
130static LIST_HEAD(dmi_devices);
131int dmi_available;
132
133/*
134 *	Save a DMI string
135 */
136static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
 
137{
138	const char *d = (const char*) dm;
139	char *p;
140
141	if (dmi_ident[slot])
142		return;
143
144	p = dmi_string(dm, d[string]);
145	if (p == NULL)
146		return;
147
148	dmi_ident[slot] = p;
149}
150
151static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
 
152{
153	const u8 *d = (u8*) dm + index;
154	char *s;
155	int is_ff = 1, is_00 = 1, i;
156
157	if (dmi_ident[slot])
158		return;
159
160	for (i = 0; i < 16 && (is_ff || is_00); i++) {
161		if(d[i] != 0x00) is_ff = 0;
162		if(d[i] != 0xFF) is_00 = 0;
 
 
163	}
164
165	if (is_ff || is_00)
166		return;
167
168	s = dmi_alloc(16*2+4+1);
169	if (!s)
170		return;
171
172	sprintf(s, "%pUB", d);
 
 
 
 
 
 
 
 
173
174        dmi_ident[slot] = s;
175}
176
177static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
 
178{
179	const u8 *d = (u8*) dm + index;
180	char *s;
181
182	if (dmi_ident[slot])
183		return;
184
185	s = dmi_alloc(4);
186	if (!s)
187		return;
188
189	sprintf(s, "%u", *d & 0x7F);
190	dmi_ident[slot] = s;
191}
192
193static void __init dmi_save_one_device(int type, const char *name)
194{
195	struct dmi_device *dev;
196
197	/* No duplicate device */
198	if (dmi_find_device(type, name, NULL))
199		return;
200
201	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
202	if (!dev) {
203		printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
204		return;
205	}
206
207	dev->type = type;
208	strcpy((char *)(dev + 1), name);
209	dev->name = (char *)(dev + 1);
210	dev->device_data = NULL;
211	list_add(&dev->list, &dmi_devices);
212}
213
214static void __init dmi_save_devices(const struct dmi_header *dm)
215{
216	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
217
218	for (i = 0; i < count; i++) {
219		const char *d = (char *)(dm + 1) + (i * 2);
220
221		/* Skip disabled device */
222		if ((*d & 0x80) == 0)
223			continue;
224
225		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
226	}
227}
228
229static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
230{
231	int i, count = *(u8 *)(dm + 1);
232	struct dmi_device *dev;
233
234	for (i = 1; i <= count; i++) {
235		char *devname = dmi_string(dm, i);
236
237		if (devname == dmi_empty_string)
238			continue;
239
240		dev = dmi_alloc(sizeof(*dev));
241		if (!dev) {
242			printk(KERN_ERR
243			   "dmi_save_oem_strings_devices: out of memory.\n");
244			break;
245		}
246
247		dev->type = DMI_DEV_TYPE_OEM_STRING;
248		dev->name = devname;
249		dev->device_data = NULL;
250
251		list_add(&dev->list, &dmi_devices);
252	}
253}
254
255static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
256{
257	struct dmi_device *dev;
258	void * data;
259
260	data = dmi_alloc(dm->length);
261	if (data == NULL) {
262		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
263		return;
264	}
265
266	memcpy(data, dm, dm->length);
267
268	dev = dmi_alloc(sizeof(*dev));
269	if (!dev) {
270		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
271		return;
272	}
273
274	dev->type = DMI_DEV_TYPE_IPMI;
275	dev->name = "IPMI controller";
276	dev->device_data = data;
277
278	list_add_tail(&dev->list, &dmi_devices);
279}
280
281static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
282					int devfn, const char *name)
283{
284	struct dmi_dev_onboard *onboard_dev;
285
286	onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
287	if (!onboard_dev) {
288		printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n");
289		return;
290	}
291	onboard_dev->instance = instance;
292	onboard_dev->segment = segment;
293	onboard_dev->bus = bus;
294	onboard_dev->devfn = devfn;
295
296	strcpy((char *)&onboard_dev[1], name);
297	onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
298	onboard_dev->dev.name = (char *)&onboard_dev[1];
299	onboard_dev->dev.device_data = onboard_dev;
300
301	list_add(&onboard_dev->dev.list, &dmi_devices);
 
 
 
 
 
 
 
 
 
 
302}
303
304static void __init dmi_save_extended_devices(const struct dmi_header *dm)
305{
306	const u8 *d = (u8*) dm + 5;
 
307
308	/* Skip disabled device */
309	if ((*d & 0x80) == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310		return;
 
 
 
 
 
 
 
311
312	dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
313			     dmi_string_nosave(dm, *(d-1)));
314	dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315}
316
317/*
318 *	Process a DMI table entry. Right now all we care about are the BIOS
319 *	and machine entries. For 2.5 we should pull the smbus controller info
320 *	out of here.
321 */
322static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
323{
324	switch(dm->type) {
325	case 0:		/* BIOS Information */
326		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
327		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
328		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
329		break;
330	case 1:		/* System Information */
331		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
332		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
333		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
334		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
335		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
336		break;
337	case 2:		/* Base Board Information */
338		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
339		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
340		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
341		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
342		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
343		break;
344	case 3:		/* Chassis Information */
345		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
346		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
347		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
348		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
349		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
350		break;
 
 
 
351	case 10:	/* Onboard Devices Information */
352		dmi_save_devices(dm);
353		break;
354	case 11:	/* OEM Strings */
355		dmi_save_oem_strings_devices(dm);
356		break;
357	case 38:	/* IPMI Device Information */
358		dmi_save_ipmi_device(dm);
359		break;
360	case 41:	/* Onboard Devices Extended Information */
361		dmi_save_extended_devices(dm);
362	}
363}
364
365static void __init print_filtered(const char *info)
366{
 
367	const char *p;
368
369	if (!info)
370		return;
371
372	for (p = info; *p; p++)
373		if (isprint(*p))
374			printk(KERN_CONT "%c", *p);
375		else
376			printk(KERN_CONT "\\x%02x", *p & 0xff);
 
377}
378
379static void __init dmi_dump_ids(void)
380{
 
381	const char *board;	/* Board Name is optional */
382
383	printk(KERN_DEBUG "DMI: ");
384	print_filtered(dmi_get_system_info(DMI_SYS_VENDOR));
385	printk(KERN_CONT " ");
386	print_filtered(dmi_get_system_info(DMI_PRODUCT_NAME));
 
 
387	board = dmi_get_system_info(DMI_BOARD_NAME);
388	if (board) {
389		printk(KERN_CONT "/");
390		print_filtered(board);
391	}
392	printk(KERN_CONT ", BIOS ");
393	print_filtered(dmi_get_system_info(DMI_BIOS_VERSION));
394	printk(KERN_CONT " ");
395	print_filtered(dmi_get_system_info(DMI_BIOS_DATE));
396	printk(KERN_CONT "\n");
397}
398
399static int __init dmi_present(const char __iomem *p)
400{
401	u8 buf[15];
402
403	memcpy_fromio(buf, p, 15);
404	if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
405		dmi_num = (buf[13] << 8) | buf[12];
406		dmi_len = (buf[7] << 8) | buf[6];
407		dmi_base = (buf[11] << 24) | (buf[10] << 16) |
408			(buf[9] << 8) | buf[8];
409
410		/*
411		 * DMI version 0.0 means that the real version is taken from
412		 * the SMBIOS version, which we don't know at this point.
413		 */
414		if (buf[14] != 0)
415			printk(KERN_INFO "DMI %d.%d present.\n",
416			       buf[14] >> 4, buf[14] & 0xF);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
417		else
418			printk(KERN_INFO "DMI present.\n");
 
 
 
 
 
419		if (dmi_walk_early(dmi_decode) == 0) {
420			dmi_dump_ids();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
421			return 0;
422		}
423	}
424	return 1;
425}
426
427void __init dmi_scan_machine(void)
428{
429	char __iomem *p, *q;
430	int rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431
432	if (efi_enabled) {
 
 
 
 
433		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
434			goto error;
435
436		/* This is called as a core_initcall() because it isn't
437		 * needed during early boot.  This also means we can
438		 * iounmap the space when we're done with it.
439		 */
440		p = dmi_ioremap(efi.smbios, 32);
441		if (p == NULL)
442			goto error;
 
 
443
444		rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
445		dmi_iounmap(p, 32);
446		if (!rc) {
447			dmi_available = 1;
448			goto out;
449		}
450	}
451	else {
452		/*
453		 * no iounmap() for that ioremap(); it would be a no-op, but
454		 * it's so early in setup that sucker gets confused into doing
455		 * what it shouldn't if we actually call it.
456		 */
457		p = dmi_ioremap(0xF0000, 0x10000);
458		if (p == NULL)
459			goto error;
460
 
 
 
 
 
 
 
 
461		for (q = p; q < p + 0x10000; q += 16) {
462			rc = dmi_present(q);
463			if (!rc) {
464				dmi_available = 1;
465				dmi_iounmap(p, 0x10000);
466				goto out;
467			}
 
468		}
469		dmi_iounmap(p, 0x10000);
470	}
471 error:
472	printk(KERN_INFO "DMI not present or invalid.\n");
473 out:
474	dmi_initialized = 1;
475}
476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477/**
478 *	dmi_matches - check if dmi_system_id structure matches system DMI data
479 *	@dmi: pointer to the dmi_system_id structure to check
480 */
481static bool dmi_matches(const struct dmi_system_id *dmi)
482{
483	int i;
484
485	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
486
487	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
488		int s = dmi->matches[i].slot;
489		if (s == DMI_NONE)
490			break;
491		if (dmi_ident[s]
492		    && strstr(dmi_ident[s], dmi->matches[i].substr))
493			continue;
 
 
 
 
 
 
494		/* No match */
495		return false;
496	}
497	return true;
498}
499
500/**
501 *	dmi_is_end_of_table - check for end-of-table marker
502 *	@dmi: pointer to the dmi_system_id structure to check
503 */
504static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
505{
506	return dmi->matches[0].slot == DMI_NONE;
507}
508
509/**
510 *	dmi_check_system - check system DMI data
511 *	@list: array of dmi_system_id structures to match against
512 *		All non-null elements of the list must match
513 *		their slot's (field index's) data (i.e., each
514 *		list string must be a substring of the specified
515 *		DMI slot's string data) to be considered a
516 *		successful match.
517 *
518 *	Walk the blacklist table running matching functions until someone
519 *	returns non zero or we hit the end. Callback function is called for
520 *	each successful match. Returns the number of matches.
521 */
522int dmi_check_system(const struct dmi_system_id *list)
523{
524	int count = 0;
525	const struct dmi_system_id *d;
526
527	for (d = list; !dmi_is_end_of_table(d); d++)
528		if (dmi_matches(d)) {
529			count++;
530			if (d->callback && d->callback(d))
531				break;
532		}
533
534	return count;
535}
536EXPORT_SYMBOL(dmi_check_system);
537
538/**
539 *	dmi_first_match - find dmi_system_id structure matching system DMI data
540 *	@list: array of dmi_system_id structures to match against
541 *		All non-null elements of the list must match
542 *		their slot's (field index's) data (i.e., each
543 *		list string must be a substring of the specified
544 *		DMI slot's string data) to be considered a
545 *		successful match.
546 *
547 *	Walk the blacklist table until the first match is found.  Return the
548 *	pointer to the matching entry or NULL if there's no match.
549 */
550const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
551{
552	const struct dmi_system_id *d;
553
554	for (d = list; !dmi_is_end_of_table(d); d++)
555		if (dmi_matches(d))
556			return d;
557
558	return NULL;
559}
560EXPORT_SYMBOL(dmi_first_match);
561
562/**
563 *	dmi_get_system_info - return DMI data value
564 *	@field: data index (see enum dmi_field)
565 *
566 *	Returns one DMI data value, can be used to perform
567 *	complex DMI data checks.
568 */
569const char *dmi_get_system_info(int field)
570{
571	return dmi_ident[field];
572}
573EXPORT_SYMBOL(dmi_get_system_info);
574
575/**
576 * dmi_name_in_serial - Check if string is in the DMI product serial information
577 * @str: string to check for
578 */
579int dmi_name_in_serial(const char *str)
580{
581	int f = DMI_PRODUCT_SERIAL;
582	if (dmi_ident[f] && strstr(dmi_ident[f], str))
583		return 1;
584	return 0;
585}
586
587/**
588 *	dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
589 *	@str: 	Case sensitive Name
590 */
591int dmi_name_in_vendors(const char *str)
592{
593	static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
594				DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
595				DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
596	int i;
597	for (i = 0; fields[i] != DMI_NONE; i++) {
598		int f = fields[i];
599		if (dmi_ident[f] && strstr(dmi_ident[f], str))
600			return 1;
601	}
602	return 0;
603}
604EXPORT_SYMBOL(dmi_name_in_vendors);
605
606/**
607 *	dmi_find_device - find onboard device by type/name
608 *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
609 *	@name: device name string or %NULL to match all
610 *	@from: previous device found in search, or %NULL for new search.
611 *
612 *	Iterates through the list of known onboard devices. If a device is
613 *	found with a matching @vendor and @device, a pointer to its device
614 *	structure is returned.  Otherwise, %NULL is returned.
615 *	A new search is initiated by passing %NULL as the @from argument.
616 *	If @from is not %NULL, searches continue from next device.
617 */
618const struct dmi_device * dmi_find_device(int type, const char *name,
619				    const struct dmi_device *from)
620{
621	const struct list_head *head = from ? &from->list : &dmi_devices;
622	struct list_head *d;
623
624	for(d = head->next; d != &dmi_devices; d = d->next) {
625		const struct dmi_device *dev =
626			list_entry(d, struct dmi_device, list);
627
628		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
629		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
630			return dev;
631	}
632
633	return NULL;
634}
635EXPORT_SYMBOL(dmi_find_device);
636
637/**
638 *	dmi_get_date - parse a DMI date
639 *	@field:	data index (see enum dmi_field)
640 *	@yearp: optional out parameter for the year
641 *	@monthp: optional out parameter for the month
642 *	@dayp: optional out parameter for the day
643 *
644 *	The date field is assumed to be in the form resembling
645 *	[mm[/dd]]/yy[yy] and the result is stored in the out
646 *	parameters any or all of which can be omitted.
647 *
648 *	If the field doesn't exist, all out parameters are set to zero
649 *	and false is returned.  Otherwise, true is returned with any
650 *	invalid part of date set to zero.
651 *
652 *	On return, year, month and day are guaranteed to be in the
653 *	range of [0,9999], [0,12] and [0,31] respectively.
654 */
655bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
656{
657	int year = 0, month = 0, day = 0;
658	bool exists;
659	const char *s, *y;
660	char *e;
661
662	s = dmi_get_system_info(field);
663	exists = s;
664	if (!exists)
665		goto out;
666
667	/*
668	 * Determine year first.  We assume the date string resembles
669	 * mm/dd/yy[yy] but the original code extracted only the year
670	 * from the end.  Keep the behavior in the spirit of no
671	 * surprises.
672	 */
673	y = strrchr(s, '/');
674	if (!y)
675		goto out;
676
677	y++;
678	year = simple_strtoul(y, &e, 10);
679	if (y != e && year < 100) {	/* 2-digit year */
680		year += 1900;
681		if (year < 1996)	/* no dates < spec 1.0 */
682			year += 100;
683	}
684	if (year > 9999)		/* year should fit in %04d */
685		year = 0;
686
687	/* parse the mm and dd */
688	month = simple_strtoul(s, &e, 10);
689	if (s == e || *e != '/' || !month || month > 12) {
690		month = 0;
691		goto out;
692	}
693
694	s = e + 1;
695	day = simple_strtoul(s, &e, 10);
696	if (s == y || s == e || *e != '/' || day > 31)
697		day = 0;
698out:
699	if (yearp)
700		*yearp = year;
701	if (monthp)
702		*monthp = month;
703	if (dayp)
704		*dayp = day;
705	return exists;
706}
707EXPORT_SYMBOL(dmi_get_date);
708
709/**
710 *	dmi_walk - Walk the DMI table and get called back for every record
711 *	@decode: Callback function
712 *	@private_data: Private data to be passed to the callback function
713 *
714 *	Returns -1 when the DMI table can't be reached, 0 on success.
715 */
716int dmi_walk(void (*decode)(const struct dmi_header *, void *),
717	     void *private_data)
718{
719	u8 *buf;
720
721	if (!dmi_available)
722		return -1;
723
724	buf = ioremap(dmi_base, dmi_len);
725	if (buf == NULL)
726		return -1;
727
728	dmi_table(buf, dmi_len, dmi_num, decode, private_data);
729
730	iounmap(buf);
731	return 0;
732}
733EXPORT_SYMBOL_GPL(dmi_walk);
734
735/**
736 * dmi_match - compare a string to the dmi field (if exists)
737 * @f: DMI field identifier
738 * @str: string to compare the DMI field to
739 *
740 * Returns true if the requested field equals to the str (including NULL).
741 */
742bool dmi_match(enum dmi_field f, const char *str)
743{
744	const char *info = dmi_get_system_info(f);
745
746	if (info == NULL || str == NULL)
747		return info == str;
748
749	return !strcmp(info, str);
750}
751EXPORT_SYMBOL_GPL(dmi_match);
v4.6
   1#include <linux/types.h>
   2#include <linux/string.h>
   3#include <linux/init.h>
   4#include <linux/module.h>
   5#include <linux/ctype.h>
   6#include <linux/dmi.h>
   7#include <linux/efi.h>
   8#include <linux/bootmem.h>
   9#include <linux/random.h>
  10#include <asm/dmi.h>
  11#include <asm/unaligned.h>
  12
  13struct kobject *dmi_kobj;
  14EXPORT_SYMBOL_GPL(dmi_kobj);
  15
  16/*
  17 * DMI stands for "Desktop Management Interface".  It is part
  18 * of and an antecedent to, SMBIOS, which stands for System
  19 * Management BIOS.  See further: http://www.dmtf.org/standards
  20 */
  21static const char dmi_empty_string[] = "        ";
  22
  23static u32 dmi_ver __initdata;
  24static u32 dmi_len;
  25static u16 dmi_num;
  26static u8 smbios_entry_point[32];
  27static int smbios_entry_point_size;
  28
  29/*
  30 * Catch too early calls to dmi_check_system():
  31 */
  32static int dmi_initialized;
  33
  34/* DMI system identification string used during boot */
  35static char dmi_ids_string[128] __initdata;
  36
  37static struct dmi_memdev_info {
  38	const char *device;
  39	const char *bank;
  40	u16 handle;
  41} *dmi_memdev;
  42static int dmi_memdev_nr;
  43
  44static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
  45{
  46	const u8 *bp = ((u8 *) dm) + dm->length;
  47
  48	if (s) {
  49		s--;
  50		while (s > 0 && *bp) {
  51			bp += strlen(bp) + 1;
  52			s--;
  53		}
  54
  55		if (*bp != 0) {
  56			size_t len = strlen(bp)+1;
  57			size_t cmp_len = len > 8 ? 8 : len;
  58
  59			if (!memcmp(bp, dmi_empty_string, cmp_len))
  60				return dmi_empty_string;
  61			return bp;
  62		}
  63	}
  64
  65	return "";
  66}
  67
  68static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
  69{
  70	const char *bp = dmi_string_nosave(dm, s);
  71	char *str;
  72	size_t len;
  73
  74	if (bp == dmi_empty_string)
  75		return dmi_empty_string;
  76
  77	len = strlen(bp) + 1;
  78	str = dmi_alloc(len);
  79	if (str != NULL)
  80		strcpy(str, bp);
 
 
  81
  82	return str;
  83}
  84
  85/*
  86 *	We have to be cautious here. We have seen BIOSes with DMI pointers
  87 *	pointing to completely the wrong place for example
  88 */
  89static void dmi_decode_table(u8 *buf,
  90			     void (*decode)(const struct dmi_header *, void *),
  91			     void *private_data)
  92{
  93	u8 *data = buf;
  94	int i = 0;
  95
  96	/*
  97	 * Stop when we have seen all the items the table claimed to have
  98	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
  99	 * >= 3.0 only) OR we run off the end of the table (should never
 100	 * happen but sometimes does on bogus implementations.)
 101	 */
 102	while ((!dmi_num || i < dmi_num) &&
 103	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
 104		const struct dmi_header *dm = (const struct dmi_header *)data;
 105
 106		/*
 107		 *  We want to know the total length (formatted area and
 108		 *  strings) before decoding to make sure we won't run off the
 109		 *  table in dmi_decode or dmi_string
 110		 */
 111		data += dm->length;
 112		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
 113			data++;
 114		if (data - buf < dmi_len - 1)
 115			decode(dm, private_data);
 116
 117		data += 2;
 118		i++;
 119
 120		/*
 121		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
 122		 * For tables behind a 64-bit entry point, we have no item
 123		 * count and no exact table length, so stop on end-of-table
 124		 * marker. For tables behind a 32-bit entry point, we have
 125		 * seen OEM structures behind the end-of-table marker on
 126		 * some systems, so don't trust it.
 127		 */
 128		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
 129			break;
 130	}
 131
 132	/* Trim DMI table length if needed */
 133	if (dmi_len > data - buf)
 134		dmi_len = data - buf;
 135}
 136
 137static phys_addr_t dmi_base;
 
 
 138
 139static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
 140		void *))
 141{
 142	u8 *buf;
 143	u32 orig_dmi_len = dmi_len;
 144
 145	buf = dmi_early_remap(dmi_base, orig_dmi_len);
 146	if (buf == NULL)
 147		return -1;
 148
 149	dmi_decode_table(buf, decode, NULL);
 150
 151	add_device_randomness(buf, dmi_len);
 152
 153	dmi_early_unmap(buf, orig_dmi_len);
 154	return 0;
 155}
 156
 157static int __init dmi_checksum(const u8 *buf, u8 len)
 158{
 159	u8 sum = 0;
 160	int a;
 161
 162	for (a = 0; a < len; a++)
 163		sum += buf[a];
 164
 165	return sum == 0;
 166}
 167
 168static const char *dmi_ident[DMI_STRING_MAX];
 169static LIST_HEAD(dmi_devices);
 170int dmi_available;
 171
 172/*
 173 *	Save a DMI string
 174 */
 175static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
 176		int string)
 177{
 178	const char *d = (const char *) dm;
 179	const char *p;
 180
 181	if (dmi_ident[slot])
 182		return;
 183
 184	p = dmi_string(dm, d[string]);
 185	if (p == NULL)
 186		return;
 187
 188	dmi_ident[slot] = p;
 189}
 190
 191static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
 192		int index)
 193{
 194	const u8 *d = (u8 *) dm + index;
 195	char *s;
 196	int is_ff = 1, is_00 = 1, i;
 197
 198	if (dmi_ident[slot])
 199		return;
 200
 201	for (i = 0; i < 16 && (is_ff || is_00); i++) {
 202		if (d[i] != 0x00)
 203			is_00 = 0;
 204		if (d[i] != 0xFF)
 205			is_ff = 0;
 206	}
 207
 208	if (is_ff || is_00)
 209		return;
 210
 211	s = dmi_alloc(16*2+4+1);
 212	if (!s)
 213		return;
 214
 215	/*
 216	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
 217	 * the UUID are supposed to be little-endian encoded.  The specification
 218	 * says that this is the defacto standard.
 219	 */
 220	if (dmi_ver >= 0x020600)
 221		sprintf(s, "%pUL", d);
 222	else
 223		sprintf(s, "%pUB", d);
 224
 225	dmi_ident[slot] = s;
 226}
 227
 228static void __init dmi_save_type(const struct dmi_header *dm, int slot,
 229		int index)
 230{
 231	const u8 *d = (u8 *) dm + index;
 232	char *s;
 233
 234	if (dmi_ident[slot])
 235		return;
 236
 237	s = dmi_alloc(4);
 238	if (!s)
 239		return;
 240
 241	sprintf(s, "%u", *d & 0x7F);
 242	dmi_ident[slot] = s;
 243}
 244
 245static void __init dmi_save_one_device(int type, const char *name)
 246{
 247	struct dmi_device *dev;
 248
 249	/* No duplicate device */
 250	if (dmi_find_device(type, name, NULL))
 251		return;
 252
 253	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
 254	if (!dev)
 
 255		return;
 
 256
 257	dev->type = type;
 258	strcpy((char *)(dev + 1), name);
 259	dev->name = (char *)(dev + 1);
 260	dev->device_data = NULL;
 261	list_add(&dev->list, &dmi_devices);
 262}
 263
 264static void __init dmi_save_devices(const struct dmi_header *dm)
 265{
 266	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
 267
 268	for (i = 0; i < count; i++) {
 269		const char *d = (char *)(dm + 1) + (i * 2);
 270
 271		/* Skip disabled device */
 272		if ((*d & 0x80) == 0)
 273			continue;
 274
 275		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
 276	}
 277}
 278
 279static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
 280{
 281	int i, count = *(u8 *)(dm + 1);
 282	struct dmi_device *dev;
 283
 284	for (i = 1; i <= count; i++) {
 285		const char *devname = dmi_string(dm, i);
 286
 287		if (devname == dmi_empty_string)
 288			continue;
 289
 290		dev = dmi_alloc(sizeof(*dev));
 291		if (!dev)
 
 
 292			break;
 
 293
 294		dev->type = DMI_DEV_TYPE_OEM_STRING;
 295		dev->name = devname;
 296		dev->device_data = NULL;
 297
 298		list_add(&dev->list, &dmi_devices);
 299	}
 300}
 301
 302static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
 303{
 304	struct dmi_device *dev;
 305	void *data;
 306
 307	data = dmi_alloc(dm->length);
 308	if (data == NULL)
 
 309		return;
 
 310
 311	memcpy(data, dm, dm->length);
 312
 313	dev = dmi_alloc(sizeof(*dev));
 314	if (!dev)
 
 315		return;
 
 316
 317	dev->type = DMI_DEV_TYPE_IPMI;
 318	dev->name = "IPMI controller";
 319	dev->device_data = data;
 320
 321	list_add_tail(&dev->list, &dmi_devices);
 322}
 323
 324static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
 325					int devfn, const char *name, int type)
 326{
 327	struct dmi_dev_onboard *dev;
 328
 329	/* Ignore invalid values */
 330	if (type == DMI_DEV_TYPE_DEV_SLOT &&
 331	    segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
 332		return;
 
 
 
 
 
 333
 334	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
 335	if (!dev)
 336		return;
 
 337
 338	dev->instance = instance;
 339	dev->segment = segment;
 340	dev->bus = bus;
 341	dev->devfn = devfn;
 342
 343	strcpy((char *)&dev[1], name);
 344	dev->dev.type = type;
 345	dev->dev.name = (char *)&dev[1];
 346	dev->dev.device_data = dev;
 347
 348	list_add(&dev->dev.list, &dmi_devices);
 349}
 350
 351static void __init dmi_save_extended_devices(const struct dmi_header *dm)
 352{
 353	const char *name;
 354	const u8 *d = (u8 *)dm;
 355
 356	/* Skip disabled device */
 357	if ((d[0x5] & 0x80) == 0)
 358		return;
 359
 360	name = dmi_string_nosave(dm, d[0x4]);
 361	dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
 362			     DMI_DEV_TYPE_DEV_ONBOARD);
 363	dmi_save_one_device(d[0x5] & 0x7f, name);
 364}
 365
 366static void __init dmi_save_system_slot(const struct dmi_header *dm)
 367{
 368	const u8 *d = (u8 *)dm;
 369
 370	/* Need SMBIOS 2.6+ structure */
 371	if (dm->length < 0x11)
 372		return;
 373	dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
 374			     d[0x10], dmi_string_nosave(dm, d[0x4]),
 375			     DMI_DEV_TYPE_DEV_SLOT);
 376}
 377
 378static void __init count_mem_devices(const struct dmi_header *dm, void *v)
 379{
 380	if (dm->type != DMI_ENTRY_MEM_DEVICE)
 381		return;
 382	dmi_memdev_nr++;
 383}
 384
 385static void __init save_mem_devices(const struct dmi_header *dm, void *v)
 386{
 387	const char *d = (const char *)dm;
 388	static int nr;
 389
 390	if (dm->type != DMI_ENTRY_MEM_DEVICE)
 391		return;
 392	if (nr >= dmi_memdev_nr) {
 393		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
 394		return;
 395	}
 396	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
 397	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
 398	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
 399	nr++;
 400}
 401
 402void __init dmi_memdev_walk(void)
 403{
 404	if (!dmi_available)
 405		return;
 406
 407	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
 408		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
 409		if (dmi_memdev)
 410			dmi_walk_early(save_mem_devices);
 411	}
 412}
 413
 414/*
 415 *	Process a DMI table entry. Right now all we care about are the BIOS
 416 *	and machine entries. For 2.5 we should pull the smbus controller info
 417 *	out of here.
 418 */
 419static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
 420{
 421	switch (dm->type) {
 422	case 0:		/* BIOS Information */
 423		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
 424		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
 425		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
 426		break;
 427	case 1:		/* System Information */
 428		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
 429		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
 430		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
 431		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
 432		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
 433		break;
 434	case 2:		/* Base Board Information */
 435		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
 436		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
 437		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
 438		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
 439		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
 440		break;
 441	case 3:		/* Chassis Information */
 442		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
 443		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
 444		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
 445		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
 446		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
 447		break;
 448	case 9:		/* System Slots */
 449		dmi_save_system_slot(dm);
 450		break;
 451	case 10:	/* Onboard Devices Information */
 452		dmi_save_devices(dm);
 453		break;
 454	case 11:	/* OEM Strings */
 455		dmi_save_oem_strings_devices(dm);
 456		break;
 457	case 38:	/* IPMI Device Information */
 458		dmi_save_ipmi_device(dm);
 459		break;
 460	case 41:	/* Onboard Devices Extended Information */
 461		dmi_save_extended_devices(dm);
 462	}
 463}
 464
 465static int __init print_filtered(char *buf, size_t len, const char *info)
 466{
 467	int c = 0;
 468	const char *p;
 469
 470	if (!info)
 471		return c;
 472
 473	for (p = info; *p; p++)
 474		if (isprint(*p))
 475			c += scnprintf(buf + c, len - c, "%c", *p);
 476		else
 477			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
 478	return c;
 479}
 480
 481static void __init dmi_format_ids(char *buf, size_t len)
 482{
 483	int c = 0;
 484	const char *board;	/* Board Name is optional */
 485
 486	c += print_filtered(buf + c, len - c,
 487			    dmi_get_system_info(DMI_SYS_VENDOR));
 488	c += scnprintf(buf + c, len - c, " ");
 489	c += print_filtered(buf + c, len - c,
 490			    dmi_get_system_info(DMI_PRODUCT_NAME));
 491
 492	board = dmi_get_system_info(DMI_BOARD_NAME);
 493	if (board) {
 494		c += scnprintf(buf + c, len - c, "/");
 495		c += print_filtered(buf + c, len - c, board);
 496	}
 497	c += scnprintf(buf + c, len - c, ", BIOS ");
 498	c += print_filtered(buf + c, len - c,
 499			    dmi_get_system_info(DMI_BIOS_VERSION));
 500	c += scnprintf(buf + c, len - c, " ");
 501	c += print_filtered(buf + c, len - c,
 502			    dmi_get_system_info(DMI_BIOS_DATE));
 503}
 
 
 
 
 
 
 
 
 
 
 504
 505/*
 506 * Check for DMI/SMBIOS headers in the system firmware image.  Any
 507 * SMBIOS header must start 16 bytes before the DMI header, so take a
 508 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
 509 * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
 510 * takes precedence) and return 0.  Otherwise return 1.
 511 */
 512static int __init dmi_present(const u8 *buf)
 513{
 514	u32 smbios_ver;
 515
 516	if (memcmp(buf, "_SM_", 4) == 0 &&
 517	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
 518		smbios_ver = get_unaligned_be16(buf + 6);
 519		smbios_entry_point_size = buf[5];
 520		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
 521
 522		/* Some BIOS report weird SMBIOS version, fix that up */
 523		switch (smbios_ver) {
 524		case 0x021F:
 525		case 0x0221:
 526			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
 527				 smbios_ver & 0xFF, 3);
 528			smbios_ver = 0x0203;
 529			break;
 530		case 0x0233:
 531			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
 532			smbios_ver = 0x0206;
 533			break;
 534		}
 535	} else {
 536		smbios_ver = 0;
 537	}
 538
 539	buf += 16;
 540
 541	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
 542		if (smbios_ver)
 543			dmi_ver = smbios_ver;
 544		else
 545			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
 546		dmi_ver <<= 8;
 547		dmi_num = get_unaligned_le16(buf + 12);
 548		dmi_len = get_unaligned_le16(buf + 6);
 549		dmi_base = get_unaligned_le32(buf + 8);
 550
 551		if (dmi_walk_early(dmi_decode) == 0) {
 552			if (smbios_ver) {
 553				pr_info("SMBIOS %d.%d present.\n",
 554					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
 555			} else {
 556				smbios_entry_point_size = 15;
 557				memcpy(smbios_entry_point, buf,
 558				       smbios_entry_point_size);
 559				pr_info("Legacy DMI %d.%d present.\n",
 560					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
 561			}
 562			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
 563			printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
 564			return 0;
 565		}
 566	}
 567
 568	return 1;
 569}
 570
 571/*
 572 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
 573 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
 574 */
 575static int __init dmi_smbios3_present(const u8 *buf)
 576{
 577	if (memcmp(buf, "_SM3_", 5) == 0 &&
 578	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
 579		dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
 580		dmi_num = 0;			/* No longer specified */
 581		dmi_len = get_unaligned_le32(buf + 12);
 582		dmi_base = get_unaligned_le64(buf + 16);
 583		smbios_entry_point_size = buf[6];
 584		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
 585
 586		if (dmi_walk_early(dmi_decode) == 0) {
 587			pr_info("SMBIOS %d.%d.%d present.\n",
 588				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
 589				dmi_ver & 0xFF);
 590			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
 591			pr_debug("DMI: %s\n", dmi_ids_string);
 592			return 0;
 593		}
 594	}
 595	return 1;
 596}
 597
 598void __init dmi_scan_machine(void)
 599{
 600	char __iomem *p, *q;
 601	char buf[32];
 602
 603	if (efi_enabled(EFI_CONFIG_TABLES)) {
 604		/*
 605		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
 606		 * allowed to define both the 64-bit entry point (smbios3) and
 607		 * the 32-bit entry point (smbios), in which case they should
 608		 * either both point to the same SMBIOS structure table, or the
 609		 * table pointed to by the 64-bit entry point should contain a
 610		 * superset of the table contents pointed to by the 32-bit entry
 611		 * point (section 5.2)
 612		 * This implies that the 64-bit entry point should have
 613		 * precedence if it is defined and supported by the OS. If we
 614		 * have the 64-bit entry point, but fail to decode it, fall
 615		 * back to the legacy one (if available)
 616		 */
 617		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
 618			p = dmi_early_remap(efi.smbios3, 32);
 619			if (p == NULL)
 620				goto error;
 621			memcpy_fromio(buf, p, 32);
 622			dmi_early_unmap(p, 32);
 623
 624			if (!dmi_smbios3_present(buf)) {
 625				dmi_available = 1;
 626				goto out;
 627			}
 628		}
 629		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
 630			goto error;
 631
 632		/* This is called as a core_initcall() because it isn't
 633		 * needed during early boot.  This also means we can
 634		 * iounmap the space when we're done with it.
 635		 */
 636		p = dmi_early_remap(efi.smbios, 32);
 637		if (p == NULL)
 638			goto error;
 639		memcpy_fromio(buf, p, 32);
 640		dmi_early_unmap(p, 32);
 641
 642		if (!dmi_present(buf)) {
 
 
 643			dmi_available = 1;
 644			goto out;
 645		}
 646	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
 647		p = dmi_early_remap(0xF0000, 0x10000);
 
 
 
 
 
 
 648		if (p == NULL)
 649			goto error;
 650
 651		/*
 652		 * Iterate over all possible DMI header addresses q.
 653		 * Maintain the 32 bytes around q in buf.  On the
 654		 * first iteration, substitute zero for the
 655		 * out-of-range bytes so there is no chance of falsely
 656		 * detecting an SMBIOS header.
 657		 */
 658		memset(buf, 0, 16);
 659		for (q = p; q < p + 0x10000; q += 16) {
 660			memcpy_fromio(buf + 16, q, 16);
 661			if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
 662				dmi_available = 1;
 663				dmi_early_unmap(p, 0x10000);
 664				goto out;
 665			}
 666			memcpy(buf, buf + 16, 16);
 667		}
 668		dmi_early_unmap(p, 0x10000);
 669	}
 670 error:
 671	pr_info("DMI not present or invalid.\n");
 672 out:
 673	dmi_initialized = 1;
 674}
 675
 676static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
 677			      struct bin_attribute *attr, char *buf,
 678			      loff_t pos, size_t count)
 679{
 680	memcpy(buf, attr->private + pos, count);
 681	return count;
 682}
 683
 684static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
 685static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
 686
 687static int __init dmi_init(void)
 688{
 689	struct kobject *tables_kobj;
 690	u8 *dmi_table;
 691	int ret = -ENOMEM;
 692
 693	if (!dmi_available) {
 694		ret = -ENODATA;
 695		goto err;
 696	}
 697
 698	/*
 699	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
 700	 * even after farther error, as it can be used by other modules like
 701	 * dmi-sysfs.
 702	 */
 703	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
 704	if (!dmi_kobj)
 705		goto err;
 706
 707	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
 708	if (!tables_kobj)
 709		goto err;
 710
 711	dmi_table = dmi_remap(dmi_base, dmi_len);
 712	if (!dmi_table)
 713		goto err_tables;
 714
 715	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
 716	bin_attr_smbios_entry_point.private = smbios_entry_point;
 717	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
 718	if (ret)
 719		goto err_unmap;
 720
 721	bin_attr_DMI.size = dmi_len;
 722	bin_attr_DMI.private = dmi_table;
 723	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
 724	if (!ret)
 725		return 0;
 726
 727	sysfs_remove_bin_file(tables_kobj,
 728			      &bin_attr_smbios_entry_point);
 729 err_unmap:
 730	dmi_unmap(dmi_table);
 731 err_tables:
 732	kobject_del(tables_kobj);
 733	kobject_put(tables_kobj);
 734 err:
 735	pr_err("dmi: Firmware registration failed.\n");
 736
 737	return ret;
 738}
 739subsys_initcall(dmi_init);
 740
 741/**
 742 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
 743 *
 744 * Invoke dump_stack_set_arch_desc() with DMI system information so that
 745 * DMI identifiers are printed out on task dumps.  Arch boot code should
 746 * call this function after dmi_scan_machine() if it wants to print out DMI
 747 * identifiers on task dumps.
 748 */
 749void __init dmi_set_dump_stack_arch_desc(void)
 750{
 751	dump_stack_set_arch_desc("%s", dmi_ids_string);
 752}
 753
 754/**
 755 *	dmi_matches - check if dmi_system_id structure matches system DMI data
 756 *	@dmi: pointer to the dmi_system_id structure to check
 757 */
 758static bool dmi_matches(const struct dmi_system_id *dmi)
 759{
 760	int i;
 761
 762	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
 763
 764	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
 765		int s = dmi->matches[i].slot;
 766		if (s == DMI_NONE)
 767			break;
 768		if (dmi_ident[s]) {
 769			if (!dmi->matches[i].exact_match &&
 770			    strstr(dmi_ident[s], dmi->matches[i].substr))
 771				continue;
 772			else if (dmi->matches[i].exact_match &&
 773				 !strcmp(dmi_ident[s], dmi->matches[i].substr))
 774				continue;
 775		}
 776
 777		/* No match */
 778		return false;
 779	}
 780	return true;
 781}
 782
 783/**
 784 *	dmi_is_end_of_table - check for end-of-table marker
 785 *	@dmi: pointer to the dmi_system_id structure to check
 786 */
 787static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
 788{
 789	return dmi->matches[0].slot == DMI_NONE;
 790}
 791
 792/**
 793 *	dmi_check_system - check system DMI data
 794 *	@list: array of dmi_system_id structures to match against
 795 *		All non-null elements of the list must match
 796 *		their slot's (field index's) data (i.e., each
 797 *		list string must be a substring of the specified
 798 *		DMI slot's string data) to be considered a
 799 *		successful match.
 800 *
 801 *	Walk the blacklist table running matching functions until someone
 802 *	returns non zero or we hit the end. Callback function is called for
 803 *	each successful match. Returns the number of matches.
 804 */
 805int dmi_check_system(const struct dmi_system_id *list)
 806{
 807	int count = 0;
 808	const struct dmi_system_id *d;
 809
 810	for (d = list; !dmi_is_end_of_table(d); d++)
 811		if (dmi_matches(d)) {
 812			count++;
 813			if (d->callback && d->callback(d))
 814				break;
 815		}
 816
 817	return count;
 818}
 819EXPORT_SYMBOL(dmi_check_system);
 820
 821/**
 822 *	dmi_first_match - find dmi_system_id structure matching system DMI data
 823 *	@list: array of dmi_system_id structures to match against
 824 *		All non-null elements of the list must match
 825 *		their slot's (field index's) data (i.e., each
 826 *		list string must be a substring of the specified
 827 *		DMI slot's string data) to be considered a
 828 *		successful match.
 829 *
 830 *	Walk the blacklist table until the first match is found.  Return the
 831 *	pointer to the matching entry or NULL if there's no match.
 832 */
 833const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
 834{
 835	const struct dmi_system_id *d;
 836
 837	for (d = list; !dmi_is_end_of_table(d); d++)
 838		if (dmi_matches(d))
 839			return d;
 840
 841	return NULL;
 842}
 843EXPORT_SYMBOL(dmi_first_match);
 844
 845/**
 846 *	dmi_get_system_info - return DMI data value
 847 *	@field: data index (see enum dmi_field)
 848 *
 849 *	Returns one DMI data value, can be used to perform
 850 *	complex DMI data checks.
 851 */
 852const char *dmi_get_system_info(int field)
 853{
 854	return dmi_ident[field];
 855}
 856EXPORT_SYMBOL(dmi_get_system_info);
 857
 858/**
 859 * dmi_name_in_serial - Check if string is in the DMI product serial information
 860 * @str: string to check for
 861 */
 862int dmi_name_in_serial(const char *str)
 863{
 864	int f = DMI_PRODUCT_SERIAL;
 865	if (dmi_ident[f] && strstr(dmi_ident[f], str))
 866		return 1;
 867	return 0;
 868}
 869
 870/**
 871 *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
 872 *	@str: Case sensitive Name
 873 */
 874int dmi_name_in_vendors(const char *str)
 875{
 876	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
 
 
 877	int i;
 878	for (i = 0; fields[i] != DMI_NONE; i++) {
 879		int f = fields[i];
 880		if (dmi_ident[f] && strstr(dmi_ident[f], str))
 881			return 1;
 882	}
 883	return 0;
 884}
 885EXPORT_SYMBOL(dmi_name_in_vendors);
 886
 887/**
 888 *	dmi_find_device - find onboard device by type/name
 889 *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
 890 *	@name: device name string or %NULL to match all
 891 *	@from: previous device found in search, or %NULL for new search.
 892 *
 893 *	Iterates through the list of known onboard devices. If a device is
 894 *	found with a matching @type and @name, a pointer to its device
 895 *	structure is returned.  Otherwise, %NULL is returned.
 896 *	A new search is initiated by passing %NULL as the @from argument.
 897 *	If @from is not %NULL, searches continue from next device.
 898 */
 899const struct dmi_device *dmi_find_device(int type, const char *name,
 900				    const struct dmi_device *from)
 901{
 902	const struct list_head *head = from ? &from->list : &dmi_devices;
 903	struct list_head *d;
 904
 905	for (d = head->next; d != &dmi_devices; d = d->next) {
 906		const struct dmi_device *dev =
 907			list_entry(d, struct dmi_device, list);
 908
 909		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
 910		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
 911			return dev;
 912	}
 913
 914	return NULL;
 915}
 916EXPORT_SYMBOL(dmi_find_device);
 917
 918/**
 919 *	dmi_get_date - parse a DMI date
 920 *	@field:	data index (see enum dmi_field)
 921 *	@yearp: optional out parameter for the year
 922 *	@monthp: optional out parameter for the month
 923 *	@dayp: optional out parameter for the day
 924 *
 925 *	The date field is assumed to be in the form resembling
 926 *	[mm[/dd]]/yy[yy] and the result is stored in the out
 927 *	parameters any or all of which can be omitted.
 928 *
 929 *	If the field doesn't exist, all out parameters are set to zero
 930 *	and false is returned.  Otherwise, true is returned with any
 931 *	invalid part of date set to zero.
 932 *
 933 *	On return, year, month and day are guaranteed to be in the
 934 *	range of [0,9999], [0,12] and [0,31] respectively.
 935 */
 936bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
 937{
 938	int year = 0, month = 0, day = 0;
 939	bool exists;
 940	const char *s, *y;
 941	char *e;
 942
 943	s = dmi_get_system_info(field);
 944	exists = s;
 945	if (!exists)
 946		goto out;
 947
 948	/*
 949	 * Determine year first.  We assume the date string resembles
 950	 * mm/dd/yy[yy] but the original code extracted only the year
 951	 * from the end.  Keep the behavior in the spirit of no
 952	 * surprises.
 953	 */
 954	y = strrchr(s, '/');
 955	if (!y)
 956		goto out;
 957
 958	y++;
 959	year = simple_strtoul(y, &e, 10);
 960	if (y != e && year < 100) {	/* 2-digit year */
 961		year += 1900;
 962		if (year < 1996)	/* no dates < spec 1.0 */
 963			year += 100;
 964	}
 965	if (year > 9999)		/* year should fit in %04d */
 966		year = 0;
 967
 968	/* parse the mm and dd */
 969	month = simple_strtoul(s, &e, 10);
 970	if (s == e || *e != '/' || !month || month > 12) {
 971		month = 0;
 972		goto out;
 973	}
 974
 975	s = e + 1;
 976	day = simple_strtoul(s, &e, 10);
 977	if (s == y || s == e || *e != '/' || day > 31)
 978		day = 0;
 979out:
 980	if (yearp)
 981		*yearp = year;
 982	if (monthp)
 983		*monthp = month;
 984	if (dayp)
 985		*dayp = day;
 986	return exists;
 987}
 988EXPORT_SYMBOL(dmi_get_date);
 989
 990/**
 991 *	dmi_walk - Walk the DMI table and get called back for every record
 992 *	@decode: Callback function
 993 *	@private_data: Private data to be passed to the callback function
 994 *
 995 *	Returns -1 when the DMI table can't be reached, 0 on success.
 996 */
 997int dmi_walk(void (*decode)(const struct dmi_header *, void *),
 998	     void *private_data)
 999{
1000	u8 *buf;
1001
1002	if (!dmi_available)
1003		return -1;
1004
1005	buf = dmi_remap(dmi_base, dmi_len);
1006	if (buf == NULL)
1007		return -1;
1008
1009	dmi_decode_table(buf, decode, private_data);
1010
1011	dmi_unmap(buf);
1012	return 0;
1013}
1014EXPORT_SYMBOL_GPL(dmi_walk);
1015
1016/**
1017 * dmi_match - compare a string to the dmi field (if exists)
1018 * @f: DMI field identifier
1019 * @str: string to compare the DMI field to
1020 *
1021 * Returns true if the requested field equals to the str (including NULL).
1022 */
1023bool dmi_match(enum dmi_field f, const char *str)
1024{
1025	const char *info = dmi_get_system_info(f);
1026
1027	if (info == NULL || str == NULL)
1028		return info == str;
1029
1030	return !strcmp(info, str);
1031}
1032EXPORT_SYMBOL_GPL(dmi_match);
1033
1034void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1035{
1036	int n;
1037
1038	if (dmi_memdev == NULL)
1039		return;
1040
1041	for (n = 0; n < dmi_memdev_nr; n++) {
1042		if (handle == dmi_memdev[n].handle) {
1043			*bank = dmi_memdev[n].bank;
1044			*device = dmi_memdev[n].device;
1045			break;
1046		}
1047	}
1048}
1049EXPORT_SYMBOL_GPL(dmi_memdev_name);