Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2020 - 2022, NVIDIA CORPORATION. All rights reserved
  4 */
  5
  6#include <linux/cpu.h>
  7#include <linux/cpufreq.h>
  8#include <linux/dma-mapping.h>
  9#include <linux/module.h>
 10#include <linux/of.h>
 11#include <linux/of_platform.h>
 12#include <linux/platform_device.h>
 13#include <linux/slab.h>
 14#include <linux/units.h>
 15
 16#include <asm/smp_plat.h>
 17
 18#include <soc/tegra/bpmp.h>
 19#include <soc/tegra/bpmp-abi.h>
 20
 21#define KHZ                     1000
 22#define REF_CLK_MHZ             408 /* 408 MHz */
 23#define CPUFREQ_TBL_STEP_HZ     (50 * KHZ * KHZ)
 24#define MAX_CNT                 ~0U
 25
 26#define MAX_DELTA_KHZ          115200
 27
 28#define NDIV_MASK              0x1FF
 29
 30#define CORE_OFFSET(cpu)			(cpu * 8)
 31#define CMU_CLKS_BASE				0x2000
 32#define SCRATCH_FREQ_CORE_REG(data, cpu)	(data->regs + CMU_CLKS_BASE + CORE_OFFSET(cpu))
 33
 34#define MMCRAB_CLUSTER_BASE(cl)			(0x30000 + (cl * 0x10000))
 35#define CLUSTER_ACTMON_BASE(data, cl) \
 36			(data->regs + (MMCRAB_CLUSTER_BASE(cl) + data->soc->actmon_cntr_base))
 37#define CORE_ACTMON_CNTR_REG(data, cl, cpu)	(CLUSTER_ACTMON_BASE(data, cl) + CORE_OFFSET(cpu))
 38
 39/* cpufreq transisition latency */
 40#define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */
 41
 42struct tegra_cpu_data {
 43	u32 cpuid;
 44	u32 clusterid;
 45	void __iomem *freq_core_reg;
 46};
 47
 48struct tegra_cpu_ctr {
 49	u32 cpu;
 50	u32 coreclk_cnt, last_coreclk_cnt;
 51	u32 refclk_cnt, last_refclk_cnt;
 52};
 53
 54struct read_counters_work {
 55	struct work_struct work;
 56	struct tegra_cpu_ctr c;
 57};
 58
 59struct tegra_cpufreq_ops {
 60	void (*read_counters)(struct tegra_cpu_ctr *c);
 61	void (*set_cpu_ndiv)(struct cpufreq_policy *policy, u64 ndiv);
 62	void (*get_cpu_cluster_id)(u32 cpu, u32 *cpuid, u32 *clusterid);
 63	int (*get_cpu_ndiv)(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv);
 64};
 65
 66struct tegra_cpufreq_soc {
 67	struct tegra_cpufreq_ops *ops;
 68	int maxcpus_per_cluster;
 69	unsigned int num_clusters;
 70	phys_addr_t actmon_cntr_base;
 71	u32 refclk_delta_min;
 72};
 73
 74struct tegra194_cpufreq_data {
 75	void __iomem *regs;
 76	struct cpufreq_frequency_table **bpmp_luts;
 77	const struct tegra_cpufreq_soc *soc;
 78	bool icc_dram_bw_scaling;
 79	struct tegra_cpu_data *cpu_data;
 80};
 81
 82static struct workqueue_struct *read_counters_wq;
 83
 84static int tegra_cpufreq_set_bw(struct cpufreq_policy *policy, unsigned long freq_khz)
 85{
 86	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
 87	struct dev_pm_opp *opp;
 88	struct device *dev;
 89	int ret;
 90
 91	dev = get_cpu_device(policy->cpu);
 92	if (!dev)
 93		return -ENODEV;
 94
 95	opp = dev_pm_opp_find_freq_exact(dev, freq_khz * KHZ, true);
 96	if (IS_ERR(opp))
 97		return PTR_ERR(opp);
 98
 99	ret = dev_pm_opp_set_opp(dev, opp);
100	if (ret)
101		data->icc_dram_bw_scaling = false;
102
103	dev_pm_opp_put(opp);
104	return ret;
105}
106
107static void tegra_get_cpu_mpidr(void *mpidr)
108{
109	*((u64 *)mpidr) = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
110}
111
112static void tegra234_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid)
113{
114	u64 mpidr;
115
116	smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true);
117
118	if (cpuid)
119		*cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
120	if (clusterid)
121		*clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 2);
122}
123
124static int tegra234_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv)
125{
126	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
127
128	*ndiv = readl(data->cpu_data[cpu].freq_core_reg) & NDIV_MASK;
129
130	return 0;
131}
132
133static void tegra234_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv)
134{
135	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
136	u32 cpu;
137
138	for_each_cpu(cpu, policy->cpus)
139		writel(ndiv, data->cpu_data[cpu].freq_core_reg);
140}
141
142/*
143 * This register provides access to two counter values with a single
144 * 64-bit read. The counter values are used to determine the average
145 * actual frequency a core has run at over a period of time.
146 *     [63:32] PLLP counter: Counts at fixed frequency (408 MHz)
147 *     [31:0] Core clock counter: Counts on every core clock cycle
148 */
149static void tegra234_read_counters(struct tegra_cpu_ctr *c)
150{
151	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
152	void __iomem *actmon_reg;
153	u32 delta_refcnt;
154	int cnt = 0;
155	u64 val;
156
157	actmon_reg = CORE_ACTMON_CNTR_REG(data, data->cpu_data[c->cpu].clusterid,
158					  data->cpu_data[c->cpu].cpuid);
159
160	val = readq(actmon_reg);
161	c->last_refclk_cnt = upper_32_bits(val);
162	c->last_coreclk_cnt = lower_32_bits(val);
163
164	/*
165	 * The sampling window is based on the minimum number of reference
166	 * clock cycles which is known to give a stable value of CPU frequency.
167	 */
168	do {
169		val = readq(actmon_reg);
170		c->refclk_cnt = upper_32_bits(val);
171		c->coreclk_cnt = lower_32_bits(val);
172		if (c->refclk_cnt < c->last_refclk_cnt)
173			delta_refcnt = c->refclk_cnt + (MAX_CNT - c->last_refclk_cnt);
174		else
175			delta_refcnt = c->refclk_cnt - c->last_refclk_cnt;
176		if (++cnt >= 0xFFFF) {
177			pr_warn("cpufreq: problem with refclk on cpu:%d, delta_refcnt:%u, cnt:%d\n",
178				c->cpu, delta_refcnt, cnt);
179			break;
180		}
181	} while (delta_refcnt < data->soc->refclk_delta_min);
182}
183
184static struct tegra_cpufreq_ops tegra234_cpufreq_ops = {
185	.read_counters = tegra234_read_counters,
186	.get_cpu_cluster_id = tegra234_get_cpu_cluster_id,
187	.get_cpu_ndiv = tegra234_get_cpu_ndiv,
188	.set_cpu_ndiv = tegra234_set_cpu_ndiv,
189};
190
191static const struct tegra_cpufreq_soc tegra234_cpufreq_soc = {
192	.ops = &tegra234_cpufreq_ops,
193	.actmon_cntr_base = 0x9000,
194	.maxcpus_per_cluster = 4,
195	.num_clusters = 3,
196	.refclk_delta_min = 16000,
197};
198
199static const struct tegra_cpufreq_soc tegra239_cpufreq_soc = {
200	.ops = &tegra234_cpufreq_ops,
201	.actmon_cntr_base = 0x4000,
202	.maxcpus_per_cluster = 8,
203	.num_clusters = 1,
204	.refclk_delta_min = 16000,
205};
206
207static void tegra194_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid)
208{
209	u64 mpidr;
210
211	smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true);
212
213	if (cpuid)
214		*cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 0);
215	if (clusterid)
216		*clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
217}
218
219/*
220 * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1.
221 * The register provides frequency feedback information to
222 * determine the average actual frequency a core has run at over
223 * a period of time.
224 *	[31:0] PLLP counter: Counts at fixed frequency (408 MHz)
225 *	[63:32] Core clock counter: counts on every core clock cycle
226 *			where the core is architecturally clocking
227 */
228static u64 read_freq_feedback(void)
229{
230	u64 val = 0;
231
232	asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : );
233
234	return val;
235}
236
237static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response
238				   *nltbl, u16 ndiv)
239{
240	return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv);
241}
242
243static void tegra194_read_counters(struct tegra_cpu_ctr *c)
244{
245	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
246	u32 delta_refcnt;
247	int cnt = 0;
248	u64 val;
249
250	val = read_freq_feedback();
251	c->last_refclk_cnt = lower_32_bits(val);
252	c->last_coreclk_cnt = upper_32_bits(val);
253
254	/*
255	 * The sampling window is based on the minimum number of reference
256	 * clock cycles which is known to give a stable value of CPU frequency.
257	 */
258	do {
259		val = read_freq_feedback();
260		c->refclk_cnt = lower_32_bits(val);
261		c->coreclk_cnt = upper_32_bits(val);
262		if (c->refclk_cnt < c->last_refclk_cnt)
263			delta_refcnt = c->refclk_cnt + (MAX_CNT - c->last_refclk_cnt);
264		else
265			delta_refcnt = c->refclk_cnt - c->last_refclk_cnt;
266		if (++cnt >= 0xFFFF) {
267			pr_warn("cpufreq: problem with refclk on cpu:%d, delta_refcnt:%u, cnt:%d\n",
268				c->cpu, delta_refcnt, cnt);
269			break;
270		}
271	} while (delta_refcnt < data->soc->refclk_delta_min);
272}
273
274static void tegra_read_counters(struct work_struct *work)
275{
276	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
277	struct read_counters_work *read_counters_work;
278	struct tegra_cpu_ctr *c;
279
280	/*
281	 * ref_clk_counter(32 bit counter) runs on constant clk,
282	 * pll_p(408MHz).
283	 * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter
284	 *              = 10526880 usec = 10.527 sec to overflow
285	 *
286	 * Like wise core_clk_counter(32 bit counter) runs on core clock.
287	 * It's synchronized to crab_clk (cpu_crab_clk) which runs at
288	 * freq of cluster. Assuming max cluster clock ~2000MHz,
289	 * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter
290	 *              = ~2.147 sec to overflow
291	 */
292	read_counters_work = container_of(work, struct read_counters_work,
293					  work);
294	c = &read_counters_work->c;
295
296	data->soc->ops->read_counters(c);
297}
298
299/*
300 * Return instantaneous cpu speed
301 * Instantaneous freq is calculated as -
302 * -Takes sample on every query of getting the freq.
303 *	- Read core and ref clock counters;
304 *	- Delay for X us
305 *	- Read above cycle counters again
306 *	- Calculates freq by subtracting current and previous counters
307 *	  divided by the delay time or eqv. of ref_clk_counter in delta time
308 *	- Return Kcycles/second, freq in KHz
309 *
310 *	delta time period = x sec
311 *			  = delta ref_clk_counter / (408 * 10^6) sec
312 *	freq in Hz = cycles/sec
313 *		   = (delta cycles / x sec
314 *		   = (delta cycles * 408 * 10^6) / delta ref_clk_counter
315 *	in KHz	   = (delta cycles * 408 * 10^3) / delta ref_clk_counter
316 *
317 * @cpu - logical cpu whose freq to be updated
318 * Returns freq in KHz on success, 0 if cpu is offline
319 */
320static unsigned int tegra194_calculate_speed(u32 cpu)
321{
322	struct read_counters_work read_counters_work;
323	struct tegra_cpu_ctr c;
324	u32 delta_refcnt;
325	u32 delta_ccnt;
326	u32 rate_mhz;
327
328	/*
329	 * Reconstruct cpu frequency over an observation/sampling window.
330	 * Using workqueue to keep interrupts enabled during the interval.
331	 */
332	read_counters_work.c.cpu = cpu;
333	INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters);
334	queue_work_on(cpu, read_counters_wq, &read_counters_work.work);
335	flush_work(&read_counters_work.work);
336	c = read_counters_work.c;
337
338	if (c.coreclk_cnt < c.last_coreclk_cnt)
339		delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt);
340	else
341		delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt;
342	if (!delta_ccnt)
343		return 0;
344
345	/* ref clock is 32 bits */
346	if (c.refclk_cnt < c.last_refclk_cnt)
347		delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt);
348	else
349		delta_refcnt = c.refclk_cnt - c.last_refclk_cnt;
350	if (!delta_refcnt) {
351		pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu);
352		return 0;
353	}
354	rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt;
355
356	return (rate_mhz * KHZ); /* in KHz */
357}
358
359static void tegra194_get_cpu_ndiv_sysreg(void *ndiv)
360{
361	u64 ndiv_val;
362
363	asm volatile("mrs %0, s3_0_c15_c0_4" : "=r" (ndiv_val) : );
364
365	*(u64 *)ndiv = ndiv_val;
366}
367
368static int tegra194_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv)
369{
370	return smp_call_function_single(cpu, tegra194_get_cpu_ndiv_sysreg, &ndiv, true);
371}
372
373static void tegra194_set_cpu_ndiv_sysreg(void *data)
374{
375	u64 ndiv_val = *(u64 *)data;
376
377	asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val));
378}
379
380static void tegra194_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv)
381{
382	on_each_cpu_mask(policy->cpus, tegra194_set_cpu_ndiv_sysreg, &ndiv, true);
383}
384
385static unsigned int tegra194_get_speed(u32 cpu)
386{
387	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
388	u32 clusterid = data->cpu_data[cpu].clusterid;
389	struct cpufreq_frequency_table *pos;
390	unsigned int rate;
391	u64 ndiv;
392	int ret;
393
394	/* reconstruct actual cpu freq using counters */
395	rate = tegra194_calculate_speed(cpu);
396
397	/* get last written ndiv value */
398	ret = data->soc->ops->get_cpu_ndiv(cpu, data->cpu_data[cpu].cpuid, clusterid, &ndiv);
399	if (WARN_ON_ONCE(ret))
400		return rate;
401
402	/*
403	 * If the reconstructed frequency has acceptable delta from
404	 * the last written value, then return freq corresponding
405	 * to the last written ndiv value from freq_table. This is
406	 * done to return consistent value.
407	 */
408	cpufreq_for_each_valid_entry(pos, data->bpmp_luts[clusterid]) {
409		if (pos->driver_data != ndiv)
410			continue;
411
412		if (abs(pos->frequency - rate) > MAX_DELTA_KHZ) {
413			pr_warn("cpufreq: cpu%d,cur:%u,set:%u,delta:%d,set ndiv:%llu\n",
414				cpu, rate, pos->frequency, abs(rate - pos->frequency), ndiv);
415		} else {
416			rate = pos->frequency;
417		}
418		break;
419	}
420	return rate;
421}
422
423static int tegra_cpufreq_init_cpufreq_table(struct cpufreq_policy *policy,
424					    struct cpufreq_frequency_table *bpmp_lut,
425					    struct cpufreq_frequency_table **opp_table)
426{
427	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
428	struct cpufreq_frequency_table *freq_table = NULL;
429	struct cpufreq_frequency_table *pos;
430	struct device *cpu_dev;
431	struct dev_pm_opp *opp;
432	unsigned long rate;
433	int ret, max_opps;
434	int j = 0;
435
436	cpu_dev = get_cpu_device(policy->cpu);
437	if (!cpu_dev) {
438		pr_err("%s: failed to get cpu%d device\n", __func__, policy->cpu);
439		return -ENODEV;
440	}
441
442	/* Initialize OPP table mentioned in operating-points-v2 property in DT */
443	ret = dev_pm_opp_of_add_table_indexed(cpu_dev, 0);
444	if (!ret) {
445		max_opps = dev_pm_opp_get_opp_count(cpu_dev);
446		if (max_opps <= 0) {
447			dev_err(cpu_dev, "Failed to add OPPs\n");
448			return max_opps;
449		}
450
451		/* Disable all opps and cross-validate against LUT later */
452		for (rate = 0; ; rate++) {
453			opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
454			if (IS_ERR(opp))
455				break;
456
457			dev_pm_opp_put(opp);
458			dev_pm_opp_disable(cpu_dev, rate);
459		}
460	} else {
461		dev_err(cpu_dev, "Invalid or empty opp table in device tree\n");
462		data->icc_dram_bw_scaling = false;
463		return ret;
464	}
465
466	freq_table = kcalloc((max_opps + 1), sizeof(*freq_table), GFP_KERNEL);
467	if (!freq_table)
468		return -ENOMEM;
469
470	/*
471	 * Cross check the frequencies from BPMP-FW LUT against the OPP's present in DT.
472	 * Enable only those DT OPP's which are present in LUT also.
473	 */
474	cpufreq_for_each_valid_entry(pos, bpmp_lut) {
475		opp = dev_pm_opp_find_freq_exact(cpu_dev, pos->frequency * KHZ, false);
476		if (IS_ERR(opp))
477			continue;
478
479		dev_pm_opp_put(opp);
480
481		ret = dev_pm_opp_enable(cpu_dev, pos->frequency * KHZ);
482		if (ret < 0)
483			return ret;
484
485		freq_table[j].driver_data = pos->driver_data;
486		freq_table[j].frequency = pos->frequency;
487		j++;
488	}
489
490	freq_table[j].driver_data = pos->driver_data;
491	freq_table[j].frequency = CPUFREQ_TABLE_END;
492
493	*opp_table = &freq_table[0];
494
495	dev_pm_opp_set_sharing_cpus(cpu_dev, policy->cpus);
496
497	return ret;
498}
499
500static int tegra194_cpufreq_init(struct cpufreq_policy *policy)
501{
502	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
503	int maxcpus_per_cluster = data->soc->maxcpus_per_cluster;
504	u32 clusterid = data->cpu_data[policy->cpu].clusterid;
505	struct cpufreq_frequency_table *freq_table;
506	struct cpufreq_frequency_table *bpmp_lut;
507	u32 start_cpu, cpu;
508	int ret;
509
510	if (clusterid >= data->soc->num_clusters || !data->bpmp_luts[clusterid])
511		return -EINVAL;
512
513	start_cpu = rounddown(policy->cpu, maxcpus_per_cluster);
514	/* set same policy for all cpus in a cluster */
515	for (cpu = start_cpu; cpu < (start_cpu + maxcpus_per_cluster); cpu++) {
516		if (cpu_possible(cpu))
517			cpumask_set_cpu(cpu, policy->cpus);
518	}
519	policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY;
520
521	bpmp_lut = data->bpmp_luts[clusterid];
522
523	if (data->icc_dram_bw_scaling) {
524		ret = tegra_cpufreq_init_cpufreq_table(policy, bpmp_lut, &freq_table);
525		if (!ret) {
526			policy->freq_table = freq_table;
527			return 0;
528		}
529	}
530
531	data->icc_dram_bw_scaling = false;
532	policy->freq_table = bpmp_lut;
533	pr_info("OPP tables missing from DT, EMC frequency scaling disabled\n");
534
535	return 0;
536}
537
538static int tegra194_cpufreq_online(struct cpufreq_policy *policy)
539{
540	/* We did light-weight tear down earlier, nothing to do here */
541	return 0;
542}
543
544static int tegra194_cpufreq_offline(struct cpufreq_policy *policy)
545{
546	/*
547	 * Preserve policy->driver_data and don't free resources on light-weight
548	 * tear down.
549	 */
550
551	return 0;
552}
553
554static int tegra194_cpufreq_exit(struct cpufreq_policy *policy)
555{
556	struct device *cpu_dev = get_cpu_device(policy->cpu);
557
558	dev_pm_opp_remove_all_dynamic(cpu_dev);
559	dev_pm_opp_of_cpumask_remove_table(policy->related_cpus);
560
561	return 0;
562}
563
564static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy,
565				       unsigned int index)
566{
567	struct cpufreq_frequency_table *tbl = policy->freq_table + index;
568	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
569
570	/*
571	 * Each core writes frequency in per core register. Then both cores
572	 * in a cluster run at same frequency which is the maximum frequency
573	 * request out of the values requested by both cores in that cluster.
574	 */
575	data->soc->ops->set_cpu_ndiv(policy, (u64)tbl->driver_data);
576
577	if (data->icc_dram_bw_scaling)
578		tegra_cpufreq_set_bw(policy, tbl->frequency);
579
580	return 0;
581}
582
583static struct cpufreq_driver tegra194_cpufreq_driver = {
584	.name = "tegra194",
585	.flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_INITIAL_FREQ_CHECK |
586		 CPUFREQ_IS_COOLING_DEV,
587	.verify = cpufreq_generic_frequency_table_verify,
588	.target_index = tegra194_cpufreq_set_target,
589	.get = tegra194_get_speed,
590	.init = tegra194_cpufreq_init,
591	.exit = tegra194_cpufreq_exit,
592	.online = tegra194_cpufreq_online,
593	.offline = tegra194_cpufreq_offline,
594	.attr = cpufreq_generic_attr,
595};
596
597static struct tegra_cpufreq_ops tegra194_cpufreq_ops = {
598	.read_counters = tegra194_read_counters,
599	.get_cpu_cluster_id = tegra194_get_cpu_cluster_id,
600	.get_cpu_ndiv = tegra194_get_cpu_ndiv,
601	.set_cpu_ndiv = tegra194_set_cpu_ndiv,
602};
603
604static const struct tegra_cpufreq_soc tegra194_cpufreq_soc = {
605	.ops = &tegra194_cpufreq_ops,
606	.maxcpus_per_cluster = 2,
607	.num_clusters = 4,
608	.refclk_delta_min = 16000,
609};
610
611static void tegra194_cpufreq_free_resources(void)
612{
613	destroy_workqueue(read_counters_wq);
614}
615
616static struct cpufreq_frequency_table *
617tegra_cpufreq_bpmp_read_lut(struct platform_device *pdev, struct tegra_bpmp *bpmp,
618			    unsigned int cluster_id)
619{
620	struct cpufreq_frequency_table *freq_table;
621	struct mrq_cpu_ndiv_limits_response resp;
622	unsigned int num_freqs, ndiv, delta_ndiv;
623	struct mrq_cpu_ndiv_limits_request req;
624	struct tegra_bpmp_message msg;
625	u16 freq_table_step_size;
626	int err, index;
627
628	memset(&req, 0, sizeof(req));
629	req.cluster_id = cluster_id;
630
631	memset(&msg, 0, sizeof(msg));
632	msg.mrq = MRQ_CPU_NDIV_LIMITS;
633	msg.tx.data = &req;
634	msg.tx.size = sizeof(req);
635	msg.rx.data = &resp;
636	msg.rx.size = sizeof(resp);
637
638	err = tegra_bpmp_transfer(bpmp, &msg);
639	if (err)
640		return ERR_PTR(err);
641	if (msg.rx.ret == -BPMP_EINVAL) {
642		/* Cluster not available */
643		return NULL;
644	}
645	if (msg.rx.ret)
646		return ERR_PTR(-EINVAL);
647
648	/*
649	 * Make sure frequency table step is a multiple of mdiv to match
650	 * vhint table granularity.
651	 */
652	freq_table_step_size = resp.mdiv *
653			DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz);
654
655	dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n",
656		cluster_id, freq_table_step_size);
657
658	delta_ndiv = resp.ndiv_max - resp.ndiv_min;
659
660	if (unlikely(delta_ndiv == 0)) {
661		num_freqs = 1;
662	} else {
663		/* We store both ndiv_min and ndiv_max hence the +1 */
664		num_freqs = delta_ndiv / freq_table_step_size + 1;
665	}
666
667	num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0;
668
669	freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1,
670				  sizeof(*freq_table), GFP_KERNEL);
671	if (!freq_table)
672		return ERR_PTR(-ENOMEM);
673
674	for (index = 0, ndiv = resp.ndiv_min;
675			ndiv < resp.ndiv_max;
676			index++, ndiv += freq_table_step_size) {
677		freq_table[index].driver_data = ndiv;
678		freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv);
679	}
680
681	freq_table[index].driver_data = resp.ndiv_max;
682	freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max);
683	freq_table[index].frequency = CPUFREQ_TABLE_END;
684
685	return freq_table;
686}
687
688static int tegra194_cpufreq_store_physids(unsigned int cpu, struct tegra194_cpufreq_data *data)
689{
690	int num_cpus = data->soc->maxcpus_per_cluster * data->soc->num_clusters;
691	u32 cpuid, clusterid;
692	u64 mpidr_id;
693
694	if (cpu > (num_cpus - 1)) {
695		pr_err("cpufreq: wrong num of cpus or clusters in soc data\n");
696		return -EINVAL;
697	}
698
699	data->soc->ops->get_cpu_cluster_id(cpu, &cpuid, &clusterid);
700
701	mpidr_id = (clusterid * data->soc->maxcpus_per_cluster) + cpuid;
702
703	data->cpu_data[cpu].cpuid = cpuid;
704	data->cpu_data[cpu].clusterid = clusterid;
705	data->cpu_data[cpu].freq_core_reg = SCRATCH_FREQ_CORE_REG(data, mpidr_id);
706
707	return 0;
708}
709
710static int tegra194_cpufreq_probe(struct platform_device *pdev)
711{
712	const struct tegra_cpufreq_soc *soc;
713	struct tegra194_cpufreq_data *data;
714	struct tegra_bpmp *bpmp;
715	struct device *cpu_dev;
716	int err, i;
717	u32 cpu;
718
719	data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
720	if (!data)
721		return -ENOMEM;
722
723	soc = of_device_get_match_data(&pdev->dev);
724
725	if (soc->ops && soc->maxcpus_per_cluster && soc->num_clusters && soc->refclk_delta_min) {
726		data->soc = soc;
727	} else {
728		dev_err(&pdev->dev, "soc data missing\n");
729		return -EINVAL;
730	}
731
732	data->bpmp_luts = devm_kcalloc(&pdev->dev, data->soc->num_clusters,
733				       sizeof(*data->bpmp_luts), GFP_KERNEL);
734	if (!data->bpmp_luts)
735		return -ENOMEM;
736
737	if (soc->actmon_cntr_base) {
738		/* mmio registers are used for frequency request and re-construction */
739		data->regs = devm_platform_ioremap_resource(pdev, 0);
740		if (IS_ERR(data->regs))
741			return PTR_ERR(data->regs);
742	}
743
744	data->cpu_data = devm_kcalloc(&pdev->dev, data->soc->num_clusters *
745				      data->soc->maxcpus_per_cluster,
746				      sizeof(*data->cpu_data), GFP_KERNEL);
747	if (!data->cpu_data)
748		return -ENOMEM;
749
750	platform_set_drvdata(pdev, data);
751
752	bpmp = tegra_bpmp_get(&pdev->dev);
753	if (IS_ERR(bpmp))
754		return PTR_ERR(bpmp);
755
756	read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1);
757	if (!read_counters_wq) {
758		dev_err(&pdev->dev, "fail to create_workqueue\n");
759		err = -EINVAL;
760		goto put_bpmp;
761	}
762
763	for (i = 0; i < data->soc->num_clusters; i++) {
764		data->bpmp_luts[i] = tegra_cpufreq_bpmp_read_lut(pdev, bpmp, i);
765		if (IS_ERR(data->bpmp_luts[i])) {
766			err = PTR_ERR(data->bpmp_luts[i]);
767			goto err_free_res;
768		}
769	}
770
771	for_each_possible_cpu(cpu) {
772		err = tegra194_cpufreq_store_physids(cpu, data);
773		if (err)
774			goto err_free_res;
775	}
776
777	tegra194_cpufreq_driver.driver_data = data;
778
779	/* Check for optional OPPv2 and interconnect paths on CPU0 to enable ICC scaling */
780	cpu_dev = get_cpu_device(0);
781	if (!cpu_dev) {
782		err = -EPROBE_DEFER;
783		goto err_free_res;
784	}
785
786	if (dev_pm_opp_of_get_opp_desc_node(cpu_dev)) {
787		err = dev_pm_opp_of_find_icc_paths(cpu_dev, NULL);
788		if (!err)
789			data->icc_dram_bw_scaling = true;
790	}
791
792	err = cpufreq_register_driver(&tegra194_cpufreq_driver);
793	if (!err)
794		goto put_bpmp;
795
796err_free_res:
797	tegra194_cpufreq_free_resources();
798put_bpmp:
799	tegra_bpmp_put(bpmp);
800	return err;
801}
802
803static void tegra194_cpufreq_remove(struct platform_device *pdev)
804{
805	cpufreq_unregister_driver(&tegra194_cpufreq_driver);
806	tegra194_cpufreq_free_resources();
807}
808
809static const struct of_device_id tegra194_cpufreq_of_match[] = {
810	{ .compatible = "nvidia,tegra194-ccplex", .data = &tegra194_cpufreq_soc },
811	{ .compatible = "nvidia,tegra234-ccplex-cluster", .data = &tegra234_cpufreq_soc },
812	{ .compatible = "nvidia,tegra239-ccplex-cluster", .data = &tegra239_cpufreq_soc },
813	{ /* sentinel */ }
814};
815MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match);
816
817static struct platform_driver tegra194_ccplex_driver = {
818	.driver = {
819		.name = "tegra194-cpufreq",
820		.of_match_table = tegra194_cpufreq_of_match,
821	},
822	.probe = tegra194_cpufreq_probe,
823	.remove_new = tegra194_cpufreq_remove,
824};
825module_platform_driver(tegra194_ccplex_driver);
826
827MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
828MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>");
829MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver");
830MODULE_LICENSE("GPL v2");