Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2020 - 2022, NVIDIA CORPORATION. All rights reserved */ #include <linux/cpu.h> #include <linux/cpufreq.h> #include <linux/dma-mapping.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/units.h> #include <asm/smp_plat.h> #include <soc/tegra/bpmp.h> #include <soc/tegra/bpmp-abi.h> #define KHZ 1000 #define REF_CLK_MHZ 408 /* 408 MHz */ #define CPUFREQ_TBL_STEP_HZ (50 * KHZ * KHZ) #define MAX_CNT ~0U #define MAX_DELTA_KHZ 115200 #define NDIV_MASK 0x1FF #define CORE_OFFSET(cpu) (cpu * 8) #define CMU_CLKS_BASE 0x2000 #define SCRATCH_FREQ_CORE_REG(data, cpu) (data->regs + CMU_CLKS_BASE + CORE_OFFSET(cpu)) #define MMCRAB_CLUSTER_BASE(cl) (0x30000 + (cl * 0x10000)) #define CLUSTER_ACTMON_BASE(data, cl) \ (data->regs + (MMCRAB_CLUSTER_BASE(cl) + data->soc->actmon_cntr_base)) #define CORE_ACTMON_CNTR_REG(data, cl, cpu) (CLUSTER_ACTMON_BASE(data, cl) + CORE_OFFSET(cpu)) /* cpufreq transisition latency */ #define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */ struct tegra_cpu_data { u32 cpuid; u32 clusterid; void __iomem *freq_core_reg; }; struct tegra_cpu_ctr { u32 cpu; u32 coreclk_cnt, last_coreclk_cnt; u32 refclk_cnt, last_refclk_cnt; }; struct read_counters_work { struct work_struct work; struct tegra_cpu_ctr c; }; struct tegra_cpufreq_ops { void (*read_counters)(struct tegra_cpu_ctr *c); void (*set_cpu_ndiv)(struct cpufreq_policy *policy, u64 ndiv); void (*get_cpu_cluster_id)(u32 cpu, u32 *cpuid, u32 *clusterid); int (*get_cpu_ndiv)(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv); }; struct tegra_cpufreq_soc { struct tegra_cpufreq_ops *ops; int maxcpus_per_cluster; unsigned int num_clusters; phys_addr_t actmon_cntr_base; u32 refclk_delta_min; }; struct tegra194_cpufreq_data { void __iomem *regs; struct cpufreq_frequency_table **bpmp_luts; const struct tegra_cpufreq_soc *soc; bool icc_dram_bw_scaling; struct tegra_cpu_data *cpu_data; }; static struct workqueue_struct *read_counters_wq; static int tegra_cpufreq_set_bw(struct cpufreq_policy *policy, unsigned long freq_khz) { struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); struct dev_pm_opp *opp; struct device *dev; int ret; dev = get_cpu_device(policy->cpu); if (!dev) return -ENODEV; opp = dev_pm_opp_find_freq_exact(dev, freq_khz * KHZ, true); if (IS_ERR(opp)) return PTR_ERR(opp); ret = dev_pm_opp_set_opp(dev, opp); if (ret) data->icc_dram_bw_scaling = false; dev_pm_opp_put(opp); return ret; } static void tegra_get_cpu_mpidr(void *mpidr) { *((u64 *)mpidr) = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; } static void tegra234_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid) { u64 mpidr; smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true); if (cpuid) *cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 1); if (clusterid) *clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 2); } static int tegra234_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv) { struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); *ndiv = readl(data->cpu_data[cpu].freq_core_reg) & NDIV_MASK; return 0; } static void tegra234_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv) { struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); u32 cpu; for_each_cpu(cpu, policy->cpus) writel(ndiv, data->cpu_data[cpu].freq_core_reg); } /* * This register provides access to two counter values with a single * 64-bit read. The counter values are used to determine the average * actual frequency a core has run at over a period of time. * [63:32] PLLP counter: Counts at fixed frequency (408 MHz) * [31:0] Core clock counter: Counts on every core clock cycle */ static void tegra234_read_counters(struct tegra_cpu_ctr *c) { struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); void __iomem *actmon_reg; u32 delta_refcnt; int cnt = 0; u64 val; actmon_reg = CORE_ACTMON_CNTR_REG(data, data->cpu_data[c->cpu].clusterid, data->cpu_data[c->cpu].cpuid); val = readq(actmon_reg); c->last_refclk_cnt = upper_32_bits(val); c->last_coreclk_cnt = lower_32_bits(val); /* * The sampling window is based on the minimum number of reference * clock cycles which is known to give a stable value of CPU frequency. */ do { val = readq(actmon_reg); c->refclk_cnt = upper_32_bits(val); c->coreclk_cnt = lower_32_bits(val); if (c->refclk_cnt < c->last_refclk_cnt) delta_refcnt = c->refclk_cnt + (MAX_CNT - c->last_refclk_cnt); else delta_refcnt = c->refclk_cnt - c->last_refclk_cnt; if (++cnt >= 0xFFFF) { pr_warn("cpufreq: problem with refclk on cpu:%d, delta_refcnt:%u, cnt:%d\n", c->cpu, delta_refcnt, cnt); break; } } while (delta_refcnt < data->soc->refclk_delta_min); } static struct tegra_cpufreq_ops tegra234_cpufreq_ops = { .read_counters = tegra234_read_counters, .get_cpu_cluster_id = tegra234_get_cpu_cluster_id, .get_cpu_ndiv = tegra234_get_cpu_ndiv, .set_cpu_ndiv = tegra234_set_cpu_ndiv, }; static const struct tegra_cpufreq_soc tegra234_cpufreq_soc = { .ops = &tegra234_cpufreq_ops, .actmon_cntr_base = 0x9000, .maxcpus_per_cluster = 4, .num_clusters = 3, .refclk_delta_min = 16000, }; static const struct tegra_cpufreq_soc tegra239_cpufreq_soc = { .ops = &tegra234_cpufreq_ops, .actmon_cntr_base = 0x4000, .maxcpus_per_cluster = 8, .num_clusters = 1, .refclk_delta_min = 16000, }; static void tegra194_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid) { u64 mpidr; smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true); if (cpuid) *cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 0); if (clusterid) *clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1); } /* * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1. * The register provides frequency feedback information to * determine the average actual frequency a core has run at over * a period of time. * [31:0] PLLP counter: Counts at fixed frequency (408 MHz) * [63:32] Core clock counter: counts on every core clock cycle * where the core is architecturally clocking */ static u64 read_freq_feedback(void) { u64 val = 0; asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : ); return val; } static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response *nltbl, u16 ndiv) { return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv); } static void tegra194_read_counters(struct tegra_cpu_ctr *c) { struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); u32 delta_refcnt; int cnt = 0; u64 val; val = read_freq_feedback(); c->last_refclk_cnt = lower_32_bits(val); c->last_coreclk_cnt = upper_32_bits(val); /* * The sampling window is based on the minimum number of reference * clock cycles which is known to give a stable value of CPU frequency. */ do { val = read_freq_feedback(); c->refclk_cnt = lower_32_bits(val); c->coreclk_cnt = upper_32_bits(val); if (c->refclk_cnt < c->last_refclk_cnt) delta_refcnt = c->refclk_cnt + (MAX_CNT - c->last_refclk_cnt); else delta_refcnt = c->refclk_cnt - c->last_refclk_cnt; if (++cnt >= 0xFFFF) { pr_warn("cpufreq: problem with refclk on cpu:%d, delta_refcnt:%u, cnt:%d\n", c->cpu, delta_refcnt, cnt); break; } } while (delta_refcnt < data->soc->refclk_delta_min); } static void tegra_read_counters(struct work_struct *work) { struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); struct read_counters_work *read_counters_work; struct tegra_cpu_ctr *c; /* * ref_clk_counter(32 bit counter) runs on constant clk, * pll_p(408MHz). * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter * = 10526880 usec = 10.527 sec to overflow * * Like wise core_clk_counter(32 bit counter) runs on core clock. * It's synchronized to crab_clk (cpu_crab_clk) which runs at * freq of cluster. Assuming max cluster clock ~2000MHz, * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter * = ~2.147 sec to overflow */ read_counters_work = container_of(work, struct read_counters_work, work); c = &read_counters_work->c; data->soc->ops->read_counters(c); } /* * Return instantaneous cpu speed * Instantaneous freq is calculated as - * -Takes sample on every query of getting the freq. * - Read core and ref clock counters; * - Delay for X us * - Read above cycle counters again * - Calculates freq by subtracting current and previous counters * divided by the delay time or eqv. of ref_clk_counter in delta time * - Return Kcycles/second, freq in KHz * * delta time period = x sec * = delta ref_clk_counter / (408 * 10^6) sec * freq in Hz = cycles/sec * = (delta cycles / x sec * = (delta cycles * 408 * 10^6) / delta ref_clk_counter * in KHz = (delta cycles * 408 * 10^3) / delta ref_clk_counter * * @cpu - logical cpu whose freq to be updated * Returns freq in KHz on success, 0 if cpu is offline */ static unsigned int tegra194_calculate_speed(u32 cpu) { struct read_counters_work read_counters_work; struct tegra_cpu_ctr c; u32 delta_refcnt; u32 delta_ccnt; u32 rate_mhz; /* * Reconstruct cpu frequency over an observation/sampling window. * Using workqueue to keep interrupts enabled during the interval. */ read_counters_work.c.cpu = cpu; INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters); queue_work_on(cpu, read_counters_wq, &read_counters_work.work); flush_work(&read_counters_work.work); c = read_counters_work.c; if (c.coreclk_cnt < c.last_coreclk_cnt) delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt); else delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt; if (!delta_ccnt) return 0; /* ref clock is 32 bits */ if (c.refclk_cnt < c.last_refclk_cnt) delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt); else delta_refcnt = c.refclk_cnt - c.last_refclk_cnt; if (!delta_refcnt) { pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu); return 0; } rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt; return (rate_mhz * KHZ); /* in KHz */ } static void tegra194_get_cpu_ndiv_sysreg(void *ndiv) { u64 ndiv_val; asm volatile("mrs %0, s3_0_c15_c0_4" : "=r" (ndiv_val) : ); *(u64 *)ndiv = ndiv_val; } static int tegra194_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv) { return smp_call_function_single(cpu, tegra194_get_cpu_ndiv_sysreg, &ndiv, true); } static void tegra194_set_cpu_ndiv_sysreg(void *data) { u64 ndiv_val = *(u64 *)data; asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val)); } static void tegra194_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv) { on_each_cpu_mask(policy->cpus, tegra194_set_cpu_ndiv_sysreg, &ndiv, true); } static unsigned int tegra194_get_speed(u32 cpu) { struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); u32 clusterid = data->cpu_data[cpu].clusterid; struct cpufreq_frequency_table *pos; unsigned int rate; u64 ndiv; int ret; /* reconstruct actual cpu freq using counters */ rate = tegra194_calculate_speed(cpu); /* get last written ndiv value */ ret = data->soc->ops->get_cpu_ndiv(cpu, data->cpu_data[cpu].cpuid, clusterid, &ndiv); if (WARN_ON_ONCE(ret)) return rate; /* * If the reconstructed frequency has acceptable delta from * the last written value, then return freq corresponding * to the last written ndiv value from freq_table. This is * done to return consistent value. */ cpufreq_for_each_valid_entry(pos, data->bpmp_luts[clusterid]) { if (pos->driver_data != ndiv) continue; if (abs(pos->frequency - rate) > MAX_DELTA_KHZ) { pr_warn("cpufreq: cpu%d,cur:%u,set:%u,delta:%d,set ndiv:%llu\n", cpu, rate, pos->frequency, abs(rate - pos->frequency), ndiv); } else { rate = pos->frequency; } break; } return rate; } static int tegra_cpufreq_init_cpufreq_table(struct cpufreq_policy *policy, struct cpufreq_frequency_table *bpmp_lut, struct cpufreq_frequency_table **opp_table) { struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); struct cpufreq_frequency_table *freq_table = NULL; struct cpufreq_frequency_table *pos; struct device *cpu_dev; struct dev_pm_opp *opp; unsigned long rate; int ret, max_opps; int j = 0; cpu_dev = get_cpu_device(policy->cpu); if (!cpu_dev) { pr_err("%s: failed to get cpu%d device\n", __func__, policy->cpu); return -ENODEV; } /* Initialize OPP table mentioned in operating-points-v2 property in DT */ ret = dev_pm_opp_of_add_table_indexed(cpu_dev, 0); if (!ret) { max_opps = dev_pm_opp_get_opp_count(cpu_dev); if (max_opps <= 0) { dev_err(cpu_dev, "Failed to add OPPs\n"); return max_opps; } /* Disable all opps and cross-validate against LUT later */ for (rate = 0; ; rate++) { opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate); if (IS_ERR(opp)) break; dev_pm_opp_put(opp); dev_pm_opp_disable(cpu_dev, rate); } } else { dev_err(cpu_dev, "Invalid or empty opp table in device tree\n"); data->icc_dram_bw_scaling = false; return ret; } freq_table = kcalloc((max_opps + 1), sizeof(*freq_table), GFP_KERNEL); if (!freq_table) return -ENOMEM; /* * Cross check the frequencies from BPMP-FW LUT against the OPP's present in DT. * Enable only those DT OPP's which are present in LUT also. */ cpufreq_for_each_valid_entry(pos, bpmp_lut) { opp = dev_pm_opp_find_freq_exact(cpu_dev, pos->frequency * KHZ, false); if (IS_ERR(opp)) continue; dev_pm_opp_put(opp); ret = dev_pm_opp_enable(cpu_dev, pos->frequency * KHZ); if (ret < 0) return ret; freq_table[j].driver_data = pos->driver_data; freq_table[j].frequency = pos->frequency; j++; } freq_table[j].driver_data = pos->driver_data; freq_table[j].frequency = CPUFREQ_TABLE_END; *opp_table = &freq_table[0]; dev_pm_opp_set_sharing_cpus(cpu_dev, policy->cpus); return ret; } static int tegra194_cpufreq_init(struct cpufreq_policy *policy) { struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); int maxcpus_per_cluster = data->soc->maxcpus_per_cluster; u32 clusterid = data->cpu_data[policy->cpu].clusterid; struct cpufreq_frequency_table *freq_table; struct cpufreq_frequency_table *bpmp_lut; u32 start_cpu, cpu; int ret; if (clusterid >= data->soc->num_clusters || !data->bpmp_luts[clusterid]) return -EINVAL; start_cpu = rounddown(policy->cpu, maxcpus_per_cluster); /* set same policy for all cpus in a cluster */ for (cpu = start_cpu; cpu < (start_cpu + maxcpus_per_cluster); cpu++) { if (cpu_possible(cpu)) cpumask_set_cpu(cpu, policy->cpus); } policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY; bpmp_lut = data->bpmp_luts[clusterid]; if (data->icc_dram_bw_scaling) { ret = tegra_cpufreq_init_cpufreq_table(policy, bpmp_lut, &freq_table); if (!ret) { policy->freq_table = freq_table; return 0; } } data->icc_dram_bw_scaling = false; policy->freq_table = bpmp_lut; pr_info("OPP tables missing from DT, EMC frequency scaling disabled\n"); return 0; } static int tegra194_cpufreq_online(struct cpufreq_policy *policy) { /* We did light-weight tear down earlier, nothing to do here */ return 0; } static int tegra194_cpufreq_offline(struct cpufreq_policy *policy) { /* * Preserve policy->driver_data and don't free resources on light-weight * tear down. */ return 0; } static int tegra194_cpufreq_exit(struct cpufreq_policy *policy) { struct device *cpu_dev = get_cpu_device(policy->cpu); dev_pm_opp_remove_all_dynamic(cpu_dev); dev_pm_opp_of_cpumask_remove_table(policy->related_cpus); return 0; } static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy, unsigned int index) { struct cpufreq_frequency_table *tbl = policy->freq_table + index; struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); /* * Each core writes frequency in per core register. Then both cores * in a cluster run at same frequency which is the maximum frequency * request out of the values requested by both cores in that cluster. */ data->soc->ops->set_cpu_ndiv(policy, (u64)tbl->driver_data); if (data->icc_dram_bw_scaling) tegra_cpufreq_set_bw(policy, tbl->frequency); return 0; } static struct cpufreq_driver tegra194_cpufreq_driver = { .name = "tegra194", .flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_INITIAL_FREQ_CHECK | CPUFREQ_IS_COOLING_DEV, .verify = cpufreq_generic_frequency_table_verify, .target_index = tegra194_cpufreq_set_target, .get = tegra194_get_speed, .init = tegra194_cpufreq_init, .exit = tegra194_cpufreq_exit, .online = tegra194_cpufreq_online, .offline = tegra194_cpufreq_offline, .attr = cpufreq_generic_attr, }; static struct tegra_cpufreq_ops tegra194_cpufreq_ops = { .read_counters = tegra194_read_counters, .get_cpu_cluster_id = tegra194_get_cpu_cluster_id, .get_cpu_ndiv = tegra194_get_cpu_ndiv, .set_cpu_ndiv = tegra194_set_cpu_ndiv, }; static const struct tegra_cpufreq_soc tegra194_cpufreq_soc = { .ops = &tegra194_cpufreq_ops, .maxcpus_per_cluster = 2, .num_clusters = 4, .refclk_delta_min = 16000, }; static void tegra194_cpufreq_free_resources(void) { destroy_workqueue(read_counters_wq); } static struct cpufreq_frequency_table * tegra_cpufreq_bpmp_read_lut(struct platform_device *pdev, struct tegra_bpmp *bpmp, unsigned int cluster_id) { struct cpufreq_frequency_table *freq_table; struct mrq_cpu_ndiv_limits_response resp; unsigned int num_freqs, ndiv, delta_ndiv; struct mrq_cpu_ndiv_limits_request req; struct tegra_bpmp_message msg; u16 freq_table_step_size; int err, index; memset(&req, 0, sizeof(req)); req.cluster_id = cluster_id; memset(&msg, 0, sizeof(msg)); msg.mrq = MRQ_CPU_NDIV_LIMITS; msg.tx.data = &req; msg.tx.size = sizeof(req); msg.rx.data = &resp; msg.rx.size = sizeof(resp); err = tegra_bpmp_transfer(bpmp, &msg); if (err) return ERR_PTR(err); if (msg.rx.ret == -BPMP_EINVAL) { /* Cluster not available */ return NULL; } if (msg.rx.ret) return ERR_PTR(-EINVAL); /* * Make sure frequency table step is a multiple of mdiv to match * vhint table granularity. */ freq_table_step_size = resp.mdiv * DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz); dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n", cluster_id, freq_table_step_size); delta_ndiv = resp.ndiv_max - resp.ndiv_min; if (unlikely(delta_ndiv == 0)) { num_freqs = 1; } else { /* We store both ndiv_min and ndiv_max hence the +1 */ num_freqs = delta_ndiv / freq_table_step_size + 1; } num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0; freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1, sizeof(*freq_table), GFP_KERNEL); if (!freq_table) return ERR_PTR(-ENOMEM); for (index = 0, ndiv = resp.ndiv_min; ndiv < resp.ndiv_max; index++, ndiv += freq_table_step_size) { freq_table[index].driver_data = ndiv; freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv); } freq_table[index].driver_data = resp.ndiv_max; freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max); freq_table[index].frequency = CPUFREQ_TABLE_END; return freq_table; } static int tegra194_cpufreq_store_physids(unsigned int cpu, struct tegra194_cpufreq_data *data) { int num_cpus = data->soc->maxcpus_per_cluster * data->soc->num_clusters; u32 cpuid, clusterid; u64 mpidr_id; if (cpu > (num_cpus - 1)) { pr_err("cpufreq: wrong num of cpus or clusters in soc data\n"); return -EINVAL; } data->soc->ops->get_cpu_cluster_id(cpu, &cpuid, &clusterid); mpidr_id = (clusterid * data->soc->maxcpus_per_cluster) + cpuid; data->cpu_data[cpu].cpuid = cpuid; data->cpu_data[cpu].clusterid = clusterid; data->cpu_data[cpu].freq_core_reg = SCRATCH_FREQ_CORE_REG(data, mpidr_id); return 0; } static int tegra194_cpufreq_probe(struct platform_device *pdev) { const struct tegra_cpufreq_soc *soc; struct tegra194_cpufreq_data *data; struct tegra_bpmp *bpmp; struct device *cpu_dev; int err, i; u32 cpu; data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; soc = of_device_get_match_data(&pdev->dev); if (soc->ops && soc->maxcpus_per_cluster && soc->num_clusters && soc->refclk_delta_min) { data->soc = soc; } else { dev_err(&pdev->dev, "soc data missing\n"); return -EINVAL; } data->bpmp_luts = devm_kcalloc(&pdev->dev, data->soc->num_clusters, sizeof(*data->bpmp_luts), GFP_KERNEL); if (!data->bpmp_luts) return -ENOMEM; if (soc->actmon_cntr_base) { /* mmio registers are used for frequency request and re-construction */ data->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(data->regs)) return PTR_ERR(data->regs); } data->cpu_data = devm_kcalloc(&pdev->dev, data->soc->num_clusters * data->soc->maxcpus_per_cluster, sizeof(*data->cpu_data), GFP_KERNEL); if (!data->cpu_data) return -ENOMEM; platform_set_drvdata(pdev, data); bpmp = tegra_bpmp_get(&pdev->dev); if (IS_ERR(bpmp)) return PTR_ERR(bpmp); read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1); if (!read_counters_wq) { dev_err(&pdev->dev, "fail to create_workqueue\n"); err = -EINVAL; goto put_bpmp; } for (i = 0; i < data->soc->num_clusters; i++) { data->bpmp_luts[i] = tegra_cpufreq_bpmp_read_lut(pdev, bpmp, i); if (IS_ERR(data->bpmp_luts[i])) { err = PTR_ERR(data->bpmp_luts[i]); goto err_free_res; } } for_each_possible_cpu(cpu) { err = tegra194_cpufreq_store_physids(cpu, data); if (err) goto err_free_res; } tegra194_cpufreq_driver.driver_data = data; /* Check for optional OPPv2 and interconnect paths on CPU0 to enable ICC scaling */ cpu_dev = get_cpu_device(0); if (!cpu_dev) { err = -EPROBE_DEFER; goto err_free_res; } if (dev_pm_opp_of_get_opp_desc_node(cpu_dev)) { err = dev_pm_opp_of_find_icc_paths(cpu_dev, NULL); if (!err) data->icc_dram_bw_scaling = true; } err = cpufreq_register_driver(&tegra194_cpufreq_driver); if (!err) goto put_bpmp; err_free_res: tegra194_cpufreq_free_resources(); put_bpmp: tegra_bpmp_put(bpmp); return err; } static void tegra194_cpufreq_remove(struct platform_device *pdev) { cpufreq_unregister_driver(&tegra194_cpufreq_driver); tegra194_cpufreq_free_resources(); } static const struct of_device_id tegra194_cpufreq_of_match[] = { { .compatible = "nvidia,tegra194-ccplex", .data = &tegra194_cpufreq_soc }, { .compatible = "nvidia,tegra234-ccplex-cluster", .data = &tegra234_cpufreq_soc }, { .compatible = "nvidia,tegra239-ccplex-cluster", .data = &tegra239_cpufreq_soc }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match); static struct platform_driver tegra194_ccplex_driver = { .driver = { .name = "tegra194-cpufreq", .of_match_table = tegra194_cpufreq_of_match, }, .probe = tegra194_cpufreq_probe, .remove_new = tegra194_cpufreq_remove, }; module_platform_driver(tegra194_ccplex_driver); MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>"); MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>"); MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver"); MODULE_LICENSE("GPL v2"); |