Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved
  4 */
  5
  6#include <linux/cpu.h>
  7#include <linux/cpufreq.h>
  8#include <linux/delay.h>
  9#include <linux/dma-mapping.h>
 10#include <linux/module.h>
 11#include <linux/of.h>
 12#include <linux/of_platform.h>
 13#include <linux/platform_device.h>
 14#include <linux/slab.h>
 15
 16#include <asm/smp_plat.h>
 17
 18#include <soc/tegra/bpmp.h>
 19#include <soc/tegra/bpmp-abi.h>
 20
 21#define KHZ                     1000
 22#define REF_CLK_MHZ             408 /* 408 MHz */
 23#define US_DELAY                500
 24#define US_DELAY_MIN            2
 25#define CPUFREQ_TBL_STEP_HZ     (50 * KHZ * KHZ)
 26#define MAX_CNT                 ~0U
 27
 28/* cpufreq transisition latency */
 29#define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */
 30
 31enum cluster {
 32	CLUSTER0,
 33	CLUSTER1,
 34	CLUSTER2,
 35	CLUSTER3,
 36	MAX_CLUSTERS,
 37};
 38
 39struct tegra194_cpufreq_data {
 40	void __iomem *regs;
 41	size_t num_clusters;
 42	struct cpufreq_frequency_table **tables;
 43};
 44
 45struct tegra_cpu_ctr {
 46	u32 cpu;
 47	u32 delay;
 48	u32 coreclk_cnt, last_coreclk_cnt;
 49	u32 refclk_cnt, last_refclk_cnt;
 50};
 51
 52struct read_counters_work {
 53	struct work_struct work;
 54	struct tegra_cpu_ctr c;
 55};
 56
 57static struct workqueue_struct *read_counters_wq;
 58
 59static void get_cpu_cluster(void *cluster)
 60{
 61	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
 62
 63	*((uint32_t *)cluster) = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 64}
 65
 66/*
 67 * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1.
 68 * The register provides frequency feedback information to
 69 * determine the average actual frequency a core has run at over
 70 * a period of time.
 71 *	[31:0] PLLP counter: Counts at fixed frequency (408 MHz)
 72 *	[63:32] Core clock counter: counts on every core clock cycle
 73 *			where the core is architecturally clocking
 74 */
 75static u64 read_freq_feedback(void)
 76{
 77	u64 val = 0;
 78
 79	asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : );
 80
 81	return val;
 82}
 83
 84static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response
 85				   *nltbl, u16 ndiv)
 86{
 87	return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv);
 88}
 89
 90static void tegra_read_counters(struct work_struct *work)
 91{
 92	struct read_counters_work *read_counters_work;
 93	struct tegra_cpu_ctr *c;
 94	u64 val;
 95
 96	/*
 97	 * ref_clk_counter(32 bit counter) runs on constant clk,
 98	 * pll_p(408MHz).
 99	 * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter
100	 *              = 10526880 usec = 10.527 sec to overflow
101	 *
102	 * Like wise core_clk_counter(32 bit counter) runs on core clock.
103	 * It's synchronized to crab_clk (cpu_crab_clk) which runs at
104	 * freq of cluster. Assuming max cluster clock ~2000MHz,
105	 * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter
106	 *              = ~2.147 sec to overflow
107	 */
108	read_counters_work = container_of(work, struct read_counters_work,
109					  work);
110	c = &read_counters_work->c;
111
112	val = read_freq_feedback();
113	c->last_refclk_cnt = lower_32_bits(val);
114	c->last_coreclk_cnt = upper_32_bits(val);
115	udelay(c->delay);
116	val = read_freq_feedback();
117	c->refclk_cnt = lower_32_bits(val);
118	c->coreclk_cnt = upper_32_bits(val);
119}
120
121/*
122 * Return instantaneous cpu speed
123 * Instantaneous freq is calculated as -
124 * -Takes sample on every query of getting the freq.
125 *	- Read core and ref clock counters;
126 *	- Delay for X us
127 *	- Read above cycle counters again
128 *	- Calculates freq by subtracting current and previous counters
129 *	  divided by the delay time or eqv. of ref_clk_counter in delta time
130 *	- Return Kcycles/second, freq in KHz
131 *
132 *	delta time period = x sec
133 *			  = delta ref_clk_counter / (408 * 10^6) sec
134 *	freq in Hz = cycles/sec
135 *		   = (delta cycles / x sec
136 *		   = (delta cycles * 408 * 10^6) / delta ref_clk_counter
137 *	in KHz	   = (delta cycles * 408 * 10^3) / delta ref_clk_counter
138 *
139 * @cpu - logical cpu whose freq to be updated
140 * Returns freq in KHz on success, 0 if cpu is offline
141 */
142static unsigned int tegra194_get_speed_common(u32 cpu, u32 delay)
143{
144	struct read_counters_work read_counters_work;
145	struct tegra_cpu_ctr c;
146	u32 delta_refcnt;
147	u32 delta_ccnt;
148	u32 rate_mhz;
149
150	/*
151	 * udelay() is required to reconstruct cpu frequency over an
152	 * observation window. Using workqueue to call udelay() with
153	 * interrupts enabled.
154	 */
155	read_counters_work.c.cpu = cpu;
156	read_counters_work.c.delay = delay;
157	INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters);
158	queue_work_on(cpu, read_counters_wq, &read_counters_work.work);
159	flush_work(&read_counters_work.work);
160	c = read_counters_work.c;
161
162	if (c.coreclk_cnt < c.last_coreclk_cnt)
163		delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt);
164	else
165		delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt;
166	if (!delta_ccnt)
167		return 0;
168
169	/* ref clock is 32 bits */
170	if (c.refclk_cnt < c.last_refclk_cnt)
171		delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt);
172	else
173		delta_refcnt = c.refclk_cnt - c.last_refclk_cnt;
174	if (!delta_refcnt) {
175		pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu);
176		return 0;
177	}
178	rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt;
179
180	return (rate_mhz * KHZ); /* in KHz */
181}
182
183static unsigned int tegra194_get_speed(u32 cpu)
184{
185	return tegra194_get_speed_common(cpu, US_DELAY);
186}
187
188static int tegra194_cpufreq_init(struct cpufreq_policy *policy)
189{
190	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
191	u32 cpu;
192	u32 cl;
193
194	smp_call_function_single(policy->cpu, get_cpu_cluster, &cl, true);
195
196	if (cl >= data->num_clusters)
197		return -EINVAL;
198
199	/* boot freq */
200	policy->cur = tegra194_get_speed_common(policy->cpu, US_DELAY_MIN);
201
202	/* set same policy for all cpus in a cluster */
203	for (cpu = (cl * 2); cpu < ((cl + 1) * 2); cpu++)
204		cpumask_set_cpu(cpu, policy->cpus);
205
206	policy->freq_table = data->tables[cl];
207	policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY;
208
209	return 0;
210}
211
212static void set_cpu_ndiv(void *data)
213{
214	struct cpufreq_frequency_table *tbl = data;
215	u64 ndiv_val = (u64)tbl->driver_data;
216
217	asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val));
218}
219
220static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy,
221				       unsigned int index)
222{
223	struct cpufreq_frequency_table *tbl = policy->freq_table + index;
224
225	/*
226	 * Each core writes frequency in per core register. Then both cores
227	 * in a cluster run at same frequency which is the maximum frequency
228	 * request out of the values requested by both cores in that cluster.
229	 */
230	on_each_cpu_mask(policy->cpus, set_cpu_ndiv, tbl, true);
231
232	return 0;
233}
234
235static struct cpufreq_driver tegra194_cpufreq_driver = {
236	.name = "tegra194",
237	.flags = CPUFREQ_STICKY | CPUFREQ_CONST_LOOPS |
238		CPUFREQ_NEED_INITIAL_FREQ_CHECK,
239	.verify = cpufreq_generic_frequency_table_verify,
240	.target_index = tegra194_cpufreq_set_target,
241	.get = tegra194_get_speed,
242	.init = tegra194_cpufreq_init,
243	.attr = cpufreq_generic_attr,
244};
245
246static void tegra194_cpufreq_free_resources(void)
247{
248	destroy_workqueue(read_counters_wq);
249}
250
251static struct cpufreq_frequency_table *
252init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp,
253		unsigned int cluster_id)
254{
255	struct cpufreq_frequency_table *freq_table;
256	struct mrq_cpu_ndiv_limits_response resp;
257	unsigned int num_freqs, ndiv, delta_ndiv;
258	struct mrq_cpu_ndiv_limits_request req;
259	struct tegra_bpmp_message msg;
260	u16 freq_table_step_size;
261	int err, index;
262
263	memset(&req, 0, sizeof(req));
264	req.cluster_id = cluster_id;
265
266	memset(&msg, 0, sizeof(msg));
267	msg.mrq = MRQ_CPU_NDIV_LIMITS;
268	msg.tx.data = &req;
269	msg.tx.size = sizeof(req);
270	msg.rx.data = &resp;
271	msg.rx.size = sizeof(resp);
272
273	err = tegra_bpmp_transfer(bpmp, &msg);
274	if (err)
275		return ERR_PTR(err);
276
277	/*
278	 * Make sure frequency table step is a multiple of mdiv to match
279	 * vhint table granularity.
280	 */
281	freq_table_step_size = resp.mdiv *
282			DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz);
283
284	dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n",
285		cluster_id, freq_table_step_size);
286
287	delta_ndiv = resp.ndiv_max - resp.ndiv_min;
288
289	if (unlikely(delta_ndiv == 0)) {
290		num_freqs = 1;
291	} else {
292		/* We store both ndiv_min and ndiv_max hence the +1 */
293		num_freqs = delta_ndiv / freq_table_step_size + 1;
294	}
295
296	num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0;
297
298	freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1,
299				  sizeof(*freq_table), GFP_KERNEL);
300	if (!freq_table)
301		return ERR_PTR(-ENOMEM);
302
303	for (index = 0, ndiv = resp.ndiv_min;
304			ndiv < resp.ndiv_max;
305			index++, ndiv += freq_table_step_size) {
306		freq_table[index].driver_data = ndiv;
307		freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv);
308	}
309
310	freq_table[index].driver_data = resp.ndiv_max;
311	freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max);
312	freq_table[index].frequency = CPUFREQ_TABLE_END;
313
314	return freq_table;
315}
316
317static int tegra194_cpufreq_probe(struct platform_device *pdev)
318{
319	struct tegra194_cpufreq_data *data;
320	struct tegra_bpmp *bpmp;
321	int err, i;
322
323	data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
324	if (!data)
325		return -ENOMEM;
326
327	data->num_clusters = MAX_CLUSTERS;
328	data->tables = devm_kcalloc(&pdev->dev, data->num_clusters,
329				    sizeof(*data->tables), GFP_KERNEL);
330	if (!data->tables)
331		return -ENOMEM;
332
333	platform_set_drvdata(pdev, data);
334
335	bpmp = tegra_bpmp_get(&pdev->dev);
336	if (IS_ERR(bpmp))
337		return PTR_ERR(bpmp);
338
339	read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1);
340	if (!read_counters_wq) {
341		dev_err(&pdev->dev, "fail to create_workqueue\n");
342		err = -EINVAL;
343		goto put_bpmp;
344	}
345
346	for (i = 0; i < data->num_clusters; i++) {
347		data->tables[i] = init_freq_table(pdev, bpmp, i);
348		if (IS_ERR(data->tables[i])) {
349			err = PTR_ERR(data->tables[i]);
350			goto err_free_res;
351		}
352	}
353
354	tegra194_cpufreq_driver.driver_data = data;
355
356	err = cpufreq_register_driver(&tegra194_cpufreq_driver);
357	if (!err)
358		goto put_bpmp;
359
360err_free_res:
361	tegra194_cpufreq_free_resources();
362put_bpmp:
363	tegra_bpmp_put(bpmp);
364	return err;
365}
366
367static int tegra194_cpufreq_remove(struct platform_device *pdev)
368{
369	cpufreq_unregister_driver(&tegra194_cpufreq_driver);
370	tegra194_cpufreq_free_resources();
371
372	return 0;
373}
374
375static const struct of_device_id tegra194_cpufreq_of_match[] = {
376	{ .compatible = "nvidia,tegra194-ccplex", },
377	{ /* sentinel */ }
378};
379MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match);
380
381static struct platform_driver tegra194_ccplex_driver = {
382	.driver = {
383		.name = "tegra194-cpufreq",
384		.of_match_table = tegra194_cpufreq_of_match,
385	},
386	.probe = tegra194_cpufreq_probe,
387	.remove = tegra194_cpufreq_remove,
388};
389module_platform_driver(tegra194_ccplex_driver);
390
391MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
392MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>");
393MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver");
394MODULE_LICENSE("GPL v2");