Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 *  linux/arch/arm/kernel/ptrace.c
  3 *
  4 *  By Ross Biro 1/23/92
  5 * edited by Linus Torvalds
  6 * ARM modifications Copyright (C) 2000 Russell King
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12#include <linux/kernel.h>
 13#include <linux/sched.h>
 
 14#include <linux/mm.h>
 
 15#include <linux/smp.h>
 16#include <linux/ptrace.h>
 17#include <linux/user.h>
 18#include <linux/security.h>
 19#include <linux/init.h>
 20#include <linux/signal.h>
 21#include <linux/uaccess.h>
 22#include <linux/perf_event.h>
 23#include <linux/hw_breakpoint.h>
 24#include <linux/regset.h>
 
 
 25
 26#include <asm/pgtable.h>
 27#include <asm/system.h>
 28#include <asm/traps.h>
 29
 
 
 
 30#define REG_PC	15
 31#define REG_PSR	16
 32/*
 33 * does not yet catch signals sent when the child dies.
 34 * in exit.c or in signal.c.
 35 */
 36
 37#if 0
 38/*
 39 * Breakpoint SWI instruction: SWI &9F0001
 40 */
 41#define BREAKINST_ARM	0xef9f0001
 42#define BREAKINST_THUMB	0xdf00		/* fill this in later */
 43#else
 44/*
 45 * New breakpoints - use an undefined instruction.  The ARM architecture
 46 * reference manual guarantees that the following instruction space
 47 * will produce an undefined instruction exception on all CPUs:
 48 *
 49 *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
 50 *  Thumb: 1101 1110 xxxx xxxx
 51 */
 52#define BREAKINST_ARM	0xe7f001f0
 53#define BREAKINST_THUMB	0xde01
 54#endif
 55
 56struct pt_regs_offset {
 57	const char *name;
 58	int offset;
 59};
 60
 61#define REG_OFFSET_NAME(r) \
 62	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
 63#define REG_OFFSET_END {.name = NULL, .offset = 0}
 64
 65static const struct pt_regs_offset regoffset_table[] = {
 66	REG_OFFSET_NAME(r0),
 67	REG_OFFSET_NAME(r1),
 68	REG_OFFSET_NAME(r2),
 69	REG_OFFSET_NAME(r3),
 70	REG_OFFSET_NAME(r4),
 71	REG_OFFSET_NAME(r5),
 72	REG_OFFSET_NAME(r6),
 73	REG_OFFSET_NAME(r7),
 74	REG_OFFSET_NAME(r8),
 75	REG_OFFSET_NAME(r9),
 76	REG_OFFSET_NAME(r10),
 77	REG_OFFSET_NAME(fp),
 78	REG_OFFSET_NAME(ip),
 79	REG_OFFSET_NAME(sp),
 80	REG_OFFSET_NAME(lr),
 81	REG_OFFSET_NAME(pc),
 82	REG_OFFSET_NAME(cpsr),
 83	REG_OFFSET_NAME(ORIG_r0),
 84	REG_OFFSET_END,
 85};
 86
 87/**
 88 * regs_query_register_offset() - query register offset from its name
 89 * @name:	the name of a register
 90 *
 91 * regs_query_register_offset() returns the offset of a register in struct
 92 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
 93 */
 94int regs_query_register_offset(const char *name)
 95{
 96	const struct pt_regs_offset *roff;
 97	for (roff = regoffset_table; roff->name != NULL; roff++)
 98		if (!strcmp(roff->name, name))
 99			return roff->offset;
100	return -EINVAL;
101}
102
103/**
104 * regs_query_register_name() - query register name from its offset
105 * @offset:	the offset of a register in struct pt_regs.
106 *
107 * regs_query_register_name() returns the name of a register from its
108 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
109 */
110const char *regs_query_register_name(unsigned int offset)
111{
112	const struct pt_regs_offset *roff;
113	for (roff = regoffset_table; roff->name != NULL; roff++)
114		if (roff->offset == offset)
115			return roff->name;
116	return NULL;
117}
118
119/**
120 * regs_within_kernel_stack() - check the address in the stack
121 * @regs:      pt_regs which contains kernel stack pointer.
122 * @addr:      address which is checked.
123 *
124 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
125 * If @addr is within the kernel stack, it returns true. If not, returns false.
126 */
127bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
128{
129	return ((addr & ~(THREAD_SIZE - 1))  ==
130		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
131}
132
133/**
134 * regs_get_kernel_stack_nth() - get Nth entry of the stack
135 * @regs:	pt_regs which contains kernel stack pointer.
136 * @n:		stack entry number.
137 *
138 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
139 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
140 * this returns 0.
141 */
142unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
143{
144	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
145	addr += n;
146	if (regs_within_kernel_stack(regs, (unsigned long)addr))
147		return *addr;
148	else
149		return 0;
150}
151
152/*
153 * this routine will get a word off of the processes privileged stack.
154 * the offset is how far from the base addr as stored in the THREAD.
155 * this routine assumes that all the privileged stacks are in our
156 * data space.
157 */
158static inline long get_user_reg(struct task_struct *task, int offset)
159{
160	return task_pt_regs(task)->uregs[offset];
161}
162
163/*
164 * this routine will put a word on the processes privileged stack.
165 * the offset is how far from the base addr as stored in the THREAD.
166 * this routine assumes that all the privileged stacks are in our
167 * data space.
168 */
169static inline int
170put_user_reg(struct task_struct *task, int offset, long data)
171{
172	struct pt_regs newregs, *regs = task_pt_regs(task);
173	int ret = -EINVAL;
174
175	newregs = *regs;
176	newregs.uregs[offset] = data;
177
178	if (valid_user_regs(&newregs)) {
179		regs->uregs[offset] = data;
180		ret = 0;
181	}
182
183	return ret;
184}
185
186/*
187 * Called by kernel/ptrace.c when detaching..
188 */
189void ptrace_disable(struct task_struct *child)
190{
191	/* Nothing to do. */
192}
193
194/*
195 * Handle hitting a breakpoint.
196 */
197void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
198{
199	siginfo_t info;
200
201	info.si_signo = SIGTRAP;
202	info.si_errno = 0;
203	info.si_code  = TRAP_BRKPT;
204	info.si_addr  = (void __user *)instruction_pointer(regs);
205
206	force_sig_info(SIGTRAP, &info, tsk);
207}
208
209static int break_trap(struct pt_regs *regs, unsigned int instr)
210{
211	ptrace_break(current, regs);
212	return 0;
213}
214
215static struct undef_hook arm_break_hook = {
216	.instr_mask	= 0x0fffffff,
217	.instr_val	= 0x07f001f0,
218	.cpsr_mask	= PSR_T_BIT,
219	.cpsr_val	= 0,
220	.fn		= break_trap,
221};
222
223static struct undef_hook thumb_break_hook = {
224	.instr_mask	= 0xffff,
225	.instr_val	= 0xde01,
226	.cpsr_mask	= PSR_T_BIT,
227	.cpsr_val	= PSR_T_BIT,
228	.fn		= break_trap,
229};
230
231static struct undef_hook thumb2_break_hook = {
232	.instr_mask	= 0xffffffff,
233	.instr_val	= 0xf7f0a000,
234	.cpsr_mask	= PSR_T_BIT,
235	.cpsr_val	= PSR_T_BIT,
236	.fn		= break_trap,
237};
238
239static int __init ptrace_break_init(void)
240{
241	register_undef_hook(&arm_break_hook);
242	register_undef_hook(&thumb_break_hook);
243	register_undef_hook(&thumb2_break_hook);
244	return 0;
245}
246
247core_initcall(ptrace_break_init);
248
249/*
250 * Read the word at offset "off" into the "struct user".  We
251 * actually access the pt_regs stored on the kernel stack.
252 */
253static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
254			    unsigned long __user *ret)
255{
256	unsigned long tmp;
257
258	if (off & 3 || off >= sizeof(struct user))
259		return -EIO;
260
261	tmp = 0;
262	if (off == PT_TEXT_ADDR)
263		tmp = tsk->mm->start_code;
264	else if (off == PT_DATA_ADDR)
265		tmp = tsk->mm->start_data;
266	else if (off == PT_TEXT_END_ADDR)
267		tmp = tsk->mm->end_code;
268	else if (off < sizeof(struct pt_regs))
269		tmp = get_user_reg(tsk, off >> 2);
 
 
270
271	return put_user(tmp, ret);
272}
273
274/*
275 * Write the word at offset "off" into "struct user".  We
276 * actually access the pt_regs stored on the kernel stack.
277 */
278static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
279			     unsigned long val)
280{
281	if (off & 3 || off >= sizeof(struct user))
282		return -EIO;
283
284	if (off >= sizeof(struct pt_regs))
285		return 0;
286
287	return put_user_reg(tsk, off >> 2, val);
288}
289
290#ifdef CONFIG_IWMMXT
291
292/*
293 * Get the child iWMMXt state.
294 */
295static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
296{
297	struct thread_info *thread = task_thread_info(tsk);
298
299	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
300		return -ENODATA;
301	iwmmxt_task_disable(thread);  /* force it to ram */
302	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
303		? -EFAULT : 0;
304}
305
306/*
307 * Set the child iWMMXt state.
308 */
309static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
310{
311	struct thread_info *thread = task_thread_info(tsk);
312
313	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
314		return -EACCES;
315	iwmmxt_task_release(thread);  /* force a reload */
316	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
317		? -EFAULT : 0;
318}
319
320#endif
321
322#ifdef CONFIG_CRUNCH
323/*
324 * Get the child Crunch state.
325 */
326static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
327{
328	struct thread_info *thread = task_thread_info(tsk);
329
330	crunch_task_disable(thread);  /* force it to ram */
331	return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
332		? -EFAULT : 0;
333}
334
335/*
336 * Set the child Crunch state.
337 */
338static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
339{
340	struct thread_info *thread = task_thread_info(tsk);
341
342	crunch_task_release(thread);  /* force a reload */
343	return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
344		? -EFAULT : 0;
345}
346#endif
347
348#ifdef CONFIG_HAVE_HW_BREAKPOINT
349/*
350 * Convert a virtual register number into an index for a thread_info
351 * breakpoint array. Breakpoints are identified using positive numbers
352 * whilst watchpoints are negative. The registers are laid out as pairs
353 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
354 * Register 0 is reserved for describing resource information.
355 */
356static int ptrace_hbp_num_to_idx(long num)
357{
358	if (num < 0)
359		num = (ARM_MAX_BRP << 1) - num;
360	return (num - 1) >> 1;
361}
362
363/*
364 * Returns the virtual register number for the address of the
365 * breakpoint at index idx.
366 */
367static long ptrace_hbp_idx_to_num(int idx)
368{
369	long mid = ARM_MAX_BRP << 1;
370	long num = (idx << 1) + 1;
371	return num > mid ? mid - num : num;
372}
373
374/*
375 * Handle hitting a HW-breakpoint.
376 */
377static void ptrace_hbptriggered(struct perf_event *bp,
378				     struct perf_sample_data *data,
379				     struct pt_regs *regs)
380{
381	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
382	long num;
383	int i;
384	siginfo_t info;
385
386	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
387		if (current->thread.debug.hbp[i] == bp)
388			break;
389
390	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
391
392	info.si_signo	= SIGTRAP;
393	info.si_errno	= (int)num;
394	info.si_code	= TRAP_HWBKPT;
395	info.si_addr	= (void __user *)(bkpt->trigger);
396
397	force_sig_info(SIGTRAP, &info, current);
398}
399
400/*
401 * Set ptrace breakpoint pointers to zero for this task.
402 * This is required in order to prevent child processes from unregistering
403 * breakpoints held by their parent.
404 */
405void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
406{
407	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
408}
409
410/*
411 * Unregister breakpoints from this task and reset the pointers in
412 * the thread_struct.
413 */
414void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
415{
416	int i;
417	struct thread_struct *t = &tsk->thread;
418
419	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
420		if (t->debug.hbp[i]) {
421			unregister_hw_breakpoint(t->debug.hbp[i]);
422			t->debug.hbp[i] = NULL;
423		}
424	}
425}
426
427static u32 ptrace_get_hbp_resource_info(void)
428{
429	u8 num_brps, num_wrps, debug_arch, wp_len;
430	u32 reg = 0;
431
432	num_brps	= hw_breakpoint_slots(TYPE_INST);
433	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
434	debug_arch	= arch_get_debug_arch();
435	wp_len		= arch_get_max_wp_len();
436
437	reg		|= debug_arch;
438	reg		<<= 8;
439	reg		|= wp_len;
440	reg		<<= 8;
441	reg		|= num_wrps;
442	reg		<<= 8;
443	reg		|= num_brps;
444
445	return reg;
446}
447
448static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
449{
450	struct perf_event_attr attr;
451
452	ptrace_breakpoint_init(&attr);
453
454	/* Initialise fields to sane defaults. */
455	attr.bp_addr	= 0;
456	attr.bp_len	= HW_BREAKPOINT_LEN_4;
457	attr.bp_type	= type;
458	attr.disabled	= 1;
459
460	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
461					   tsk);
462}
463
464static int ptrace_gethbpregs(struct task_struct *tsk, long num,
465			     unsigned long  __user *data)
466{
467	u32 reg;
468	int idx, ret = 0;
469	struct perf_event *bp;
470	struct arch_hw_breakpoint_ctrl arch_ctrl;
471
472	if (num == 0) {
473		reg = ptrace_get_hbp_resource_info();
474	} else {
475		idx = ptrace_hbp_num_to_idx(num);
476		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
477			ret = -EINVAL;
478			goto out;
479		}
480
481		bp = tsk->thread.debug.hbp[idx];
482		if (!bp) {
483			reg = 0;
484			goto put;
485		}
486
487		arch_ctrl = counter_arch_bp(bp)->ctrl;
488
489		/*
490		 * Fix up the len because we may have adjusted it
491		 * to compensate for an unaligned address.
492		 */
493		while (!(arch_ctrl.len & 0x1))
494			arch_ctrl.len >>= 1;
495
496		if (num & 0x1)
497			reg = bp->attr.bp_addr;
498		else
499			reg = encode_ctrl_reg(arch_ctrl);
500	}
501
502put:
503	if (put_user(reg, data))
504		ret = -EFAULT;
505
506out:
507	return ret;
508}
509
510static int ptrace_sethbpregs(struct task_struct *tsk, long num,
511			     unsigned long __user *data)
512{
513	int idx, gen_len, gen_type, implied_type, ret = 0;
514	u32 user_val;
515	struct perf_event *bp;
516	struct arch_hw_breakpoint_ctrl ctrl;
517	struct perf_event_attr attr;
518
519	if (num == 0)
520		goto out;
521	else if (num < 0)
522		implied_type = HW_BREAKPOINT_RW;
523	else
524		implied_type = HW_BREAKPOINT_X;
525
526	idx = ptrace_hbp_num_to_idx(num);
527	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
528		ret = -EINVAL;
529		goto out;
530	}
531
532	if (get_user(user_val, data)) {
533		ret = -EFAULT;
534		goto out;
535	}
536
537	bp = tsk->thread.debug.hbp[idx];
538	if (!bp) {
539		bp = ptrace_hbp_create(tsk, implied_type);
540		if (IS_ERR(bp)) {
541			ret = PTR_ERR(bp);
542			goto out;
543		}
544		tsk->thread.debug.hbp[idx] = bp;
545	}
546
547	attr = bp->attr;
548
549	if (num & 0x1) {
550		/* Address */
551		attr.bp_addr	= user_val;
552	} else {
553		/* Control */
554		decode_ctrl_reg(user_val, &ctrl);
555		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
556		if (ret)
557			goto out;
558
559		if ((gen_type & implied_type) != gen_type) {
560			ret = -EINVAL;
561			goto out;
562		}
563
564		attr.bp_len	= gen_len;
565		attr.bp_type	= gen_type;
566		attr.disabled	= !ctrl.enabled;
567	}
568
569	ret = modify_user_hw_breakpoint(bp, &attr);
570out:
571	return ret;
572}
573#endif
574
575/* regset get/set implementations */
576
577static int gpr_get(struct task_struct *target,
578		   const struct user_regset *regset,
579		   unsigned int pos, unsigned int count,
580		   void *kbuf, void __user *ubuf)
581{
582	struct pt_regs *regs = task_pt_regs(target);
583
584	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
585				   regs,
586				   0, sizeof(*regs));
587}
588
589static int gpr_set(struct task_struct *target,
590		   const struct user_regset *regset,
591		   unsigned int pos, unsigned int count,
592		   const void *kbuf, const void __user *ubuf)
593{
594	int ret;
595	struct pt_regs newregs;
596
597	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
598				 &newregs,
599				 0, sizeof(newregs));
600	if (ret)
601		return ret;
602
603	if (!valid_user_regs(&newregs))
604		return -EINVAL;
605
606	*task_pt_regs(target) = newregs;
607	return 0;
608}
609
610static int fpa_get(struct task_struct *target,
611		   const struct user_regset *regset,
612		   unsigned int pos, unsigned int count,
613		   void *kbuf, void __user *ubuf)
614{
615	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
616				   &task_thread_info(target)->fpstate,
617				   0, sizeof(struct user_fp));
618}
619
620static int fpa_set(struct task_struct *target,
621		   const struct user_regset *regset,
622		   unsigned int pos, unsigned int count,
623		   const void *kbuf, const void __user *ubuf)
624{
625	struct thread_info *thread = task_thread_info(target);
626
627	thread->used_cp[1] = thread->used_cp[2] = 1;
628
629	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
630		&thread->fpstate,
631		0, sizeof(struct user_fp));
632}
633
634#ifdef CONFIG_VFP
635/*
636 * VFP register get/set implementations.
637 *
638 * With respect to the kernel, struct user_fp is divided into three chunks:
639 * 16 or 32 real VFP registers (d0-d15 or d0-31)
640 *	These are transferred to/from the real registers in the task's
641 *	vfp_hard_struct.  The number of registers depends on the kernel
642 *	configuration.
643 *
644 * 16 or 0 fake VFP registers (d16-d31 or empty)
645 *	i.e., the user_vfp structure has space for 32 registers even if
646 *	the kernel doesn't have them all.
647 *
648 *	vfp_get() reads this chunk as zero where applicable
649 *	vfp_set() ignores this chunk
650 *
651 * 1 word for the FPSCR
652 *
653 * The bounds-checking logic built into user_regset_copyout and friends
654 * means that we can make a simple sequence of calls to map the relevant data
655 * to/from the specified slice of the user regset structure.
656 */
657static int vfp_get(struct task_struct *target,
658		   const struct user_regset *regset,
659		   unsigned int pos, unsigned int count,
660		   void *kbuf, void __user *ubuf)
661{
662	int ret;
663	struct thread_info *thread = task_thread_info(target);
664	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
665	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
666	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
667
668	vfp_sync_hwstate(thread);
669
670	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
671				  &vfp->fpregs,
672				  user_fpregs_offset,
673				  user_fpregs_offset + sizeof(vfp->fpregs));
674	if (ret)
675		return ret;
676
677	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
678				       user_fpregs_offset + sizeof(vfp->fpregs),
679				       user_fpscr_offset);
680	if (ret)
681		return ret;
682
683	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
684				   &vfp->fpscr,
685				   user_fpscr_offset,
686				   user_fpscr_offset + sizeof(vfp->fpscr));
687}
688
689/*
690 * For vfp_set() a read-modify-write is done on the VFP registers,
691 * in order to avoid writing back a half-modified set of registers on
692 * failure.
693 */
694static int vfp_set(struct task_struct *target,
695			  const struct user_regset *regset,
696			  unsigned int pos, unsigned int count,
697			  const void *kbuf, const void __user *ubuf)
698{
699	int ret;
700	struct thread_info *thread = task_thread_info(target);
701	struct vfp_hard_struct new_vfp = thread->vfpstate.hard;
702	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
703	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
704
 
 
 
705	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
706				  &new_vfp.fpregs,
707				  user_fpregs_offset,
708				  user_fpregs_offset + sizeof(new_vfp.fpregs));
709	if (ret)
710		return ret;
711
712	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
713				user_fpregs_offset + sizeof(new_vfp.fpregs),
714				user_fpscr_offset);
715	if (ret)
716		return ret;
717
718	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
719				 &new_vfp.fpscr,
720				 user_fpscr_offset,
721				 user_fpscr_offset + sizeof(new_vfp.fpscr));
722	if (ret)
723		return ret;
724
725	vfp_sync_hwstate(thread);
726	thread->vfpstate.hard = new_vfp;
727	vfp_flush_hwstate(thread);
728
729	return 0;
730}
731#endif /* CONFIG_VFP */
732
733enum arm_regset {
734	REGSET_GPR,
735	REGSET_FPR,
736#ifdef CONFIG_VFP
737	REGSET_VFP,
738#endif
739};
740
741static const struct user_regset arm_regsets[] = {
742	[REGSET_GPR] = {
743		.core_note_type = NT_PRSTATUS,
744		.n = ELF_NGREG,
745		.size = sizeof(u32),
746		.align = sizeof(u32),
747		.get = gpr_get,
748		.set = gpr_set
749	},
750	[REGSET_FPR] = {
751		/*
752		 * For the FPA regs in fpstate, the real fields are a mixture
753		 * of sizes, so pretend that the registers are word-sized:
754		 */
755		.core_note_type = NT_PRFPREG,
756		.n = sizeof(struct user_fp) / sizeof(u32),
757		.size = sizeof(u32),
758		.align = sizeof(u32),
759		.get = fpa_get,
760		.set = fpa_set
761	},
762#ifdef CONFIG_VFP
763	[REGSET_VFP] = {
764		/*
765		 * Pretend that the VFP regs are word-sized, since the FPSCR is
766		 * a single word dangling at the end of struct user_vfp:
767		 */
768		.core_note_type = NT_ARM_VFP,
769		.n = ARM_VFPREGS_SIZE / sizeof(u32),
770		.size = sizeof(u32),
771		.align = sizeof(u32),
772		.get = vfp_get,
773		.set = vfp_set
774	},
775#endif /* CONFIG_VFP */
776};
777
778static const struct user_regset_view user_arm_view = {
779	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
780	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
781};
782
783const struct user_regset_view *task_user_regset_view(struct task_struct *task)
784{
785	return &user_arm_view;
786}
787
788long arch_ptrace(struct task_struct *child, long request,
789		 unsigned long addr, unsigned long data)
790{
791	int ret;
792	unsigned long __user *datap = (unsigned long __user *) data;
793
794	switch (request) {
795		case PTRACE_PEEKUSR:
796			ret = ptrace_read_user(child, addr, datap);
797			break;
798
799		case PTRACE_POKEUSR:
800			ret = ptrace_write_user(child, addr, data);
801			break;
802
803		case PTRACE_GETREGS:
804			ret = copy_regset_to_user(child,
805						  &user_arm_view, REGSET_GPR,
806						  0, sizeof(struct pt_regs),
807						  datap);
808			break;
809
810		case PTRACE_SETREGS:
811			ret = copy_regset_from_user(child,
812						    &user_arm_view, REGSET_GPR,
813						    0, sizeof(struct pt_regs),
814						    datap);
815			break;
816
817		case PTRACE_GETFPREGS:
818			ret = copy_regset_to_user(child,
819						  &user_arm_view, REGSET_FPR,
820						  0, sizeof(union fp_state),
821						  datap);
822			break;
823
824		case PTRACE_SETFPREGS:
825			ret = copy_regset_from_user(child,
826						    &user_arm_view, REGSET_FPR,
827						    0, sizeof(union fp_state),
828						    datap);
829			break;
830
831#ifdef CONFIG_IWMMXT
832		case PTRACE_GETWMMXREGS:
833			ret = ptrace_getwmmxregs(child, datap);
834			break;
835
836		case PTRACE_SETWMMXREGS:
837			ret = ptrace_setwmmxregs(child, datap);
838			break;
839#endif
840
841		case PTRACE_GET_THREAD_AREA:
842			ret = put_user(task_thread_info(child)->tp_value,
843				       datap);
844			break;
845
846		case PTRACE_SET_SYSCALL:
847			task_thread_info(child)->syscall = data;
 
 
848			ret = 0;
849			break;
850
851#ifdef CONFIG_CRUNCH
852		case PTRACE_GETCRUNCHREGS:
853			ret = ptrace_getcrunchregs(child, datap);
854			break;
855
856		case PTRACE_SETCRUNCHREGS:
857			ret = ptrace_setcrunchregs(child, datap);
858			break;
859#endif
860
861#ifdef CONFIG_VFP
862		case PTRACE_GETVFPREGS:
863			ret = copy_regset_to_user(child,
864						  &user_arm_view, REGSET_VFP,
865						  0, ARM_VFPREGS_SIZE,
866						  datap);
867			break;
868
869		case PTRACE_SETVFPREGS:
870			ret = copy_regset_from_user(child,
871						    &user_arm_view, REGSET_VFP,
872						    0, ARM_VFPREGS_SIZE,
873						    datap);
874			break;
875#endif
876
877#ifdef CONFIG_HAVE_HW_BREAKPOINT
878		case PTRACE_GETHBPREGS:
879			if (ptrace_get_breakpoints(child) < 0)
880				return -ESRCH;
881
882			ret = ptrace_gethbpregs(child, addr,
883						(unsigned long __user *)data);
884			ptrace_put_breakpoints(child);
885			break;
886		case PTRACE_SETHBPREGS:
887			if (ptrace_get_breakpoints(child) < 0)
888				return -ESRCH;
889
890			ret = ptrace_sethbpregs(child, addr,
891						(unsigned long __user *)data);
892			ptrace_put_breakpoints(child);
893			break;
894#endif
895
896		default:
897			ret = ptrace_request(child, request, addr, data);
898			break;
899	}
900
901	return ret;
902}
903
904asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
 
 
 
 
 
905{
906	unsigned long ip;
907
908	if (!test_thread_flag(TIF_SYSCALL_TRACE))
909		return scno;
910	if (!(current->ptrace & PT_PTRACED))
911		return scno;
912
913	/*
914	 * Save IP.  IP is used to denote syscall entry/exit:
915	 *  IP = 0 -> entry, = 1 -> exit
916	 */
917	ip = regs->ARM_ip;
918	regs->ARM_ip = why;
919
920	current_thread_info()->syscall = scno;
 
 
 
921
922	/* the 0x80 provides a way for the tracing parent to distinguish
923	   between a syscall stop and SIGTRAP delivery */
924	ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
925				 ? 0x80 : 0));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926	/*
927	 * this isn't the same as continuing with a signal, but it will do
928	 * for normal use.  strace only continues with a signal if the
929	 * stopping signal is not SIGTRAP.  -brl
930	 */
931	if (current->exit_code) {
932		send_sig(current->exit_code, current, 1);
933		current->exit_code = 0;
934	}
935	regs->ARM_ip = ip;
 
 
 
 
 
936
937	return current_thread_info()->syscall;
 
938}
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/arch/arm/kernel/ptrace.c
  4 *
  5 *  By Ross Biro 1/23/92
  6 * edited by Linus Torvalds
  7 * ARM modifications Copyright (C) 2000 Russell King
 
 
 
 
  8 */
  9#include <linux/kernel.h>
 10#include <linux/sched/signal.h>
 11#include <linux/sched/task_stack.h>
 12#include <linux/mm.h>
 13#include <linux/elf.h>
 14#include <linux/smp.h>
 15#include <linux/ptrace.h>
 16#include <linux/user.h>
 17#include <linux/security.h>
 18#include <linux/init.h>
 19#include <linux/signal.h>
 20#include <linux/uaccess.h>
 21#include <linux/perf_event.h>
 22#include <linux/hw_breakpoint.h>
 23#include <linux/regset.h>
 24#include <linux/audit.h>
 25#include <linux/unistd.h>
 26
 27#include <asm/syscall.h>
 
 28#include <asm/traps.h>
 29
 30#define CREATE_TRACE_POINTS
 31#include <trace/events/syscalls.h>
 32
 33#define REG_PC	15
 34#define REG_PSR	16
 35/*
 36 * does not yet catch signals sent when the child dies.
 37 * in exit.c or in signal.c.
 38 */
 39
 40#if 0
 41/*
 42 * Breakpoint SWI instruction: SWI &9F0001
 43 */
 44#define BREAKINST_ARM	0xef9f0001
 45#define BREAKINST_THUMB	0xdf00		/* fill this in later */
 46#else
 47/*
 48 * New breakpoints - use an undefined instruction.  The ARM architecture
 49 * reference manual guarantees that the following instruction space
 50 * will produce an undefined instruction exception on all CPUs:
 51 *
 52 *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
 53 *  Thumb: 1101 1110 xxxx xxxx
 54 */
 55#define BREAKINST_ARM	0xe7f001f0
 56#define BREAKINST_THUMB	0xde01
 57#endif
 58
 59struct pt_regs_offset {
 60	const char *name;
 61	int offset;
 62};
 63
 64#define REG_OFFSET_NAME(r) \
 65	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
 66#define REG_OFFSET_END {.name = NULL, .offset = 0}
 67
 68static const struct pt_regs_offset regoffset_table[] = {
 69	REG_OFFSET_NAME(r0),
 70	REG_OFFSET_NAME(r1),
 71	REG_OFFSET_NAME(r2),
 72	REG_OFFSET_NAME(r3),
 73	REG_OFFSET_NAME(r4),
 74	REG_OFFSET_NAME(r5),
 75	REG_OFFSET_NAME(r6),
 76	REG_OFFSET_NAME(r7),
 77	REG_OFFSET_NAME(r8),
 78	REG_OFFSET_NAME(r9),
 79	REG_OFFSET_NAME(r10),
 80	REG_OFFSET_NAME(fp),
 81	REG_OFFSET_NAME(ip),
 82	REG_OFFSET_NAME(sp),
 83	REG_OFFSET_NAME(lr),
 84	REG_OFFSET_NAME(pc),
 85	REG_OFFSET_NAME(cpsr),
 86	REG_OFFSET_NAME(ORIG_r0),
 87	REG_OFFSET_END,
 88};
 89
 90/**
 91 * regs_query_register_offset() - query register offset from its name
 92 * @name:	the name of a register
 93 *
 94 * regs_query_register_offset() returns the offset of a register in struct
 95 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
 96 */
 97int regs_query_register_offset(const char *name)
 98{
 99	const struct pt_regs_offset *roff;
100	for (roff = regoffset_table; roff->name != NULL; roff++)
101		if (!strcmp(roff->name, name))
102			return roff->offset;
103	return -EINVAL;
104}
105
106/**
107 * regs_query_register_name() - query register name from its offset
108 * @offset:	the offset of a register in struct pt_regs.
109 *
110 * regs_query_register_name() returns the name of a register from its
111 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
112 */
113const char *regs_query_register_name(unsigned int offset)
114{
115	const struct pt_regs_offset *roff;
116	for (roff = regoffset_table; roff->name != NULL; roff++)
117		if (roff->offset == offset)
118			return roff->name;
119	return NULL;
120}
121
122/**
123 * regs_within_kernel_stack() - check the address in the stack
124 * @regs:      pt_regs which contains kernel stack pointer.
125 * @addr:      address which is checked.
126 *
127 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
128 * If @addr is within the kernel stack, it returns true. If not, returns false.
129 */
130bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
131{
132	return ((addr & ~(THREAD_SIZE - 1))  ==
133		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
134}
135
136/**
137 * regs_get_kernel_stack_nth() - get Nth entry of the stack
138 * @regs:	pt_regs which contains kernel stack pointer.
139 * @n:		stack entry number.
140 *
141 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
142 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
143 * this returns 0.
144 */
145unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
146{
147	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
148	addr += n;
149	if (regs_within_kernel_stack(regs, (unsigned long)addr))
150		return *addr;
151	else
152		return 0;
153}
154
155/*
156 * this routine will get a word off of the processes privileged stack.
157 * the offset is how far from the base addr as stored in the THREAD.
158 * this routine assumes that all the privileged stacks are in our
159 * data space.
160 */
161static inline long get_user_reg(struct task_struct *task, int offset)
162{
163	return task_pt_regs(task)->uregs[offset];
164}
165
166/*
167 * this routine will put a word on the processes privileged stack.
168 * the offset is how far from the base addr as stored in the THREAD.
169 * this routine assumes that all the privileged stacks are in our
170 * data space.
171 */
172static inline int
173put_user_reg(struct task_struct *task, int offset, long data)
174{
175	struct pt_regs newregs, *regs = task_pt_regs(task);
176	int ret = -EINVAL;
177
178	newregs = *regs;
179	newregs.uregs[offset] = data;
180
181	if (valid_user_regs(&newregs)) {
182		regs->uregs[offset] = data;
183		ret = 0;
184	}
185
186	return ret;
187}
188
189/*
190 * Called by kernel/ptrace.c when detaching..
191 */
192void ptrace_disable(struct task_struct *child)
193{
194	/* Nothing to do. */
195}
196
197/*
198 * Handle hitting a breakpoint.
199 */
200void ptrace_break(struct pt_regs *regs)
201{
202	force_sig_fault(SIGTRAP, TRAP_BRKPT,
203			(void __user *)instruction_pointer(regs));
 
 
 
 
 
 
204}
205
206static int break_trap(struct pt_regs *regs, unsigned int instr)
207{
208	ptrace_break(regs);
209	return 0;
210}
211
212static struct undef_hook arm_break_hook = {
213	.instr_mask	= 0x0fffffff,
214	.instr_val	= 0x07f001f0,
215	.cpsr_mask	= PSR_T_BIT,
216	.cpsr_val	= 0,
217	.fn		= break_trap,
218};
219
220static struct undef_hook thumb_break_hook = {
221	.instr_mask	= 0xffffffff,
222	.instr_val	= 0x0000de01,
223	.cpsr_mask	= PSR_T_BIT,
224	.cpsr_val	= PSR_T_BIT,
225	.fn		= break_trap,
226};
227
228static struct undef_hook thumb2_break_hook = {
229	.instr_mask	= 0xffffffff,
230	.instr_val	= 0xf7f0a000,
231	.cpsr_mask	= PSR_T_BIT,
232	.cpsr_val	= PSR_T_BIT,
233	.fn		= break_trap,
234};
235
236static int __init ptrace_break_init(void)
237{
238	register_undef_hook(&arm_break_hook);
239	register_undef_hook(&thumb_break_hook);
240	register_undef_hook(&thumb2_break_hook);
241	return 0;
242}
243
244core_initcall(ptrace_break_init);
245
246/*
247 * Read the word at offset "off" into the "struct user".  We
248 * actually access the pt_regs stored on the kernel stack.
249 */
250static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
251			    unsigned long __user *ret)
252{
253	unsigned long tmp;
254
255	if (off & 3)
256		return -EIO;
257
258	tmp = 0;
259	if (off == PT_TEXT_ADDR)
260		tmp = tsk->mm->start_code;
261	else if (off == PT_DATA_ADDR)
262		tmp = tsk->mm->start_data;
263	else if (off == PT_TEXT_END_ADDR)
264		tmp = tsk->mm->end_code;
265	else if (off < sizeof(struct pt_regs))
266		tmp = get_user_reg(tsk, off >> 2);
267	else if (off >= sizeof(struct user))
268		return -EIO;
269
270	return put_user(tmp, ret);
271}
272
273/*
274 * Write the word at offset "off" into "struct user".  We
275 * actually access the pt_regs stored on the kernel stack.
276 */
277static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
278			     unsigned long val)
279{
280	if (off & 3 || off >= sizeof(struct user))
281		return -EIO;
282
283	if (off >= sizeof(struct pt_regs))
284		return 0;
285
286	return put_user_reg(tsk, off >> 2, val);
287}
288
289#ifdef CONFIG_IWMMXT
290
291/*
292 * Get the child iWMMXt state.
293 */
294static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
295{
296	struct thread_info *thread = task_thread_info(tsk);
297
298	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
299		return -ENODATA;
300	iwmmxt_task_disable(thread);  /* force it to ram */
301	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
302		? -EFAULT : 0;
303}
304
305/*
306 * Set the child iWMMXt state.
307 */
308static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
309{
310	struct thread_info *thread = task_thread_info(tsk);
311
312	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
313		return -EACCES;
314	iwmmxt_task_release(thread);  /* force a reload */
315	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
316		? -EFAULT : 0;
317}
318
319#endif
320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321#ifdef CONFIG_HAVE_HW_BREAKPOINT
322/*
323 * Convert a virtual register number into an index for a thread_info
324 * breakpoint array. Breakpoints are identified using positive numbers
325 * whilst watchpoints are negative. The registers are laid out as pairs
326 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
327 * Register 0 is reserved for describing resource information.
328 */
329static int ptrace_hbp_num_to_idx(long num)
330{
331	if (num < 0)
332		num = (ARM_MAX_BRP << 1) - num;
333	return (num - 1) >> 1;
334}
335
336/*
337 * Returns the virtual register number for the address of the
338 * breakpoint at index idx.
339 */
340static long ptrace_hbp_idx_to_num(int idx)
341{
342	long mid = ARM_MAX_BRP << 1;
343	long num = (idx << 1) + 1;
344	return num > mid ? mid - num : num;
345}
346
347/*
348 * Handle hitting a HW-breakpoint.
349 */
350static void ptrace_hbptriggered(struct perf_event *bp,
351				     struct perf_sample_data *data,
352				     struct pt_regs *regs)
353{
354	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
355	long num;
356	int i;
 
357
358	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
359		if (current->thread.debug.hbp[i] == bp)
360			break;
361
362	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
363
364	force_sig_ptrace_errno_trap((int)num, (void __user *)(bkpt->trigger));
 
 
 
 
 
365}
366
367/*
368 * Set ptrace breakpoint pointers to zero for this task.
369 * This is required in order to prevent child processes from unregistering
370 * breakpoints held by their parent.
371 */
372void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
373{
374	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
375}
376
377/*
378 * Unregister breakpoints from this task and reset the pointers in
379 * the thread_struct.
380 */
381void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
382{
383	int i;
384	struct thread_struct *t = &tsk->thread;
385
386	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
387		if (t->debug.hbp[i]) {
388			unregister_hw_breakpoint(t->debug.hbp[i]);
389			t->debug.hbp[i] = NULL;
390		}
391	}
392}
393
394static u32 ptrace_get_hbp_resource_info(void)
395{
396	u8 num_brps, num_wrps, debug_arch, wp_len;
397	u32 reg = 0;
398
399	num_brps	= hw_breakpoint_slots(TYPE_INST);
400	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
401	debug_arch	= arch_get_debug_arch();
402	wp_len		= arch_get_max_wp_len();
403
404	reg		|= debug_arch;
405	reg		<<= 8;
406	reg		|= wp_len;
407	reg		<<= 8;
408	reg		|= num_wrps;
409	reg		<<= 8;
410	reg		|= num_brps;
411
412	return reg;
413}
414
415static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
416{
417	struct perf_event_attr attr;
418
419	ptrace_breakpoint_init(&attr);
420
421	/* Initialise fields to sane defaults. */
422	attr.bp_addr	= 0;
423	attr.bp_len	= HW_BREAKPOINT_LEN_4;
424	attr.bp_type	= type;
425	attr.disabled	= 1;
426
427	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
428					   tsk);
429}
430
431static int ptrace_gethbpregs(struct task_struct *tsk, long num,
432			     unsigned long  __user *data)
433{
434	u32 reg;
435	int idx, ret = 0;
436	struct perf_event *bp;
437	struct arch_hw_breakpoint_ctrl arch_ctrl;
438
439	if (num == 0) {
440		reg = ptrace_get_hbp_resource_info();
441	} else {
442		idx = ptrace_hbp_num_to_idx(num);
443		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
444			ret = -EINVAL;
445			goto out;
446		}
447
448		bp = tsk->thread.debug.hbp[idx];
449		if (!bp) {
450			reg = 0;
451			goto put;
452		}
453
454		arch_ctrl = counter_arch_bp(bp)->ctrl;
455
456		/*
457		 * Fix up the len because we may have adjusted it
458		 * to compensate for an unaligned address.
459		 */
460		while (!(arch_ctrl.len & 0x1))
461			arch_ctrl.len >>= 1;
462
463		if (num & 0x1)
464			reg = bp->attr.bp_addr;
465		else
466			reg = encode_ctrl_reg(arch_ctrl);
467	}
468
469put:
470	if (put_user(reg, data))
471		ret = -EFAULT;
472
473out:
474	return ret;
475}
476
477static int ptrace_sethbpregs(struct task_struct *tsk, long num,
478			     unsigned long __user *data)
479{
480	int idx, gen_len, gen_type, implied_type, ret = 0;
481	u32 user_val;
482	struct perf_event *bp;
483	struct arch_hw_breakpoint_ctrl ctrl;
484	struct perf_event_attr attr;
485
486	if (num == 0)
487		goto out;
488	else if (num < 0)
489		implied_type = HW_BREAKPOINT_RW;
490	else
491		implied_type = HW_BREAKPOINT_X;
492
493	idx = ptrace_hbp_num_to_idx(num);
494	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
495		ret = -EINVAL;
496		goto out;
497	}
498
499	if (get_user(user_val, data)) {
500		ret = -EFAULT;
501		goto out;
502	}
503
504	bp = tsk->thread.debug.hbp[idx];
505	if (!bp) {
506		bp = ptrace_hbp_create(tsk, implied_type);
507		if (IS_ERR(bp)) {
508			ret = PTR_ERR(bp);
509			goto out;
510		}
511		tsk->thread.debug.hbp[idx] = bp;
512	}
513
514	attr = bp->attr;
515
516	if (num & 0x1) {
517		/* Address */
518		attr.bp_addr	= user_val;
519	} else {
520		/* Control */
521		decode_ctrl_reg(user_val, &ctrl);
522		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
523		if (ret)
524			goto out;
525
526		if ((gen_type & implied_type) != gen_type) {
527			ret = -EINVAL;
528			goto out;
529		}
530
531		attr.bp_len	= gen_len;
532		attr.bp_type	= gen_type;
533		attr.disabled	= !ctrl.enabled;
534	}
535
536	ret = modify_user_hw_breakpoint(bp, &attr);
537out:
538	return ret;
539}
540#endif
541
542/* regset get/set implementations */
543
544static int gpr_get(struct task_struct *target,
545		   const struct user_regset *regset,
546		   struct membuf to)
 
547{
548	return membuf_write(&to, task_pt_regs(target), sizeof(struct pt_regs));
 
 
 
 
549}
550
551static int gpr_set(struct task_struct *target,
552		   const struct user_regset *regset,
553		   unsigned int pos, unsigned int count,
554		   const void *kbuf, const void __user *ubuf)
555{
556	int ret;
557	struct pt_regs newregs = *task_pt_regs(target);
558
559	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
560				 &newregs,
561				 0, sizeof(newregs));
562	if (ret)
563		return ret;
564
565	if (!valid_user_regs(&newregs))
566		return -EINVAL;
567
568	*task_pt_regs(target) = newregs;
569	return 0;
570}
571
572static int fpa_get(struct task_struct *target,
573		   const struct user_regset *regset,
574		   struct membuf to)
 
575{
576	return membuf_write(&to, &task_thread_info(target)->fpstate,
577				 sizeof(struct user_fp));
 
578}
579
580static int fpa_set(struct task_struct *target,
581		   const struct user_regset *regset,
582		   unsigned int pos, unsigned int count,
583		   const void *kbuf, const void __user *ubuf)
584{
585	struct thread_info *thread = task_thread_info(target);
586
 
 
587	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
588		&thread->fpstate,
589		0, sizeof(struct user_fp));
590}
591
592#ifdef CONFIG_VFP
593/*
594 * VFP register get/set implementations.
595 *
596 * With respect to the kernel, struct user_fp is divided into three chunks:
597 * 16 or 32 real VFP registers (d0-d15 or d0-31)
598 *	These are transferred to/from the real registers in the task's
599 *	vfp_hard_struct.  The number of registers depends on the kernel
600 *	configuration.
601 *
602 * 16 or 0 fake VFP registers (d16-d31 or empty)
603 *	i.e., the user_vfp structure has space for 32 registers even if
604 *	the kernel doesn't have them all.
605 *
606 *	vfp_get() reads this chunk as zero where applicable
607 *	vfp_set() ignores this chunk
608 *
609 * 1 word for the FPSCR
 
 
 
 
610 */
611static int vfp_get(struct task_struct *target,
612		   const struct user_regset *regset,
613		   struct membuf to)
 
614{
 
615	struct thread_info *thread = task_thread_info(target);
616	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
 
617	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
618
619	vfp_sync_hwstate(thread);
620
621	membuf_write(&to, vfp->fpregs, sizeof(vfp->fpregs));
622	membuf_zero(&to, user_fpscr_offset - sizeof(vfp->fpregs));
623	return membuf_store(&to, vfp->fpscr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
624}
625
626/*
627 * For vfp_set() a read-modify-write is done on the VFP registers,
628 * in order to avoid writing back a half-modified set of registers on
629 * failure.
630 */
631static int vfp_set(struct task_struct *target,
632			  const struct user_regset *regset,
633			  unsigned int pos, unsigned int count,
634			  const void *kbuf, const void __user *ubuf)
635{
636	int ret;
637	struct thread_info *thread = task_thread_info(target);
638	struct vfp_hard_struct new_vfp;
639	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
640	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
641
642	vfp_sync_hwstate(thread);
643	new_vfp = thread->vfpstate.hard;
644
645	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
646				  &new_vfp.fpregs,
647				  user_fpregs_offset,
648				  user_fpregs_offset + sizeof(new_vfp.fpregs));
649	if (ret)
650		return ret;
651
652	user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
653				  user_fpregs_offset + sizeof(new_vfp.fpregs),
654				  user_fpscr_offset);
 
 
655
656	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
657				 &new_vfp.fpscr,
658				 user_fpscr_offset,
659				 user_fpscr_offset + sizeof(new_vfp.fpscr));
660	if (ret)
661		return ret;
662
 
663	thread->vfpstate.hard = new_vfp;
664	vfp_flush_hwstate(thread);
665
666	return 0;
667}
668#endif /* CONFIG_VFP */
669
670enum arm_regset {
671	REGSET_GPR,
672	REGSET_FPR,
673#ifdef CONFIG_VFP
674	REGSET_VFP,
675#endif
676};
677
678static const struct user_regset arm_regsets[] = {
679	[REGSET_GPR] = {
680		.core_note_type = NT_PRSTATUS,
681		.n = ELF_NGREG,
682		.size = sizeof(u32),
683		.align = sizeof(u32),
684		.regset_get = gpr_get,
685		.set = gpr_set
686	},
687	[REGSET_FPR] = {
688		/*
689		 * For the FPA regs in fpstate, the real fields are a mixture
690		 * of sizes, so pretend that the registers are word-sized:
691		 */
692		.core_note_type = NT_PRFPREG,
693		.n = sizeof(struct user_fp) / sizeof(u32),
694		.size = sizeof(u32),
695		.align = sizeof(u32),
696		.regset_get = fpa_get,
697		.set = fpa_set
698	},
699#ifdef CONFIG_VFP
700	[REGSET_VFP] = {
701		/*
702		 * Pretend that the VFP regs are word-sized, since the FPSCR is
703		 * a single word dangling at the end of struct user_vfp:
704		 */
705		.core_note_type = NT_ARM_VFP,
706		.n = ARM_VFPREGS_SIZE / sizeof(u32),
707		.size = sizeof(u32),
708		.align = sizeof(u32),
709		.regset_get = vfp_get,
710		.set = vfp_set
711	},
712#endif /* CONFIG_VFP */
713};
714
715static const struct user_regset_view user_arm_view = {
716	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
717	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
718};
719
720const struct user_regset_view *task_user_regset_view(struct task_struct *task)
721{
722	return &user_arm_view;
723}
724
725long arch_ptrace(struct task_struct *child, long request,
726		 unsigned long addr, unsigned long data)
727{
728	int ret;
729	unsigned long __user *datap = (unsigned long __user *) data;
730
731	switch (request) {
732		case PTRACE_PEEKUSR:
733			ret = ptrace_read_user(child, addr, datap);
734			break;
735
736		case PTRACE_POKEUSR:
737			ret = ptrace_write_user(child, addr, data);
738			break;
739
740		case PTRACE_GETREGS:
741			ret = copy_regset_to_user(child,
742						  &user_arm_view, REGSET_GPR,
743						  0, sizeof(struct pt_regs),
744						  datap);
745			break;
746
747		case PTRACE_SETREGS:
748			ret = copy_regset_from_user(child,
749						    &user_arm_view, REGSET_GPR,
750						    0, sizeof(struct pt_regs),
751						    datap);
752			break;
753
754		case PTRACE_GETFPREGS:
755			ret = copy_regset_to_user(child,
756						  &user_arm_view, REGSET_FPR,
757						  0, sizeof(union fp_state),
758						  datap);
759			break;
760
761		case PTRACE_SETFPREGS:
762			ret = copy_regset_from_user(child,
763						    &user_arm_view, REGSET_FPR,
764						    0, sizeof(union fp_state),
765						    datap);
766			break;
767
768#ifdef CONFIG_IWMMXT
769		case PTRACE_GETWMMXREGS:
770			ret = ptrace_getwmmxregs(child, datap);
771			break;
772
773		case PTRACE_SETWMMXREGS:
774			ret = ptrace_setwmmxregs(child, datap);
775			break;
776#endif
777
778		case PTRACE_GET_THREAD_AREA:
779			ret = put_user(task_thread_info(child)->tp_value[0],
780				       datap);
781			break;
782
783		case PTRACE_SET_SYSCALL:
784			if (data != -1)
785				data &= __NR_SYSCALL_MASK;
786			task_thread_info(child)->abi_syscall = data;
787			ret = 0;
788			break;
789
 
 
 
 
 
 
 
 
 
 
790#ifdef CONFIG_VFP
791		case PTRACE_GETVFPREGS:
792			ret = copy_regset_to_user(child,
793						  &user_arm_view, REGSET_VFP,
794						  0, ARM_VFPREGS_SIZE,
795						  datap);
796			break;
797
798		case PTRACE_SETVFPREGS:
799			ret = copy_regset_from_user(child,
800						    &user_arm_view, REGSET_VFP,
801						    0, ARM_VFPREGS_SIZE,
802						    datap);
803			break;
804#endif
805
806#ifdef CONFIG_HAVE_HW_BREAKPOINT
807		case PTRACE_GETHBPREGS:
 
 
 
808			ret = ptrace_gethbpregs(child, addr,
809						(unsigned long __user *)data);
 
810			break;
811		case PTRACE_SETHBPREGS:
 
 
 
812			ret = ptrace_sethbpregs(child, addr,
813						(unsigned long __user *)data);
 
814			break;
815#endif
816
817		default:
818			ret = ptrace_request(child, request, addr, data);
819			break;
820	}
821
822	return ret;
823}
824
825enum ptrace_syscall_dir {
826	PTRACE_SYSCALL_ENTER = 0,
827	PTRACE_SYSCALL_EXIT,
828};
829
830static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
831{
832	unsigned long ip;
833
 
 
 
 
 
834	/*
835	 * IP is used to denote syscall entry/exit:
836	 * IP = 0 -> entry, =1 -> exit
837	 */
838	ip = regs->ARM_ip;
839	regs->ARM_ip = dir;
840
841	if (dir == PTRACE_SYSCALL_EXIT)
842		ptrace_report_syscall_exit(regs, 0);
843	else if (ptrace_report_syscall_entry(regs))
844		current_thread_info()->abi_syscall = -1;
845
846	regs->ARM_ip = ip;
847}
848
849asmlinkage int syscall_trace_enter(struct pt_regs *regs)
850{
851	int scno;
852
853	if (test_thread_flag(TIF_SYSCALL_TRACE))
854		report_syscall(regs, PTRACE_SYSCALL_ENTER);
855
856	/* Do seccomp after ptrace; syscall may have changed. */
857#ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
858	if (secure_computing() == -1)
859		return -1;
860#else
861	/* XXX: remove this once OABI gets fixed */
862	secure_computing_strict(syscall_get_nr(current, regs));
863#endif
864
865	/* Tracer or seccomp may have changed syscall. */
866	scno = syscall_get_nr(current, regs);
867
868	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
869		trace_sys_enter(regs, scno);
870
871	audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2,
872			    regs->ARM_r3);
873
874	return scno;
875}
876
877asmlinkage void syscall_trace_exit(struct pt_regs *regs)
878{
879	/*
880	 * Audit the syscall before anything else, as a debugger may
881	 * come in and change the current registers.
 
882	 */
883	audit_syscall_exit(regs);
884
885	/*
886	 * Note that we haven't updated the ->syscall field for the
887	 * current thread. This isn't a problem because it will have
888	 * been set on syscall entry and there hasn't been an opportunity
889	 * for a PTRACE_SET_SYSCALL since then.
890	 */
891	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
892		trace_sys_exit(regs, regs_return_value(regs));
893
894	if (test_thread_flag(TIF_SYSCALL_TRACE))
895		report_syscall(regs, PTRACE_SYSCALL_EXIT);
896}