Loading...
1/*
2 * linux/arch/arm/kernel/ptrace.c
3 *
4 * By Ross Biro 1/23/92
5 * edited by Linus Torvalds
6 * ARM modifications Copyright (C) 2000 Russell King
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12#include <linux/kernel.h>
13#include <linux/sched.h>
14#include <linux/mm.h>
15#include <linux/smp.h>
16#include <linux/ptrace.h>
17#include <linux/user.h>
18#include <linux/security.h>
19#include <linux/init.h>
20#include <linux/signal.h>
21#include <linux/uaccess.h>
22#include <linux/perf_event.h>
23#include <linux/hw_breakpoint.h>
24#include <linux/regset.h>
25
26#include <asm/pgtable.h>
27#include <asm/system.h>
28#include <asm/traps.h>
29
30#define REG_PC 15
31#define REG_PSR 16
32/*
33 * does not yet catch signals sent when the child dies.
34 * in exit.c or in signal.c.
35 */
36
37#if 0
38/*
39 * Breakpoint SWI instruction: SWI &9F0001
40 */
41#define BREAKINST_ARM 0xef9f0001
42#define BREAKINST_THUMB 0xdf00 /* fill this in later */
43#else
44/*
45 * New breakpoints - use an undefined instruction. The ARM architecture
46 * reference manual guarantees that the following instruction space
47 * will produce an undefined instruction exception on all CPUs:
48 *
49 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
50 * Thumb: 1101 1110 xxxx xxxx
51 */
52#define BREAKINST_ARM 0xe7f001f0
53#define BREAKINST_THUMB 0xde01
54#endif
55
56struct pt_regs_offset {
57 const char *name;
58 int offset;
59};
60
61#define REG_OFFSET_NAME(r) \
62 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
63#define REG_OFFSET_END {.name = NULL, .offset = 0}
64
65static const struct pt_regs_offset regoffset_table[] = {
66 REG_OFFSET_NAME(r0),
67 REG_OFFSET_NAME(r1),
68 REG_OFFSET_NAME(r2),
69 REG_OFFSET_NAME(r3),
70 REG_OFFSET_NAME(r4),
71 REG_OFFSET_NAME(r5),
72 REG_OFFSET_NAME(r6),
73 REG_OFFSET_NAME(r7),
74 REG_OFFSET_NAME(r8),
75 REG_OFFSET_NAME(r9),
76 REG_OFFSET_NAME(r10),
77 REG_OFFSET_NAME(fp),
78 REG_OFFSET_NAME(ip),
79 REG_OFFSET_NAME(sp),
80 REG_OFFSET_NAME(lr),
81 REG_OFFSET_NAME(pc),
82 REG_OFFSET_NAME(cpsr),
83 REG_OFFSET_NAME(ORIG_r0),
84 REG_OFFSET_END,
85};
86
87/**
88 * regs_query_register_offset() - query register offset from its name
89 * @name: the name of a register
90 *
91 * regs_query_register_offset() returns the offset of a register in struct
92 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
93 */
94int regs_query_register_offset(const char *name)
95{
96 const struct pt_regs_offset *roff;
97 for (roff = regoffset_table; roff->name != NULL; roff++)
98 if (!strcmp(roff->name, name))
99 return roff->offset;
100 return -EINVAL;
101}
102
103/**
104 * regs_query_register_name() - query register name from its offset
105 * @offset: the offset of a register in struct pt_regs.
106 *
107 * regs_query_register_name() returns the name of a register from its
108 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
109 */
110const char *regs_query_register_name(unsigned int offset)
111{
112 const struct pt_regs_offset *roff;
113 for (roff = regoffset_table; roff->name != NULL; roff++)
114 if (roff->offset == offset)
115 return roff->name;
116 return NULL;
117}
118
119/**
120 * regs_within_kernel_stack() - check the address in the stack
121 * @regs: pt_regs which contains kernel stack pointer.
122 * @addr: address which is checked.
123 *
124 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
125 * If @addr is within the kernel stack, it returns true. If not, returns false.
126 */
127bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
128{
129 return ((addr & ~(THREAD_SIZE - 1)) ==
130 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
131}
132
133/**
134 * regs_get_kernel_stack_nth() - get Nth entry of the stack
135 * @regs: pt_regs which contains kernel stack pointer.
136 * @n: stack entry number.
137 *
138 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
139 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
140 * this returns 0.
141 */
142unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
143{
144 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
145 addr += n;
146 if (regs_within_kernel_stack(regs, (unsigned long)addr))
147 return *addr;
148 else
149 return 0;
150}
151
152/*
153 * this routine will get a word off of the processes privileged stack.
154 * the offset is how far from the base addr as stored in the THREAD.
155 * this routine assumes that all the privileged stacks are in our
156 * data space.
157 */
158static inline long get_user_reg(struct task_struct *task, int offset)
159{
160 return task_pt_regs(task)->uregs[offset];
161}
162
163/*
164 * this routine will put a word on the processes privileged stack.
165 * the offset is how far from the base addr as stored in the THREAD.
166 * this routine assumes that all the privileged stacks are in our
167 * data space.
168 */
169static inline int
170put_user_reg(struct task_struct *task, int offset, long data)
171{
172 struct pt_regs newregs, *regs = task_pt_regs(task);
173 int ret = -EINVAL;
174
175 newregs = *regs;
176 newregs.uregs[offset] = data;
177
178 if (valid_user_regs(&newregs)) {
179 regs->uregs[offset] = data;
180 ret = 0;
181 }
182
183 return ret;
184}
185
186/*
187 * Called by kernel/ptrace.c when detaching..
188 */
189void ptrace_disable(struct task_struct *child)
190{
191 /* Nothing to do. */
192}
193
194/*
195 * Handle hitting a breakpoint.
196 */
197void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
198{
199 siginfo_t info;
200
201 info.si_signo = SIGTRAP;
202 info.si_errno = 0;
203 info.si_code = TRAP_BRKPT;
204 info.si_addr = (void __user *)instruction_pointer(regs);
205
206 force_sig_info(SIGTRAP, &info, tsk);
207}
208
209static int break_trap(struct pt_regs *regs, unsigned int instr)
210{
211 ptrace_break(current, regs);
212 return 0;
213}
214
215static struct undef_hook arm_break_hook = {
216 .instr_mask = 0x0fffffff,
217 .instr_val = 0x07f001f0,
218 .cpsr_mask = PSR_T_BIT,
219 .cpsr_val = 0,
220 .fn = break_trap,
221};
222
223static struct undef_hook thumb_break_hook = {
224 .instr_mask = 0xffff,
225 .instr_val = 0xde01,
226 .cpsr_mask = PSR_T_BIT,
227 .cpsr_val = PSR_T_BIT,
228 .fn = break_trap,
229};
230
231static struct undef_hook thumb2_break_hook = {
232 .instr_mask = 0xffffffff,
233 .instr_val = 0xf7f0a000,
234 .cpsr_mask = PSR_T_BIT,
235 .cpsr_val = PSR_T_BIT,
236 .fn = break_trap,
237};
238
239static int __init ptrace_break_init(void)
240{
241 register_undef_hook(&arm_break_hook);
242 register_undef_hook(&thumb_break_hook);
243 register_undef_hook(&thumb2_break_hook);
244 return 0;
245}
246
247core_initcall(ptrace_break_init);
248
249/*
250 * Read the word at offset "off" into the "struct user". We
251 * actually access the pt_regs stored on the kernel stack.
252 */
253static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
254 unsigned long __user *ret)
255{
256 unsigned long tmp;
257
258 if (off & 3 || off >= sizeof(struct user))
259 return -EIO;
260
261 tmp = 0;
262 if (off == PT_TEXT_ADDR)
263 tmp = tsk->mm->start_code;
264 else if (off == PT_DATA_ADDR)
265 tmp = tsk->mm->start_data;
266 else if (off == PT_TEXT_END_ADDR)
267 tmp = tsk->mm->end_code;
268 else if (off < sizeof(struct pt_regs))
269 tmp = get_user_reg(tsk, off >> 2);
270
271 return put_user(tmp, ret);
272}
273
274/*
275 * Write the word at offset "off" into "struct user". We
276 * actually access the pt_regs stored on the kernel stack.
277 */
278static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
279 unsigned long val)
280{
281 if (off & 3 || off >= sizeof(struct user))
282 return -EIO;
283
284 if (off >= sizeof(struct pt_regs))
285 return 0;
286
287 return put_user_reg(tsk, off >> 2, val);
288}
289
290#ifdef CONFIG_IWMMXT
291
292/*
293 * Get the child iWMMXt state.
294 */
295static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
296{
297 struct thread_info *thread = task_thread_info(tsk);
298
299 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
300 return -ENODATA;
301 iwmmxt_task_disable(thread); /* force it to ram */
302 return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
303 ? -EFAULT : 0;
304}
305
306/*
307 * Set the child iWMMXt state.
308 */
309static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
310{
311 struct thread_info *thread = task_thread_info(tsk);
312
313 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
314 return -EACCES;
315 iwmmxt_task_release(thread); /* force a reload */
316 return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
317 ? -EFAULT : 0;
318}
319
320#endif
321
322#ifdef CONFIG_CRUNCH
323/*
324 * Get the child Crunch state.
325 */
326static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
327{
328 struct thread_info *thread = task_thread_info(tsk);
329
330 crunch_task_disable(thread); /* force it to ram */
331 return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
332 ? -EFAULT : 0;
333}
334
335/*
336 * Set the child Crunch state.
337 */
338static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
339{
340 struct thread_info *thread = task_thread_info(tsk);
341
342 crunch_task_release(thread); /* force a reload */
343 return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
344 ? -EFAULT : 0;
345}
346#endif
347
348#ifdef CONFIG_HAVE_HW_BREAKPOINT
349/*
350 * Convert a virtual register number into an index for a thread_info
351 * breakpoint array. Breakpoints are identified using positive numbers
352 * whilst watchpoints are negative. The registers are laid out as pairs
353 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
354 * Register 0 is reserved for describing resource information.
355 */
356static int ptrace_hbp_num_to_idx(long num)
357{
358 if (num < 0)
359 num = (ARM_MAX_BRP << 1) - num;
360 return (num - 1) >> 1;
361}
362
363/*
364 * Returns the virtual register number for the address of the
365 * breakpoint at index idx.
366 */
367static long ptrace_hbp_idx_to_num(int idx)
368{
369 long mid = ARM_MAX_BRP << 1;
370 long num = (idx << 1) + 1;
371 return num > mid ? mid - num : num;
372}
373
374/*
375 * Handle hitting a HW-breakpoint.
376 */
377static void ptrace_hbptriggered(struct perf_event *bp,
378 struct perf_sample_data *data,
379 struct pt_regs *regs)
380{
381 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
382 long num;
383 int i;
384 siginfo_t info;
385
386 for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
387 if (current->thread.debug.hbp[i] == bp)
388 break;
389
390 num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
391
392 info.si_signo = SIGTRAP;
393 info.si_errno = (int)num;
394 info.si_code = TRAP_HWBKPT;
395 info.si_addr = (void __user *)(bkpt->trigger);
396
397 force_sig_info(SIGTRAP, &info, current);
398}
399
400/*
401 * Set ptrace breakpoint pointers to zero for this task.
402 * This is required in order to prevent child processes from unregistering
403 * breakpoints held by their parent.
404 */
405void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
406{
407 memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
408}
409
410/*
411 * Unregister breakpoints from this task and reset the pointers in
412 * the thread_struct.
413 */
414void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
415{
416 int i;
417 struct thread_struct *t = &tsk->thread;
418
419 for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
420 if (t->debug.hbp[i]) {
421 unregister_hw_breakpoint(t->debug.hbp[i]);
422 t->debug.hbp[i] = NULL;
423 }
424 }
425}
426
427static u32 ptrace_get_hbp_resource_info(void)
428{
429 u8 num_brps, num_wrps, debug_arch, wp_len;
430 u32 reg = 0;
431
432 num_brps = hw_breakpoint_slots(TYPE_INST);
433 num_wrps = hw_breakpoint_slots(TYPE_DATA);
434 debug_arch = arch_get_debug_arch();
435 wp_len = arch_get_max_wp_len();
436
437 reg |= debug_arch;
438 reg <<= 8;
439 reg |= wp_len;
440 reg <<= 8;
441 reg |= num_wrps;
442 reg <<= 8;
443 reg |= num_brps;
444
445 return reg;
446}
447
448static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
449{
450 struct perf_event_attr attr;
451
452 ptrace_breakpoint_init(&attr);
453
454 /* Initialise fields to sane defaults. */
455 attr.bp_addr = 0;
456 attr.bp_len = HW_BREAKPOINT_LEN_4;
457 attr.bp_type = type;
458 attr.disabled = 1;
459
460 return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
461 tsk);
462}
463
464static int ptrace_gethbpregs(struct task_struct *tsk, long num,
465 unsigned long __user *data)
466{
467 u32 reg;
468 int idx, ret = 0;
469 struct perf_event *bp;
470 struct arch_hw_breakpoint_ctrl arch_ctrl;
471
472 if (num == 0) {
473 reg = ptrace_get_hbp_resource_info();
474 } else {
475 idx = ptrace_hbp_num_to_idx(num);
476 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
477 ret = -EINVAL;
478 goto out;
479 }
480
481 bp = tsk->thread.debug.hbp[idx];
482 if (!bp) {
483 reg = 0;
484 goto put;
485 }
486
487 arch_ctrl = counter_arch_bp(bp)->ctrl;
488
489 /*
490 * Fix up the len because we may have adjusted it
491 * to compensate for an unaligned address.
492 */
493 while (!(arch_ctrl.len & 0x1))
494 arch_ctrl.len >>= 1;
495
496 if (num & 0x1)
497 reg = bp->attr.bp_addr;
498 else
499 reg = encode_ctrl_reg(arch_ctrl);
500 }
501
502put:
503 if (put_user(reg, data))
504 ret = -EFAULT;
505
506out:
507 return ret;
508}
509
510static int ptrace_sethbpregs(struct task_struct *tsk, long num,
511 unsigned long __user *data)
512{
513 int idx, gen_len, gen_type, implied_type, ret = 0;
514 u32 user_val;
515 struct perf_event *bp;
516 struct arch_hw_breakpoint_ctrl ctrl;
517 struct perf_event_attr attr;
518
519 if (num == 0)
520 goto out;
521 else if (num < 0)
522 implied_type = HW_BREAKPOINT_RW;
523 else
524 implied_type = HW_BREAKPOINT_X;
525
526 idx = ptrace_hbp_num_to_idx(num);
527 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
528 ret = -EINVAL;
529 goto out;
530 }
531
532 if (get_user(user_val, data)) {
533 ret = -EFAULT;
534 goto out;
535 }
536
537 bp = tsk->thread.debug.hbp[idx];
538 if (!bp) {
539 bp = ptrace_hbp_create(tsk, implied_type);
540 if (IS_ERR(bp)) {
541 ret = PTR_ERR(bp);
542 goto out;
543 }
544 tsk->thread.debug.hbp[idx] = bp;
545 }
546
547 attr = bp->attr;
548
549 if (num & 0x1) {
550 /* Address */
551 attr.bp_addr = user_val;
552 } else {
553 /* Control */
554 decode_ctrl_reg(user_val, &ctrl);
555 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
556 if (ret)
557 goto out;
558
559 if ((gen_type & implied_type) != gen_type) {
560 ret = -EINVAL;
561 goto out;
562 }
563
564 attr.bp_len = gen_len;
565 attr.bp_type = gen_type;
566 attr.disabled = !ctrl.enabled;
567 }
568
569 ret = modify_user_hw_breakpoint(bp, &attr);
570out:
571 return ret;
572}
573#endif
574
575/* regset get/set implementations */
576
577static int gpr_get(struct task_struct *target,
578 const struct user_regset *regset,
579 unsigned int pos, unsigned int count,
580 void *kbuf, void __user *ubuf)
581{
582 struct pt_regs *regs = task_pt_regs(target);
583
584 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
585 regs,
586 0, sizeof(*regs));
587}
588
589static int gpr_set(struct task_struct *target,
590 const struct user_regset *regset,
591 unsigned int pos, unsigned int count,
592 const void *kbuf, const void __user *ubuf)
593{
594 int ret;
595 struct pt_regs newregs;
596
597 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
598 &newregs,
599 0, sizeof(newregs));
600 if (ret)
601 return ret;
602
603 if (!valid_user_regs(&newregs))
604 return -EINVAL;
605
606 *task_pt_regs(target) = newregs;
607 return 0;
608}
609
610static int fpa_get(struct task_struct *target,
611 const struct user_regset *regset,
612 unsigned int pos, unsigned int count,
613 void *kbuf, void __user *ubuf)
614{
615 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
616 &task_thread_info(target)->fpstate,
617 0, sizeof(struct user_fp));
618}
619
620static int fpa_set(struct task_struct *target,
621 const struct user_regset *regset,
622 unsigned int pos, unsigned int count,
623 const void *kbuf, const void __user *ubuf)
624{
625 struct thread_info *thread = task_thread_info(target);
626
627 thread->used_cp[1] = thread->used_cp[2] = 1;
628
629 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
630 &thread->fpstate,
631 0, sizeof(struct user_fp));
632}
633
634#ifdef CONFIG_VFP
635/*
636 * VFP register get/set implementations.
637 *
638 * With respect to the kernel, struct user_fp is divided into three chunks:
639 * 16 or 32 real VFP registers (d0-d15 or d0-31)
640 * These are transferred to/from the real registers in the task's
641 * vfp_hard_struct. The number of registers depends on the kernel
642 * configuration.
643 *
644 * 16 or 0 fake VFP registers (d16-d31 or empty)
645 * i.e., the user_vfp structure has space for 32 registers even if
646 * the kernel doesn't have them all.
647 *
648 * vfp_get() reads this chunk as zero where applicable
649 * vfp_set() ignores this chunk
650 *
651 * 1 word for the FPSCR
652 *
653 * The bounds-checking logic built into user_regset_copyout and friends
654 * means that we can make a simple sequence of calls to map the relevant data
655 * to/from the specified slice of the user regset structure.
656 */
657static int vfp_get(struct task_struct *target,
658 const struct user_regset *regset,
659 unsigned int pos, unsigned int count,
660 void *kbuf, void __user *ubuf)
661{
662 int ret;
663 struct thread_info *thread = task_thread_info(target);
664 struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
665 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
666 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
667
668 vfp_sync_hwstate(thread);
669
670 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
671 &vfp->fpregs,
672 user_fpregs_offset,
673 user_fpregs_offset + sizeof(vfp->fpregs));
674 if (ret)
675 return ret;
676
677 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
678 user_fpregs_offset + sizeof(vfp->fpregs),
679 user_fpscr_offset);
680 if (ret)
681 return ret;
682
683 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
684 &vfp->fpscr,
685 user_fpscr_offset,
686 user_fpscr_offset + sizeof(vfp->fpscr));
687}
688
689/*
690 * For vfp_set() a read-modify-write is done on the VFP registers,
691 * in order to avoid writing back a half-modified set of registers on
692 * failure.
693 */
694static int vfp_set(struct task_struct *target,
695 const struct user_regset *regset,
696 unsigned int pos, unsigned int count,
697 const void *kbuf, const void __user *ubuf)
698{
699 int ret;
700 struct thread_info *thread = task_thread_info(target);
701 struct vfp_hard_struct new_vfp = thread->vfpstate.hard;
702 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
703 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
704
705 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
706 &new_vfp.fpregs,
707 user_fpregs_offset,
708 user_fpregs_offset + sizeof(new_vfp.fpregs));
709 if (ret)
710 return ret;
711
712 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
713 user_fpregs_offset + sizeof(new_vfp.fpregs),
714 user_fpscr_offset);
715 if (ret)
716 return ret;
717
718 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
719 &new_vfp.fpscr,
720 user_fpscr_offset,
721 user_fpscr_offset + sizeof(new_vfp.fpscr));
722 if (ret)
723 return ret;
724
725 vfp_sync_hwstate(thread);
726 thread->vfpstate.hard = new_vfp;
727 vfp_flush_hwstate(thread);
728
729 return 0;
730}
731#endif /* CONFIG_VFP */
732
733enum arm_regset {
734 REGSET_GPR,
735 REGSET_FPR,
736#ifdef CONFIG_VFP
737 REGSET_VFP,
738#endif
739};
740
741static const struct user_regset arm_regsets[] = {
742 [REGSET_GPR] = {
743 .core_note_type = NT_PRSTATUS,
744 .n = ELF_NGREG,
745 .size = sizeof(u32),
746 .align = sizeof(u32),
747 .get = gpr_get,
748 .set = gpr_set
749 },
750 [REGSET_FPR] = {
751 /*
752 * For the FPA regs in fpstate, the real fields are a mixture
753 * of sizes, so pretend that the registers are word-sized:
754 */
755 .core_note_type = NT_PRFPREG,
756 .n = sizeof(struct user_fp) / sizeof(u32),
757 .size = sizeof(u32),
758 .align = sizeof(u32),
759 .get = fpa_get,
760 .set = fpa_set
761 },
762#ifdef CONFIG_VFP
763 [REGSET_VFP] = {
764 /*
765 * Pretend that the VFP regs are word-sized, since the FPSCR is
766 * a single word dangling at the end of struct user_vfp:
767 */
768 .core_note_type = NT_ARM_VFP,
769 .n = ARM_VFPREGS_SIZE / sizeof(u32),
770 .size = sizeof(u32),
771 .align = sizeof(u32),
772 .get = vfp_get,
773 .set = vfp_set
774 },
775#endif /* CONFIG_VFP */
776};
777
778static const struct user_regset_view user_arm_view = {
779 .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
780 .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
781};
782
783const struct user_regset_view *task_user_regset_view(struct task_struct *task)
784{
785 return &user_arm_view;
786}
787
788long arch_ptrace(struct task_struct *child, long request,
789 unsigned long addr, unsigned long data)
790{
791 int ret;
792 unsigned long __user *datap = (unsigned long __user *) data;
793
794 switch (request) {
795 case PTRACE_PEEKUSR:
796 ret = ptrace_read_user(child, addr, datap);
797 break;
798
799 case PTRACE_POKEUSR:
800 ret = ptrace_write_user(child, addr, data);
801 break;
802
803 case PTRACE_GETREGS:
804 ret = copy_regset_to_user(child,
805 &user_arm_view, REGSET_GPR,
806 0, sizeof(struct pt_regs),
807 datap);
808 break;
809
810 case PTRACE_SETREGS:
811 ret = copy_regset_from_user(child,
812 &user_arm_view, REGSET_GPR,
813 0, sizeof(struct pt_regs),
814 datap);
815 break;
816
817 case PTRACE_GETFPREGS:
818 ret = copy_regset_to_user(child,
819 &user_arm_view, REGSET_FPR,
820 0, sizeof(union fp_state),
821 datap);
822 break;
823
824 case PTRACE_SETFPREGS:
825 ret = copy_regset_from_user(child,
826 &user_arm_view, REGSET_FPR,
827 0, sizeof(union fp_state),
828 datap);
829 break;
830
831#ifdef CONFIG_IWMMXT
832 case PTRACE_GETWMMXREGS:
833 ret = ptrace_getwmmxregs(child, datap);
834 break;
835
836 case PTRACE_SETWMMXREGS:
837 ret = ptrace_setwmmxregs(child, datap);
838 break;
839#endif
840
841 case PTRACE_GET_THREAD_AREA:
842 ret = put_user(task_thread_info(child)->tp_value,
843 datap);
844 break;
845
846 case PTRACE_SET_SYSCALL:
847 task_thread_info(child)->syscall = data;
848 ret = 0;
849 break;
850
851#ifdef CONFIG_CRUNCH
852 case PTRACE_GETCRUNCHREGS:
853 ret = ptrace_getcrunchregs(child, datap);
854 break;
855
856 case PTRACE_SETCRUNCHREGS:
857 ret = ptrace_setcrunchregs(child, datap);
858 break;
859#endif
860
861#ifdef CONFIG_VFP
862 case PTRACE_GETVFPREGS:
863 ret = copy_regset_to_user(child,
864 &user_arm_view, REGSET_VFP,
865 0, ARM_VFPREGS_SIZE,
866 datap);
867 break;
868
869 case PTRACE_SETVFPREGS:
870 ret = copy_regset_from_user(child,
871 &user_arm_view, REGSET_VFP,
872 0, ARM_VFPREGS_SIZE,
873 datap);
874 break;
875#endif
876
877#ifdef CONFIG_HAVE_HW_BREAKPOINT
878 case PTRACE_GETHBPREGS:
879 if (ptrace_get_breakpoints(child) < 0)
880 return -ESRCH;
881
882 ret = ptrace_gethbpregs(child, addr,
883 (unsigned long __user *)data);
884 ptrace_put_breakpoints(child);
885 break;
886 case PTRACE_SETHBPREGS:
887 if (ptrace_get_breakpoints(child) < 0)
888 return -ESRCH;
889
890 ret = ptrace_sethbpregs(child, addr,
891 (unsigned long __user *)data);
892 ptrace_put_breakpoints(child);
893 break;
894#endif
895
896 default:
897 ret = ptrace_request(child, request, addr, data);
898 break;
899 }
900
901 return ret;
902}
903
904asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
905{
906 unsigned long ip;
907
908 if (!test_thread_flag(TIF_SYSCALL_TRACE))
909 return scno;
910 if (!(current->ptrace & PT_PTRACED))
911 return scno;
912
913 /*
914 * Save IP. IP is used to denote syscall entry/exit:
915 * IP = 0 -> entry, = 1 -> exit
916 */
917 ip = regs->ARM_ip;
918 regs->ARM_ip = why;
919
920 current_thread_info()->syscall = scno;
921
922 /* the 0x80 provides a way for the tracing parent to distinguish
923 between a syscall stop and SIGTRAP delivery */
924 ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
925 ? 0x80 : 0));
926 /*
927 * this isn't the same as continuing with a signal, but it will do
928 * for normal use. strace only continues with a signal if the
929 * stopping signal is not SIGTRAP. -brl
930 */
931 if (current->exit_code) {
932 send_sig(current->exit_code, current, 1);
933 current->exit_code = 0;
934 }
935 regs->ARM_ip = ip;
936
937 return current_thread_info()->syscall;
938}
1/*
2 * linux/arch/arm/kernel/ptrace.c
3 *
4 * By Ross Biro 1/23/92
5 * edited by Linus Torvalds
6 * ARM modifications Copyright (C) 2000 Russell King
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12#include <linux/kernel.h>
13#include <linux/sched.h>
14#include <linux/mm.h>
15#include <linux/elf.h>
16#include <linux/smp.h>
17#include <linux/ptrace.h>
18#include <linux/user.h>
19#include <linux/security.h>
20#include <linux/init.h>
21#include <linux/signal.h>
22#include <linux/uaccess.h>
23#include <linux/perf_event.h>
24#include <linux/hw_breakpoint.h>
25#include <linux/regset.h>
26#include <linux/audit.h>
27#include <linux/tracehook.h>
28
29#include <asm/pgtable.h>
30#include <asm/traps.h>
31
32#define REG_PC 15
33#define REG_PSR 16
34/*
35 * does not yet catch signals sent when the child dies.
36 * in exit.c or in signal.c.
37 */
38
39#if 0
40/*
41 * Breakpoint SWI instruction: SWI &9F0001
42 */
43#define BREAKINST_ARM 0xef9f0001
44#define BREAKINST_THUMB 0xdf00 /* fill this in later */
45#else
46/*
47 * New breakpoints - use an undefined instruction. The ARM architecture
48 * reference manual guarantees that the following instruction space
49 * will produce an undefined instruction exception on all CPUs:
50 *
51 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
52 * Thumb: 1101 1110 xxxx xxxx
53 */
54#define BREAKINST_ARM 0xe7f001f0
55#define BREAKINST_THUMB 0xde01
56#endif
57
58struct pt_regs_offset {
59 const char *name;
60 int offset;
61};
62
63#define REG_OFFSET_NAME(r) \
64 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
65#define REG_OFFSET_END {.name = NULL, .offset = 0}
66
67static const struct pt_regs_offset regoffset_table[] = {
68 REG_OFFSET_NAME(r0),
69 REG_OFFSET_NAME(r1),
70 REG_OFFSET_NAME(r2),
71 REG_OFFSET_NAME(r3),
72 REG_OFFSET_NAME(r4),
73 REG_OFFSET_NAME(r5),
74 REG_OFFSET_NAME(r6),
75 REG_OFFSET_NAME(r7),
76 REG_OFFSET_NAME(r8),
77 REG_OFFSET_NAME(r9),
78 REG_OFFSET_NAME(r10),
79 REG_OFFSET_NAME(fp),
80 REG_OFFSET_NAME(ip),
81 REG_OFFSET_NAME(sp),
82 REG_OFFSET_NAME(lr),
83 REG_OFFSET_NAME(pc),
84 REG_OFFSET_NAME(cpsr),
85 REG_OFFSET_NAME(ORIG_r0),
86 REG_OFFSET_END,
87};
88
89/**
90 * regs_query_register_offset() - query register offset from its name
91 * @name: the name of a register
92 *
93 * regs_query_register_offset() returns the offset of a register in struct
94 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
95 */
96int regs_query_register_offset(const char *name)
97{
98 const struct pt_regs_offset *roff;
99 for (roff = regoffset_table; roff->name != NULL; roff++)
100 if (!strcmp(roff->name, name))
101 return roff->offset;
102 return -EINVAL;
103}
104
105/**
106 * regs_query_register_name() - query register name from its offset
107 * @offset: the offset of a register in struct pt_regs.
108 *
109 * regs_query_register_name() returns the name of a register from its
110 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
111 */
112const char *regs_query_register_name(unsigned int offset)
113{
114 const struct pt_regs_offset *roff;
115 for (roff = regoffset_table; roff->name != NULL; roff++)
116 if (roff->offset == offset)
117 return roff->name;
118 return NULL;
119}
120
121/**
122 * regs_within_kernel_stack() - check the address in the stack
123 * @regs: pt_regs which contains kernel stack pointer.
124 * @addr: address which is checked.
125 *
126 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
127 * If @addr is within the kernel stack, it returns true. If not, returns false.
128 */
129bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
130{
131 return ((addr & ~(THREAD_SIZE - 1)) ==
132 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
133}
134
135/**
136 * regs_get_kernel_stack_nth() - get Nth entry of the stack
137 * @regs: pt_regs which contains kernel stack pointer.
138 * @n: stack entry number.
139 *
140 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
141 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
142 * this returns 0.
143 */
144unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
145{
146 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
147 addr += n;
148 if (regs_within_kernel_stack(regs, (unsigned long)addr))
149 return *addr;
150 else
151 return 0;
152}
153
154/*
155 * this routine will get a word off of the processes privileged stack.
156 * the offset is how far from the base addr as stored in the THREAD.
157 * this routine assumes that all the privileged stacks are in our
158 * data space.
159 */
160static inline long get_user_reg(struct task_struct *task, int offset)
161{
162 return task_pt_regs(task)->uregs[offset];
163}
164
165/*
166 * this routine will put a word on the processes privileged stack.
167 * the offset is how far from the base addr as stored in the THREAD.
168 * this routine assumes that all the privileged stacks are in our
169 * data space.
170 */
171static inline int
172put_user_reg(struct task_struct *task, int offset, long data)
173{
174 struct pt_regs newregs, *regs = task_pt_regs(task);
175 int ret = -EINVAL;
176
177 newregs = *regs;
178 newregs.uregs[offset] = data;
179
180 if (valid_user_regs(&newregs)) {
181 regs->uregs[offset] = data;
182 ret = 0;
183 }
184
185 return ret;
186}
187
188/*
189 * Called by kernel/ptrace.c when detaching..
190 */
191void ptrace_disable(struct task_struct *child)
192{
193 /* Nothing to do. */
194}
195
196/*
197 * Handle hitting a breakpoint.
198 */
199void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
200{
201 siginfo_t info;
202
203 info.si_signo = SIGTRAP;
204 info.si_errno = 0;
205 info.si_code = TRAP_BRKPT;
206 info.si_addr = (void __user *)instruction_pointer(regs);
207
208 force_sig_info(SIGTRAP, &info, tsk);
209}
210
211static int break_trap(struct pt_regs *regs, unsigned int instr)
212{
213 ptrace_break(current, regs);
214 return 0;
215}
216
217static struct undef_hook arm_break_hook = {
218 .instr_mask = 0x0fffffff,
219 .instr_val = 0x07f001f0,
220 .cpsr_mask = PSR_T_BIT,
221 .cpsr_val = 0,
222 .fn = break_trap,
223};
224
225static struct undef_hook thumb_break_hook = {
226 .instr_mask = 0xffff,
227 .instr_val = 0xde01,
228 .cpsr_mask = PSR_T_BIT,
229 .cpsr_val = PSR_T_BIT,
230 .fn = break_trap,
231};
232
233static struct undef_hook thumb2_break_hook = {
234 .instr_mask = 0xffffffff,
235 .instr_val = 0xf7f0a000,
236 .cpsr_mask = PSR_T_BIT,
237 .cpsr_val = PSR_T_BIT,
238 .fn = break_trap,
239};
240
241static int __init ptrace_break_init(void)
242{
243 register_undef_hook(&arm_break_hook);
244 register_undef_hook(&thumb_break_hook);
245 register_undef_hook(&thumb2_break_hook);
246 return 0;
247}
248
249core_initcall(ptrace_break_init);
250
251/*
252 * Read the word at offset "off" into the "struct user". We
253 * actually access the pt_regs stored on the kernel stack.
254 */
255static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
256 unsigned long __user *ret)
257{
258 unsigned long tmp;
259
260 if (off & 3)
261 return -EIO;
262
263 tmp = 0;
264 if (off == PT_TEXT_ADDR)
265 tmp = tsk->mm->start_code;
266 else if (off == PT_DATA_ADDR)
267 tmp = tsk->mm->start_data;
268 else if (off == PT_TEXT_END_ADDR)
269 tmp = tsk->mm->end_code;
270 else if (off < sizeof(struct pt_regs))
271 tmp = get_user_reg(tsk, off >> 2);
272 else if (off >= sizeof(struct user))
273 return -EIO;
274
275 return put_user(tmp, ret);
276}
277
278/*
279 * Write the word at offset "off" into "struct user". We
280 * actually access the pt_regs stored on the kernel stack.
281 */
282static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
283 unsigned long val)
284{
285 if (off & 3 || off >= sizeof(struct user))
286 return -EIO;
287
288 if (off >= sizeof(struct pt_regs))
289 return 0;
290
291 return put_user_reg(tsk, off >> 2, val);
292}
293
294#ifdef CONFIG_IWMMXT
295
296/*
297 * Get the child iWMMXt state.
298 */
299static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
300{
301 struct thread_info *thread = task_thread_info(tsk);
302
303 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
304 return -ENODATA;
305 iwmmxt_task_disable(thread); /* force it to ram */
306 return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
307 ? -EFAULT : 0;
308}
309
310/*
311 * Set the child iWMMXt state.
312 */
313static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
314{
315 struct thread_info *thread = task_thread_info(tsk);
316
317 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
318 return -EACCES;
319 iwmmxt_task_release(thread); /* force a reload */
320 return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
321 ? -EFAULT : 0;
322}
323
324#endif
325
326#ifdef CONFIG_CRUNCH
327/*
328 * Get the child Crunch state.
329 */
330static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
331{
332 struct thread_info *thread = task_thread_info(tsk);
333
334 crunch_task_disable(thread); /* force it to ram */
335 return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
336 ? -EFAULT : 0;
337}
338
339/*
340 * Set the child Crunch state.
341 */
342static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
343{
344 struct thread_info *thread = task_thread_info(tsk);
345
346 crunch_task_release(thread); /* force a reload */
347 return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
348 ? -EFAULT : 0;
349}
350#endif
351
352#ifdef CONFIG_HAVE_HW_BREAKPOINT
353/*
354 * Convert a virtual register number into an index for a thread_info
355 * breakpoint array. Breakpoints are identified using positive numbers
356 * whilst watchpoints are negative. The registers are laid out as pairs
357 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
358 * Register 0 is reserved for describing resource information.
359 */
360static int ptrace_hbp_num_to_idx(long num)
361{
362 if (num < 0)
363 num = (ARM_MAX_BRP << 1) - num;
364 return (num - 1) >> 1;
365}
366
367/*
368 * Returns the virtual register number for the address of the
369 * breakpoint at index idx.
370 */
371static long ptrace_hbp_idx_to_num(int idx)
372{
373 long mid = ARM_MAX_BRP << 1;
374 long num = (idx << 1) + 1;
375 return num > mid ? mid - num : num;
376}
377
378/*
379 * Handle hitting a HW-breakpoint.
380 */
381static void ptrace_hbptriggered(struct perf_event *bp,
382 struct perf_sample_data *data,
383 struct pt_regs *regs)
384{
385 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
386 long num;
387 int i;
388 siginfo_t info;
389
390 for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
391 if (current->thread.debug.hbp[i] == bp)
392 break;
393
394 num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
395
396 info.si_signo = SIGTRAP;
397 info.si_errno = (int)num;
398 info.si_code = TRAP_HWBKPT;
399 info.si_addr = (void __user *)(bkpt->trigger);
400
401 force_sig_info(SIGTRAP, &info, current);
402}
403
404/*
405 * Set ptrace breakpoint pointers to zero for this task.
406 * This is required in order to prevent child processes from unregistering
407 * breakpoints held by their parent.
408 */
409void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
410{
411 memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
412}
413
414/*
415 * Unregister breakpoints from this task and reset the pointers in
416 * the thread_struct.
417 */
418void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
419{
420 int i;
421 struct thread_struct *t = &tsk->thread;
422
423 for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
424 if (t->debug.hbp[i]) {
425 unregister_hw_breakpoint(t->debug.hbp[i]);
426 t->debug.hbp[i] = NULL;
427 }
428 }
429}
430
431static u32 ptrace_get_hbp_resource_info(void)
432{
433 u8 num_brps, num_wrps, debug_arch, wp_len;
434 u32 reg = 0;
435
436 num_brps = hw_breakpoint_slots(TYPE_INST);
437 num_wrps = hw_breakpoint_slots(TYPE_DATA);
438 debug_arch = arch_get_debug_arch();
439 wp_len = arch_get_max_wp_len();
440
441 reg |= debug_arch;
442 reg <<= 8;
443 reg |= wp_len;
444 reg <<= 8;
445 reg |= num_wrps;
446 reg <<= 8;
447 reg |= num_brps;
448
449 return reg;
450}
451
452static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
453{
454 struct perf_event_attr attr;
455
456 ptrace_breakpoint_init(&attr);
457
458 /* Initialise fields to sane defaults. */
459 attr.bp_addr = 0;
460 attr.bp_len = HW_BREAKPOINT_LEN_4;
461 attr.bp_type = type;
462 attr.disabled = 1;
463
464 return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
465 tsk);
466}
467
468static int ptrace_gethbpregs(struct task_struct *tsk, long num,
469 unsigned long __user *data)
470{
471 u32 reg;
472 int idx, ret = 0;
473 struct perf_event *bp;
474 struct arch_hw_breakpoint_ctrl arch_ctrl;
475
476 if (num == 0) {
477 reg = ptrace_get_hbp_resource_info();
478 } else {
479 idx = ptrace_hbp_num_to_idx(num);
480 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
481 ret = -EINVAL;
482 goto out;
483 }
484
485 bp = tsk->thread.debug.hbp[idx];
486 if (!bp) {
487 reg = 0;
488 goto put;
489 }
490
491 arch_ctrl = counter_arch_bp(bp)->ctrl;
492
493 /*
494 * Fix up the len because we may have adjusted it
495 * to compensate for an unaligned address.
496 */
497 while (!(arch_ctrl.len & 0x1))
498 arch_ctrl.len >>= 1;
499
500 if (num & 0x1)
501 reg = bp->attr.bp_addr;
502 else
503 reg = encode_ctrl_reg(arch_ctrl);
504 }
505
506put:
507 if (put_user(reg, data))
508 ret = -EFAULT;
509
510out:
511 return ret;
512}
513
514static int ptrace_sethbpregs(struct task_struct *tsk, long num,
515 unsigned long __user *data)
516{
517 int idx, gen_len, gen_type, implied_type, ret = 0;
518 u32 user_val;
519 struct perf_event *bp;
520 struct arch_hw_breakpoint_ctrl ctrl;
521 struct perf_event_attr attr;
522
523 if (num == 0)
524 goto out;
525 else if (num < 0)
526 implied_type = HW_BREAKPOINT_RW;
527 else
528 implied_type = HW_BREAKPOINT_X;
529
530 idx = ptrace_hbp_num_to_idx(num);
531 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
532 ret = -EINVAL;
533 goto out;
534 }
535
536 if (get_user(user_val, data)) {
537 ret = -EFAULT;
538 goto out;
539 }
540
541 bp = tsk->thread.debug.hbp[idx];
542 if (!bp) {
543 bp = ptrace_hbp_create(tsk, implied_type);
544 if (IS_ERR(bp)) {
545 ret = PTR_ERR(bp);
546 goto out;
547 }
548 tsk->thread.debug.hbp[idx] = bp;
549 }
550
551 attr = bp->attr;
552
553 if (num & 0x1) {
554 /* Address */
555 attr.bp_addr = user_val;
556 } else {
557 /* Control */
558 decode_ctrl_reg(user_val, &ctrl);
559 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
560 if (ret)
561 goto out;
562
563 if ((gen_type & implied_type) != gen_type) {
564 ret = -EINVAL;
565 goto out;
566 }
567
568 attr.bp_len = gen_len;
569 attr.bp_type = gen_type;
570 attr.disabled = !ctrl.enabled;
571 }
572
573 ret = modify_user_hw_breakpoint(bp, &attr);
574out:
575 return ret;
576}
577#endif
578
579/* regset get/set implementations */
580
581static int gpr_get(struct task_struct *target,
582 const struct user_regset *regset,
583 unsigned int pos, unsigned int count,
584 void *kbuf, void __user *ubuf)
585{
586 struct pt_regs *regs = task_pt_regs(target);
587
588 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
589 regs,
590 0, sizeof(*regs));
591}
592
593static int gpr_set(struct task_struct *target,
594 const struct user_regset *regset,
595 unsigned int pos, unsigned int count,
596 const void *kbuf, const void __user *ubuf)
597{
598 int ret;
599 struct pt_regs newregs;
600
601 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
602 &newregs,
603 0, sizeof(newregs));
604 if (ret)
605 return ret;
606
607 if (!valid_user_regs(&newregs))
608 return -EINVAL;
609
610 *task_pt_regs(target) = newregs;
611 return 0;
612}
613
614static int fpa_get(struct task_struct *target,
615 const struct user_regset *regset,
616 unsigned int pos, unsigned int count,
617 void *kbuf, void __user *ubuf)
618{
619 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
620 &task_thread_info(target)->fpstate,
621 0, sizeof(struct user_fp));
622}
623
624static int fpa_set(struct task_struct *target,
625 const struct user_regset *regset,
626 unsigned int pos, unsigned int count,
627 const void *kbuf, const void __user *ubuf)
628{
629 struct thread_info *thread = task_thread_info(target);
630
631 thread->used_cp[1] = thread->used_cp[2] = 1;
632
633 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
634 &thread->fpstate,
635 0, sizeof(struct user_fp));
636}
637
638#ifdef CONFIG_VFP
639/*
640 * VFP register get/set implementations.
641 *
642 * With respect to the kernel, struct user_fp is divided into three chunks:
643 * 16 or 32 real VFP registers (d0-d15 or d0-31)
644 * These are transferred to/from the real registers in the task's
645 * vfp_hard_struct. The number of registers depends on the kernel
646 * configuration.
647 *
648 * 16 or 0 fake VFP registers (d16-d31 or empty)
649 * i.e., the user_vfp structure has space for 32 registers even if
650 * the kernel doesn't have them all.
651 *
652 * vfp_get() reads this chunk as zero where applicable
653 * vfp_set() ignores this chunk
654 *
655 * 1 word for the FPSCR
656 *
657 * The bounds-checking logic built into user_regset_copyout and friends
658 * means that we can make a simple sequence of calls to map the relevant data
659 * to/from the specified slice of the user regset structure.
660 */
661static int vfp_get(struct task_struct *target,
662 const struct user_regset *regset,
663 unsigned int pos, unsigned int count,
664 void *kbuf, void __user *ubuf)
665{
666 int ret;
667 struct thread_info *thread = task_thread_info(target);
668 struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
669 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
670 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
671
672 vfp_sync_hwstate(thread);
673
674 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
675 &vfp->fpregs,
676 user_fpregs_offset,
677 user_fpregs_offset + sizeof(vfp->fpregs));
678 if (ret)
679 return ret;
680
681 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
682 user_fpregs_offset + sizeof(vfp->fpregs),
683 user_fpscr_offset);
684 if (ret)
685 return ret;
686
687 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
688 &vfp->fpscr,
689 user_fpscr_offset,
690 user_fpscr_offset + sizeof(vfp->fpscr));
691}
692
693/*
694 * For vfp_set() a read-modify-write is done on the VFP registers,
695 * in order to avoid writing back a half-modified set of registers on
696 * failure.
697 */
698static int vfp_set(struct task_struct *target,
699 const struct user_regset *regset,
700 unsigned int pos, unsigned int count,
701 const void *kbuf, const void __user *ubuf)
702{
703 int ret;
704 struct thread_info *thread = task_thread_info(target);
705 struct vfp_hard_struct new_vfp;
706 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
707 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
708
709 vfp_sync_hwstate(thread);
710 new_vfp = thread->vfpstate.hard;
711
712 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
713 &new_vfp.fpregs,
714 user_fpregs_offset,
715 user_fpregs_offset + sizeof(new_vfp.fpregs));
716 if (ret)
717 return ret;
718
719 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
720 user_fpregs_offset + sizeof(new_vfp.fpregs),
721 user_fpscr_offset);
722 if (ret)
723 return ret;
724
725 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
726 &new_vfp.fpscr,
727 user_fpscr_offset,
728 user_fpscr_offset + sizeof(new_vfp.fpscr));
729 if (ret)
730 return ret;
731
732 vfp_flush_hwstate(thread);
733 thread->vfpstate.hard = new_vfp;
734
735 return 0;
736}
737#endif /* CONFIG_VFP */
738
739enum arm_regset {
740 REGSET_GPR,
741 REGSET_FPR,
742#ifdef CONFIG_VFP
743 REGSET_VFP,
744#endif
745};
746
747static const struct user_regset arm_regsets[] = {
748 [REGSET_GPR] = {
749 .core_note_type = NT_PRSTATUS,
750 .n = ELF_NGREG,
751 .size = sizeof(u32),
752 .align = sizeof(u32),
753 .get = gpr_get,
754 .set = gpr_set
755 },
756 [REGSET_FPR] = {
757 /*
758 * For the FPA regs in fpstate, the real fields are a mixture
759 * of sizes, so pretend that the registers are word-sized:
760 */
761 .core_note_type = NT_PRFPREG,
762 .n = sizeof(struct user_fp) / sizeof(u32),
763 .size = sizeof(u32),
764 .align = sizeof(u32),
765 .get = fpa_get,
766 .set = fpa_set
767 },
768#ifdef CONFIG_VFP
769 [REGSET_VFP] = {
770 /*
771 * Pretend that the VFP regs are word-sized, since the FPSCR is
772 * a single word dangling at the end of struct user_vfp:
773 */
774 .core_note_type = NT_ARM_VFP,
775 .n = ARM_VFPREGS_SIZE / sizeof(u32),
776 .size = sizeof(u32),
777 .align = sizeof(u32),
778 .get = vfp_get,
779 .set = vfp_set
780 },
781#endif /* CONFIG_VFP */
782};
783
784static const struct user_regset_view user_arm_view = {
785 .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
786 .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
787};
788
789const struct user_regset_view *task_user_regset_view(struct task_struct *task)
790{
791 return &user_arm_view;
792}
793
794long arch_ptrace(struct task_struct *child, long request,
795 unsigned long addr, unsigned long data)
796{
797 int ret;
798 unsigned long __user *datap = (unsigned long __user *) data;
799
800 switch (request) {
801 case PTRACE_PEEKUSR:
802 ret = ptrace_read_user(child, addr, datap);
803 break;
804
805 case PTRACE_POKEUSR:
806 ret = ptrace_write_user(child, addr, data);
807 break;
808
809 case PTRACE_GETREGS:
810 ret = copy_regset_to_user(child,
811 &user_arm_view, REGSET_GPR,
812 0, sizeof(struct pt_regs),
813 datap);
814 break;
815
816 case PTRACE_SETREGS:
817 ret = copy_regset_from_user(child,
818 &user_arm_view, REGSET_GPR,
819 0, sizeof(struct pt_regs),
820 datap);
821 break;
822
823 case PTRACE_GETFPREGS:
824 ret = copy_regset_to_user(child,
825 &user_arm_view, REGSET_FPR,
826 0, sizeof(union fp_state),
827 datap);
828 break;
829
830 case PTRACE_SETFPREGS:
831 ret = copy_regset_from_user(child,
832 &user_arm_view, REGSET_FPR,
833 0, sizeof(union fp_state),
834 datap);
835 break;
836
837#ifdef CONFIG_IWMMXT
838 case PTRACE_GETWMMXREGS:
839 ret = ptrace_getwmmxregs(child, datap);
840 break;
841
842 case PTRACE_SETWMMXREGS:
843 ret = ptrace_setwmmxregs(child, datap);
844 break;
845#endif
846
847 case PTRACE_GET_THREAD_AREA:
848 ret = put_user(task_thread_info(child)->tp_value,
849 datap);
850 break;
851
852 case PTRACE_SET_SYSCALL:
853 task_thread_info(child)->syscall = data;
854 ret = 0;
855 break;
856
857#ifdef CONFIG_CRUNCH
858 case PTRACE_GETCRUNCHREGS:
859 ret = ptrace_getcrunchregs(child, datap);
860 break;
861
862 case PTRACE_SETCRUNCHREGS:
863 ret = ptrace_setcrunchregs(child, datap);
864 break;
865#endif
866
867#ifdef CONFIG_VFP
868 case PTRACE_GETVFPREGS:
869 ret = copy_regset_to_user(child,
870 &user_arm_view, REGSET_VFP,
871 0, ARM_VFPREGS_SIZE,
872 datap);
873 break;
874
875 case PTRACE_SETVFPREGS:
876 ret = copy_regset_from_user(child,
877 &user_arm_view, REGSET_VFP,
878 0, ARM_VFPREGS_SIZE,
879 datap);
880 break;
881#endif
882
883#ifdef CONFIG_HAVE_HW_BREAKPOINT
884 case PTRACE_GETHBPREGS:
885 if (ptrace_get_breakpoints(child) < 0)
886 return -ESRCH;
887
888 ret = ptrace_gethbpregs(child, addr,
889 (unsigned long __user *)data);
890 ptrace_put_breakpoints(child);
891 break;
892 case PTRACE_SETHBPREGS:
893 if (ptrace_get_breakpoints(child) < 0)
894 return -ESRCH;
895
896 ret = ptrace_sethbpregs(child, addr,
897 (unsigned long __user *)data);
898 ptrace_put_breakpoints(child);
899 break;
900#endif
901
902 default:
903 ret = ptrace_request(child, request, addr, data);
904 break;
905 }
906
907 return ret;
908}
909
910asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
911{
912 unsigned long ip;
913
914 if (why)
915 audit_syscall_exit(regs);
916 else
917 audit_syscall_entry(AUDIT_ARCH_ARM, scno, regs->ARM_r0,
918 regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
919
920 if (!test_thread_flag(TIF_SYSCALL_TRACE))
921 return scno;
922
923 current_thread_info()->syscall = scno;
924
925 /*
926 * IP is used to denote syscall entry/exit:
927 * IP = 0 -> entry, =1 -> exit
928 */
929 ip = regs->ARM_ip;
930 regs->ARM_ip = why;
931
932 if (why)
933 tracehook_report_syscall_exit(regs, 0);
934 else if (tracehook_report_syscall_entry(regs))
935 current_thread_info()->syscall = -1;
936
937 regs->ARM_ip = ip;
938
939 return current_thread_info()->syscall;
940}