Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *  linux/arch/arm/kernel/ptrace.c
  3 *
  4 *  By Ross Biro 1/23/92
  5 * edited by Linus Torvalds
  6 * ARM modifications Copyright (C) 2000 Russell King
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12#include <linux/kernel.h>
 13#include <linux/sched.h>
 14#include <linux/mm.h>
 
 15#include <linux/smp.h>
 16#include <linux/ptrace.h>
 17#include <linux/user.h>
 18#include <linux/security.h>
 19#include <linux/init.h>
 20#include <linux/signal.h>
 21#include <linux/uaccess.h>
 22#include <linux/perf_event.h>
 23#include <linux/hw_breakpoint.h>
 24#include <linux/regset.h>
 
 
 25
 26#include <asm/pgtable.h>
 27#include <asm/system.h>
 28#include <asm/traps.h>
 29
 30#define REG_PC	15
 31#define REG_PSR	16
 32/*
 33 * does not yet catch signals sent when the child dies.
 34 * in exit.c or in signal.c.
 35 */
 36
 37#if 0
 38/*
 39 * Breakpoint SWI instruction: SWI &9F0001
 40 */
 41#define BREAKINST_ARM	0xef9f0001
 42#define BREAKINST_THUMB	0xdf00		/* fill this in later */
 43#else
 44/*
 45 * New breakpoints - use an undefined instruction.  The ARM architecture
 46 * reference manual guarantees that the following instruction space
 47 * will produce an undefined instruction exception on all CPUs:
 48 *
 49 *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
 50 *  Thumb: 1101 1110 xxxx xxxx
 51 */
 52#define BREAKINST_ARM	0xe7f001f0
 53#define BREAKINST_THUMB	0xde01
 54#endif
 55
 56struct pt_regs_offset {
 57	const char *name;
 58	int offset;
 59};
 60
 61#define REG_OFFSET_NAME(r) \
 62	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
 63#define REG_OFFSET_END {.name = NULL, .offset = 0}
 64
 65static const struct pt_regs_offset regoffset_table[] = {
 66	REG_OFFSET_NAME(r0),
 67	REG_OFFSET_NAME(r1),
 68	REG_OFFSET_NAME(r2),
 69	REG_OFFSET_NAME(r3),
 70	REG_OFFSET_NAME(r4),
 71	REG_OFFSET_NAME(r5),
 72	REG_OFFSET_NAME(r6),
 73	REG_OFFSET_NAME(r7),
 74	REG_OFFSET_NAME(r8),
 75	REG_OFFSET_NAME(r9),
 76	REG_OFFSET_NAME(r10),
 77	REG_OFFSET_NAME(fp),
 78	REG_OFFSET_NAME(ip),
 79	REG_OFFSET_NAME(sp),
 80	REG_OFFSET_NAME(lr),
 81	REG_OFFSET_NAME(pc),
 82	REG_OFFSET_NAME(cpsr),
 83	REG_OFFSET_NAME(ORIG_r0),
 84	REG_OFFSET_END,
 85};
 86
 87/**
 88 * regs_query_register_offset() - query register offset from its name
 89 * @name:	the name of a register
 90 *
 91 * regs_query_register_offset() returns the offset of a register in struct
 92 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
 93 */
 94int regs_query_register_offset(const char *name)
 95{
 96	const struct pt_regs_offset *roff;
 97	for (roff = regoffset_table; roff->name != NULL; roff++)
 98		if (!strcmp(roff->name, name))
 99			return roff->offset;
100	return -EINVAL;
101}
102
103/**
104 * regs_query_register_name() - query register name from its offset
105 * @offset:	the offset of a register in struct pt_regs.
106 *
107 * regs_query_register_name() returns the name of a register from its
108 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
109 */
110const char *regs_query_register_name(unsigned int offset)
111{
112	const struct pt_regs_offset *roff;
113	for (roff = regoffset_table; roff->name != NULL; roff++)
114		if (roff->offset == offset)
115			return roff->name;
116	return NULL;
117}
118
119/**
120 * regs_within_kernel_stack() - check the address in the stack
121 * @regs:      pt_regs which contains kernel stack pointer.
122 * @addr:      address which is checked.
123 *
124 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
125 * If @addr is within the kernel stack, it returns true. If not, returns false.
126 */
127bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
128{
129	return ((addr & ~(THREAD_SIZE - 1))  ==
130		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
131}
132
133/**
134 * regs_get_kernel_stack_nth() - get Nth entry of the stack
135 * @regs:	pt_regs which contains kernel stack pointer.
136 * @n:		stack entry number.
137 *
138 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
139 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
140 * this returns 0.
141 */
142unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
143{
144	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
145	addr += n;
146	if (regs_within_kernel_stack(regs, (unsigned long)addr))
147		return *addr;
148	else
149		return 0;
150}
151
152/*
153 * this routine will get a word off of the processes privileged stack.
154 * the offset is how far from the base addr as stored in the THREAD.
155 * this routine assumes that all the privileged stacks are in our
156 * data space.
157 */
158static inline long get_user_reg(struct task_struct *task, int offset)
159{
160	return task_pt_regs(task)->uregs[offset];
161}
162
163/*
164 * this routine will put a word on the processes privileged stack.
165 * the offset is how far from the base addr as stored in the THREAD.
166 * this routine assumes that all the privileged stacks are in our
167 * data space.
168 */
169static inline int
170put_user_reg(struct task_struct *task, int offset, long data)
171{
172	struct pt_regs newregs, *regs = task_pt_regs(task);
173	int ret = -EINVAL;
174
175	newregs = *regs;
176	newregs.uregs[offset] = data;
177
178	if (valid_user_regs(&newregs)) {
179		regs->uregs[offset] = data;
180		ret = 0;
181	}
182
183	return ret;
184}
185
186/*
187 * Called by kernel/ptrace.c when detaching..
188 */
189void ptrace_disable(struct task_struct *child)
190{
191	/* Nothing to do. */
192}
193
194/*
195 * Handle hitting a breakpoint.
196 */
197void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
198{
199	siginfo_t info;
200
201	info.si_signo = SIGTRAP;
202	info.si_errno = 0;
203	info.si_code  = TRAP_BRKPT;
204	info.si_addr  = (void __user *)instruction_pointer(regs);
205
206	force_sig_info(SIGTRAP, &info, tsk);
207}
208
209static int break_trap(struct pt_regs *regs, unsigned int instr)
210{
211	ptrace_break(current, regs);
212	return 0;
213}
214
215static struct undef_hook arm_break_hook = {
216	.instr_mask	= 0x0fffffff,
217	.instr_val	= 0x07f001f0,
218	.cpsr_mask	= PSR_T_BIT,
219	.cpsr_val	= 0,
220	.fn		= break_trap,
221};
222
223static struct undef_hook thumb_break_hook = {
224	.instr_mask	= 0xffff,
225	.instr_val	= 0xde01,
226	.cpsr_mask	= PSR_T_BIT,
227	.cpsr_val	= PSR_T_BIT,
228	.fn		= break_trap,
229};
230
231static struct undef_hook thumb2_break_hook = {
232	.instr_mask	= 0xffffffff,
233	.instr_val	= 0xf7f0a000,
234	.cpsr_mask	= PSR_T_BIT,
235	.cpsr_val	= PSR_T_BIT,
236	.fn		= break_trap,
237};
238
239static int __init ptrace_break_init(void)
240{
241	register_undef_hook(&arm_break_hook);
242	register_undef_hook(&thumb_break_hook);
243	register_undef_hook(&thumb2_break_hook);
244	return 0;
245}
246
247core_initcall(ptrace_break_init);
248
249/*
250 * Read the word at offset "off" into the "struct user".  We
251 * actually access the pt_regs stored on the kernel stack.
252 */
253static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
254			    unsigned long __user *ret)
255{
256	unsigned long tmp;
257
258	if (off & 3 || off >= sizeof(struct user))
259		return -EIO;
260
261	tmp = 0;
262	if (off == PT_TEXT_ADDR)
263		tmp = tsk->mm->start_code;
264	else if (off == PT_DATA_ADDR)
265		tmp = tsk->mm->start_data;
266	else if (off == PT_TEXT_END_ADDR)
267		tmp = tsk->mm->end_code;
268	else if (off < sizeof(struct pt_regs))
269		tmp = get_user_reg(tsk, off >> 2);
 
 
270
271	return put_user(tmp, ret);
272}
273
274/*
275 * Write the word at offset "off" into "struct user".  We
276 * actually access the pt_regs stored on the kernel stack.
277 */
278static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
279			     unsigned long val)
280{
281	if (off & 3 || off >= sizeof(struct user))
282		return -EIO;
283
284	if (off >= sizeof(struct pt_regs))
285		return 0;
286
287	return put_user_reg(tsk, off >> 2, val);
288}
289
290#ifdef CONFIG_IWMMXT
291
292/*
293 * Get the child iWMMXt state.
294 */
295static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
296{
297	struct thread_info *thread = task_thread_info(tsk);
298
299	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
300		return -ENODATA;
301	iwmmxt_task_disable(thread);  /* force it to ram */
302	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
303		? -EFAULT : 0;
304}
305
306/*
307 * Set the child iWMMXt state.
308 */
309static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
310{
311	struct thread_info *thread = task_thread_info(tsk);
312
313	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
314		return -EACCES;
315	iwmmxt_task_release(thread);  /* force a reload */
316	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
317		? -EFAULT : 0;
318}
319
320#endif
321
322#ifdef CONFIG_CRUNCH
323/*
324 * Get the child Crunch state.
325 */
326static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
327{
328	struct thread_info *thread = task_thread_info(tsk);
329
330	crunch_task_disable(thread);  /* force it to ram */
331	return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
332		? -EFAULT : 0;
333}
334
335/*
336 * Set the child Crunch state.
337 */
338static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
339{
340	struct thread_info *thread = task_thread_info(tsk);
341
342	crunch_task_release(thread);  /* force a reload */
343	return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
344		? -EFAULT : 0;
345}
346#endif
347
348#ifdef CONFIG_HAVE_HW_BREAKPOINT
349/*
350 * Convert a virtual register number into an index for a thread_info
351 * breakpoint array. Breakpoints are identified using positive numbers
352 * whilst watchpoints are negative. The registers are laid out as pairs
353 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
354 * Register 0 is reserved for describing resource information.
355 */
356static int ptrace_hbp_num_to_idx(long num)
357{
358	if (num < 0)
359		num = (ARM_MAX_BRP << 1) - num;
360	return (num - 1) >> 1;
361}
362
363/*
364 * Returns the virtual register number for the address of the
365 * breakpoint at index idx.
366 */
367static long ptrace_hbp_idx_to_num(int idx)
368{
369	long mid = ARM_MAX_BRP << 1;
370	long num = (idx << 1) + 1;
371	return num > mid ? mid - num : num;
372}
373
374/*
375 * Handle hitting a HW-breakpoint.
376 */
377static void ptrace_hbptriggered(struct perf_event *bp,
378				     struct perf_sample_data *data,
379				     struct pt_regs *regs)
380{
381	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
382	long num;
383	int i;
384	siginfo_t info;
385
386	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
387		if (current->thread.debug.hbp[i] == bp)
388			break;
389
390	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
391
392	info.si_signo	= SIGTRAP;
393	info.si_errno	= (int)num;
394	info.si_code	= TRAP_HWBKPT;
395	info.si_addr	= (void __user *)(bkpt->trigger);
396
397	force_sig_info(SIGTRAP, &info, current);
398}
399
400/*
401 * Set ptrace breakpoint pointers to zero for this task.
402 * This is required in order to prevent child processes from unregistering
403 * breakpoints held by their parent.
404 */
405void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
406{
407	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
408}
409
410/*
411 * Unregister breakpoints from this task and reset the pointers in
412 * the thread_struct.
413 */
414void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
415{
416	int i;
417	struct thread_struct *t = &tsk->thread;
418
419	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
420		if (t->debug.hbp[i]) {
421			unregister_hw_breakpoint(t->debug.hbp[i]);
422			t->debug.hbp[i] = NULL;
423		}
424	}
425}
426
427static u32 ptrace_get_hbp_resource_info(void)
428{
429	u8 num_brps, num_wrps, debug_arch, wp_len;
430	u32 reg = 0;
431
432	num_brps	= hw_breakpoint_slots(TYPE_INST);
433	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
434	debug_arch	= arch_get_debug_arch();
435	wp_len		= arch_get_max_wp_len();
436
437	reg		|= debug_arch;
438	reg		<<= 8;
439	reg		|= wp_len;
440	reg		<<= 8;
441	reg		|= num_wrps;
442	reg		<<= 8;
443	reg		|= num_brps;
444
445	return reg;
446}
447
448static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
449{
450	struct perf_event_attr attr;
451
452	ptrace_breakpoint_init(&attr);
453
454	/* Initialise fields to sane defaults. */
455	attr.bp_addr	= 0;
456	attr.bp_len	= HW_BREAKPOINT_LEN_4;
457	attr.bp_type	= type;
458	attr.disabled	= 1;
459
460	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
461					   tsk);
462}
463
464static int ptrace_gethbpregs(struct task_struct *tsk, long num,
465			     unsigned long  __user *data)
466{
467	u32 reg;
468	int idx, ret = 0;
469	struct perf_event *bp;
470	struct arch_hw_breakpoint_ctrl arch_ctrl;
471
472	if (num == 0) {
473		reg = ptrace_get_hbp_resource_info();
474	} else {
475		idx = ptrace_hbp_num_to_idx(num);
476		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
477			ret = -EINVAL;
478			goto out;
479		}
480
481		bp = tsk->thread.debug.hbp[idx];
482		if (!bp) {
483			reg = 0;
484			goto put;
485		}
486
487		arch_ctrl = counter_arch_bp(bp)->ctrl;
488
489		/*
490		 * Fix up the len because we may have adjusted it
491		 * to compensate for an unaligned address.
492		 */
493		while (!(arch_ctrl.len & 0x1))
494			arch_ctrl.len >>= 1;
495
496		if (num & 0x1)
497			reg = bp->attr.bp_addr;
498		else
499			reg = encode_ctrl_reg(arch_ctrl);
500	}
501
502put:
503	if (put_user(reg, data))
504		ret = -EFAULT;
505
506out:
507	return ret;
508}
509
510static int ptrace_sethbpregs(struct task_struct *tsk, long num,
511			     unsigned long __user *data)
512{
513	int idx, gen_len, gen_type, implied_type, ret = 0;
514	u32 user_val;
515	struct perf_event *bp;
516	struct arch_hw_breakpoint_ctrl ctrl;
517	struct perf_event_attr attr;
518
519	if (num == 0)
520		goto out;
521	else if (num < 0)
522		implied_type = HW_BREAKPOINT_RW;
523	else
524		implied_type = HW_BREAKPOINT_X;
525
526	idx = ptrace_hbp_num_to_idx(num);
527	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
528		ret = -EINVAL;
529		goto out;
530	}
531
532	if (get_user(user_val, data)) {
533		ret = -EFAULT;
534		goto out;
535	}
536
537	bp = tsk->thread.debug.hbp[idx];
538	if (!bp) {
539		bp = ptrace_hbp_create(tsk, implied_type);
540		if (IS_ERR(bp)) {
541			ret = PTR_ERR(bp);
542			goto out;
543		}
544		tsk->thread.debug.hbp[idx] = bp;
545	}
546
547	attr = bp->attr;
548
549	if (num & 0x1) {
550		/* Address */
551		attr.bp_addr	= user_val;
552	} else {
553		/* Control */
554		decode_ctrl_reg(user_val, &ctrl);
555		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
556		if (ret)
557			goto out;
558
559		if ((gen_type & implied_type) != gen_type) {
560			ret = -EINVAL;
561			goto out;
562		}
563
564		attr.bp_len	= gen_len;
565		attr.bp_type	= gen_type;
566		attr.disabled	= !ctrl.enabled;
567	}
568
569	ret = modify_user_hw_breakpoint(bp, &attr);
570out:
571	return ret;
572}
573#endif
574
575/* regset get/set implementations */
576
577static int gpr_get(struct task_struct *target,
578		   const struct user_regset *regset,
579		   unsigned int pos, unsigned int count,
580		   void *kbuf, void __user *ubuf)
581{
582	struct pt_regs *regs = task_pt_regs(target);
583
584	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
585				   regs,
586				   0, sizeof(*regs));
587}
588
589static int gpr_set(struct task_struct *target,
590		   const struct user_regset *regset,
591		   unsigned int pos, unsigned int count,
592		   const void *kbuf, const void __user *ubuf)
593{
594	int ret;
595	struct pt_regs newregs;
596
597	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
598				 &newregs,
599				 0, sizeof(newregs));
600	if (ret)
601		return ret;
602
603	if (!valid_user_regs(&newregs))
604		return -EINVAL;
605
606	*task_pt_regs(target) = newregs;
607	return 0;
608}
609
610static int fpa_get(struct task_struct *target,
611		   const struct user_regset *regset,
612		   unsigned int pos, unsigned int count,
613		   void *kbuf, void __user *ubuf)
614{
615	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
616				   &task_thread_info(target)->fpstate,
617				   0, sizeof(struct user_fp));
618}
619
620static int fpa_set(struct task_struct *target,
621		   const struct user_regset *regset,
622		   unsigned int pos, unsigned int count,
623		   const void *kbuf, const void __user *ubuf)
624{
625	struct thread_info *thread = task_thread_info(target);
626
627	thread->used_cp[1] = thread->used_cp[2] = 1;
628
629	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
630		&thread->fpstate,
631		0, sizeof(struct user_fp));
632}
633
634#ifdef CONFIG_VFP
635/*
636 * VFP register get/set implementations.
637 *
638 * With respect to the kernel, struct user_fp is divided into three chunks:
639 * 16 or 32 real VFP registers (d0-d15 or d0-31)
640 *	These are transferred to/from the real registers in the task's
641 *	vfp_hard_struct.  The number of registers depends on the kernel
642 *	configuration.
643 *
644 * 16 or 0 fake VFP registers (d16-d31 or empty)
645 *	i.e., the user_vfp structure has space for 32 registers even if
646 *	the kernel doesn't have them all.
647 *
648 *	vfp_get() reads this chunk as zero where applicable
649 *	vfp_set() ignores this chunk
650 *
651 * 1 word for the FPSCR
652 *
653 * The bounds-checking logic built into user_regset_copyout and friends
654 * means that we can make a simple sequence of calls to map the relevant data
655 * to/from the specified slice of the user regset structure.
656 */
657static int vfp_get(struct task_struct *target,
658		   const struct user_regset *regset,
659		   unsigned int pos, unsigned int count,
660		   void *kbuf, void __user *ubuf)
661{
662	int ret;
663	struct thread_info *thread = task_thread_info(target);
664	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
665	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
666	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
667
668	vfp_sync_hwstate(thread);
669
670	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
671				  &vfp->fpregs,
672				  user_fpregs_offset,
673				  user_fpregs_offset + sizeof(vfp->fpregs));
674	if (ret)
675		return ret;
676
677	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
678				       user_fpregs_offset + sizeof(vfp->fpregs),
679				       user_fpscr_offset);
680	if (ret)
681		return ret;
682
683	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
684				   &vfp->fpscr,
685				   user_fpscr_offset,
686				   user_fpscr_offset + sizeof(vfp->fpscr));
687}
688
689/*
690 * For vfp_set() a read-modify-write is done on the VFP registers,
691 * in order to avoid writing back a half-modified set of registers on
692 * failure.
693 */
694static int vfp_set(struct task_struct *target,
695			  const struct user_regset *regset,
696			  unsigned int pos, unsigned int count,
697			  const void *kbuf, const void __user *ubuf)
698{
699	int ret;
700	struct thread_info *thread = task_thread_info(target);
701	struct vfp_hard_struct new_vfp = thread->vfpstate.hard;
702	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
703	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
704
 
 
 
705	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
706				  &new_vfp.fpregs,
707				  user_fpregs_offset,
708				  user_fpregs_offset + sizeof(new_vfp.fpregs));
709	if (ret)
710		return ret;
711
712	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
713				user_fpregs_offset + sizeof(new_vfp.fpregs),
714				user_fpscr_offset);
715	if (ret)
716		return ret;
717
718	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
719				 &new_vfp.fpscr,
720				 user_fpscr_offset,
721				 user_fpscr_offset + sizeof(new_vfp.fpscr));
722	if (ret)
723		return ret;
724
725	vfp_sync_hwstate(thread);
726	thread->vfpstate.hard = new_vfp;
727	vfp_flush_hwstate(thread);
 
728
729	return 0;
730}
731#endif /* CONFIG_VFP */
732
733enum arm_regset {
734	REGSET_GPR,
735	REGSET_FPR,
736#ifdef CONFIG_VFP
737	REGSET_VFP,
738#endif
739};
740
741static const struct user_regset arm_regsets[] = {
742	[REGSET_GPR] = {
743		.core_note_type = NT_PRSTATUS,
744		.n = ELF_NGREG,
745		.size = sizeof(u32),
746		.align = sizeof(u32),
747		.get = gpr_get,
748		.set = gpr_set
749	},
750	[REGSET_FPR] = {
751		/*
752		 * For the FPA regs in fpstate, the real fields are a mixture
753		 * of sizes, so pretend that the registers are word-sized:
754		 */
755		.core_note_type = NT_PRFPREG,
756		.n = sizeof(struct user_fp) / sizeof(u32),
757		.size = sizeof(u32),
758		.align = sizeof(u32),
759		.get = fpa_get,
760		.set = fpa_set
761	},
762#ifdef CONFIG_VFP
763	[REGSET_VFP] = {
764		/*
765		 * Pretend that the VFP regs are word-sized, since the FPSCR is
766		 * a single word dangling at the end of struct user_vfp:
767		 */
768		.core_note_type = NT_ARM_VFP,
769		.n = ARM_VFPREGS_SIZE / sizeof(u32),
770		.size = sizeof(u32),
771		.align = sizeof(u32),
772		.get = vfp_get,
773		.set = vfp_set
774	},
775#endif /* CONFIG_VFP */
776};
777
778static const struct user_regset_view user_arm_view = {
779	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
780	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
781};
782
783const struct user_regset_view *task_user_regset_view(struct task_struct *task)
784{
785	return &user_arm_view;
786}
787
788long arch_ptrace(struct task_struct *child, long request,
789		 unsigned long addr, unsigned long data)
790{
791	int ret;
792	unsigned long __user *datap = (unsigned long __user *) data;
793
794	switch (request) {
795		case PTRACE_PEEKUSR:
796			ret = ptrace_read_user(child, addr, datap);
797			break;
798
799		case PTRACE_POKEUSR:
800			ret = ptrace_write_user(child, addr, data);
801			break;
802
803		case PTRACE_GETREGS:
804			ret = copy_regset_to_user(child,
805						  &user_arm_view, REGSET_GPR,
806						  0, sizeof(struct pt_regs),
807						  datap);
808			break;
809
810		case PTRACE_SETREGS:
811			ret = copy_regset_from_user(child,
812						    &user_arm_view, REGSET_GPR,
813						    0, sizeof(struct pt_regs),
814						    datap);
815			break;
816
817		case PTRACE_GETFPREGS:
818			ret = copy_regset_to_user(child,
819						  &user_arm_view, REGSET_FPR,
820						  0, sizeof(union fp_state),
821						  datap);
822			break;
823
824		case PTRACE_SETFPREGS:
825			ret = copy_regset_from_user(child,
826						    &user_arm_view, REGSET_FPR,
827						    0, sizeof(union fp_state),
828						    datap);
829			break;
830
831#ifdef CONFIG_IWMMXT
832		case PTRACE_GETWMMXREGS:
833			ret = ptrace_getwmmxregs(child, datap);
834			break;
835
836		case PTRACE_SETWMMXREGS:
837			ret = ptrace_setwmmxregs(child, datap);
838			break;
839#endif
840
841		case PTRACE_GET_THREAD_AREA:
842			ret = put_user(task_thread_info(child)->tp_value,
843				       datap);
844			break;
845
846		case PTRACE_SET_SYSCALL:
847			task_thread_info(child)->syscall = data;
848			ret = 0;
849			break;
850
851#ifdef CONFIG_CRUNCH
852		case PTRACE_GETCRUNCHREGS:
853			ret = ptrace_getcrunchregs(child, datap);
854			break;
855
856		case PTRACE_SETCRUNCHREGS:
857			ret = ptrace_setcrunchregs(child, datap);
858			break;
859#endif
860
861#ifdef CONFIG_VFP
862		case PTRACE_GETVFPREGS:
863			ret = copy_regset_to_user(child,
864						  &user_arm_view, REGSET_VFP,
865						  0, ARM_VFPREGS_SIZE,
866						  datap);
867			break;
868
869		case PTRACE_SETVFPREGS:
870			ret = copy_regset_from_user(child,
871						    &user_arm_view, REGSET_VFP,
872						    0, ARM_VFPREGS_SIZE,
873						    datap);
874			break;
875#endif
876
877#ifdef CONFIG_HAVE_HW_BREAKPOINT
878		case PTRACE_GETHBPREGS:
879			if (ptrace_get_breakpoints(child) < 0)
880				return -ESRCH;
881
882			ret = ptrace_gethbpregs(child, addr,
883						(unsigned long __user *)data);
884			ptrace_put_breakpoints(child);
885			break;
886		case PTRACE_SETHBPREGS:
887			if (ptrace_get_breakpoints(child) < 0)
888				return -ESRCH;
889
890			ret = ptrace_sethbpregs(child, addr,
891						(unsigned long __user *)data);
892			ptrace_put_breakpoints(child);
893			break;
894#endif
895
896		default:
897			ret = ptrace_request(child, request, addr, data);
898			break;
899	}
900
901	return ret;
902}
903
904asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
905{
906	unsigned long ip;
907
 
 
 
 
 
 
908	if (!test_thread_flag(TIF_SYSCALL_TRACE))
909		return scno;
910	if (!(current->ptrace & PT_PTRACED))
911		return scno;
912
913	/*
914	 * Save IP.  IP is used to denote syscall entry/exit:
915	 *  IP = 0 -> entry, = 1 -> exit
916	 */
917	ip = regs->ARM_ip;
918	regs->ARM_ip = why;
919
920	current_thread_info()->syscall = scno;
 
 
 
921
922	/* the 0x80 provides a way for the tracing parent to distinguish
923	   between a syscall stop and SIGTRAP delivery */
924	ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
925				 ? 0x80 : 0));
926	/*
927	 * this isn't the same as continuing with a signal, but it will do
928	 * for normal use.  strace only continues with a signal if the
929	 * stopping signal is not SIGTRAP.  -brl
930	 */
931	if (current->exit_code) {
932		send_sig(current->exit_code, current, 1);
933		current->exit_code = 0;
934	}
935	regs->ARM_ip = ip;
936
937	return current_thread_info()->syscall;
938}
v3.5.6
  1/*
  2 *  linux/arch/arm/kernel/ptrace.c
  3 *
  4 *  By Ross Biro 1/23/92
  5 * edited by Linus Torvalds
  6 * ARM modifications Copyright (C) 2000 Russell King
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12#include <linux/kernel.h>
 13#include <linux/sched.h>
 14#include <linux/mm.h>
 15#include <linux/elf.h>
 16#include <linux/smp.h>
 17#include <linux/ptrace.h>
 18#include <linux/user.h>
 19#include <linux/security.h>
 20#include <linux/init.h>
 21#include <linux/signal.h>
 22#include <linux/uaccess.h>
 23#include <linux/perf_event.h>
 24#include <linux/hw_breakpoint.h>
 25#include <linux/regset.h>
 26#include <linux/audit.h>
 27#include <linux/tracehook.h>
 28
 29#include <asm/pgtable.h>
 
 30#include <asm/traps.h>
 31
 32#define REG_PC	15
 33#define REG_PSR	16
 34/*
 35 * does not yet catch signals sent when the child dies.
 36 * in exit.c or in signal.c.
 37 */
 38
 39#if 0
 40/*
 41 * Breakpoint SWI instruction: SWI &9F0001
 42 */
 43#define BREAKINST_ARM	0xef9f0001
 44#define BREAKINST_THUMB	0xdf00		/* fill this in later */
 45#else
 46/*
 47 * New breakpoints - use an undefined instruction.  The ARM architecture
 48 * reference manual guarantees that the following instruction space
 49 * will produce an undefined instruction exception on all CPUs:
 50 *
 51 *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
 52 *  Thumb: 1101 1110 xxxx xxxx
 53 */
 54#define BREAKINST_ARM	0xe7f001f0
 55#define BREAKINST_THUMB	0xde01
 56#endif
 57
 58struct pt_regs_offset {
 59	const char *name;
 60	int offset;
 61};
 62
 63#define REG_OFFSET_NAME(r) \
 64	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
 65#define REG_OFFSET_END {.name = NULL, .offset = 0}
 66
 67static const struct pt_regs_offset regoffset_table[] = {
 68	REG_OFFSET_NAME(r0),
 69	REG_OFFSET_NAME(r1),
 70	REG_OFFSET_NAME(r2),
 71	REG_OFFSET_NAME(r3),
 72	REG_OFFSET_NAME(r4),
 73	REG_OFFSET_NAME(r5),
 74	REG_OFFSET_NAME(r6),
 75	REG_OFFSET_NAME(r7),
 76	REG_OFFSET_NAME(r8),
 77	REG_OFFSET_NAME(r9),
 78	REG_OFFSET_NAME(r10),
 79	REG_OFFSET_NAME(fp),
 80	REG_OFFSET_NAME(ip),
 81	REG_OFFSET_NAME(sp),
 82	REG_OFFSET_NAME(lr),
 83	REG_OFFSET_NAME(pc),
 84	REG_OFFSET_NAME(cpsr),
 85	REG_OFFSET_NAME(ORIG_r0),
 86	REG_OFFSET_END,
 87};
 88
 89/**
 90 * regs_query_register_offset() - query register offset from its name
 91 * @name:	the name of a register
 92 *
 93 * regs_query_register_offset() returns the offset of a register in struct
 94 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
 95 */
 96int regs_query_register_offset(const char *name)
 97{
 98	const struct pt_regs_offset *roff;
 99	for (roff = regoffset_table; roff->name != NULL; roff++)
100		if (!strcmp(roff->name, name))
101			return roff->offset;
102	return -EINVAL;
103}
104
105/**
106 * regs_query_register_name() - query register name from its offset
107 * @offset:	the offset of a register in struct pt_regs.
108 *
109 * regs_query_register_name() returns the name of a register from its
110 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
111 */
112const char *regs_query_register_name(unsigned int offset)
113{
114	const struct pt_regs_offset *roff;
115	for (roff = regoffset_table; roff->name != NULL; roff++)
116		if (roff->offset == offset)
117			return roff->name;
118	return NULL;
119}
120
121/**
122 * regs_within_kernel_stack() - check the address in the stack
123 * @regs:      pt_regs which contains kernel stack pointer.
124 * @addr:      address which is checked.
125 *
126 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
127 * If @addr is within the kernel stack, it returns true. If not, returns false.
128 */
129bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
130{
131	return ((addr & ~(THREAD_SIZE - 1))  ==
132		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
133}
134
135/**
136 * regs_get_kernel_stack_nth() - get Nth entry of the stack
137 * @regs:	pt_regs which contains kernel stack pointer.
138 * @n:		stack entry number.
139 *
140 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
141 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
142 * this returns 0.
143 */
144unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
145{
146	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
147	addr += n;
148	if (regs_within_kernel_stack(regs, (unsigned long)addr))
149		return *addr;
150	else
151		return 0;
152}
153
154/*
155 * this routine will get a word off of the processes privileged stack.
156 * the offset is how far from the base addr as stored in the THREAD.
157 * this routine assumes that all the privileged stacks are in our
158 * data space.
159 */
160static inline long get_user_reg(struct task_struct *task, int offset)
161{
162	return task_pt_regs(task)->uregs[offset];
163}
164
165/*
166 * this routine will put a word on the processes privileged stack.
167 * the offset is how far from the base addr as stored in the THREAD.
168 * this routine assumes that all the privileged stacks are in our
169 * data space.
170 */
171static inline int
172put_user_reg(struct task_struct *task, int offset, long data)
173{
174	struct pt_regs newregs, *regs = task_pt_regs(task);
175	int ret = -EINVAL;
176
177	newregs = *regs;
178	newregs.uregs[offset] = data;
179
180	if (valid_user_regs(&newregs)) {
181		regs->uregs[offset] = data;
182		ret = 0;
183	}
184
185	return ret;
186}
187
188/*
189 * Called by kernel/ptrace.c when detaching..
190 */
191void ptrace_disable(struct task_struct *child)
192{
193	/* Nothing to do. */
194}
195
196/*
197 * Handle hitting a breakpoint.
198 */
199void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
200{
201	siginfo_t info;
202
203	info.si_signo = SIGTRAP;
204	info.si_errno = 0;
205	info.si_code  = TRAP_BRKPT;
206	info.si_addr  = (void __user *)instruction_pointer(regs);
207
208	force_sig_info(SIGTRAP, &info, tsk);
209}
210
211static int break_trap(struct pt_regs *regs, unsigned int instr)
212{
213	ptrace_break(current, regs);
214	return 0;
215}
216
217static struct undef_hook arm_break_hook = {
218	.instr_mask	= 0x0fffffff,
219	.instr_val	= 0x07f001f0,
220	.cpsr_mask	= PSR_T_BIT,
221	.cpsr_val	= 0,
222	.fn		= break_trap,
223};
224
225static struct undef_hook thumb_break_hook = {
226	.instr_mask	= 0xffff,
227	.instr_val	= 0xde01,
228	.cpsr_mask	= PSR_T_BIT,
229	.cpsr_val	= PSR_T_BIT,
230	.fn		= break_trap,
231};
232
233static struct undef_hook thumb2_break_hook = {
234	.instr_mask	= 0xffffffff,
235	.instr_val	= 0xf7f0a000,
236	.cpsr_mask	= PSR_T_BIT,
237	.cpsr_val	= PSR_T_BIT,
238	.fn		= break_trap,
239};
240
241static int __init ptrace_break_init(void)
242{
243	register_undef_hook(&arm_break_hook);
244	register_undef_hook(&thumb_break_hook);
245	register_undef_hook(&thumb2_break_hook);
246	return 0;
247}
248
249core_initcall(ptrace_break_init);
250
251/*
252 * Read the word at offset "off" into the "struct user".  We
253 * actually access the pt_regs stored on the kernel stack.
254 */
255static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
256			    unsigned long __user *ret)
257{
258	unsigned long tmp;
259
260	if (off & 3)
261		return -EIO;
262
263	tmp = 0;
264	if (off == PT_TEXT_ADDR)
265		tmp = tsk->mm->start_code;
266	else if (off == PT_DATA_ADDR)
267		tmp = tsk->mm->start_data;
268	else if (off == PT_TEXT_END_ADDR)
269		tmp = tsk->mm->end_code;
270	else if (off < sizeof(struct pt_regs))
271		tmp = get_user_reg(tsk, off >> 2);
272	else if (off >= sizeof(struct user))
273		return -EIO;
274
275	return put_user(tmp, ret);
276}
277
278/*
279 * Write the word at offset "off" into "struct user".  We
280 * actually access the pt_regs stored on the kernel stack.
281 */
282static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
283			     unsigned long val)
284{
285	if (off & 3 || off >= sizeof(struct user))
286		return -EIO;
287
288	if (off >= sizeof(struct pt_regs))
289		return 0;
290
291	return put_user_reg(tsk, off >> 2, val);
292}
293
294#ifdef CONFIG_IWMMXT
295
296/*
297 * Get the child iWMMXt state.
298 */
299static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
300{
301	struct thread_info *thread = task_thread_info(tsk);
302
303	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
304		return -ENODATA;
305	iwmmxt_task_disable(thread);  /* force it to ram */
306	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
307		? -EFAULT : 0;
308}
309
310/*
311 * Set the child iWMMXt state.
312 */
313static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
314{
315	struct thread_info *thread = task_thread_info(tsk);
316
317	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
318		return -EACCES;
319	iwmmxt_task_release(thread);  /* force a reload */
320	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
321		? -EFAULT : 0;
322}
323
324#endif
325
326#ifdef CONFIG_CRUNCH
327/*
328 * Get the child Crunch state.
329 */
330static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
331{
332	struct thread_info *thread = task_thread_info(tsk);
333
334	crunch_task_disable(thread);  /* force it to ram */
335	return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
336		? -EFAULT : 0;
337}
338
339/*
340 * Set the child Crunch state.
341 */
342static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
343{
344	struct thread_info *thread = task_thread_info(tsk);
345
346	crunch_task_release(thread);  /* force a reload */
347	return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
348		? -EFAULT : 0;
349}
350#endif
351
352#ifdef CONFIG_HAVE_HW_BREAKPOINT
353/*
354 * Convert a virtual register number into an index for a thread_info
355 * breakpoint array. Breakpoints are identified using positive numbers
356 * whilst watchpoints are negative. The registers are laid out as pairs
357 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
358 * Register 0 is reserved for describing resource information.
359 */
360static int ptrace_hbp_num_to_idx(long num)
361{
362	if (num < 0)
363		num = (ARM_MAX_BRP << 1) - num;
364	return (num - 1) >> 1;
365}
366
367/*
368 * Returns the virtual register number for the address of the
369 * breakpoint at index idx.
370 */
371static long ptrace_hbp_idx_to_num(int idx)
372{
373	long mid = ARM_MAX_BRP << 1;
374	long num = (idx << 1) + 1;
375	return num > mid ? mid - num : num;
376}
377
378/*
379 * Handle hitting a HW-breakpoint.
380 */
381static void ptrace_hbptriggered(struct perf_event *bp,
382				     struct perf_sample_data *data,
383				     struct pt_regs *regs)
384{
385	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
386	long num;
387	int i;
388	siginfo_t info;
389
390	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
391		if (current->thread.debug.hbp[i] == bp)
392			break;
393
394	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
395
396	info.si_signo	= SIGTRAP;
397	info.si_errno	= (int)num;
398	info.si_code	= TRAP_HWBKPT;
399	info.si_addr	= (void __user *)(bkpt->trigger);
400
401	force_sig_info(SIGTRAP, &info, current);
402}
403
404/*
405 * Set ptrace breakpoint pointers to zero for this task.
406 * This is required in order to prevent child processes from unregistering
407 * breakpoints held by their parent.
408 */
409void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
410{
411	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
412}
413
414/*
415 * Unregister breakpoints from this task and reset the pointers in
416 * the thread_struct.
417 */
418void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
419{
420	int i;
421	struct thread_struct *t = &tsk->thread;
422
423	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
424		if (t->debug.hbp[i]) {
425			unregister_hw_breakpoint(t->debug.hbp[i]);
426			t->debug.hbp[i] = NULL;
427		}
428	}
429}
430
431static u32 ptrace_get_hbp_resource_info(void)
432{
433	u8 num_brps, num_wrps, debug_arch, wp_len;
434	u32 reg = 0;
435
436	num_brps	= hw_breakpoint_slots(TYPE_INST);
437	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
438	debug_arch	= arch_get_debug_arch();
439	wp_len		= arch_get_max_wp_len();
440
441	reg		|= debug_arch;
442	reg		<<= 8;
443	reg		|= wp_len;
444	reg		<<= 8;
445	reg		|= num_wrps;
446	reg		<<= 8;
447	reg		|= num_brps;
448
449	return reg;
450}
451
452static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
453{
454	struct perf_event_attr attr;
455
456	ptrace_breakpoint_init(&attr);
457
458	/* Initialise fields to sane defaults. */
459	attr.bp_addr	= 0;
460	attr.bp_len	= HW_BREAKPOINT_LEN_4;
461	attr.bp_type	= type;
462	attr.disabled	= 1;
463
464	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
465					   tsk);
466}
467
468static int ptrace_gethbpregs(struct task_struct *tsk, long num,
469			     unsigned long  __user *data)
470{
471	u32 reg;
472	int idx, ret = 0;
473	struct perf_event *bp;
474	struct arch_hw_breakpoint_ctrl arch_ctrl;
475
476	if (num == 0) {
477		reg = ptrace_get_hbp_resource_info();
478	} else {
479		idx = ptrace_hbp_num_to_idx(num);
480		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
481			ret = -EINVAL;
482			goto out;
483		}
484
485		bp = tsk->thread.debug.hbp[idx];
486		if (!bp) {
487			reg = 0;
488			goto put;
489		}
490
491		arch_ctrl = counter_arch_bp(bp)->ctrl;
492
493		/*
494		 * Fix up the len because we may have adjusted it
495		 * to compensate for an unaligned address.
496		 */
497		while (!(arch_ctrl.len & 0x1))
498			arch_ctrl.len >>= 1;
499
500		if (num & 0x1)
501			reg = bp->attr.bp_addr;
502		else
503			reg = encode_ctrl_reg(arch_ctrl);
504	}
505
506put:
507	if (put_user(reg, data))
508		ret = -EFAULT;
509
510out:
511	return ret;
512}
513
514static int ptrace_sethbpregs(struct task_struct *tsk, long num,
515			     unsigned long __user *data)
516{
517	int idx, gen_len, gen_type, implied_type, ret = 0;
518	u32 user_val;
519	struct perf_event *bp;
520	struct arch_hw_breakpoint_ctrl ctrl;
521	struct perf_event_attr attr;
522
523	if (num == 0)
524		goto out;
525	else if (num < 0)
526		implied_type = HW_BREAKPOINT_RW;
527	else
528		implied_type = HW_BREAKPOINT_X;
529
530	idx = ptrace_hbp_num_to_idx(num);
531	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
532		ret = -EINVAL;
533		goto out;
534	}
535
536	if (get_user(user_val, data)) {
537		ret = -EFAULT;
538		goto out;
539	}
540
541	bp = tsk->thread.debug.hbp[idx];
542	if (!bp) {
543		bp = ptrace_hbp_create(tsk, implied_type);
544		if (IS_ERR(bp)) {
545			ret = PTR_ERR(bp);
546			goto out;
547		}
548		tsk->thread.debug.hbp[idx] = bp;
549	}
550
551	attr = bp->attr;
552
553	if (num & 0x1) {
554		/* Address */
555		attr.bp_addr	= user_val;
556	} else {
557		/* Control */
558		decode_ctrl_reg(user_val, &ctrl);
559		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
560		if (ret)
561			goto out;
562
563		if ((gen_type & implied_type) != gen_type) {
564			ret = -EINVAL;
565			goto out;
566		}
567
568		attr.bp_len	= gen_len;
569		attr.bp_type	= gen_type;
570		attr.disabled	= !ctrl.enabled;
571	}
572
573	ret = modify_user_hw_breakpoint(bp, &attr);
574out:
575	return ret;
576}
577#endif
578
579/* regset get/set implementations */
580
581static int gpr_get(struct task_struct *target,
582		   const struct user_regset *regset,
583		   unsigned int pos, unsigned int count,
584		   void *kbuf, void __user *ubuf)
585{
586	struct pt_regs *regs = task_pt_regs(target);
587
588	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
589				   regs,
590				   0, sizeof(*regs));
591}
592
593static int gpr_set(struct task_struct *target,
594		   const struct user_regset *regset,
595		   unsigned int pos, unsigned int count,
596		   const void *kbuf, const void __user *ubuf)
597{
598	int ret;
599	struct pt_regs newregs;
600
601	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
602				 &newregs,
603				 0, sizeof(newregs));
604	if (ret)
605		return ret;
606
607	if (!valid_user_regs(&newregs))
608		return -EINVAL;
609
610	*task_pt_regs(target) = newregs;
611	return 0;
612}
613
614static int fpa_get(struct task_struct *target,
615		   const struct user_regset *regset,
616		   unsigned int pos, unsigned int count,
617		   void *kbuf, void __user *ubuf)
618{
619	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
620				   &task_thread_info(target)->fpstate,
621				   0, sizeof(struct user_fp));
622}
623
624static int fpa_set(struct task_struct *target,
625		   const struct user_regset *regset,
626		   unsigned int pos, unsigned int count,
627		   const void *kbuf, const void __user *ubuf)
628{
629	struct thread_info *thread = task_thread_info(target);
630
631	thread->used_cp[1] = thread->used_cp[2] = 1;
632
633	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
634		&thread->fpstate,
635		0, sizeof(struct user_fp));
636}
637
638#ifdef CONFIG_VFP
639/*
640 * VFP register get/set implementations.
641 *
642 * With respect to the kernel, struct user_fp is divided into three chunks:
643 * 16 or 32 real VFP registers (d0-d15 or d0-31)
644 *	These are transferred to/from the real registers in the task's
645 *	vfp_hard_struct.  The number of registers depends on the kernel
646 *	configuration.
647 *
648 * 16 or 0 fake VFP registers (d16-d31 or empty)
649 *	i.e., the user_vfp structure has space for 32 registers even if
650 *	the kernel doesn't have them all.
651 *
652 *	vfp_get() reads this chunk as zero where applicable
653 *	vfp_set() ignores this chunk
654 *
655 * 1 word for the FPSCR
656 *
657 * The bounds-checking logic built into user_regset_copyout and friends
658 * means that we can make a simple sequence of calls to map the relevant data
659 * to/from the specified slice of the user regset structure.
660 */
661static int vfp_get(struct task_struct *target,
662		   const struct user_regset *regset,
663		   unsigned int pos, unsigned int count,
664		   void *kbuf, void __user *ubuf)
665{
666	int ret;
667	struct thread_info *thread = task_thread_info(target);
668	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
669	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
670	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
671
672	vfp_sync_hwstate(thread);
673
674	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
675				  &vfp->fpregs,
676				  user_fpregs_offset,
677				  user_fpregs_offset + sizeof(vfp->fpregs));
678	if (ret)
679		return ret;
680
681	ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
682				       user_fpregs_offset + sizeof(vfp->fpregs),
683				       user_fpscr_offset);
684	if (ret)
685		return ret;
686
687	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
688				   &vfp->fpscr,
689				   user_fpscr_offset,
690				   user_fpscr_offset + sizeof(vfp->fpscr));
691}
692
693/*
694 * For vfp_set() a read-modify-write is done on the VFP registers,
695 * in order to avoid writing back a half-modified set of registers on
696 * failure.
697 */
698static int vfp_set(struct task_struct *target,
699			  const struct user_regset *regset,
700			  unsigned int pos, unsigned int count,
701			  const void *kbuf, const void __user *ubuf)
702{
703	int ret;
704	struct thread_info *thread = task_thread_info(target);
705	struct vfp_hard_struct new_vfp;
706	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
707	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
708
709	vfp_sync_hwstate(thread);
710	new_vfp = thread->vfpstate.hard;
711
712	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
713				  &new_vfp.fpregs,
714				  user_fpregs_offset,
715				  user_fpregs_offset + sizeof(new_vfp.fpregs));
716	if (ret)
717		return ret;
718
719	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
720				user_fpregs_offset + sizeof(new_vfp.fpregs),
721				user_fpscr_offset);
722	if (ret)
723		return ret;
724
725	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
726				 &new_vfp.fpscr,
727				 user_fpscr_offset,
728				 user_fpscr_offset + sizeof(new_vfp.fpscr));
729	if (ret)
730		return ret;
731
 
 
732	vfp_flush_hwstate(thread);
733	thread->vfpstate.hard = new_vfp;
734
735	return 0;
736}
737#endif /* CONFIG_VFP */
738
739enum arm_regset {
740	REGSET_GPR,
741	REGSET_FPR,
742#ifdef CONFIG_VFP
743	REGSET_VFP,
744#endif
745};
746
747static const struct user_regset arm_regsets[] = {
748	[REGSET_GPR] = {
749		.core_note_type = NT_PRSTATUS,
750		.n = ELF_NGREG,
751		.size = sizeof(u32),
752		.align = sizeof(u32),
753		.get = gpr_get,
754		.set = gpr_set
755	},
756	[REGSET_FPR] = {
757		/*
758		 * For the FPA regs in fpstate, the real fields are a mixture
759		 * of sizes, so pretend that the registers are word-sized:
760		 */
761		.core_note_type = NT_PRFPREG,
762		.n = sizeof(struct user_fp) / sizeof(u32),
763		.size = sizeof(u32),
764		.align = sizeof(u32),
765		.get = fpa_get,
766		.set = fpa_set
767	},
768#ifdef CONFIG_VFP
769	[REGSET_VFP] = {
770		/*
771		 * Pretend that the VFP regs are word-sized, since the FPSCR is
772		 * a single word dangling at the end of struct user_vfp:
773		 */
774		.core_note_type = NT_ARM_VFP,
775		.n = ARM_VFPREGS_SIZE / sizeof(u32),
776		.size = sizeof(u32),
777		.align = sizeof(u32),
778		.get = vfp_get,
779		.set = vfp_set
780	},
781#endif /* CONFIG_VFP */
782};
783
784static const struct user_regset_view user_arm_view = {
785	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
786	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
787};
788
789const struct user_regset_view *task_user_regset_view(struct task_struct *task)
790{
791	return &user_arm_view;
792}
793
794long arch_ptrace(struct task_struct *child, long request,
795		 unsigned long addr, unsigned long data)
796{
797	int ret;
798	unsigned long __user *datap = (unsigned long __user *) data;
799
800	switch (request) {
801		case PTRACE_PEEKUSR:
802			ret = ptrace_read_user(child, addr, datap);
803			break;
804
805		case PTRACE_POKEUSR:
806			ret = ptrace_write_user(child, addr, data);
807			break;
808
809		case PTRACE_GETREGS:
810			ret = copy_regset_to_user(child,
811						  &user_arm_view, REGSET_GPR,
812						  0, sizeof(struct pt_regs),
813						  datap);
814			break;
815
816		case PTRACE_SETREGS:
817			ret = copy_regset_from_user(child,
818						    &user_arm_view, REGSET_GPR,
819						    0, sizeof(struct pt_regs),
820						    datap);
821			break;
822
823		case PTRACE_GETFPREGS:
824			ret = copy_regset_to_user(child,
825						  &user_arm_view, REGSET_FPR,
826						  0, sizeof(union fp_state),
827						  datap);
828			break;
829
830		case PTRACE_SETFPREGS:
831			ret = copy_regset_from_user(child,
832						    &user_arm_view, REGSET_FPR,
833						    0, sizeof(union fp_state),
834						    datap);
835			break;
836
837#ifdef CONFIG_IWMMXT
838		case PTRACE_GETWMMXREGS:
839			ret = ptrace_getwmmxregs(child, datap);
840			break;
841
842		case PTRACE_SETWMMXREGS:
843			ret = ptrace_setwmmxregs(child, datap);
844			break;
845#endif
846
847		case PTRACE_GET_THREAD_AREA:
848			ret = put_user(task_thread_info(child)->tp_value,
849				       datap);
850			break;
851
852		case PTRACE_SET_SYSCALL:
853			task_thread_info(child)->syscall = data;
854			ret = 0;
855			break;
856
857#ifdef CONFIG_CRUNCH
858		case PTRACE_GETCRUNCHREGS:
859			ret = ptrace_getcrunchregs(child, datap);
860			break;
861
862		case PTRACE_SETCRUNCHREGS:
863			ret = ptrace_setcrunchregs(child, datap);
864			break;
865#endif
866
867#ifdef CONFIG_VFP
868		case PTRACE_GETVFPREGS:
869			ret = copy_regset_to_user(child,
870						  &user_arm_view, REGSET_VFP,
871						  0, ARM_VFPREGS_SIZE,
872						  datap);
873			break;
874
875		case PTRACE_SETVFPREGS:
876			ret = copy_regset_from_user(child,
877						    &user_arm_view, REGSET_VFP,
878						    0, ARM_VFPREGS_SIZE,
879						    datap);
880			break;
881#endif
882
883#ifdef CONFIG_HAVE_HW_BREAKPOINT
884		case PTRACE_GETHBPREGS:
885			if (ptrace_get_breakpoints(child) < 0)
886				return -ESRCH;
887
888			ret = ptrace_gethbpregs(child, addr,
889						(unsigned long __user *)data);
890			ptrace_put_breakpoints(child);
891			break;
892		case PTRACE_SETHBPREGS:
893			if (ptrace_get_breakpoints(child) < 0)
894				return -ESRCH;
895
896			ret = ptrace_sethbpregs(child, addr,
897						(unsigned long __user *)data);
898			ptrace_put_breakpoints(child);
899			break;
900#endif
901
902		default:
903			ret = ptrace_request(child, request, addr, data);
904			break;
905	}
906
907	return ret;
908}
909
910asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
911{
912	unsigned long ip;
913
914	if (why)
915		audit_syscall_exit(regs);
916	else
917		audit_syscall_entry(AUDIT_ARCH_ARM, scno, regs->ARM_r0,
918				    regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
919
920	if (!test_thread_flag(TIF_SYSCALL_TRACE))
921		return scno;
922
923	current_thread_info()->syscall = scno;
924
925	/*
926	 * IP is used to denote syscall entry/exit:
927	 * IP = 0 -> entry, =1 -> exit
928	 */
929	ip = regs->ARM_ip;
930	regs->ARM_ip = why;
931
932	if (why)
933		tracehook_report_syscall_exit(regs, 0);
934	else if (tracehook_report_syscall_entry(regs))
935		current_thread_info()->syscall = -1;
936
 
 
 
 
 
 
 
 
 
 
 
 
 
937	regs->ARM_ip = ip;
938
939	return current_thread_info()->syscall;
940}