Loading...
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19#include "iodev.h"
20
21#include <linux/kvm_host.h>
22#include <linux/kvm.h>
23#include <linux/module.h>
24#include <linux/errno.h>
25#include <linux/percpu.h>
26#include <linux/mm.h>
27#include <linux/miscdevice.h>
28#include <linux/vmalloc.h>
29#include <linux/reboot.h>
30#include <linux/debugfs.h>
31#include <linux/highmem.h>
32#include <linux/file.h>
33#include <linux/syscore_ops.h>
34#include <linux/cpu.h>
35#include <linux/sched.h>
36#include <linux/cpumask.h>
37#include <linux/smp.h>
38#include <linux/anon_inodes.h>
39#include <linux/profile.h>
40#include <linux/kvm_para.h>
41#include <linux/pagemap.h>
42#include <linux/mman.h>
43#include <linux/swap.h>
44#include <linux/bitops.h>
45#include <linux/spinlock.h>
46#include <linux/compat.h>
47#include <linux/srcu.h>
48#include <linux/hugetlb.h>
49#include <linux/slab.h>
50
51#include <asm/processor.h>
52#include <asm/io.h>
53#include <asm/uaccess.h>
54#include <asm/pgtable.h>
55
56#include "coalesced_mmio.h"
57#include "async_pf.h"
58
59#define CREATE_TRACE_POINTS
60#include <trace/events/kvm.h>
61
62MODULE_AUTHOR("Qumranet");
63MODULE_LICENSE("GPL");
64
65/*
66 * Ordering of locks:
67 *
68 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
69 */
70
71DEFINE_RAW_SPINLOCK(kvm_lock);
72LIST_HEAD(vm_list);
73
74static cpumask_var_t cpus_hardware_enabled;
75static int kvm_usage_count = 0;
76static atomic_t hardware_enable_failed;
77
78struct kmem_cache *kvm_vcpu_cache;
79EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
80
81static __read_mostly struct preempt_ops kvm_preempt_ops;
82
83struct dentry *kvm_debugfs_dir;
84
85static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
86 unsigned long arg);
87#ifdef CONFIG_COMPAT
88static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
89 unsigned long arg);
90#endif
91static int hardware_enable_all(void);
92static void hardware_disable_all(void);
93
94static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
95
96bool kvm_rebooting;
97EXPORT_SYMBOL_GPL(kvm_rebooting);
98
99static bool largepages_enabled = true;
100
101static struct page *hwpoison_page;
102static pfn_t hwpoison_pfn;
103
104struct page *fault_page;
105pfn_t fault_pfn;
106
107inline int kvm_is_mmio_pfn(pfn_t pfn)
108{
109 if (pfn_valid(pfn)) {
110 int reserved;
111 struct page *tail = pfn_to_page(pfn);
112 struct page *head = compound_trans_head(tail);
113 reserved = PageReserved(head);
114 if (head != tail) {
115 /*
116 * "head" is not a dangling pointer
117 * (compound_trans_head takes care of that)
118 * but the hugepage may have been splitted
119 * from under us (and we may not hold a
120 * reference count on the head page so it can
121 * be reused before we run PageReferenced), so
122 * we've to check PageTail before returning
123 * what we just read.
124 */
125 smp_rmb();
126 if (PageTail(tail))
127 return reserved;
128 }
129 return PageReserved(tail);
130 }
131
132 return true;
133}
134
135/*
136 * Switches to specified vcpu, until a matching vcpu_put()
137 */
138void vcpu_load(struct kvm_vcpu *vcpu)
139{
140 int cpu;
141
142 mutex_lock(&vcpu->mutex);
143 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
144 /* The thread running this VCPU changed. */
145 struct pid *oldpid = vcpu->pid;
146 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
147 rcu_assign_pointer(vcpu->pid, newpid);
148 synchronize_rcu();
149 put_pid(oldpid);
150 }
151 cpu = get_cpu();
152 preempt_notifier_register(&vcpu->preempt_notifier);
153 kvm_arch_vcpu_load(vcpu, cpu);
154 put_cpu();
155}
156
157void vcpu_put(struct kvm_vcpu *vcpu)
158{
159 preempt_disable();
160 kvm_arch_vcpu_put(vcpu);
161 preempt_notifier_unregister(&vcpu->preempt_notifier);
162 preempt_enable();
163 mutex_unlock(&vcpu->mutex);
164}
165
166static void ack_flush(void *_completed)
167{
168}
169
170static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
171{
172 int i, cpu, me;
173 cpumask_var_t cpus;
174 bool called = true;
175 struct kvm_vcpu *vcpu;
176
177 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
178
179 me = get_cpu();
180 kvm_for_each_vcpu(i, vcpu, kvm) {
181 kvm_make_request(req, vcpu);
182 cpu = vcpu->cpu;
183
184 /* Set ->requests bit before we read ->mode */
185 smp_mb();
186
187 if (cpus != NULL && cpu != -1 && cpu != me &&
188 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
189 cpumask_set_cpu(cpu, cpus);
190 }
191 if (unlikely(cpus == NULL))
192 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
193 else if (!cpumask_empty(cpus))
194 smp_call_function_many(cpus, ack_flush, NULL, 1);
195 else
196 called = false;
197 put_cpu();
198 free_cpumask_var(cpus);
199 return called;
200}
201
202void kvm_flush_remote_tlbs(struct kvm *kvm)
203{
204 int dirty_count = kvm->tlbs_dirty;
205
206 smp_mb();
207 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
208 ++kvm->stat.remote_tlb_flush;
209 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
210}
211
212void kvm_reload_remote_mmus(struct kvm *kvm)
213{
214 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
215}
216
217int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
218{
219 struct page *page;
220 int r;
221
222 mutex_init(&vcpu->mutex);
223 vcpu->cpu = -1;
224 vcpu->kvm = kvm;
225 vcpu->vcpu_id = id;
226 vcpu->pid = NULL;
227 init_waitqueue_head(&vcpu->wq);
228 kvm_async_pf_vcpu_init(vcpu);
229
230 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
231 if (!page) {
232 r = -ENOMEM;
233 goto fail;
234 }
235 vcpu->run = page_address(page);
236
237 r = kvm_arch_vcpu_init(vcpu);
238 if (r < 0)
239 goto fail_free_run;
240 return 0;
241
242fail_free_run:
243 free_page((unsigned long)vcpu->run);
244fail:
245 return r;
246}
247EXPORT_SYMBOL_GPL(kvm_vcpu_init);
248
249void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
250{
251 put_pid(vcpu->pid);
252 kvm_arch_vcpu_uninit(vcpu);
253 free_page((unsigned long)vcpu->run);
254}
255EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
256
257#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
258static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
259{
260 return container_of(mn, struct kvm, mmu_notifier);
261}
262
263static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
264 struct mm_struct *mm,
265 unsigned long address)
266{
267 struct kvm *kvm = mmu_notifier_to_kvm(mn);
268 int need_tlb_flush, idx;
269
270 /*
271 * When ->invalidate_page runs, the linux pte has been zapped
272 * already but the page is still allocated until
273 * ->invalidate_page returns. So if we increase the sequence
274 * here the kvm page fault will notice if the spte can't be
275 * established because the page is going to be freed. If
276 * instead the kvm page fault establishes the spte before
277 * ->invalidate_page runs, kvm_unmap_hva will release it
278 * before returning.
279 *
280 * The sequence increase only need to be seen at spin_unlock
281 * time, and not at spin_lock time.
282 *
283 * Increasing the sequence after the spin_unlock would be
284 * unsafe because the kvm page fault could then establish the
285 * pte after kvm_unmap_hva returned, without noticing the page
286 * is going to be freed.
287 */
288 idx = srcu_read_lock(&kvm->srcu);
289 spin_lock(&kvm->mmu_lock);
290 kvm->mmu_notifier_seq++;
291 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
292 spin_unlock(&kvm->mmu_lock);
293 srcu_read_unlock(&kvm->srcu, idx);
294
295 /* we've to flush the tlb before the pages can be freed */
296 if (need_tlb_flush)
297 kvm_flush_remote_tlbs(kvm);
298
299}
300
301static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302 struct mm_struct *mm,
303 unsigned long address,
304 pte_t pte)
305{
306 struct kvm *kvm = mmu_notifier_to_kvm(mn);
307 int idx;
308
309 idx = srcu_read_lock(&kvm->srcu);
310 spin_lock(&kvm->mmu_lock);
311 kvm->mmu_notifier_seq++;
312 kvm_set_spte_hva(kvm, address, pte);
313 spin_unlock(&kvm->mmu_lock);
314 srcu_read_unlock(&kvm->srcu, idx);
315}
316
317static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318 struct mm_struct *mm,
319 unsigned long start,
320 unsigned long end)
321{
322 struct kvm *kvm = mmu_notifier_to_kvm(mn);
323 int need_tlb_flush = 0, idx;
324
325 idx = srcu_read_lock(&kvm->srcu);
326 spin_lock(&kvm->mmu_lock);
327 /*
328 * The count increase must become visible at unlock time as no
329 * spte can be established without taking the mmu_lock and
330 * count is also read inside the mmu_lock critical section.
331 */
332 kvm->mmu_notifier_count++;
333 for (; start < end; start += PAGE_SIZE)
334 need_tlb_flush |= kvm_unmap_hva(kvm, start);
335 need_tlb_flush |= kvm->tlbs_dirty;
336 spin_unlock(&kvm->mmu_lock);
337 srcu_read_unlock(&kvm->srcu, idx);
338
339 /* we've to flush the tlb before the pages can be freed */
340 if (need_tlb_flush)
341 kvm_flush_remote_tlbs(kvm);
342}
343
344static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
345 struct mm_struct *mm,
346 unsigned long start,
347 unsigned long end)
348{
349 struct kvm *kvm = mmu_notifier_to_kvm(mn);
350
351 spin_lock(&kvm->mmu_lock);
352 /*
353 * This sequence increase will notify the kvm page fault that
354 * the page that is going to be mapped in the spte could have
355 * been freed.
356 */
357 kvm->mmu_notifier_seq++;
358 /*
359 * The above sequence increase must be visible before the
360 * below count decrease but both values are read by the kvm
361 * page fault under mmu_lock spinlock so we don't need to add
362 * a smb_wmb() here in between the two.
363 */
364 kvm->mmu_notifier_count--;
365 spin_unlock(&kvm->mmu_lock);
366
367 BUG_ON(kvm->mmu_notifier_count < 0);
368}
369
370static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
371 struct mm_struct *mm,
372 unsigned long address)
373{
374 struct kvm *kvm = mmu_notifier_to_kvm(mn);
375 int young, idx;
376
377 idx = srcu_read_lock(&kvm->srcu);
378 spin_lock(&kvm->mmu_lock);
379 young = kvm_age_hva(kvm, address);
380 spin_unlock(&kvm->mmu_lock);
381 srcu_read_unlock(&kvm->srcu, idx);
382
383 if (young)
384 kvm_flush_remote_tlbs(kvm);
385
386 return young;
387}
388
389static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
390 struct mm_struct *mm,
391 unsigned long address)
392{
393 struct kvm *kvm = mmu_notifier_to_kvm(mn);
394 int young, idx;
395
396 idx = srcu_read_lock(&kvm->srcu);
397 spin_lock(&kvm->mmu_lock);
398 young = kvm_test_age_hva(kvm, address);
399 spin_unlock(&kvm->mmu_lock);
400 srcu_read_unlock(&kvm->srcu, idx);
401
402 return young;
403}
404
405static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
406 struct mm_struct *mm)
407{
408 struct kvm *kvm = mmu_notifier_to_kvm(mn);
409 int idx;
410
411 idx = srcu_read_lock(&kvm->srcu);
412 kvm_arch_flush_shadow(kvm);
413 srcu_read_unlock(&kvm->srcu, idx);
414}
415
416static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
417 .invalidate_page = kvm_mmu_notifier_invalidate_page,
418 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
419 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
420 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
421 .test_young = kvm_mmu_notifier_test_young,
422 .change_pte = kvm_mmu_notifier_change_pte,
423 .release = kvm_mmu_notifier_release,
424};
425
426static int kvm_init_mmu_notifier(struct kvm *kvm)
427{
428 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
429 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
430}
431
432#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
433
434static int kvm_init_mmu_notifier(struct kvm *kvm)
435{
436 return 0;
437}
438
439#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
440
441static struct kvm *kvm_create_vm(void)
442{
443 int r, i;
444 struct kvm *kvm = kvm_arch_alloc_vm();
445
446 if (!kvm)
447 return ERR_PTR(-ENOMEM);
448
449 r = kvm_arch_init_vm(kvm);
450 if (r)
451 goto out_err_nodisable;
452
453 r = hardware_enable_all();
454 if (r)
455 goto out_err_nodisable;
456
457#ifdef CONFIG_HAVE_KVM_IRQCHIP
458 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
459 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
460#endif
461
462 r = -ENOMEM;
463 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
464 if (!kvm->memslots)
465 goto out_err_nosrcu;
466 if (init_srcu_struct(&kvm->srcu))
467 goto out_err_nosrcu;
468 for (i = 0; i < KVM_NR_BUSES; i++) {
469 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
470 GFP_KERNEL);
471 if (!kvm->buses[i])
472 goto out_err;
473 }
474
475 spin_lock_init(&kvm->mmu_lock);
476 kvm->mm = current->mm;
477 atomic_inc(&kvm->mm->mm_count);
478 kvm_eventfd_init(kvm);
479 mutex_init(&kvm->lock);
480 mutex_init(&kvm->irq_lock);
481 mutex_init(&kvm->slots_lock);
482 atomic_set(&kvm->users_count, 1);
483
484 r = kvm_init_mmu_notifier(kvm);
485 if (r)
486 goto out_err;
487
488 raw_spin_lock(&kvm_lock);
489 list_add(&kvm->vm_list, &vm_list);
490 raw_spin_unlock(&kvm_lock);
491
492 return kvm;
493
494out_err:
495 cleanup_srcu_struct(&kvm->srcu);
496out_err_nosrcu:
497 hardware_disable_all();
498out_err_nodisable:
499 for (i = 0; i < KVM_NR_BUSES; i++)
500 kfree(kvm->buses[i]);
501 kfree(kvm->memslots);
502 kvm_arch_free_vm(kvm);
503 return ERR_PTR(r);
504}
505
506static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
507{
508 if (!memslot->dirty_bitmap)
509 return;
510
511 if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
512 vfree(memslot->dirty_bitmap_head);
513 else
514 kfree(memslot->dirty_bitmap_head);
515
516 memslot->dirty_bitmap = NULL;
517 memslot->dirty_bitmap_head = NULL;
518}
519
520/*
521 * Free any memory in @free but not in @dont.
522 */
523static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
524 struct kvm_memory_slot *dont)
525{
526 int i;
527
528 if (!dont || free->rmap != dont->rmap)
529 vfree(free->rmap);
530
531 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
532 kvm_destroy_dirty_bitmap(free);
533
534
535 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
536 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
537 vfree(free->lpage_info[i]);
538 free->lpage_info[i] = NULL;
539 }
540 }
541
542 free->npages = 0;
543 free->rmap = NULL;
544}
545
546void kvm_free_physmem(struct kvm *kvm)
547{
548 int i;
549 struct kvm_memslots *slots = kvm->memslots;
550
551 for (i = 0; i < slots->nmemslots; ++i)
552 kvm_free_physmem_slot(&slots->memslots[i], NULL);
553
554 kfree(kvm->memslots);
555}
556
557static void kvm_destroy_vm(struct kvm *kvm)
558{
559 int i;
560 struct mm_struct *mm = kvm->mm;
561
562 kvm_arch_sync_events(kvm);
563 raw_spin_lock(&kvm_lock);
564 list_del(&kvm->vm_list);
565 raw_spin_unlock(&kvm_lock);
566 kvm_free_irq_routing(kvm);
567 for (i = 0; i < KVM_NR_BUSES; i++)
568 kvm_io_bus_destroy(kvm->buses[i]);
569 kvm_coalesced_mmio_free(kvm);
570#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
571 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
572#else
573 kvm_arch_flush_shadow(kvm);
574#endif
575 kvm_arch_destroy_vm(kvm);
576 kvm_free_physmem(kvm);
577 cleanup_srcu_struct(&kvm->srcu);
578 kvm_arch_free_vm(kvm);
579 hardware_disable_all();
580 mmdrop(mm);
581}
582
583void kvm_get_kvm(struct kvm *kvm)
584{
585 atomic_inc(&kvm->users_count);
586}
587EXPORT_SYMBOL_GPL(kvm_get_kvm);
588
589void kvm_put_kvm(struct kvm *kvm)
590{
591 if (atomic_dec_and_test(&kvm->users_count))
592 kvm_destroy_vm(kvm);
593}
594EXPORT_SYMBOL_GPL(kvm_put_kvm);
595
596
597static int kvm_vm_release(struct inode *inode, struct file *filp)
598{
599 struct kvm *kvm = filp->private_data;
600
601 kvm_irqfd_release(kvm);
602
603 kvm_put_kvm(kvm);
604 return 0;
605}
606
607#ifndef CONFIG_S390
608/*
609 * Allocation size is twice as large as the actual dirty bitmap size.
610 * This makes it possible to do double buffering: see x86's
611 * kvm_vm_ioctl_get_dirty_log().
612 */
613static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
614{
615 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
616
617 if (dirty_bytes > PAGE_SIZE)
618 memslot->dirty_bitmap = vzalloc(dirty_bytes);
619 else
620 memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
621
622 if (!memslot->dirty_bitmap)
623 return -ENOMEM;
624
625 memslot->dirty_bitmap_head = memslot->dirty_bitmap;
626 return 0;
627}
628#endif /* !CONFIG_S390 */
629
630/*
631 * Allocate some memory and give it an address in the guest physical address
632 * space.
633 *
634 * Discontiguous memory is allowed, mostly for framebuffers.
635 *
636 * Must be called holding mmap_sem for write.
637 */
638int __kvm_set_memory_region(struct kvm *kvm,
639 struct kvm_userspace_memory_region *mem,
640 int user_alloc)
641{
642 int r;
643 gfn_t base_gfn;
644 unsigned long npages;
645 unsigned long i;
646 struct kvm_memory_slot *memslot;
647 struct kvm_memory_slot old, new;
648 struct kvm_memslots *slots, *old_memslots;
649
650 r = -EINVAL;
651 /* General sanity checks */
652 if (mem->memory_size & (PAGE_SIZE - 1))
653 goto out;
654 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
655 goto out;
656 /* We can read the guest memory with __xxx_user() later on. */
657 if (user_alloc &&
658 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
659 !access_ok(VERIFY_WRITE,
660 (void __user *)(unsigned long)mem->userspace_addr,
661 mem->memory_size)))
662 goto out;
663 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
664 goto out;
665 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
666 goto out;
667
668 memslot = &kvm->memslots->memslots[mem->slot];
669 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
670 npages = mem->memory_size >> PAGE_SHIFT;
671
672 r = -EINVAL;
673 if (npages > KVM_MEM_MAX_NR_PAGES)
674 goto out;
675
676 if (!npages)
677 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
678
679 new = old = *memslot;
680
681 new.id = mem->slot;
682 new.base_gfn = base_gfn;
683 new.npages = npages;
684 new.flags = mem->flags;
685
686 /* Disallow changing a memory slot's size. */
687 r = -EINVAL;
688 if (npages && old.npages && npages != old.npages)
689 goto out_free;
690
691 /* Check for overlaps */
692 r = -EEXIST;
693 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
694 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
695
696 if (s == memslot || !s->npages)
697 continue;
698 if (!((base_gfn + npages <= s->base_gfn) ||
699 (base_gfn >= s->base_gfn + s->npages)))
700 goto out_free;
701 }
702
703 /* Free page dirty bitmap if unneeded */
704 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
705 new.dirty_bitmap = NULL;
706
707 r = -ENOMEM;
708
709 /* Allocate if a slot is being created */
710#ifndef CONFIG_S390
711 if (npages && !new.rmap) {
712 new.rmap = vzalloc(npages * sizeof(*new.rmap));
713
714 if (!new.rmap)
715 goto out_free;
716
717 new.user_alloc = user_alloc;
718 new.userspace_addr = mem->userspace_addr;
719 }
720 if (!npages)
721 goto skip_lpage;
722
723 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
724 unsigned long ugfn;
725 unsigned long j;
726 int lpages;
727 int level = i + 2;
728
729 /* Avoid unused variable warning if no large pages */
730 (void)level;
731
732 if (new.lpage_info[i])
733 continue;
734
735 lpages = 1 + ((base_gfn + npages - 1)
736 >> KVM_HPAGE_GFN_SHIFT(level));
737 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
738
739 new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
740
741 if (!new.lpage_info[i])
742 goto out_free;
743
744 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
745 new.lpage_info[i][0].write_count = 1;
746 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
747 new.lpage_info[i][lpages - 1].write_count = 1;
748 ugfn = new.userspace_addr >> PAGE_SHIFT;
749 /*
750 * If the gfn and userspace address are not aligned wrt each
751 * other, or if explicitly asked to, disable large page
752 * support for this slot
753 */
754 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
755 !largepages_enabled)
756 for (j = 0; j < lpages; ++j)
757 new.lpage_info[i][j].write_count = 1;
758 }
759
760skip_lpage:
761
762 /* Allocate page dirty bitmap if needed */
763 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
764 if (kvm_create_dirty_bitmap(&new) < 0)
765 goto out_free;
766 /* destroy any largepage mappings for dirty tracking */
767 }
768#else /* not defined CONFIG_S390 */
769 new.user_alloc = user_alloc;
770 if (user_alloc)
771 new.userspace_addr = mem->userspace_addr;
772#endif /* not defined CONFIG_S390 */
773
774 if (!npages) {
775 r = -ENOMEM;
776 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
777 if (!slots)
778 goto out_free;
779 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
780 if (mem->slot >= slots->nmemslots)
781 slots->nmemslots = mem->slot + 1;
782 slots->generation++;
783 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
784
785 old_memslots = kvm->memslots;
786 rcu_assign_pointer(kvm->memslots, slots);
787 synchronize_srcu_expedited(&kvm->srcu);
788 /* From this point no new shadow pages pointing to a deleted
789 * memslot will be created.
790 *
791 * validation of sp->gfn happens in:
792 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
793 * - kvm_is_visible_gfn (mmu_check_roots)
794 */
795 kvm_arch_flush_shadow(kvm);
796 kfree(old_memslots);
797 }
798
799 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
800 if (r)
801 goto out_free;
802
803 /* map the pages in iommu page table */
804 if (npages) {
805 r = kvm_iommu_map_pages(kvm, &new);
806 if (r)
807 goto out_free;
808 }
809
810 r = -ENOMEM;
811 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
812 if (!slots)
813 goto out_free;
814 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
815 if (mem->slot >= slots->nmemslots)
816 slots->nmemslots = mem->slot + 1;
817 slots->generation++;
818
819 /* actual memory is freed via old in kvm_free_physmem_slot below */
820 if (!npages) {
821 new.rmap = NULL;
822 new.dirty_bitmap = NULL;
823 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
824 new.lpage_info[i] = NULL;
825 }
826
827 slots->memslots[mem->slot] = new;
828 old_memslots = kvm->memslots;
829 rcu_assign_pointer(kvm->memslots, slots);
830 synchronize_srcu_expedited(&kvm->srcu);
831
832 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
833
834 /*
835 * If the new memory slot is created, we need to clear all
836 * mmio sptes.
837 */
838 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
839 kvm_arch_flush_shadow(kvm);
840
841 kvm_free_physmem_slot(&old, &new);
842 kfree(old_memslots);
843
844 return 0;
845
846out_free:
847 kvm_free_physmem_slot(&new, &old);
848out:
849 return r;
850
851}
852EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
853
854int kvm_set_memory_region(struct kvm *kvm,
855 struct kvm_userspace_memory_region *mem,
856 int user_alloc)
857{
858 int r;
859
860 mutex_lock(&kvm->slots_lock);
861 r = __kvm_set_memory_region(kvm, mem, user_alloc);
862 mutex_unlock(&kvm->slots_lock);
863 return r;
864}
865EXPORT_SYMBOL_GPL(kvm_set_memory_region);
866
867int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
868 struct
869 kvm_userspace_memory_region *mem,
870 int user_alloc)
871{
872 if (mem->slot >= KVM_MEMORY_SLOTS)
873 return -EINVAL;
874 return kvm_set_memory_region(kvm, mem, user_alloc);
875}
876
877int kvm_get_dirty_log(struct kvm *kvm,
878 struct kvm_dirty_log *log, int *is_dirty)
879{
880 struct kvm_memory_slot *memslot;
881 int r, i;
882 unsigned long n;
883 unsigned long any = 0;
884
885 r = -EINVAL;
886 if (log->slot >= KVM_MEMORY_SLOTS)
887 goto out;
888
889 memslot = &kvm->memslots->memslots[log->slot];
890 r = -ENOENT;
891 if (!memslot->dirty_bitmap)
892 goto out;
893
894 n = kvm_dirty_bitmap_bytes(memslot);
895
896 for (i = 0; !any && i < n/sizeof(long); ++i)
897 any = memslot->dirty_bitmap[i];
898
899 r = -EFAULT;
900 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
901 goto out;
902
903 if (any)
904 *is_dirty = 1;
905
906 r = 0;
907out:
908 return r;
909}
910
911void kvm_disable_largepages(void)
912{
913 largepages_enabled = false;
914}
915EXPORT_SYMBOL_GPL(kvm_disable_largepages);
916
917int is_error_page(struct page *page)
918{
919 return page == bad_page || page == hwpoison_page || page == fault_page;
920}
921EXPORT_SYMBOL_GPL(is_error_page);
922
923int is_error_pfn(pfn_t pfn)
924{
925 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
926}
927EXPORT_SYMBOL_GPL(is_error_pfn);
928
929int is_hwpoison_pfn(pfn_t pfn)
930{
931 return pfn == hwpoison_pfn;
932}
933EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
934
935int is_fault_pfn(pfn_t pfn)
936{
937 return pfn == fault_pfn;
938}
939EXPORT_SYMBOL_GPL(is_fault_pfn);
940
941int is_noslot_pfn(pfn_t pfn)
942{
943 return pfn == bad_pfn;
944}
945EXPORT_SYMBOL_GPL(is_noslot_pfn);
946
947int is_invalid_pfn(pfn_t pfn)
948{
949 return pfn == hwpoison_pfn || pfn == fault_pfn;
950}
951EXPORT_SYMBOL_GPL(is_invalid_pfn);
952
953static inline unsigned long bad_hva(void)
954{
955 return PAGE_OFFSET;
956}
957
958int kvm_is_error_hva(unsigned long addr)
959{
960 return addr == bad_hva();
961}
962EXPORT_SYMBOL_GPL(kvm_is_error_hva);
963
964static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
965 gfn_t gfn)
966{
967 int i;
968
969 for (i = 0; i < slots->nmemslots; ++i) {
970 struct kvm_memory_slot *memslot = &slots->memslots[i];
971
972 if (gfn >= memslot->base_gfn
973 && gfn < memslot->base_gfn + memslot->npages)
974 return memslot;
975 }
976 return NULL;
977}
978
979struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
980{
981 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
982}
983EXPORT_SYMBOL_GPL(gfn_to_memslot);
984
985int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
986{
987 int i;
988 struct kvm_memslots *slots = kvm_memslots(kvm);
989
990 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
991 struct kvm_memory_slot *memslot = &slots->memslots[i];
992
993 if (memslot->flags & KVM_MEMSLOT_INVALID)
994 continue;
995
996 if (gfn >= memslot->base_gfn
997 && gfn < memslot->base_gfn + memslot->npages)
998 return 1;
999 }
1000 return 0;
1001}
1002EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1003
1004unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1005{
1006 struct vm_area_struct *vma;
1007 unsigned long addr, size;
1008
1009 size = PAGE_SIZE;
1010
1011 addr = gfn_to_hva(kvm, gfn);
1012 if (kvm_is_error_hva(addr))
1013 return PAGE_SIZE;
1014
1015 down_read(¤t->mm->mmap_sem);
1016 vma = find_vma(current->mm, addr);
1017 if (!vma)
1018 goto out;
1019
1020 size = vma_kernel_pagesize(vma);
1021
1022out:
1023 up_read(¤t->mm->mmap_sem);
1024
1025 return size;
1026}
1027
1028static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1029 gfn_t *nr_pages)
1030{
1031 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1032 return bad_hva();
1033
1034 if (nr_pages)
1035 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1036
1037 return gfn_to_hva_memslot(slot, gfn);
1038}
1039
1040unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1041{
1042 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1043}
1044EXPORT_SYMBOL_GPL(gfn_to_hva);
1045
1046static pfn_t get_fault_pfn(void)
1047{
1048 get_page(fault_page);
1049 return fault_pfn;
1050}
1051
1052int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1053 unsigned long start, int write, struct page **page)
1054{
1055 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1056
1057 if (write)
1058 flags |= FOLL_WRITE;
1059
1060 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1061}
1062
1063static inline int check_user_page_hwpoison(unsigned long addr)
1064{
1065 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1066
1067 rc = __get_user_pages(current, current->mm, addr, 1,
1068 flags, NULL, NULL, NULL);
1069 return rc == -EHWPOISON;
1070}
1071
1072static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1073 bool *async, bool write_fault, bool *writable)
1074{
1075 struct page *page[1];
1076 int npages = 0;
1077 pfn_t pfn;
1078
1079 /* we can do it either atomically or asynchronously, not both */
1080 BUG_ON(atomic && async);
1081
1082 BUG_ON(!write_fault && !writable);
1083
1084 if (writable)
1085 *writable = true;
1086
1087 if (atomic || async)
1088 npages = __get_user_pages_fast(addr, 1, 1, page);
1089
1090 if (unlikely(npages != 1) && !atomic) {
1091 might_sleep();
1092
1093 if (writable)
1094 *writable = write_fault;
1095
1096 if (async) {
1097 down_read(¤t->mm->mmap_sem);
1098 npages = get_user_page_nowait(current, current->mm,
1099 addr, write_fault, page);
1100 up_read(¤t->mm->mmap_sem);
1101 } else
1102 npages = get_user_pages_fast(addr, 1, write_fault,
1103 page);
1104
1105 /* map read fault as writable if possible */
1106 if (unlikely(!write_fault) && npages == 1) {
1107 struct page *wpage[1];
1108
1109 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1110 if (npages == 1) {
1111 *writable = true;
1112 put_page(page[0]);
1113 page[0] = wpage[0];
1114 }
1115 npages = 1;
1116 }
1117 }
1118
1119 if (unlikely(npages != 1)) {
1120 struct vm_area_struct *vma;
1121
1122 if (atomic)
1123 return get_fault_pfn();
1124
1125 down_read(¤t->mm->mmap_sem);
1126 if (npages == -EHWPOISON ||
1127 (!async && check_user_page_hwpoison(addr))) {
1128 up_read(¤t->mm->mmap_sem);
1129 get_page(hwpoison_page);
1130 return page_to_pfn(hwpoison_page);
1131 }
1132
1133 vma = find_vma_intersection(current->mm, addr, addr+1);
1134
1135 if (vma == NULL)
1136 pfn = get_fault_pfn();
1137 else if ((vma->vm_flags & VM_PFNMAP)) {
1138 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1139 vma->vm_pgoff;
1140 BUG_ON(!kvm_is_mmio_pfn(pfn));
1141 } else {
1142 if (async && (vma->vm_flags & VM_WRITE))
1143 *async = true;
1144 pfn = get_fault_pfn();
1145 }
1146 up_read(¤t->mm->mmap_sem);
1147 } else
1148 pfn = page_to_pfn(page[0]);
1149
1150 return pfn;
1151}
1152
1153pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1154{
1155 return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1156}
1157EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1158
1159static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1160 bool write_fault, bool *writable)
1161{
1162 unsigned long addr;
1163
1164 if (async)
1165 *async = false;
1166
1167 addr = gfn_to_hva(kvm, gfn);
1168 if (kvm_is_error_hva(addr)) {
1169 get_page(bad_page);
1170 return page_to_pfn(bad_page);
1171 }
1172
1173 return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1174}
1175
1176pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1177{
1178 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1179}
1180EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1181
1182pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1183 bool write_fault, bool *writable)
1184{
1185 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1186}
1187EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1188
1189pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1190{
1191 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1192}
1193EXPORT_SYMBOL_GPL(gfn_to_pfn);
1194
1195pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1196 bool *writable)
1197{
1198 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1199}
1200EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1201
1202pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1203 struct kvm_memory_slot *slot, gfn_t gfn)
1204{
1205 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1206 return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1207}
1208
1209int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1210 int nr_pages)
1211{
1212 unsigned long addr;
1213 gfn_t entry;
1214
1215 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1216 if (kvm_is_error_hva(addr))
1217 return -1;
1218
1219 if (entry < nr_pages)
1220 return 0;
1221
1222 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1223}
1224EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1225
1226struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1227{
1228 pfn_t pfn;
1229
1230 pfn = gfn_to_pfn(kvm, gfn);
1231 if (!kvm_is_mmio_pfn(pfn))
1232 return pfn_to_page(pfn);
1233
1234 WARN_ON(kvm_is_mmio_pfn(pfn));
1235
1236 get_page(bad_page);
1237 return bad_page;
1238}
1239
1240EXPORT_SYMBOL_GPL(gfn_to_page);
1241
1242void kvm_release_page_clean(struct page *page)
1243{
1244 kvm_release_pfn_clean(page_to_pfn(page));
1245}
1246EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1247
1248void kvm_release_pfn_clean(pfn_t pfn)
1249{
1250 if (!kvm_is_mmio_pfn(pfn))
1251 put_page(pfn_to_page(pfn));
1252}
1253EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1254
1255void kvm_release_page_dirty(struct page *page)
1256{
1257 kvm_release_pfn_dirty(page_to_pfn(page));
1258}
1259EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1260
1261void kvm_release_pfn_dirty(pfn_t pfn)
1262{
1263 kvm_set_pfn_dirty(pfn);
1264 kvm_release_pfn_clean(pfn);
1265}
1266EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1267
1268void kvm_set_page_dirty(struct page *page)
1269{
1270 kvm_set_pfn_dirty(page_to_pfn(page));
1271}
1272EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1273
1274void kvm_set_pfn_dirty(pfn_t pfn)
1275{
1276 if (!kvm_is_mmio_pfn(pfn)) {
1277 struct page *page = pfn_to_page(pfn);
1278 if (!PageReserved(page))
1279 SetPageDirty(page);
1280 }
1281}
1282EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1283
1284void kvm_set_pfn_accessed(pfn_t pfn)
1285{
1286 if (!kvm_is_mmio_pfn(pfn))
1287 mark_page_accessed(pfn_to_page(pfn));
1288}
1289EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1290
1291void kvm_get_pfn(pfn_t pfn)
1292{
1293 if (!kvm_is_mmio_pfn(pfn))
1294 get_page(pfn_to_page(pfn));
1295}
1296EXPORT_SYMBOL_GPL(kvm_get_pfn);
1297
1298static int next_segment(unsigned long len, int offset)
1299{
1300 if (len > PAGE_SIZE - offset)
1301 return PAGE_SIZE - offset;
1302 else
1303 return len;
1304}
1305
1306int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1307 int len)
1308{
1309 int r;
1310 unsigned long addr;
1311
1312 addr = gfn_to_hva(kvm, gfn);
1313 if (kvm_is_error_hva(addr))
1314 return -EFAULT;
1315 r = __copy_from_user(data, (void __user *)addr + offset, len);
1316 if (r)
1317 return -EFAULT;
1318 return 0;
1319}
1320EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1321
1322int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1323{
1324 gfn_t gfn = gpa >> PAGE_SHIFT;
1325 int seg;
1326 int offset = offset_in_page(gpa);
1327 int ret;
1328
1329 while ((seg = next_segment(len, offset)) != 0) {
1330 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1331 if (ret < 0)
1332 return ret;
1333 offset = 0;
1334 len -= seg;
1335 data += seg;
1336 ++gfn;
1337 }
1338 return 0;
1339}
1340EXPORT_SYMBOL_GPL(kvm_read_guest);
1341
1342int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1343 unsigned long len)
1344{
1345 int r;
1346 unsigned long addr;
1347 gfn_t gfn = gpa >> PAGE_SHIFT;
1348 int offset = offset_in_page(gpa);
1349
1350 addr = gfn_to_hva(kvm, gfn);
1351 if (kvm_is_error_hva(addr))
1352 return -EFAULT;
1353 pagefault_disable();
1354 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1355 pagefault_enable();
1356 if (r)
1357 return -EFAULT;
1358 return 0;
1359}
1360EXPORT_SYMBOL(kvm_read_guest_atomic);
1361
1362int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1363 int offset, int len)
1364{
1365 int r;
1366 unsigned long addr;
1367
1368 addr = gfn_to_hva(kvm, gfn);
1369 if (kvm_is_error_hva(addr))
1370 return -EFAULT;
1371 r = __copy_to_user((void __user *)addr + offset, data, len);
1372 if (r)
1373 return -EFAULT;
1374 mark_page_dirty(kvm, gfn);
1375 return 0;
1376}
1377EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1378
1379int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1380 unsigned long len)
1381{
1382 gfn_t gfn = gpa >> PAGE_SHIFT;
1383 int seg;
1384 int offset = offset_in_page(gpa);
1385 int ret;
1386
1387 while ((seg = next_segment(len, offset)) != 0) {
1388 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1389 if (ret < 0)
1390 return ret;
1391 offset = 0;
1392 len -= seg;
1393 data += seg;
1394 ++gfn;
1395 }
1396 return 0;
1397}
1398
1399int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1400 gpa_t gpa)
1401{
1402 struct kvm_memslots *slots = kvm_memslots(kvm);
1403 int offset = offset_in_page(gpa);
1404 gfn_t gfn = gpa >> PAGE_SHIFT;
1405
1406 ghc->gpa = gpa;
1407 ghc->generation = slots->generation;
1408 ghc->memslot = __gfn_to_memslot(slots, gfn);
1409 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1410 if (!kvm_is_error_hva(ghc->hva))
1411 ghc->hva += offset;
1412 else
1413 return -EFAULT;
1414
1415 return 0;
1416}
1417EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1418
1419int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1420 void *data, unsigned long len)
1421{
1422 struct kvm_memslots *slots = kvm_memslots(kvm);
1423 int r;
1424
1425 if (slots->generation != ghc->generation)
1426 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1427
1428 if (kvm_is_error_hva(ghc->hva))
1429 return -EFAULT;
1430
1431 r = __copy_to_user((void __user *)ghc->hva, data, len);
1432 if (r)
1433 return -EFAULT;
1434 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1435
1436 return 0;
1437}
1438EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1439
1440int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1441 void *data, unsigned long len)
1442{
1443 struct kvm_memslots *slots = kvm_memslots(kvm);
1444 int r;
1445
1446 if (slots->generation != ghc->generation)
1447 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1448
1449 if (kvm_is_error_hva(ghc->hva))
1450 return -EFAULT;
1451
1452 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1453 if (r)
1454 return -EFAULT;
1455
1456 return 0;
1457}
1458EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1459
1460int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1461{
1462 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1463 offset, len);
1464}
1465EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1466
1467int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1468{
1469 gfn_t gfn = gpa >> PAGE_SHIFT;
1470 int seg;
1471 int offset = offset_in_page(gpa);
1472 int ret;
1473
1474 while ((seg = next_segment(len, offset)) != 0) {
1475 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1476 if (ret < 0)
1477 return ret;
1478 offset = 0;
1479 len -= seg;
1480 ++gfn;
1481 }
1482 return 0;
1483}
1484EXPORT_SYMBOL_GPL(kvm_clear_guest);
1485
1486void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1487 gfn_t gfn)
1488{
1489 if (memslot && memslot->dirty_bitmap) {
1490 unsigned long rel_gfn = gfn - memslot->base_gfn;
1491
1492 __set_bit_le(rel_gfn, memslot->dirty_bitmap);
1493 }
1494}
1495
1496void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1497{
1498 struct kvm_memory_slot *memslot;
1499
1500 memslot = gfn_to_memslot(kvm, gfn);
1501 mark_page_dirty_in_slot(kvm, memslot, gfn);
1502}
1503
1504/*
1505 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1506 */
1507void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1508{
1509 DEFINE_WAIT(wait);
1510
1511 for (;;) {
1512 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1513
1514 if (kvm_arch_vcpu_runnable(vcpu)) {
1515 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1516 break;
1517 }
1518 if (kvm_cpu_has_pending_timer(vcpu))
1519 break;
1520 if (signal_pending(current))
1521 break;
1522
1523 schedule();
1524 }
1525
1526 finish_wait(&vcpu->wq, &wait);
1527}
1528
1529void kvm_resched(struct kvm_vcpu *vcpu)
1530{
1531 if (!need_resched())
1532 return;
1533 cond_resched();
1534}
1535EXPORT_SYMBOL_GPL(kvm_resched);
1536
1537void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1538{
1539 struct kvm *kvm = me->kvm;
1540 struct kvm_vcpu *vcpu;
1541 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1542 int yielded = 0;
1543 int pass;
1544 int i;
1545
1546 /*
1547 * We boost the priority of a VCPU that is runnable but not
1548 * currently running, because it got preempted by something
1549 * else and called schedule in __vcpu_run. Hopefully that
1550 * VCPU is holding the lock that we need and will release it.
1551 * We approximate round-robin by starting at the last boosted VCPU.
1552 */
1553 for (pass = 0; pass < 2 && !yielded; pass++) {
1554 kvm_for_each_vcpu(i, vcpu, kvm) {
1555 struct task_struct *task = NULL;
1556 struct pid *pid;
1557 if (!pass && i < last_boosted_vcpu) {
1558 i = last_boosted_vcpu;
1559 continue;
1560 } else if (pass && i > last_boosted_vcpu)
1561 break;
1562 if (vcpu == me)
1563 continue;
1564 if (waitqueue_active(&vcpu->wq))
1565 continue;
1566 rcu_read_lock();
1567 pid = rcu_dereference(vcpu->pid);
1568 if (pid)
1569 task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1570 rcu_read_unlock();
1571 if (!task)
1572 continue;
1573 if (task->flags & PF_VCPU) {
1574 put_task_struct(task);
1575 continue;
1576 }
1577 if (yield_to(task, 1)) {
1578 put_task_struct(task);
1579 kvm->last_boosted_vcpu = i;
1580 yielded = 1;
1581 break;
1582 }
1583 put_task_struct(task);
1584 }
1585 }
1586}
1587EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1588
1589static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1590{
1591 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1592 struct page *page;
1593
1594 if (vmf->pgoff == 0)
1595 page = virt_to_page(vcpu->run);
1596#ifdef CONFIG_X86
1597 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1598 page = virt_to_page(vcpu->arch.pio_data);
1599#endif
1600#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1601 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1602 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1603#endif
1604 else
1605 return VM_FAULT_SIGBUS;
1606 get_page(page);
1607 vmf->page = page;
1608 return 0;
1609}
1610
1611static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1612 .fault = kvm_vcpu_fault,
1613};
1614
1615static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1616{
1617 vma->vm_ops = &kvm_vcpu_vm_ops;
1618 return 0;
1619}
1620
1621static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1622{
1623 struct kvm_vcpu *vcpu = filp->private_data;
1624
1625 kvm_put_kvm(vcpu->kvm);
1626 return 0;
1627}
1628
1629static struct file_operations kvm_vcpu_fops = {
1630 .release = kvm_vcpu_release,
1631 .unlocked_ioctl = kvm_vcpu_ioctl,
1632#ifdef CONFIG_COMPAT
1633 .compat_ioctl = kvm_vcpu_compat_ioctl,
1634#endif
1635 .mmap = kvm_vcpu_mmap,
1636 .llseek = noop_llseek,
1637};
1638
1639/*
1640 * Allocates an inode for the vcpu.
1641 */
1642static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1643{
1644 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1645}
1646
1647/*
1648 * Creates some virtual cpus. Good luck creating more than one.
1649 */
1650static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1651{
1652 int r;
1653 struct kvm_vcpu *vcpu, *v;
1654
1655 vcpu = kvm_arch_vcpu_create(kvm, id);
1656 if (IS_ERR(vcpu))
1657 return PTR_ERR(vcpu);
1658
1659 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1660
1661 r = kvm_arch_vcpu_setup(vcpu);
1662 if (r)
1663 goto vcpu_destroy;
1664
1665 mutex_lock(&kvm->lock);
1666 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1667 r = -EINVAL;
1668 goto unlock_vcpu_destroy;
1669 }
1670
1671 kvm_for_each_vcpu(r, v, kvm)
1672 if (v->vcpu_id == id) {
1673 r = -EEXIST;
1674 goto unlock_vcpu_destroy;
1675 }
1676
1677 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1678
1679 /* Now it's all set up, let userspace reach it */
1680 kvm_get_kvm(kvm);
1681 r = create_vcpu_fd(vcpu);
1682 if (r < 0) {
1683 kvm_put_kvm(kvm);
1684 goto unlock_vcpu_destroy;
1685 }
1686
1687 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1688 smp_wmb();
1689 atomic_inc(&kvm->online_vcpus);
1690
1691#ifdef CONFIG_KVM_APIC_ARCHITECTURE
1692 if (kvm->bsp_vcpu_id == id)
1693 kvm->bsp_vcpu = vcpu;
1694#endif
1695 mutex_unlock(&kvm->lock);
1696 return r;
1697
1698unlock_vcpu_destroy:
1699 mutex_unlock(&kvm->lock);
1700vcpu_destroy:
1701 kvm_arch_vcpu_destroy(vcpu);
1702 return r;
1703}
1704
1705static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1706{
1707 if (sigset) {
1708 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1709 vcpu->sigset_active = 1;
1710 vcpu->sigset = *sigset;
1711 } else
1712 vcpu->sigset_active = 0;
1713 return 0;
1714}
1715
1716static long kvm_vcpu_ioctl(struct file *filp,
1717 unsigned int ioctl, unsigned long arg)
1718{
1719 struct kvm_vcpu *vcpu = filp->private_data;
1720 void __user *argp = (void __user *)arg;
1721 int r;
1722 struct kvm_fpu *fpu = NULL;
1723 struct kvm_sregs *kvm_sregs = NULL;
1724
1725 if (vcpu->kvm->mm != current->mm)
1726 return -EIO;
1727
1728#if defined(CONFIG_S390) || defined(CONFIG_PPC)
1729 /*
1730 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1731 * so vcpu_load() would break it.
1732 */
1733 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1734 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1735#endif
1736
1737
1738 vcpu_load(vcpu);
1739 switch (ioctl) {
1740 case KVM_RUN:
1741 r = -EINVAL;
1742 if (arg)
1743 goto out;
1744 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1745 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1746 break;
1747 case KVM_GET_REGS: {
1748 struct kvm_regs *kvm_regs;
1749
1750 r = -ENOMEM;
1751 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1752 if (!kvm_regs)
1753 goto out;
1754 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1755 if (r)
1756 goto out_free1;
1757 r = -EFAULT;
1758 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1759 goto out_free1;
1760 r = 0;
1761out_free1:
1762 kfree(kvm_regs);
1763 break;
1764 }
1765 case KVM_SET_REGS: {
1766 struct kvm_regs *kvm_regs;
1767
1768 r = -ENOMEM;
1769 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1770 if (!kvm_regs)
1771 goto out;
1772 r = -EFAULT;
1773 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1774 goto out_free2;
1775 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1776 if (r)
1777 goto out_free2;
1778 r = 0;
1779out_free2:
1780 kfree(kvm_regs);
1781 break;
1782 }
1783 case KVM_GET_SREGS: {
1784 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1785 r = -ENOMEM;
1786 if (!kvm_sregs)
1787 goto out;
1788 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1789 if (r)
1790 goto out;
1791 r = -EFAULT;
1792 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1793 goto out;
1794 r = 0;
1795 break;
1796 }
1797 case KVM_SET_SREGS: {
1798 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1799 r = -ENOMEM;
1800 if (!kvm_sregs)
1801 goto out;
1802 r = -EFAULT;
1803 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1804 goto out;
1805 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1806 if (r)
1807 goto out;
1808 r = 0;
1809 break;
1810 }
1811 case KVM_GET_MP_STATE: {
1812 struct kvm_mp_state mp_state;
1813
1814 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1815 if (r)
1816 goto out;
1817 r = -EFAULT;
1818 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1819 goto out;
1820 r = 0;
1821 break;
1822 }
1823 case KVM_SET_MP_STATE: {
1824 struct kvm_mp_state mp_state;
1825
1826 r = -EFAULT;
1827 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1828 goto out;
1829 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1830 if (r)
1831 goto out;
1832 r = 0;
1833 break;
1834 }
1835 case KVM_TRANSLATE: {
1836 struct kvm_translation tr;
1837
1838 r = -EFAULT;
1839 if (copy_from_user(&tr, argp, sizeof tr))
1840 goto out;
1841 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1842 if (r)
1843 goto out;
1844 r = -EFAULT;
1845 if (copy_to_user(argp, &tr, sizeof tr))
1846 goto out;
1847 r = 0;
1848 break;
1849 }
1850 case KVM_SET_GUEST_DEBUG: {
1851 struct kvm_guest_debug dbg;
1852
1853 r = -EFAULT;
1854 if (copy_from_user(&dbg, argp, sizeof dbg))
1855 goto out;
1856 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1857 if (r)
1858 goto out;
1859 r = 0;
1860 break;
1861 }
1862 case KVM_SET_SIGNAL_MASK: {
1863 struct kvm_signal_mask __user *sigmask_arg = argp;
1864 struct kvm_signal_mask kvm_sigmask;
1865 sigset_t sigset, *p;
1866
1867 p = NULL;
1868 if (argp) {
1869 r = -EFAULT;
1870 if (copy_from_user(&kvm_sigmask, argp,
1871 sizeof kvm_sigmask))
1872 goto out;
1873 r = -EINVAL;
1874 if (kvm_sigmask.len != sizeof sigset)
1875 goto out;
1876 r = -EFAULT;
1877 if (copy_from_user(&sigset, sigmask_arg->sigset,
1878 sizeof sigset))
1879 goto out;
1880 p = &sigset;
1881 }
1882 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1883 break;
1884 }
1885 case KVM_GET_FPU: {
1886 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1887 r = -ENOMEM;
1888 if (!fpu)
1889 goto out;
1890 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1891 if (r)
1892 goto out;
1893 r = -EFAULT;
1894 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1895 goto out;
1896 r = 0;
1897 break;
1898 }
1899 case KVM_SET_FPU: {
1900 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1901 r = -ENOMEM;
1902 if (!fpu)
1903 goto out;
1904 r = -EFAULT;
1905 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1906 goto out;
1907 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1908 if (r)
1909 goto out;
1910 r = 0;
1911 break;
1912 }
1913 default:
1914 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1915 }
1916out:
1917 vcpu_put(vcpu);
1918 kfree(fpu);
1919 kfree(kvm_sregs);
1920 return r;
1921}
1922
1923#ifdef CONFIG_COMPAT
1924static long kvm_vcpu_compat_ioctl(struct file *filp,
1925 unsigned int ioctl, unsigned long arg)
1926{
1927 struct kvm_vcpu *vcpu = filp->private_data;
1928 void __user *argp = compat_ptr(arg);
1929 int r;
1930
1931 if (vcpu->kvm->mm != current->mm)
1932 return -EIO;
1933
1934 switch (ioctl) {
1935 case KVM_SET_SIGNAL_MASK: {
1936 struct kvm_signal_mask __user *sigmask_arg = argp;
1937 struct kvm_signal_mask kvm_sigmask;
1938 compat_sigset_t csigset;
1939 sigset_t sigset;
1940
1941 if (argp) {
1942 r = -EFAULT;
1943 if (copy_from_user(&kvm_sigmask, argp,
1944 sizeof kvm_sigmask))
1945 goto out;
1946 r = -EINVAL;
1947 if (kvm_sigmask.len != sizeof csigset)
1948 goto out;
1949 r = -EFAULT;
1950 if (copy_from_user(&csigset, sigmask_arg->sigset,
1951 sizeof csigset))
1952 goto out;
1953 }
1954 sigset_from_compat(&sigset, &csigset);
1955 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1956 break;
1957 }
1958 default:
1959 r = kvm_vcpu_ioctl(filp, ioctl, arg);
1960 }
1961
1962out:
1963 return r;
1964}
1965#endif
1966
1967static long kvm_vm_ioctl(struct file *filp,
1968 unsigned int ioctl, unsigned long arg)
1969{
1970 struct kvm *kvm = filp->private_data;
1971 void __user *argp = (void __user *)arg;
1972 int r;
1973
1974 if (kvm->mm != current->mm)
1975 return -EIO;
1976 switch (ioctl) {
1977 case KVM_CREATE_VCPU:
1978 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1979 if (r < 0)
1980 goto out;
1981 break;
1982 case KVM_SET_USER_MEMORY_REGION: {
1983 struct kvm_userspace_memory_region kvm_userspace_mem;
1984
1985 r = -EFAULT;
1986 if (copy_from_user(&kvm_userspace_mem, argp,
1987 sizeof kvm_userspace_mem))
1988 goto out;
1989
1990 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1991 if (r)
1992 goto out;
1993 break;
1994 }
1995 case KVM_GET_DIRTY_LOG: {
1996 struct kvm_dirty_log log;
1997
1998 r = -EFAULT;
1999 if (copy_from_user(&log, argp, sizeof log))
2000 goto out;
2001 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2002 if (r)
2003 goto out;
2004 break;
2005 }
2006#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2007 case KVM_REGISTER_COALESCED_MMIO: {
2008 struct kvm_coalesced_mmio_zone zone;
2009 r = -EFAULT;
2010 if (copy_from_user(&zone, argp, sizeof zone))
2011 goto out;
2012 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2013 if (r)
2014 goto out;
2015 r = 0;
2016 break;
2017 }
2018 case KVM_UNREGISTER_COALESCED_MMIO: {
2019 struct kvm_coalesced_mmio_zone zone;
2020 r = -EFAULT;
2021 if (copy_from_user(&zone, argp, sizeof zone))
2022 goto out;
2023 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2024 if (r)
2025 goto out;
2026 r = 0;
2027 break;
2028 }
2029#endif
2030 case KVM_IRQFD: {
2031 struct kvm_irqfd data;
2032
2033 r = -EFAULT;
2034 if (copy_from_user(&data, argp, sizeof data))
2035 goto out;
2036 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2037 break;
2038 }
2039 case KVM_IOEVENTFD: {
2040 struct kvm_ioeventfd data;
2041
2042 r = -EFAULT;
2043 if (copy_from_user(&data, argp, sizeof data))
2044 goto out;
2045 r = kvm_ioeventfd(kvm, &data);
2046 break;
2047 }
2048#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2049 case KVM_SET_BOOT_CPU_ID:
2050 r = 0;
2051 mutex_lock(&kvm->lock);
2052 if (atomic_read(&kvm->online_vcpus) != 0)
2053 r = -EBUSY;
2054 else
2055 kvm->bsp_vcpu_id = arg;
2056 mutex_unlock(&kvm->lock);
2057 break;
2058#endif
2059 default:
2060 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2061 if (r == -ENOTTY)
2062 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2063 }
2064out:
2065 return r;
2066}
2067
2068#ifdef CONFIG_COMPAT
2069struct compat_kvm_dirty_log {
2070 __u32 slot;
2071 __u32 padding1;
2072 union {
2073 compat_uptr_t dirty_bitmap; /* one bit per page */
2074 __u64 padding2;
2075 };
2076};
2077
2078static long kvm_vm_compat_ioctl(struct file *filp,
2079 unsigned int ioctl, unsigned long arg)
2080{
2081 struct kvm *kvm = filp->private_data;
2082 int r;
2083
2084 if (kvm->mm != current->mm)
2085 return -EIO;
2086 switch (ioctl) {
2087 case KVM_GET_DIRTY_LOG: {
2088 struct compat_kvm_dirty_log compat_log;
2089 struct kvm_dirty_log log;
2090
2091 r = -EFAULT;
2092 if (copy_from_user(&compat_log, (void __user *)arg,
2093 sizeof(compat_log)))
2094 goto out;
2095 log.slot = compat_log.slot;
2096 log.padding1 = compat_log.padding1;
2097 log.padding2 = compat_log.padding2;
2098 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2099
2100 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2101 if (r)
2102 goto out;
2103 break;
2104 }
2105 default:
2106 r = kvm_vm_ioctl(filp, ioctl, arg);
2107 }
2108
2109out:
2110 return r;
2111}
2112#endif
2113
2114static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2115{
2116 struct page *page[1];
2117 unsigned long addr;
2118 int npages;
2119 gfn_t gfn = vmf->pgoff;
2120 struct kvm *kvm = vma->vm_file->private_data;
2121
2122 addr = gfn_to_hva(kvm, gfn);
2123 if (kvm_is_error_hva(addr))
2124 return VM_FAULT_SIGBUS;
2125
2126 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2127 NULL);
2128 if (unlikely(npages != 1))
2129 return VM_FAULT_SIGBUS;
2130
2131 vmf->page = page[0];
2132 return 0;
2133}
2134
2135static const struct vm_operations_struct kvm_vm_vm_ops = {
2136 .fault = kvm_vm_fault,
2137};
2138
2139static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2140{
2141 vma->vm_ops = &kvm_vm_vm_ops;
2142 return 0;
2143}
2144
2145static struct file_operations kvm_vm_fops = {
2146 .release = kvm_vm_release,
2147 .unlocked_ioctl = kvm_vm_ioctl,
2148#ifdef CONFIG_COMPAT
2149 .compat_ioctl = kvm_vm_compat_ioctl,
2150#endif
2151 .mmap = kvm_vm_mmap,
2152 .llseek = noop_llseek,
2153};
2154
2155static int kvm_dev_ioctl_create_vm(void)
2156{
2157 int r;
2158 struct kvm *kvm;
2159
2160 kvm = kvm_create_vm();
2161 if (IS_ERR(kvm))
2162 return PTR_ERR(kvm);
2163#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2164 r = kvm_coalesced_mmio_init(kvm);
2165 if (r < 0) {
2166 kvm_put_kvm(kvm);
2167 return r;
2168 }
2169#endif
2170 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2171 if (r < 0)
2172 kvm_put_kvm(kvm);
2173
2174 return r;
2175}
2176
2177static long kvm_dev_ioctl_check_extension_generic(long arg)
2178{
2179 switch (arg) {
2180 case KVM_CAP_USER_MEMORY:
2181 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2182 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2183#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2184 case KVM_CAP_SET_BOOT_CPU_ID:
2185#endif
2186 case KVM_CAP_INTERNAL_ERROR_DATA:
2187 return 1;
2188#ifdef CONFIG_HAVE_KVM_IRQCHIP
2189 case KVM_CAP_IRQ_ROUTING:
2190 return KVM_MAX_IRQ_ROUTES;
2191#endif
2192 default:
2193 break;
2194 }
2195 return kvm_dev_ioctl_check_extension(arg);
2196}
2197
2198static long kvm_dev_ioctl(struct file *filp,
2199 unsigned int ioctl, unsigned long arg)
2200{
2201 long r = -EINVAL;
2202
2203 switch (ioctl) {
2204 case KVM_GET_API_VERSION:
2205 r = -EINVAL;
2206 if (arg)
2207 goto out;
2208 r = KVM_API_VERSION;
2209 break;
2210 case KVM_CREATE_VM:
2211 r = -EINVAL;
2212 if (arg)
2213 goto out;
2214 r = kvm_dev_ioctl_create_vm();
2215 break;
2216 case KVM_CHECK_EXTENSION:
2217 r = kvm_dev_ioctl_check_extension_generic(arg);
2218 break;
2219 case KVM_GET_VCPU_MMAP_SIZE:
2220 r = -EINVAL;
2221 if (arg)
2222 goto out;
2223 r = PAGE_SIZE; /* struct kvm_run */
2224#ifdef CONFIG_X86
2225 r += PAGE_SIZE; /* pio data page */
2226#endif
2227#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2228 r += PAGE_SIZE; /* coalesced mmio ring page */
2229#endif
2230 break;
2231 case KVM_TRACE_ENABLE:
2232 case KVM_TRACE_PAUSE:
2233 case KVM_TRACE_DISABLE:
2234 r = -EOPNOTSUPP;
2235 break;
2236 default:
2237 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2238 }
2239out:
2240 return r;
2241}
2242
2243static struct file_operations kvm_chardev_ops = {
2244 .unlocked_ioctl = kvm_dev_ioctl,
2245 .compat_ioctl = kvm_dev_ioctl,
2246 .llseek = noop_llseek,
2247};
2248
2249static struct miscdevice kvm_dev = {
2250 KVM_MINOR,
2251 "kvm",
2252 &kvm_chardev_ops,
2253};
2254
2255static void hardware_enable_nolock(void *junk)
2256{
2257 int cpu = raw_smp_processor_id();
2258 int r;
2259
2260 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2261 return;
2262
2263 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2264
2265 r = kvm_arch_hardware_enable(NULL);
2266
2267 if (r) {
2268 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2269 atomic_inc(&hardware_enable_failed);
2270 printk(KERN_INFO "kvm: enabling virtualization on "
2271 "CPU%d failed\n", cpu);
2272 }
2273}
2274
2275static void hardware_enable(void *junk)
2276{
2277 raw_spin_lock(&kvm_lock);
2278 hardware_enable_nolock(junk);
2279 raw_spin_unlock(&kvm_lock);
2280}
2281
2282static void hardware_disable_nolock(void *junk)
2283{
2284 int cpu = raw_smp_processor_id();
2285
2286 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2287 return;
2288 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2289 kvm_arch_hardware_disable(NULL);
2290}
2291
2292static void hardware_disable(void *junk)
2293{
2294 raw_spin_lock(&kvm_lock);
2295 hardware_disable_nolock(junk);
2296 raw_spin_unlock(&kvm_lock);
2297}
2298
2299static void hardware_disable_all_nolock(void)
2300{
2301 BUG_ON(!kvm_usage_count);
2302
2303 kvm_usage_count--;
2304 if (!kvm_usage_count)
2305 on_each_cpu(hardware_disable_nolock, NULL, 1);
2306}
2307
2308static void hardware_disable_all(void)
2309{
2310 raw_spin_lock(&kvm_lock);
2311 hardware_disable_all_nolock();
2312 raw_spin_unlock(&kvm_lock);
2313}
2314
2315static int hardware_enable_all(void)
2316{
2317 int r = 0;
2318
2319 raw_spin_lock(&kvm_lock);
2320
2321 kvm_usage_count++;
2322 if (kvm_usage_count == 1) {
2323 atomic_set(&hardware_enable_failed, 0);
2324 on_each_cpu(hardware_enable_nolock, NULL, 1);
2325
2326 if (atomic_read(&hardware_enable_failed)) {
2327 hardware_disable_all_nolock();
2328 r = -EBUSY;
2329 }
2330 }
2331
2332 raw_spin_unlock(&kvm_lock);
2333
2334 return r;
2335}
2336
2337static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2338 void *v)
2339{
2340 int cpu = (long)v;
2341
2342 if (!kvm_usage_count)
2343 return NOTIFY_OK;
2344
2345 val &= ~CPU_TASKS_FROZEN;
2346 switch (val) {
2347 case CPU_DYING:
2348 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2349 cpu);
2350 hardware_disable(NULL);
2351 break;
2352 case CPU_STARTING:
2353 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2354 cpu);
2355 hardware_enable(NULL);
2356 break;
2357 }
2358 return NOTIFY_OK;
2359}
2360
2361
2362asmlinkage void kvm_spurious_fault(void)
2363{
2364 /* Fault while not rebooting. We want the trace. */
2365 BUG();
2366}
2367EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2368
2369static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2370 void *v)
2371{
2372 /*
2373 * Some (well, at least mine) BIOSes hang on reboot if
2374 * in vmx root mode.
2375 *
2376 * And Intel TXT required VMX off for all cpu when system shutdown.
2377 */
2378 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2379 kvm_rebooting = true;
2380 on_each_cpu(hardware_disable_nolock, NULL, 1);
2381 return NOTIFY_OK;
2382}
2383
2384static struct notifier_block kvm_reboot_notifier = {
2385 .notifier_call = kvm_reboot,
2386 .priority = 0,
2387};
2388
2389static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2390{
2391 int i;
2392
2393 for (i = 0; i < bus->dev_count; i++) {
2394 struct kvm_io_device *pos = bus->devs[i];
2395
2396 kvm_iodevice_destructor(pos);
2397 }
2398 kfree(bus);
2399}
2400
2401/* kvm_io_bus_write - called under kvm->slots_lock */
2402int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2403 int len, const void *val)
2404{
2405 int i;
2406 struct kvm_io_bus *bus;
2407
2408 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2409 for (i = 0; i < bus->dev_count; i++)
2410 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2411 return 0;
2412 return -EOPNOTSUPP;
2413}
2414
2415/* kvm_io_bus_read - called under kvm->slots_lock */
2416int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2417 int len, void *val)
2418{
2419 int i;
2420 struct kvm_io_bus *bus;
2421
2422 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2423 for (i = 0; i < bus->dev_count; i++)
2424 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2425 return 0;
2426 return -EOPNOTSUPP;
2427}
2428
2429/* Caller must hold slots_lock. */
2430int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2431 struct kvm_io_device *dev)
2432{
2433 struct kvm_io_bus *new_bus, *bus;
2434
2435 bus = kvm->buses[bus_idx];
2436 if (bus->dev_count > NR_IOBUS_DEVS-1)
2437 return -ENOSPC;
2438
2439 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2440 if (!new_bus)
2441 return -ENOMEM;
2442 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2443 new_bus->devs[new_bus->dev_count++] = dev;
2444 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2445 synchronize_srcu_expedited(&kvm->srcu);
2446 kfree(bus);
2447
2448 return 0;
2449}
2450
2451/* Caller must hold slots_lock. */
2452int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2453 struct kvm_io_device *dev)
2454{
2455 int i, r;
2456 struct kvm_io_bus *new_bus, *bus;
2457
2458 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2459 if (!new_bus)
2460 return -ENOMEM;
2461
2462 bus = kvm->buses[bus_idx];
2463 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2464
2465 r = -ENOENT;
2466 for (i = 0; i < new_bus->dev_count; i++)
2467 if (new_bus->devs[i] == dev) {
2468 r = 0;
2469 new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2470 break;
2471 }
2472
2473 if (r) {
2474 kfree(new_bus);
2475 return r;
2476 }
2477
2478 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2479 synchronize_srcu_expedited(&kvm->srcu);
2480 kfree(bus);
2481 return r;
2482}
2483
2484static struct notifier_block kvm_cpu_notifier = {
2485 .notifier_call = kvm_cpu_hotplug,
2486};
2487
2488static int vm_stat_get(void *_offset, u64 *val)
2489{
2490 unsigned offset = (long)_offset;
2491 struct kvm *kvm;
2492
2493 *val = 0;
2494 raw_spin_lock(&kvm_lock);
2495 list_for_each_entry(kvm, &vm_list, vm_list)
2496 *val += *(u32 *)((void *)kvm + offset);
2497 raw_spin_unlock(&kvm_lock);
2498 return 0;
2499}
2500
2501DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2502
2503static int vcpu_stat_get(void *_offset, u64 *val)
2504{
2505 unsigned offset = (long)_offset;
2506 struct kvm *kvm;
2507 struct kvm_vcpu *vcpu;
2508 int i;
2509
2510 *val = 0;
2511 raw_spin_lock(&kvm_lock);
2512 list_for_each_entry(kvm, &vm_list, vm_list)
2513 kvm_for_each_vcpu(i, vcpu, kvm)
2514 *val += *(u32 *)((void *)vcpu + offset);
2515
2516 raw_spin_unlock(&kvm_lock);
2517 return 0;
2518}
2519
2520DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2521
2522static const struct file_operations *stat_fops[] = {
2523 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2524 [KVM_STAT_VM] = &vm_stat_fops,
2525};
2526
2527static void kvm_init_debug(void)
2528{
2529 struct kvm_stats_debugfs_item *p;
2530
2531 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2532 for (p = debugfs_entries; p->name; ++p)
2533 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2534 (void *)(long)p->offset,
2535 stat_fops[p->kind]);
2536}
2537
2538static void kvm_exit_debug(void)
2539{
2540 struct kvm_stats_debugfs_item *p;
2541
2542 for (p = debugfs_entries; p->name; ++p)
2543 debugfs_remove(p->dentry);
2544 debugfs_remove(kvm_debugfs_dir);
2545}
2546
2547static int kvm_suspend(void)
2548{
2549 if (kvm_usage_count)
2550 hardware_disable_nolock(NULL);
2551 return 0;
2552}
2553
2554static void kvm_resume(void)
2555{
2556 if (kvm_usage_count) {
2557 WARN_ON(raw_spin_is_locked(&kvm_lock));
2558 hardware_enable_nolock(NULL);
2559 }
2560}
2561
2562static struct syscore_ops kvm_syscore_ops = {
2563 .suspend = kvm_suspend,
2564 .resume = kvm_resume,
2565};
2566
2567struct page *bad_page;
2568pfn_t bad_pfn;
2569
2570static inline
2571struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2572{
2573 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2574}
2575
2576static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2577{
2578 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2579
2580 kvm_arch_vcpu_load(vcpu, cpu);
2581}
2582
2583static void kvm_sched_out(struct preempt_notifier *pn,
2584 struct task_struct *next)
2585{
2586 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2587
2588 kvm_arch_vcpu_put(vcpu);
2589}
2590
2591int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2592 struct module *module)
2593{
2594 int r;
2595 int cpu;
2596
2597 r = kvm_arch_init(opaque);
2598 if (r)
2599 goto out_fail;
2600
2601 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2602
2603 if (bad_page == NULL) {
2604 r = -ENOMEM;
2605 goto out;
2606 }
2607
2608 bad_pfn = page_to_pfn(bad_page);
2609
2610 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2611
2612 if (hwpoison_page == NULL) {
2613 r = -ENOMEM;
2614 goto out_free_0;
2615 }
2616
2617 hwpoison_pfn = page_to_pfn(hwpoison_page);
2618
2619 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2620
2621 if (fault_page == NULL) {
2622 r = -ENOMEM;
2623 goto out_free_0;
2624 }
2625
2626 fault_pfn = page_to_pfn(fault_page);
2627
2628 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2629 r = -ENOMEM;
2630 goto out_free_0;
2631 }
2632
2633 r = kvm_arch_hardware_setup();
2634 if (r < 0)
2635 goto out_free_0a;
2636
2637 for_each_online_cpu(cpu) {
2638 smp_call_function_single(cpu,
2639 kvm_arch_check_processor_compat,
2640 &r, 1);
2641 if (r < 0)
2642 goto out_free_1;
2643 }
2644
2645 r = register_cpu_notifier(&kvm_cpu_notifier);
2646 if (r)
2647 goto out_free_2;
2648 register_reboot_notifier(&kvm_reboot_notifier);
2649
2650 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2651 if (!vcpu_align)
2652 vcpu_align = __alignof__(struct kvm_vcpu);
2653 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2654 0, NULL);
2655 if (!kvm_vcpu_cache) {
2656 r = -ENOMEM;
2657 goto out_free_3;
2658 }
2659
2660 r = kvm_async_pf_init();
2661 if (r)
2662 goto out_free;
2663
2664 kvm_chardev_ops.owner = module;
2665 kvm_vm_fops.owner = module;
2666 kvm_vcpu_fops.owner = module;
2667
2668 r = misc_register(&kvm_dev);
2669 if (r) {
2670 printk(KERN_ERR "kvm: misc device register failed\n");
2671 goto out_unreg;
2672 }
2673
2674 register_syscore_ops(&kvm_syscore_ops);
2675
2676 kvm_preempt_ops.sched_in = kvm_sched_in;
2677 kvm_preempt_ops.sched_out = kvm_sched_out;
2678
2679 kvm_init_debug();
2680
2681 return 0;
2682
2683out_unreg:
2684 kvm_async_pf_deinit();
2685out_free:
2686 kmem_cache_destroy(kvm_vcpu_cache);
2687out_free_3:
2688 unregister_reboot_notifier(&kvm_reboot_notifier);
2689 unregister_cpu_notifier(&kvm_cpu_notifier);
2690out_free_2:
2691out_free_1:
2692 kvm_arch_hardware_unsetup();
2693out_free_0a:
2694 free_cpumask_var(cpus_hardware_enabled);
2695out_free_0:
2696 if (fault_page)
2697 __free_page(fault_page);
2698 if (hwpoison_page)
2699 __free_page(hwpoison_page);
2700 __free_page(bad_page);
2701out:
2702 kvm_arch_exit();
2703out_fail:
2704 return r;
2705}
2706EXPORT_SYMBOL_GPL(kvm_init);
2707
2708void kvm_exit(void)
2709{
2710 kvm_exit_debug();
2711 misc_deregister(&kvm_dev);
2712 kmem_cache_destroy(kvm_vcpu_cache);
2713 kvm_async_pf_deinit();
2714 unregister_syscore_ops(&kvm_syscore_ops);
2715 unregister_reboot_notifier(&kvm_reboot_notifier);
2716 unregister_cpu_notifier(&kvm_cpu_notifier);
2717 on_each_cpu(hardware_disable_nolock, NULL, 1);
2718 kvm_arch_hardware_unsetup();
2719 kvm_arch_exit();
2720 free_cpumask_var(cpus_hardware_enabled);
2721 __free_page(hwpoison_page);
2722 __free_page(bad_page);
2723}
2724EXPORT_SYMBOL_GPL(kvm_exit);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16#include <kvm/iodev.h>
17
18#include <linux/kvm_host.h>
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
22#include <linux/percpu.h>
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
26#include <linux/reboot.h>
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
30#include <linux/syscore_ops.h>
31#include <linux/cpu.h>
32#include <linux/sched/signal.h>
33#include <linux/sched/mm.h>
34#include <linux/sched/stat.h>
35#include <linux/cpumask.h>
36#include <linux/smp.h>
37#include <linux/anon_inodes.h>
38#include <linux/profile.h>
39#include <linux/kvm_para.h>
40#include <linux/pagemap.h>
41#include <linux/mman.h>
42#include <linux/swap.h>
43#include <linux/bitops.h>
44#include <linux/spinlock.h>
45#include <linux/compat.h>
46#include <linux/srcu.h>
47#include <linux/hugetlb.h>
48#include <linux/slab.h>
49#include <linux/sort.h>
50#include <linux/bsearch.h>
51#include <linux/io.h>
52#include <linux/lockdep.h>
53#include <linux/kthread.h>
54#include <linux/suspend.h>
55
56#include <asm/processor.h>
57#include <asm/ioctl.h>
58#include <linux/uaccess.h>
59
60#include "coalesced_mmio.h"
61#include "async_pf.h"
62#include "kvm_mm.h"
63#include "vfio.h"
64
65#include <trace/events/ipi.h>
66
67#define CREATE_TRACE_POINTS
68#include <trace/events/kvm.h>
69
70#include <linux/kvm_dirty_ring.h>
71
72
73/* Worst case buffer size needed for holding an integer. */
74#define ITOA_MAX_LEN 12
75
76MODULE_AUTHOR("Qumranet");
77MODULE_LICENSE("GPL");
78
79/* Architectures should define their poll value according to the halt latency */
80unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81module_param(halt_poll_ns, uint, 0644);
82EXPORT_SYMBOL_GPL(halt_poll_ns);
83
84/* Default doubles per-vcpu halt_poll_ns. */
85unsigned int halt_poll_ns_grow = 2;
86module_param(halt_poll_ns_grow, uint, 0644);
87EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88
89/* The start value to grow halt_poll_ns from */
90unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91module_param(halt_poll_ns_grow_start, uint, 0644);
92EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93
94/* Default resets per-vcpu halt_poll_ns . */
95unsigned int halt_poll_ns_shrink;
96module_param(halt_poll_ns_shrink, uint, 0644);
97EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98
99/*
100 * Ordering of locks:
101 *
102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103 */
104
105DEFINE_MUTEX(kvm_lock);
106LIST_HEAD(vm_list);
107
108static struct kmem_cache *kvm_vcpu_cache;
109
110static __read_mostly struct preempt_ops kvm_preempt_ops;
111static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112
113struct dentry *kvm_debugfs_dir;
114EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116static const struct file_operations stat_fops_per_vm;
117
118static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 unsigned long arg);
120#ifdef CONFIG_KVM_COMPAT
121static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg);
123#define KVM_COMPAT(c) .compat_ioctl = (c)
124#else
125/*
126 * For architectures that don't implement a compat infrastructure,
127 * adopt a double line of defense:
128 * - Prevent a compat task from opening /dev/kvm
129 * - If the open has been done by a 64bit task, and the KVM fd
130 * passed to a compat task, let the ioctls fail.
131 */
132static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 unsigned long arg) { return -EINVAL; }
134
135static int kvm_no_compat_open(struct inode *inode, struct file *file)
136{
137 return is_compat_task() ? -ENODEV : 0;
138}
139#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
140 .open = kvm_no_compat_open
141#endif
142static int hardware_enable_all(void);
143static void hardware_disable_all(void);
144
145static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147#define KVM_EVENT_CREATE_VM 0
148#define KVM_EVENT_DESTROY_VM 1
149static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
150static unsigned long long kvm_createvm_count;
151static unsigned long long kvm_active_vms;
152
153static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
154
155__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
156{
157}
158
159bool kvm_is_zone_device_page(struct page *page)
160{
161 /*
162 * The metadata used by is_zone_device_page() to determine whether or
163 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
164 * the device has been pinned, e.g. by get_user_pages(). WARN if the
165 * page_count() is zero to help detect bad usage of this helper.
166 */
167 if (WARN_ON_ONCE(!page_count(page)))
168 return false;
169
170 return is_zone_device_page(page);
171}
172
173/*
174 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
175 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types
176 * is likely incomplete, it has been compiled purely through people wanting to
177 * back guest with a certain type of memory and encountering issues.
178 */
179struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
180{
181 struct page *page;
182
183 if (!pfn_valid(pfn))
184 return NULL;
185
186 page = pfn_to_page(pfn);
187 if (!PageReserved(page))
188 return page;
189
190 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
191 if (is_zero_pfn(pfn))
192 return page;
193
194 /*
195 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
196 * perspective they are "normal" pages, albeit with slightly different
197 * usage rules.
198 */
199 if (kvm_is_zone_device_page(page))
200 return page;
201
202 return NULL;
203}
204
205/*
206 * Switches to specified vcpu, until a matching vcpu_put()
207 */
208void vcpu_load(struct kvm_vcpu *vcpu)
209{
210 int cpu = get_cpu();
211
212 __this_cpu_write(kvm_running_vcpu, vcpu);
213 preempt_notifier_register(&vcpu->preempt_notifier);
214 kvm_arch_vcpu_load(vcpu, cpu);
215 put_cpu();
216}
217EXPORT_SYMBOL_GPL(vcpu_load);
218
219void vcpu_put(struct kvm_vcpu *vcpu)
220{
221 preempt_disable();
222 kvm_arch_vcpu_put(vcpu);
223 preempt_notifier_unregister(&vcpu->preempt_notifier);
224 __this_cpu_write(kvm_running_vcpu, NULL);
225 preempt_enable();
226}
227EXPORT_SYMBOL_GPL(vcpu_put);
228
229/* TODO: merge with kvm_arch_vcpu_should_kick */
230static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231{
232 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233
234 /*
235 * We need to wait for the VCPU to reenable interrupts and get out of
236 * READING_SHADOW_PAGE_TABLES mode.
237 */
238 if (req & KVM_REQUEST_WAIT)
239 return mode != OUTSIDE_GUEST_MODE;
240
241 /*
242 * Need to kick a running VCPU, but otherwise there is nothing to do.
243 */
244 return mode == IN_GUEST_MODE;
245}
246
247static void ack_kick(void *_completed)
248{
249}
250
251static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
252{
253 if (cpumask_empty(cpus))
254 return false;
255
256 smp_call_function_many(cpus, ack_kick, NULL, wait);
257 return true;
258}
259
260static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
261 struct cpumask *tmp, int current_cpu)
262{
263 int cpu;
264
265 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
266 __kvm_make_request(req, vcpu);
267
268 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
269 return;
270
271 /*
272 * Note, the vCPU could get migrated to a different pCPU at any point
273 * after kvm_request_needs_ipi(), which could result in sending an IPI
274 * to the previous pCPU. But, that's OK because the purpose of the IPI
275 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
276 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
277 * after this point is also OK, as the requirement is only that KVM wait
278 * for vCPUs that were reading SPTEs _before_ any changes were
279 * finalized. See kvm_vcpu_kick() for more details on handling requests.
280 */
281 if (kvm_request_needs_ipi(vcpu, req)) {
282 cpu = READ_ONCE(vcpu->cpu);
283 if (cpu != -1 && cpu != current_cpu)
284 __cpumask_set_cpu(cpu, tmp);
285 }
286}
287
288bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
289 unsigned long *vcpu_bitmap)
290{
291 struct kvm_vcpu *vcpu;
292 struct cpumask *cpus;
293 int i, me;
294 bool called;
295
296 me = get_cpu();
297
298 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
299 cpumask_clear(cpus);
300
301 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
302 vcpu = kvm_get_vcpu(kvm, i);
303 if (!vcpu)
304 continue;
305 kvm_make_vcpu_request(vcpu, req, cpus, me);
306 }
307
308 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
309 put_cpu();
310
311 return called;
312}
313
314bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
315 struct kvm_vcpu *except)
316{
317 struct kvm_vcpu *vcpu;
318 struct cpumask *cpus;
319 unsigned long i;
320 bool called;
321 int me;
322
323 me = get_cpu();
324
325 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
326 cpumask_clear(cpus);
327
328 kvm_for_each_vcpu(i, vcpu, kvm) {
329 if (vcpu == except)
330 continue;
331 kvm_make_vcpu_request(vcpu, req, cpus, me);
332 }
333
334 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
335 put_cpu();
336
337 return called;
338}
339
340bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
341{
342 return kvm_make_all_cpus_request_except(kvm, req, NULL);
343}
344EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
345
346void kvm_flush_remote_tlbs(struct kvm *kvm)
347{
348 ++kvm->stat.generic.remote_tlb_flush_requests;
349
350 /*
351 * We want to publish modifications to the page tables before reading
352 * mode. Pairs with a memory barrier in arch-specific code.
353 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
354 * and smp_mb in walk_shadow_page_lockless_begin/end.
355 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
356 *
357 * There is already an smp_mb__after_atomic() before
358 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
359 * barrier here.
360 */
361 if (!kvm_arch_flush_remote_tlbs(kvm)
362 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
363 ++kvm->stat.generic.remote_tlb_flush;
364}
365EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
366
367void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
368{
369 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
370 return;
371
372 /*
373 * Fall back to a flushing entire TLBs if the architecture range-based
374 * TLB invalidation is unsupported or can't be performed for whatever
375 * reason.
376 */
377 kvm_flush_remote_tlbs(kvm);
378}
379
380void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
381 const struct kvm_memory_slot *memslot)
382{
383 /*
384 * All current use cases for flushing the TLBs for a specific memslot
385 * are related to dirty logging, and many do the TLB flush out of
386 * mmu_lock. The interaction between the various operations on memslot
387 * must be serialized by slots_locks to ensure the TLB flush from one
388 * operation is observed by any other operation on the same memslot.
389 */
390 lockdep_assert_held(&kvm->slots_lock);
391 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
392}
393
394static void kvm_flush_shadow_all(struct kvm *kvm)
395{
396 kvm_arch_flush_shadow_all(kvm);
397 kvm_arch_guest_memory_reclaimed(kvm);
398}
399
400#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
401static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
402 gfp_t gfp_flags)
403{
404 gfp_flags |= mc->gfp_zero;
405
406 if (mc->kmem_cache)
407 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
408 else
409 return (void *)__get_free_page(gfp_flags);
410}
411
412int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
413{
414 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
415 void *obj;
416
417 if (mc->nobjs >= min)
418 return 0;
419
420 if (unlikely(!mc->objects)) {
421 if (WARN_ON_ONCE(!capacity))
422 return -EIO;
423
424 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
425 if (!mc->objects)
426 return -ENOMEM;
427
428 mc->capacity = capacity;
429 }
430
431 /* It is illegal to request a different capacity across topups. */
432 if (WARN_ON_ONCE(mc->capacity != capacity))
433 return -EIO;
434
435 while (mc->nobjs < mc->capacity) {
436 obj = mmu_memory_cache_alloc_obj(mc, gfp);
437 if (!obj)
438 return mc->nobjs >= min ? 0 : -ENOMEM;
439 mc->objects[mc->nobjs++] = obj;
440 }
441 return 0;
442}
443
444int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445{
446 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447}
448
449int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450{
451 return mc->nobjs;
452}
453
454void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455{
456 while (mc->nobjs) {
457 if (mc->kmem_cache)
458 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459 else
460 free_page((unsigned long)mc->objects[--mc->nobjs]);
461 }
462
463 kvfree(mc->objects);
464
465 mc->objects = NULL;
466 mc->capacity = 0;
467}
468
469void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470{
471 void *p;
472
473 if (WARN_ON(!mc->nobjs))
474 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475 else
476 p = mc->objects[--mc->nobjs];
477 BUG_ON(!p);
478 return p;
479}
480#endif
481
482static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483{
484 mutex_init(&vcpu->mutex);
485 vcpu->cpu = -1;
486 vcpu->kvm = kvm;
487 vcpu->vcpu_id = id;
488 vcpu->pid = NULL;
489#ifndef __KVM_HAVE_ARCH_WQP
490 rcuwait_init(&vcpu->wait);
491#endif
492 kvm_async_pf_vcpu_init(vcpu);
493
494 kvm_vcpu_set_in_spin_loop(vcpu, false);
495 kvm_vcpu_set_dy_eligible(vcpu, false);
496 vcpu->preempted = false;
497 vcpu->ready = false;
498 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499 vcpu->last_used_slot = NULL;
500
501 /* Fill the stats id string for the vcpu */
502 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503 task_pid_nr(current), id);
504}
505
506static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507{
508 kvm_arch_vcpu_destroy(vcpu);
509 kvm_dirty_ring_free(&vcpu->dirty_ring);
510
511 /*
512 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513 * the vcpu->pid pointer, and at destruction time all file descriptors
514 * are already gone.
515 */
516 put_pid(rcu_dereference_protected(vcpu->pid, 1));
517
518 free_page((unsigned long)vcpu->run);
519 kmem_cache_free(kvm_vcpu_cache, vcpu);
520}
521
522void kvm_destroy_vcpus(struct kvm *kvm)
523{
524 unsigned long i;
525 struct kvm_vcpu *vcpu;
526
527 kvm_for_each_vcpu(i, vcpu, kvm) {
528 kvm_vcpu_destroy(vcpu);
529 xa_erase(&kvm->vcpu_array, i);
530 }
531
532 atomic_set(&kvm->online_vcpus, 0);
533}
534EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
535
536#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
537static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538{
539 return container_of(mn, struct kvm, mmu_notifier);
540}
541
542typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543
544typedef void (*on_lock_fn_t)(struct kvm *kvm);
545
546struct kvm_mmu_notifier_range {
547 /*
548 * 64-bit addresses, as KVM notifiers can operate on host virtual
549 * addresses (unsigned long) and guest physical addresses (64-bit).
550 */
551 u64 start;
552 u64 end;
553 union kvm_mmu_notifier_arg arg;
554 gfn_handler_t handler;
555 on_lock_fn_t on_lock;
556 bool flush_on_ret;
557 bool may_block;
558};
559
560/*
561 * The inner-most helper returns a tuple containing the return value from the
562 * arch- and action-specific handler, plus a flag indicating whether or not at
563 * least one memslot was found, i.e. if the handler found guest memory.
564 *
565 * Note, most notifiers are averse to booleans, so even though KVM tracks the
566 * return from arch code as a bool, outer helpers will cast it to an int. :-(
567 */
568typedef struct kvm_mmu_notifier_return {
569 bool ret;
570 bool found_memslot;
571} kvm_mn_ret_t;
572
573/*
574 * Use a dedicated stub instead of NULL to indicate that there is no callback
575 * function/handler. The compiler technically can't guarantee that a real
576 * function will have a non-zero address, and so it will generate code to
577 * check for !NULL, whereas comparing against a stub will be elided at compile
578 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
579 */
580static void kvm_null_fn(void)
581{
582
583}
584#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
585
586static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
587
588/* Iterate over each memslot intersecting [start, last] (inclusive) range */
589#define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
590 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
591 node; \
592 node = interval_tree_iter_next(node, start, last)) \
593
594static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
595 const struct kvm_mmu_notifier_range *range)
596{
597 struct kvm_mmu_notifier_return r = {
598 .ret = false,
599 .found_memslot = false,
600 };
601 struct kvm_gfn_range gfn_range;
602 struct kvm_memory_slot *slot;
603 struct kvm_memslots *slots;
604 int i, idx;
605
606 if (WARN_ON_ONCE(range->end <= range->start))
607 return r;
608
609 /* A null handler is allowed if and only if on_lock() is provided. */
610 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
611 IS_KVM_NULL_FN(range->handler)))
612 return r;
613
614 idx = srcu_read_lock(&kvm->srcu);
615
616 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
617 struct interval_tree_node *node;
618
619 slots = __kvm_memslots(kvm, i);
620 kvm_for_each_memslot_in_hva_range(node, slots,
621 range->start, range->end - 1) {
622 unsigned long hva_start, hva_end;
623
624 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
625 hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
626 hva_end = min_t(unsigned long, range->end,
627 slot->userspace_addr + (slot->npages << PAGE_SHIFT));
628
629 /*
630 * To optimize for the likely case where the address
631 * range is covered by zero or one memslots, don't
632 * bother making these conditional (to avoid writes on
633 * the second or later invocation of the handler).
634 */
635 gfn_range.arg = range->arg;
636 gfn_range.may_block = range->may_block;
637
638 /*
639 * {gfn(page) | page intersects with [hva_start, hva_end)} =
640 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
641 */
642 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
643 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
644 gfn_range.slot = slot;
645
646 if (!r.found_memslot) {
647 r.found_memslot = true;
648 KVM_MMU_LOCK(kvm);
649 if (!IS_KVM_NULL_FN(range->on_lock))
650 range->on_lock(kvm);
651
652 if (IS_KVM_NULL_FN(range->handler))
653 break;
654 }
655 r.ret |= range->handler(kvm, &gfn_range);
656 }
657 }
658
659 if (range->flush_on_ret && r.ret)
660 kvm_flush_remote_tlbs(kvm);
661
662 if (r.found_memslot)
663 KVM_MMU_UNLOCK(kvm);
664
665 srcu_read_unlock(&kvm->srcu, idx);
666
667 return r;
668}
669
670static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
671 unsigned long start,
672 unsigned long end,
673 union kvm_mmu_notifier_arg arg,
674 gfn_handler_t handler)
675{
676 struct kvm *kvm = mmu_notifier_to_kvm(mn);
677 const struct kvm_mmu_notifier_range range = {
678 .start = start,
679 .end = end,
680 .arg = arg,
681 .handler = handler,
682 .on_lock = (void *)kvm_null_fn,
683 .flush_on_ret = true,
684 .may_block = false,
685 };
686
687 return __kvm_handle_hva_range(kvm, &range).ret;
688}
689
690static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
691 unsigned long start,
692 unsigned long end,
693 gfn_handler_t handler)
694{
695 struct kvm *kvm = mmu_notifier_to_kvm(mn);
696 const struct kvm_mmu_notifier_range range = {
697 .start = start,
698 .end = end,
699 .handler = handler,
700 .on_lock = (void *)kvm_null_fn,
701 .flush_on_ret = false,
702 .may_block = false,
703 };
704
705 return __kvm_handle_hva_range(kvm, &range).ret;
706}
707
708static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
709{
710 /*
711 * Skipping invalid memslots is correct if and only change_pte() is
712 * surrounded by invalidate_range_{start,end}(), which is currently
713 * guaranteed by the primary MMU. If that ever changes, KVM needs to
714 * unmap the memslot instead of skipping the memslot to ensure that KVM
715 * doesn't hold references to the old PFN.
716 */
717 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
718
719 if (range->slot->flags & KVM_MEMSLOT_INVALID)
720 return false;
721
722 return kvm_set_spte_gfn(kvm, range);
723}
724
725static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
726 struct mm_struct *mm,
727 unsigned long address,
728 pte_t pte)
729{
730 struct kvm *kvm = mmu_notifier_to_kvm(mn);
731 const union kvm_mmu_notifier_arg arg = { .pte = pte };
732
733 trace_kvm_set_spte_hva(address);
734
735 /*
736 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
737 * If mmu_invalidate_in_progress is zero, then no in-progress
738 * invalidations, including this one, found a relevant memslot at
739 * start(); rechecking memslots here is unnecessary. Note, a false
740 * positive (count elevated by a different invalidation) is sub-optimal
741 * but functionally ok.
742 */
743 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
744 if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
745 return;
746
747 kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
748}
749
750void kvm_mmu_invalidate_begin(struct kvm *kvm)
751{
752 lockdep_assert_held_write(&kvm->mmu_lock);
753 /*
754 * The count increase must become visible at unlock time as no
755 * spte can be established without taking the mmu_lock and
756 * count is also read inside the mmu_lock critical section.
757 */
758 kvm->mmu_invalidate_in_progress++;
759
760 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
761 kvm->mmu_invalidate_range_start = INVALID_GPA;
762 kvm->mmu_invalidate_range_end = INVALID_GPA;
763 }
764}
765
766void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
767{
768 lockdep_assert_held_write(&kvm->mmu_lock);
769
770 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
771
772 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
773 kvm->mmu_invalidate_range_start = start;
774 kvm->mmu_invalidate_range_end = end;
775 } else {
776 /*
777 * Fully tracking multiple concurrent ranges has diminishing
778 * returns. Keep things simple and just find the minimal range
779 * which includes the current and new ranges. As there won't be
780 * enough information to subtract a range after its invalidate
781 * completes, any ranges invalidated concurrently will
782 * accumulate and persist until all outstanding invalidates
783 * complete.
784 */
785 kvm->mmu_invalidate_range_start =
786 min(kvm->mmu_invalidate_range_start, start);
787 kvm->mmu_invalidate_range_end =
788 max(kvm->mmu_invalidate_range_end, end);
789 }
790}
791
792bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
793{
794 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
795 return kvm_unmap_gfn_range(kvm, range);
796}
797
798static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
799 const struct mmu_notifier_range *range)
800{
801 struct kvm *kvm = mmu_notifier_to_kvm(mn);
802 const struct kvm_mmu_notifier_range hva_range = {
803 .start = range->start,
804 .end = range->end,
805 .handler = kvm_mmu_unmap_gfn_range,
806 .on_lock = kvm_mmu_invalidate_begin,
807 .flush_on_ret = true,
808 .may_block = mmu_notifier_range_blockable(range),
809 };
810
811 trace_kvm_unmap_hva_range(range->start, range->end);
812
813 /*
814 * Prevent memslot modification between range_start() and range_end()
815 * so that conditionally locking provides the same result in both
816 * functions. Without that guarantee, the mmu_invalidate_in_progress
817 * adjustments will be imbalanced.
818 *
819 * Pairs with the decrement in range_end().
820 */
821 spin_lock(&kvm->mn_invalidate_lock);
822 kvm->mn_active_invalidate_count++;
823 spin_unlock(&kvm->mn_invalidate_lock);
824
825 /*
826 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
827 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
828 * each cache's lock. There are relatively few caches in existence at
829 * any given time, and the caches themselves can check for hva overlap,
830 * i.e. don't need to rely on memslot overlap checks for performance.
831 * Because this runs without holding mmu_lock, the pfn caches must use
832 * mn_active_invalidate_count (see above) instead of
833 * mmu_invalidate_in_progress.
834 */
835 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
836 hva_range.may_block);
837
838 /*
839 * If one or more memslots were found and thus zapped, notify arch code
840 * that guest memory has been reclaimed. This needs to be done *after*
841 * dropping mmu_lock, as x86's reclaim path is slooooow.
842 */
843 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
844 kvm_arch_guest_memory_reclaimed(kvm);
845
846 return 0;
847}
848
849void kvm_mmu_invalidate_end(struct kvm *kvm)
850{
851 lockdep_assert_held_write(&kvm->mmu_lock);
852
853 /*
854 * This sequence increase will notify the kvm page fault that
855 * the page that is going to be mapped in the spte could have
856 * been freed.
857 */
858 kvm->mmu_invalidate_seq++;
859 smp_wmb();
860 /*
861 * The above sequence increase must be visible before the
862 * below count decrease, which is ensured by the smp_wmb above
863 * in conjunction with the smp_rmb in mmu_invalidate_retry().
864 */
865 kvm->mmu_invalidate_in_progress--;
866 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
867
868 /*
869 * Assert that at least one range was added between start() and end().
870 * Not adding a range isn't fatal, but it is a KVM bug.
871 */
872 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
873}
874
875static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
876 const struct mmu_notifier_range *range)
877{
878 struct kvm *kvm = mmu_notifier_to_kvm(mn);
879 const struct kvm_mmu_notifier_range hva_range = {
880 .start = range->start,
881 .end = range->end,
882 .handler = (void *)kvm_null_fn,
883 .on_lock = kvm_mmu_invalidate_end,
884 .flush_on_ret = false,
885 .may_block = mmu_notifier_range_blockable(range),
886 };
887 bool wake;
888
889 __kvm_handle_hva_range(kvm, &hva_range);
890
891 /* Pairs with the increment in range_start(). */
892 spin_lock(&kvm->mn_invalidate_lock);
893 wake = (--kvm->mn_active_invalidate_count == 0);
894 spin_unlock(&kvm->mn_invalidate_lock);
895
896 /*
897 * There can only be one waiter, since the wait happens under
898 * slots_lock.
899 */
900 if (wake)
901 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
902}
903
904static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
905 struct mm_struct *mm,
906 unsigned long start,
907 unsigned long end)
908{
909 trace_kvm_age_hva(start, end);
910
911 return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
912 kvm_age_gfn);
913}
914
915static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
916 struct mm_struct *mm,
917 unsigned long start,
918 unsigned long end)
919{
920 trace_kvm_age_hva(start, end);
921
922 /*
923 * Even though we do not flush TLB, this will still adversely
924 * affect performance on pre-Haswell Intel EPT, where there is
925 * no EPT Access Bit to clear so that we have to tear down EPT
926 * tables instead. If we find this unacceptable, we can always
927 * add a parameter to kvm_age_hva so that it effectively doesn't
928 * do anything on clear_young.
929 *
930 * Also note that currently we never issue secondary TLB flushes
931 * from clear_young, leaving this job up to the regular system
932 * cadence. If we find this inaccurate, we might come up with a
933 * more sophisticated heuristic later.
934 */
935 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
936}
937
938static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
939 struct mm_struct *mm,
940 unsigned long address)
941{
942 trace_kvm_test_age_hva(address);
943
944 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
945 kvm_test_age_gfn);
946}
947
948static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
949 struct mm_struct *mm)
950{
951 struct kvm *kvm = mmu_notifier_to_kvm(mn);
952 int idx;
953
954 idx = srcu_read_lock(&kvm->srcu);
955 kvm_flush_shadow_all(kvm);
956 srcu_read_unlock(&kvm->srcu, idx);
957}
958
959static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
960 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
961 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
962 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
963 .clear_young = kvm_mmu_notifier_clear_young,
964 .test_young = kvm_mmu_notifier_test_young,
965 .change_pte = kvm_mmu_notifier_change_pte,
966 .release = kvm_mmu_notifier_release,
967};
968
969static int kvm_init_mmu_notifier(struct kvm *kvm)
970{
971 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
972 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
973}
974
975#else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
976
977static int kvm_init_mmu_notifier(struct kvm *kvm)
978{
979 return 0;
980}
981
982#endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
983
984#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
985static int kvm_pm_notifier_call(struct notifier_block *bl,
986 unsigned long state,
987 void *unused)
988{
989 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
990
991 return kvm_arch_pm_notifier(kvm, state);
992}
993
994static void kvm_init_pm_notifier(struct kvm *kvm)
995{
996 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
997 /* Suspend KVM before we suspend ftrace, RCU, etc. */
998 kvm->pm_notifier.priority = INT_MAX;
999 register_pm_notifier(&kvm->pm_notifier);
1000}
1001
1002static void kvm_destroy_pm_notifier(struct kvm *kvm)
1003{
1004 unregister_pm_notifier(&kvm->pm_notifier);
1005}
1006#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
1007static void kvm_init_pm_notifier(struct kvm *kvm)
1008{
1009}
1010
1011static void kvm_destroy_pm_notifier(struct kvm *kvm)
1012{
1013}
1014#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
1015
1016static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
1017{
1018 if (!memslot->dirty_bitmap)
1019 return;
1020
1021 kvfree(memslot->dirty_bitmap);
1022 memslot->dirty_bitmap = NULL;
1023}
1024
1025/* This does not remove the slot from struct kvm_memslots data structures */
1026static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1027{
1028 if (slot->flags & KVM_MEM_GUEST_MEMFD)
1029 kvm_gmem_unbind(slot);
1030
1031 kvm_destroy_dirty_bitmap(slot);
1032
1033 kvm_arch_free_memslot(kvm, slot);
1034
1035 kfree(slot);
1036}
1037
1038static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
1039{
1040 struct hlist_node *idnode;
1041 struct kvm_memory_slot *memslot;
1042 int bkt;
1043
1044 /*
1045 * The same memslot objects live in both active and inactive sets,
1046 * arbitrarily free using index '1' so the second invocation of this
1047 * function isn't operating over a structure with dangling pointers
1048 * (even though this function isn't actually touching them).
1049 */
1050 if (!slots->node_idx)
1051 return;
1052
1053 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1054 kvm_free_memslot(kvm, memslot);
1055}
1056
1057static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1058{
1059 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1060 case KVM_STATS_TYPE_INSTANT:
1061 return 0444;
1062 case KVM_STATS_TYPE_CUMULATIVE:
1063 case KVM_STATS_TYPE_PEAK:
1064 default:
1065 return 0644;
1066 }
1067}
1068
1069
1070static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1071{
1072 int i;
1073 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1074 kvm_vcpu_stats_header.num_desc;
1075
1076 if (IS_ERR(kvm->debugfs_dentry))
1077 return;
1078
1079 debugfs_remove_recursive(kvm->debugfs_dentry);
1080
1081 if (kvm->debugfs_stat_data) {
1082 for (i = 0; i < kvm_debugfs_num_entries; i++)
1083 kfree(kvm->debugfs_stat_data[i]);
1084 kfree(kvm->debugfs_stat_data);
1085 }
1086}
1087
1088static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1089{
1090 static DEFINE_MUTEX(kvm_debugfs_lock);
1091 struct dentry *dent;
1092 char dir_name[ITOA_MAX_LEN * 2];
1093 struct kvm_stat_data *stat_data;
1094 const struct _kvm_stats_desc *pdesc;
1095 int i, ret = -ENOMEM;
1096 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1097 kvm_vcpu_stats_header.num_desc;
1098
1099 if (!debugfs_initialized())
1100 return 0;
1101
1102 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1103 mutex_lock(&kvm_debugfs_lock);
1104 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1105 if (dent) {
1106 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1107 dput(dent);
1108 mutex_unlock(&kvm_debugfs_lock);
1109 return 0;
1110 }
1111 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1112 mutex_unlock(&kvm_debugfs_lock);
1113 if (IS_ERR(dent))
1114 return 0;
1115
1116 kvm->debugfs_dentry = dent;
1117 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1118 sizeof(*kvm->debugfs_stat_data),
1119 GFP_KERNEL_ACCOUNT);
1120 if (!kvm->debugfs_stat_data)
1121 goto out_err;
1122
1123 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1124 pdesc = &kvm_vm_stats_desc[i];
1125 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1126 if (!stat_data)
1127 goto out_err;
1128
1129 stat_data->kvm = kvm;
1130 stat_data->desc = pdesc;
1131 stat_data->kind = KVM_STAT_VM;
1132 kvm->debugfs_stat_data[i] = stat_data;
1133 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1134 kvm->debugfs_dentry, stat_data,
1135 &stat_fops_per_vm);
1136 }
1137
1138 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1139 pdesc = &kvm_vcpu_stats_desc[i];
1140 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1141 if (!stat_data)
1142 goto out_err;
1143
1144 stat_data->kvm = kvm;
1145 stat_data->desc = pdesc;
1146 stat_data->kind = KVM_STAT_VCPU;
1147 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1148 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1149 kvm->debugfs_dentry, stat_data,
1150 &stat_fops_per_vm);
1151 }
1152
1153 ret = kvm_arch_create_vm_debugfs(kvm);
1154 if (ret)
1155 goto out_err;
1156
1157 return 0;
1158out_err:
1159 kvm_destroy_vm_debugfs(kvm);
1160 return ret;
1161}
1162
1163/*
1164 * Called after the VM is otherwise initialized, but just before adding it to
1165 * the vm_list.
1166 */
1167int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1168{
1169 return 0;
1170}
1171
1172/*
1173 * Called just after removing the VM from the vm_list, but before doing any
1174 * other destruction.
1175 */
1176void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1177{
1178}
1179
1180/*
1181 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1182 * be setup already, so we can create arch-specific debugfs entries under it.
1183 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1184 * a per-arch destroy interface is not needed.
1185 */
1186int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1187{
1188 return 0;
1189}
1190
1191static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1192{
1193 struct kvm *kvm = kvm_arch_alloc_vm();
1194 struct kvm_memslots *slots;
1195 int r = -ENOMEM;
1196 int i, j;
1197
1198 if (!kvm)
1199 return ERR_PTR(-ENOMEM);
1200
1201 KVM_MMU_LOCK_INIT(kvm);
1202 mmgrab(current->mm);
1203 kvm->mm = current->mm;
1204 kvm_eventfd_init(kvm);
1205 mutex_init(&kvm->lock);
1206 mutex_init(&kvm->irq_lock);
1207 mutex_init(&kvm->slots_lock);
1208 mutex_init(&kvm->slots_arch_lock);
1209 spin_lock_init(&kvm->mn_invalidate_lock);
1210 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1211 xa_init(&kvm->vcpu_array);
1212#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1213 xa_init(&kvm->mem_attr_array);
1214#endif
1215
1216 INIT_LIST_HEAD(&kvm->gpc_list);
1217 spin_lock_init(&kvm->gpc_lock);
1218
1219 INIT_LIST_HEAD(&kvm->devices);
1220 kvm->max_vcpus = KVM_MAX_VCPUS;
1221
1222 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1223
1224 /*
1225 * Force subsequent debugfs file creations to fail if the VM directory
1226 * is not created (by kvm_create_vm_debugfs()).
1227 */
1228 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1229
1230 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1231 task_pid_nr(current));
1232
1233 if (init_srcu_struct(&kvm->srcu))
1234 goto out_err_no_srcu;
1235 if (init_srcu_struct(&kvm->irq_srcu))
1236 goto out_err_no_irq_srcu;
1237
1238 refcount_set(&kvm->users_count, 1);
1239 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1240 for (j = 0; j < 2; j++) {
1241 slots = &kvm->__memslots[i][j];
1242
1243 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1244 slots->hva_tree = RB_ROOT_CACHED;
1245 slots->gfn_tree = RB_ROOT;
1246 hash_init(slots->id_hash);
1247 slots->node_idx = j;
1248
1249 /* Generations must be different for each address space. */
1250 slots->generation = i;
1251 }
1252
1253 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1254 }
1255
1256 for (i = 0; i < KVM_NR_BUSES; i++) {
1257 rcu_assign_pointer(kvm->buses[i],
1258 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1259 if (!kvm->buses[i])
1260 goto out_err_no_arch_destroy_vm;
1261 }
1262
1263 r = kvm_arch_init_vm(kvm, type);
1264 if (r)
1265 goto out_err_no_arch_destroy_vm;
1266
1267 r = hardware_enable_all();
1268 if (r)
1269 goto out_err_no_disable;
1270
1271#ifdef CONFIG_HAVE_KVM_IRQCHIP
1272 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1273#endif
1274
1275 r = kvm_init_mmu_notifier(kvm);
1276 if (r)
1277 goto out_err_no_mmu_notifier;
1278
1279 r = kvm_coalesced_mmio_init(kvm);
1280 if (r < 0)
1281 goto out_no_coalesced_mmio;
1282
1283 r = kvm_create_vm_debugfs(kvm, fdname);
1284 if (r)
1285 goto out_err_no_debugfs;
1286
1287 r = kvm_arch_post_init_vm(kvm);
1288 if (r)
1289 goto out_err;
1290
1291 mutex_lock(&kvm_lock);
1292 list_add(&kvm->vm_list, &vm_list);
1293 mutex_unlock(&kvm_lock);
1294
1295 preempt_notifier_inc();
1296 kvm_init_pm_notifier(kvm);
1297
1298 return kvm;
1299
1300out_err:
1301 kvm_destroy_vm_debugfs(kvm);
1302out_err_no_debugfs:
1303 kvm_coalesced_mmio_free(kvm);
1304out_no_coalesced_mmio:
1305#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1306 if (kvm->mmu_notifier.ops)
1307 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1308#endif
1309out_err_no_mmu_notifier:
1310 hardware_disable_all();
1311out_err_no_disable:
1312 kvm_arch_destroy_vm(kvm);
1313out_err_no_arch_destroy_vm:
1314 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1315 for (i = 0; i < KVM_NR_BUSES; i++)
1316 kfree(kvm_get_bus(kvm, i));
1317 cleanup_srcu_struct(&kvm->irq_srcu);
1318out_err_no_irq_srcu:
1319 cleanup_srcu_struct(&kvm->srcu);
1320out_err_no_srcu:
1321 kvm_arch_free_vm(kvm);
1322 mmdrop(current->mm);
1323 return ERR_PTR(r);
1324}
1325
1326static void kvm_destroy_devices(struct kvm *kvm)
1327{
1328 struct kvm_device *dev, *tmp;
1329
1330 /*
1331 * We do not need to take the kvm->lock here, because nobody else
1332 * has a reference to the struct kvm at this point and therefore
1333 * cannot access the devices list anyhow.
1334 */
1335 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1336 list_del(&dev->vm_node);
1337 dev->ops->destroy(dev);
1338 }
1339}
1340
1341static void kvm_destroy_vm(struct kvm *kvm)
1342{
1343 int i;
1344 struct mm_struct *mm = kvm->mm;
1345
1346 kvm_destroy_pm_notifier(kvm);
1347 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1348 kvm_destroy_vm_debugfs(kvm);
1349 kvm_arch_sync_events(kvm);
1350 mutex_lock(&kvm_lock);
1351 list_del(&kvm->vm_list);
1352 mutex_unlock(&kvm_lock);
1353 kvm_arch_pre_destroy_vm(kvm);
1354
1355 kvm_free_irq_routing(kvm);
1356 for (i = 0; i < KVM_NR_BUSES; i++) {
1357 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1358
1359 if (bus)
1360 kvm_io_bus_destroy(bus);
1361 kvm->buses[i] = NULL;
1362 }
1363 kvm_coalesced_mmio_free(kvm);
1364#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1365 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1366 /*
1367 * At this point, pending calls to invalidate_range_start()
1368 * have completed but no more MMU notifiers will run, so
1369 * mn_active_invalidate_count may remain unbalanced.
1370 * No threads can be waiting in kvm_swap_active_memslots() as the
1371 * last reference on KVM has been dropped, but freeing
1372 * memslots would deadlock without this manual intervention.
1373 *
1374 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1375 * notifier between a start() and end(), then there shouldn't be any
1376 * in-progress invalidations.
1377 */
1378 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1379 if (kvm->mn_active_invalidate_count)
1380 kvm->mn_active_invalidate_count = 0;
1381 else
1382 WARN_ON(kvm->mmu_invalidate_in_progress);
1383#else
1384 kvm_flush_shadow_all(kvm);
1385#endif
1386 kvm_arch_destroy_vm(kvm);
1387 kvm_destroy_devices(kvm);
1388 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1389 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1390 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1391 }
1392 cleanup_srcu_struct(&kvm->irq_srcu);
1393 cleanup_srcu_struct(&kvm->srcu);
1394#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1395 xa_destroy(&kvm->mem_attr_array);
1396#endif
1397 kvm_arch_free_vm(kvm);
1398 preempt_notifier_dec();
1399 hardware_disable_all();
1400 mmdrop(mm);
1401}
1402
1403void kvm_get_kvm(struct kvm *kvm)
1404{
1405 refcount_inc(&kvm->users_count);
1406}
1407EXPORT_SYMBOL_GPL(kvm_get_kvm);
1408
1409/*
1410 * Make sure the vm is not during destruction, which is a safe version of
1411 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1412 */
1413bool kvm_get_kvm_safe(struct kvm *kvm)
1414{
1415 return refcount_inc_not_zero(&kvm->users_count);
1416}
1417EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1418
1419void kvm_put_kvm(struct kvm *kvm)
1420{
1421 if (refcount_dec_and_test(&kvm->users_count))
1422 kvm_destroy_vm(kvm);
1423}
1424EXPORT_SYMBOL_GPL(kvm_put_kvm);
1425
1426/*
1427 * Used to put a reference that was taken on behalf of an object associated
1428 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1429 * of the new file descriptor fails and the reference cannot be transferred to
1430 * its final owner. In such cases, the caller is still actively using @kvm and
1431 * will fail miserably if the refcount unexpectedly hits zero.
1432 */
1433void kvm_put_kvm_no_destroy(struct kvm *kvm)
1434{
1435 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1436}
1437EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1438
1439static int kvm_vm_release(struct inode *inode, struct file *filp)
1440{
1441 struct kvm *kvm = filp->private_data;
1442
1443 kvm_irqfd_release(kvm);
1444
1445 kvm_put_kvm(kvm);
1446 return 0;
1447}
1448
1449/*
1450 * Allocation size is twice as large as the actual dirty bitmap size.
1451 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1452 */
1453static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1454{
1455 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1456
1457 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1458 if (!memslot->dirty_bitmap)
1459 return -ENOMEM;
1460
1461 return 0;
1462}
1463
1464static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1465{
1466 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1467 int node_idx_inactive = active->node_idx ^ 1;
1468
1469 return &kvm->__memslots[as_id][node_idx_inactive];
1470}
1471
1472/*
1473 * Helper to get the address space ID when one of memslot pointers may be NULL.
1474 * This also serves as a sanity that at least one of the pointers is non-NULL,
1475 * and that their address space IDs don't diverge.
1476 */
1477static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1478 struct kvm_memory_slot *b)
1479{
1480 if (WARN_ON_ONCE(!a && !b))
1481 return 0;
1482
1483 if (!a)
1484 return b->as_id;
1485 if (!b)
1486 return a->as_id;
1487
1488 WARN_ON_ONCE(a->as_id != b->as_id);
1489 return a->as_id;
1490}
1491
1492static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1493 struct kvm_memory_slot *slot)
1494{
1495 struct rb_root *gfn_tree = &slots->gfn_tree;
1496 struct rb_node **node, *parent;
1497 int idx = slots->node_idx;
1498
1499 parent = NULL;
1500 for (node = &gfn_tree->rb_node; *node; ) {
1501 struct kvm_memory_slot *tmp;
1502
1503 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1504 parent = *node;
1505 if (slot->base_gfn < tmp->base_gfn)
1506 node = &(*node)->rb_left;
1507 else if (slot->base_gfn > tmp->base_gfn)
1508 node = &(*node)->rb_right;
1509 else
1510 BUG();
1511 }
1512
1513 rb_link_node(&slot->gfn_node[idx], parent, node);
1514 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1515}
1516
1517static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1518 struct kvm_memory_slot *slot)
1519{
1520 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1521}
1522
1523static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1524 struct kvm_memory_slot *old,
1525 struct kvm_memory_slot *new)
1526{
1527 int idx = slots->node_idx;
1528
1529 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1530
1531 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1532 &slots->gfn_tree);
1533}
1534
1535/*
1536 * Replace @old with @new in the inactive memslots.
1537 *
1538 * With NULL @old this simply adds @new.
1539 * With NULL @new this simply removes @old.
1540 *
1541 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1542 * appropriately.
1543 */
1544static void kvm_replace_memslot(struct kvm *kvm,
1545 struct kvm_memory_slot *old,
1546 struct kvm_memory_slot *new)
1547{
1548 int as_id = kvm_memslots_get_as_id(old, new);
1549 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1550 int idx = slots->node_idx;
1551
1552 if (old) {
1553 hash_del(&old->id_node[idx]);
1554 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1555
1556 if ((long)old == atomic_long_read(&slots->last_used_slot))
1557 atomic_long_set(&slots->last_used_slot, (long)new);
1558
1559 if (!new) {
1560 kvm_erase_gfn_node(slots, old);
1561 return;
1562 }
1563 }
1564
1565 /*
1566 * Initialize @new's hva range. Do this even when replacing an @old
1567 * slot, kvm_copy_memslot() deliberately does not touch node data.
1568 */
1569 new->hva_node[idx].start = new->userspace_addr;
1570 new->hva_node[idx].last = new->userspace_addr +
1571 (new->npages << PAGE_SHIFT) - 1;
1572
1573 /*
1574 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1575 * hva_node needs to be swapped with remove+insert even though hva can't
1576 * change when replacing an existing slot.
1577 */
1578 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1579 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1580
1581 /*
1582 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1583 * switch the node in the gfn tree instead of removing the old and
1584 * inserting the new as two separate operations. Replacement is a
1585 * single O(1) operation versus two O(log(n)) operations for
1586 * remove+insert.
1587 */
1588 if (old && old->base_gfn == new->base_gfn) {
1589 kvm_replace_gfn_node(slots, old, new);
1590 } else {
1591 if (old)
1592 kvm_erase_gfn_node(slots, old);
1593 kvm_insert_gfn_node(slots, new);
1594 }
1595}
1596
1597/*
1598 * Flags that do not access any of the extra space of struct
1599 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1600 * only allows these.
1601 */
1602#define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1603 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1604
1605static int check_memory_region_flags(struct kvm *kvm,
1606 const struct kvm_userspace_memory_region2 *mem)
1607{
1608 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1609
1610 if (kvm_arch_has_private_mem(kvm))
1611 valid_flags |= KVM_MEM_GUEST_MEMFD;
1612
1613 /* Dirty logging private memory is not currently supported. */
1614 if (mem->flags & KVM_MEM_GUEST_MEMFD)
1615 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1616
1617#ifdef __KVM_HAVE_READONLY_MEM
1618 /*
1619 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1620 * read-only memslots have emulated MMIO, not page fault, semantics,
1621 * and KVM doesn't allow emulated MMIO for private memory.
1622 */
1623 if (!(mem->flags & KVM_MEM_GUEST_MEMFD))
1624 valid_flags |= KVM_MEM_READONLY;
1625#endif
1626
1627 if (mem->flags & ~valid_flags)
1628 return -EINVAL;
1629
1630 return 0;
1631}
1632
1633static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1634{
1635 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1636
1637 /* Grab the generation from the activate memslots. */
1638 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1639
1640 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1641 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1642
1643 /*
1644 * Do not store the new memslots while there are invalidations in
1645 * progress, otherwise the locking in invalidate_range_start and
1646 * invalidate_range_end will be unbalanced.
1647 */
1648 spin_lock(&kvm->mn_invalidate_lock);
1649 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1650 while (kvm->mn_active_invalidate_count) {
1651 set_current_state(TASK_UNINTERRUPTIBLE);
1652 spin_unlock(&kvm->mn_invalidate_lock);
1653 schedule();
1654 spin_lock(&kvm->mn_invalidate_lock);
1655 }
1656 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1657 rcu_assign_pointer(kvm->memslots[as_id], slots);
1658 spin_unlock(&kvm->mn_invalidate_lock);
1659
1660 /*
1661 * Acquired in kvm_set_memslot. Must be released before synchronize
1662 * SRCU below in order to avoid deadlock with another thread
1663 * acquiring the slots_arch_lock in an srcu critical section.
1664 */
1665 mutex_unlock(&kvm->slots_arch_lock);
1666
1667 synchronize_srcu_expedited(&kvm->srcu);
1668
1669 /*
1670 * Increment the new memslot generation a second time, dropping the
1671 * update in-progress flag and incrementing the generation based on
1672 * the number of address spaces. This provides a unique and easily
1673 * identifiable generation number while the memslots are in flux.
1674 */
1675 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1676
1677 /*
1678 * Generations must be unique even across address spaces. We do not need
1679 * a global counter for that, instead the generation space is evenly split
1680 * across address spaces. For example, with two address spaces, address
1681 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1682 * use generations 1, 3, 5, ...
1683 */
1684 gen += kvm_arch_nr_memslot_as_ids(kvm);
1685
1686 kvm_arch_memslots_updated(kvm, gen);
1687
1688 slots->generation = gen;
1689}
1690
1691static int kvm_prepare_memory_region(struct kvm *kvm,
1692 const struct kvm_memory_slot *old,
1693 struct kvm_memory_slot *new,
1694 enum kvm_mr_change change)
1695{
1696 int r;
1697
1698 /*
1699 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1700 * will be freed on "commit". If logging is enabled in both old and
1701 * new, reuse the existing bitmap. If logging is enabled only in the
1702 * new and KVM isn't using a ring buffer, allocate and initialize a
1703 * new bitmap.
1704 */
1705 if (change != KVM_MR_DELETE) {
1706 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1707 new->dirty_bitmap = NULL;
1708 else if (old && old->dirty_bitmap)
1709 new->dirty_bitmap = old->dirty_bitmap;
1710 else if (kvm_use_dirty_bitmap(kvm)) {
1711 r = kvm_alloc_dirty_bitmap(new);
1712 if (r)
1713 return r;
1714
1715 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1716 bitmap_set(new->dirty_bitmap, 0, new->npages);
1717 }
1718 }
1719
1720 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1721
1722 /* Free the bitmap on failure if it was allocated above. */
1723 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1724 kvm_destroy_dirty_bitmap(new);
1725
1726 return r;
1727}
1728
1729static void kvm_commit_memory_region(struct kvm *kvm,
1730 struct kvm_memory_slot *old,
1731 const struct kvm_memory_slot *new,
1732 enum kvm_mr_change change)
1733{
1734 int old_flags = old ? old->flags : 0;
1735 int new_flags = new ? new->flags : 0;
1736 /*
1737 * Update the total number of memslot pages before calling the arch
1738 * hook so that architectures can consume the result directly.
1739 */
1740 if (change == KVM_MR_DELETE)
1741 kvm->nr_memslot_pages -= old->npages;
1742 else if (change == KVM_MR_CREATE)
1743 kvm->nr_memslot_pages += new->npages;
1744
1745 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1746 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1747 atomic_set(&kvm->nr_memslots_dirty_logging,
1748 atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1749 }
1750
1751 kvm_arch_commit_memory_region(kvm, old, new, change);
1752
1753 switch (change) {
1754 case KVM_MR_CREATE:
1755 /* Nothing more to do. */
1756 break;
1757 case KVM_MR_DELETE:
1758 /* Free the old memslot and all its metadata. */
1759 kvm_free_memslot(kvm, old);
1760 break;
1761 case KVM_MR_MOVE:
1762 case KVM_MR_FLAGS_ONLY:
1763 /*
1764 * Free the dirty bitmap as needed; the below check encompasses
1765 * both the flags and whether a ring buffer is being used)
1766 */
1767 if (old->dirty_bitmap && !new->dirty_bitmap)
1768 kvm_destroy_dirty_bitmap(old);
1769
1770 /*
1771 * The final quirk. Free the detached, old slot, but only its
1772 * memory, not any metadata. Metadata, including arch specific
1773 * data, may be reused by @new.
1774 */
1775 kfree(old);
1776 break;
1777 default:
1778 BUG();
1779 }
1780}
1781
1782/*
1783 * Activate @new, which must be installed in the inactive slots by the caller,
1784 * by swapping the active slots and then propagating @new to @old once @old is
1785 * unreachable and can be safely modified.
1786 *
1787 * With NULL @old this simply adds @new to @active (while swapping the sets).
1788 * With NULL @new this simply removes @old from @active and frees it
1789 * (while also swapping the sets).
1790 */
1791static void kvm_activate_memslot(struct kvm *kvm,
1792 struct kvm_memory_slot *old,
1793 struct kvm_memory_slot *new)
1794{
1795 int as_id = kvm_memslots_get_as_id(old, new);
1796
1797 kvm_swap_active_memslots(kvm, as_id);
1798
1799 /* Propagate the new memslot to the now inactive memslots. */
1800 kvm_replace_memslot(kvm, old, new);
1801}
1802
1803static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1804 const struct kvm_memory_slot *src)
1805{
1806 dest->base_gfn = src->base_gfn;
1807 dest->npages = src->npages;
1808 dest->dirty_bitmap = src->dirty_bitmap;
1809 dest->arch = src->arch;
1810 dest->userspace_addr = src->userspace_addr;
1811 dest->flags = src->flags;
1812 dest->id = src->id;
1813 dest->as_id = src->as_id;
1814}
1815
1816static void kvm_invalidate_memslot(struct kvm *kvm,
1817 struct kvm_memory_slot *old,
1818 struct kvm_memory_slot *invalid_slot)
1819{
1820 /*
1821 * Mark the current slot INVALID. As with all memslot modifications,
1822 * this must be done on an unreachable slot to avoid modifying the
1823 * current slot in the active tree.
1824 */
1825 kvm_copy_memslot(invalid_slot, old);
1826 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1827 kvm_replace_memslot(kvm, old, invalid_slot);
1828
1829 /*
1830 * Activate the slot that is now marked INVALID, but don't propagate
1831 * the slot to the now inactive slots. The slot is either going to be
1832 * deleted or recreated as a new slot.
1833 */
1834 kvm_swap_active_memslots(kvm, old->as_id);
1835
1836 /*
1837 * From this point no new shadow pages pointing to a deleted, or moved,
1838 * memslot will be created. Validation of sp->gfn happens in:
1839 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1840 * - kvm_is_visible_gfn (mmu_check_root)
1841 */
1842 kvm_arch_flush_shadow_memslot(kvm, old);
1843 kvm_arch_guest_memory_reclaimed(kvm);
1844
1845 /* Was released by kvm_swap_active_memslots(), reacquire. */
1846 mutex_lock(&kvm->slots_arch_lock);
1847
1848 /*
1849 * Copy the arch-specific field of the newly-installed slot back to the
1850 * old slot as the arch data could have changed between releasing
1851 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1852 * above. Writers are required to retrieve memslots *after* acquiring
1853 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1854 */
1855 old->arch = invalid_slot->arch;
1856}
1857
1858static void kvm_create_memslot(struct kvm *kvm,
1859 struct kvm_memory_slot *new)
1860{
1861 /* Add the new memslot to the inactive set and activate. */
1862 kvm_replace_memslot(kvm, NULL, new);
1863 kvm_activate_memslot(kvm, NULL, new);
1864}
1865
1866static void kvm_delete_memslot(struct kvm *kvm,
1867 struct kvm_memory_slot *old,
1868 struct kvm_memory_slot *invalid_slot)
1869{
1870 /*
1871 * Remove the old memslot (in the inactive memslots) by passing NULL as
1872 * the "new" slot, and for the invalid version in the active slots.
1873 */
1874 kvm_replace_memslot(kvm, old, NULL);
1875 kvm_activate_memslot(kvm, invalid_slot, NULL);
1876}
1877
1878static void kvm_move_memslot(struct kvm *kvm,
1879 struct kvm_memory_slot *old,
1880 struct kvm_memory_slot *new,
1881 struct kvm_memory_slot *invalid_slot)
1882{
1883 /*
1884 * Replace the old memslot in the inactive slots, and then swap slots
1885 * and replace the current INVALID with the new as well.
1886 */
1887 kvm_replace_memslot(kvm, old, new);
1888 kvm_activate_memslot(kvm, invalid_slot, new);
1889}
1890
1891static void kvm_update_flags_memslot(struct kvm *kvm,
1892 struct kvm_memory_slot *old,
1893 struct kvm_memory_slot *new)
1894{
1895 /*
1896 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1897 * an intermediate step. Instead, the old memslot is simply replaced
1898 * with a new, updated copy in both memslot sets.
1899 */
1900 kvm_replace_memslot(kvm, old, new);
1901 kvm_activate_memslot(kvm, old, new);
1902}
1903
1904static int kvm_set_memslot(struct kvm *kvm,
1905 struct kvm_memory_slot *old,
1906 struct kvm_memory_slot *new,
1907 enum kvm_mr_change change)
1908{
1909 struct kvm_memory_slot *invalid_slot;
1910 int r;
1911
1912 /*
1913 * Released in kvm_swap_active_memslots().
1914 *
1915 * Must be held from before the current memslots are copied until after
1916 * the new memslots are installed with rcu_assign_pointer, then
1917 * released before the synchronize srcu in kvm_swap_active_memslots().
1918 *
1919 * When modifying memslots outside of the slots_lock, must be held
1920 * before reading the pointer to the current memslots until after all
1921 * changes to those memslots are complete.
1922 *
1923 * These rules ensure that installing new memslots does not lose
1924 * changes made to the previous memslots.
1925 */
1926 mutex_lock(&kvm->slots_arch_lock);
1927
1928 /*
1929 * Invalidate the old slot if it's being deleted or moved. This is
1930 * done prior to actually deleting/moving the memslot to allow vCPUs to
1931 * continue running by ensuring there are no mappings or shadow pages
1932 * for the memslot when it is deleted/moved. Without pre-invalidation
1933 * (and without a lock), a window would exist between effecting the
1934 * delete/move and committing the changes in arch code where KVM or a
1935 * guest could access a non-existent memslot.
1936 *
1937 * Modifications are done on a temporary, unreachable slot. The old
1938 * slot needs to be preserved in case a later step fails and the
1939 * invalidation needs to be reverted.
1940 */
1941 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1942 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1943 if (!invalid_slot) {
1944 mutex_unlock(&kvm->slots_arch_lock);
1945 return -ENOMEM;
1946 }
1947 kvm_invalidate_memslot(kvm, old, invalid_slot);
1948 }
1949
1950 r = kvm_prepare_memory_region(kvm, old, new, change);
1951 if (r) {
1952 /*
1953 * For DELETE/MOVE, revert the above INVALID change. No
1954 * modifications required since the original slot was preserved
1955 * in the inactive slots. Changing the active memslots also
1956 * release slots_arch_lock.
1957 */
1958 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1959 kvm_activate_memslot(kvm, invalid_slot, old);
1960 kfree(invalid_slot);
1961 } else {
1962 mutex_unlock(&kvm->slots_arch_lock);
1963 }
1964 return r;
1965 }
1966
1967 /*
1968 * For DELETE and MOVE, the working slot is now active as the INVALID
1969 * version of the old slot. MOVE is particularly special as it reuses
1970 * the old slot and returns a copy of the old slot (in working_slot).
1971 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1972 * old slot is detached but otherwise preserved.
1973 */
1974 if (change == KVM_MR_CREATE)
1975 kvm_create_memslot(kvm, new);
1976 else if (change == KVM_MR_DELETE)
1977 kvm_delete_memslot(kvm, old, invalid_slot);
1978 else if (change == KVM_MR_MOVE)
1979 kvm_move_memslot(kvm, old, new, invalid_slot);
1980 else if (change == KVM_MR_FLAGS_ONLY)
1981 kvm_update_flags_memslot(kvm, old, new);
1982 else
1983 BUG();
1984
1985 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1986 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1987 kfree(invalid_slot);
1988
1989 /*
1990 * No need to refresh new->arch, changes after dropping slots_arch_lock
1991 * will directly hit the final, active memslot. Architectures are
1992 * responsible for knowing that new->arch may be stale.
1993 */
1994 kvm_commit_memory_region(kvm, old, new, change);
1995
1996 return 0;
1997}
1998
1999static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
2000 gfn_t start, gfn_t end)
2001{
2002 struct kvm_memslot_iter iter;
2003
2004 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
2005 if (iter.slot->id != id)
2006 return true;
2007 }
2008
2009 return false;
2010}
2011
2012/*
2013 * Allocate some memory and give it an address in the guest physical address
2014 * space.
2015 *
2016 * Discontiguous memory is allowed, mostly for framebuffers.
2017 *
2018 * Must be called holding kvm->slots_lock for write.
2019 */
2020int __kvm_set_memory_region(struct kvm *kvm,
2021 const struct kvm_userspace_memory_region2 *mem)
2022{
2023 struct kvm_memory_slot *old, *new;
2024 struct kvm_memslots *slots;
2025 enum kvm_mr_change change;
2026 unsigned long npages;
2027 gfn_t base_gfn;
2028 int as_id, id;
2029 int r;
2030
2031 r = check_memory_region_flags(kvm, mem);
2032 if (r)
2033 return r;
2034
2035 as_id = mem->slot >> 16;
2036 id = (u16)mem->slot;
2037
2038 /* General sanity checks */
2039 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2040 (mem->memory_size != (unsigned long)mem->memory_size))
2041 return -EINVAL;
2042 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2043 return -EINVAL;
2044 /* We can read the guest memory with __xxx_user() later on. */
2045 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2046 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2047 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2048 mem->memory_size))
2049 return -EINVAL;
2050 if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2051 (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2052 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2053 return -EINVAL;
2054 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2055 return -EINVAL;
2056 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2057 return -EINVAL;
2058 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2059 return -EINVAL;
2060
2061 slots = __kvm_memslots(kvm, as_id);
2062
2063 /*
2064 * Note, the old memslot (and the pointer itself!) may be invalidated
2065 * and/or destroyed by kvm_set_memslot().
2066 */
2067 old = id_to_memslot(slots, id);
2068
2069 if (!mem->memory_size) {
2070 if (!old || !old->npages)
2071 return -EINVAL;
2072
2073 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2074 return -EIO;
2075
2076 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2077 }
2078
2079 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2080 npages = (mem->memory_size >> PAGE_SHIFT);
2081
2082 if (!old || !old->npages) {
2083 change = KVM_MR_CREATE;
2084
2085 /*
2086 * To simplify KVM internals, the total number of pages across
2087 * all memslots must fit in an unsigned long.
2088 */
2089 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2090 return -EINVAL;
2091 } else { /* Modify an existing slot. */
2092 /* Private memslots are immutable, they can only be deleted. */
2093 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2094 return -EINVAL;
2095 if ((mem->userspace_addr != old->userspace_addr) ||
2096 (npages != old->npages) ||
2097 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2098 return -EINVAL;
2099
2100 if (base_gfn != old->base_gfn)
2101 change = KVM_MR_MOVE;
2102 else if (mem->flags != old->flags)
2103 change = KVM_MR_FLAGS_ONLY;
2104 else /* Nothing to change. */
2105 return 0;
2106 }
2107
2108 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2109 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2110 return -EEXIST;
2111
2112 /* Allocate a slot that will persist in the memslot. */
2113 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2114 if (!new)
2115 return -ENOMEM;
2116
2117 new->as_id = as_id;
2118 new->id = id;
2119 new->base_gfn = base_gfn;
2120 new->npages = npages;
2121 new->flags = mem->flags;
2122 new->userspace_addr = mem->userspace_addr;
2123 if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2124 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2125 if (r)
2126 goto out;
2127 }
2128
2129 r = kvm_set_memslot(kvm, old, new, change);
2130 if (r)
2131 goto out_unbind;
2132
2133 return 0;
2134
2135out_unbind:
2136 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2137 kvm_gmem_unbind(new);
2138out:
2139 kfree(new);
2140 return r;
2141}
2142EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2143
2144int kvm_set_memory_region(struct kvm *kvm,
2145 const struct kvm_userspace_memory_region2 *mem)
2146{
2147 int r;
2148
2149 mutex_lock(&kvm->slots_lock);
2150 r = __kvm_set_memory_region(kvm, mem);
2151 mutex_unlock(&kvm->slots_lock);
2152 return r;
2153}
2154EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2155
2156static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2157 struct kvm_userspace_memory_region2 *mem)
2158{
2159 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2160 return -EINVAL;
2161
2162 return kvm_set_memory_region(kvm, mem);
2163}
2164
2165#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2166/**
2167 * kvm_get_dirty_log - get a snapshot of dirty pages
2168 * @kvm: pointer to kvm instance
2169 * @log: slot id and address to which we copy the log
2170 * @is_dirty: set to '1' if any dirty pages were found
2171 * @memslot: set to the associated memslot, always valid on success
2172 */
2173int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2174 int *is_dirty, struct kvm_memory_slot **memslot)
2175{
2176 struct kvm_memslots *slots;
2177 int i, as_id, id;
2178 unsigned long n;
2179 unsigned long any = 0;
2180
2181 /* Dirty ring tracking may be exclusive to dirty log tracking */
2182 if (!kvm_use_dirty_bitmap(kvm))
2183 return -ENXIO;
2184
2185 *memslot = NULL;
2186 *is_dirty = 0;
2187
2188 as_id = log->slot >> 16;
2189 id = (u16)log->slot;
2190 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2191 return -EINVAL;
2192
2193 slots = __kvm_memslots(kvm, as_id);
2194 *memslot = id_to_memslot(slots, id);
2195 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2196 return -ENOENT;
2197
2198 kvm_arch_sync_dirty_log(kvm, *memslot);
2199
2200 n = kvm_dirty_bitmap_bytes(*memslot);
2201
2202 for (i = 0; !any && i < n/sizeof(long); ++i)
2203 any = (*memslot)->dirty_bitmap[i];
2204
2205 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2206 return -EFAULT;
2207
2208 if (any)
2209 *is_dirty = 1;
2210 return 0;
2211}
2212EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2213
2214#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2215/**
2216 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2217 * and reenable dirty page tracking for the corresponding pages.
2218 * @kvm: pointer to kvm instance
2219 * @log: slot id and address to which we copy the log
2220 *
2221 * We need to keep it in mind that VCPU threads can write to the bitmap
2222 * concurrently. So, to avoid losing track of dirty pages we keep the
2223 * following order:
2224 *
2225 * 1. Take a snapshot of the bit and clear it if needed.
2226 * 2. Write protect the corresponding page.
2227 * 3. Copy the snapshot to the userspace.
2228 * 4. Upon return caller flushes TLB's if needed.
2229 *
2230 * Between 2 and 4, the guest may write to the page using the remaining TLB
2231 * entry. This is not a problem because the page is reported dirty using
2232 * the snapshot taken before and step 4 ensures that writes done after
2233 * exiting to userspace will be logged for the next call.
2234 *
2235 */
2236static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2237{
2238 struct kvm_memslots *slots;
2239 struct kvm_memory_slot *memslot;
2240 int i, as_id, id;
2241 unsigned long n;
2242 unsigned long *dirty_bitmap;
2243 unsigned long *dirty_bitmap_buffer;
2244 bool flush;
2245
2246 /* Dirty ring tracking may be exclusive to dirty log tracking */
2247 if (!kvm_use_dirty_bitmap(kvm))
2248 return -ENXIO;
2249
2250 as_id = log->slot >> 16;
2251 id = (u16)log->slot;
2252 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2253 return -EINVAL;
2254
2255 slots = __kvm_memslots(kvm, as_id);
2256 memslot = id_to_memslot(slots, id);
2257 if (!memslot || !memslot->dirty_bitmap)
2258 return -ENOENT;
2259
2260 dirty_bitmap = memslot->dirty_bitmap;
2261
2262 kvm_arch_sync_dirty_log(kvm, memslot);
2263
2264 n = kvm_dirty_bitmap_bytes(memslot);
2265 flush = false;
2266 if (kvm->manual_dirty_log_protect) {
2267 /*
2268 * Unlike kvm_get_dirty_log, we always return false in *flush,
2269 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2270 * is some code duplication between this function and
2271 * kvm_get_dirty_log, but hopefully all architecture
2272 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2273 * can be eliminated.
2274 */
2275 dirty_bitmap_buffer = dirty_bitmap;
2276 } else {
2277 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2278 memset(dirty_bitmap_buffer, 0, n);
2279
2280 KVM_MMU_LOCK(kvm);
2281 for (i = 0; i < n / sizeof(long); i++) {
2282 unsigned long mask;
2283 gfn_t offset;
2284
2285 if (!dirty_bitmap[i])
2286 continue;
2287
2288 flush = true;
2289 mask = xchg(&dirty_bitmap[i], 0);
2290 dirty_bitmap_buffer[i] = mask;
2291
2292 offset = i * BITS_PER_LONG;
2293 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2294 offset, mask);
2295 }
2296 KVM_MMU_UNLOCK(kvm);
2297 }
2298
2299 if (flush)
2300 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2301
2302 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2303 return -EFAULT;
2304 return 0;
2305}
2306
2307
2308/**
2309 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2310 * @kvm: kvm instance
2311 * @log: slot id and address to which we copy the log
2312 *
2313 * Steps 1-4 below provide general overview of dirty page logging. See
2314 * kvm_get_dirty_log_protect() function description for additional details.
2315 *
2316 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2317 * always flush the TLB (step 4) even if previous step failed and the dirty
2318 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2319 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2320 * writes will be marked dirty for next log read.
2321 *
2322 * 1. Take a snapshot of the bit and clear it if needed.
2323 * 2. Write protect the corresponding page.
2324 * 3. Copy the snapshot to the userspace.
2325 * 4. Flush TLB's if needed.
2326 */
2327static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2328 struct kvm_dirty_log *log)
2329{
2330 int r;
2331
2332 mutex_lock(&kvm->slots_lock);
2333
2334 r = kvm_get_dirty_log_protect(kvm, log);
2335
2336 mutex_unlock(&kvm->slots_lock);
2337 return r;
2338}
2339
2340/**
2341 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2342 * and reenable dirty page tracking for the corresponding pages.
2343 * @kvm: pointer to kvm instance
2344 * @log: slot id and address from which to fetch the bitmap of dirty pages
2345 */
2346static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2347 struct kvm_clear_dirty_log *log)
2348{
2349 struct kvm_memslots *slots;
2350 struct kvm_memory_slot *memslot;
2351 int as_id, id;
2352 gfn_t offset;
2353 unsigned long i, n;
2354 unsigned long *dirty_bitmap;
2355 unsigned long *dirty_bitmap_buffer;
2356 bool flush;
2357
2358 /* Dirty ring tracking may be exclusive to dirty log tracking */
2359 if (!kvm_use_dirty_bitmap(kvm))
2360 return -ENXIO;
2361
2362 as_id = log->slot >> 16;
2363 id = (u16)log->slot;
2364 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2365 return -EINVAL;
2366
2367 if (log->first_page & 63)
2368 return -EINVAL;
2369
2370 slots = __kvm_memslots(kvm, as_id);
2371 memslot = id_to_memslot(slots, id);
2372 if (!memslot || !memslot->dirty_bitmap)
2373 return -ENOENT;
2374
2375 dirty_bitmap = memslot->dirty_bitmap;
2376
2377 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2378
2379 if (log->first_page > memslot->npages ||
2380 log->num_pages > memslot->npages - log->first_page ||
2381 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2382 return -EINVAL;
2383
2384 kvm_arch_sync_dirty_log(kvm, memslot);
2385
2386 flush = false;
2387 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2388 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2389 return -EFAULT;
2390
2391 KVM_MMU_LOCK(kvm);
2392 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2393 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2394 i++, offset += BITS_PER_LONG) {
2395 unsigned long mask = *dirty_bitmap_buffer++;
2396 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2397 if (!mask)
2398 continue;
2399
2400 mask &= atomic_long_fetch_andnot(mask, p);
2401
2402 /*
2403 * mask contains the bits that really have been cleared. This
2404 * never includes any bits beyond the length of the memslot (if
2405 * the length is not aligned to 64 pages), therefore it is not
2406 * a problem if userspace sets them in log->dirty_bitmap.
2407 */
2408 if (mask) {
2409 flush = true;
2410 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2411 offset, mask);
2412 }
2413 }
2414 KVM_MMU_UNLOCK(kvm);
2415
2416 if (flush)
2417 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2418
2419 return 0;
2420}
2421
2422static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2423 struct kvm_clear_dirty_log *log)
2424{
2425 int r;
2426
2427 mutex_lock(&kvm->slots_lock);
2428
2429 r = kvm_clear_dirty_log_protect(kvm, log);
2430
2431 mutex_unlock(&kvm->slots_lock);
2432 return r;
2433}
2434#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2435
2436#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2437/*
2438 * Returns true if _all_ gfns in the range [@start, @end) have attributes
2439 * matching @attrs.
2440 */
2441bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2442 unsigned long attrs)
2443{
2444 XA_STATE(xas, &kvm->mem_attr_array, start);
2445 unsigned long index;
2446 bool has_attrs;
2447 void *entry;
2448
2449 rcu_read_lock();
2450
2451 if (!attrs) {
2452 has_attrs = !xas_find(&xas, end - 1);
2453 goto out;
2454 }
2455
2456 has_attrs = true;
2457 for (index = start; index < end; index++) {
2458 do {
2459 entry = xas_next(&xas);
2460 } while (xas_retry(&xas, entry));
2461
2462 if (xas.xa_index != index || xa_to_value(entry) != attrs) {
2463 has_attrs = false;
2464 break;
2465 }
2466 }
2467
2468out:
2469 rcu_read_unlock();
2470 return has_attrs;
2471}
2472
2473static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2474{
2475 if (!kvm || kvm_arch_has_private_mem(kvm))
2476 return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2477
2478 return 0;
2479}
2480
2481static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2482 struct kvm_mmu_notifier_range *range)
2483{
2484 struct kvm_gfn_range gfn_range;
2485 struct kvm_memory_slot *slot;
2486 struct kvm_memslots *slots;
2487 struct kvm_memslot_iter iter;
2488 bool found_memslot = false;
2489 bool ret = false;
2490 int i;
2491
2492 gfn_range.arg = range->arg;
2493 gfn_range.may_block = range->may_block;
2494
2495 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2496 slots = __kvm_memslots(kvm, i);
2497
2498 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2499 slot = iter.slot;
2500 gfn_range.slot = slot;
2501
2502 gfn_range.start = max(range->start, slot->base_gfn);
2503 gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2504 if (gfn_range.start >= gfn_range.end)
2505 continue;
2506
2507 if (!found_memslot) {
2508 found_memslot = true;
2509 KVM_MMU_LOCK(kvm);
2510 if (!IS_KVM_NULL_FN(range->on_lock))
2511 range->on_lock(kvm);
2512 }
2513
2514 ret |= range->handler(kvm, &gfn_range);
2515 }
2516 }
2517
2518 if (range->flush_on_ret && ret)
2519 kvm_flush_remote_tlbs(kvm);
2520
2521 if (found_memslot)
2522 KVM_MMU_UNLOCK(kvm);
2523}
2524
2525static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2526 struct kvm_gfn_range *range)
2527{
2528 /*
2529 * Unconditionally add the range to the invalidation set, regardless of
2530 * whether or not the arch callback actually needs to zap SPTEs. E.g.
2531 * if KVM supports RWX attributes in the future and the attributes are
2532 * going from R=>RW, zapping isn't strictly necessary. Unconditionally
2533 * adding the range allows KVM to require that MMU invalidations add at
2534 * least one range between begin() and end(), e.g. allows KVM to detect
2535 * bugs where the add() is missed. Relaxing the rule *might* be safe,
2536 * but it's not obvious that allowing new mappings while the attributes
2537 * are in flux is desirable or worth the complexity.
2538 */
2539 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2540
2541 return kvm_arch_pre_set_memory_attributes(kvm, range);
2542}
2543
2544/* Set @attributes for the gfn range [@start, @end). */
2545static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2546 unsigned long attributes)
2547{
2548 struct kvm_mmu_notifier_range pre_set_range = {
2549 .start = start,
2550 .end = end,
2551 .handler = kvm_pre_set_memory_attributes,
2552 .on_lock = kvm_mmu_invalidate_begin,
2553 .flush_on_ret = true,
2554 .may_block = true,
2555 };
2556 struct kvm_mmu_notifier_range post_set_range = {
2557 .start = start,
2558 .end = end,
2559 .arg.attributes = attributes,
2560 .handler = kvm_arch_post_set_memory_attributes,
2561 .on_lock = kvm_mmu_invalidate_end,
2562 .may_block = true,
2563 };
2564 unsigned long i;
2565 void *entry;
2566 int r = 0;
2567
2568 entry = attributes ? xa_mk_value(attributes) : NULL;
2569
2570 mutex_lock(&kvm->slots_lock);
2571
2572 /* Nothing to do if the entire range as the desired attributes. */
2573 if (kvm_range_has_memory_attributes(kvm, start, end, attributes))
2574 goto out_unlock;
2575
2576 /*
2577 * Reserve memory ahead of time to avoid having to deal with failures
2578 * partway through setting the new attributes.
2579 */
2580 for (i = start; i < end; i++) {
2581 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2582 if (r)
2583 goto out_unlock;
2584 }
2585
2586 kvm_handle_gfn_range(kvm, &pre_set_range);
2587
2588 for (i = start; i < end; i++) {
2589 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2590 GFP_KERNEL_ACCOUNT));
2591 KVM_BUG_ON(r, kvm);
2592 }
2593
2594 kvm_handle_gfn_range(kvm, &post_set_range);
2595
2596out_unlock:
2597 mutex_unlock(&kvm->slots_lock);
2598
2599 return r;
2600}
2601static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2602 struct kvm_memory_attributes *attrs)
2603{
2604 gfn_t start, end;
2605
2606 /* flags is currently not used. */
2607 if (attrs->flags)
2608 return -EINVAL;
2609 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2610 return -EINVAL;
2611 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2612 return -EINVAL;
2613 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2614 return -EINVAL;
2615
2616 start = attrs->address >> PAGE_SHIFT;
2617 end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2618
2619 /*
2620 * xarray tracks data using "unsigned long", and as a result so does
2621 * KVM. For simplicity, supports generic attributes only on 64-bit
2622 * architectures.
2623 */
2624 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2625
2626 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2627}
2628#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2629
2630struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2631{
2632 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2633}
2634EXPORT_SYMBOL_GPL(gfn_to_memslot);
2635
2636struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2637{
2638 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2639 u64 gen = slots->generation;
2640 struct kvm_memory_slot *slot;
2641
2642 /*
2643 * This also protects against using a memslot from a different address space,
2644 * since different address spaces have different generation numbers.
2645 */
2646 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2647 vcpu->last_used_slot = NULL;
2648 vcpu->last_used_slot_gen = gen;
2649 }
2650
2651 slot = try_get_memslot(vcpu->last_used_slot, gfn);
2652 if (slot)
2653 return slot;
2654
2655 /*
2656 * Fall back to searching all memslots. We purposely use
2657 * search_memslots() instead of __gfn_to_memslot() to avoid
2658 * thrashing the VM-wide last_used_slot in kvm_memslots.
2659 */
2660 slot = search_memslots(slots, gfn, false);
2661 if (slot) {
2662 vcpu->last_used_slot = slot;
2663 return slot;
2664 }
2665
2666 return NULL;
2667}
2668
2669bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2670{
2671 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2672
2673 return kvm_is_visible_memslot(memslot);
2674}
2675EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2676
2677bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2678{
2679 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2680
2681 return kvm_is_visible_memslot(memslot);
2682}
2683EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2684
2685unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2686{
2687 struct vm_area_struct *vma;
2688 unsigned long addr, size;
2689
2690 size = PAGE_SIZE;
2691
2692 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2693 if (kvm_is_error_hva(addr))
2694 return PAGE_SIZE;
2695
2696 mmap_read_lock(current->mm);
2697 vma = find_vma(current->mm, addr);
2698 if (!vma)
2699 goto out;
2700
2701 size = vma_kernel_pagesize(vma);
2702
2703out:
2704 mmap_read_unlock(current->mm);
2705
2706 return size;
2707}
2708
2709static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2710{
2711 return slot->flags & KVM_MEM_READONLY;
2712}
2713
2714static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2715 gfn_t *nr_pages, bool write)
2716{
2717 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2718 return KVM_HVA_ERR_BAD;
2719
2720 if (memslot_is_readonly(slot) && write)
2721 return KVM_HVA_ERR_RO_BAD;
2722
2723 if (nr_pages)
2724 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2725
2726 return __gfn_to_hva_memslot(slot, gfn);
2727}
2728
2729static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2730 gfn_t *nr_pages)
2731{
2732 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2733}
2734
2735unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2736 gfn_t gfn)
2737{
2738 return gfn_to_hva_many(slot, gfn, NULL);
2739}
2740EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2741
2742unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2743{
2744 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2745}
2746EXPORT_SYMBOL_GPL(gfn_to_hva);
2747
2748unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2749{
2750 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2751}
2752EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2753
2754/*
2755 * Return the hva of a @gfn and the R/W attribute if possible.
2756 *
2757 * @slot: the kvm_memory_slot which contains @gfn
2758 * @gfn: the gfn to be translated
2759 * @writable: used to return the read/write attribute of the @slot if the hva
2760 * is valid and @writable is not NULL
2761 */
2762unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2763 gfn_t gfn, bool *writable)
2764{
2765 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2766
2767 if (!kvm_is_error_hva(hva) && writable)
2768 *writable = !memslot_is_readonly(slot);
2769
2770 return hva;
2771}
2772
2773unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2774{
2775 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2776
2777 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2778}
2779
2780unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2781{
2782 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2783
2784 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2785}
2786
2787static inline int check_user_page_hwpoison(unsigned long addr)
2788{
2789 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2790
2791 rc = get_user_pages(addr, 1, flags, NULL);
2792 return rc == -EHWPOISON;
2793}
2794
2795/*
2796 * The fast path to get the writable pfn which will be stored in @pfn,
2797 * true indicates success, otherwise false is returned. It's also the
2798 * only part that runs if we can in atomic context.
2799 */
2800static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2801 bool *writable, kvm_pfn_t *pfn)
2802{
2803 struct page *page[1];
2804
2805 /*
2806 * Fast pin a writable pfn only if it is a write fault request
2807 * or the caller allows to map a writable pfn for a read fault
2808 * request.
2809 */
2810 if (!(write_fault || writable))
2811 return false;
2812
2813 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2814 *pfn = page_to_pfn(page[0]);
2815
2816 if (writable)
2817 *writable = true;
2818 return true;
2819 }
2820
2821 return false;
2822}
2823
2824/*
2825 * The slow path to get the pfn of the specified host virtual address,
2826 * 1 indicates success, -errno is returned if error is detected.
2827 */
2828static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2829 bool interruptible, bool *writable, kvm_pfn_t *pfn)
2830{
2831 /*
2832 * When a VCPU accesses a page that is not mapped into the secondary
2833 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2834 * make progress. We always want to honor NUMA hinting faults in that
2835 * case, because GUP usage corresponds to memory accesses from the VCPU.
2836 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2837 * mapped into the secondary MMU and gets accessed by a VCPU.
2838 *
2839 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2840 * implicitly honor NUMA hinting faults and don't need this flag.
2841 */
2842 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2843 struct page *page;
2844 int npages;
2845
2846 might_sleep();
2847
2848 if (writable)
2849 *writable = write_fault;
2850
2851 if (write_fault)
2852 flags |= FOLL_WRITE;
2853 if (async)
2854 flags |= FOLL_NOWAIT;
2855 if (interruptible)
2856 flags |= FOLL_INTERRUPTIBLE;
2857
2858 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2859 if (npages != 1)
2860 return npages;
2861
2862 /* map read fault as writable if possible */
2863 if (unlikely(!write_fault) && writable) {
2864 struct page *wpage;
2865
2866 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2867 *writable = true;
2868 put_page(page);
2869 page = wpage;
2870 }
2871 }
2872 *pfn = page_to_pfn(page);
2873 return npages;
2874}
2875
2876static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2877{
2878 if (unlikely(!(vma->vm_flags & VM_READ)))
2879 return false;
2880
2881 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2882 return false;
2883
2884 return true;
2885}
2886
2887static int kvm_try_get_pfn(kvm_pfn_t pfn)
2888{
2889 struct page *page = kvm_pfn_to_refcounted_page(pfn);
2890
2891 if (!page)
2892 return 1;
2893
2894 return get_page_unless_zero(page);
2895}
2896
2897static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2898 unsigned long addr, bool write_fault,
2899 bool *writable, kvm_pfn_t *p_pfn)
2900{
2901 kvm_pfn_t pfn;
2902 pte_t *ptep;
2903 pte_t pte;
2904 spinlock_t *ptl;
2905 int r;
2906
2907 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2908 if (r) {
2909 /*
2910 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2911 * not call the fault handler, so do it here.
2912 */
2913 bool unlocked = false;
2914 r = fixup_user_fault(current->mm, addr,
2915 (write_fault ? FAULT_FLAG_WRITE : 0),
2916 &unlocked);
2917 if (unlocked)
2918 return -EAGAIN;
2919 if (r)
2920 return r;
2921
2922 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2923 if (r)
2924 return r;
2925 }
2926
2927 pte = ptep_get(ptep);
2928
2929 if (write_fault && !pte_write(pte)) {
2930 pfn = KVM_PFN_ERR_RO_FAULT;
2931 goto out;
2932 }
2933
2934 if (writable)
2935 *writable = pte_write(pte);
2936 pfn = pte_pfn(pte);
2937
2938 /*
2939 * Get a reference here because callers of *hva_to_pfn* and
2940 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2941 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2942 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2943 * simply do nothing for reserved pfns.
2944 *
2945 * Whoever called remap_pfn_range is also going to call e.g.
2946 * unmap_mapping_range before the underlying pages are freed,
2947 * causing a call to our MMU notifier.
2948 *
2949 * Certain IO or PFNMAP mappings can be backed with valid
2950 * struct pages, but be allocated without refcounting e.g.,
2951 * tail pages of non-compound higher order allocations, which
2952 * would then underflow the refcount when the caller does the
2953 * required put_page. Don't allow those pages here.
2954 */
2955 if (!kvm_try_get_pfn(pfn))
2956 r = -EFAULT;
2957
2958out:
2959 pte_unmap_unlock(ptep, ptl);
2960 *p_pfn = pfn;
2961
2962 return r;
2963}
2964
2965/*
2966 * Pin guest page in memory and return its pfn.
2967 * @addr: host virtual address which maps memory to the guest
2968 * @atomic: whether this function can sleep
2969 * @interruptible: whether the process can be interrupted by non-fatal signals
2970 * @async: whether this function need to wait IO complete if the
2971 * host page is not in the memory
2972 * @write_fault: whether we should get a writable host page
2973 * @writable: whether it allows to map a writable host page for !@write_fault
2974 *
2975 * The function will map a writable host page for these two cases:
2976 * 1): @write_fault = true
2977 * 2): @write_fault = false && @writable, @writable will tell the caller
2978 * whether the mapping is writable.
2979 */
2980kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2981 bool *async, bool write_fault, bool *writable)
2982{
2983 struct vm_area_struct *vma;
2984 kvm_pfn_t pfn;
2985 int npages, r;
2986
2987 /* we can do it either atomically or asynchronously, not both */
2988 BUG_ON(atomic && async);
2989
2990 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2991 return pfn;
2992
2993 if (atomic)
2994 return KVM_PFN_ERR_FAULT;
2995
2996 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2997 writable, &pfn);
2998 if (npages == 1)
2999 return pfn;
3000 if (npages == -EINTR)
3001 return KVM_PFN_ERR_SIGPENDING;
3002
3003 mmap_read_lock(current->mm);
3004 if (npages == -EHWPOISON ||
3005 (!async && check_user_page_hwpoison(addr))) {
3006 pfn = KVM_PFN_ERR_HWPOISON;
3007 goto exit;
3008 }
3009
3010retry:
3011 vma = vma_lookup(current->mm, addr);
3012
3013 if (vma == NULL)
3014 pfn = KVM_PFN_ERR_FAULT;
3015 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3016 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
3017 if (r == -EAGAIN)
3018 goto retry;
3019 if (r < 0)
3020 pfn = KVM_PFN_ERR_FAULT;
3021 } else {
3022 if (async && vma_is_valid(vma, write_fault))
3023 *async = true;
3024 pfn = KVM_PFN_ERR_FAULT;
3025 }
3026exit:
3027 mmap_read_unlock(current->mm);
3028 return pfn;
3029}
3030
3031kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
3032 bool atomic, bool interruptible, bool *async,
3033 bool write_fault, bool *writable, hva_t *hva)
3034{
3035 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
3036
3037 if (hva)
3038 *hva = addr;
3039
3040 if (addr == KVM_HVA_ERR_RO_BAD) {
3041 if (writable)
3042 *writable = false;
3043 return KVM_PFN_ERR_RO_FAULT;
3044 }
3045
3046 if (kvm_is_error_hva(addr)) {
3047 if (writable)
3048 *writable = false;
3049 return KVM_PFN_NOSLOT;
3050 }
3051
3052 /* Do not map writable pfn in the readonly memslot. */
3053 if (writable && memslot_is_readonly(slot)) {
3054 *writable = false;
3055 writable = NULL;
3056 }
3057
3058 return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3059 writable);
3060}
3061EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3062
3063kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3064 bool *writable)
3065{
3066 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3067 NULL, write_fault, writable, NULL);
3068}
3069EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3070
3071kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3072{
3073 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3074 NULL, NULL);
3075}
3076EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3077
3078kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3079{
3080 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3081 NULL, NULL);
3082}
3083EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3084
3085kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
3086{
3087 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3088}
3089EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
3090
3091kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3092{
3093 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3094}
3095EXPORT_SYMBOL_GPL(gfn_to_pfn);
3096
3097kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
3098{
3099 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3100}
3101EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
3102
3103int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3104 struct page **pages, int nr_pages)
3105{
3106 unsigned long addr;
3107 gfn_t entry = 0;
3108
3109 addr = gfn_to_hva_many(slot, gfn, &entry);
3110 if (kvm_is_error_hva(addr))
3111 return -1;
3112
3113 if (entry < nr_pages)
3114 return 0;
3115
3116 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3117}
3118EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3119
3120/*
3121 * Do not use this helper unless you are absolutely certain the gfn _must_ be
3122 * backed by 'struct page'. A valid example is if the backing memslot is
3123 * controlled by KVM. Note, if the returned page is valid, it's refcount has
3124 * been elevated by gfn_to_pfn().
3125 */
3126struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3127{
3128 struct page *page;
3129 kvm_pfn_t pfn;
3130
3131 pfn = gfn_to_pfn(kvm, gfn);
3132
3133 if (is_error_noslot_pfn(pfn))
3134 return KVM_ERR_PTR_BAD_PAGE;
3135
3136 page = kvm_pfn_to_refcounted_page(pfn);
3137 if (!page)
3138 return KVM_ERR_PTR_BAD_PAGE;
3139
3140 return page;
3141}
3142EXPORT_SYMBOL_GPL(gfn_to_page);
3143
3144void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3145{
3146 if (dirty)
3147 kvm_release_pfn_dirty(pfn);
3148 else
3149 kvm_release_pfn_clean(pfn);
3150}
3151
3152int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3153{
3154 kvm_pfn_t pfn;
3155 void *hva = NULL;
3156 struct page *page = KVM_UNMAPPED_PAGE;
3157
3158 if (!map)
3159 return -EINVAL;
3160
3161 pfn = gfn_to_pfn(vcpu->kvm, gfn);
3162 if (is_error_noslot_pfn(pfn))
3163 return -EINVAL;
3164
3165 if (pfn_valid(pfn)) {
3166 page = pfn_to_page(pfn);
3167 hva = kmap(page);
3168#ifdef CONFIG_HAS_IOMEM
3169 } else {
3170 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3171#endif
3172 }
3173
3174 if (!hva)
3175 return -EFAULT;
3176
3177 map->page = page;
3178 map->hva = hva;
3179 map->pfn = pfn;
3180 map->gfn = gfn;
3181
3182 return 0;
3183}
3184EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3185
3186void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3187{
3188 if (!map)
3189 return;
3190
3191 if (!map->hva)
3192 return;
3193
3194 if (map->page != KVM_UNMAPPED_PAGE)
3195 kunmap(map->page);
3196#ifdef CONFIG_HAS_IOMEM
3197 else
3198 memunmap(map->hva);
3199#endif
3200
3201 if (dirty)
3202 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3203
3204 kvm_release_pfn(map->pfn, dirty);
3205
3206 map->hva = NULL;
3207 map->page = NULL;
3208}
3209EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3210
3211static bool kvm_is_ad_tracked_page(struct page *page)
3212{
3213 /*
3214 * Per page-flags.h, pages tagged PG_reserved "should in general not be
3215 * touched (e.g. set dirty) except by its owner".
3216 */
3217 return !PageReserved(page);
3218}
3219
3220static void kvm_set_page_dirty(struct page *page)
3221{
3222 if (kvm_is_ad_tracked_page(page))
3223 SetPageDirty(page);
3224}
3225
3226static void kvm_set_page_accessed(struct page *page)
3227{
3228 if (kvm_is_ad_tracked_page(page))
3229 mark_page_accessed(page);
3230}
3231
3232void kvm_release_page_clean(struct page *page)
3233{
3234 WARN_ON(is_error_page(page));
3235
3236 kvm_set_page_accessed(page);
3237 put_page(page);
3238}
3239EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3240
3241void kvm_release_pfn_clean(kvm_pfn_t pfn)
3242{
3243 struct page *page;
3244
3245 if (is_error_noslot_pfn(pfn))
3246 return;
3247
3248 page = kvm_pfn_to_refcounted_page(pfn);
3249 if (!page)
3250 return;
3251
3252 kvm_release_page_clean(page);
3253}
3254EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3255
3256void kvm_release_page_dirty(struct page *page)
3257{
3258 WARN_ON(is_error_page(page));
3259
3260 kvm_set_page_dirty(page);
3261 kvm_release_page_clean(page);
3262}
3263EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3264
3265void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3266{
3267 struct page *page;
3268
3269 if (is_error_noslot_pfn(pfn))
3270 return;
3271
3272 page = kvm_pfn_to_refcounted_page(pfn);
3273 if (!page)
3274 return;
3275
3276 kvm_release_page_dirty(page);
3277}
3278EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3279
3280/*
3281 * Note, checking for an error/noslot pfn is the caller's responsibility when
3282 * directly marking a page dirty/accessed. Unlike the "release" helpers, the
3283 * "set" helpers are not to be used when the pfn might point at garbage.
3284 */
3285void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3286{
3287 if (WARN_ON(is_error_noslot_pfn(pfn)))
3288 return;
3289
3290 if (pfn_valid(pfn))
3291 kvm_set_page_dirty(pfn_to_page(pfn));
3292}
3293EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3294
3295void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3296{
3297 if (WARN_ON(is_error_noslot_pfn(pfn)))
3298 return;
3299
3300 if (pfn_valid(pfn))
3301 kvm_set_page_accessed(pfn_to_page(pfn));
3302}
3303EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3304
3305static int next_segment(unsigned long len, int offset)
3306{
3307 if (len > PAGE_SIZE - offset)
3308 return PAGE_SIZE - offset;
3309 else
3310 return len;
3311}
3312
3313static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3314 void *data, int offset, int len)
3315{
3316 int r;
3317 unsigned long addr;
3318
3319 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3320 if (kvm_is_error_hva(addr))
3321 return -EFAULT;
3322 r = __copy_from_user(data, (void __user *)addr + offset, len);
3323 if (r)
3324 return -EFAULT;
3325 return 0;
3326}
3327
3328int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3329 int len)
3330{
3331 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3332
3333 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3334}
3335EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3336
3337int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3338 int offset, int len)
3339{
3340 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3341
3342 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3343}
3344EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3345
3346int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3347{
3348 gfn_t gfn = gpa >> PAGE_SHIFT;
3349 int seg;
3350 int offset = offset_in_page(gpa);
3351 int ret;
3352
3353 while ((seg = next_segment(len, offset)) != 0) {
3354 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3355 if (ret < 0)
3356 return ret;
3357 offset = 0;
3358 len -= seg;
3359 data += seg;
3360 ++gfn;
3361 }
3362 return 0;
3363}
3364EXPORT_SYMBOL_GPL(kvm_read_guest);
3365
3366int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3367{
3368 gfn_t gfn = gpa >> PAGE_SHIFT;
3369 int seg;
3370 int offset = offset_in_page(gpa);
3371 int ret;
3372
3373 while ((seg = next_segment(len, offset)) != 0) {
3374 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3375 if (ret < 0)
3376 return ret;
3377 offset = 0;
3378 len -= seg;
3379 data += seg;
3380 ++gfn;
3381 }
3382 return 0;
3383}
3384EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3385
3386static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3387 void *data, int offset, unsigned long len)
3388{
3389 int r;
3390 unsigned long addr;
3391
3392 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3393 if (kvm_is_error_hva(addr))
3394 return -EFAULT;
3395 pagefault_disable();
3396 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3397 pagefault_enable();
3398 if (r)
3399 return -EFAULT;
3400 return 0;
3401}
3402
3403int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3404 void *data, unsigned long len)
3405{
3406 gfn_t gfn = gpa >> PAGE_SHIFT;
3407 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3408 int offset = offset_in_page(gpa);
3409
3410 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3411}
3412EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3413
3414static int __kvm_write_guest_page(struct kvm *kvm,
3415 struct kvm_memory_slot *memslot, gfn_t gfn,
3416 const void *data, int offset, int len)
3417{
3418 int r;
3419 unsigned long addr;
3420
3421 addr = gfn_to_hva_memslot(memslot, gfn);
3422 if (kvm_is_error_hva(addr))
3423 return -EFAULT;
3424 r = __copy_to_user((void __user *)addr + offset, data, len);
3425 if (r)
3426 return -EFAULT;
3427 mark_page_dirty_in_slot(kvm, memslot, gfn);
3428 return 0;
3429}
3430
3431int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3432 const void *data, int offset, int len)
3433{
3434 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3435
3436 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3437}
3438EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3439
3440int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3441 const void *data, int offset, int len)
3442{
3443 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3444
3445 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3446}
3447EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3448
3449int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3450 unsigned long len)
3451{
3452 gfn_t gfn = gpa >> PAGE_SHIFT;
3453 int seg;
3454 int offset = offset_in_page(gpa);
3455 int ret;
3456
3457 while ((seg = next_segment(len, offset)) != 0) {
3458 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3459 if (ret < 0)
3460 return ret;
3461 offset = 0;
3462 len -= seg;
3463 data += seg;
3464 ++gfn;
3465 }
3466 return 0;
3467}
3468EXPORT_SYMBOL_GPL(kvm_write_guest);
3469
3470int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3471 unsigned long len)
3472{
3473 gfn_t gfn = gpa >> PAGE_SHIFT;
3474 int seg;
3475 int offset = offset_in_page(gpa);
3476 int ret;
3477
3478 while ((seg = next_segment(len, offset)) != 0) {
3479 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3480 if (ret < 0)
3481 return ret;
3482 offset = 0;
3483 len -= seg;
3484 data += seg;
3485 ++gfn;
3486 }
3487 return 0;
3488}
3489EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3490
3491static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3492 struct gfn_to_hva_cache *ghc,
3493 gpa_t gpa, unsigned long len)
3494{
3495 int offset = offset_in_page(gpa);
3496 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3497 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3498 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3499 gfn_t nr_pages_avail;
3500
3501 /* Update ghc->generation before performing any error checks. */
3502 ghc->generation = slots->generation;
3503
3504 if (start_gfn > end_gfn) {
3505 ghc->hva = KVM_HVA_ERR_BAD;
3506 return -EINVAL;
3507 }
3508
3509 /*
3510 * If the requested region crosses two memslots, we still
3511 * verify that the entire region is valid here.
3512 */
3513 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3514 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3515 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3516 &nr_pages_avail);
3517 if (kvm_is_error_hva(ghc->hva))
3518 return -EFAULT;
3519 }
3520
3521 /* Use the slow path for cross page reads and writes. */
3522 if (nr_pages_needed == 1)
3523 ghc->hva += offset;
3524 else
3525 ghc->memslot = NULL;
3526
3527 ghc->gpa = gpa;
3528 ghc->len = len;
3529 return 0;
3530}
3531
3532int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3533 gpa_t gpa, unsigned long len)
3534{
3535 struct kvm_memslots *slots = kvm_memslots(kvm);
3536 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3537}
3538EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3539
3540int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3541 void *data, unsigned int offset,
3542 unsigned long len)
3543{
3544 struct kvm_memslots *slots = kvm_memslots(kvm);
3545 int r;
3546 gpa_t gpa = ghc->gpa + offset;
3547
3548 if (WARN_ON_ONCE(len + offset > ghc->len))
3549 return -EINVAL;
3550
3551 if (slots->generation != ghc->generation) {
3552 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3553 return -EFAULT;
3554 }
3555
3556 if (kvm_is_error_hva(ghc->hva))
3557 return -EFAULT;
3558
3559 if (unlikely(!ghc->memslot))
3560 return kvm_write_guest(kvm, gpa, data, len);
3561
3562 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3563 if (r)
3564 return -EFAULT;
3565 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3566
3567 return 0;
3568}
3569EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3570
3571int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3572 void *data, unsigned long len)
3573{
3574 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3575}
3576EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3577
3578int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3579 void *data, unsigned int offset,
3580 unsigned long len)
3581{
3582 struct kvm_memslots *slots = kvm_memslots(kvm);
3583 int r;
3584 gpa_t gpa = ghc->gpa + offset;
3585
3586 if (WARN_ON_ONCE(len + offset > ghc->len))
3587 return -EINVAL;
3588
3589 if (slots->generation != ghc->generation) {
3590 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3591 return -EFAULT;
3592 }
3593
3594 if (kvm_is_error_hva(ghc->hva))
3595 return -EFAULT;
3596
3597 if (unlikely(!ghc->memslot))
3598 return kvm_read_guest(kvm, gpa, data, len);
3599
3600 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3601 if (r)
3602 return -EFAULT;
3603
3604 return 0;
3605}
3606EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3607
3608int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3609 void *data, unsigned long len)
3610{
3611 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3612}
3613EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3614
3615int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3616{
3617 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3618 gfn_t gfn = gpa >> PAGE_SHIFT;
3619 int seg;
3620 int offset = offset_in_page(gpa);
3621 int ret;
3622
3623 while ((seg = next_segment(len, offset)) != 0) {
3624 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3625 if (ret < 0)
3626 return ret;
3627 offset = 0;
3628 len -= seg;
3629 ++gfn;
3630 }
3631 return 0;
3632}
3633EXPORT_SYMBOL_GPL(kvm_clear_guest);
3634
3635void mark_page_dirty_in_slot(struct kvm *kvm,
3636 const struct kvm_memory_slot *memslot,
3637 gfn_t gfn)
3638{
3639 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3640
3641#ifdef CONFIG_HAVE_KVM_DIRTY_RING
3642 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3643 return;
3644
3645 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3646#endif
3647
3648 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3649 unsigned long rel_gfn = gfn - memslot->base_gfn;
3650 u32 slot = (memslot->as_id << 16) | memslot->id;
3651
3652 if (kvm->dirty_ring_size && vcpu)
3653 kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3654 else if (memslot->dirty_bitmap)
3655 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3656 }
3657}
3658EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3659
3660void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3661{
3662 struct kvm_memory_slot *memslot;
3663
3664 memslot = gfn_to_memslot(kvm, gfn);
3665 mark_page_dirty_in_slot(kvm, memslot, gfn);
3666}
3667EXPORT_SYMBOL_GPL(mark_page_dirty);
3668
3669void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3670{
3671 struct kvm_memory_slot *memslot;
3672
3673 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3674 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3675}
3676EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3677
3678void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3679{
3680 if (!vcpu->sigset_active)
3681 return;
3682
3683 /*
3684 * This does a lockless modification of ->real_blocked, which is fine
3685 * because, only current can change ->real_blocked and all readers of
3686 * ->real_blocked don't care as long ->real_blocked is always a subset
3687 * of ->blocked.
3688 */
3689 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
3690}
3691
3692void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3693{
3694 if (!vcpu->sigset_active)
3695 return;
3696
3697 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
3698 sigemptyset(¤t->real_blocked);
3699}
3700
3701static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3702{
3703 unsigned int old, val, grow, grow_start;
3704
3705 old = val = vcpu->halt_poll_ns;
3706 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3707 grow = READ_ONCE(halt_poll_ns_grow);
3708 if (!grow)
3709 goto out;
3710
3711 val *= grow;
3712 if (val < grow_start)
3713 val = grow_start;
3714
3715 vcpu->halt_poll_ns = val;
3716out:
3717 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3718}
3719
3720static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3721{
3722 unsigned int old, val, shrink, grow_start;
3723
3724 old = val = vcpu->halt_poll_ns;
3725 shrink = READ_ONCE(halt_poll_ns_shrink);
3726 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3727 if (shrink == 0)
3728 val = 0;
3729 else
3730 val /= shrink;
3731
3732 if (val < grow_start)
3733 val = 0;
3734
3735 vcpu->halt_poll_ns = val;
3736 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3737}
3738
3739static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3740{
3741 int ret = -EINTR;
3742 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3743
3744 if (kvm_arch_vcpu_runnable(vcpu))
3745 goto out;
3746 if (kvm_cpu_has_pending_timer(vcpu))
3747 goto out;
3748 if (signal_pending(current))
3749 goto out;
3750 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3751 goto out;
3752
3753 ret = 0;
3754out:
3755 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3756 return ret;
3757}
3758
3759/*
3760 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3761 * pending. This is mostly used when halting a vCPU, but may also be used
3762 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3763 */
3764bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3765{
3766 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3767 bool waited = false;
3768
3769 vcpu->stat.generic.blocking = 1;
3770
3771 preempt_disable();
3772 kvm_arch_vcpu_blocking(vcpu);
3773 prepare_to_rcuwait(wait);
3774 preempt_enable();
3775
3776 for (;;) {
3777 set_current_state(TASK_INTERRUPTIBLE);
3778
3779 if (kvm_vcpu_check_block(vcpu) < 0)
3780 break;
3781
3782 waited = true;
3783 schedule();
3784 }
3785
3786 preempt_disable();
3787 finish_rcuwait(wait);
3788 kvm_arch_vcpu_unblocking(vcpu);
3789 preempt_enable();
3790
3791 vcpu->stat.generic.blocking = 0;
3792
3793 return waited;
3794}
3795
3796static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3797 ktime_t end, bool success)
3798{
3799 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3800 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3801
3802 ++vcpu->stat.generic.halt_attempted_poll;
3803
3804 if (success) {
3805 ++vcpu->stat.generic.halt_successful_poll;
3806
3807 if (!vcpu_valid_wakeup(vcpu))
3808 ++vcpu->stat.generic.halt_poll_invalid;
3809
3810 stats->halt_poll_success_ns += poll_ns;
3811 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3812 } else {
3813 stats->halt_poll_fail_ns += poll_ns;
3814 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3815 }
3816}
3817
3818static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3819{
3820 struct kvm *kvm = vcpu->kvm;
3821
3822 if (kvm->override_halt_poll_ns) {
3823 /*
3824 * Ensure kvm->max_halt_poll_ns is not read before
3825 * kvm->override_halt_poll_ns.
3826 *
3827 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3828 */
3829 smp_rmb();
3830 return READ_ONCE(kvm->max_halt_poll_ns);
3831 }
3832
3833 return READ_ONCE(halt_poll_ns);
3834}
3835
3836/*
3837 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3838 * polling is enabled, busy wait for a short time before blocking to avoid the
3839 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3840 * is halted.
3841 */
3842void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3843{
3844 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3845 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3846 ktime_t start, cur, poll_end;
3847 bool waited = false;
3848 bool do_halt_poll;
3849 u64 halt_ns;
3850
3851 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3852 vcpu->halt_poll_ns = max_halt_poll_ns;
3853
3854 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3855
3856 start = cur = poll_end = ktime_get();
3857 if (do_halt_poll) {
3858 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3859
3860 do {
3861 if (kvm_vcpu_check_block(vcpu) < 0)
3862 goto out;
3863 cpu_relax();
3864 poll_end = cur = ktime_get();
3865 } while (kvm_vcpu_can_poll(cur, stop));
3866 }
3867
3868 waited = kvm_vcpu_block(vcpu);
3869
3870 cur = ktime_get();
3871 if (waited) {
3872 vcpu->stat.generic.halt_wait_ns +=
3873 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3874 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3875 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3876 }
3877out:
3878 /* The total time the vCPU was "halted", including polling time. */
3879 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3880
3881 /*
3882 * Note, halt-polling is considered successful so long as the vCPU was
3883 * never actually scheduled out, i.e. even if the wake event arrived
3884 * after of the halt-polling loop itself, but before the full wait.
3885 */
3886 if (do_halt_poll)
3887 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3888
3889 if (halt_poll_allowed) {
3890 /* Recompute the max halt poll time in case it changed. */
3891 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3892
3893 if (!vcpu_valid_wakeup(vcpu)) {
3894 shrink_halt_poll_ns(vcpu);
3895 } else if (max_halt_poll_ns) {
3896 if (halt_ns <= vcpu->halt_poll_ns)
3897 ;
3898 /* we had a long block, shrink polling */
3899 else if (vcpu->halt_poll_ns &&
3900 halt_ns > max_halt_poll_ns)
3901 shrink_halt_poll_ns(vcpu);
3902 /* we had a short halt and our poll time is too small */
3903 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3904 halt_ns < max_halt_poll_ns)
3905 grow_halt_poll_ns(vcpu);
3906 } else {
3907 vcpu->halt_poll_ns = 0;
3908 }
3909 }
3910
3911 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3912}
3913EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3914
3915bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3916{
3917 if (__kvm_vcpu_wake_up(vcpu)) {
3918 WRITE_ONCE(vcpu->ready, true);
3919 ++vcpu->stat.generic.halt_wakeup;
3920 return true;
3921 }
3922
3923 return false;
3924}
3925EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3926
3927#ifndef CONFIG_S390
3928/*
3929 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3930 */
3931void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3932{
3933 int me, cpu;
3934
3935 if (kvm_vcpu_wake_up(vcpu))
3936 return;
3937
3938 me = get_cpu();
3939 /*
3940 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3941 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3942 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3943 * within the vCPU thread itself.
3944 */
3945 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3946 if (vcpu->mode == IN_GUEST_MODE)
3947 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3948 goto out;
3949 }
3950
3951 /*
3952 * Note, the vCPU could get migrated to a different pCPU at any point
3953 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3954 * IPI to the previous pCPU. But, that's ok because the purpose of the
3955 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3956 * vCPU also requires it to leave IN_GUEST_MODE.
3957 */
3958 if (kvm_arch_vcpu_should_kick(vcpu)) {
3959 cpu = READ_ONCE(vcpu->cpu);
3960 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3961 smp_send_reschedule(cpu);
3962 }
3963out:
3964 put_cpu();
3965}
3966EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3967#endif /* !CONFIG_S390 */
3968
3969int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3970{
3971 struct pid *pid;
3972 struct task_struct *task = NULL;
3973 int ret = 0;
3974
3975 rcu_read_lock();
3976 pid = rcu_dereference(target->pid);
3977 if (pid)
3978 task = get_pid_task(pid, PIDTYPE_PID);
3979 rcu_read_unlock();
3980 if (!task)
3981 return ret;
3982 ret = yield_to(task, 1);
3983 put_task_struct(task);
3984
3985 return ret;
3986}
3987EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3988
3989/*
3990 * Helper that checks whether a VCPU is eligible for directed yield.
3991 * Most eligible candidate to yield is decided by following heuristics:
3992 *
3993 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3994 * (preempted lock holder), indicated by @in_spin_loop.
3995 * Set at the beginning and cleared at the end of interception/PLE handler.
3996 *
3997 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3998 * chance last time (mostly it has become eligible now since we have probably
3999 * yielded to lockholder in last iteration. This is done by toggling
4000 * @dy_eligible each time a VCPU checked for eligibility.)
4001 *
4002 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
4003 * to preempted lock-holder could result in wrong VCPU selection and CPU
4004 * burning. Giving priority for a potential lock-holder increases lock
4005 * progress.
4006 *
4007 * Since algorithm is based on heuristics, accessing another VCPU data without
4008 * locking does not harm. It may result in trying to yield to same VCPU, fail
4009 * and continue with next VCPU and so on.
4010 */
4011static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
4012{
4013#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
4014 bool eligible;
4015
4016 eligible = !vcpu->spin_loop.in_spin_loop ||
4017 vcpu->spin_loop.dy_eligible;
4018
4019 if (vcpu->spin_loop.in_spin_loop)
4020 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
4021
4022 return eligible;
4023#else
4024 return true;
4025#endif
4026}
4027
4028/*
4029 * Unlike kvm_arch_vcpu_runnable, this function is called outside
4030 * a vcpu_load/vcpu_put pair. However, for most architectures
4031 * kvm_arch_vcpu_runnable does not require vcpu_load.
4032 */
4033bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
4034{
4035 return kvm_arch_vcpu_runnable(vcpu);
4036}
4037
4038static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
4039{
4040 if (kvm_arch_dy_runnable(vcpu))
4041 return true;
4042
4043#ifdef CONFIG_KVM_ASYNC_PF
4044 if (!list_empty_careful(&vcpu->async_pf.done))
4045 return true;
4046#endif
4047
4048 return false;
4049}
4050
4051bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4052{
4053 return false;
4054}
4055
4056void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4057{
4058 struct kvm *kvm = me->kvm;
4059 struct kvm_vcpu *vcpu;
4060 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
4061 unsigned long i;
4062 int yielded = 0;
4063 int try = 3;
4064 int pass;
4065
4066 kvm_vcpu_set_in_spin_loop(me, true);
4067 /*
4068 * We boost the priority of a VCPU that is runnable but not
4069 * currently running, because it got preempted by something
4070 * else and called schedule in __vcpu_run. Hopefully that
4071 * VCPU is holding the lock that we need and will release it.
4072 * We approximate round-robin by starting at the last boosted VCPU.
4073 */
4074 for (pass = 0; pass < 2 && !yielded && try; pass++) {
4075 kvm_for_each_vcpu(i, vcpu, kvm) {
4076 if (!pass && i <= last_boosted_vcpu) {
4077 i = last_boosted_vcpu;
4078 continue;
4079 } else if (pass && i > last_boosted_vcpu)
4080 break;
4081 if (!READ_ONCE(vcpu->ready))
4082 continue;
4083 if (vcpu == me)
4084 continue;
4085 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4086 continue;
4087 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4088 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4089 !kvm_arch_vcpu_in_kernel(vcpu))
4090 continue;
4091 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4092 continue;
4093
4094 yielded = kvm_vcpu_yield_to(vcpu);
4095 if (yielded > 0) {
4096 kvm->last_boosted_vcpu = i;
4097 break;
4098 } else if (yielded < 0) {
4099 try--;
4100 if (!try)
4101 break;
4102 }
4103 }
4104 }
4105 kvm_vcpu_set_in_spin_loop(me, false);
4106
4107 /* Ensure vcpu is not eligible during next spinloop */
4108 kvm_vcpu_set_dy_eligible(me, false);
4109}
4110EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4111
4112static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4113{
4114#ifdef CONFIG_HAVE_KVM_DIRTY_RING
4115 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4116 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4117 kvm->dirty_ring_size / PAGE_SIZE);
4118#else
4119 return false;
4120#endif
4121}
4122
4123static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4124{
4125 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4126 struct page *page;
4127
4128 if (vmf->pgoff == 0)
4129 page = virt_to_page(vcpu->run);
4130#ifdef CONFIG_X86
4131 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4132 page = virt_to_page(vcpu->arch.pio_data);
4133#endif
4134#ifdef CONFIG_KVM_MMIO
4135 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4136 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4137#endif
4138 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4139 page = kvm_dirty_ring_get_page(
4140 &vcpu->dirty_ring,
4141 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4142 else
4143 return kvm_arch_vcpu_fault(vcpu, vmf);
4144 get_page(page);
4145 vmf->page = page;
4146 return 0;
4147}
4148
4149static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4150 .fault = kvm_vcpu_fault,
4151};
4152
4153static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4154{
4155 struct kvm_vcpu *vcpu = file->private_data;
4156 unsigned long pages = vma_pages(vma);
4157
4158 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4159 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4160 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4161 return -EINVAL;
4162
4163 vma->vm_ops = &kvm_vcpu_vm_ops;
4164 return 0;
4165}
4166
4167static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4168{
4169 struct kvm_vcpu *vcpu = filp->private_data;
4170
4171 kvm_put_kvm(vcpu->kvm);
4172 return 0;
4173}
4174
4175static struct file_operations kvm_vcpu_fops = {
4176 .release = kvm_vcpu_release,
4177 .unlocked_ioctl = kvm_vcpu_ioctl,
4178 .mmap = kvm_vcpu_mmap,
4179 .llseek = noop_llseek,
4180 KVM_COMPAT(kvm_vcpu_compat_ioctl),
4181};
4182
4183/*
4184 * Allocates an inode for the vcpu.
4185 */
4186static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4187{
4188 char name[8 + 1 + ITOA_MAX_LEN + 1];
4189
4190 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4191 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4192}
4193
4194#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4195static int vcpu_get_pid(void *data, u64 *val)
4196{
4197 struct kvm_vcpu *vcpu = data;
4198
4199 rcu_read_lock();
4200 *val = pid_nr(rcu_dereference(vcpu->pid));
4201 rcu_read_unlock();
4202 return 0;
4203}
4204
4205DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4206
4207static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4208{
4209 struct dentry *debugfs_dentry;
4210 char dir_name[ITOA_MAX_LEN * 2];
4211
4212 if (!debugfs_initialized())
4213 return;
4214
4215 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4216 debugfs_dentry = debugfs_create_dir(dir_name,
4217 vcpu->kvm->debugfs_dentry);
4218 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4219 &vcpu_get_pid_fops);
4220
4221 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4222}
4223#endif
4224
4225/*
4226 * Creates some virtual cpus. Good luck creating more than one.
4227 */
4228static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
4229{
4230 int r;
4231 struct kvm_vcpu *vcpu;
4232 struct page *page;
4233
4234 if (id >= KVM_MAX_VCPU_IDS)
4235 return -EINVAL;
4236
4237 mutex_lock(&kvm->lock);
4238 if (kvm->created_vcpus >= kvm->max_vcpus) {
4239 mutex_unlock(&kvm->lock);
4240 return -EINVAL;
4241 }
4242
4243 r = kvm_arch_vcpu_precreate(kvm, id);
4244 if (r) {
4245 mutex_unlock(&kvm->lock);
4246 return r;
4247 }
4248
4249 kvm->created_vcpus++;
4250 mutex_unlock(&kvm->lock);
4251
4252 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4253 if (!vcpu) {
4254 r = -ENOMEM;
4255 goto vcpu_decrement;
4256 }
4257
4258 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4259 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4260 if (!page) {
4261 r = -ENOMEM;
4262 goto vcpu_free;
4263 }
4264 vcpu->run = page_address(page);
4265
4266 kvm_vcpu_init(vcpu, kvm, id);
4267
4268 r = kvm_arch_vcpu_create(vcpu);
4269 if (r)
4270 goto vcpu_free_run_page;
4271
4272 if (kvm->dirty_ring_size) {
4273 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4274 id, kvm->dirty_ring_size);
4275 if (r)
4276 goto arch_vcpu_destroy;
4277 }
4278
4279 mutex_lock(&kvm->lock);
4280
4281#ifdef CONFIG_LOCKDEP
4282 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4283 mutex_lock(&vcpu->mutex);
4284 mutex_unlock(&vcpu->mutex);
4285#endif
4286
4287 if (kvm_get_vcpu_by_id(kvm, id)) {
4288 r = -EEXIST;
4289 goto unlock_vcpu_destroy;
4290 }
4291
4292 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4293 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4294 if (r)
4295 goto unlock_vcpu_destroy;
4296
4297 /* Now it's all set up, let userspace reach it */
4298 kvm_get_kvm(kvm);
4299 r = create_vcpu_fd(vcpu);
4300 if (r < 0)
4301 goto kvm_put_xa_release;
4302
4303 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4304 r = -EINVAL;
4305 goto kvm_put_xa_release;
4306 }
4307
4308 /*
4309 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
4310 * pointer before kvm->online_vcpu's incremented value.
4311 */
4312 smp_wmb();
4313 atomic_inc(&kvm->online_vcpus);
4314
4315 mutex_unlock(&kvm->lock);
4316 kvm_arch_vcpu_postcreate(vcpu);
4317 kvm_create_vcpu_debugfs(vcpu);
4318 return r;
4319
4320kvm_put_xa_release:
4321 kvm_put_kvm_no_destroy(kvm);
4322 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4323unlock_vcpu_destroy:
4324 mutex_unlock(&kvm->lock);
4325 kvm_dirty_ring_free(&vcpu->dirty_ring);
4326arch_vcpu_destroy:
4327 kvm_arch_vcpu_destroy(vcpu);
4328vcpu_free_run_page:
4329 free_page((unsigned long)vcpu->run);
4330vcpu_free:
4331 kmem_cache_free(kvm_vcpu_cache, vcpu);
4332vcpu_decrement:
4333 mutex_lock(&kvm->lock);
4334 kvm->created_vcpus--;
4335 mutex_unlock(&kvm->lock);
4336 return r;
4337}
4338
4339static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4340{
4341 if (sigset) {
4342 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4343 vcpu->sigset_active = 1;
4344 vcpu->sigset = *sigset;
4345 } else
4346 vcpu->sigset_active = 0;
4347 return 0;
4348}
4349
4350static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4351 size_t size, loff_t *offset)
4352{
4353 struct kvm_vcpu *vcpu = file->private_data;
4354
4355 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4356 &kvm_vcpu_stats_desc[0], &vcpu->stat,
4357 sizeof(vcpu->stat), user_buffer, size, offset);
4358}
4359
4360static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4361{
4362 struct kvm_vcpu *vcpu = file->private_data;
4363
4364 kvm_put_kvm(vcpu->kvm);
4365 return 0;
4366}
4367
4368static const struct file_operations kvm_vcpu_stats_fops = {
4369 .owner = THIS_MODULE,
4370 .read = kvm_vcpu_stats_read,
4371 .release = kvm_vcpu_stats_release,
4372 .llseek = noop_llseek,
4373};
4374
4375static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4376{
4377 int fd;
4378 struct file *file;
4379 char name[15 + ITOA_MAX_LEN + 1];
4380
4381 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4382
4383 fd = get_unused_fd_flags(O_CLOEXEC);
4384 if (fd < 0)
4385 return fd;
4386
4387 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4388 if (IS_ERR(file)) {
4389 put_unused_fd(fd);
4390 return PTR_ERR(file);
4391 }
4392
4393 kvm_get_kvm(vcpu->kvm);
4394
4395 file->f_mode |= FMODE_PREAD;
4396 fd_install(fd, file);
4397
4398 return fd;
4399}
4400
4401static long kvm_vcpu_ioctl(struct file *filp,
4402 unsigned int ioctl, unsigned long arg)
4403{
4404 struct kvm_vcpu *vcpu = filp->private_data;
4405 void __user *argp = (void __user *)arg;
4406 int r;
4407 struct kvm_fpu *fpu = NULL;
4408 struct kvm_sregs *kvm_sregs = NULL;
4409
4410 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4411 return -EIO;
4412
4413 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4414 return -EINVAL;
4415
4416 /*
4417 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4418 * execution; mutex_lock() would break them.
4419 */
4420 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4421 if (r != -ENOIOCTLCMD)
4422 return r;
4423
4424 if (mutex_lock_killable(&vcpu->mutex))
4425 return -EINTR;
4426 switch (ioctl) {
4427 case KVM_RUN: {
4428 struct pid *oldpid;
4429 r = -EINVAL;
4430 if (arg)
4431 goto out;
4432 oldpid = rcu_access_pointer(vcpu->pid);
4433 if (unlikely(oldpid != task_pid(current))) {
4434 /* The thread running this VCPU changed. */
4435 struct pid *newpid;
4436
4437 r = kvm_arch_vcpu_run_pid_change(vcpu);
4438 if (r)
4439 break;
4440
4441 newpid = get_task_pid(current, PIDTYPE_PID);
4442 rcu_assign_pointer(vcpu->pid, newpid);
4443 if (oldpid)
4444 synchronize_rcu();
4445 put_pid(oldpid);
4446 }
4447 r = kvm_arch_vcpu_ioctl_run(vcpu);
4448 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4449 break;
4450 }
4451 case KVM_GET_REGS: {
4452 struct kvm_regs *kvm_regs;
4453
4454 r = -ENOMEM;
4455 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4456 if (!kvm_regs)
4457 goto out;
4458 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4459 if (r)
4460 goto out_free1;
4461 r = -EFAULT;
4462 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4463 goto out_free1;
4464 r = 0;
4465out_free1:
4466 kfree(kvm_regs);
4467 break;
4468 }
4469 case KVM_SET_REGS: {
4470 struct kvm_regs *kvm_regs;
4471
4472 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4473 if (IS_ERR(kvm_regs)) {
4474 r = PTR_ERR(kvm_regs);
4475 goto out;
4476 }
4477 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4478 kfree(kvm_regs);
4479 break;
4480 }
4481 case KVM_GET_SREGS: {
4482 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4483 GFP_KERNEL_ACCOUNT);
4484 r = -ENOMEM;
4485 if (!kvm_sregs)
4486 goto out;
4487 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4488 if (r)
4489 goto out;
4490 r = -EFAULT;
4491 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4492 goto out;
4493 r = 0;
4494 break;
4495 }
4496 case KVM_SET_SREGS: {
4497 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4498 if (IS_ERR(kvm_sregs)) {
4499 r = PTR_ERR(kvm_sregs);
4500 kvm_sregs = NULL;
4501 goto out;
4502 }
4503 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4504 break;
4505 }
4506 case KVM_GET_MP_STATE: {
4507 struct kvm_mp_state mp_state;
4508
4509 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4510 if (r)
4511 goto out;
4512 r = -EFAULT;
4513 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4514 goto out;
4515 r = 0;
4516 break;
4517 }
4518 case KVM_SET_MP_STATE: {
4519 struct kvm_mp_state mp_state;
4520
4521 r = -EFAULT;
4522 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4523 goto out;
4524 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4525 break;
4526 }
4527 case KVM_TRANSLATE: {
4528 struct kvm_translation tr;
4529
4530 r = -EFAULT;
4531 if (copy_from_user(&tr, argp, sizeof(tr)))
4532 goto out;
4533 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4534 if (r)
4535 goto out;
4536 r = -EFAULT;
4537 if (copy_to_user(argp, &tr, sizeof(tr)))
4538 goto out;
4539 r = 0;
4540 break;
4541 }
4542 case KVM_SET_GUEST_DEBUG: {
4543 struct kvm_guest_debug dbg;
4544
4545 r = -EFAULT;
4546 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4547 goto out;
4548 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4549 break;
4550 }
4551 case KVM_SET_SIGNAL_MASK: {
4552 struct kvm_signal_mask __user *sigmask_arg = argp;
4553 struct kvm_signal_mask kvm_sigmask;
4554 sigset_t sigset, *p;
4555
4556 p = NULL;
4557 if (argp) {
4558 r = -EFAULT;
4559 if (copy_from_user(&kvm_sigmask, argp,
4560 sizeof(kvm_sigmask)))
4561 goto out;
4562 r = -EINVAL;
4563 if (kvm_sigmask.len != sizeof(sigset))
4564 goto out;
4565 r = -EFAULT;
4566 if (copy_from_user(&sigset, sigmask_arg->sigset,
4567 sizeof(sigset)))
4568 goto out;
4569 p = &sigset;
4570 }
4571 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4572 break;
4573 }
4574 case KVM_GET_FPU: {
4575 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4576 r = -ENOMEM;
4577 if (!fpu)
4578 goto out;
4579 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4580 if (r)
4581 goto out;
4582 r = -EFAULT;
4583 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4584 goto out;
4585 r = 0;
4586 break;
4587 }
4588 case KVM_SET_FPU: {
4589 fpu = memdup_user(argp, sizeof(*fpu));
4590 if (IS_ERR(fpu)) {
4591 r = PTR_ERR(fpu);
4592 fpu = NULL;
4593 goto out;
4594 }
4595 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4596 break;
4597 }
4598 case KVM_GET_STATS_FD: {
4599 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4600 break;
4601 }
4602 default:
4603 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4604 }
4605out:
4606 mutex_unlock(&vcpu->mutex);
4607 kfree(fpu);
4608 kfree(kvm_sregs);
4609 return r;
4610}
4611
4612#ifdef CONFIG_KVM_COMPAT
4613static long kvm_vcpu_compat_ioctl(struct file *filp,
4614 unsigned int ioctl, unsigned long arg)
4615{
4616 struct kvm_vcpu *vcpu = filp->private_data;
4617 void __user *argp = compat_ptr(arg);
4618 int r;
4619
4620 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4621 return -EIO;
4622
4623 switch (ioctl) {
4624 case KVM_SET_SIGNAL_MASK: {
4625 struct kvm_signal_mask __user *sigmask_arg = argp;
4626 struct kvm_signal_mask kvm_sigmask;
4627 sigset_t sigset;
4628
4629 if (argp) {
4630 r = -EFAULT;
4631 if (copy_from_user(&kvm_sigmask, argp,
4632 sizeof(kvm_sigmask)))
4633 goto out;
4634 r = -EINVAL;
4635 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4636 goto out;
4637 r = -EFAULT;
4638 if (get_compat_sigset(&sigset,
4639 (compat_sigset_t __user *)sigmask_arg->sigset))
4640 goto out;
4641 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4642 } else
4643 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4644 break;
4645 }
4646 default:
4647 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4648 }
4649
4650out:
4651 return r;
4652}
4653#endif
4654
4655static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4656{
4657 struct kvm_device *dev = filp->private_data;
4658
4659 if (dev->ops->mmap)
4660 return dev->ops->mmap(dev, vma);
4661
4662 return -ENODEV;
4663}
4664
4665static int kvm_device_ioctl_attr(struct kvm_device *dev,
4666 int (*accessor)(struct kvm_device *dev,
4667 struct kvm_device_attr *attr),
4668 unsigned long arg)
4669{
4670 struct kvm_device_attr attr;
4671
4672 if (!accessor)
4673 return -EPERM;
4674
4675 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4676 return -EFAULT;
4677
4678 return accessor(dev, &attr);
4679}
4680
4681static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4682 unsigned long arg)
4683{
4684 struct kvm_device *dev = filp->private_data;
4685
4686 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4687 return -EIO;
4688
4689 switch (ioctl) {
4690 case KVM_SET_DEVICE_ATTR:
4691 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4692 case KVM_GET_DEVICE_ATTR:
4693 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4694 case KVM_HAS_DEVICE_ATTR:
4695 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4696 default:
4697 if (dev->ops->ioctl)
4698 return dev->ops->ioctl(dev, ioctl, arg);
4699
4700 return -ENOTTY;
4701 }
4702}
4703
4704static int kvm_device_release(struct inode *inode, struct file *filp)
4705{
4706 struct kvm_device *dev = filp->private_data;
4707 struct kvm *kvm = dev->kvm;
4708
4709 if (dev->ops->release) {
4710 mutex_lock(&kvm->lock);
4711 list_del(&dev->vm_node);
4712 dev->ops->release(dev);
4713 mutex_unlock(&kvm->lock);
4714 }
4715
4716 kvm_put_kvm(kvm);
4717 return 0;
4718}
4719
4720static struct file_operations kvm_device_fops = {
4721 .unlocked_ioctl = kvm_device_ioctl,
4722 .release = kvm_device_release,
4723 KVM_COMPAT(kvm_device_ioctl),
4724 .mmap = kvm_device_mmap,
4725};
4726
4727struct kvm_device *kvm_device_from_filp(struct file *filp)
4728{
4729 if (filp->f_op != &kvm_device_fops)
4730 return NULL;
4731
4732 return filp->private_data;
4733}
4734
4735static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4736#ifdef CONFIG_KVM_MPIC
4737 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4738 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4739#endif
4740};
4741
4742int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4743{
4744 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4745 return -ENOSPC;
4746
4747 if (kvm_device_ops_table[type] != NULL)
4748 return -EEXIST;
4749
4750 kvm_device_ops_table[type] = ops;
4751 return 0;
4752}
4753
4754void kvm_unregister_device_ops(u32 type)
4755{
4756 if (kvm_device_ops_table[type] != NULL)
4757 kvm_device_ops_table[type] = NULL;
4758}
4759
4760static int kvm_ioctl_create_device(struct kvm *kvm,
4761 struct kvm_create_device *cd)
4762{
4763 const struct kvm_device_ops *ops;
4764 struct kvm_device *dev;
4765 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4766 int type;
4767 int ret;
4768
4769 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4770 return -ENODEV;
4771
4772 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4773 ops = kvm_device_ops_table[type];
4774 if (ops == NULL)
4775 return -ENODEV;
4776
4777 if (test)
4778 return 0;
4779
4780 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4781 if (!dev)
4782 return -ENOMEM;
4783
4784 dev->ops = ops;
4785 dev->kvm = kvm;
4786
4787 mutex_lock(&kvm->lock);
4788 ret = ops->create(dev, type);
4789 if (ret < 0) {
4790 mutex_unlock(&kvm->lock);
4791 kfree(dev);
4792 return ret;
4793 }
4794 list_add(&dev->vm_node, &kvm->devices);
4795 mutex_unlock(&kvm->lock);
4796
4797 if (ops->init)
4798 ops->init(dev);
4799
4800 kvm_get_kvm(kvm);
4801 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4802 if (ret < 0) {
4803 kvm_put_kvm_no_destroy(kvm);
4804 mutex_lock(&kvm->lock);
4805 list_del(&dev->vm_node);
4806 if (ops->release)
4807 ops->release(dev);
4808 mutex_unlock(&kvm->lock);
4809 if (ops->destroy)
4810 ops->destroy(dev);
4811 return ret;
4812 }
4813
4814 cd->fd = ret;
4815 return 0;
4816}
4817
4818static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4819{
4820 switch (arg) {
4821 case KVM_CAP_USER_MEMORY:
4822 case KVM_CAP_USER_MEMORY2:
4823 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4824 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4825 case KVM_CAP_INTERNAL_ERROR_DATA:
4826#ifdef CONFIG_HAVE_KVM_MSI
4827 case KVM_CAP_SIGNAL_MSI:
4828#endif
4829#ifdef CONFIG_HAVE_KVM_IRQCHIP
4830 case KVM_CAP_IRQFD:
4831#endif
4832 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4833 case KVM_CAP_CHECK_EXTENSION_VM:
4834 case KVM_CAP_ENABLE_CAP_VM:
4835 case KVM_CAP_HALT_POLL:
4836 return 1;
4837#ifdef CONFIG_KVM_MMIO
4838 case KVM_CAP_COALESCED_MMIO:
4839 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4840 case KVM_CAP_COALESCED_PIO:
4841 return 1;
4842#endif
4843#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4844 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4845 return KVM_DIRTY_LOG_MANUAL_CAPS;
4846#endif
4847#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4848 case KVM_CAP_IRQ_ROUTING:
4849 return KVM_MAX_IRQ_ROUTES;
4850#endif
4851#if KVM_MAX_NR_ADDRESS_SPACES > 1
4852 case KVM_CAP_MULTI_ADDRESS_SPACE:
4853 if (kvm)
4854 return kvm_arch_nr_memslot_as_ids(kvm);
4855 return KVM_MAX_NR_ADDRESS_SPACES;
4856#endif
4857 case KVM_CAP_NR_MEMSLOTS:
4858 return KVM_USER_MEM_SLOTS;
4859 case KVM_CAP_DIRTY_LOG_RING:
4860#ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4861 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4862#else
4863 return 0;
4864#endif
4865 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4866#ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4867 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4868#else
4869 return 0;
4870#endif
4871#ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4872 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4873#endif
4874 case KVM_CAP_BINARY_STATS_FD:
4875 case KVM_CAP_SYSTEM_EVENT_DATA:
4876 case KVM_CAP_DEVICE_CTRL:
4877 return 1;
4878#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4879 case KVM_CAP_MEMORY_ATTRIBUTES:
4880 return kvm_supported_mem_attributes(kvm);
4881#endif
4882#ifdef CONFIG_KVM_PRIVATE_MEM
4883 case KVM_CAP_GUEST_MEMFD:
4884 return !kvm || kvm_arch_has_private_mem(kvm);
4885#endif
4886 default:
4887 break;
4888 }
4889 return kvm_vm_ioctl_check_extension(kvm, arg);
4890}
4891
4892static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4893{
4894 int r;
4895
4896 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4897 return -EINVAL;
4898
4899 /* the size should be power of 2 */
4900 if (!size || (size & (size - 1)))
4901 return -EINVAL;
4902
4903 /* Should be bigger to keep the reserved entries, or a page */
4904 if (size < kvm_dirty_ring_get_rsvd_entries() *
4905 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4906 return -EINVAL;
4907
4908 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4909 sizeof(struct kvm_dirty_gfn))
4910 return -E2BIG;
4911
4912 /* We only allow it to set once */
4913 if (kvm->dirty_ring_size)
4914 return -EINVAL;
4915
4916 mutex_lock(&kvm->lock);
4917
4918 if (kvm->created_vcpus) {
4919 /* We don't allow to change this value after vcpu created */
4920 r = -EINVAL;
4921 } else {
4922 kvm->dirty_ring_size = size;
4923 r = 0;
4924 }
4925
4926 mutex_unlock(&kvm->lock);
4927 return r;
4928}
4929
4930static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4931{
4932 unsigned long i;
4933 struct kvm_vcpu *vcpu;
4934 int cleared = 0;
4935
4936 if (!kvm->dirty_ring_size)
4937 return -EINVAL;
4938
4939 mutex_lock(&kvm->slots_lock);
4940
4941 kvm_for_each_vcpu(i, vcpu, kvm)
4942 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4943
4944 mutex_unlock(&kvm->slots_lock);
4945
4946 if (cleared)
4947 kvm_flush_remote_tlbs(kvm);
4948
4949 return cleared;
4950}
4951
4952int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4953 struct kvm_enable_cap *cap)
4954{
4955 return -EINVAL;
4956}
4957
4958bool kvm_are_all_memslots_empty(struct kvm *kvm)
4959{
4960 int i;
4961
4962 lockdep_assert_held(&kvm->slots_lock);
4963
4964 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4965 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4966 return false;
4967 }
4968
4969 return true;
4970}
4971EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4972
4973static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4974 struct kvm_enable_cap *cap)
4975{
4976 switch (cap->cap) {
4977#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4978 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4979 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4980
4981 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4982 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4983
4984 if (cap->flags || (cap->args[0] & ~allowed_options))
4985 return -EINVAL;
4986 kvm->manual_dirty_log_protect = cap->args[0];
4987 return 0;
4988 }
4989#endif
4990 case KVM_CAP_HALT_POLL: {
4991 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4992 return -EINVAL;
4993
4994 kvm->max_halt_poll_ns = cap->args[0];
4995
4996 /*
4997 * Ensure kvm->override_halt_poll_ns does not become visible
4998 * before kvm->max_halt_poll_ns.
4999 *
5000 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5001 */
5002 smp_wmb();
5003 kvm->override_halt_poll_ns = true;
5004
5005 return 0;
5006 }
5007 case KVM_CAP_DIRTY_LOG_RING:
5008 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5009 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5010 return -EINVAL;
5011
5012 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5013 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5014 int r = -EINVAL;
5015
5016 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5017 !kvm->dirty_ring_size || cap->flags)
5018 return r;
5019
5020 mutex_lock(&kvm->slots_lock);
5021
5022 /*
5023 * For simplicity, allow enabling ring+bitmap if and only if
5024 * there are no memslots, e.g. to ensure all memslots allocate
5025 * a bitmap after the capability is enabled.
5026 */
5027 if (kvm_are_all_memslots_empty(kvm)) {
5028 kvm->dirty_ring_with_bitmap = true;
5029 r = 0;
5030 }
5031
5032 mutex_unlock(&kvm->slots_lock);
5033
5034 return r;
5035 }
5036 default:
5037 return kvm_vm_ioctl_enable_cap(kvm, cap);
5038 }
5039}
5040
5041static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5042 size_t size, loff_t *offset)
5043{
5044 struct kvm *kvm = file->private_data;
5045
5046 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5047 &kvm_vm_stats_desc[0], &kvm->stat,
5048 sizeof(kvm->stat), user_buffer, size, offset);
5049}
5050
5051static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5052{
5053 struct kvm *kvm = file->private_data;
5054
5055 kvm_put_kvm(kvm);
5056 return 0;
5057}
5058
5059static const struct file_operations kvm_vm_stats_fops = {
5060 .owner = THIS_MODULE,
5061 .read = kvm_vm_stats_read,
5062 .release = kvm_vm_stats_release,
5063 .llseek = noop_llseek,
5064};
5065
5066static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5067{
5068 int fd;
5069 struct file *file;
5070
5071 fd = get_unused_fd_flags(O_CLOEXEC);
5072 if (fd < 0)
5073 return fd;
5074
5075 file = anon_inode_getfile("kvm-vm-stats",
5076 &kvm_vm_stats_fops, kvm, O_RDONLY);
5077 if (IS_ERR(file)) {
5078 put_unused_fd(fd);
5079 return PTR_ERR(file);
5080 }
5081
5082 kvm_get_kvm(kvm);
5083
5084 file->f_mode |= FMODE_PREAD;
5085 fd_install(fd, file);
5086
5087 return fd;
5088}
5089
5090#define SANITY_CHECK_MEM_REGION_FIELD(field) \
5091do { \
5092 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \
5093 offsetof(struct kvm_userspace_memory_region2, field)); \
5094 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \
5095 sizeof_field(struct kvm_userspace_memory_region2, field)); \
5096} while (0)
5097
5098static long kvm_vm_ioctl(struct file *filp,
5099 unsigned int ioctl, unsigned long arg)
5100{
5101 struct kvm *kvm = filp->private_data;
5102 void __user *argp = (void __user *)arg;
5103 int r;
5104
5105 if (kvm->mm != current->mm || kvm->vm_dead)
5106 return -EIO;
5107 switch (ioctl) {
5108 case KVM_CREATE_VCPU:
5109 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5110 break;
5111 case KVM_ENABLE_CAP: {
5112 struct kvm_enable_cap cap;
5113
5114 r = -EFAULT;
5115 if (copy_from_user(&cap, argp, sizeof(cap)))
5116 goto out;
5117 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5118 break;
5119 }
5120 case KVM_SET_USER_MEMORY_REGION2:
5121 case KVM_SET_USER_MEMORY_REGION: {
5122 struct kvm_userspace_memory_region2 mem;
5123 unsigned long size;
5124
5125 if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5126 /*
5127 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5128 * accessed, but avoid leaking kernel memory in case of a bug.
5129 */
5130 memset(&mem, 0, sizeof(mem));
5131 size = sizeof(struct kvm_userspace_memory_region);
5132 } else {
5133 size = sizeof(struct kvm_userspace_memory_region2);
5134 }
5135
5136 /* Ensure the common parts of the two structs are identical. */
5137 SANITY_CHECK_MEM_REGION_FIELD(slot);
5138 SANITY_CHECK_MEM_REGION_FIELD(flags);
5139 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5140 SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5141 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5142
5143 r = -EFAULT;
5144 if (copy_from_user(&mem, argp, size))
5145 goto out;
5146
5147 r = -EINVAL;
5148 if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5149 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5150 goto out;
5151
5152 r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5153 break;
5154 }
5155 case KVM_GET_DIRTY_LOG: {
5156 struct kvm_dirty_log log;
5157
5158 r = -EFAULT;
5159 if (copy_from_user(&log, argp, sizeof(log)))
5160 goto out;
5161 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5162 break;
5163 }
5164#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5165 case KVM_CLEAR_DIRTY_LOG: {
5166 struct kvm_clear_dirty_log log;
5167
5168 r = -EFAULT;
5169 if (copy_from_user(&log, argp, sizeof(log)))
5170 goto out;
5171 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5172 break;
5173 }
5174#endif
5175#ifdef CONFIG_KVM_MMIO
5176 case KVM_REGISTER_COALESCED_MMIO: {
5177 struct kvm_coalesced_mmio_zone zone;
5178
5179 r = -EFAULT;
5180 if (copy_from_user(&zone, argp, sizeof(zone)))
5181 goto out;
5182 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5183 break;
5184 }
5185 case KVM_UNREGISTER_COALESCED_MMIO: {
5186 struct kvm_coalesced_mmio_zone zone;
5187
5188 r = -EFAULT;
5189 if (copy_from_user(&zone, argp, sizeof(zone)))
5190 goto out;
5191 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5192 break;
5193 }
5194#endif
5195 case KVM_IRQFD: {
5196 struct kvm_irqfd data;
5197
5198 r = -EFAULT;
5199 if (copy_from_user(&data, argp, sizeof(data)))
5200 goto out;
5201 r = kvm_irqfd(kvm, &data);
5202 break;
5203 }
5204 case KVM_IOEVENTFD: {
5205 struct kvm_ioeventfd data;
5206
5207 r = -EFAULT;
5208 if (copy_from_user(&data, argp, sizeof(data)))
5209 goto out;
5210 r = kvm_ioeventfd(kvm, &data);
5211 break;
5212 }
5213#ifdef CONFIG_HAVE_KVM_MSI
5214 case KVM_SIGNAL_MSI: {
5215 struct kvm_msi msi;
5216
5217 r = -EFAULT;
5218 if (copy_from_user(&msi, argp, sizeof(msi)))
5219 goto out;
5220 r = kvm_send_userspace_msi(kvm, &msi);
5221 break;
5222 }
5223#endif
5224#ifdef __KVM_HAVE_IRQ_LINE
5225 case KVM_IRQ_LINE_STATUS:
5226 case KVM_IRQ_LINE: {
5227 struct kvm_irq_level irq_event;
5228
5229 r = -EFAULT;
5230 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5231 goto out;
5232
5233 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5234 ioctl == KVM_IRQ_LINE_STATUS);
5235 if (r)
5236 goto out;
5237
5238 r = -EFAULT;
5239 if (ioctl == KVM_IRQ_LINE_STATUS) {
5240 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5241 goto out;
5242 }
5243
5244 r = 0;
5245 break;
5246 }
5247#endif
5248#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5249 case KVM_SET_GSI_ROUTING: {
5250 struct kvm_irq_routing routing;
5251 struct kvm_irq_routing __user *urouting;
5252 struct kvm_irq_routing_entry *entries = NULL;
5253
5254 r = -EFAULT;
5255 if (copy_from_user(&routing, argp, sizeof(routing)))
5256 goto out;
5257 r = -EINVAL;
5258 if (!kvm_arch_can_set_irq_routing(kvm))
5259 goto out;
5260 if (routing.nr > KVM_MAX_IRQ_ROUTES)
5261 goto out;
5262 if (routing.flags)
5263 goto out;
5264 if (routing.nr) {
5265 urouting = argp;
5266 entries = vmemdup_array_user(urouting->entries,
5267 routing.nr, sizeof(*entries));
5268 if (IS_ERR(entries)) {
5269 r = PTR_ERR(entries);
5270 goto out;
5271 }
5272 }
5273 r = kvm_set_irq_routing(kvm, entries, routing.nr,
5274 routing.flags);
5275 kvfree(entries);
5276 break;
5277 }
5278#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5279#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5280 case KVM_SET_MEMORY_ATTRIBUTES: {
5281 struct kvm_memory_attributes attrs;
5282
5283 r = -EFAULT;
5284 if (copy_from_user(&attrs, argp, sizeof(attrs)))
5285 goto out;
5286
5287 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5288 break;
5289 }
5290#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5291 case KVM_CREATE_DEVICE: {
5292 struct kvm_create_device cd;
5293
5294 r = -EFAULT;
5295 if (copy_from_user(&cd, argp, sizeof(cd)))
5296 goto out;
5297
5298 r = kvm_ioctl_create_device(kvm, &cd);
5299 if (r)
5300 goto out;
5301
5302 r = -EFAULT;
5303 if (copy_to_user(argp, &cd, sizeof(cd)))
5304 goto out;
5305
5306 r = 0;
5307 break;
5308 }
5309 case KVM_CHECK_EXTENSION:
5310 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5311 break;
5312 case KVM_RESET_DIRTY_RINGS:
5313 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5314 break;
5315 case KVM_GET_STATS_FD:
5316 r = kvm_vm_ioctl_get_stats_fd(kvm);
5317 break;
5318#ifdef CONFIG_KVM_PRIVATE_MEM
5319 case KVM_CREATE_GUEST_MEMFD: {
5320 struct kvm_create_guest_memfd guest_memfd;
5321
5322 r = -EFAULT;
5323 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5324 goto out;
5325
5326 r = kvm_gmem_create(kvm, &guest_memfd);
5327 break;
5328 }
5329#endif
5330 default:
5331 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5332 }
5333out:
5334 return r;
5335}
5336
5337#ifdef CONFIG_KVM_COMPAT
5338struct compat_kvm_dirty_log {
5339 __u32 slot;
5340 __u32 padding1;
5341 union {
5342 compat_uptr_t dirty_bitmap; /* one bit per page */
5343 __u64 padding2;
5344 };
5345};
5346
5347struct compat_kvm_clear_dirty_log {
5348 __u32 slot;
5349 __u32 num_pages;
5350 __u64 first_page;
5351 union {
5352 compat_uptr_t dirty_bitmap; /* one bit per page */
5353 __u64 padding2;
5354 };
5355};
5356
5357long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5358 unsigned long arg)
5359{
5360 return -ENOTTY;
5361}
5362
5363static long kvm_vm_compat_ioctl(struct file *filp,
5364 unsigned int ioctl, unsigned long arg)
5365{
5366 struct kvm *kvm = filp->private_data;
5367 int r;
5368
5369 if (kvm->mm != current->mm || kvm->vm_dead)
5370 return -EIO;
5371
5372 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5373 if (r != -ENOTTY)
5374 return r;
5375
5376 switch (ioctl) {
5377#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5378 case KVM_CLEAR_DIRTY_LOG: {
5379 struct compat_kvm_clear_dirty_log compat_log;
5380 struct kvm_clear_dirty_log log;
5381
5382 if (copy_from_user(&compat_log, (void __user *)arg,
5383 sizeof(compat_log)))
5384 return -EFAULT;
5385 log.slot = compat_log.slot;
5386 log.num_pages = compat_log.num_pages;
5387 log.first_page = compat_log.first_page;
5388 log.padding2 = compat_log.padding2;
5389 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5390
5391 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5392 break;
5393 }
5394#endif
5395 case KVM_GET_DIRTY_LOG: {
5396 struct compat_kvm_dirty_log compat_log;
5397 struct kvm_dirty_log log;
5398
5399 if (copy_from_user(&compat_log, (void __user *)arg,
5400 sizeof(compat_log)))
5401 return -EFAULT;
5402 log.slot = compat_log.slot;
5403 log.padding1 = compat_log.padding1;
5404 log.padding2 = compat_log.padding2;
5405 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5406
5407 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5408 break;
5409 }
5410 default:
5411 r = kvm_vm_ioctl(filp, ioctl, arg);
5412 }
5413 return r;
5414}
5415#endif
5416
5417static struct file_operations kvm_vm_fops = {
5418 .release = kvm_vm_release,
5419 .unlocked_ioctl = kvm_vm_ioctl,
5420 .llseek = noop_llseek,
5421 KVM_COMPAT(kvm_vm_compat_ioctl),
5422};
5423
5424bool file_is_kvm(struct file *file)
5425{
5426 return file && file->f_op == &kvm_vm_fops;
5427}
5428EXPORT_SYMBOL_GPL(file_is_kvm);
5429
5430static int kvm_dev_ioctl_create_vm(unsigned long type)
5431{
5432 char fdname[ITOA_MAX_LEN + 1];
5433 int r, fd;
5434 struct kvm *kvm;
5435 struct file *file;
5436
5437 fd = get_unused_fd_flags(O_CLOEXEC);
5438 if (fd < 0)
5439 return fd;
5440
5441 snprintf(fdname, sizeof(fdname), "%d", fd);
5442
5443 kvm = kvm_create_vm(type, fdname);
5444 if (IS_ERR(kvm)) {
5445 r = PTR_ERR(kvm);
5446 goto put_fd;
5447 }
5448
5449 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5450 if (IS_ERR(file)) {
5451 r = PTR_ERR(file);
5452 goto put_kvm;
5453 }
5454
5455 /*
5456 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5457 * already set, with ->release() being kvm_vm_release(). In error
5458 * cases it will be called by the final fput(file) and will take
5459 * care of doing kvm_put_kvm(kvm).
5460 */
5461 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5462
5463 fd_install(fd, file);
5464 return fd;
5465
5466put_kvm:
5467 kvm_put_kvm(kvm);
5468put_fd:
5469 put_unused_fd(fd);
5470 return r;
5471}
5472
5473static long kvm_dev_ioctl(struct file *filp,
5474 unsigned int ioctl, unsigned long arg)
5475{
5476 int r = -EINVAL;
5477
5478 switch (ioctl) {
5479 case KVM_GET_API_VERSION:
5480 if (arg)
5481 goto out;
5482 r = KVM_API_VERSION;
5483 break;
5484 case KVM_CREATE_VM:
5485 r = kvm_dev_ioctl_create_vm(arg);
5486 break;
5487 case KVM_CHECK_EXTENSION:
5488 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5489 break;
5490 case KVM_GET_VCPU_MMAP_SIZE:
5491 if (arg)
5492 goto out;
5493 r = PAGE_SIZE; /* struct kvm_run */
5494#ifdef CONFIG_X86
5495 r += PAGE_SIZE; /* pio data page */
5496#endif
5497#ifdef CONFIG_KVM_MMIO
5498 r += PAGE_SIZE; /* coalesced mmio ring page */
5499#endif
5500 break;
5501 default:
5502 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5503 }
5504out:
5505 return r;
5506}
5507
5508static struct file_operations kvm_chardev_ops = {
5509 .unlocked_ioctl = kvm_dev_ioctl,
5510 .llseek = noop_llseek,
5511 KVM_COMPAT(kvm_dev_ioctl),
5512};
5513
5514static struct miscdevice kvm_dev = {
5515 KVM_MINOR,
5516 "kvm",
5517 &kvm_chardev_ops,
5518};
5519
5520#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5521__visible bool kvm_rebooting;
5522EXPORT_SYMBOL_GPL(kvm_rebooting);
5523
5524static DEFINE_PER_CPU(bool, hardware_enabled);
5525static int kvm_usage_count;
5526
5527static int __hardware_enable_nolock(void)
5528{
5529 if (__this_cpu_read(hardware_enabled))
5530 return 0;
5531
5532 if (kvm_arch_hardware_enable()) {
5533 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5534 raw_smp_processor_id());
5535 return -EIO;
5536 }
5537
5538 __this_cpu_write(hardware_enabled, true);
5539 return 0;
5540}
5541
5542static void hardware_enable_nolock(void *failed)
5543{
5544 if (__hardware_enable_nolock())
5545 atomic_inc(failed);
5546}
5547
5548static int kvm_online_cpu(unsigned int cpu)
5549{
5550 int ret = 0;
5551
5552 /*
5553 * Abort the CPU online process if hardware virtualization cannot
5554 * be enabled. Otherwise running VMs would encounter unrecoverable
5555 * errors when scheduled to this CPU.
5556 */
5557 mutex_lock(&kvm_lock);
5558 if (kvm_usage_count)
5559 ret = __hardware_enable_nolock();
5560 mutex_unlock(&kvm_lock);
5561 return ret;
5562}
5563
5564static void hardware_disable_nolock(void *junk)
5565{
5566 /*
5567 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5568 * hardware, not just CPUs that successfully enabled hardware!
5569 */
5570 if (!__this_cpu_read(hardware_enabled))
5571 return;
5572
5573 kvm_arch_hardware_disable();
5574
5575 __this_cpu_write(hardware_enabled, false);
5576}
5577
5578static int kvm_offline_cpu(unsigned int cpu)
5579{
5580 mutex_lock(&kvm_lock);
5581 if (kvm_usage_count)
5582 hardware_disable_nolock(NULL);
5583 mutex_unlock(&kvm_lock);
5584 return 0;
5585}
5586
5587static void hardware_disable_all_nolock(void)
5588{
5589 BUG_ON(!kvm_usage_count);
5590
5591 kvm_usage_count--;
5592 if (!kvm_usage_count)
5593 on_each_cpu(hardware_disable_nolock, NULL, 1);
5594}
5595
5596static void hardware_disable_all(void)
5597{
5598 cpus_read_lock();
5599 mutex_lock(&kvm_lock);
5600 hardware_disable_all_nolock();
5601 mutex_unlock(&kvm_lock);
5602 cpus_read_unlock();
5603}
5604
5605static int hardware_enable_all(void)
5606{
5607 atomic_t failed = ATOMIC_INIT(0);
5608 int r;
5609
5610 /*
5611 * Do not enable hardware virtualization if the system is going down.
5612 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5613 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5614 * after kvm_reboot() is called. Note, this relies on system_state
5615 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5616 * hook instead of registering a dedicated reboot notifier (the latter
5617 * runs before system_state is updated).
5618 */
5619 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5620 system_state == SYSTEM_RESTART)
5621 return -EBUSY;
5622
5623 /*
5624 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5625 * is called, and so on_each_cpu() between them includes the CPU that
5626 * is being onlined. As a result, hardware_enable_nolock() may get
5627 * invoked before kvm_online_cpu(), which also enables hardware if the
5628 * usage count is non-zero. Disable CPU hotplug to avoid attempting to
5629 * enable hardware multiple times.
5630 */
5631 cpus_read_lock();
5632 mutex_lock(&kvm_lock);
5633
5634 r = 0;
5635
5636 kvm_usage_count++;
5637 if (kvm_usage_count == 1) {
5638 on_each_cpu(hardware_enable_nolock, &failed, 1);
5639
5640 if (atomic_read(&failed)) {
5641 hardware_disable_all_nolock();
5642 r = -EBUSY;
5643 }
5644 }
5645
5646 mutex_unlock(&kvm_lock);
5647 cpus_read_unlock();
5648
5649 return r;
5650}
5651
5652static void kvm_shutdown(void)
5653{
5654 /*
5655 * Disable hardware virtualization and set kvm_rebooting to indicate
5656 * that KVM has asynchronously disabled hardware virtualization, i.e.
5657 * that relevant errors and exceptions aren't entirely unexpected.
5658 * Some flavors of hardware virtualization need to be disabled before
5659 * transferring control to firmware (to perform shutdown/reboot), e.g.
5660 * on x86, virtualization can block INIT interrupts, which are used by
5661 * firmware to pull APs back under firmware control. Note, this path
5662 * is used for both shutdown and reboot scenarios, i.e. neither name is
5663 * 100% comprehensive.
5664 */
5665 pr_info("kvm: exiting hardware virtualization\n");
5666 kvm_rebooting = true;
5667 on_each_cpu(hardware_disable_nolock, NULL, 1);
5668}
5669
5670static int kvm_suspend(void)
5671{
5672 /*
5673 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5674 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5675 * is stable. Assert that kvm_lock is not held to ensure the system
5676 * isn't suspended while KVM is enabling hardware. Hardware enabling
5677 * can be preempted, but the task cannot be frozen until it has dropped
5678 * all locks (userspace tasks are frozen via a fake signal).
5679 */
5680 lockdep_assert_not_held(&kvm_lock);
5681 lockdep_assert_irqs_disabled();
5682
5683 if (kvm_usage_count)
5684 hardware_disable_nolock(NULL);
5685 return 0;
5686}
5687
5688static void kvm_resume(void)
5689{
5690 lockdep_assert_not_held(&kvm_lock);
5691 lockdep_assert_irqs_disabled();
5692
5693 if (kvm_usage_count)
5694 WARN_ON_ONCE(__hardware_enable_nolock());
5695}
5696
5697static struct syscore_ops kvm_syscore_ops = {
5698 .suspend = kvm_suspend,
5699 .resume = kvm_resume,
5700 .shutdown = kvm_shutdown,
5701};
5702#else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5703static int hardware_enable_all(void)
5704{
5705 return 0;
5706}
5707
5708static void hardware_disable_all(void)
5709{
5710
5711}
5712#endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5713
5714static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5715{
5716 if (dev->ops->destructor)
5717 dev->ops->destructor(dev);
5718}
5719
5720static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5721{
5722 int i;
5723
5724 for (i = 0; i < bus->dev_count; i++) {
5725 struct kvm_io_device *pos = bus->range[i].dev;
5726
5727 kvm_iodevice_destructor(pos);
5728 }
5729 kfree(bus);
5730}
5731
5732static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5733 const struct kvm_io_range *r2)
5734{
5735 gpa_t addr1 = r1->addr;
5736 gpa_t addr2 = r2->addr;
5737
5738 if (addr1 < addr2)
5739 return -1;
5740
5741 /* If r2->len == 0, match the exact address. If r2->len != 0,
5742 * accept any overlapping write. Any order is acceptable for
5743 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5744 * we process all of them.
5745 */
5746 if (r2->len) {
5747 addr1 += r1->len;
5748 addr2 += r2->len;
5749 }
5750
5751 if (addr1 > addr2)
5752 return 1;
5753
5754 return 0;
5755}
5756
5757static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5758{
5759 return kvm_io_bus_cmp(p1, p2);
5760}
5761
5762static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5763 gpa_t addr, int len)
5764{
5765 struct kvm_io_range *range, key;
5766 int off;
5767
5768 key = (struct kvm_io_range) {
5769 .addr = addr,
5770 .len = len,
5771 };
5772
5773 range = bsearch(&key, bus->range, bus->dev_count,
5774 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5775 if (range == NULL)
5776 return -ENOENT;
5777
5778 off = range - bus->range;
5779
5780 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5781 off--;
5782
5783 return off;
5784}
5785
5786static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5787 struct kvm_io_range *range, const void *val)
5788{
5789 int idx;
5790
5791 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5792 if (idx < 0)
5793 return -EOPNOTSUPP;
5794
5795 while (idx < bus->dev_count &&
5796 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5797 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5798 range->len, val))
5799 return idx;
5800 idx++;
5801 }
5802
5803 return -EOPNOTSUPP;
5804}
5805
5806/* kvm_io_bus_write - called under kvm->slots_lock */
5807int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5808 int len, const void *val)
5809{
5810 struct kvm_io_bus *bus;
5811 struct kvm_io_range range;
5812 int r;
5813
5814 range = (struct kvm_io_range) {
5815 .addr = addr,
5816 .len = len,
5817 };
5818
5819 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5820 if (!bus)
5821 return -ENOMEM;
5822 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5823 return r < 0 ? r : 0;
5824}
5825EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5826
5827/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5828int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5829 gpa_t addr, int len, const void *val, long cookie)
5830{
5831 struct kvm_io_bus *bus;
5832 struct kvm_io_range range;
5833
5834 range = (struct kvm_io_range) {
5835 .addr = addr,
5836 .len = len,
5837 };
5838
5839 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5840 if (!bus)
5841 return -ENOMEM;
5842
5843 /* First try the device referenced by cookie. */
5844 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5845 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5846 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5847 val))
5848 return cookie;
5849
5850 /*
5851 * cookie contained garbage; fall back to search and return the
5852 * correct cookie value.
5853 */
5854 return __kvm_io_bus_write(vcpu, bus, &range, val);
5855}
5856
5857static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5858 struct kvm_io_range *range, void *val)
5859{
5860 int idx;
5861
5862 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5863 if (idx < 0)
5864 return -EOPNOTSUPP;
5865
5866 while (idx < bus->dev_count &&
5867 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5868 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5869 range->len, val))
5870 return idx;
5871 idx++;
5872 }
5873
5874 return -EOPNOTSUPP;
5875}
5876
5877/* kvm_io_bus_read - called under kvm->slots_lock */
5878int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5879 int len, void *val)
5880{
5881 struct kvm_io_bus *bus;
5882 struct kvm_io_range range;
5883 int r;
5884
5885 range = (struct kvm_io_range) {
5886 .addr = addr,
5887 .len = len,
5888 };
5889
5890 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5891 if (!bus)
5892 return -ENOMEM;
5893 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5894 return r < 0 ? r : 0;
5895}
5896
5897int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5898 int len, struct kvm_io_device *dev)
5899{
5900 int i;
5901 struct kvm_io_bus *new_bus, *bus;
5902 struct kvm_io_range range;
5903
5904 lockdep_assert_held(&kvm->slots_lock);
5905
5906 bus = kvm_get_bus(kvm, bus_idx);
5907 if (!bus)
5908 return -ENOMEM;
5909
5910 /* exclude ioeventfd which is limited by maximum fd */
5911 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5912 return -ENOSPC;
5913
5914 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5915 GFP_KERNEL_ACCOUNT);
5916 if (!new_bus)
5917 return -ENOMEM;
5918
5919 range = (struct kvm_io_range) {
5920 .addr = addr,
5921 .len = len,
5922 .dev = dev,
5923 };
5924
5925 for (i = 0; i < bus->dev_count; i++)
5926 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5927 break;
5928
5929 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5930 new_bus->dev_count++;
5931 new_bus->range[i] = range;
5932 memcpy(new_bus->range + i + 1, bus->range + i,
5933 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5934 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5935 synchronize_srcu_expedited(&kvm->srcu);
5936 kfree(bus);
5937
5938 return 0;
5939}
5940
5941int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5942 struct kvm_io_device *dev)
5943{
5944 int i;
5945 struct kvm_io_bus *new_bus, *bus;
5946
5947 lockdep_assert_held(&kvm->slots_lock);
5948
5949 bus = kvm_get_bus(kvm, bus_idx);
5950 if (!bus)
5951 return 0;
5952
5953 for (i = 0; i < bus->dev_count; i++) {
5954 if (bus->range[i].dev == dev) {
5955 break;
5956 }
5957 }
5958
5959 if (i == bus->dev_count)
5960 return 0;
5961
5962 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5963 GFP_KERNEL_ACCOUNT);
5964 if (new_bus) {
5965 memcpy(new_bus, bus, struct_size(bus, range, i));
5966 new_bus->dev_count--;
5967 memcpy(new_bus->range + i, bus->range + i + 1,
5968 flex_array_size(new_bus, range, new_bus->dev_count - i));
5969 }
5970
5971 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5972 synchronize_srcu_expedited(&kvm->srcu);
5973
5974 /*
5975 * If NULL bus is installed, destroy the old bus, including all the
5976 * attached devices. Otherwise, destroy the caller's device only.
5977 */
5978 if (!new_bus) {
5979 pr_err("kvm: failed to shrink bus, removing it completely\n");
5980 kvm_io_bus_destroy(bus);
5981 return -ENOMEM;
5982 }
5983
5984 kvm_iodevice_destructor(dev);
5985 kfree(bus);
5986 return 0;
5987}
5988
5989struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5990 gpa_t addr)
5991{
5992 struct kvm_io_bus *bus;
5993 int dev_idx, srcu_idx;
5994 struct kvm_io_device *iodev = NULL;
5995
5996 srcu_idx = srcu_read_lock(&kvm->srcu);
5997
5998 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5999 if (!bus)
6000 goto out_unlock;
6001
6002 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6003 if (dev_idx < 0)
6004 goto out_unlock;
6005
6006 iodev = bus->range[dev_idx].dev;
6007
6008out_unlock:
6009 srcu_read_unlock(&kvm->srcu, srcu_idx);
6010
6011 return iodev;
6012}
6013EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6014
6015static int kvm_debugfs_open(struct inode *inode, struct file *file,
6016 int (*get)(void *, u64 *), int (*set)(void *, u64),
6017 const char *fmt)
6018{
6019 int ret;
6020 struct kvm_stat_data *stat_data = inode->i_private;
6021
6022 /*
6023 * The debugfs files are a reference to the kvm struct which
6024 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
6025 * avoids the race between open and the removal of the debugfs directory.
6026 */
6027 if (!kvm_get_kvm_safe(stat_data->kvm))
6028 return -ENOENT;
6029
6030 ret = simple_attr_open(inode, file, get,
6031 kvm_stats_debugfs_mode(stat_data->desc) & 0222
6032 ? set : NULL, fmt);
6033 if (ret)
6034 kvm_put_kvm(stat_data->kvm);
6035
6036 return ret;
6037}
6038
6039static int kvm_debugfs_release(struct inode *inode, struct file *file)
6040{
6041 struct kvm_stat_data *stat_data = inode->i_private;
6042
6043 simple_attr_release(inode, file);
6044 kvm_put_kvm(stat_data->kvm);
6045
6046 return 0;
6047}
6048
6049static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6050{
6051 *val = *(u64 *)((void *)(&kvm->stat) + offset);
6052
6053 return 0;
6054}
6055
6056static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6057{
6058 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
6059
6060 return 0;
6061}
6062
6063static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6064{
6065 unsigned long i;
6066 struct kvm_vcpu *vcpu;
6067
6068 *val = 0;
6069
6070 kvm_for_each_vcpu(i, vcpu, kvm)
6071 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
6072
6073 return 0;
6074}
6075
6076static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6077{
6078 unsigned long i;
6079 struct kvm_vcpu *vcpu;
6080
6081 kvm_for_each_vcpu(i, vcpu, kvm)
6082 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6083
6084 return 0;
6085}
6086
6087static int kvm_stat_data_get(void *data, u64 *val)
6088{
6089 int r = -EFAULT;
6090 struct kvm_stat_data *stat_data = data;
6091
6092 switch (stat_data->kind) {
6093 case KVM_STAT_VM:
6094 r = kvm_get_stat_per_vm(stat_data->kvm,
6095 stat_data->desc->desc.offset, val);
6096 break;
6097 case KVM_STAT_VCPU:
6098 r = kvm_get_stat_per_vcpu(stat_data->kvm,
6099 stat_data->desc->desc.offset, val);
6100 break;
6101 }
6102
6103 return r;
6104}
6105
6106static int kvm_stat_data_clear(void *data, u64 val)
6107{
6108 int r = -EFAULT;
6109 struct kvm_stat_data *stat_data = data;
6110
6111 if (val)
6112 return -EINVAL;
6113
6114 switch (stat_data->kind) {
6115 case KVM_STAT_VM:
6116 r = kvm_clear_stat_per_vm(stat_data->kvm,
6117 stat_data->desc->desc.offset);
6118 break;
6119 case KVM_STAT_VCPU:
6120 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6121 stat_data->desc->desc.offset);
6122 break;
6123 }
6124
6125 return r;
6126}
6127
6128static int kvm_stat_data_open(struct inode *inode, struct file *file)
6129{
6130 __simple_attr_check_format("%llu\n", 0ull);
6131 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6132 kvm_stat_data_clear, "%llu\n");
6133}
6134
6135static const struct file_operations stat_fops_per_vm = {
6136 .owner = THIS_MODULE,
6137 .open = kvm_stat_data_open,
6138 .release = kvm_debugfs_release,
6139 .read = simple_attr_read,
6140 .write = simple_attr_write,
6141 .llseek = no_llseek,
6142};
6143
6144static int vm_stat_get(void *_offset, u64 *val)
6145{
6146 unsigned offset = (long)_offset;
6147 struct kvm *kvm;
6148 u64 tmp_val;
6149
6150 *val = 0;
6151 mutex_lock(&kvm_lock);
6152 list_for_each_entry(kvm, &vm_list, vm_list) {
6153 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6154 *val += tmp_val;
6155 }
6156 mutex_unlock(&kvm_lock);
6157 return 0;
6158}
6159
6160static int vm_stat_clear(void *_offset, u64 val)
6161{
6162 unsigned offset = (long)_offset;
6163 struct kvm *kvm;
6164
6165 if (val)
6166 return -EINVAL;
6167
6168 mutex_lock(&kvm_lock);
6169 list_for_each_entry(kvm, &vm_list, vm_list) {
6170 kvm_clear_stat_per_vm(kvm, offset);
6171 }
6172 mutex_unlock(&kvm_lock);
6173
6174 return 0;
6175}
6176
6177DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6178DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6179
6180static int vcpu_stat_get(void *_offset, u64 *val)
6181{
6182 unsigned offset = (long)_offset;
6183 struct kvm *kvm;
6184 u64 tmp_val;
6185
6186 *val = 0;
6187 mutex_lock(&kvm_lock);
6188 list_for_each_entry(kvm, &vm_list, vm_list) {
6189 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6190 *val += tmp_val;
6191 }
6192 mutex_unlock(&kvm_lock);
6193 return 0;
6194}
6195
6196static int vcpu_stat_clear(void *_offset, u64 val)
6197{
6198 unsigned offset = (long)_offset;
6199 struct kvm *kvm;
6200
6201 if (val)
6202 return -EINVAL;
6203
6204 mutex_lock(&kvm_lock);
6205 list_for_each_entry(kvm, &vm_list, vm_list) {
6206 kvm_clear_stat_per_vcpu(kvm, offset);
6207 }
6208 mutex_unlock(&kvm_lock);
6209
6210 return 0;
6211}
6212
6213DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6214 "%llu\n");
6215DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6216
6217static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6218{
6219 struct kobj_uevent_env *env;
6220 unsigned long long created, active;
6221
6222 if (!kvm_dev.this_device || !kvm)
6223 return;
6224
6225 mutex_lock(&kvm_lock);
6226 if (type == KVM_EVENT_CREATE_VM) {
6227 kvm_createvm_count++;
6228 kvm_active_vms++;
6229 } else if (type == KVM_EVENT_DESTROY_VM) {
6230 kvm_active_vms--;
6231 }
6232 created = kvm_createvm_count;
6233 active = kvm_active_vms;
6234 mutex_unlock(&kvm_lock);
6235
6236 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
6237 if (!env)
6238 return;
6239
6240 add_uevent_var(env, "CREATED=%llu", created);
6241 add_uevent_var(env, "COUNT=%llu", active);
6242
6243 if (type == KVM_EVENT_CREATE_VM) {
6244 add_uevent_var(env, "EVENT=create");
6245 kvm->userspace_pid = task_pid_nr(current);
6246 } else if (type == KVM_EVENT_DESTROY_VM) {
6247 add_uevent_var(env, "EVENT=destroy");
6248 }
6249 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6250
6251 if (!IS_ERR(kvm->debugfs_dentry)) {
6252 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
6253
6254 if (p) {
6255 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6256 if (!IS_ERR(tmp))
6257 add_uevent_var(env, "STATS_PATH=%s", tmp);
6258 kfree(p);
6259 }
6260 }
6261 /* no need for checks, since we are adding at most only 5 keys */
6262 env->envp[env->envp_idx++] = NULL;
6263 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6264 kfree(env);
6265}
6266
6267static void kvm_init_debug(void)
6268{
6269 const struct file_operations *fops;
6270 const struct _kvm_stats_desc *pdesc;
6271 int i;
6272
6273 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6274
6275 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6276 pdesc = &kvm_vm_stats_desc[i];
6277 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6278 fops = &vm_stat_fops;
6279 else
6280 fops = &vm_stat_readonly_fops;
6281 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6282 kvm_debugfs_dir,
6283 (void *)(long)pdesc->desc.offset, fops);
6284 }
6285
6286 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6287 pdesc = &kvm_vcpu_stats_desc[i];
6288 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6289 fops = &vcpu_stat_fops;
6290 else
6291 fops = &vcpu_stat_readonly_fops;
6292 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6293 kvm_debugfs_dir,
6294 (void *)(long)pdesc->desc.offset, fops);
6295 }
6296}
6297
6298static inline
6299struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6300{
6301 return container_of(pn, struct kvm_vcpu, preempt_notifier);
6302}
6303
6304static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6305{
6306 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6307
6308 WRITE_ONCE(vcpu->preempted, false);
6309 WRITE_ONCE(vcpu->ready, false);
6310
6311 __this_cpu_write(kvm_running_vcpu, vcpu);
6312 kvm_arch_sched_in(vcpu, cpu);
6313 kvm_arch_vcpu_load(vcpu, cpu);
6314}
6315
6316static void kvm_sched_out(struct preempt_notifier *pn,
6317 struct task_struct *next)
6318{
6319 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6320
6321 if (current->on_rq) {
6322 WRITE_ONCE(vcpu->preempted, true);
6323 WRITE_ONCE(vcpu->ready, true);
6324 }
6325 kvm_arch_vcpu_put(vcpu);
6326 __this_cpu_write(kvm_running_vcpu, NULL);
6327}
6328
6329/**
6330 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6331 *
6332 * We can disable preemption locally around accessing the per-CPU variable,
6333 * and use the resolved vcpu pointer after enabling preemption again,
6334 * because even if the current thread is migrated to another CPU, reading
6335 * the per-CPU value later will give us the same value as we update the
6336 * per-CPU variable in the preempt notifier handlers.
6337 */
6338struct kvm_vcpu *kvm_get_running_vcpu(void)
6339{
6340 struct kvm_vcpu *vcpu;
6341
6342 preempt_disable();
6343 vcpu = __this_cpu_read(kvm_running_vcpu);
6344 preempt_enable();
6345
6346 return vcpu;
6347}
6348EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6349
6350/**
6351 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6352 */
6353struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6354{
6355 return &kvm_running_vcpu;
6356}
6357
6358#ifdef CONFIG_GUEST_PERF_EVENTS
6359static unsigned int kvm_guest_state(void)
6360{
6361 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6362 unsigned int state;
6363
6364 if (!kvm_arch_pmi_in_guest(vcpu))
6365 return 0;
6366
6367 state = PERF_GUEST_ACTIVE;
6368 if (!kvm_arch_vcpu_in_kernel(vcpu))
6369 state |= PERF_GUEST_USER;
6370
6371 return state;
6372}
6373
6374static unsigned long kvm_guest_get_ip(void)
6375{
6376 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6377
6378 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6379 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6380 return 0;
6381
6382 return kvm_arch_vcpu_get_ip(vcpu);
6383}
6384
6385static struct perf_guest_info_callbacks kvm_guest_cbs = {
6386 .state = kvm_guest_state,
6387 .get_ip = kvm_guest_get_ip,
6388 .handle_intel_pt_intr = NULL,
6389};
6390
6391void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6392{
6393 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6394 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6395}
6396void kvm_unregister_perf_callbacks(void)
6397{
6398 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6399}
6400#endif
6401
6402int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6403{
6404 int r;
6405 int cpu;
6406
6407#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6408 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6409 kvm_online_cpu, kvm_offline_cpu);
6410 if (r)
6411 return r;
6412
6413 register_syscore_ops(&kvm_syscore_ops);
6414#endif
6415
6416 /* A kmem cache lets us meet the alignment requirements of fx_save. */
6417 if (!vcpu_align)
6418 vcpu_align = __alignof__(struct kvm_vcpu);
6419 kvm_vcpu_cache =
6420 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6421 SLAB_ACCOUNT,
6422 offsetof(struct kvm_vcpu, arch),
6423 offsetofend(struct kvm_vcpu, stats_id)
6424 - offsetof(struct kvm_vcpu, arch),
6425 NULL);
6426 if (!kvm_vcpu_cache) {
6427 r = -ENOMEM;
6428 goto err_vcpu_cache;
6429 }
6430
6431 for_each_possible_cpu(cpu) {
6432 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6433 GFP_KERNEL, cpu_to_node(cpu))) {
6434 r = -ENOMEM;
6435 goto err_cpu_kick_mask;
6436 }
6437 }
6438
6439 r = kvm_irqfd_init();
6440 if (r)
6441 goto err_irqfd;
6442
6443 r = kvm_async_pf_init();
6444 if (r)
6445 goto err_async_pf;
6446
6447 kvm_chardev_ops.owner = module;
6448 kvm_vm_fops.owner = module;
6449 kvm_vcpu_fops.owner = module;
6450 kvm_device_fops.owner = module;
6451
6452 kvm_preempt_ops.sched_in = kvm_sched_in;
6453 kvm_preempt_ops.sched_out = kvm_sched_out;
6454
6455 kvm_init_debug();
6456
6457 r = kvm_vfio_ops_init();
6458 if (WARN_ON_ONCE(r))
6459 goto err_vfio;
6460
6461 kvm_gmem_init(module);
6462
6463 /*
6464 * Registration _must_ be the very last thing done, as this exposes
6465 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6466 */
6467 r = misc_register(&kvm_dev);
6468 if (r) {
6469 pr_err("kvm: misc device register failed\n");
6470 goto err_register;
6471 }
6472
6473 return 0;
6474
6475err_register:
6476 kvm_vfio_ops_exit();
6477err_vfio:
6478 kvm_async_pf_deinit();
6479err_async_pf:
6480 kvm_irqfd_exit();
6481err_irqfd:
6482err_cpu_kick_mask:
6483 for_each_possible_cpu(cpu)
6484 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6485 kmem_cache_destroy(kvm_vcpu_cache);
6486err_vcpu_cache:
6487#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6488 unregister_syscore_ops(&kvm_syscore_ops);
6489 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6490#endif
6491 return r;
6492}
6493EXPORT_SYMBOL_GPL(kvm_init);
6494
6495void kvm_exit(void)
6496{
6497 int cpu;
6498
6499 /*
6500 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6501 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6502 * to KVM while the module is being stopped.
6503 */
6504 misc_deregister(&kvm_dev);
6505
6506 debugfs_remove_recursive(kvm_debugfs_dir);
6507 for_each_possible_cpu(cpu)
6508 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6509 kmem_cache_destroy(kvm_vcpu_cache);
6510 kvm_vfio_ops_exit();
6511 kvm_async_pf_deinit();
6512#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6513 unregister_syscore_ops(&kvm_syscore_ops);
6514 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6515#endif
6516 kvm_irqfd_exit();
6517}
6518EXPORT_SYMBOL_GPL(kvm_exit);
6519
6520struct kvm_vm_worker_thread_context {
6521 struct kvm *kvm;
6522 struct task_struct *parent;
6523 struct completion init_done;
6524 kvm_vm_thread_fn_t thread_fn;
6525 uintptr_t data;
6526 int err;
6527};
6528
6529static int kvm_vm_worker_thread(void *context)
6530{
6531 /*
6532 * The init_context is allocated on the stack of the parent thread, so
6533 * we have to locally copy anything that is needed beyond initialization
6534 */
6535 struct kvm_vm_worker_thread_context *init_context = context;
6536 struct task_struct *parent;
6537 struct kvm *kvm = init_context->kvm;
6538 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6539 uintptr_t data = init_context->data;
6540 int err;
6541
6542 err = kthread_park(current);
6543 /* kthread_park(current) is never supposed to return an error */
6544 WARN_ON(err != 0);
6545 if (err)
6546 goto init_complete;
6547
6548 err = cgroup_attach_task_all(init_context->parent, current);
6549 if (err) {
6550 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6551 __func__, err);
6552 goto init_complete;
6553 }
6554
6555 set_user_nice(current, task_nice(init_context->parent));
6556
6557init_complete:
6558 init_context->err = err;
6559 complete(&init_context->init_done);
6560 init_context = NULL;
6561
6562 if (err)
6563 goto out;
6564
6565 /* Wait to be woken up by the spawner before proceeding. */
6566 kthread_parkme();
6567
6568 if (!kthread_should_stop())
6569 err = thread_fn(kvm, data);
6570
6571out:
6572 /*
6573 * Move kthread back to its original cgroup to prevent it lingering in
6574 * the cgroup of the VM process, after the latter finishes its
6575 * execution.
6576 *
6577 * kthread_stop() waits on the 'exited' completion condition which is
6578 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6579 * kthread is removed from the cgroup in the cgroup_exit() which is
6580 * called after the exit_mm(). This causes the kthread_stop() to return
6581 * before the kthread actually quits the cgroup.
6582 */
6583 rcu_read_lock();
6584 parent = rcu_dereference(current->real_parent);
6585 get_task_struct(parent);
6586 rcu_read_unlock();
6587 cgroup_attach_task_all(parent, current);
6588 put_task_struct(parent);
6589
6590 return err;
6591}
6592
6593int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6594 uintptr_t data, const char *name,
6595 struct task_struct **thread_ptr)
6596{
6597 struct kvm_vm_worker_thread_context init_context = {};
6598 struct task_struct *thread;
6599
6600 *thread_ptr = NULL;
6601 init_context.kvm = kvm;
6602 init_context.parent = current;
6603 init_context.thread_fn = thread_fn;
6604 init_context.data = data;
6605 init_completion(&init_context.init_done);
6606
6607 thread = kthread_run(kvm_vm_worker_thread, &init_context,
6608 "%s-%d", name, task_pid_nr(current));
6609 if (IS_ERR(thread))
6610 return PTR_ERR(thread);
6611
6612 /* kthread_run is never supposed to return NULL */
6613 WARN_ON(thread == NULL);
6614
6615 wait_for_completion(&init_context.init_done);
6616
6617 if (!init_context.err)
6618 *thread_ptr = thread;
6619
6620 return init_context.err;
6621}