Loading...
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19#include "iodev.h"
20
21#include <linux/kvm_host.h>
22#include <linux/kvm.h>
23#include <linux/module.h>
24#include <linux/errno.h>
25#include <linux/percpu.h>
26#include <linux/mm.h>
27#include <linux/miscdevice.h>
28#include <linux/vmalloc.h>
29#include <linux/reboot.h>
30#include <linux/debugfs.h>
31#include <linux/highmem.h>
32#include <linux/file.h>
33#include <linux/syscore_ops.h>
34#include <linux/cpu.h>
35#include <linux/sched.h>
36#include <linux/cpumask.h>
37#include <linux/smp.h>
38#include <linux/anon_inodes.h>
39#include <linux/profile.h>
40#include <linux/kvm_para.h>
41#include <linux/pagemap.h>
42#include <linux/mman.h>
43#include <linux/swap.h>
44#include <linux/bitops.h>
45#include <linux/spinlock.h>
46#include <linux/compat.h>
47#include <linux/srcu.h>
48#include <linux/hugetlb.h>
49#include <linux/slab.h>
50
51#include <asm/processor.h>
52#include <asm/io.h>
53#include <asm/uaccess.h>
54#include <asm/pgtable.h>
55
56#include "coalesced_mmio.h"
57#include "async_pf.h"
58
59#define CREATE_TRACE_POINTS
60#include <trace/events/kvm.h>
61
62MODULE_AUTHOR("Qumranet");
63MODULE_LICENSE("GPL");
64
65/*
66 * Ordering of locks:
67 *
68 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
69 */
70
71DEFINE_RAW_SPINLOCK(kvm_lock);
72LIST_HEAD(vm_list);
73
74static cpumask_var_t cpus_hardware_enabled;
75static int kvm_usage_count = 0;
76static atomic_t hardware_enable_failed;
77
78struct kmem_cache *kvm_vcpu_cache;
79EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
80
81static __read_mostly struct preempt_ops kvm_preempt_ops;
82
83struct dentry *kvm_debugfs_dir;
84
85static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
86 unsigned long arg);
87#ifdef CONFIG_COMPAT
88static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
89 unsigned long arg);
90#endif
91static int hardware_enable_all(void);
92static void hardware_disable_all(void);
93
94static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
95
96bool kvm_rebooting;
97EXPORT_SYMBOL_GPL(kvm_rebooting);
98
99static bool largepages_enabled = true;
100
101static struct page *hwpoison_page;
102static pfn_t hwpoison_pfn;
103
104struct page *fault_page;
105pfn_t fault_pfn;
106
107inline int kvm_is_mmio_pfn(pfn_t pfn)
108{
109 if (pfn_valid(pfn)) {
110 int reserved;
111 struct page *tail = pfn_to_page(pfn);
112 struct page *head = compound_trans_head(tail);
113 reserved = PageReserved(head);
114 if (head != tail) {
115 /*
116 * "head" is not a dangling pointer
117 * (compound_trans_head takes care of that)
118 * but the hugepage may have been splitted
119 * from under us (and we may not hold a
120 * reference count on the head page so it can
121 * be reused before we run PageReferenced), so
122 * we've to check PageTail before returning
123 * what we just read.
124 */
125 smp_rmb();
126 if (PageTail(tail))
127 return reserved;
128 }
129 return PageReserved(tail);
130 }
131
132 return true;
133}
134
135/*
136 * Switches to specified vcpu, until a matching vcpu_put()
137 */
138void vcpu_load(struct kvm_vcpu *vcpu)
139{
140 int cpu;
141
142 mutex_lock(&vcpu->mutex);
143 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
144 /* The thread running this VCPU changed. */
145 struct pid *oldpid = vcpu->pid;
146 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
147 rcu_assign_pointer(vcpu->pid, newpid);
148 synchronize_rcu();
149 put_pid(oldpid);
150 }
151 cpu = get_cpu();
152 preempt_notifier_register(&vcpu->preempt_notifier);
153 kvm_arch_vcpu_load(vcpu, cpu);
154 put_cpu();
155}
156
157void vcpu_put(struct kvm_vcpu *vcpu)
158{
159 preempt_disable();
160 kvm_arch_vcpu_put(vcpu);
161 preempt_notifier_unregister(&vcpu->preempt_notifier);
162 preempt_enable();
163 mutex_unlock(&vcpu->mutex);
164}
165
166static void ack_flush(void *_completed)
167{
168}
169
170static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
171{
172 int i, cpu, me;
173 cpumask_var_t cpus;
174 bool called = true;
175 struct kvm_vcpu *vcpu;
176
177 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
178
179 me = get_cpu();
180 kvm_for_each_vcpu(i, vcpu, kvm) {
181 kvm_make_request(req, vcpu);
182 cpu = vcpu->cpu;
183
184 /* Set ->requests bit before we read ->mode */
185 smp_mb();
186
187 if (cpus != NULL && cpu != -1 && cpu != me &&
188 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
189 cpumask_set_cpu(cpu, cpus);
190 }
191 if (unlikely(cpus == NULL))
192 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
193 else if (!cpumask_empty(cpus))
194 smp_call_function_many(cpus, ack_flush, NULL, 1);
195 else
196 called = false;
197 put_cpu();
198 free_cpumask_var(cpus);
199 return called;
200}
201
202void kvm_flush_remote_tlbs(struct kvm *kvm)
203{
204 int dirty_count = kvm->tlbs_dirty;
205
206 smp_mb();
207 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
208 ++kvm->stat.remote_tlb_flush;
209 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
210}
211
212void kvm_reload_remote_mmus(struct kvm *kvm)
213{
214 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
215}
216
217int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
218{
219 struct page *page;
220 int r;
221
222 mutex_init(&vcpu->mutex);
223 vcpu->cpu = -1;
224 vcpu->kvm = kvm;
225 vcpu->vcpu_id = id;
226 vcpu->pid = NULL;
227 init_waitqueue_head(&vcpu->wq);
228 kvm_async_pf_vcpu_init(vcpu);
229
230 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
231 if (!page) {
232 r = -ENOMEM;
233 goto fail;
234 }
235 vcpu->run = page_address(page);
236
237 r = kvm_arch_vcpu_init(vcpu);
238 if (r < 0)
239 goto fail_free_run;
240 return 0;
241
242fail_free_run:
243 free_page((unsigned long)vcpu->run);
244fail:
245 return r;
246}
247EXPORT_SYMBOL_GPL(kvm_vcpu_init);
248
249void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
250{
251 put_pid(vcpu->pid);
252 kvm_arch_vcpu_uninit(vcpu);
253 free_page((unsigned long)vcpu->run);
254}
255EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
256
257#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
258static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
259{
260 return container_of(mn, struct kvm, mmu_notifier);
261}
262
263static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
264 struct mm_struct *mm,
265 unsigned long address)
266{
267 struct kvm *kvm = mmu_notifier_to_kvm(mn);
268 int need_tlb_flush, idx;
269
270 /*
271 * When ->invalidate_page runs, the linux pte has been zapped
272 * already but the page is still allocated until
273 * ->invalidate_page returns. So if we increase the sequence
274 * here the kvm page fault will notice if the spte can't be
275 * established because the page is going to be freed. If
276 * instead the kvm page fault establishes the spte before
277 * ->invalidate_page runs, kvm_unmap_hva will release it
278 * before returning.
279 *
280 * The sequence increase only need to be seen at spin_unlock
281 * time, and not at spin_lock time.
282 *
283 * Increasing the sequence after the spin_unlock would be
284 * unsafe because the kvm page fault could then establish the
285 * pte after kvm_unmap_hva returned, without noticing the page
286 * is going to be freed.
287 */
288 idx = srcu_read_lock(&kvm->srcu);
289 spin_lock(&kvm->mmu_lock);
290 kvm->mmu_notifier_seq++;
291 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
292 spin_unlock(&kvm->mmu_lock);
293 srcu_read_unlock(&kvm->srcu, idx);
294
295 /* we've to flush the tlb before the pages can be freed */
296 if (need_tlb_flush)
297 kvm_flush_remote_tlbs(kvm);
298
299}
300
301static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302 struct mm_struct *mm,
303 unsigned long address,
304 pte_t pte)
305{
306 struct kvm *kvm = mmu_notifier_to_kvm(mn);
307 int idx;
308
309 idx = srcu_read_lock(&kvm->srcu);
310 spin_lock(&kvm->mmu_lock);
311 kvm->mmu_notifier_seq++;
312 kvm_set_spte_hva(kvm, address, pte);
313 spin_unlock(&kvm->mmu_lock);
314 srcu_read_unlock(&kvm->srcu, idx);
315}
316
317static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318 struct mm_struct *mm,
319 unsigned long start,
320 unsigned long end)
321{
322 struct kvm *kvm = mmu_notifier_to_kvm(mn);
323 int need_tlb_flush = 0, idx;
324
325 idx = srcu_read_lock(&kvm->srcu);
326 spin_lock(&kvm->mmu_lock);
327 /*
328 * The count increase must become visible at unlock time as no
329 * spte can be established without taking the mmu_lock and
330 * count is also read inside the mmu_lock critical section.
331 */
332 kvm->mmu_notifier_count++;
333 for (; start < end; start += PAGE_SIZE)
334 need_tlb_flush |= kvm_unmap_hva(kvm, start);
335 need_tlb_flush |= kvm->tlbs_dirty;
336 spin_unlock(&kvm->mmu_lock);
337 srcu_read_unlock(&kvm->srcu, idx);
338
339 /* we've to flush the tlb before the pages can be freed */
340 if (need_tlb_flush)
341 kvm_flush_remote_tlbs(kvm);
342}
343
344static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
345 struct mm_struct *mm,
346 unsigned long start,
347 unsigned long end)
348{
349 struct kvm *kvm = mmu_notifier_to_kvm(mn);
350
351 spin_lock(&kvm->mmu_lock);
352 /*
353 * This sequence increase will notify the kvm page fault that
354 * the page that is going to be mapped in the spte could have
355 * been freed.
356 */
357 kvm->mmu_notifier_seq++;
358 /*
359 * The above sequence increase must be visible before the
360 * below count decrease but both values are read by the kvm
361 * page fault under mmu_lock spinlock so we don't need to add
362 * a smb_wmb() here in between the two.
363 */
364 kvm->mmu_notifier_count--;
365 spin_unlock(&kvm->mmu_lock);
366
367 BUG_ON(kvm->mmu_notifier_count < 0);
368}
369
370static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
371 struct mm_struct *mm,
372 unsigned long address)
373{
374 struct kvm *kvm = mmu_notifier_to_kvm(mn);
375 int young, idx;
376
377 idx = srcu_read_lock(&kvm->srcu);
378 spin_lock(&kvm->mmu_lock);
379 young = kvm_age_hva(kvm, address);
380 spin_unlock(&kvm->mmu_lock);
381 srcu_read_unlock(&kvm->srcu, idx);
382
383 if (young)
384 kvm_flush_remote_tlbs(kvm);
385
386 return young;
387}
388
389static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
390 struct mm_struct *mm,
391 unsigned long address)
392{
393 struct kvm *kvm = mmu_notifier_to_kvm(mn);
394 int young, idx;
395
396 idx = srcu_read_lock(&kvm->srcu);
397 spin_lock(&kvm->mmu_lock);
398 young = kvm_test_age_hva(kvm, address);
399 spin_unlock(&kvm->mmu_lock);
400 srcu_read_unlock(&kvm->srcu, idx);
401
402 return young;
403}
404
405static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
406 struct mm_struct *mm)
407{
408 struct kvm *kvm = mmu_notifier_to_kvm(mn);
409 int idx;
410
411 idx = srcu_read_lock(&kvm->srcu);
412 kvm_arch_flush_shadow(kvm);
413 srcu_read_unlock(&kvm->srcu, idx);
414}
415
416static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
417 .invalidate_page = kvm_mmu_notifier_invalidate_page,
418 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
419 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
420 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
421 .test_young = kvm_mmu_notifier_test_young,
422 .change_pte = kvm_mmu_notifier_change_pte,
423 .release = kvm_mmu_notifier_release,
424};
425
426static int kvm_init_mmu_notifier(struct kvm *kvm)
427{
428 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
429 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
430}
431
432#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
433
434static int kvm_init_mmu_notifier(struct kvm *kvm)
435{
436 return 0;
437}
438
439#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
440
441static struct kvm *kvm_create_vm(void)
442{
443 int r, i;
444 struct kvm *kvm = kvm_arch_alloc_vm();
445
446 if (!kvm)
447 return ERR_PTR(-ENOMEM);
448
449 r = kvm_arch_init_vm(kvm);
450 if (r)
451 goto out_err_nodisable;
452
453 r = hardware_enable_all();
454 if (r)
455 goto out_err_nodisable;
456
457#ifdef CONFIG_HAVE_KVM_IRQCHIP
458 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
459 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
460#endif
461
462 r = -ENOMEM;
463 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
464 if (!kvm->memslots)
465 goto out_err_nosrcu;
466 if (init_srcu_struct(&kvm->srcu))
467 goto out_err_nosrcu;
468 for (i = 0; i < KVM_NR_BUSES; i++) {
469 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
470 GFP_KERNEL);
471 if (!kvm->buses[i])
472 goto out_err;
473 }
474
475 spin_lock_init(&kvm->mmu_lock);
476 kvm->mm = current->mm;
477 atomic_inc(&kvm->mm->mm_count);
478 kvm_eventfd_init(kvm);
479 mutex_init(&kvm->lock);
480 mutex_init(&kvm->irq_lock);
481 mutex_init(&kvm->slots_lock);
482 atomic_set(&kvm->users_count, 1);
483
484 r = kvm_init_mmu_notifier(kvm);
485 if (r)
486 goto out_err;
487
488 raw_spin_lock(&kvm_lock);
489 list_add(&kvm->vm_list, &vm_list);
490 raw_spin_unlock(&kvm_lock);
491
492 return kvm;
493
494out_err:
495 cleanup_srcu_struct(&kvm->srcu);
496out_err_nosrcu:
497 hardware_disable_all();
498out_err_nodisable:
499 for (i = 0; i < KVM_NR_BUSES; i++)
500 kfree(kvm->buses[i]);
501 kfree(kvm->memslots);
502 kvm_arch_free_vm(kvm);
503 return ERR_PTR(r);
504}
505
506static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
507{
508 if (!memslot->dirty_bitmap)
509 return;
510
511 if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
512 vfree(memslot->dirty_bitmap_head);
513 else
514 kfree(memslot->dirty_bitmap_head);
515
516 memslot->dirty_bitmap = NULL;
517 memslot->dirty_bitmap_head = NULL;
518}
519
520/*
521 * Free any memory in @free but not in @dont.
522 */
523static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
524 struct kvm_memory_slot *dont)
525{
526 int i;
527
528 if (!dont || free->rmap != dont->rmap)
529 vfree(free->rmap);
530
531 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
532 kvm_destroy_dirty_bitmap(free);
533
534
535 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
536 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
537 vfree(free->lpage_info[i]);
538 free->lpage_info[i] = NULL;
539 }
540 }
541
542 free->npages = 0;
543 free->rmap = NULL;
544}
545
546void kvm_free_physmem(struct kvm *kvm)
547{
548 int i;
549 struct kvm_memslots *slots = kvm->memslots;
550
551 for (i = 0; i < slots->nmemslots; ++i)
552 kvm_free_physmem_slot(&slots->memslots[i], NULL);
553
554 kfree(kvm->memslots);
555}
556
557static void kvm_destroy_vm(struct kvm *kvm)
558{
559 int i;
560 struct mm_struct *mm = kvm->mm;
561
562 kvm_arch_sync_events(kvm);
563 raw_spin_lock(&kvm_lock);
564 list_del(&kvm->vm_list);
565 raw_spin_unlock(&kvm_lock);
566 kvm_free_irq_routing(kvm);
567 for (i = 0; i < KVM_NR_BUSES; i++)
568 kvm_io_bus_destroy(kvm->buses[i]);
569 kvm_coalesced_mmio_free(kvm);
570#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
571 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
572#else
573 kvm_arch_flush_shadow(kvm);
574#endif
575 kvm_arch_destroy_vm(kvm);
576 kvm_free_physmem(kvm);
577 cleanup_srcu_struct(&kvm->srcu);
578 kvm_arch_free_vm(kvm);
579 hardware_disable_all();
580 mmdrop(mm);
581}
582
583void kvm_get_kvm(struct kvm *kvm)
584{
585 atomic_inc(&kvm->users_count);
586}
587EXPORT_SYMBOL_GPL(kvm_get_kvm);
588
589void kvm_put_kvm(struct kvm *kvm)
590{
591 if (atomic_dec_and_test(&kvm->users_count))
592 kvm_destroy_vm(kvm);
593}
594EXPORT_SYMBOL_GPL(kvm_put_kvm);
595
596
597static int kvm_vm_release(struct inode *inode, struct file *filp)
598{
599 struct kvm *kvm = filp->private_data;
600
601 kvm_irqfd_release(kvm);
602
603 kvm_put_kvm(kvm);
604 return 0;
605}
606
607#ifndef CONFIG_S390
608/*
609 * Allocation size is twice as large as the actual dirty bitmap size.
610 * This makes it possible to do double buffering: see x86's
611 * kvm_vm_ioctl_get_dirty_log().
612 */
613static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
614{
615 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
616
617 if (dirty_bytes > PAGE_SIZE)
618 memslot->dirty_bitmap = vzalloc(dirty_bytes);
619 else
620 memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
621
622 if (!memslot->dirty_bitmap)
623 return -ENOMEM;
624
625 memslot->dirty_bitmap_head = memslot->dirty_bitmap;
626 return 0;
627}
628#endif /* !CONFIG_S390 */
629
630/*
631 * Allocate some memory and give it an address in the guest physical address
632 * space.
633 *
634 * Discontiguous memory is allowed, mostly for framebuffers.
635 *
636 * Must be called holding mmap_sem for write.
637 */
638int __kvm_set_memory_region(struct kvm *kvm,
639 struct kvm_userspace_memory_region *mem,
640 int user_alloc)
641{
642 int r;
643 gfn_t base_gfn;
644 unsigned long npages;
645 unsigned long i;
646 struct kvm_memory_slot *memslot;
647 struct kvm_memory_slot old, new;
648 struct kvm_memslots *slots, *old_memslots;
649
650 r = -EINVAL;
651 /* General sanity checks */
652 if (mem->memory_size & (PAGE_SIZE - 1))
653 goto out;
654 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
655 goto out;
656 /* We can read the guest memory with __xxx_user() later on. */
657 if (user_alloc &&
658 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
659 !access_ok(VERIFY_WRITE,
660 (void __user *)(unsigned long)mem->userspace_addr,
661 mem->memory_size)))
662 goto out;
663 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
664 goto out;
665 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
666 goto out;
667
668 memslot = &kvm->memslots->memslots[mem->slot];
669 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
670 npages = mem->memory_size >> PAGE_SHIFT;
671
672 r = -EINVAL;
673 if (npages > KVM_MEM_MAX_NR_PAGES)
674 goto out;
675
676 if (!npages)
677 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
678
679 new = old = *memslot;
680
681 new.id = mem->slot;
682 new.base_gfn = base_gfn;
683 new.npages = npages;
684 new.flags = mem->flags;
685
686 /* Disallow changing a memory slot's size. */
687 r = -EINVAL;
688 if (npages && old.npages && npages != old.npages)
689 goto out_free;
690
691 /* Check for overlaps */
692 r = -EEXIST;
693 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
694 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
695
696 if (s == memslot || !s->npages)
697 continue;
698 if (!((base_gfn + npages <= s->base_gfn) ||
699 (base_gfn >= s->base_gfn + s->npages)))
700 goto out_free;
701 }
702
703 /* Free page dirty bitmap if unneeded */
704 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
705 new.dirty_bitmap = NULL;
706
707 r = -ENOMEM;
708
709 /* Allocate if a slot is being created */
710#ifndef CONFIG_S390
711 if (npages && !new.rmap) {
712 new.rmap = vzalloc(npages * sizeof(*new.rmap));
713
714 if (!new.rmap)
715 goto out_free;
716
717 new.user_alloc = user_alloc;
718 new.userspace_addr = mem->userspace_addr;
719 }
720 if (!npages)
721 goto skip_lpage;
722
723 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
724 unsigned long ugfn;
725 unsigned long j;
726 int lpages;
727 int level = i + 2;
728
729 /* Avoid unused variable warning if no large pages */
730 (void)level;
731
732 if (new.lpage_info[i])
733 continue;
734
735 lpages = 1 + ((base_gfn + npages - 1)
736 >> KVM_HPAGE_GFN_SHIFT(level));
737 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
738
739 new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
740
741 if (!new.lpage_info[i])
742 goto out_free;
743
744 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
745 new.lpage_info[i][0].write_count = 1;
746 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
747 new.lpage_info[i][lpages - 1].write_count = 1;
748 ugfn = new.userspace_addr >> PAGE_SHIFT;
749 /*
750 * If the gfn and userspace address are not aligned wrt each
751 * other, or if explicitly asked to, disable large page
752 * support for this slot
753 */
754 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
755 !largepages_enabled)
756 for (j = 0; j < lpages; ++j)
757 new.lpage_info[i][j].write_count = 1;
758 }
759
760skip_lpage:
761
762 /* Allocate page dirty bitmap if needed */
763 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
764 if (kvm_create_dirty_bitmap(&new) < 0)
765 goto out_free;
766 /* destroy any largepage mappings for dirty tracking */
767 }
768#else /* not defined CONFIG_S390 */
769 new.user_alloc = user_alloc;
770 if (user_alloc)
771 new.userspace_addr = mem->userspace_addr;
772#endif /* not defined CONFIG_S390 */
773
774 if (!npages) {
775 r = -ENOMEM;
776 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
777 if (!slots)
778 goto out_free;
779 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
780 if (mem->slot >= slots->nmemslots)
781 slots->nmemslots = mem->slot + 1;
782 slots->generation++;
783 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
784
785 old_memslots = kvm->memslots;
786 rcu_assign_pointer(kvm->memslots, slots);
787 synchronize_srcu_expedited(&kvm->srcu);
788 /* From this point no new shadow pages pointing to a deleted
789 * memslot will be created.
790 *
791 * validation of sp->gfn happens in:
792 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
793 * - kvm_is_visible_gfn (mmu_check_roots)
794 */
795 kvm_arch_flush_shadow(kvm);
796 kfree(old_memslots);
797 }
798
799 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
800 if (r)
801 goto out_free;
802
803 /* map the pages in iommu page table */
804 if (npages) {
805 r = kvm_iommu_map_pages(kvm, &new);
806 if (r)
807 goto out_free;
808 }
809
810 r = -ENOMEM;
811 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
812 if (!slots)
813 goto out_free;
814 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
815 if (mem->slot >= slots->nmemslots)
816 slots->nmemslots = mem->slot + 1;
817 slots->generation++;
818
819 /* actual memory is freed via old in kvm_free_physmem_slot below */
820 if (!npages) {
821 new.rmap = NULL;
822 new.dirty_bitmap = NULL;
823 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
824 new.lpage_info[i] = NULL;
825 }
826
827 slots->memslots[mem->slot] = new;
828 old_memslots = kvm->memslots;
829 rcu_assign_pointer(kvm->memslots, slots);
830 synchronize_srcu_expedited(&kvm->srcu);
831
832 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
833
834 /*
835 * If the new memory slot is created, we need to clear all
836 * mmio sptes.
837 */
838 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
839 kvm_arch_flush_shadow(kvm);
840
841 kvm_free_physmem_slot(&old, &new);
842 kfree(old_memslots);
843
844 return 0;
845
846out_free:
847 kvm_free_physmem_slot(&new, &old);
848out:
849 return r;
850
851}
852EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
853
854int kvm_set_memory_region(struct kvm *kvm,
855 struct kvm_userspace_memory_region *mem,
856 int user_alloc)
857{
858 int r;
859
860 mutex_lock(&kvm->slots_lock);
861 r = __kvm_set_memory_region(kvm, mem, user_alloc);
862 mutex_unlock(&kvm->slots_lock);
863 return r;
864}
865EXPORT_SYMBOL_GPL(kvm_set_memory_region);
866
867int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
868 struct
869 kvm_userspace_memory_region *mem,
870 int user_alloc)
871{
872 if (mem->slot >= KVM_MEMORY_SLOTS)
873 return -EINVAL;
874 return kvm_set_memory_region(kvm, mem, user_alloc);
875}
876
877int kvm_get_dirty_log(struct kvm *kvm,
878 struct kvm_dirty_log *log, int *is_dirty)
879{
880 struct kvm_memory_slot *memslot;
881 int r, i;
882 unsigned long n;
883 unsigned long any = 0;
884
885 r = -EINVAL;
886 if (log->slot >= KVM_MEMORY_SLOTS)
887 goto out;
888
889 memslot = &kvm->memslots->memslots[log->slot];
890 r = -ENOENT;
891 if (!memslot->dirty_bitmap)
892 goto out;
893
894 n = kvm_dirty_bitmap_bytes(memslot);
895
896 for (i = 0; !any && i < n/sizeof(long); ++i)
897 any = memslot->dirty_bitmap[i];
898
899 r = -EFAULT;
900 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
901 goto out;
902
903 if (any)
904 *is_dirty = 1;
905
906 r = 0;
907out:
908 return r;
909}
910
911void kvm_disable_largepages(void)
912{
913 largepages_enabled = false;
914}
915EXPORT_SYMBOL_GPL(kvm_disable_largepages);
916
917int is_error_page(struct page *page)
918{
919 return page == bad_page || page == hwpoison_page || page == fault_page;
920}
921EXPORT_SYMBOL_GPL(is_error_page);
922
923int is_error_pfn(pfn_t pfn)
924{
925 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
926}
927EXPORT_SYMBOL_GPL(is_error_pfn);
928
929int is_hwpoison_pfn(pfn_t pfn)
930{
931 return pfn == hwpoison_pfn;
932}
933EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
934
935int is_fault_pfn(pfn_t pfn)
936{
937 return pfn == fault_pfn;
938}
939EXPORT_SYMBOL_GPL(is_fault_pfn);
940
941int is_noslot_pfn(pfn_t pfn)
942{
943 return pfn == bad_pfn;
944}
945EXPORT_SYMBOL_GPL(is_noslot_pfn);
946
947int is_invalid_pfn(pfn_t pfn)
948{
949 return pfn == hwpoison_pfn || pfn == fault_pfn;
950}
951EXPORT_SYMBOL_GPL(is_invalid_pfn);
952
953static inline unsigned long bad_hva(void)
954{
955 return PAGE_OFFSET;
956}
957
958int kvm_is_error_hva(unsigned long addr)
959{
960 return addr == bad_hva();
961}
962EXPORT_SYMBOL_GPL(kvm_is_error_hva);
963
964static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
965 gfn_t gfn)
966{
967 int i;
968
969 for (i = 0; i < slots->nmemslots; ++i) {
970 struct kvm_memory_slot *memslot = &slots->memslots[i];
971
972 if (gfn >= memslot->base_gfn
973 && gfn < memslot->base_gfn + memslot->npages)
974 return memslot;
975 }
976 return NULL;
977}
978
979struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
980{
981 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
982}
983EXPORT_SYMBOL_GPL(gfn_to_memslot);
984
985int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
986{
987 int i;
988 struct kvm_memslots *slots = kvm_memslots(kvm);
989
990 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
991 struct kvm_memory_slot *memslot = &slots->memslots[i];
992
993 if (memslot->flags & KVM_MEMSLOT_INVALID)
994 continue;
995
996 if (gfn >= memslot->base_gfn
997 && gfn < memslot->base_gfn + memslot->npages)
998 return 1;
999 }
1000 return 0;
1001}
1002EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1003
1004unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1005{
1006 struct vm_area_struct *vma;
1007 unsigned long addr, size;
1008
1009 size = PAGE_SIZE;
1010
1011 addr = gfn_to_hva(kvm, gfn);
1012 if (kvm_is_error_hva(addr))
1013 return PAGE_SIZE;
1014
1015 down_read(¤t->mm->mmap_sem);
1016 vma = find_vma(current->mm, addr);
1017 if (!vma)
1018 goto out;
1019
1020 size = vma_kernel_pagesize(vma);
1021
1022out:
1023 up_read(¤t->mm->mmap_sem);
1024
1025 return size;
1026}
1027
1028static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1029 gfn_t *nr_pages)
1030{
1031 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1032 return bad_hva();
1033
1034 if (nr_pages)
1035 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1036
1037 return gfn_to_hva_memslot(slot, gfn);
1038}
1039
1040unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1041{
1042 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1043}
1044EXPORT_SYMBOL_GPL(gfn_to_hva);
1045
1046static pfn_t get_fault_pfn(void)
1047{
1048 get_page(fault_page);
1049 return fault_pfn;
1050}
1051
1052int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1053 unsigned long start, int write, struct page **page)
1054{
1055 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1056
1057 if (write)
1058 flags |= FOLL_WRITE;
1059
1060 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1061}
1062
1063static inline int check_user_page_hwpoison(unsigned long addr)
1064{
1065 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1066
1067 rc = __get_user_pages(current, current->mm, addr, 1,
1068 flags, NULL, NULL, NULL);
1069 return rc == -EHWPOISON;
1070}
1071
1072static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1073 bool *async, bool write_fault, bool *writable)
1074{
1075 struct page *page[1];
1076 int npages = 0;
1077 pfn_t pfn;
1078
1079 /* we can do it either atomically or asynchronously, not both */
1080 BUG_ON(atomic && async);
1081
1082 BUG_ON(!write_fault && !writable);
1083
1084 if (writable)
1085 *writable = true;
1086
1087 if (atomic || async)
1088 npages = __get_user_pages_fast(addr, 1, 1, page);
1089
1090 if (unlikely(npages != 1) && !atomic) {
1091 might_sleep();
1092
1093 if (writable)
1094 *writable = write_fault;
1095
1096 if (async) {
1097 down_read(¤t->mm->mmap_sem);
1098 npages = get_user_page_nowait(current, current->mm,
1099 addr, write_fault, page);
1100 up_read(¤t->mm->mmap_sem);
1101 } else
1102 npages = get_user_pages_fast(addr, 1, write_fault,
1103 page);
1104
1105 /* map read fault as writable if possible */
1106 if (unlikely(!write_fault) && npages == 1) {
1107 struct page *wpage[1];
1108
1109 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1110 if (npages == 1) {
1111 *writable = true;
1112 put_page(page[0]);
1113 page[0] = wpage[0];
1114 }
1115 npages = 1;
1116 }
1117 }
1118
1119 if (unlikely(npages != 1)) {
1120 struct vm_area_struct *vma;
1121
1122 if (atomic)
1123 return get_fault_pfn();
1124
1125 down_read(¤t->mm->mmap_sem);
1126 if (npages == -EHWPOISON ||
1127 (!async && check_user_page_hwpoison(addr))) {
1128 up_read(¤t->mm->mmap_sem);
1129 get_page(hwpoison_page);
1130 return page_to_pfn(hwpoison_page);
1131 }
1132
1133 vma = find_vma_intersection(current->mm, addr, addr+1);
1134
1135 if (vma == NULL)
1136 pfn = get_fault_pfn();
1137 else if ((vma->vm_flags & VM_PFNMAP)) {
1138 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1139 vma->vm_pgoff;
1140 BUG_ON(!kvm_is_mmio_pfn(pfn));
1141 } else {
1142 if (async && (vma->vm_flags & VM_WRITE))
1143 *async = true;
1144 pfn = get_fault_pfn();
1145 }
1146 up_read(¤t->mm->mmap_sem);
1147 } else
1148 pfn = page_to_pfn(page[0]);
1149
1150 return pfn;
1151}
1152
1153pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1154{
1155 return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1156}
1157EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1158
1159static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1160 bool write_fault, bool *writable)
1161{
1162 unsigned long addr;
1163
1164 if (async)
1165 *async = false;
1166
1167 addr = gfn_to_hva(kvm, gfn);
1168 if (kvm_is_error_hva(addr)) {
1169 get_page(bad_page);
1170 return page_to_pfn(bad_page);
1171 }
1172
1173 return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1174}
1175
1176pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1177{
1178 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1179}
1180EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1181
1182pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1183 bool write_fault, bool *writable)
1184{
1185 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1186}
1187EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1188
1189pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1190{
1191 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1192}
1193EXPORT_SYMBOL_GPL(gfn_to_pfn);
1194
1195pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1196 bool *writable)
1197{
1198 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1199}
1200EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1201
1202pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1203 struct kvm_memory_slot *slot, gfn_t gfn)
1204{
1205 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1206 return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1207}
1208
1209int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1210 int nr_pages)
1211{
1212 unsigned long addr;
1213 gfn_t entry;
1214
1215 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1216 if (kvm_is_error_hva(addr))
1217 return -1;
1218
1219 if (entry < nr_pages)
1220 return 0;
1221
1222 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1223}
1224EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1225
1226struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1227{
1228 pfn_t pfn;
1229
1230 pfn = gfn_to_pfn(kvm, gfn);
1231 if (!kvm_is_mmio_pfn(pfn))
1232 return pfn_to_page(pfn);
1233
1234 WARN_ON(kvm_is_mmio_pfn(pfn));
1235
1236 get_page(bad_page);
1237 return bad_page;
1238}
1239
1240EXPORT_SYMBOL_GPL(gfn_to_page);
1241
1242void kvm_release_page_clean(struct page *page)
1243{
1244 kvm_release_pfn_clean(page_to_pfn(page));
1245}
1246EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1247
1248void kvm_release_pfn_clean(pfn_t pfn)
1249{
1250 if (!kvm_is_mmio_pfn(pfn))
1251 put_page(pfn_to_page(pfn));
1252}
1253EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1254
1255void kvm_release_page_dirty(struct page *page)
1256{
1257 kvm_release_pfn_dirty(page_to_pfn(page));
1258}
1259EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1260
1261void kvm_release_pfn_dirty(pfn_t pfn)
1262{
1263 kvm_set_pfn_dirty(pfn);
1264 kvm_release_pfn_clean(pfn);
1265}
1266EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1267
1268void kvm_set_page_dirty(struct page *page)
1269{
1270 kvm_set_pfn_dirty(page_to_pfn(page));
1271}
1272EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1273
1274void kvm_set_pfn_dirty(pfn_t pfn)
1275{
1276 if (!kvm_is_mmio_pfn(pfn)) {
1277 struct page *page = pfn_to_page(pfn);
1278 if (!PageReserved(page))
1279 SetPageDirty(page);
1280 }
1281}
1282EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1283
1284void kvm_set_pfn_accessed(pfn_t pfn)
1285{
1286 if (!kvm_is_mmio_pfn(pfn))
1287 mark_page_accessed(pfn_to_page(pfn));
1288}
1289EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1290
1291void kvm_get_pfn(pfn_t pfn)
1292{
1293 if (!kvm_is_mmio_pfn(pfn))
1294 get_page(pfn_to_page(pfn));
1295}
1296EXPORT_SYMBOL_GPL(kvm_get_pfn);
1297
1298static int next_segment(unsigned long len, int offset)
1299{
1300 if (len > PAGE_SIZE - offset)
1301 return PAGE_SIZE - offset;
1302 else
1303 return len;
1304}
1305
1306int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1307 int len)
1308{
1309 int r;
1310 unsigned long addr;
1311
1312 addr = gfn_to_hva(kvm, gfn);
1313 if (kvm_is_error_hva(addr))
1314 return -EFAULT;
1315 r = __copy_from_user(data, (void __user *)addr + offset, len);
1316 if (r)
1317 return -EFAULT;
1318 return 0;
1319}
1320EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1321
1322int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1323{
1324 gfn_t gfn = gpa >> PAGE_SHIFT;
1325 int seg;
1326 int offset = offset_in_page(gpa);
1327 int ret;
1328
1329 while ((seg = next_segment(len, offset)) != 0) {
1330 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1331 if (ret < 0)
1332 return ret;
1333 offset = 0;
1334 len -= seg;
1335 data += seg;
1336 ++gfn;
1337 }
1338 return 0;
1339}
1340EXPORT_SYMBOL_GPL(kvm_read_guest);
1341
1342int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1343 unsigned long len)
1344{
1345 int r;
1346 unsigned long addr;
1347 gfn_t gfn = gpa >> PAGE_SHIFT;
1348 int offset = offset_in_page(gpa);
1349
1350 addr = gfn_to_hva(kvm, gfn);
1351 if (kvm_is_error_hva(addr))
1352 return -EFAULT;
1353 pagefault_disable();
1354 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1355 pagefault_enable();
1356 if (r)
1357 return -EFAULT;
1358 return 0;
1359}
1360EXPORT_SYMBOL(kvm_read_guest_atomic);
1361
1362int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1363 int offset, int len)
1364{
1365 int r;
1366 unsigned long addr;
1367
1368 addr = gfn_to_hva(kvm, gfn);
1369 if (kvm_is_error_hva(addr))
1370 return -EFAULT;
1371 r = __copy_to_user((void __user *)addr + offset, data, len);
1372 if (r)
1373 return -EFAULT;
1374 mark_page_dirty(kvm, gfn);
1375 return 0;
1376}
1377EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1378
1379int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1380 unsigned long len)
1381{
1382 gfn_t gfn = gpa >> PAGE_SHIFT;
1383 int seg;
1384 int offset = offset_in_page(gpa);
1385 int ret;
1386
1387 while ((seg = next_segment(len, offset)) != 0) {
1388 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1389 if (ret < 0)
1390 return ret;
1391 offset = 0;
1392 len -= seg;
1393 data += seg;
1394 ++gfn;
1395 }
1396 return 0;
1397}
1398
1399int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1400 gpa_t gpa)
1401{
1402 struct kvm_memslots *slots = kvm_memslots(kvm);
1403 int offset = offset_in_page(gpa);
1404 gfn_t gfn = gpa >> PAGE_SHIFT;
1405
1406 ghc->gpa = gpa;
1407 ghc->generation = slots->generation;
1408 ghc->memslot = __gfn_to_memslot(slots, gfn);
1409 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1410 if (!kvm_is_error_hva(ghc->hva))
1411 ghc->hva += offset;
1412 else
1413 return -EFAULT;
1414
1415 return 0;
1416}
1417EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1418
1419int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1420 void *data, unsigned long len)
1421{
1422 struct kvm_memslots *slots = kvm_memslots(kvm);
1423 int r;
1424
1425 if (slots->generation != ghc->generation)
1426 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1427
1428 if (kvm_is_error_hva(ghc->hva))
1429 return -EFAULT;
1430
1431 r = __copy_to_user((void __user *)ghc->hva, data, len);
1432 if (r)
1433 return -EFAULT;
1434 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1435
1436 return 0;
1437}
1438EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1439
1440int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1441 void *data, unsigned long len)
1442{
1443 struct kvm_memslots *slots = kvm_memslots(kvm);
1444 int r;
1445
1446 if (slots->generation != ghc->generation)
1447 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1448
1449 if (kvm_is_error_hva(ghc->hva))
1450 return -EFAULT;
1451
1452 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1453 if (r)
1454 return -EFAULT;
1455
1456 return 0;
1457}
1458EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1459
1460int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1461{
1462 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1463 offset, len);
1464}
1465EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1466
1467int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1468{
1469 gfn_t gfn = gpa >> PAGE_SHIFT;
1470 int seg;
1471 int offset = offset_in_page(gpa);
1472 int ret;
1473
1474 while ((seg = next_segment(len, offset)) != 0) {
1475 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1476 if (ret < 0)
1477 return ret;
1478 offset = 0;
1479 len -= seg;
1480 ++gfn;
1481 }
1482 return 0;
1483}
1484EXPORT_SYMBOL_GPL(kvm_clear_guest);
1485
1486void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1487 gfn_t gfn)
1488{
1489 if (memslot && memslot->dirty_bitmap) {
1490 unsigned long rel_gfn = gfn - memslot->base_gfn;
1491
1492 __set_bit_le(rel_gfn, memslot->dirty_bitmap);
1493 }
1494}
1495
1496void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1497{
1498 struct kvm_memory_slot *memslot;
1499
1500 memslot = gfn_to_memslot(kvm, gfn);
1501 mark_page_dirty_in_slot(kvm, memslot, gfn);
1502}
1503
1504/*
1505 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1506 */
1507void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1508{
1509 DEFINE_WAIT(wait);
1510
1511 for (;;) {
1512 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1513
1514 if (kvm_arch_vcpu_runnable(vcpu)) {
1515 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1516 break;
1517 }
1518 if (kvm_cpu_has_pending_timer(vcpu))
1519 break;
1520 if (signal_pending(current))
1521 break;
1522
1523 schedule();
1524 }
1525
1526 finish_wait(&vcpu->wq, &wait);
1527}
1528
1529void kvm_resched(struct kvm_vcpu *vcpu)
1530{
1531 if (!need_resched())
1532 return;
1533 cond_resched();
1534}
1535EXPORT_SYMBOL_GPL(kvm_resched);
1536
1537void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1538{
1539 struct kvm *kvm = me->kvm;
1540 struct kvm_vcpu *vcpu;
1541 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1542 int yielded = 0;
1543 int pass;
1544 int i;
1545
1546 /*
1547 * We boost the priority of a VCPU that is runnable but not
1548 * currently running, because it got preempted by something
1549 * else and called schedule in __vcpu_run. Hopefully that
1550 * VCPU is holding the lock that we need and will release it.
1551 * We approximate round-robin by starting at the last boosted VCPU.
1552 */
1553 for (pass = 0; pass < 2 && !yielded; pass++) {
1554 kvm_for_each_vcpu(i, vcpu, kvm) {
1555 struct task_struct *task = NULL;
1556 struct pid *pid;
1557 if (!pass && i < last_boosted_vcpu) {
1558 i = last_boosted_vcpu;
1559 continue;
1560 } else if (pass && i > last_boosted_vcpu)
1561 break;
1562 if (vcpu == me)
1563 continue;
1564 if (waitqueue_active(&vcpu->wq))
1565 continue;
1566 rcu_read_lock();
1567 pid = rcu_dereference(vcpu->pid);
1568 if (pid)
1569 task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1570 rcu_read_unlock();
1571 if (!task)
1572 continue;
1573 if (task->flags & PF_VCPU) {
1574 put_task_struct(task);
1575 continue;
1576 }
1577 if (yield_to(task, 1)) {
1578 put_task_struct(task);
1579 kvm->last_boosted_vcpu = i;
1580 yielded = 1;
1581 break;
1582 }
1583 put_task_struct(task);
1584 }
1585 }
1586}
1587EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1588
1589static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1590{
1591 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1592 struct page *page;
1593
1594 if (vmf->pgoff == 0)
1595 page = virt_to_page(vcpu->run);
1596#ifdef CONFIG_X86
1597 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1598 page = virt_to_page(vcpu->arch.pio_data);
1599#endif
1600#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1601 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1602 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1603#endif
1604 else
1605 return VM_FAULT_SIGBUS;
1606 get_page(page);
1607 vmf->page = page;
1608 return 0;
1609}
1610
1611static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1612 .fault = kvm_vcpu_fault,
1613};
1614
1615static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1616{
1617 vma->vm_ops = &kvm_vcpu_vm_ops;
1618 return 0;
1619}
1620
1621static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1622{
1623 struct kvm_vcpu *vcpu = filp->private_data;
1624
1625 kvm_put_kvm(vcpu->kvm);
1626 return 0;
1627}
1628
1629static struct file_operations kvm_vcpu_fops = {
1630 .release = kvm_vcpu_release,
1631 .unlocked_ioctl = kvm_vcpu_ioctl,
1632#ifdef CONFIG_COMPAT
1633 .compat_ioctl = kvm_vcpu_compat_ioctl,
1634#endif
1635 .mmap = kvm_vcpu_mmap,
1636 .llseek = noop_llseek,
1637};
1638
1639/*
1640 * Allocates an inode for the vcpu.
1641 */
1642static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1643{
1644 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1645}
1646
1647/*
1648 * Creates some virtual cpus. Good luck creating more than one.
1649 */
1650static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1651{
1652 int r;
1653 struct kvm_vcpu *vcpu, *v;
1654
1655 vcpu = kvm_arch_vcpu_create(kvm, id);
1656 if (IS_ERR(vcpu))
1657 return PTR_ERR(vcpu);
1658
1659 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1660
1661 r = kvm_arch_vcpu_setup(vcpu);
1662 if (r)
1663 goto vcpu_destroy;
1664
1665 mutex_lock(&kvm->lock);
1666 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1667 r = -EINVAL;
1668 goto unlock_vcpu_destroy;
1669 }
1670
1671 kvm_for_each_vcpu(r, v, kvm)
1672 if (v->vcpu_id == id) {
1673 r = -EEXIST;
1674 goto unlock_vcpu_destroy;
1675 }
1676
1677 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1678
1679 /* Now it's all set up, let userspace reach it */
1680 kvm_get_kvm(kvm);
1681 r = create_vcpu_fd(vcpu);
1682 if (r < 0) {
1683 kvm_put_kvm(kvm);
1684 goto unlock_vcpu_destroy;
1685 }
1686
1687 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1688 smp_wmb();
1689 atomic_inc(&kvm->online_vcpus);
1690
1691#ifdef CONFIG_KVM_APIC_ARCHITECTURE
1692 if (kvm->bsp_vcpu_id == id)
1693 kvm->bsp_vcpu = vcpu;
1694#endif
1695 mutex_unlock(&kvm->lock);
1696 return r;
1697
1698unlock_vcpu_destroy:
1699 mutex_unlock(&kvm->lock);
1700vcpu_destroy:
1701 kvm_arch_vcpu_destroy(vcpu);
1702 return r;
1703}
1704
1705static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1706{
1707 if (sigset) {
1708 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1709 vcpu->sigset_active = 1;
1710 vcpu->sigset = *sigset;
1711 } else
1712 vcpu->sigset_active = 0;
1713 return 0;
1714}
1715
1716static long kvm_vcpu_ioctl(struct file *filp,
1717 unsigned int ioctl, unsigned long arg)
1718{
1719 struct kvm_vcpu *vcpu = filp->private_data;
1720 void __user *argp = (void __user *)arg;
1721 int r;
1722 struct kvm_fpu *fpu = NULL;
1723 struct kvm_sregs *kvm_sregs = NULL;
1724
1725 if (vcpu->kvm->mm != current->mm)
1726 return -EIO;
1727
1728#if defined(CONFIG_S390) || defined(CONFIG_PPC)
1729 /*
1730 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1731 * so vcpu_load() would break it.
1732 */
1733 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1734 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1735#endif
1736
1737
1738 vcpu_load(vcpu);
1739 switch (ioctl) {
1740 case KVM_RUN:
1741 r = -EINVAL;
1742 if (arg)
1743 goto out;
1744 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1745 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1746 break;
1747 case KVM_GET_REGS: {
1748 struct kvm_regs *kvm_regs;
1749
1750 r = -ENOMEM;
1751 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1752 if (!kvm_regs)
1753 goto out;
1754 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1755 if (r)
1756 goto out_free1;
1757 r = -EFAULT;
1758 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1759 goto out_free1;
1760 r = 0;
1761out_free1:
1762 kfree(kvm_regs);
1763 break;
1764 }
1765 case KVM_SET_REGS: {
1766 struct kvm_regs *kvm_regs;
1767
1768 r = -ENOMEM;
1769 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1770 if (!kvm_regs)
1771 goto out;
1772 r = -EFAULT;
1773 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1774 goto out_free2;
1775 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1776 if (r)
1777 goto out_free2;
1778 r = 0;
1779out_free2:
1780 kfree(kvm_regs);
1781 break;
1782 }
1783 case KVM_GET_SREGS: {
1784 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1785 r = -ENOMEM;
1786 if (!kvm_sregs)
1787 goto out;
1788 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1789 if (r)
1790 goto out;
1791 r = -EFAULT;
1792 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1793 goto out;
1794 r = 0;
1795 break;
1796 }
1797 case KVM_SET_SREGS: {
1798 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1799 r = -ENOMEM;
1800 if (!kvm_sregs)
1801 goto out;
1802 r = -EFAULT;
1803 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1804 goto out;
1805 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1806 if (r)
1807 goto out;
1808 r = 0;
1809 break;
1810 }
1811 case KVM_GET_MP_STATE: {
1812 struct kvm_mp_state mp_state;
1813
1814 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1815 if (r)
1816 goto out;
1817 r = -EFAULT;
1818 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1819 goto out;
1820 r = 0;
1821 break;
1822 }
1823 case KVM_SET_MP_STATE: {
1824 struct kvm_mp_state mp_state;
1825
1826 r = -EFAULT;
1827 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1828 goto out;
1829 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1830 if (r)
1831 goto out;
1832 r = 0;
1833 break;
1834 }
1835 case KVM_TRANSLATE: {
1836 struct kvm_translation tr;
1837
1838 r = -EFAULT;
1839 if (copy_from_user(&tr, argp, sizeof tr))
1840 goto out;
1841 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1842 if (r)
1843 goto out;
1844 r = -EFAULT;
1845 if (copy_to_user(argp, &tr, sizeof tr))
1846 goto out;
1847 r = 0;
1848 break;
1849 }
1850 case KVM_SET_GUEST_DEBUG: {
1851 struct kvm_guest_debug dbg;
1852
1853 r = -EFAULT;
1854 if (copy_from_user(&dbg, argp, sizeof dbg))
1855 goto out;
1856 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1857 if (r)
1858 goto out;
1859 r = 0;
1860 break;
1861 }
1862 case KVM_SET_SIGNAL_MASK: {
1863 struct kvm_signal_mask __user *sigmask_arg = argp;
1864 struct kvm_signal_mask kvm_sigmask;
1865 sigset_t sigset, *p;
1866
1867 p = NULL;
1868 if (argp) {
1869 r = -EFAULT;
1870 if (copy_from_user(&kvm_sigmask, argp,
1871 sizeof kvm_sigmask))
1872 goto out;
1873 r = -EINVAL;
1874 if (kvm_sigmask.len != sizeof sigset)
1875 goto out;
1876 r = -EFAULT;
1877 if (copy_from_user(&sigset, sigmask_arg->sigset,
1878 sizeof sigset))
1879 goto out;
1880 p = &sigset;
1881 }
1882 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1883 break;
1884 }
1885 case KVM_GET_FPU: {
1886 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1887 r = -ENOMEM;
1888 if (!fpu)
1889 goto out;
1890 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1891 if (r)
1892 goto out;
1893 r = -EFAULT;
1894 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1895 goto out;
1896 r = 0;
1897 break;
1898 }
1899 case KVM_SET_FPU: {
1900 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1901 r = -ENOMEM;
1902 if (!fpu)
1903 goto out;
1904 r = -EFAULT;
1905 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1906 goto out;
1907 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1908 if (r)
1909 goto out;
1910 r = 0;
1911 break;
1912 }
1913 default:
1914 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1915 }
1916out:
1917 vcpu_put(vcpu);
1918 kfree(fpu);
1919 kfree(kvm_sregs);
1920 return r;
1921}
1922
1923#ifdef CONFIG_COMPAT
1924static long kvm_vcpu_compat_ioctl(struct file *filp,
1925 unsigned int ioctl, unsigned long arg)
1926{
1927 struct kvm_vcpu *vcpu = filp->private_data;
1928 void __user *argp = compat_ptr(arg);
1929 int r;
1930
1931 if (vcpu->kvm->mm != current->mm)
1932 return -EIO;
1933
1934 switch (ioctl) {
1935 case KVM_SET_SIGNAL_MASK: {
1936 struct kvm_signal_mask __user *sigmask_arg = argp;
1937 struct kvm_signal_mask kvm_sigmask;
1938 compat_sigset_t csigset;
1939 sigset_t sigset;
1940
1941 if (argp) {
1942 r = -EFAULT;
1943 if (copy_from_user(&kvm_sigmask, argp,
1944 sizeof kvm_sigmask))
1945 goto out;
1946 r = -EINVAL;
1947 if (kvm_sigmask.len != sizeof csigset)
1948 goto out;
1949 r = -EFAULT;
1950 if (copy_from_user(&csigset, sigmask_arg->sigset,
1951 sizeof csigset))
1952 goto out;
1953 }
1954 sigset_from_compat(&sigset, &csigset);
1955 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1956 break;
1957 }
1958 default:
1959 r = kvm_vcpu_ioctl(filp, ioctl, arg);
1960 }
1961
1962out:
1963 return r;
1964}
1965#endif
1966
1967static long kvm_vm_ioctl(struct file *filp,
1968 unsigned int ioctl, unsigned long arg)
1969{
1970 struct kvm *kvm = filp->private_data;
1971 void __user *argp = (void __user *)arg;
1972 int r;
1973
1974 if (kvm->mm != current->mm)
1975 return -EIO;
1976 switch (ioctl) {
1977 case KVM_CREATE_VCPU:
1978 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1979 if (r < 0)
1980 goto out;
1981 break;
1982 case KVM_SET_USER_MEMORY_REGION: {
1983 struct kvm_userspace_memory_region kvm_userspace_mem;
1984
1985 r = -EFAULT;
1986 if (copy_from_user(&kvm_userspace_mem, argp,
1987 sizeof kvm_userspace_mem))
1988 goto out;
1989
1990 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1991 if (r)
1992 goto out;
1993 break;
1994 }
1995 case KVM_GET_DIRTY_LOG: {
1996 struct kvm_dirty_log log;
1997
1998 r = -EFAULT;
1999 if (copy_from_user(&log, argp, sizeof log))
2000 goto out;
2001 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2002 if (r)
2003 goto out;
2004 break;
2005 }
2006#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2007 case KVM_REGISTER_COALESCED_MMIO: {
2008 struct kvm_coalesced_mmio_zone zone;
2009 r = -EFAULT;
2010 if (copy_from_user(&zone, argp, sizeof zone))
2011 goto out;
2012 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2013 if (r)
2014 goto out;
2015 r = 0;
2016 break;
2017 }
2018 case KVM_UNREGISTER_COALESCED_MMIO: {
2019 struct kvm_coalesced_mmio_zone zone;
2020 r = -EFAULT;
2021 if (copy_from_user(&zone, argp, sizeof zone))
2022 goto out;
2023 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2024 if (r)
2025 goto out;
2026 r = 0;
2027 break;
2028 }
2029#endif
2030 case KVM_IRQFD: {
2031 struct kvm_irqfd data;
2032
2033 r = -EFAULT;
2034 if (copy_from_user(&data, argp, sizeof data))
2035 goto out;
2036 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2037 break;
2038 }
2039 case KVM_IOEVENTFD: {
2040 struct kvm_ioeventfd data;
2041
2042 r = -EFAULT;
2043 if (copy_from_user(&data, argp, sizeof data))
2044 goto out;
2045 r = kvm_ioeventfd(kvm, &data);
2046 break;
2047 }
2048#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2049 case KVM_SET_BOOT_CPU_ID:
2050 r = 0;
2051 mutex_lock(&kvm->lock);
2052 if (atomic_read(&kvm->online_vcpus) != 0)
2053 r = -EBUSY;
2054 else
2055 kvm->bsp_vcpu_id = arg;
2056 mutex_unlock(&kvm->lock);
2057 break;
2058#endif
2059 default:
2060 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2061 if (r == -ENOTTY)
2062 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2063 }
2064out:
2065 return r;
2066}
2067
2068#ifdef CONFIG_COMPAT
2069struct compat_kvm_dirty_log {
2070 __u32 slot;
2071 __u32 padding1;
2072 union {
2073 compat_uptr_t dirty_bitmap; /* one bit per page */
2074 __u64 padding2;
2075 };
2076};
2077
2078static long kvm_vm_compat_ioctl(struct file *filp,
2079 unsigned int ioctl, unsigned long arg)
2080{
2081 struct kvm *kvm = filp->private_data;
2082 int r;
2083
2084 if (kvm->mm != current->mm)
2085 return -EIO;
2086 switch (ioctl) {
2087 case KVM_GET_DIRTY_LOG: {
2088 struct compat_kvm_dirty_log compat_log;
2089 struct kvm_dirty_log log;
2090
2091 r = -EFAULT;
2092 if (copy_from_user(&compat_log, (void __user *)arg,
2093 sizeof(compat_log)))
2094 goto out;
2095 log.slot = compat_log.slot;
2096 log.padding1 = compat_log.padding1;
2097 log.padding2 = compat_log.padding2;
2098 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2099
2100 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2101 if (r)
2102 goto out;
2103 break;
2104 }
2105 default:
2106 r = kvm_vm_ioctl(filp, ioctl, arg);
2107 }
2108
2109out:
2110 return r;
2111}
2112#endif
2113
2114static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2115{
2116 struct page *page[1];
2117 unsigned long addr;
2118 int npages;
2119 gfn_t gfn = vmf->pgoff;
2120 struct kvm *kvm = vma->vm_file->private_data;
2121
2122 addr = gfn_to_hva(kvm, gfn);
2123 if (kvm_is_error_hva(addr))
2124 return VM_FAULT_SIGBUS;
2125
2126 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2127 NULL);
2128 if (unlikely(npages != 1))
2129 return VM_FAULT_SIGBUS;
2130
2131 vmf->page = page[0];
2132 return 0;
2133}
2134
2135static const struct vm_operations_struct kvm_vm_vm_ops = {
2136 .fault = kvm_vm_fault,
2137};
2138
2139static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2140{
2141 vma->vm_ops = &kvm_vm_vm_ops;
2142 return 0;
2143}
2144
2145static struct file_operations kvm_vm_fops = {
2146 .release = kvm_vm_release,
2147 .unlocked_ioctl = kvm_vm_ioctl,
2148#ifdef CONFIG_COMPAT
2149 .compat_ioctl = kvm_vm_compat_ioctl,
2150#endif
2151 .mmap = kvm_vm_mmap,
2152 .llseek = noop_llseek,
2153};
2154
2155static int kvm_dev_ioctl_create_vm(void)
2156{
2157 int r;
2158 struct kvm *kvm;
2159
2160 kvm = kvm_create_vm();
2161 if (IS_ERR(kvm))
2162 return PTR_ERR(kvm);
2163#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2164 r = kvm_coalesced_mmio_init(kvm);
2165 if (r < 0) {
2166 kvm_put_kvm(kvm);
2167 return r;
2168 }
2169#endif
2170 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2171 if (r < 0)
2172 kvm_put_kvm(kvm);
2173
2174 return r;
2175}
2176
2177static long kvm_dev_ioctl_check_extension_generic(long arg)
2178{
2179 switch (arg) {
2180 case KVM_CAP_USER_MEMORY:
2181 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2182 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2183#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2184 case KVM_CAP_SET_BOOT_CPU_ID:
2185#endif
2186 case KVM_CAP_INTERNAL_ERROR_DATA:
2187 return 1;
2188#ifdef CONFIG_HAVE_KVM_IRQCHIP
2189 case KVM_CAP_IRQ_ROUTING:
2190 return KVM_MAX_IRQ_ROUTES;
2191#endif
2192 default:
2193 break;
2194 }
2195 return kvm_dev_ioctl_check_extension(arg);
2196}
2197
2198static long kvm_dev_ioctl(struct file *filp,
2199 unsigned int ioctl, unsigned long arg)
2200{
2201 long r = -EINVAL;
2202
2203 switch (ioctl) {
2204 case KVM_GET_API_VERSION:
2205 r = -EINVAL;
2206 if (arg)
2207 goto out;
2208 r = KVM_API_VERSION;
2209 break;
2210 case KVM_CREATE_VM:
2211 r = -EINVAL;
2212 if (arg)
2213 goto out;
2214 r = kvm_dev_ioctl_create_vm();
2215 break;
2216 case KVM_CHECK_EXTENSION:
2217 r = kvm_dev_ioctl_check_extension_generic(arg);
2218 break;
2219 case KVM_GET_VCPU_MMAP_SIZE:
2220 r = -EINVAL;
2221 if (arg)
2222 goto out;
2223 r = PAGE_SIZE; /* struct kvm_run */
2224#ifdef CONFIG_X86
2225 r += PAGE_SIZE; /* pio data page */
2226#endif
2227#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2228 r += PAGE_SIZE; /* coalesced mmio ring page */
2229#endif
2230 break;
2231 case KVM_TRACE_ENABLE:
2232 case KVM_TRACE_PAUSE:
2233 case KVM_TRACE_DISABLE:
2234 r = -EOPNOTSUPP;
2235 break;
2236 default:
2237 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2238 }
2239out:
2240 return r;
2241}
2242
2243static struct file_operations kvm_chardev_ops = {
2244 .unlocked_ioctl = kvm_dev_ioctl,
2245 .compat_ioctl = kvm_dev_ioctl,
2246 .llseek = noop_llseek,
2247};
2248
2249static struct miscdevice kvm_dev = {
2250 KVM_MINOR,
2251 "kvm",
2252 &kvm_chardev_ops,
2253};
2254
2255static void hardware_enable_nolock(void *junk)
2256{
2257 int cpu = raw_smp_processor_id();
2258 int r;
2259
2260 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2261 return;
2262
2263 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2264
2265 r = kvm_arch_hardware_enable(NULL);
2266
2267 if (r) {
2268 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2269 atomic_inc(&hardware_enable_failed);
2270 printk(KERN_INFO "kvm: enabling virtualization on "
2271 "CPU%d failed\n", cpu);
2272 }
2273}
2274
2275static void hardware_enable(void *junk)
2276{
2277 raw_spin_lock(&kvm_lock);
2278 hardware_enable_nolock(junk);
2279 raw_spin_unlock(&kvm_lock);
2280}
2281
2282static void hardware_disable_nolock(void *junk)
2283{
2284 int cpu = raw_smp_processor_id();
2285
2286 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2287 return;
2288 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2289 kvm_arch_hardware_disable(NULL);
2290}
2291
2292static void hardware_disable(void *junk)
2293{
2294 raw_spin_lock(&kvm_lock);
2295 hardware_disable_nolock(junk);
2296 raw_spin_unlock(&kvm_lock);
2297}
2298
2299static void hardware_disable_all_nolock(void)
2300{
2301 BUG_ON(!kvm_usage_count);
2302
2303 kvm_usage_count--;
2304 if (!kvm_usage_count)
2305 on_each_cpu(hardware_disable_nolock, NULL, 1);
2306}
2307
2308static void hardware_disable_all(void)
2309{
2310 raw_spin_lock(&kvm_lock);
2311 hardware_disable_all_nolock();
2312 raw_spin_unlock(&kvm_lock);
2313}
2314
2315static int hardware_enable_all(void)
2316{
2317 int r = 0;
2318
2319 raw_spin_lock(&kvm_lock);
2320
2321 kvm_usage_count++;
2322 if (kvm_usage_count == 1) {
2323 atomic_set(&hardware_enable_failed, 0);
2324 on_each_cpu(hardware_enable_nolock, NULL, 1);
2325
2326 if (atomic_read(&hardware_enable_failed)) {
2327 hardware_disable_all_nolock();
2328 r = -EBUSY;
2329 }
2330 }
2331
2332 raw_spin_unlock(&kvm_lock);
2333
2334 return r;
2335}
2336
2337static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2338 void *v)
2339{
2340 int cpu = (long)v;
2341
2342 if (!kvm_usage_count)
2343 return NOTIFY_OK;
2344
2345 val &= ~CPU_TASKS_FROZEN;
2346 switch (val) {
2347 case CPU_DYING:
2348 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2349 cpu);
2350 hardware_disable(NULL);
2351 break;
2352 case CPU_STARTING:
2353 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2354 cpu);
2355 hardware_enable(NULL);
2356 break;
2357 }
2358 return NOTIFY_OK;
2359}
2360
2361
2362asmlinkage void kvm_spurious_fault(void)
2363{
2364 /* Fault while not rebooting. We want the trace. */
2365 BUG();
2366}
2367EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2368
2369static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2370 void *v)
2371{
2372 /*
2373 * Some (well, at least mine) BIOSes hang on reboot if
2374 * in vmx root mode.
2375 *
2376 * And Intel TXT required VMX off for all cpu when system shutdown.
2377 */
2378 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2379 kvm_rebooting = true;
2380 on_each_cpu(hardware_disable_nolock, NULL, 1);
2381 return NOTIFY_OK;
2382}
2383
2384static struct notifier_block kvm_reboot_notifier = {
2385 .notifier_call = kvm_reboot,
2386 .priority = 0,
2387};
2388
2389static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2390{
2391 int i;
2392
2393 for (i = 0; i < bus->dev_count; i++) {
2394 struct kvm_io_device *pos = bus->devs[i];
2395
2396 kvm_iodevice_destructor(pos);
2397 }
2398 kfree(bus);
2399}
2400
2401/* kvm_io_bus_write - called under kvm->slots_lock */
2402int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2403 int len, const void *val)
2404{
2405 int i;
2406 struct kvm_io_bus *bus;
2407
2408 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2409 for (i = 0; i < bus->dev_count; i++)
2410 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2411 return 0;
2412 return -EOPNOTSUPP;
2413}
2414
2415/* kvm_io_bus_read - called under kvm->slots_lock */
2416int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2417 int len, void *val)
2418{
2419 int i;
2420 struct kvm_io_bus *bus;
2421
2422 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2423 for (i = 0; i < bus->dev_count; i++)
2424 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2425 return 0;
2426 return -EOPNOTSUPP;
2427}
2428
2429/* Caller must hold slots_lock. */
2430int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2431 struct kvm_io_device *dev)
2432{
2433 struct kvm_io_bus *new_bus, *bus;
2434
2435 bus = kvm->buses[bus_idx];
2436 if (bus->dev_count > NR_IOBUS_DEVS-1)
2437 return -ENOSPC;
2438
2439 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2440 if (!new_bus)
2441 return -ENOMEM;
2442 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2443 new_bus->devs[new_bus->dev_count++] = dev;
2444 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2445 synchronize_srcu_expedited(&kvm->srcu);
2446 kfree(bus);
2447
2448 return 0;
2449}
2450
2451/* Caller must hold slots_lock. */
2452int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2453 struct kvm_io_device *dev)
2454{
2455 int i, r;
2456 struct kvm_io_bus *new_bus, *bus;
2457
2458 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2459 if (!new_bus)
2460 return -ENOMEM;
2461
2462 bus = kvm->buses[bus_idx];
2463 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2464
2465 r = -ENOENT;
2466 for (i = 0; i < new_bus->dev_count; i++)
2467 if (new_bus->devs[i] == dev) {
2468 r = 0;
2469 new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2470 break;
2471 }
2472
2473 if (r) {
2474 kfree(new_bus);
2475 return r;
2476 }
2477
2478 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2479 synchronize_srcu_expedited(&kvm->srcu);
2480 kfree(bus);
2481 return r;
2482}
2483
2484static struct notifier_block kvm_cpu_notifier = {
2485 .notifier_call = kvm_cpu_hotplug,
2486};
2487
2488static int vm_stat_get(void *_offset, u64 *val)
2489{
2490 unsigned offset = (long)_offset;
2491 struct kvm *kvm;
2492
2493 *val = 0;
2494 raw_spin_lock(&kvm_lock);
2495 list_for_each_entry(kvm, &vm_list, vm_list)
2496 *val += *(u32 *)((void *)kvm + offset);
2497 raw_spin_unlock(&kvm_lock);
2498 return 0;
2499}
2500
2501DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2502
2503static int vcpu_stat_get(void *_offset, u64 *val)
2504{
2505 unsigned offset = (long)_offset;
2506 struct kvm *kvm;
2507 struct kvm_vcpu *vcpu;
2508 int i;
2509
2510 *val = 0;
2511 raw_spin_lock(&kvm_lock);
2512 list_for_each_entry(kvm, &vm_list, vm_list)
2513 kvm_for_each_vcpu(i, vcpu, kvm)
2514 *val += *(u32 *)((void *)vcpu + offset);
2515
2516 raw_spin_unlock(&kvm_lock);
2517 return 0;
2518}
2519
2520DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2521
2522static const struct file_operations *stat_fops[] = {
2523 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2524 [KVM_STAT_VM] = &vm_stat_fops,
2525};
2526
2527static void kvm_init_debug(void)
2528{
2529 struct kvm_stats_debugfs_item *p;
2530
2531 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2532 for (p = debugfs_entries; p->name; ++p)
2533 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2534 (void *)(long)p->offset,
2535 stat_fops[p->kind]);
2536}
2537
2538static void kvm_exit_debug(void)
2539{
2540 struct kvm_stats_debugfs_item *p;
2541
2542 for (p = debugfs_entries; p->name; ++p)
2543 debugfs_remove(p->dentry);
2544 debugfs_remove(kvm_debugfs_dir);
2545}
2546
2547static int kvm_suspend(void)
2548{
2549 if (kvm_usage_count)
2550 hardware_disable_nolock(NULL);
2551 return 0;
2552}
2553
2554static void kvm_resume(void)
2555{
2556 if (kvm_usage_count) {
2557 WARN_ON(raw_spin_is_locked(&kvm_lock));
2558 hardware_enable_nolock(NULL);
2559 }
2560}
2561
2562static struct syscore_ops kvm_syscore_ops = {
2563 .suspend = kvm_suspend,
2564 .resume = kvm_resume,
2565};
2566
2567struct page *bad_page;
2568pfn_t bad_pfn;
2569
2570static inline
2571struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2572{
2573 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2574}
2575
2576static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2577{
2578 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2579
2580 kvm_arch_vcpu_load(vcpu, cpu);
2581}
2582
2583static void kvm_sched_out(struct preempt_notifier *pn,
2584 struct task_struct *next)
2585{
2586 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2587
2588 kvm_arch_vcpu_put(vcpu);
2589}
2590
2591int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2592 struct module *module)
2593{
2594 int r;
2595 int cpu;
2596
2597 r = kvm_arch_init(opaque);
2598 if (r)
2599 goto out_fail;
2600
2601 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2602
2603 if (bad_page == NULL) {
2604 r = -ENOMEM;
2605 goto out;
2606 }
2607
2608 bad_pfn = page_to_pfn(bad_page);
2609
2610 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2611
2612 if (hwpoison_page == NULL) {
2613 r = -ENOMEM;
2614 goto out_free_0;
2615 }
2616
2617 hwpoison_pfn = page_to_pfn(hwpoison_page);
2618
2619 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2620
2621 if (fault_page == NULL) {
2622 r = -ENOMEM;
2623 goto out_free_0;
2624 }
2625
2626 fault_pfn = page_to_pfn(fault_page);
2627
2628 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2629 r = -ENOMEM;
2630 goto out_free_0;
2631 }
2632
2633 r = kvm_arch_hardware_setup();
2634 if (r < 0)
2635 goto out_free_0a;
2636
2637 for_each_online_cpu(cpu) {
2638 smp_call_function_single(cpu,
2639 kvm_arch_check_processor_compat,
2640 &r, 1);
2641 if (r < 0)
2642 goto out_free_1;
2643 }
2644
2645 r = register_cpu_notifier(&kvm_cpu_notifier);
2646 if (r)
2647 goto out_free_2;
2648 register_reboot_notifier(&kvm_reboot_notifier);
2649
2650 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2651 if (!vcpu_align)
2652 vcpu_align = __alignof__(struct kvm_vcpu);
2653 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2654 0, NULL);
2655 if (!kvm_vcpu_cache) {
2656 r = -ENOMEM;
2657 goto out_free_3;
2658 }
2659
2660 r = kvm_async_pf_init();
2661 if (r)
2662 goto out_free;
2663
2664 kvm_chardev_ops.owner = module;
2665 kvm_vm_fops.owner = module;
2666 kvm_vcpu_fops.owner = module;
2667
2668 r = misc_register(&kvm_dev);
2669 if (r) {
2670 printk(KERN_ERR "kvm: misc device register failed\n");
2671 goto out_unreg;
2672 }
2673
2674 register_syscore_ops(&kvm_syscore_ops);
2675
2676 kvm_preempt_ops.sched_in = kvm_sched_in;
2677 kvm_preempt_ops.sched_out = kvm_sched_out;
2678
2679 kvm_init_debug();
2680
2681 return 0;
2682
2683out_unreg:
2684 kvm_async_pf_deinit();
2685out_free:
2686 kmem_cache_destroy(kvm_vcpu_cache);
2687out_free_3:
2688 unregister_reboot_notifier(&kvm_reboot_notifier);
2689 unregister_cpu_notifier(&kvm_cpu_notifier);
2690out_free_2:
2691out_free_1:
2692 kvm_arch_hardware_unsetup();
2693out_free_0a:
2694 free_cpumask_var(cpus_hardware_enabled);
2695out_free_0:
2696 if (fault_page)
2697 __free_page(fault_page);
2698 if (hwpoison_page)
2699 __free_page(hwpoison_page);
2700 __free_page(bad_page);
2701out:
2702 kvm_arch_exit();
2703out_fail:
2704 return r;
2705}
2706EXPORT_SYMBOL_GPL(kvm_init);
2707
2708void kvm_exit(void)
2709{
2710 kvm_exit_debug();
2711 misc_deregister(&kvm_dev);
2712 kmem_cache_destroy(kvm_vcpu_cache);
2713 kvm_async_pf_deinit();
2714 unregister_syscore_ops(&kvm_syscore_ops);
2715 unregister_reboot_notifier(&kvm_reboot_notifier);
2716 unregister_cpu_notifier(&kvm_cpu_notifier);
2717 on_each_cpu(hardware_disable_nolock, NULL, 1);
2718 kvm_arch_hardware_unsetup();
2719 kvm_arch_exit();
2720 free_cpumask_var(cpus_hardware_enabled);
2721 __free_page(hwpoison_page);
2722 __free_page(bad_page);
2723}
2724EXPORT_SYMBOL_GPL(kvm_exit);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16#include <kvm/iodev.h>
17
18#include <linux/kvm_host.h>
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
22#include <linux/percpu.h>
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
26#include <linux/reboot.h>
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
30#include <linux/syscore_ops.h>
31#include <linux/cpu.h>
32#include <linux/sched/signal.h>
33#include <linux/sched/mm.h>
34#include <linux/sched/stat.h>
35#include <linux/cpumask.h>
36#include <linux/smp.h>
37#include <linux/anon_inodes.h>
38#include <linux/profile.h>
39#include <linux/kvm_para.h>
40#include <linux/pagemap.h>
41#include <linux/mman.h>
42#include <linux/swap.h>
43#include <linux/bitops.h>
44#include <linux/spinlock.h>
45#include <linux/compat.h>
46#include <linux/srcu.h>
47#include <linux/hugetlb.h>
48#include <linux/slab.h>
49#include <linux/sort.h>
50#include <linux/bsearch.h>
51#include <linux/io.h>
52#include <linux/lockdep.h>
53#include <linux/kthread.h>
54
55#include <asm/processor.h>
56#include <asm/ioctl.h>
57#include <linux/uaccess.h>
58
59#include "coalesced_mmio.h"
60#include "async_pf.h"
61#include "vfio.h"
62
63#define CREATE_TRACE_POINTS
64#include <trace/events/kvm.h>
65
66/* Worst case buffer size needed for holding an integer. */
67#define ITOA_MAX_LEN 12
68
69MODULE_AUTHOR("Qumranet");
70MODULE_LICENSE("GPL");
71
72/* Architectures should define their poll value according to the halt latency */
73unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74module_param(halt_poll_ns, uint, 0644);
75EXPORT_SYMBOL_GPL(halt_poll_ns);
76
77/* Default doubles per-vcpu halt_poll_ns. */
78unsigned int halt_poll_ns_grow = 2;
79module_param(halt_poll_ns_grow, uint, 0644);
80EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81
82/* The start value to grow halt_poll_ns from */
83unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84module_param(halt_poll_ns_grow_start, uint, 0644);
85EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86
87/* Default resets per-vcpu halt_poll_ns . */
88unsigned int halt_poll_ns_shrink;
89module_param(halt_poll_ns_shrink, uint, 0644);
90EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91
92/*
93 * Ordering of locks:
94 *
95 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96 */
97
98DEFINE_MUTEX(kvm_lock);
99static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100LIST_HEAD(vm_list);
101
102static cpumask_var_t cpus_hardware_enabled;
103static int kvm_usage_count;
104static atomic_t hardware_enable_failed;
105
106static struct kmem_cache *kvm_vcpu_cache;
107
108static __read_mostly struct preempt_ops kvm_preempt_ops;
109static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110
111struct dentry *kvm_debugfs_dir;
112EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113
114static int kvm_debugfs_num_entries;
115static const struct file_operations stat_fops_per_vm;
116
117static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119#ifdef CONFIG_KVM_COMPAT
120static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121 unsigned long arg);
122#define KVM_COMPAT(c) .compat_ioctl = (c)
123#else
124/*
125 * For architectures that don't implement a compat infrastructure,
126 * adopt a double line of defense:
127 * - Prevent a compat task from opening /dev/kvm
128 * - If the open has been done by a 64bit task, and the KVM fd
129 * passed to a compat task, let the ioctls fail.
130 */
131static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
132 unsigned long arg) { return -EINVAL; }
133
134static int kvm_no_compat_open(struct inode *inode, struct file *file)
135{
136 return is_compat_task() ? -ENODEV : 0;
137}
138#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
139 .open = kvm_no_compat_open
140#endif
141static int hardware_enable_all(void);
142static void hardware_disable_all(void);
143
144static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
145
146static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
147
148__visible bool kvm_rebooting;
149EXPORT_SYMBOL_GPL(kvm_rebooting);
150
151#define KVM_EVENT_CREATE_VM 0
152#define KVM_EVENT_DESTROY_VM 1
153static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154static unsigned long long kvm_createvm_count;
155static unsigned long long kvm_active_vms;
156
157__weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158 unsigned long start, unsigned long end)
159{
160}
161
162bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
163{
164 /*
165 * The metadata used by is_zone_device_page() to determine whether or
166 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
167 * the device has been pinned, e.g. by get_user_pages(). WARN if the
168 * page_count() is zero to help detect bad usage of this helper.
169 */
170 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
171 return false;
172
173 return is_zone_device_page(pfn_to_page(pfn));
174}
175
176bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
177{
178 /*
179 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
180 * perspective they are "normal" pages, albeit with slightly different
181 * usage rules.
182 */
183 if (pfn_valid(pfn))
184 return PageReserved(pfn_to_page(pfn)) &&
185 !is_zero_pfn(pfn) &&
186 !kvm_is_zone_device_pfn(pfn);
187
188 return true;
189}
190
191bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
192{
193 struct page *page = pfn_to_page(pfn);
194
195 if (!PageTransCompoundMap(page))
196 return false;
197
198 return is_transparent_hugepage(compound_head(page));
199}
200
201/*
202 * Switches to specified vcpu, until a matching vcpu_put()
203 */
204void vcpu_load(struct kvm_vcpu *vcpu)
205{
206 int cpu = get_cpu();
207
208 __this_cpu_write(kvm_running_vcpu, vcpu);
209 preempt_notifier_register(&vcpu->preempt_notifier);
210 kvm_arch_vcpu_load(vcpu, cpu);
211 put_cpu();
212}
213EXPORT_SYMBOL_GPL(vcpu_load);
214
215void vcpu_put(struct kvm_vcpu *vcpu)
216{
217 preempt_disable();
218 kvm_arch_vcpu_put(vcpu);
219 preempt_notifier_unregister(&vcpu->preempt_notifier);
220 __this_cpu_write(kvm_running_vcpu, NULL);
221 preempt_enable();
222}
223EXPORT_SYMBOL_GPL(vcpu_put);
224
225/* TODO: merge with kvm_arch_vcpu_should_kick */
226static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
227{
228 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
229
230 /*
231 * We need to wait for the VCPU to reenable interrupts and get out of
232 * READING_SHADOW_PAGE_TABLES mode.
233 */
234 if (req & KVM_REQUEST_WAIT)
235 return mode != OUTSIDE_GUEST_MODE;
236
237 /*
238 * Need to kick a running VCPU, but otherwise there is nothing to do.
239 */
240 return mode == IN_GUEST_MODE;
241}
242
243static void ack_flush(void *_completed)
244{
245}
246
247static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
248{
249 if (unlikely(!cpus))
250 cpus = cpu_online_mask;
251
252 if (cpumask_empty(cpus))
253 return false;
254
255 smp_call_function_many(cpus, ack_flush, NULL, wait);
256 return true;
257}
258
259bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
260 struct kvm_vcpu *except,
261 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
262{
263 int i, cpu, me;
264 struct kvm_vcpu *vcpu;
265 bool called;
266
267 me = get_cpu();
268
269 kvm_for_each_vcpu(i, vcpu, kvm) {
270 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
271 vcpu == except)
272 continue;
273
274 kvm_make_request(req, vcpu);
275 cpu = vcpu->cpu;
276
277 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
278 continue;
279
280 if (tmp != NULL && cpu != -1 && cpu != me &&
281 kvm_request_needs_ipi(vcpu, req))
282 __cpumask_set_cpu(cpu, tmp);
283 }
284
285 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
286 put_cpu();
287
288 return called;
289}
290
291bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
292 struct kvm_vcpu *except)
293{
294 cpumask_var_t cpus;
295 bool called;
296
297 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
298
299 called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
300
301 free_cpumask_var(cpus);
302 return called;
303}
304
305bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
306{
307 return kvm_make_all_cpus_request_except(kvm, req, NULL);
308}
309
310#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
311void kvm_flush_remote_tlbs(struct kvm *kvm)
312{
313 /*
314 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
315 * kvm_make_all_cpus_request.
316 */
317 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
318
319 /*
320 * We want to publish modifications to the page tables before reading
321 * mode. Pairs with a memory barrier in arch-specific code.
322 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
323 * and smp_mb in walk_shadow_page_lockless_begin/end.
324 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
325 *
326 * There is already an smp_mb__after_atomic() before
327 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
328 * barrier here.
329 */
330 if (!kvm_arch_flush_remote_tlb(kvm)
331 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
332 ++kvm->stat.remote_tlb_flush;
333 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
334}
335EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
336#endif
337
338void kvm_reload_remote_mmus(struct kvm *kvm)
339{
340 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
341}
342
343#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
344static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
345 gfp_t gfp_flags)
346{
347 gfp_flags |= mc->gfp_zero;
348
349 if (mc->kmem_cache)
350 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
351 else
352 return (void *)__get_free_page(gfp_flags);
353}
354
355int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
356{
357 void *obj;
358
359 if (mc->nobjs >= min)
360 return 0;
361 while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
362 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
363 if (!obj)
364 return mc->nobjs >= min ? 0 : -ENOMEM;
365 mc->objects[mc->nobjs++] = obj;
366 }
367 return 0;
368}
369
370int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
371{
372 return mc->nobjs;
373}
374
375void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
376{
377 while (mc->nobjs) {
378 if (mc->kmem_cache)
379 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
380 else
381 free_page((unsigned long)mc->objects[--mc->nobjs]);
382 }
383}
384
385void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
386{
387 void *p;
388
389 if (WARN_ON(!mc->nobjs))
390 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
391 else
392 p = mc->objects[--mc->nobjs];
393 BUG_ON(!p);
394 return p;
395}
396#endif
397
398static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
399{
400 mutex_init(&vcpu->mutex);
401 vcpu->cpu = -1;
402 vcpu->kvm = kvm;
403 vcpu->vcpu_id = id;
404 vcpu->pid = NULL;
405 rcuwait_init(&vcpu->wait);
406 kvm_async_pf_vcpu_init(vcpu);
407
408 vcpu->pre_pcpu = -1;
409 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
410
411 kvm_vcpu_set_in_spin_loop(vcpu, false);
412 kvm_vcpu_set_dy_eligible(vcpu, false);
413 vcpu->preempted = false;
414 vcpu->ready = false;
415 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
416}
417
418void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
419{
420 kvm_arch_vcpu_destroy(vcpu);
421
422 /*
423 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
424 * the vcpu->pid pointer, and at destruction time all file descriptors
425 * are already gone.
426 */
427 put_pid(rcu_dereference_protected(vcpu->pid, 1));
428
429 free_page((unsigned long)vcpu->run);
430 kmem_cache_free(kvm_vcpu_cache, vcpu);
431}
432EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
433
434#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
435static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
436{
437 return container_of(mn, struct kvm, mmu_notifier);
438}
439
440static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
441 struct mm_struct *mm,
442 unsigned long start, unsigned long end)
443{
444 struct kvm *kvm = mmu_notifier_to_kvm(mn);
445 int idx;
446
447 idx = srcu_read_lock(&kvm->srcu);
448 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
449 srcu_read_unlock(&kvm->srcu, idx);
450}
451
452static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
453 struct mm_struct *mm,
454 unsigned long address,
455 pte_t pte)
456{
457 struct kvm *kvm = mmu_notifier_to_kvm(mn);
458 int idx;
459
460 idx = srcu_read_lock(&kvm->srcu);
461 spin_lock(&kvm->mmu_lock);
462 kvm->mmu_notifier_seq++;
463
464 if (kvm_set_spte_hva(kvm, address, pte))
465 kvm_flush_remote_tlbs(kvm);
466
467 spin_unlock(&kvm->mmu_lock);
468 srcu_read_unlock(&kvm->srcu, idx);
469}
470
471static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
472 const struct mmu_notifier_range *range)
473{
474 struct kvm *kvm = mmu_notifier_to_kvm(mn);
475 int need_tlb_flush = 0, idx;
476
477 idx = srcu_read_lock(&kvm->srcu);
478 spin_lock(&kvm->mmu_lock);
479 /*
480 * The count increase must become visible at unlock time as no
481 * spte can be established without taking the mmu_lock and
482 * count is also read inside the mmu_lock critical section.
483 */
484 kvm->mmu_notifier_count++;
485 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
486 range->flags);
487 need_tlb_flush |= kvm->tlbs_dirty;
488 /* we've to flush the tlb before the pages can be freed */
489 if (need_tlb_flush)
490 kvm_flush_remote_tlbs(kvm);
491
492 spin_unlock(&kvm->mmu_lock);
493 srcu_read_unlock(&kvm->srcu, idx);
494
495 return 0;
496}
497
498static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
499 const struct mmu_notifier_range *range)
500{
501 struct kvm *kvm = mmu_notifier_to_kvm(mn);
502
503 spin_lock(&kvm->mmu_lock);
504 /*
505 * This sequence increase will notify the kvm page fault that
506 * the page that is going to be mapped in the spte could have
507 * been freed.
508 */
509 kvm->mmu_notifier_seq++;
510 smp_wmb();
511 /*
512 * The above sequence increase must be visible before the
513 * below count decrease, which is ensured by the smp_wmb above
514 * in conjunction with the smp_rmb in mmu_notifier_retry().
515 */
516 kvm->mmu_notifier_count--;
517 spin_unlock(&kvm->mmu_lock);
518
519 BUG_ON(kvm->mmu_notifier_count < 0);
520}
521
522static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
523 struct mm_struct *mm,
524 unsigned long start,
525 unsigned long end)
526{
527 struct kvm *kvm = mmu_notifier_to_kvm(mn);
528 int young, idx;
529
530 idx = srcu_read_lock(&kvm->srcu);
531 spin_lock(&kvm->mmu_lock);
532
533 young = kvm_age_hva(kvm, start, end);
534 if (young)
535 kvm_flush_remote_tlbs(kvm);
536
537 spin_unlock(&kvm->mmu_lock);
538 srcu_read_unlock(&kvm->srcu, idx);
539
540 return young;
541}
542
543static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
544 struct mm_struct *mm,
545 unsigned long start,
546 unsigned long end)
547{
548 struct kvm *kvm = mmu_notifier_to_kvm(mn);
549 int young, idx;
550
551 idx = srcu_read_lock(&kvm->srcu);
552 spin_lock(&kvm->mmu_lock);
553 /*
554 * Even though we do not flush TLB, this will still adversely
555 * affect performance on pre-Haswell Intel EPT, where there is
556 * no EPT Access Bit to clear so that we have to tear down EPT
557 * tables instead. If we find this unacceptable, we can always
558 * add a parameter to kvm_age_hva so that it effectively doesn't
559 * do anything on clear_young.
560 *
561 * Also note that currently we never issue secondary TLB flushes
562 * from clear_young, leaving this job up to the regular system
563 * cadence. If we find this inaccurate, we might come up with a
564 * more sophisticated heuristic later.
565 */
566 young = kvm_age_hva(kvm, start, end);
567 spin_unlock(&kvm->mmu_lock);
568 srcu_read_unlock(&kvm->srcu, idx);
569
570 return young;
571}
572
573static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
574 struct mm_struct *mm,
575 unsigned long address)
576{
577 struct kvm *kvm = mmu_notifier_to_kvm(mn);
578 int young, idx;
579
580 idx = srcu_read_lock(&kvm->srcu);
581 spin_lock(&kvm->mmu_lock);
582 young = kvm_test_age_hva(kvm, address);
583 spin_unlock(&kvm->mmu_lock);
584 srcu_read_unlock(&kvm->srcu, idx);
585
586 return young;
587}
588
589static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
590 struct mm_struct *mm)
591{
592 struct kvm *kvm = mmu_notifier_to_kvm(mn);
593 int idx;
594
595 idx = srcu_read_lock(&kvm->srcu);
596 kvm_arch_flush_shadow_all(kvm);
597 srcu_read_unlock(&kvm->srcu, idx);
598}
599
600static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
601 .invalidate_range = kvm_mmu_notifier_invalidate_range,
602 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
603 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
604 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
605 .clear_young = kvm_mmu_notifier_clear_young,
606 .test_young = kvm_mmu_notifier_test_young,
607 .change_pte = kvm_mmu_notifier_change_pte,
608 .release = kvm_mmu_notifier_release,
609};
610
611static int kvm_init_mmu_notifier(struct kvm *kvm)
612{
613 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
614 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
615}
616
617#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
618
619static int kvm_init_mmu_notifier(struct kvm *kvm)
620{
621 return 0;
622}
623
624#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
625
626static struct kvm_memslots *kvm_alloc_memslots(void)
627{
628 int i;
629 struct kvm_memslots *slots;
630
631 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
632 if (!slots)
633 return NULL;
634
635 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
636 slots->id_to_index[i] = -1;
637
638 return slots;
639}
640
641static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
642{
643 if (!memslot->dirty_bitmap)
644 return;
645
646 kvfree(memslot->dirty_bitmap);
647 memslot->dirty_bitmap = NULL;
648}
649
650static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
651{
652 kvm_destroy_dirty_bitmap(slot);
653
654 kvm_arch_free_memslot(kvm, slot);
655
656 slot->flags = 0;
657 slot->npages = 0;
658}
659
660static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
661{
662 struct kvm_memory_slot *memslot;
663
664 if (!slots)
665 return;
666
667 kvm_for_each_memslot(memslot, slots)
668 kvm_free_memslot(kvm, memslot);
669
670 kvfree(slots);
671}
672
673static void kvm_destroy_vm_debugfs(struct kvm *kvm)
674{
675 int i;
676
677 if (!kvm->debugfs_dentry)
678 return;
679
680 debugfs_remove_recursive(kvm->debugfs_dentry);
681
682 if (kvm->debugfs_stat_data) {
683 for (i = 0; i < kvm_debugfs_num_entries; i++)
684 kfree(kvm->debugfs_stat_data[i]);
685 kfree(kvm->debugfs_stat_data);
686 }
687}
688
689static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
690{
691 char dir_name[ITOA_MAX_LEN * 2];
692 struct kvm_stat_data *stat_data;
693 struct kvm_stats_debugfs_item *p;
694
695 if (!debugfs_initialized())
696 return 0;
697
698 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
699 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
700
701 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
702 sizeof(*kvm->debugfs_stat_data),
703 GFP_KERNEL_ACCOUNT);
704 if (!kvm->debugfs_stat_data)
705 return -ENOMEM;
706
707 for (p = debugfs_entries; p->name; p++) {
708 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
709 if (!stat_data)
710 return -ENOMEM;
711
712 stat_data->kvm = kvm;
713 stat_data->dbgfs_item = p;
714 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
715 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
716 kvm->debugfs_dentry, stat_data,
717 &stat_fops_per_vm);
718 }
719 return 0;
720}
721
722/*
723 * Called after the VM is otherwise initialized, but just before adding it to
724 * the vm_list.
725 */
726int __weak kvm_arch_post_init_vm(struct kvm *kvm)
727{
728 return 0;
729}
730
731/*
732 * Called just after removing the VM from the vm_list, but before doing any
733 * other destruction.
734 */
735void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
736{
737}
738
739static struct kvm *kvm_create_vm(unsigned long type)
740{
741 struct kvm *kvm = kvm_arch_alloc_vm();
742 int r = -ENOMEM;
743 int i;
744
745 if (!kvm)
746 return ERR_PTR(-ENOMEM);
747
748 spin_lock_init(&kvm->mmu_lock);
749 mmgrab(current->mm);
750 kvm->mm = current->mm;
751 kvm_eventfd_init(kvm);
752 mutex_init(&kvm->lock);
753 mutex_init(&kvm->irq_lock);
754 mutex_init(&kvm->slots_lock);
755 INIT_LIST_HEAD(&kvm->devices);
756
757 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
758
759 if (init_srcu_struct(&kvm->srcu))
760 goto out_err_no_srcu;
761 if (init_srcu_struct(&kvm->irq_srcu))
762 goto out_err_no_irq_srcu;
763
764 refcount_set(&kvm->users_count, 1);
765 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
766 struct kvm_memslots *slots = kvm_alloc_memslots();
767
768 if (!slots)
769 goto out_err_no_arch_destroy_vm;
770 /* Generations must be different for each address space. */
771 slots->generation = i;
772 rcu_assign_pointer(kvm->memslots[i], slots);
773 }
774
775 for (i = 0; i < KVM_NR_BUSES; i++) {
776 rcu_assign_pointer(kvm->buses[i],
777 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
778 if (!kvm->buses[i])
779 goto out_err_no_arch_destroy_vm;
780 }
781
782 kvm->max_halt_poll_ns = halt_poll_ns;
783
784 r = kvm_arch_init_vm(kvm, type);
785 if (r)
786 goto out_err_no_arch_destroy_vm;
787
788 r = hardware_enable_all();
789 if (r)
790 goto out_err_no_disable;
791
792#ifdef CONFIG_HAVE_KVM_IRQFD
793 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
794#endif
795
796 r = kvm_init_mmu_notifier(kvm);
797 if (r)
798 goto out_err_no_mmu_notifier;
799
800 r = kvm_arch_post_init_vm(kvm);
801 if (r)
802 goto out_err;
803
804 mutex_lock(&kvm_lock);
805 list_add(&kvm->vm_list, &vm_list);
806 mutex_unlock(&kvm_lock);
807
808 preempt_notifier_inc();
809
810 return kvm;
811
812out_err:
813#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
814 if (kvm->mmu_notifier.ops)
815 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
816#endif
817out_err_no_mmu_notifier:
818 hardware_disable_all();
819out_err_no_disable:
820 kvm_arch_destroy_vm(kvm);
821out_err_no_arch_destroy_vm:
822 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
823 for (i = 0; i < KVM_NR_BUSES; i++)
824 kfree(kvm_get_bus(kvm, i));
825 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
826 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
827 cleanup_srcu_struct(&kvm->irq_srcu);
828out_err_no_irq_srcu:
829 cleanup_srcu_struct(&kvm->srcu);
830out_err_no_srcu:
831 kvm_arch_free_vm(kvm);
832 mmdrop(current->mm);
833 return ERR_PTR(r);
834}
835
836static void kvm_destroy_devices(struct kvm *kvm)
837{
838 struct kvm_device *dev, *tmp;
839
840 /*
841 * We do not need to take the kvm->lock here, because nobody else
842 * has a reference to the struct kvm at this point and therefore
843 * cannot access the devices list anyhow.
844 */
845 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
846 list_del(&dev->vm_node);
847 dev->ops->destroy(dev);
848 }
849}
850
851static void kvm_destroy_vm(struct kvm *kvm)
852{
853 int i;
854 struct mm_struct *mm = kvm->mm;
855
856 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
857 kvm_destroy_vm_debugfs(kvm);
858 kvm_arch_sync_events(kvm);
859 mutex_lock(&kvm_lock);
860 list_del(&kvm->vm_list);
861 mutex_unlock(&kvm_lock);
862 kvm_arch_pre_destroy_vm(kvm);
863
864 kvm_free_irq_routing(kvm);
865 for (i = 0; i < KVM_NR_BUSES; i++) {
866 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
867
868 if (bus)
869 kvm_io_bus_destroy(bus);
870 kvm->buses[i] = NULL;
871 }
872 kvm_coalesced_mmio_free(kvm);
873#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
874 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
875#else
876 kvm_arch_flush_shadow_all(kvm);
877#endif
878 kvm_arch_destroy_vm(kvm);
879 kvm_destroy_devices(kvm);
880 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
881 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
882 cleanup_srcu_struct(&kvm->irq_srcu);
883 cleanup_srcu_struct(&kvm->srcu);
884 kvm_arch_free_vm(kvm);
885 preempt_notifier_dec();
886 hardware_disable_all();
887 mmdrop(mm);
888}
889
890void kvm_get_kvm(struct kvm *kvm)
891{
892 refcount_inc(&kvm->users_count);
893}
894EXPORT_SYMBOL_GPL(kvm_get_kvm);
895
896void kvm_put_kvm(struct kvm *kvm)
897{
898 if (refcount_dec_and_test(&kvm->users_count))
899 kvm_destroy_vm(kvm);
900}
901EXPORT_SYMBOL_GPL(kvm_put_kvm);
902
903/*
904 * Used to put a reference that was taken on behalf of an object associated
905 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
906 * of the new file descriptor fails and the reference cannot be transferred to
907 * its final owner. In such cases, the caller is still actively using @kvm and
908 * will fail miserably if the refcount unexpectedly hits zero.
909 */
910void kvm_put_kvm_no_destroy(struct kvm *kvm)
911{
912 WARN_ON(refcount_dec_and_test(&kvm->users_count));
913}
914EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
915
916static int kvm_vm_release(struct inode *inode, struct file *filp)
917{
918 struct kvm *kvm = filp->private_data;
919
920 kvm_irqfd_release(kvm);
921
922 kvm_put_kvm(kvm);
923 return 0;
924}
925
926/*
927 * Allocation size is twice as large as the actual dirty bitmap size.
928 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
929 */
930static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
931{
932 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
933
934 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
935 if (!memslot->dirty_bitmap)
936 return -ENOMEM;
937
938 return 0;
939}
940
941/*
942 * Delete a memslot by decrementing the number of used slots and shifting all
943 * other entries in the array forward one spot.
944 */
945static inline void kvm_memslot_delete(struct kvm_memslots *slots,
946 struct kvm_memory_slot *memslot)
947{
948 struct kvm_memory_slot *mslots = slots->memslots;
949 int i;
950
951 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
952 return;
953
954 slots->used_slots--;
955
956 if (atomic_read(&slots->lru_slot) >= slots->used_slots)
957 atomic_set(&slots->lru_slot, 0);
958
959 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
960 mslots[i] = mslots[i + 1];
961 slots->id_to_index[mslots[i].id] = i;
962 }
963 mslots[i] = *memslot;
964 slots->id_to_index[memslot->id] = -1;
965}
966
967/*
968 * "Insert" a new memslot by incrementing the number of used slots. Returns
969 * the new slot's initial index into the memslots array.
970 */
971static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
972{
973 return slots->used_slots++;
974}
975
976/*
977 * Move a changed memslot backwards in the array by shifting existing slots
978 * with a higher GFN toward the front of the array. Note, the changed memslot
979 * itself is not preserved in the array, i.e. not swapped at this time, only
980 * its new index into the array is tracked. Returns the changed memslot's
981 * current index into the memslots array.
982 */
983static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
984 struct kvm_memory_slot *memslot)
985{
986 struct kvm_memory_slot *mslots = slots->memslots;
987 int i;
988
989 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
990 WARN_ON_ONCE(!slots->used_slots))
991 return -1;
992
993 /*
994 * Move the target memslot backward in the array by shifting existing
995 * memslots with a higher GFN (than the target memslot) towards the
996 * front of the array.
997 */
998 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
999 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1000 break;
1001
1002 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1003
1004 /* Shift the next memslot forward one and update its index. */
1005 mslots[i] = mslots[i + 1];
1006 slots->id_to_index[mslots[i].id] = i;
1007 }
1008 return i;
1009}
1010
1011/*
1012 * Move a changed memslot forwards in the array by shifting existing slots with
1013 * a lower GFN toward the back of the array. Note, the changed memslot itself
1014 * is not preserved in the array, i.e. not swapped at this time, only its new
1015 * index into the array is tracked. Returns the changed memslot's final index
1016 * into the memslots array.
1017 */
1018static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1019 struct kvm_memory_slot *memslot,
1020 int start)
1021{
1022 struct kvm_memory_slot *mslots = slots->memslots;
1023 int i;
1024
1025 for (i = start; i > 0; i--) {
1026 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1027 break;
1028
1029 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1030
1031 /* Shift the next memslot back one and update its index. */
1032 mslots[i] = mslots[i - 1];
1033 slots->id_to_index[mslots[i].id] = i;
1034 }
1035 return i;
1036}
1037
1038/*
1039 * Re-sort memslots based on their GFN to account for an added, deleted, or
1040 * moved memslot. Sorting memslots by GFN allows using a binary search during
1041 * memslot lookup.
1042 *
1043 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
1044 * at memslots[0] has the highest GFN.
1045 *
1046 * The sorting algorithm takes advantage of having initially sorted memslots
1047 * and knowing the position of the changed memslot. Sorting is also optimized
1048 * by not swapping the updated memslot and instead only shifting other memslots
1049 * and tracking the new index for the update memslot. Only once its final
1050 * index is known is the updated memslot copied into its position in the array.
1051 *
1052 * - When deleting a memslot, the deleted memslot simply needs to be moved to
1053 * the end of the array.
1054 *
1055 * - When creating a memslot, the algorithm "inserts" the new memslot at the
1056 * end of the array and then it forward to its correct location.
1057 *
1058 * - When moving a memslot, the algorithm first moves the updated memslot
1059 * backward to handle the scenario where the memslot's GFN was changed to a
1060 * lower value. update_memslots() then falls through and runs the same flow
1061 * as creating a memslot to move the memslot forward to handle the scenario
1062 * where its GFN was changed to a higher value.
1063 *
1064 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1065 * historical reasons. Originally, invalid memslots where denoted by having
1066 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1067 * to the end of the array. The current algorithm uses dedicated logic to
1068 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1069 *
1070 * The other historical motiviation for highest->lowest was to improve the
1071 * performance of memslot lookup. KVM originally used a linear search starting
1072 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1073 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1074 * single memslot above the 4gb boundary. As the largest memslot is also the
1075 * most likely to be referenced, sorting it to the front of the array was
1076 * advantageous. The current binary search starts from the middle of the array
1077 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1078 */
1079static void update_memslots(struct kvm_memslots *slots,
1080 struct kvm_memory_slot *memslot,
1081 enum kvm_mr_change change)
1082{
1083 int i;
1084
1085 if (change == KVM_MR_DELETE) {
1086 kvm_memslot_delete(slots, memslot);
1087 } else {
1088 if (change == KVM_MR_CREATE)
1089 i = kvm_memslot_insert_back(slots);
1090 else
1091 i = kvm_memslot_move_backward(slots, memslot);
1092 i = kvm_memslot_move_forward(slots, memslot, i);
1093
1094 /*
1095 * Copy the memslot to its new position in memslots and update
1096 * its index accordingly.
1097 */
1098 slots->memslots[i] = *memslot;
1099 slots->id_to_index[memslot->id] = i;
1100 }
1101}
1102
1103static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1104{
1105 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1106
1107#ifdef __KVM_HAVE_READONLY_MEM
1108 valid_flags |= KVM_MEM_READONLY;
1109#endif
1110
1111 if (mem->flags & ~valid_flags)
1112 return -EINVAL;
1113
1114 return 0;
1115}
1116
1117static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1118 int as_id, struct kvm_memslots *slots)
1119{
1120 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1121 u64 gen = old_memslots->generation;
1122
1123 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1124 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1125
1126 rcu_assign_pointer(kvm->memslots[as_id], slots);
1127 synchronize_srcu_expedited(&kvm->srcu);
1128
1129 /*
1130 * Increment the new memslot generation a second time, dropping the
1131 * update in-progress flag and incrementing the generation based on
1132 * the number of address spaces. This provides a unique and easily
1133 * identifiable generation number while the memslots are in flux.
1134 */
1135 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1136
1137 /*
1138 * Generations must be unique even across address spaces. We do not need
1139 * a global counter for that, instead the generation space is evenly split
1140 * across address spaces. For example, with two address spaces, address
1141 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1142 * use generations 1, 3, 5, ...
1143 */
1144 gen += KVM_ADDRESS_SPACE_NUM;
1145
1146 kvm_arch_memslots_updated(kvm, gen);
1147
1148 slots->generation = gen;
1149
1150 return old_memslots;
1151}
1152
1153/*
1154 * Note, at a minimum, the current number of used slots must be allocated, even
1155 * when deleting a memslot, as we need a complete duplicate of the memslots for
1156 * use when invalidating a memslot prior to deleting/moving the memslot.
1157 */
1158static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1159 enum kvm_mr_change change)
1160{
1161 struct kvm_memslots *slots;
1162 size_t old_size, new_size;
1163
1164 old_size = sizeof(struct kvm_memslots) +
1165 (sizeof(struct kvm_memory_slot) * old->used_slots);
1166
1167 if (change == KVM_MR_CREATE)
1168 new_size = old_size + sizeof(struct kvm_memory_slot);
1169 else
1170 new_size = old_size;
1171
1172 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1173 if (likely(slots))
1174 memcpy(slots, old, old_size);
1175
1176 return slots;
1177}
1178
1179static int kvm_set_memslot(struct kvm *kvm,
1180 const struct kvm_userspace_memory_region *mem,
1181 struct kvm_memory_slot *old,
1182 struct kvm_memory_slot *new, int as_id,
1183 enum kvm_mr_change change)
1184{
1185 struct kvm_memory_slot *slot;
1186 struct kvm_memslots *slots;
1187 int r;
1188
1189 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1190 if (!slots)
1191 return -ENOMEM;
1192
1193 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1194 /*
1195 * Note, the INVALID flag needs to be in the appropriate entry
1196 * in the freshly allocated memslots, not in @old or @new.
1197 */
1198 slot = id_to_memslot(slots, old->id);
1199 slot->flags |= KVM_MEMSLOT_INVALID;
1200
1201 /*
1202 * We can re-use the old memslots, the only difference from the
1203 * newly installed memslots is the invalid flag, which will get
1204 * dropped by update_memslots anyway. We'll also revert to the
1205 * old memslots if preparing the new memory region fails.
1206 */
1207 slots = install_new_memslots(kvm, as_id, slots);
1208
1209 /* From this point no new shadow pages pointing to a deleted,
1210 * or moved, memslot will be created.
1211 *
1212 * validation of sp->gfn happens in:
1213 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1214 * - kvm_is_visible_gfn (mmu_check_root)
1215 */
1216 kvm_arch_flush_shadow_memslot(kvm, slot);
1217 }
1218
1219 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1220 if (r)
1221 goto out_slots;
1222
1223 update_memslots(slots, new, change);
1224 slots = install_new_memslots(kvm, as_id, slots);
1225
1226 kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1227
1228 kvfree(slots);
1229 return 0;
1230
1231out_slots:
1232 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1233 slots = install_new_memslots(kvm, as_id, slots);
1234 kvfree(slots);
1235 return r;
1236}
1237
1238static int kvm_delete_memslot(struct kvm *kvm,
1239 const struct kvm_userspace_memory_region *mem,
1240 struct kvm_memory_slot *old, int as_id)
1241{
1242 struct kvm_memory_slot new;
1243 int r;
1244
1245 if (!old->npages)
1246 return -EINVAL;
1247
1248 memset(&new, 0, sizeof(new));
1249 new.id = old->id;
1250
1251 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1252 if (r)
1253 return r;
1254
1255 kvm_free_memslot(kvm, old);
1256 return 0;
1257}
1258
1259/*
1260 * Allocate some memory and give it an address in the guest physical address
1261 * space.
1262 *
1263 * Discontiguous memory is allowed, mostly for framebuffers.
1264 *
1265 * Must be called holding kvm->slots_lock for write.
1266 */
1267int __kvm_set_memory_region(struct kvm *kvm,
1268 const struct kvm_userspace_memory_region *mem)
1269{
1270 struct kvm_memory_slot old, new;
1271 struct kvm_memory_slot *tmp;
1272 enum kvm_mr_change change;
1273 int as_id, id;
1274 int r;
1275
1276 r = check_memory_region_flags(mem);
1277 if (r)
1278 return r;
1279
1280 as_id = mem->slot >> 16;
1281 id = (u16)mem->slot;
1282
1283 /* General sanity checks */
1284 if (mem->memory_size & (PAGE_SIZE - 1))
1285 return -EINVAL;
1286 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1287 return -EINVAL;
1288 /* We can read the guest memory with __xxx_user() later on. */
1289 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1290 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1291 mem->memory_size))
1292 return -EINVAL;
1293 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1294 return -EINVAL;
1295 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1296 return -EINVAL;
1297
1298 /*
1299 * Make a full copy of the old memslot, the pointer will become stale
1300 * when the memslots are re-sorted by update_memslots(), and the old
1301 * memslot needs to be referenced after calling update_memslots(), e.g.
1302 * to free its resources and for arch specific behavior.
1303 */
1304 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1305 if (tmp) {
1306 old = *tmp;
1307 tmp = NULL;
1308 } else {
1309 memset(&old, 0, sizeof(old));
1310 old.id = id;
1311 }
1312
1313 if (!mem->memory_size)
1314 return kvm_delete_memslot(kvm, mem, &old, as_id);
1315
1316 new.id = id;
1317 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1318 new.npages = mem->memory_size >> PAGE_SHIFT;
1319 new.flags = mem->flags;
1320 new.userspace_addr = mem->userspace_addr;
1321
1322 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1323 return -EINVAL;
1324
1325 if (!old.npages) {
1326 change = KVM_MR_CREATE;
1327 new.dirty_bitmap = NULL;
1328 memset(&new.arch, 0, sizeof(new.arch));
1329 } else { /* Modify an existing slot. */
1330 if ((new.userspace_addr != old.userspace_addr) ||
1331 (new.npages != old.npages) ||
1332 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1333 return -EINVAL;
1334
1335 if (new.base_gfn != old.base_gfn)
1336 change = KVM_MR_MOVE;
1337 else if (new.flags != old.flags)
1338 change = KVM_MR_FLAGS_ONLY;
1339 else /* Nothing to change. */
1340 return 0;
1341
1342 /* Copy dirty_bitmap and arch from the current memslot. */
1343 new.dirty_bitmap = old.dirty_bitmap;
1344 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1345 }
1346
1347 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1348 /* Check for overlaps */
1349 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1350 if (tmp->id == id)
1351 continue;
1352 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1353 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1354 return -EEXIST;
1355 }
1356 }
1357
1358 /* Allocate/free page dirty bitmap as needed */
1359 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1360 new.dirty_bitmap = NULL;
1361 else if (!new.dirty_bitmap) {
1362 r = kvm_alloc_dirty_bitmap(&new);
1363 if (r)
1364 return r;
1365
1366 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1367 bitmap_set(new.dirty_bitmap, 0, new.npages);
1368 }
1369
1370 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1371 if (r)
1372 goto out_bitmap;
1373
1374 if (old.dirty_bitmap && !new.dirty_bitmap)
1375 kvm_destroy_dirty_bitmap(&old);
1376 return 0;
1377
1378out_bitmap:
1379 if (new.dirty_bitmap && !old.dirty_bitmap)
1380 kvm_destroy_dirty_bitmap(&new);
1381 return r;
1382}
1383EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1384
1385int kvm_set_memory_region(struct kvm *kvm,
1386 const struct kvm_userspace_memory_region *mem)
1387{
1388 int r;
1389
1390 mutex_lock(&kvm->slots_lock);
1391 r = __kvm_set_memory_region(kvm, mem);
1392 mutex_unlock(&kvm->slots_lock);
1393 return r;
1394}
1395EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1396
1397static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1398 struct kvm_userspace_memory_region *mem)
1399{
1400 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1401 return -EINVAL;
1402
1403 return kvm_set_memory_region(kvm, mem);
1404}
1405
1406#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1407/**
1408 * kvm_get_dirty_log - get a snapshot of dirty pages
1409 * @kvm: pointer to kvm instance
1410 * @log: slot id and address to which we copy the log
1411 * @is_dirty: set to '1' if any dirty pages were found
1412 * @memslot: set to the associated memslot, always valid on success
1413 */
1414int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1415 int *is_dirty, struct kvm_memory_slot **memslot)
1416{
1417 struct kvm_memslots *slots;
1418 int i, as_id, id;
1419 unsigned long n;
1420 unsigned long any = 0;
1421
1422 *memslot = NULL;
1423 *is_dirty = 0;
1424
1425 as_id = log->slot >> 16;
1426 id = (u16)log->slot;
1427 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1428 return -EINVAL;
1429
1430 slots = __kvm_memslots(kvm, as_id);
1431 *memslot = id_to_memslot(slots, id);
1432 if (!(*memslot) || !(*memslot)->dirty_bitmap)
1433 return -ENOENT;
1434
1435 kvm_arch_sync_dirty_log(kvm, *memslot);
1436
1437 n = kvm_dirty_bitmap_bytes(*memslot);
1438
1439 for (i = 0; !any && i < n/sizeof(long); ++i)
1440 any = (*memslot)->dirty_bitmap[i];
1441
1442 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1443 return -EFAULT;
1444
1445 if (any)
1446 *is_dirty = 1;
1447 return 0;
1448}
1449EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1450
1451#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1452/**
1453 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1454 * and reenable dirty page tracking for the corresponding pages.
1455 * @kvm: pointer to kvm instance
1456 * @log: slot id and address to which we copy the log
1457 *
1458 * We need to keep it in mind that VCPU threads can write to the bitmap
1459 * concurrently. So, to avoid losing track of dirty pages we keep the
1460 * following order:
1461 *
1462 * 1. Take a snapshot of the bit and clear it if needed.
1463 * 2. Write protect the corresponding page.
1464 * 3. Copy the snapshot to the userspace.
1465 * 4. Upon return caller flushes TLB's if needed.
1466 *
1467 * Between 2 and 4, the guest may write to the page using the remaining TLB
1468 * entry. This is not a problem because the page is reported dirty using
1469 * the snapshot taken before and step 4 ensures that writes done after
1470 * exiting to userspace will be logged for the next call.
1471 *
1472 */
1473static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1474{
1475 struct kvm_memslots *slots;
1476 struct kvm_memory_slot *memslot;
1477 int i, as_id, id;
1478 unsigned long n;
1479 unsigned long *dirty_bitmap;
1480 unsigned long *dirty_bitmap_buffer;
1481 bool flush;
1482
1483 as_id = log->slot >> 16;
1484 id = (u16)log->slot;
1485 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1486 return -EINVAL;
1487
1488 slots = __kvm_memslots(kvm, as_id);
1489 memslot = id_to_memslot(slots, id);
1490 if (!memslot || !memslot->dirty_bitmap)
1491 return -ENOENT;
1492
1493 dirty_bitmap = memslot->dirty_bitmap;
1494
1495 kvm_arch_sync_dirty_log(kvm, memslot);
1496
1497 n = kvm_dirty_bitmap_bytes(memslot);
1498 flush = false;
1499 if (kvm->manual_dirty_log_protect) {
1500 /*
1501 * Unlike kvm_get_dirty_log, we always return false in *flush,
1502 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1503 * is some code duplication between this function and
1504 * kvm_get_dirty_log, but hopefully all architecture
1505 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1506 * can be eliminated.
1507 */
1508 dirty_bitmap_buffer = dirty_bitmap;
1509 } else {
1510 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1511 memset(dirty_bitmap_buffer, 0, n);
1512
1513 spin_lock(&kvm->mmu_lock);
1514 for (i = 0; i < n / sizeof(long); i++) {
1515 unsigned long mask;
1516 gfn_t offset;
1517
1518 if (!dirty_bitmap[i])
1519 continue;
1520
1521 flush = true;
1522 mask = xchg(&dirty_bitmap[i], 0);
1523 dirty_bitmap_buffer[i] = mask;
1524
1525 offset = i * BITS_PER_LONG;
1526 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1527 offset, mask);
1528 }
1529 spin_unlock(&kvm->mmu_lock);
1530 }
1531
1532 if (flush)
1533 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1534
1535 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1536 return -EFAULT;
1537 return 0;
1538}
1539
1540
1541/**
1542 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1543 * @kvm: kvm instance
1544 * @log: slot id and address to which we copy the log
1545 *
1546 * Steps 1-4 below provide general overview of dirty page logging. See
1547 * kvm_get_dirty_log_protect() function description for additional details.
1548 *
1549 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1550 * always flush the TLB (step 4) even if previous step failed and the dirty
1551 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1552 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1553 * writes will be marked dirty for next log read.
1554 *
1555 * 1. Take a snapshot of the bit and clear it if needed.
1556 * 2. Write protect the corresponding page.
1557 * 3. Copy the snapshot to the userspace.
1558 * 4. Flush TLB's if needed.
1559 */
1560static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1561 struct kvm_dirty_log *log)
1562{
1563 int r;
1564
1565 mutex_lock(&kvm->slots_lock);
1566
1567 r = kvm_get_dirty_log_protect(kvm, log);
1568
1569 mutex_unlock(&kvm->slots_lock);
1570 return r;
1571}
1572
1573/**
1574 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1575 * and reenable dirty page tracking for the corresponding pages.
1576 * @kvm: pointer to kvm instance
1577 * @log: slot id and address from which to fetch the bitmap of dirty pages
1578 */
1579static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1580 struct kvm_clear_dirty_log *log)
1581{
1582 struct kvm_memslots *slots;
1583 struct kvm_memory_slot *memslot;
1584 int as_id, id;
1585 gfn_t offset;
1586 unsigned long i, n;
1587 unsigned long *dirty_bitmap;
1588 unsigned long *dirty_bitmap_buffer;
1589 bool flush;
1590
1591 as_id = log->slot >> 16;
1592 id = (u16)log->slot;
1593 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1594 return -EINVAL;
1595
1596 if (log->first_page & 63)
1597 return -EINVAL;
1598
1599 slots = __kvm_memslots(kvm, as_id);
1600 memslot = id_to_memslot(slots, id);
1601 if (!memslot || !memslot->dirty_bitmap)
1602 return -ENOENT;
1603
1604 dirty_bitmap = memslot->dirty_bitmap;
1605
1606 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1607
1608 if (log->first_page > memslot->npages ||
1609 log->num_pages > memslot->npages - log->first_page ||
1610 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1611 return -EINVAL;
1612
1613 kvm_arch_sync_dirty_log(kvm, memslot);
1614
1615 flush = false;
1616 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1617 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1618 return -EFAULT;
1619
1620 spin_lock(&kvm->mmu_lock);
1621 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1622 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1623 i++, offset += BITS_PER_LONG) {
1624 unsigned long mask = *dirty_bitmap_buffer++;
1625 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1626 if (!mask)
1627 continue;
1628
1629 mask &= atomic_long_fetch_andnot(mask, p);
1630
1631 /*
1632 * mask contains the bits that really have been cleared. This
1633 * never includes any bits beyond the length of the memslot (if
1634 * the length is not aligned to 64 pages), therefore it is not
1635 * a problem if userspace sets them in log->dirty_bitmap.
1636 */
1637 if (mask) {
1638 flush = true;
1639 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1640 offset, mask);
1641 }
1642 }
1643 spin_unlock(&kvm->mmu_lock);
1644
1645 if (flush)
1646 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1647
1648 return 0;
1649}
1650
1651static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1652 struct kvm_clear_dirty_log *log)
1653{
1654 int r;
1655
1656 mutex_lock(&kvm->slots_lock);
1657
1658 r = kvm_clear_dirty_log_protect(kvm, log);
1659
1660 mutex_unlock(&kvm->slots_lock);
1661 return r;
1662}
1663#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1664
1665struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1666{
1667 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1668}
1669EXPORT_SYMBOL_GPL(gfn_to_memslot);
1670
1671struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1672{
1673 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1674}
1675EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1676
1677bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1678{
1679 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1680
1681 return kvm_is_visible_memslot(memslot);
1682}
1683EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1684
1685bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1686{
1687 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1688
1689 return kvm_is_visible_memslot(memslot);
1690}
1691EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1692
1693unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1694{
1695 struct vm_area_struct *vma;
1696 unsigned long addr, size;
1697
1698 size = PAGE_SIZE;
1699
1700 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1701 if (kvm_is_error_hva(addr))
1702 return PAGE_SIZE;
1703
1704 mmap_read_lock(current->mm);
1705 vma = find_vma(current->mm, addr);
1706 if (!vma)
1707 goto out;
1708
1709 size = vma_kernel_pagesize(vma);
1710
1711out:
1712 mmap_read_unlock(current->mm);
1713
1714 return size;
1715}
1716
1717static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1718{
1719 return slot->flags & KVM_MEM_READONLY;
1720}
1721
1722static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1723 gfn_t *nr_pages, bool write)
1724{
1725 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1726 return KVM_HVA_ERR_BAD;
1727
1728 if (memslot_is_readonly(slot) && write)
1729 return KVM_HVA_ERR_RO_BAD;
1730
1731 if (nr_pages)
1732 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1733
1734 return __gfn_to_hva_memslot(slot, gfn);
1735}
1736
1737static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1738 gfn_t *nr_pages)
1739{
1740 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1741}
1742
1743unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1744 gfn_t gfn)
1745{
1746 return gfn_to_hva_many(slot, gfn, NULL);
1747}
1748EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1749
1750unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1751{
1752 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1753}
1754EXPORT_SYMBOL_GPL(gfn_to_hva);
1755
1756unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1757{
1758 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1759}
1760EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1761
1762/*
1763 * Return the hva of a @gfn and the R/W attribute if possible.
1764 *
1765 * @slot: the kvm_memory_slot which contains @gfn
1766 * @gfn: the gfn to be translated
1767 * @writable: used to return the read/write attribute of the @slot if the hva
1768 * is valid and @writable is not NULL
1769 */
1770unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1771 gfn_t gfn, bool *writable)
1772{
1773 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1774
1775 if (!kvm_is_error_hva(hva) && writable)
1776 *writable = !memslot_is_readonly(slot);
1777
1778 return hva;
1779}
1780
1781unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1782{
1783 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1784
1785 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1786}
1787
1788unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1789{
1790 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1791
1792 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1793}
1794
1795static inline int check_user_page_hwpoison(unsigned long addr)
1796{
1797 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1798
1799 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1800 return rc == -EHWPOISON;
1801}
1802
1803/*
1804 * The fast path to get the writable pfn which will be stored in @pfn,
1805 * true indicates success, otherwise false is returned. It's also the
1806 * only part that runs if we can in atomic context.
1807 */
1808static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1809 bool *writable, kvm_pfn_t *pfn)
1810{
1811 struct page *page[1];
1812
1813 /*
1814 * Fast pin a writable pfn only if it is a write fault request
1815 * or the caller allows to map a writable pfn for a read fault
1816 * request.
1817 */
1818 if (!(write_fault || writable))
1819 return false;
1820
1821 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1822 *pfn = page_to_pfn(page[0]);
1823
1824 if (writable)
1825 *writable = true;
1826 return true;
1827 }
1828
1829 return false;
1830}
1831
1832/*
1833 * The slow path to get the pfn of the specified host virtual address,
1834 * 1 indicates success, -errno is returned if error is detected.
1835 */
1836static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1837 bool *writable, kvm_pfn_t *pfn)
1838{
1839 unsigned int flags = FOLL_HWPOISON;
1840 struct page *page;
1841 int npages = 0;
1842
1843 might_sleep();
1844
1845 if (writable)
1846 *writable = write_fault;
1847
1848 if (write_fault)
1849 flags |= FOLL_WRITE;
1850 if (async)
1851 flags |= FOLL_NOWAIT;
1852
1853 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1854 if (npages != 1)
1855 return npages;
1856
1857 /* map read fault as writable if possible */
1858 if (unlikely(!write_fault) && writable) {
1859 struct page *wpage;
1860
1861 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1862 *writable = true;
1863 put_page(page);
1864 page = wpage;
1865 }
1866 }
1867 *pfn = page_to_pfn(page);
1868 return npages;
1869}
1870
1871static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1872{
1873 if (unlikely(!(vma->vm_flags & VM_READ)))
1874 return false;
1875
1876 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1877 return false;
1878
1879 return true;
1880}
1881
1882static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1883 unsigned long addr, bool *async,
1884 bool write_fault, bool *writable,
1885 kvm_pfn_t *p_pfn)
1886{
1887 unsigned long pfn;
1888 int r;
1889
1890 r = follow_pfn(vma, addr, &pfn);
1891 if (r) {
1892 /*
1893 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1894 * not call the fault handler, so do it here.
1895 */
1896 bool unlocked = false;
1897 r = fixup_user_fault(current->mm, addr,
1898 (write_fault ? FAULT_FLAG_WRITE : 0),
1899 &unlocked);
1900 if (unlocked)
1901 return -EAGAIN;
1902 if (r)
1903 return r;
1904
1905 r = follow_pfn(vma, addr, &pfn);
1906 if (r)
1907 return r;
1908
1909 }
1910
1911 if (writable)
1912 *writable = true;
1913
1914 /*
1915 * Get a reference here because callers of *hva_to_pfn* and
1916 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1917 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1918 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1919 * simply do nothing for reserved pfns.
1920 *
1921 * Whoever called remap_pfn_range is also going to call e.g.
1922 * unmap_mapping_range before the underlying pages are freed,
1923 * causing a call to our MMU notifier.
1924 */
1925 kvm_get_pfn(pfn);
1926
1927 *p_pfn = pfn;
1928 return 0;
1929}
1930
1931/*
1932 * Pin guest page in memory and return its pfn.
1933 * @addr: host virtual address which maps memory to the guest
1934 * @atomic: whether this function can sleep
1935 * @async: whether this function need to wait IO complete if the
1936 * host page is not in the memory
1937 * @write_fault: whether we should get a writable host page
1938 * @writable: whether it allows to map a writable host page for !@write_fault
1939 *
1940 * The function will map a writable host page for these two cases:
1941 * 1): @write_fault = true
1942 * 2): @write_fault = false && @writable, @writable will tell the caller
1943 * whether the mapping is writable.
1944 */
1945static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1946 bool write_fault, bool *writable)
1947{
1948 struct vm_area_struct *vma;
1949 kvm_pfn_t pfn = 0;
1950 int npages, r;
1951
1952 /* we can do it either atomically or asynchronously, not both */
1953 BUG_ON(atomic && async);
1954
1955 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1956 return pfn;
1957
1958 if (atomic)
1959 return KVM_PFN_ERR_FAULT;
1960
1961 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1962 if (npages == 1)
1963 return pfn;
1964
1965 mmap_read_lock(current->mm);
1966 if (npages == -EHWPOISON ||
1967 (!async && check_user_page_hwpoison(addr))) {
1968 pfn = KVM_PFN_ERR_HWPOISON;
1969 goto exit;
1970 }
1971
1972retry:
1973 vma = find_vma_intersection(current->mm, addr, addr + 1);
1974
1975 if (vma == NULL)
1976 pfn = KVM_PFN_ERR_FAULT;
1977 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1978 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1979 if (r == -EAGAIN)
1980 goto retry;
1981 if (r < 0)
1982 pfn = KVM_PFN_ERR_FAULT;
1983 } else {
1984 if (async && vma_is_valid(vma, write_fault))
1985 *async = true;
1986 pfn = KVM_PFN_ERR_FAULT;
1987 }
1988exit:
1989 mmap_read_unlock(current->mm);
1990 return pfn;
1991}
1992
1993kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1994 bool atomic, bool *async, bool write_fault,
1995 bool *writable)
1996{
1997 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1998
1999 if (addr == KVM_HVA_ERR_RO_BAD) {
2000 if (writable)
2001 *writable = false;
2002 return KVM_PFN_ERR_RO_FAULT;
2003 }
2004
2005 if (kvm_is_error_hva(addr)) {
2006 if (writable)
2007 *writable = false;
2008 return KVM_PFN_NOSLOT;
2009 }
2010
2011 /* Do not map writable pfn in the readonly memslot. */
2012 if (writable && memslot_is_readonly(slot)) {
2013 *writable = false;
2014 writable = NULL;
2015 }
2016
2017 return hva_to_pfn(addr, atomic, async, write_fault,
2018 writable);
2019}
2020EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2021
2022kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2023 bool *writable)
2024{
2025 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2026 write_fault, writable);
2027}
2028EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2029
2030kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2031{
2032 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2033}
2034EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2035
2036kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2037{
2038 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2039}
2040EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2041
2042kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2043{
2044 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2045}
2046EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2047
2048kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2049{
2050 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2051}
2052EXPORT_SYMBOL_GPL(gfn_to_pfn);
2053
2054kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2055{
2056 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2057}
2058EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2059
2060int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2061 struct page **pages, int nr_pages)
2062{
2063 unsigned long addr;
2064 gfn_t entry = 0;
2065
2066 addr = gfn_to_hva_many(slot, gfn, &entry);
2067 if (kvm_is_error_hva(addr))
2068 return -1;
2069
2070 if (entry < nr_pages)
2071 return 0;
2072
2073 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2074}
2075EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2076
2077static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2078{
2079 if (is_error_noslot_pfn(pfn))
2080 return KVM_ERR_PTR_BAD_PAGE;
2081
2082 if (kvm_is_reserved_pfn(pfn)) {
2083 WARN_ON(1);
2084 return KVM_ERR_PTR_BAD_PAGE;
2085 }
2086
2087 return pfn_to_page(pfn);
2088}
2089
2090struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2091{
2092 kvm_pfn_t pfn;
2093
2094 pfn = gfn_to_pfn(kvm, gfn);
2095
2096 return kvm_pfn_to_page(pfn);
2097}
2098EXPORT_SYMBOL_GPL(gfn_to_page);
2099
2100void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2101{
2102 if (pfn == 0)
2103 return;
2104
2105 if (cache)
2106 cache->pfn = cache->gfn = 0;
2107
2108 if (dirty)
2109 kvm_release_pfn_dirty(pfn);
2110 else
2111 kvm_release_pfn_clean(pfn);
2112}
2113
2114static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2115 struct gfn_to_pfn_cache *cache, u64 gen)
2116{
2117 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2118
2119 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2120 cache->gfn = gfn;
2121 cache->dirty = false;
2122 cache->generation = gen;
2123}
2124
2125static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2126 struct kvm_host_map *map,
2127 struct gfn_to_pfn_cache *cache,
2128 bool atomic)
2129{
2130 kvm_pfn_t pfn;
2131 void *hva = NULL;
2132 struct page *page = KVM_UNMAPPED_PAGE;
2133 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2134 u64 gen = slots->generation;
2135
2136 if (!map)
2137 return -EINVAL;
2138
2139 if (cache) {
2140 if (!cache->pfn || cache->gfn != gfn ||
2141 cache->generation != gen) {
2142 if (atomic)
2143 return -EAGAIN;
2144 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2145 }
2146 pfn = cache->pfn;
2147 } else {
2148 if (atomic)
2149 return -EAGAIN;
2150 pfn = gfn_to_pfn_memslot(slot, gfn);
2151 }
2152 if (is_error_noslot_pfn(pfn))
2153 return -EINVAL;
2154
2155 if (pfn_valid(pfn)) {
2156 page = pfn_to_page(pfn);
2157 if (atomic)
2158 hva = kmap_atomic(page);
2159 else
2160 hva = kmap(page);
2161#ifdef CONFIG_HAS_IOMEM
2162 } else if (!atomic) {
2163 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2164 } else {
2165 return -EINVAL;
2166#endif
2167 }
2168
2169 if (!hva)
2170 return -EFAULT;
2171
2172 map->page = page;
2173 map->hva = hva;
2174 map->pfn = pfn;
2175 map->gfn = gfn;
2176
2177 return 0;
2178}
2179
2180int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2181 struct gfn_to_pfn_cache *cache, bool atomic)
2182{
2183 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2184 cache, atomic);
2185}
2186EXPORT_SYMBOL_GPL(kvm_map_gfn);
2187
2188int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2189{
2190 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2191 NULL, false);
2192}
2193EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2194
2195static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2196 struct kvm_host_map *map,
2197 struct gfn_to_pfn_cache *cache,
2198 bool dirty, bool atomic)
2199{
2200 if (!map)
2201 return;
2202
2203 if (!map->hva)
2204 return;
2205
2206 if (map->page != KVM_UNMAPPED_PAGE) {
2207 if (atomic)
2208 kunmap_atomic(map->hva);
2209 else
2210 kunmap(map->page);
2211 }
2212#ifdef CONFIG_HAS_IOMEM
2213 else if (!atomic)
2214 memunmap(map->hva);
2215 else
2216 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2217#endif
2218
2219 if (dirty)
2220 mark_page_dirty_in_slot(memslot, map->gfn);
2221
2222 if (cache)
2223 cache->dirty |= dirty;
2224 else
2225 kvm_release_pfn(map->pfn, dirty, NULL);
2226
2227 map->hva = NULL;
2228 map->page = NULL;
2229}
2230
2231int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2232 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2233{
2234 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2235 cache, dirty, atomic);
2236 return 0;
2237}
2238EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2239
2240void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2241{
2242 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2243 dirty, false);
2244}
2245EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2246
2247struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2248{
2249 kvm_pfn_t pfn;
2250
2251 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2252
2253 return kvm_pfn_to_page(pfn);
2254}
2255EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2256
2257void kvm_release_page_clean(struct page *page)
2258{
2259 WARN_ON(is_error_page(page));
2260
2261 kvm_release_pfn_clean(page_to_pfn(page));
2262}
2263EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2264
2265void kvm_release_pfn_clean(kvm_pfn_t pfn)
2266{
2267 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2268 put_page(pfn_to_page(pfn));
2269}
2270EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2271
2272void kvm_release_page_dirty(struct page *page)
2273{
2274 WARN_ON(is_error_page(page));
2275
2276 kvm_release_pfn_dirty(page_to_pfn(page));
2277}
2278EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2279
2280void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2281{
2282 kvm_set_pfn_dirty(pfn);
2283 kvm_release_pfn_clean(pfn);
2284}
2285EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2286
2287void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2288{
2289 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2290 SetPageDirty(pfn_to_page(pfn));
2291}
2292EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2293
2294void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2295{
2296 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2297 mark_page_accessed(pfn_to_page(pfn));
2298}
2299EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2300
2301void kvm_get_pfn(kvm_pfn_t pfn)
2302{
2303 if (!kvm_is_reserved_pfn(pfn))
2304 get_page(pfn_to_page(pfn));
2305}
2306EXPORT_SYMBOL_GPL(kvm_get_pfn);
2307
2308static int next_segment(unsigned long len, int offset)
2309{
2310 if (len > PAGE_SIZE - offset)
2311 return PAGE_SIZE - offset;
2312 else
2313 return len;
2314}
2315
2316static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2317 void *data, int offset, int len)
2318{
2319 int r;
2320 unsigned long addr;
2321
2322 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2323 if (kvm_is_error_hva(addr))
2324 return -EFAULT;
2325 r = __copy_from_user(data, (void __user *)addr + offset, len);
2326 if (r)
2327 return -EFAULT;
2328 return 0;
2329}
2330
2331int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2332 int len)
2333{
2334 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2335
2336 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2337}
2338EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2339
2340int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2341 int offset, int len)
2342{
2343 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2344
2345 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2346}
2347EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2348
2349int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2350{
2351 gfn_t gfn = gpa >> PAGE_SHIFT;
2352 int seg;
2353 int offset = offset_in_page(gpa);
2354 int ret;
2355
2356 while ((seg = next_segment(len, offset)) != 0) {
2357 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2358 if (ret < 0)
2359 return ret;
2360 offset = 0;
2361 len -= seg;
2362 data += seg;
2363 ++gfn;
2364 }
2365 return 0;
2366}
2367EXPORT_SYMBOL_GPL(kvm_read_guest);
2368
2369int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2370{
2371 gfn_t gfn = gpa >> PAGE_SHIFT;
2372 int seg;
2373 int offset = offset_in_page(gpa);
2374 int ret;
2375
2376 while ((seg = next_segment(len, offset)) != 0) {
2377 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2378 if (ret < 0)
2379 return ret;
2380 offset = 0;
2381 len -= seg;
2382 data += seg;
2383 ++gfn;
2384 }
2385 return 0;
2386}
2387EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2388
2389static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2390 void *data, int offset, unsigned long len)
2391{
2392 int r;
2393 unsigned long addr;
2394
2395 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2396 if (kvm_is_error_hva(addr))
2397 return -EFAULT;
2398 pagefault_disable();
2399 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2400 pagefault_enable();
2401 if (r)
2402 return -EFAULT;
2403 return 0;
2404}
2405
2406int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2407 void *data, unsigned long len)
2408{
2409 gfn_t gfn = gpa >> PAGE_SHIFT;
2410 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2411 int offset = offset_in_page(gpa);
2412
2413 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2414}
2415EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2416
2417static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2418 const void *data, int offset, int len)
2419{
2420 int r;
2421 unsigned long addr;
2422
2423 addr = gfn_to_hva_memslot(memslot, gfn);
2424 if (kvm_is_error_hva(addr))
2425 return -EFAULT;
2426 r = __copy_to_user((void __user *)addr + offset, data, len);
2427 if (r)
2428 return -EFAULT;
2429 mark_page_dirty_in_slot(memslot, gfn);
2430 return 0;
2431}
2432
2433int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2434 const void *data, int offset, int len)
2435{
2436 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2437
2438 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2439}
2440EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2441
2442int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2443 const void *data, int offset, int len)
2444{
2445 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2446
2447 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2448}
2449EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2450
2451int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2452 unsigned long len)
2453{
2454 gfn_t gfn = gpa >> PAGE_SHIFT;
2455 int seg;
2456 int offset = offset_in_page(gpa);
2457 int ret;
2458
2459 while ((seg = next_segment(len, offset)) != 0) {
2460 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2461 if (ret < 0)
2462 return ret;
2463 offset = 0;
2464 len -= seg;
2465 data += seg;
2466 ++gfn;
2467 }
2468 return 0;
2469}
2470EXPORT_SYMBOL_GPL(kvm_write_guest);
2471
2472int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2473 unsigned long len)
2474{
2475 gfn_t gfn = gpa >> PAGE_SHIFT;
2476 int seg;
2477 int offset = offset_in_page(gpa);
2478 int ret;
2479
2480 while ((seg = next_segment(len, offset)) != 0) {
2481 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2482 if (ret < 0)
2483 return ret;
2484 offset = 0;
2485 len -= seg;
2486 data += seg;
2487 ++gfn;
2488 }
2489 return 0;
2490}
2491EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2492
2493static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2494 struct gfn_to_hva_cache *ghc,
2495 gpa_t gpa, unsigned long len)
2496{
2497 int offset = offset_in_page(gpa);
2498 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2499 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2500 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2501 gfn_t nr_pages_avail;
2502
2503 /* Update ghc->generation before performing any error checks. */
2504 ghc->generation = slots->generation;
2505
2506 if (start_gfn > end_gfn) {
2507 ghc->hva = KVM_HVA_ERR_BAD;
2508 return -EINVAL;
2509 }
2510
2511 /*
2512 * If the requested region crosses two memslots, we still
2513 * verify that the entire region is valid here.
2514 */
2515 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2516 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2517 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2518 &nr_pages_avail);
2519 if (kvm_is_error_hva(ghc->hva))
2520 return -EFAULT;
2521 }
2522
2523 /* Use the slow path for cross page reads and writes. */
2524 if (nr_pages_needed == 1)
2525 ghc->hva += offset;
2526 else
2527 ghc->memslot = NULL;
2528
2529 ghc->gpa = gpa;
2530 ghc->len = len;
2531 return 0;
2532}
2533
2534int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2535 gpa_t gpa, unsigned long len)
2536{
2537 struct kvm_memslots *slots = kvm_memslots(kvm);
2538 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2539}
2540EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2541
2542int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2543 void *data, unsigned int offset,
2544 unsigned long len)
2545{
2546 struct kvm_memslots *slots = kvm_memslots(kvm);
2547 int r;
2548 gpa_t gpa = ghc->gpa + offset;
2549
2550 BUG_ON(len + offset > ghc->len);
2551
2552 if (slots->generation != ghc->generation) {
2553 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2554 return -EFAULT;
2555 }
2556
2557 if (kvm_is_error_hva(ghc->hva))
2558 return -EFAULT;
2559
2560 if (unlikely(!ghc->memslot))
2561 return kvm_write_guest(kvm, gpa, data, len);
2562
2563 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2564 if (r)
2565 return -EFAULT;
2566 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2567
2568 return 0;
2569}
2570EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2571
2572int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2573 void *data, unsigned long len)
2574{
2575 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2576}
2577EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2578
2579int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2580 void *data, unsigned int offset,
2581 unsigned long len)
2582{
2583 struct kvm_memslots *slots = kvm_memslots(kvm);
2584 int r;
2585 gpa_t gpa = ghc->gpa + offset;
2586
2587 BUG_ON(len + offset > ghc->len);
2588
2589 if (slots->generation != ghc->generation) {
2590 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2591 return -EFAULT;
2592 }
2593
2594 if (kvm_is_error_hva(ghc->hva))
2595 return -EFAULT;
2596
2597 if (unlikely(!ghc->memslot))
2598 return kvm_read_guest(kvm, gpa, data, len);
2599
2600 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2601 if (r)
2602 return -EFAULT;
2603
2604 return 0;
2605}
2606EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2607
2608int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2609 void *data, unsigned long len)
2610{
2611 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2612}
2613EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2614
2615int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2616{
2617 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2618
2619 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2620}
2621EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2622
2623int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2624{
2625 gfn_t gfn = gpa >> PAGE_SHIFT;
2626 int seg;
2627 int offset = offset_in_page(gpa);
2628 int ret;
2629
2630 while ((seg = next_segment(len, offset)) != 0) {
2631 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2632 if (ret < 0)
2633 return ret;
2634 offset = 0;
2635 len -= seg;
2636 ++gfn;
2637 }
2638 return 0;
2639}
2640EXPORT_SYMBOL_GPL(kvm_clear_guest);
2641
2642static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2643 gfn_t gfn)
2644{
2645 if (memslot && memslot->dirty_bitmap) {
2646 unsigned long rel_gfn = gfn - memslot->base_gfn;
2647
2648 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2649 }
2650}
2651
2652void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2653{
2654 struct kvm_memory_slot *memslot;
2655
2656 memslot = gfn_to_memslot(kvm, gfn);
2657 mark_page_dirty_in_slot(memslot, gfn);
2658}
2659EXPORT_SYMBOL_GPL(mark_page_dirty);
2660
2661void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2662{
2663 struct kvm_memory_slot *memslot;
2664
2665 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2666 mark_page_dirty_in_slot(memslot, gfn);
2667}
2668EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2669
2670void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2671{
2672 if (!vcpu->sigset_active)
2673 return;
2674
2675 /*
2676 * This does a lockless modification of ->real_blocked, which is fine
2677 * because, only current can change ->real_blocked and all readers of
2678 * ->real_blocked don't care as long ->real_blocked is always a subset
2679 * of ->blocked.
2680 */
2681 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
2682}
2683
2684void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2685{
2686 if (!vcpu->sigset_active)
2687 return;
2688
2689 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
2690 sigemptyset(¤t->real_blocked);
2691}
2692
2693static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2694{
2695 unsigned int old, val, grow, grow_start;
2696
2697 old = val = vcpu->halt_poll_ns;
2698 grow_start = READ_ONCE(halt_poll_ns_grow_start);
2699 grow = READ_ONCE(halt_poll_ns_grow);
2700 if (!grow)
2701 goto out;
2702
2703 val *= grow;
2704 if (val < grow_start)
2705 val = grow_start;
2706
2707 if (val > halt_poll_ns)
2708 val = halt_poll_ns;
2709
2710 vcpu->halt_poll_ns = val;
2711out:
2712 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2713}
2714
2715static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2716{
2717 unsigned int old, val, shrink;
2718
2719 old = val = vcpu->halt_poll_ns;
2720 shrink = READ_ONCE(halt_poll_ns_shrink);
2721 if (shrink == 0)
2722 val = 0;
2723 else
2724 val /= shrink;
2725
2726 vcpu->halt_poll_ns = val;
2727 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2728}
2729
2730static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2731{
2732 int ret = -EINTR;
2733 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2734
2735 if (kvm_arch_vcpu_runnable(vcpu)) {
2736 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2737 goto out;
2738 }
2739 if (kvm_cpu_has_pending_timer(vcpu))
2740 goto out;
2741 if (signal_pending(current))
2742 goto out;
2743
2744 ret = 0;
2745out:
2746 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2747 return ret;
2748}
2749
2750static inline void
2751update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2752{
2753 if (waited)
2754 vcpu->stat.halt_poll_fail_ns += poll_ns;
2755 else
2756 vcpu->stat.halt_poll_success_ns += poll_ns;
2757}
2758
2759/*
2760 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2761 */
2762void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2763{
2764 ktime_t start, cur, poll_end;
2765 bool waited = false;
2766 u64 block_ns;
2767
2768 kvm_arch_vcpu_blocking(vcpu);
2769
2770 start = cur = poll_end = ktime_get();
2771 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2772 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2773
2774 ++vcpu->stat.halt_attempted_poll;
2775 do {
2776 /*
2777 * This sets KVM_REQ_UNHALT if an interrupt
2778 * arrives.
2779 */
2780 if (kvm_vcpu_check_block(vcpu) < 0) {
2781 ++vcpu->stat.halt_successful_poll;
2782 if (!vcpu_valid_wakeup(vcpu))
2783 ++vcpu->stat.halt_poll_invalid;
2784 goto out;
2785 }
2786 poll_end = cur = ktime_get();
2787 } while (single_task_running() && ktime_before(cur, stop));
2788 }
2789
2790 prepare_to_rcuwait(&vcpu->wait);
2791 for (;;) {
2792 set_current_state(TASK_INTERRUPTIBLE);
2793
2794 if (kvm_vcpu_check_block(vcpu) < 0)
2795 break;
2796
2797 waited = true;
2798 schedule();
2799 }
2800 finish_rcuwait(&vcpu->wait);
2801 cur = ktime_get();
2802out:
2803 kvm_arch_vcpu_unblocking(vcpu);
2804 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2805
2806 update_halt_poll_stats(
2807 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2808
2809 if (!kvm_arch_no_poll(vcpu)) {
2810 if (!vcpu_valid_wakeup(vcpu)) {
2811 shrink_halt_poll_ns(vcpu);
2812 } else if (vcpu->kvm->max_halt_poll_ns) {
2813 if (block_ns <= vcpu->halt_poll_ns)
2814 ;
2815 /* we had a long block, shrink polling */
2816 else if (vcpu->halt_poll_ns &&
2817 block_ns > vcpu->kvm->max_halt_poll_ns)
2818 shrink_halt_poll_ns(vcpu);
2819 /* we had a short halt and our poll time is too small */
2820 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2821 block_ns < vcpu->kvm->max_halt_poll_ns)
2822 grow_halt_poll_ns(vcpu);
2823 } else {
2824 vcpu->halt_poll_ns = 0;
2825 }
2826 }
2827
2828 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2829 kvm_arch_vcpu_block_finish(vcpu);
2830}
2831EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2832
2833bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2834{
2835 struct rcuwait *waitp;
2836
2837 waitp = kvm_arch_vcpu_get_wait(vcpu);
2838 if (rcuwait_wake_up(waitp)) {
2839 WRITE_ONCE(vcpu->ready, true);
2840 ++vcpu->stat.halt_wakeup;
2841 return true;
2842 }
2843
2844 return false;
2845}
2846EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2847
2848#ifndef CONFIG_S390
2849/*
2850 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2851 */
2852void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2853{
2854 int me;
2855 int cpu = vcpu->cpu;
2856
2857 if (kvm_vcpu_wake_up(vcpu))
2858 return;
2859
2860 me = get_cpu();
2861 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2862 if (kvm_arch_vcpu_should_kick(vcpu))
2863 smp_send_reschedule(cpu);
2864 put_cpu();
2865}
2866EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2867#endif /* !CONFIG_S390 */
2868
2869int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2870{
2871 struct pid *pid;
2872 struct task_struct *task = NULL;
2873 int ret = 0;
2874
2875 rcu_read_lock();
2876 pid = rcu_dereference(target->pid);
2877 if (pid)
2878 task = get_pid_task(pid, PIDTYPE_PID);
2879 rcu_read_unlock();
2880 if (!task)
2881 return ret;
2882 ret = yield_to(task, 1);
2883 put_task_struct(task);
2884
2885 return ret;
2886}
2887EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2888
2889/*
2890 * Helper that checks whether a VCPU is eligible for directed yield.
2891 * Most eligible candidate to yield is decided by following heuristics:
2892 *
2893 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2894 * (preempted lock holder), indicated by @in_spin_loop.
2895 * Set at the beginning and cleared at the end of interception/PLE handler.
2896 *
2897 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2898 * chance last time (mostly it has become eligible now since we have probably
2899 * yielded to lockholder in last iteration. This is done by toggling
2900 * @dy_eligible each time a VCPU checked for eligibility.)
2901 *
2902 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2903 * to preempted lock-holder could result in wrong VCPU selection and CPU
2904 * burning. Giving priority for a potential lock-holder increases lock
2905 * progress.
2906 *
2907 * Since algorithm is based on heuristics, accessing another VCPU data without
2908 * locking does not harm. It may result in trying to yield to same VCPU, fail
2909 * and continue with next VCPU and so on.
2910 */
2911static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2912{
2913#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2914 bool eligible;
2915
2916 eligible = !vcpu->spin_loop.in_spin_loop ||
2917 vcpu->spin_loop.dy_eligible;
2918
2919 if (vcpu->spin_loop.in_spin_loop)
2920 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2921
2922 return eligible;
2923#else
2924 return true;
2925#endif
2926}
2927
2928/*
2929 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2930 * a vcpu_load/vcpu_put pair. However, for most architectures
2931 * kvm_arch_vcpu_runnable does not require vcpu_load.
2932 */
2933bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2934{
2935 return kvm_arch_vcpu_runnable(vcpu);
2936}
2937
2938static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2939{
2940 if (kvm_arch_dy_runnable(vcpu))
2941 return true;
2942
2943#ifdef CONFIG_KVM_ASYNC_PF
2944 if (!list_empty_careful(&vcpu->async_pf.done))
2945 return true;
2946#endif
2947
2948 return false;
2949}
2950
2951void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2952{
2953 struct kvm *kvm = me->kvm;
2954 struct kvm_vcpu *vcpu;
2955 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2956 int yielded = 0;
2957 int try = 3;
2958 int pass;
2959 int i;
2960
2961 kvm_vcpu_set_in_spin_loop(me, true);
2962 /*
2963 * We boost the priority of a VCPU that is runnable but not
2964 * currently running, because it got preempted by something
2965 * else and called schedule in __vcpu_run. Hopefully that
2966 * VCPU is holding the lock that we need and will release it.
2967 * We approximate round-robin by starting at the last boosted VCPU.
2968 */
2969 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2970 kvm_for_each_vcpu(i, vcpu, kvm) {
2971 if (!pass && i <= last_boosted_vcpu) {
2972 i = last_boosted_vcpu;
2973 continue;
2974 } else if (pass && i > last_boosted_vcpu)
2975 break;
2976 if (!READ_ONCE(vcpu->ready))
2977 continue;
2978 if (vcpu == me)
2979 continue;
2980 if (rcuwait_active(&vcpu->wait) &&
2981 !vcpu_dy_runnable(vcpu))
2982 continue;
2983 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2984 !kvm_arch_vcpu_in_kernel(vcpu))
2985 continue;
2986 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2987 continue;
2988
2989 yielded = kvm_vcpu_yield_to(vcpu);
2990 if (yielded > 0) {
2991 kvm->last_boosted_vcpu = i;
2992 break;
2993 } else if (yielded < 0) {
2994 try--;
2995 if (!try)
2996 break;
2997 }
2998 }
2999 }
3000 kvm_vcpu_set_in_spin_loop(me, false);
3001
3002 /* Ensure vcpu is not eligible during next spinloop */
3003 kvm_vcpu_set_dy_eligible(me, false);
3004}
3005EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3006
3007static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3008{
3009 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3010 struct page *page;
3011
3012 if (vmf->pgoff == 0)
3013 page = virt_to_page(vcpu->run);
3014#ifdef CONFIG_X86
3015 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3016 page = virt_to_page(vcpu->arch.pio_data);
3017#endif
3018#ifdef CONFIG_KVM_MMIO
3019 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3020 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3021#endif
3022 else
3023 return kvm_arch_vcpu_fault(vcpu, vmf);
3024 get_page(page);
3025 vmf->page = page;
3026 return 0;
3027}
3028
3029static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3030 .fault = kvm_vcpu_fault,
3031};
3032
3033static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3034{
3035 vma->vm_ops = &kvm_vcpu_vm_ops;
3036 return 0;
3037}
3038
3039static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3040{
3041 struct kvm_vcpu *vcpu = filp->private_data;
3042
3043 kvm_put_kvm(vcpu->kvm);
3044 return 0;
3045}
3046
3047static struct file_operations kvm_vcpu_fops = {
3048 .release = kvm_vcpu_release,
3049 .unlocked_ioctl = kvm_vcpu_ioctl,
3050 .mmap = kvm_vcpu_mmap,
3051 .llseek = noop_llseek,
3052 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3053};
3054
3055/*
3056 * Allocates an inode for the vcpu.
3057 */
3058static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3059{
3060 char name[8 + 1 + ITOA_MAX_LEN + 1];
3061
3062 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3063 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3064}
3065
3066static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3067{
3068#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3069 struct dentry *debugfs_dentry;
3070 char dir_name[ITOA_MAX_LEN * 2];
3071
3072 if (!debugfs_initialized())
3073 return;
3074
3075 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3076 debugfs_dentry = debugfs_create_dir(dir_name,
3077 vcpu->kvm->debugfs_dentry);
3078
3079 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3080#endif
3081}
3082
3083/*
3084 * Creates some virtual cpus. Good luck creating more than one.
3085 */
3086static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3087{
3088 int r;
3089 struct kvm_vcpu *vcpu;
3090 struct page *page;
3091
3092 if (id >= KVM_MAX_VCPU_ID)
3093 return -EINVAL;
3094
3095 mutex_lock(&kvm->lock);
3096 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3097 mutex_unlock(&kvm->lock);
3098 return -EINVAL;
3099 }
3100
3101 kvm->created_vcpus++;
3102 mutex_unlock(&kvm->lock);
3103
3104 r = kvm_arch_vcpu_precreate(kvm, id);
3105 if (r)
3106 goto vcpu_decrement;
3107
3108 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3109 if (!vcpu) {
3110 r = -ENOMEM;
3111 goto vcpu_decrement;
3112 }
3113
3114 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3115 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3116 if (!page) {
3117 r = -ENOMEM;
3118 goto vcpu_free;
3119 }
3120 vcpu->run = page_address(page);
3121
3122 kvm_vcpu_init(vcpu, kvm, id);
3123
3124 r = kvm_arch_vcpu_create(vcpu);
3125 if (r)
3126 goto vcpu_free_run_page;
3127
3128 mutex_lock(&kvm->lock);
3129 if (kvm_get_vcpu_by_id(kvm, id)) {
3130 r = -EEXIST;
3131 goto unlock_vcpu_destroy;
3132 }
3133
3134 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3135 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3136
3137 /* Now it's all set up, let userspace reach it */
3138 kvm_get_kvm(kvm);
3139 r = create_vcpu_fd(vcpu);
3140 if (r < 0) {
3141 kvm_put_kvm_no_destroy(kvm);
3142 goto unlock_vcpu_destroy;
3143 }
3144
3145 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3146
3147 /*
3148 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3149 * before kvm->online_vcpu's incremented value.
3150 */
3151 smp_wmb();
3152 atomic_inc(&kvm->online_vcpus);
3153
3154 mutex_unlock(&kvm->lock);
3155 kvm_arch_vcpu_postcreate(vcpu);
3156 kvm_create_vcpu_debugfs(vcpu);
3157 return r;
3158
3159unlock_vcpu_destroy:
3160 mutex_unlock(&kvm->lock);
3161 kvm_arch_vcpu_destroy(vcpu);
3162vcpu_free_run_page:
3163 free_page((unsigned long)vcpu->run);
3164vcpu_free:
3165 kmem_cache_free(kvm_vcpu_cache, vcpu);
3166vcpu_decrement:
3167 mutex_lock(&kvm->lock);
3168 kvm->created_vcpus--;
3169 mutex_unlock(&kvm->lock);
3170 return r;
3171}
3172
3173static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3174{
3175 if (sigset) {
3176 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3177 vcpu->sigset_active = 1;
3178 vcpu->sigset = *sigset;
3179 } else
3180 vcpu->sigset_active = 0;
3181 return 0;
3182}
3183
3184static long kvm_vcpu_ioctl(struct file *filp,
3185 unsigned int ioctl, unsigned long arg)
3186{
3187 struct kvm_vcpu *vcpu = filp->private_data;
3188 void __user *argp = (void __user *)arg;
3189 int r;
3190 struct kvm_fpu *fpu = NULL;
3191 struct kvm_sregs *kvm_sregs = NULL;
3192
3193 if (vcpu->kvm->mm != current->mm)
3194 return -EIO;
3195
3196 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3197 return -EINVAL;
3198
3199 /*
3200 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3201 * execution; mutex_lock() would break them.
3202 */
3203 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3204 if (r != -ENOIOCTLCMD)
3205 return r;
3206
3207 if (mutex_lock_killable(&vcpu->mutex))
3208 return -EINTR;
3209 switch (ioctl) {
3210 case KVM_RUN: {
3211 struct pid *oldpid;
3212 r = -EINVAL;
3213 if (arg)
3214 goto out;
3215 oldpid = rcu_access_pointer(vcpu->pid);
3216 if (unlikely(oldpid != task_pid(current))) {
3217 /* The thread running this VCPU changed. */
3218 struct pid *newpid;
3219
3220 r = kvm_arch_vcpu_run_pid_change(vcpu);
3221 if (r)
3222 break;
3223
3224 newpid = get_task_pid(current, PIDTYPE_PID);
3225 rcu_assign_pointer(vcpu->pid, newpid);
3226 if (oldpid)
3227 synchronize_rcu();
3228 put_pid(oldpid);
3229 }
3230 r = kvm_arch_vcpu_ioctl_run(vcpu);
3231 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3232 break;
3233 }
3234 case KVM_GET_REGS: {
3235 struct kvm_regs *kvm_regs;
3236
3237 r = -ENOMEM;
3238 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3239 if (!kvm_regs)
3240 goto out;
3241 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3242 if (r)
3243 goto out_free1;
3244 r = -EFAULT;
3245 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3246 goto out_free1;
3247 r = 0;
3248out_free1:
3249 kfree(kvm_regs);
3250 break;
3251 }
3252 case KVM_SET_REGS: {
3253 struct kvm_regs *kvm_regs;
3254
3255 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3256 if (IS_ERR(kvm_regs)) {
3257 r = PTR_ERR(kvm_regs);
3258 goto out;
3259 }
3260 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3261 kfree(kvm_regs);
3262 break;
3263 }
3264 case KVM_GET_SREGS: {
3265 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3266 GFP_KERNEL_ACCOUNT);
3267 r = -ENOMEM;
3268 if (!kvm_sregs)
3269 goto out;
3270 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3271 if (r)
3272 goto out;
3273 r = -EFAULT;
3274 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3275 goto out;
3276 r = 0;
3277 break;
3278 }
3279 case KVM_SET_SREGS: {
3280 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3281 if (IS_ERR(kvm_sregs)) {
3282 r = PTR_ERR(kvm_sregs);
3283 kvm_sregs = NULL;
3284 goto out;
3285 }
3286 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3287 break;
3288 }
3289 case KVM_GET_MP_STATE: {
3290 struct kvm_mp_state mp_state;
3291
3292 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3293 if (r)
3294 goto out;
3295 r = -EFAULT;
3296 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3297 goto out;
3298 r = 0;
3299 break;
3300 }
3301 case KVM_SET_MP_STATE: {
3302 struct kvm_mp_state mp_state;
3303
3304 r = -EFAULT;
3305 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3306 goto out;
3307 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3308 break;
3309 }
3310 case KVM_TRANSLATE: {
3311 struct kvm_translation tr;
3312
3313 r = -EFAULT;
3314 if (copy_from_user(&tr, argp, sizeof(tr)))
3315 goto out;
3316 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3317 if (r)
3318 goto out;
3319 r = -EFAULT;
3320 if (copy_to_user(argp, &tr, sizeof(tr)))
3321 goto out;
3322 r = 0;
3323 break;
3324 }
3325 case KVM_SET_GUEST_DEBUG: {
3326 struct kvm_guest_debug dbg;
3327
3328 r = -EFAULT;
3329 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3330 goto out;
3331 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3332 break;
3333 }
3334 case KVM_SET_SIGNAL_MASK: {
3335 struct kvm_signal_mask __user *sigmask_arg = argp;
3336 struct kvm_signal_mask kvm_sigmask;
3337 sigset_t sigset, *p;
3338
3339 p = NULL;
3340 if (argp) {
3341 r = -EFAULT;
3342 if (copy_from_user(&kvm_sigmask, argp,
3343 sizeof(kvm_sigmask)))
3344 goto out;
3345 r = -EINVAL;
3346 if (kvm_sigmask.len != sizeof(sigset))
3347 goto out;
3348 r = -EFAULT;
3349 if (copy_from_user(&sigset, sigmask_arg->sigset,
3350 sizeof(sigset)))
3351 goto out;
3352 p = &sigset;
3353 }
3354 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3355 break;
3356 }
3357 case KVM_GET_FPU: {
3358 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3359 r = -ENOMEM;
3360 if (!fpu)
3361 goto out;
3362 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3363 if (r)
3364 goto out;
3365 r = -EFAULT;
3366 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3367 goto out;
3368 r = 0;
3369 break;
3370 }
3371 case KVM_SET_FPU: {
3372 fpu = memdup_user(argp, sizeof(*fpu));
3373 if (IS_ERR(fpu)) {
3374 r = PTR_ERR(fpu);
3375 fpu = NULL;
3376 goto out;
3377 }
3378 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3379 break;
3380 }
3381 default:
3382 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3383 }
3384out:
3385 mutex_unlock(&vcpu->mutex);
3386 kfree(fpu);
3387 kfree(kvm_sregs);
3388 return r;
3389}
3390
3391#ifdef CONFIG_KVM_COMPAT
3392static long kvm_vcpu_compat_ioctl(struct file *filp,
3393 unsigned int ioctl, unsigned long arg)
3394{
3395 struct kvm_vcpu *vcpu = filp->private_data;
3396 void __user *argp = compat_ptr(arg);
3397 int r;
3398
3399 if (vcpu->kvm->mm != current->mm)
3400 return -EIO;
3401
3402 switch (ioctl) {
3403 case KVM_SET_SIGNAL_MASK: {
3404 struct kvm_signal_mask __user *sigmask_arg = argp;
3405 struct kvm_signal_mask kvm_sigmask;
3406 sigset_t sigset;
3407
3408 if (argp) {
3409 r = -EFAULT;
3410 if (copy_from_user(&kvm_sigmask, argp,
3411 sizeof(kvm_sigmask)))
3412 goto out;
3413 r = -EINVAL;
3414 if (kvm_sigmask.len != sizeof(compat_sigset_t))
3415 goto out;
3416 r = -EFAULT;
3417 if (get_compat_sigset(&sigset,
3418 (compat_sigset_t __user *)sigmask_arg->sigset))
3419 goto out;
3420 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3421 } else
3422 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3423 break;
3424 }
3425 default:
3426 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3427 }
3428
3429out:
3430 return r;
3431}
3432#endif
3433
3434static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3435{
3436 struct kvm_device *dev = filp->private_data;
3437
3438 if (dev->ops->mmap)
3439 return dev->ops->mmap(dev, vma);
3440
3441 return -ENODEV;
3442}
3443
3444static int kvm_device_ioctl_attr(struct kvm_device *dev,
3445 int (*accessor)(struct kvm_device *dev,
3446 struct kvm_device_attr *attr),
3447 unsigned long arg)
3448{
3449 struct kvm_device_attr attr;
3450
3451 if (!accessor)
3452 return -EPERM;
3453
3454 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3455 return -EFAULT;
3456
3457 return accessor(dev, &attr);
3458}
3459
3460static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3461 unsigned long arg)
3462{
3463 struct kvm_device *dev = filp->private_data;
3464
3465 if (dev->kvm->mm != current->mm)
3466 return -EIO;
3467
3468 switch (ioctl) {
3469 case KVM_SET_DEVICE_ATTR:
3470 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3471 case KVM_GET_DEVICE_ATTR:
3472 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3473 case KVM_HAS_DEVICE_ATTR:
3474 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3475 default:
3476 if (dev->ops->ioctl)
3477 return dev->ops->ioctl(dev, ioctl, arg);
3478
3479 return -ENOTTY;
3480 }
3481}
3482
3483static int kvm_device_release(struct inode *inode, struct file *filp)
3484{
3485 struct kvm_device *dev = filp->private_data;
3486 struct kvm *kvm = dev->kvm;
3487
3488 if (dev->ops->release) {
3489 mutex_lock(&kvm->lock);
3490 list_del(&dev->vm_node);
3491 dev->ops->release(dev);
3492 mutex_unlock(&kvm->lock);
3493 }
3494
3495 kvm_put_kvm(kvm);
3496 return 0;
3497}
3498
3499static const struct file_operations kvm_device_fops = {
3500 .unlocked_ioctl = kvm_device_ioctl,
3501 .release = kvm_device_release,
3502 KVM_COMPAT(kvm_device_ioctl),
3503 .mmap = kvm_device_mmap,
3504};
3505
3506struct kvm_device *kvm_device_from_filp(struct file *filp)
3507{
3508 if (filp->f_op != &kvm_device_fops)
3509 return NULL;
3510
3511 return filp->private_data;
3512}
3513
3514static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3515#ifdef CONFIG_KVM_MPIC
3516 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3517 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
3518#endif
3519};
3520
3521int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3522{
3523 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3524 return -ENOSPC;
3525
3526 if (kvm_device_ops_table[type] != NULL)
3527 return -EEXIST;
3528
3529 kvm_device_ops_table[type] = ops;
3530 return 0;
3531}
3532
3533void kvm_unregister_device_ops(u32 type)
3534{
3535 if (kvm_device_ops_table[type] != NULL)
3536 kvm_device_ops_table[type] = NULL;
3537}
3538
3539static int kvm_ioctl_create_device(struct kvm *kvm,
3540 struct kvm_create_device *cd)
3541{
3542 const struct kvm_device_ops *ops = NULL;
3543 struct kvm_device *dev;
3544 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3545 int type;
3546 int ret;
3547
3548 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3549 return -ENODEV;
3550
3551 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3552 ops = kvm_device_ops_table[type];
3553 if (ops == NULL)
3554 return -ENODEV;
3555
3556 if (test)
3557 return 0;
3558
3559 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3560 if (!dev)
3561 return -ENOMEM;
3562
3563 dev->ops = ops;
3564 dev->kvm = kvm;
3565
3566 mutex_lock(&kvm->lock);
3567 ret = ops->create(dev, type);
3568 if (ret < 0) {
3569 mutex_unlock(&kvm->lock);
3570 kfree(dev);
3571 return ret;
3572 }
3573 list_add(&dev->vm_node, &kvm->devices);
3574 mutex_unlock(&kvm->lock);
3575
3576 if (ops->init)
3577 ops->init(dev);
3578
3579 kvm_get_kvm(kvm);
3580 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3581 if (ret < 0) {
3582 kvm_put_kvm_no_destroy(kvm);
3583 mutex_lock(&kvm->lock);
3584 list_del(&dev->vm_node);
3585 mutex_unlock(&kvm->lock);
3586 ops->destroy(dev);
3587 return ret;
3588 }
3589
3590 cd->fd = ret;
3591 return 0;
3592}
3593
3594static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3595{
3596 switch (arg) {
3597 case KVM_CAP_USER_MEMORY:
3598 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3599 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3600 case KVM_CAP_INTERNAL_ERROR_DATA:
3601#ifdef CONFIG_HAVE_KVM_MSI
3602 case KVM_CAP_SIGNAL_MSI:
3603#endif
3604#ifdef CONFIG_HAVE_KVM_IRQFD
3605 case KVM_CAP_IRQFD:
3606 case KVM_CAP_IRQFD_RESAMPLE:
3607#endif
3608 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3609 case KVM_CAP_CHECK_EXTENSION_VM:
3610 case KVM_CAP_ENABLE_CAP_VM:
3611 case KVM_CAP_HALT_POLL:
3612 return 1;
3613#ifdef CONFIG_KVM_MMIO
3614 case KVM_CAP_COALESCED_MMIO:
3615 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3616 case KVM_CAP_COALESCED_PIO:
3617 return 1;
3618#endif
3619#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3620 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3621 return KVM_DIRTY_LOG_MANUAL_CAPS;
3622#endif
3623#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3624 case KVM_CAP_IRQ_ROUTING:
3625 return KVM_MAX_IRQ_ROUTES;
3626#endif
3627#if KVM_ADDRESS_SPACE_NUM > 1
3628 case KVM_CAP_MULTI_ADDRESS_SPACE:
3629 return KVM_ADDRESS_SPACE_NUM;
3630#endif
3631 case KVM_CAP_NR_MEMSLOTS:
3632 return KVM_USER_MEM_SLOTS;
3633 default:
3634 break;
3635 }
3636 return kvm_vm_ioctl_check_extension(kvm, arg);
3637}
3638
3639int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3640 struct kvm_enable_cap *cap)
3641{
3642 return -EINVAL;
3643}
3644
3645static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3646 struct kvm_enable_cap *cap)
3647{
3648 switch (cap->cap) {
3649#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3650 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3651 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3652
3653 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3654 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3655
3656 if (cap->flags || (cap->args[0] & ~allowed_options))
3657 return -EINVAL;
3658 kvm->manual_dirty_log_protect = cap->args[0];
3659 return 0;
3660 }
3661#endif
3662 case KVM_CAP_HALT_POLL: {
3663 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3664 return -EINVAL;
3665
3666 kvm->max_halt_poll_ns = cap->args[0];
3667 return 0;
3668 }
3669 default:
3670 return kvm_vm_ioctl_enable_cap(kvm, cap);
3671 }
3672}
3673
3674static long kvm_vm_ioctl(struct file *filp,
3675 unsigned int ioctl, unsigned long arg)
3676{
3677 struct kvm *kvm = filp->private_data;
3678 void __user *argp = (void __user *)arg;
3679 int r;
3680
3681 if (kvm->mm != current->mm)
3682 return -EIO;
3683 switch (ioctl) {
3684 case KVM_CREATE_VCPU:
3685 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3686 break;
3687 case KVM_ENABLE_CAP: {
3688 struct kvm_enable_cap cap;
3689
3690 r = -EFAULT;
3691 if (copy_from_user(&cap, argp, sizeof(cap)))
3692 goto out;
3693 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3694 break;
3695 }
3696 case KVM_SET_USER_MEMORY_REGION: {
3697 struct kvm_userspace_memory_region kvm_userspace_mem;
3698
3699 r = -EFAULT;
3700 if (copy_from_user(&kvm_userspace_mem, argp,
3701 sizeof(kvm_userspace_mem)))
3702 goto out;
3703
3704 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3705 break;
3706 }
3707 case KVM_GET_DIRTY_LOG: {
3708 struct kvm_dirty_log log;
3709
3710 r = -EFAULT;
3711 if (copy_from_user(&log, argp, sizeof(log)))
3712 goto out;
3713 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3714 break;
3715 }
3716#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3717 case KVM_CLEAR_DIRTY_LOG: {
3718 struct kvm_clear_dirty_log log;
3719
3720 r = -EFAULT;
3721 if (copy_from_user(&log, argp, sizeof(log)))
3722 goto out;
3723 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3724 break;
3725 }
3726#endif
3727#ifdef CONFIG_KVM_MMIO
3728 case KVM_REGISTER_COALESCED_MMIO: {
3729 struct kvm_coalesced_mmio_zone zone;
3730
3731 r = -EFAULT;
3732 if (copy_from_user(&zone, argp, sizeof(zone)))
3733 goto out;
3734 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3735 break;
3736 }
3737 case KVM_UNREGISTER_COALESCED_MMIO: {
3738 struct kvm_coalesced_mmio_zone zone;
3739
3740 r = -EFAULT;
3741 if (copy_from_user(&zone, argp, sizeof(zone)))
3742 goto out;
3743 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3744 break;
3745 }
3746#endif
3747 case KVM_IRQFD: {
3748 struct kvm_irqfd data;
3749
3750 r = -EFAULT;
3751 if (copy_from_user(&data, argp, sizeof(data)))
3752 goto out;
3753 r = kvm_irqfd(kvm, &data);
3754 break;
3755 }
3756 case KVM_IOEVENTFD: {
3757 struct kvm_ioeventfd data;
3758
3759 r = -EFAULT;
3760 if (copy_from_user(&data, argp, sizeof(data)))
3761 goto out;
3762 r = kvm_ioeventfd(kvm, &data);
3763 break;
3764 }
3765#ifdef CONFIG_HAVE_KVM_MSI
3766 case KVM_SIGNAL_MSI: {
3767 struct kvm_msi msi;
3768
3769 r = -EFAULT;
3770 if (copy_from_user(&msi, argp, sizeof(msi)))
3771 goto out;
3772 r = kvm_send_userspace_msi(kvm, &msi);
3773 break;
3774 }
3775#endif
3776#ifdef __KVM_HAVE_IRQ_LINE
3777 case KVM_IRQ_LINE_STATUS:
3778 case KVM_IRQ_LINE: {
3779 struct kvm_irq_level irq_event;
3780
3781 r = -EFAULT;
3782 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3783 goto out;
3784
3785 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3786 ioctl == KVM_IRQ_LINE_STATUS);
3787 if (r)
3788 goto out;
3789
3790 r = -EFAULT;
3791 if (ioctl == KVM_IRQ_LINE_STATUS) {
3792 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3793 goto out;
3794 }
3795
3796 r = 0;
3797 break;
3798 }
3799#endif
3800#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3801 case KVM_SET_GSI_ROUTING: {
3802 struct kvm_irq_routing routing;
3803 struct kvm_irq_routing __user *urouting;
3804 struct kvm_irq_routing_entry *entries = NULL;
3805
3806 r = -EFAULT;
3807 if (copy_from_user(&routing, argp, sizeof(routing)))
3808 goto out;
3809 r = -EINVAL;
3810 if (!kvm_arch_can_set_irq_routing(kvm))
3811 goto out;
3812 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3813 goto out;
3814 if (routing.flags)
3815 goto out;
3816 if (routing.nr) {
3817 urouting = argp;
3818 entries = vmemdup_user(urouting->entries,
3819 array_size(sizeof(*entries),
3820 routing.nr));
3821 if (IS_ERR(entries)) {
3822 r = PTR_ERR(entries);
3823 goto out;
3824 }
3825 }
3826 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3827 routing.flags);
3828 kvfree(entries);
3829 break;
3830 }
3831#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3832 case KVM_CREATE_DEVICE: {
3833 struct kvm_create_device cd;
3834
3835 r = -EFAULT;
3836 if (copy_from_user(&cd, argp, sizeof(cd)))
3837 goto out;
3838
3839 r = kvm_ioctl_create_device(kvm, &cd);
3840 if (r)
3841 goto out;
3842
3843 r = -EFAULT;
3844 if (copy_to_user(argp, &cd, sizeof(cd)))
3845 goto out;
3846
3847 r = 0;
3848 break;
3849 }
3850 case KVM_CHECK_EXTENSION:
3851 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3852 break;
3853 default:
3854 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3855 }
3856out:
3857 return r;
3858}
3859
3860#ifdef CONFIG_KVM_COMPAT
3861struct compat_kvm_dirty_log {
3862 __u32 slot;
3863 __u32 padding1;
3864 union {
3865 compat_uptr_t dirty_bitmap; /* one bit per page */
3866 __u64 padding2;
3867 };
3868};
3869
3870static long kvm_vm_compat_ioctl(struct file *filp,
3871 unsigned int ioctl, unsigned long arg)
3872{
3873 struct kvm *kvm = filp->private_data;
3874 int r;
3875
3876 if (kvm->mm != current->mm)
3877 return -EIO;
3878 switch (ioctl) {
3879 case KVM_GET_DIRTY_LOG: {
3880 struct compat_kvm_dirty_log compat_log;
3881 struct kvm_dirty_log log;
3882
3883 if (copy_from_user(&compat_log, (void __user *)arg,
3884 sizeof(compat_log)))
3885 return -EFAULT;
3886 log.slot = compat_log.slot;
3887 log.padding1 = compat_log.padding1;
3888 log.padding2 = compat_log.padding2;
3889 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3890
3891 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3892 break;
3893 }
3894 default:
3895 r = kvm_vm_ioctl(filp, ioctl, arg);
3896 }
3897 return r;
3898}
3899#endif
3900
3901static struct file_operations kvm_vm_fops = {
3902 .release = kvm_vm_release,
3903 .unlocked_ioctl = kvm_vm_ioctl,
3904 .llseek = noop_llseek,
3905 KVM_COMPAT(kvm_vm_compat_ioctl),
3906};
3907
3908static int kvm_dev_ioctl_create_vm(unsigned long type)
3909{
3910 int r;
3911 struct kvm *kvm;
3912 struct file *file;
3913
3914 kvm = kvm_create_vm(type);
3915 if (IS_ERR(kvm))
3916 return PTR_ERR(kvm);
3917#ifdef CONFIG_KVM_MMIO
3918 r = kvm_coalesced_mmio_init(kvm);
3919 if (r < 0)
3920 goto put_kvm;
3921#endif
3922 r = get_unused_fd_flags(O_CLOEXEC);
3923 if (r < 0)
3924 goto put_kvm;
3925
3926 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3927 if (IS_ERR(file)) {
3928 put_unused_fd(r);
3929 r = PTR_ERR(file);
3930 goto put_kvm;
3931 }
3932
3933 /*
3934 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3935 * already set, with ->release() being kvm_vm_release(). In error
3936 * cases it will be called by the final fput(file) and will take
3937 * care of doing kvm_put_kvm(kvm).
3938 */
3939 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3940 put_unused_fd(r);
3941 fput(file);
3942 return -ENOMEM;
3943 }
3944 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3945
3946 fd_install(r, file);
3947 return r;
3948
3949put_kvm:
3950 kvm_put_kvm(kvm);
3951 return r;
3952}
3953
3954static long kvm_dev_ioctl(struct file *filp,
3955 unsigned int ioctl, unsigned long arg)
3956{
3957 long r = -EINVAL;
3958
3959 switch (ioctl) {
3960 case KVM_GET_API_VERSION:
3961 if (arg)
3962 goto out;
3963 r = KVM_API_VERSION;
3964 break;
3965 case KVM_CREATE_VM:
3966 r = kvm_dev_ioctl_create_vm(arg);
3967 break;
3968 case KVM_CHECK_EXTENSION:
3969 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3970 break;
3971 case KVM_GET_VCPU_MMAP_SIZE:
3972 if (arg)
3973 goto out;
3974 r = PAGE_SIZE; /* struct kvm_run */
3975#ifdef CONFIG_X86
3976 r += PAGE_SIZE; /* pio data page */
3977#endif
3978#ifdef CONFIG_KVM_MMIO
3979 r += PAGE_SIZE; /* coalesced mmio ring page */
3980#endif
3981 break;
3982 case KVM_TRACE_ENABLE:
3983 case KVM_TRACE_PAUSE:
3984 case KVM_TRACE_DISABLE:
3985 r = -EOPNOTSUPP;
3986 break;
3987 default:
3988 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3989 }
3990out:
3991 return r;
3992}
3993
3994static struct file_operations kvm_chardev_ops = {
3995 .unlocked_ioctl = kvm_dev_ioctl,
3996 .llseek = noop_llseek,
3997 KVM_COMPAT(kvm_dev_ioctl),
3998};
3999
4000static struct miscdevice kvm_dev = {
4001 KVM_MINOR,
4002 "kvm",
4003 &kvm_chardev_ops,
4004};
4005
4006static void hardware_enable_nolock(void *junk)
4007{
4008 int cpu = raw_smp_processor_id();
4009 int r;
4010
4011 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4012 return;
4013
4014 cpumask_set_cpu(cpu, cpus_hardware_enabled);
4015
4016 r = kvm_arch_hardware_enable();
4017
4018 if (r) {
4019 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4020 atomic_inc(&hardware_enable_failed);
4021 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4022 }
4023}
4024
4025static int kvm_starting_cpu(unsigned int cpu)
4026{
4027 raw_spin_lock(&kvm_count_lock);
4028 if (kvm_usage_count)
4029 hardware_enable_nolock(NULL);
4030 raw_spin_unlock(&kvm_count_lock);
4031 return 0;
4032}
4033
4034static void hardware_disable_nolock(void *junk)
4035{
4036 int cpu = raw_smp_processor_id();
4037
4038 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4039 return;
4040 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4041 kvm_arch_hardware_disable();
4042}
4043
4044static int kvm_dying_cpu(unsigned int cpu)
4045{
4046 raw_spin_lock(&kvm_count_lock);
4047 if (kvm_usage_count)
4048 hardware_disable_nolock(NULL);
4049 raw_spin_unlock(&kvm_count_lock);
4050 return 0;
4051}
4052
4053static void hardware_disable_all_nolock(void)
4054{
4055 BUG_ON(!kvm_usage_count);
4056
4057 kvm_usage_count--;
4058 if (!kvm_usage_count)
4059 on_each_cpu(hardware_disable_nolock, NULL, 1);
4060}
4061
4062static void hardware_disable_all(void)
4063{
4064 raw_spin_lock(&kvm_count_lock);
4065 hardware_disable_all_nolock();
4066 raw_spin_unlock(&kvm_count_lock);
4067}
4068
4069static int hardware_enable_all(void)
4070{
4071 int r = 0;
4072
4073 raw_spin_lock(&kvm_count_lock);
4074
4075 kvm_usage_count++;
4076 if (kvm_usage_count == 1) {
4077 atomic_set(&hardware_enable_failed, 0);
4078 on_each_cpu(hardware_enable_nolock, NULL, 1);
4079
4080 if (atomic_read(&hardware_enable_failed)) {
4081 hardware_disable_all_nolock();
4082 r = -EBUSY;
4083 }
4084 }
4085
4086 raw_spin_unlock(&kvm_count_lock);
4087
4088 return r;
4089}
4090
4091static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4092 void *v)
4093{
4094 /*
4095 * Some (well, at least mine) BIOSes hang on reboot if
4096 * in vmx root mode.
4097 *
4098 * And Intel TXT required VMX off for all cpu when system shutdown.
4099 */
4100 pr_info("kvm: exiting hardware virtualization\n");
4101 kvm_rebooting = true;
4102 on_each_cpu(hardware_disable_nolock, NULL, 1);
4103 return NOTIFY_OK;
4104}
4105
4106static struct notifier_block kvm_reboot_notifier = {
4107 .notifier_call = kvm_reboot,
4108 .priority = 0,
4109};
4110
4111static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4112{
4113 int i;
4114
4115 for (i = 0; i < bus->dev_count; i++) {
4116 struct kvm_io_device *pos = bus->range[i].dev;
4117
4118 kvm_iodevice_destructor(pos);
4119 }
4120 kfree(bus);
4121}
4122
4123static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4124 const struct kvm_io_range *r2)
4125{
4126 gpa_t addr1 = r1->addr;
4127 gpa_t addr2 = r2->addr;
4128
4129 if (addr1 < addr2)
4130 return -1;
4131
4132 /* If r2->len == 0, match the exact address. If r2->len != 0,
4133 * accept any overlapping write. Any order is acceptable for
4134 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4135 * we process all of them.
4136 */
4137 if (r2->len) {
4138 addr1 += r1->len;
4139 addr2 += r2->len;
4140 }
4141
4142 if (addr1 > addr2)
4143 return 1;
4144
4145 return 0;
4146}
4147
4148static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4149{
4150 return kvm_io_bus_cmp(p1, p2);
4151}
4152
4153static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4154 gpa_t addr, int len)
4155{
4156 struct kvm_io_range *range, key;
4157 int off;
4158
4159 key = (struct kvm_io_range) {
4160 .addr = addr,
4161 .len = len,
4162 };
4163
4164 range = bsearch(&key, bus->range, bus->dev_count,
4165 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4166 if (range == NULL)
4167 return -ENOENT;
4168
4169 off = range - bus->range;
4170
4171 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4172 off--;
4173
4174 return off;
4175}
4176
4177static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4178 struct kvm_io_range *range, const void *val)
4179{
4180 int idx;
4181
4182 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4183 if (idx < 0)
4184 return -EOPNOTSUPP;
4185
4186 while (idx < bus->dev_count &&
4187 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4188 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4189 range->len, val))
4190 return idx;
4191 idx++;
4192 }
4193
4194 return -EOPNOTSUPP;
4195}
4196
4197/* kvm_io_bus_write - called under kvm->slots_lock */
4198int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4199 int len, const void *val)
4200{
4201 struct kvm_io_bus *bus;
4202 struct kvm_io_range range;
4203 int r;
4204
4205 range = (struct kvm_io_range) {
4206 .addr = addr,
4207 .len = len,
4208 };
4209
4210 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4211 if (!bus)
4212 return -ENOMEM;
4213 r = __kvm_io_bus_write(vcpu, bus, &range, val);
4214 return r < 0 ? r : 0;
4215}
4216EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4217
4218/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4219int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4220 gpa_t addr, int len, const void *val, long cookie)
4221{
4222 struct kvm_io_bus *bus;
4223 struct kvm_io_range range;
4224
4225 range = (struct kvm_io_range) {
4226 .addr = addr,
4227 .len = len,
4228 };
4229
4230 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4231 if (!bus)
4232 return -ENOMEM;
4233
4234 /* First try the device referenced by cookie. */
4235 if ((cookie >= 0) && (cookie < bus->dev_count) &&
4236 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4237 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4238 val))
4239 return cookie;
4240
4241 /*
4242 * cookie contained garbage; fall back to search and return the
4243 * correct cookie value.
4244 */
4245 return __kvm_io_bus_write(vcpu, bus, &range, val);
4246}
4247
4248static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4249 struct kvm_io_range *range, void *val)
4250{
4251 int idx;
4252
4253 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4254 if (idx < 0)
4255 return -EOPNOTSUPP;
4256
4257 while (idx < bus->dev_count &&
4258 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4259 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4260 range->len, val))
4261 return idx;
4262 idx++;
4263 }
4264
4265 return -EOPNOTSUPP;
4266}
4267
4268/* kvm_io_bus_read - called under kvm->slots_lock */
4269int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4270 int len, void *val)
4271{
4272 struct kvm_io_bus *bus;
4273 struct kvm_io_range range;
4274 int r;
4275
4276 range = (struct kvm_io_range) {
4277 .addr = addr,
4278 .len = len,
4279 };
4280
4281 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4282 if (!bus)
4283 return -ENOMEM;
4284 r = __kvm_io_bus_read(vcpu, bus, &range, val);
4285 return r < 0 ? r : 0;
4286}
4287
4288/* Caller must hold slots_lock. */
4289int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4290 int len, struct kvm_io_device *dev)
4291{
4292 int i;
4293 struct kvm_io_bus *new_bus, *bus;
4294 struct kvm_io_range range;
4295
4296 bus = kvm_get_bus(kvm, bus_idx);
4297 if (!bus)
4298 return -ENOMEM;
4299
4300 /* exclude ioeventfd which is limited by maximum fd */
4301 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4302 return -ENOSPC;
4303
4304 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4305 GFP_KERNEL_ACCOUNT);
4306 if (!new_bus)
4307 return -ENOMEM;
4308
4309 range = (struct kvm_io_range) {
4310 .addr = addr,
4311 .len = len,
4312 .dev = dev,
4313 };
4314
4315 for (i = 0; i < bus->dev_count; i++)
4316 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4317 break;
4318
4319 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4320 new_bus->dev_count++;
4321 new_bus->range[i] = range;
4322 memcpy(new_bus->range + i + 1, bus->range + i,
4323 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4324 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4325 synchronize_srcu_expedited(&kvm->srcu);
4326 kfree(bus);
4327
4328 return 0;
4329}
4330
4331/* Caller must hold slots_lock. */
4332void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4333 struct kvm_io_device *dev)
4334{
4335 int i, j;
4336 struct kvm_io_bus *new_bus, *bus;
4337
4338 bus = kvm_get_bus(kvm, bus_idx);
4339 if (!bus)
4340 return;
4341
4342 for (i = 0; i < bus->dev_count; i++)
4343 if (bus->range[i].dev == dev) {
4344 break;
4345 }
4346
4347 if (i == bus->dev_count)
4348 return;
4349
4350 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4351 GFP_KERNEL_ACCOUNT);
4352 if (new_bus) {
4353 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4354 new_bus->dev_count--;
4355 memcpy(new_bus->range + i, bus->range + i + 1,
4356 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4357 } else {
4358 pr_err("kvm: failed to shrink bus, removing it completely\n");
4359 for (j = 0; j < bus->dev_count; j++) {
4360 if (j == i)
4361 continue;
4362 kvm_iodevice_destructor(bus->range[j].dev);
4363 }
4364 }
4365
4366 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4367 synchronize_srcu_expedited(&kvm->srcu);
4368 kfree(bus);
4369 return;
4370}
4371
4372struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4373 gpa_t addr)
4374{
4375 struct kvm_io_bus *bus;
4376 int dev_idx, srcu_idx;
4377 struct kvm_io_device *iodev = NULL;
4378
4379 srcu_idx = srcu_read_lock(&kvm->srcu);
4380
4381 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4382 if (!bus)
4383 goto out_unlock;
4384
4385 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4386 if (dev_idx < 0)
4387 goto out_unlock;
4388
4389 iodev = bus->range[dev_idx].dev;
4390
4391out_unlock:
4392 srcu_read_unlock(&kvm->srcu, srcu_idx);
4393
4394 return iodev;
4395}
4396EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4397
4398static int kvm_debugfs_open(struct inode *inode, struct file *file,
4399 int (*get)(void *, u64 *), int (*set)(void *, u64),
4400 const char *fmt)
4401{
4402 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4403 inode->i_private;
4404
4405 /* The debugfs files are a reference to the kvm struct which
4406 * is still valid when kvm_destroy_vm is called.
4407 * To avoid the race between open and the removal of the debugfs
4408 * directory we test against the users count.
4409 */
4410 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4411 return -ENOENT;
4412
4413 if (simple_attr_open(inode, file, get,
4414 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4415 ? set : NULL,
4416 fmt)) {
4417 kvm_put_kvm(stat_data->kvm);
4418 return -ENOMEM;
4419 }
4420
4421 return 0;
4422}
4423
4424static int kvm_debugfs_release(struct inode *inode, struct file *file)
4425{
4426 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4427 inode->i_private;
4428
4429 simple_attr_release(inode, file);
4430 kvm_put_kvm(stat_data->kvm);
4431
4432 return 0;
4433}
4434
4435static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4436{
4437 *val = *(ulong *)((void *)kvm + offset);
4438
4439 return 0;
4440}
4441
4442static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4443{
4444 *(ulong *)((void *)kvm + offset) = 0;
4445
4446 return 0;
4447}
4448
4449static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4450{
4451 int i;
4452 struct kvm_vcpu *vcpu;
4453
4454 *val = 0;
4455
4456 kvm_for_each_vcpu(i, vcpu, kvm)
4457 *val += *(u64 *)((void *)vcpu + offset);
4458
4459 return 0;
4460}
4461
4462static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4463{
4464 int i;
4465 struct kvm_vcpu *vcpu;
4466
4467 kvm_for_each_vcpu(i, vcpu, kvm)
4468 *(u64 *)((void *)vcpu + offset) = 0;
4469
4470 return 0;
4471}
4472
4473static int kvm_stat_data_get(void *data, u64 *val)
4474{
4475 int r = -EFAULT;
4476 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4477
4478 switch (stat_data->dbgfs_item->kind) {
4479 case KVM_STAT_VM:
4480 r = kvm_get_stat_per_vm(stat_data->kvm,
4481 stat_data->dbgfs_item->offset, val);
4482 break;
4483 case KVM_STAT_VCPU:
4484 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4485 stat_data->dbgfs_item->offset, val);
4486 break;
4487 }
4488
4489 return r;
4490}
4491
4492static int kvm_stat_data_clear(void *data, u64 val)
4493{
4494 int r = -EFAULT;
4495 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4496
4497 if (val)
4498 return -EINVAL;
4499
4500 switch (stat_data->dbgfs_item->kind) {
4501 case KVM_STAT_VM:
4502 r = kvm_clear_stat_per_vm(stat_data->kvm,
4503 stat_data->dbgfs_item->offset);
4504 break;
4505 case KVM_STAT_VCPU:
4506 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4507 stat_data->dbgfs_item->offset);
4508 break;
4509 }
4510
4511 return r;
4512}
4513
4514static int kvm_stat_data_open(struct inode *inode, struct file *file)
4515{
4516 __simple_attr_check_format("%llu\n", 0ull);
4517 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4518 kvm_stat_data_clear, "%llu\n");
4519}
4520
4521static const struct file_operations stat_fops_per_vm = {
4522 .owner = THIS_MODULE,
4523 .open = kvm_stat_data_open,
4524 .release = kvm_debugfs_release,
4525 .read = simple_attr_read,
4526 .write = simple_attr_write,
4527 .llseek = no_llseek,
4528};
4529
4530static int vm_stat_get(void *_offset, u64 *val)
4531{
4532 unsigned offset = (long)_offset;
4533 struct kvm *kvm;
4534 u64 tmp_val;
4535
4536 *val = 0;
4537 mutex_lock(&kvm_lock);
4538 list_for_each_entry(kvm, &vm_list, vm_list) {
4539 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4540 *val += tmp_val;
4541 }
4542 mutex_unlock(&kvm_lock);
4543 return 0;
4544}
4545
4546static int vm_stat_clear(void *_offset, u64 val)
4547{
4548 unsigned offset = (long)_offset;
4549 struct kvm *kvm;
4550
4551 if (val)
4552 return -EINVAL;
4553
4554 mutex_lock(&kvm_lock);
4555 list_for_each_entry(kvm, &vm_list, vm_list) {
4556 kvm_clear_stat_per_vm(kvm, offset);
4557 }
4558 mutex_unlock(&kvm_lock);
4559
4560 return 0;
4561}
4562
4563DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4564
4565static int vcpu_stat_get(void *_offset, u64 *val)
4566{
4567 unsigned offset = (long)_offset;
4568 struct kvm *kvm;
4569 u64 tmp_val;
4570
4571 *val = 0;
4572 mutex_lock(&kvm_lock);
4573 list_for_each_entry(kvm, &vm_list, vm_list) {
4574 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4575 *val += tmp_val;
4576 }
4577 mutex_unlock(&kvm_lock);
4578 return 0;
4579}
4580
4581static int vcpu_stat_clear(void *_offset, u64 val)
4582{
4583 unsigned offset = (long)_offset;
4584 struct kvm *kvm;
4585
4586 if (val)
4587 return -EINVAL;
4588
4589 mutex_lock(&kvm_lock);
4590 list_for_each_entry(kvm, &vm_list, vm_list) {
4591 kvm_clear_stat_per_vcpu(kvm, offset);
4592 }
4593 mutex_unlock(&kvm_lock);
4594
4595 return 0;
4596}
4597
4598DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4599 "%llu\n");
4600
4601static const struct file_operations *stat_fops[] = {
4602 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4603 [KVM_STAT_VM] = &vm_stat_fops,
4604};
4605
4606static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4607{
4608 struct kobj_uevent_env *env;
4609 unsigned long long created, active;
4610
4611 if (!kvm_dev.this_device || !kvm)
4612 return;
4613
4614 mutex_lock(&kvm_lock);
4615 if (type == KVM_EVENT_CREATE_VM) {
4616 kvm_createvm_count++;
4617 kvm_active_vms++;
4618 } else if (type == KVM_EVENT_DESTROY_VM) {
4619 kvm_active_vms--;
4620 }
4621 created = kvm_createvm_count;
4622 active = kvm_active_vms;
4623 mutex_unlock(&kvm_lock);
4624
4625 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4626 if (!env)
4627 return;
4628
4629 add_uevent_var(env, "CREATED=%llu", created);
4630 add_uevent_var(env, "COUNT=%llu", active);
4631
4632 if (type == KVM_EVENT_CREATE_VM) {
4633 add_uevent_var(env, "EVENT=create");
4634 kvm->userspace_pid = task_pid_nr(current);
4635 } else if (type == KVM_EVENT_DESTROY_VM) {
4636 add_uevent_var(env, "EVENT=destroy");
4637 }
4638 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4639
4640 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4641 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4642
4643 if (p) {
4644 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4645 if (!IS_ERR(tmp))
4646 add_uevent_var(env, "STATS_PATH=%s", tmp);
4647 kfree(p);
4648 }
4649 }
4650 /* no need for checks, since we are adding at most only 5 keys */
4651 env->envp[env->envp_idx++] = NULL;
4652 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4653 kfree(env);
4654}
4655
4656static void kvm_init_debug(void)
4657{
4658 struct kvm_stats_debugfs_item *p;
4659
4660 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4661
4662 kvm_debugfs_num_entries = 0;
4663 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4664 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4665 kvm_debugfs_dir, (void *)(long)p->offset,
4666 stat_fops[p->kind]);
4667 }
4668}
4669
4670static int kvm_suspend(void)
4671{
4672 if (kvm_usage_count)
4673 hardware_disable_nolock(NULL);
4674 return 0;
4675}
4676
4677static void kvm_resume(void)
4678{
4679 if (kvm_usage_count) {
4680#ifdef CONFIG_LOCKDEP
4681 WARN_ON(lockdep_is_held(&kvm_count_lock));
4682#endif
4683 hardware_enable_nolock(NULL);
4684 }
4685}
4686
4687static struct syscore_ops kvm_syscore_ops = {
4688 .suspend = kvm_suspend,
4689 .resume = kvm_resume,
4690};
4691
4692static inline
4693struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4694{
4695 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4696}
4697
4698static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4699{
4700 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4701
4702 WRITE_ONCE(vcpu->preempted, false);
4703 WRITE_ONCE(vcpu->ready, false);
4704
4705 __this_cpu_write(kvm_running_vcpu, vcpu);
4706 kvm_arch_sched_in(vcpu, cpu);
4707 kvm_arch_vcpu_load(vcpu, cpu);
4708}
4709
4710static void kvm_sched_out(struct preempt_notifier *pn,
4711 struct task_struct *next)
4712{
4713 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4714
4715 if (current->state == TASK_RUNNING) {
4716 WRITE_ONCE(vcpu->preempted, true);
4717 WRITE_ONCE(vcpu->ready, true);
4718 }
4719 kvm_arch_vcpu_put(vcpu);
4720 __this_cpu_write(kvm_running_vcpu, NULL);
4721}
4722
4723/**
4724 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4725 *
4726 * We can disable preemption locally around accessing the per-CPU variable,
4727 * and use the resolved vcpu pointer after enabling preemption again,
4728 * because even if the current thread is migrated to another CPU, reading
4729 * the per-CPU value later will give us the same value as we update the
4730 * per-CPU variable in the preempt notifier handlers.
4731 */
4732struct kvm_vcpu *kvm_get_running_vcpu(void)
4733{
4734 struct kvm_vcpu *vcpu;
4735
4736 preempt_disable();
4737 vcpu = __this_cpu_read(kvm_running_vcpu);
4738 preempt_enable();
4739
4740 return vcpu;
4741}
4742EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4743
4744/**
4745 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4746 */
4747struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4748{
4749 return &kvm_running_vcpu;
4750}
4751
4752struct kvm_cpu_compat_check {
4753 void *opaque;
4754 int *ret;
4755};
4756
4757static void check_processor_compat(void *data)
4758{
4759 struct kvm_cpu_compat_check *c = data;
4760
4761 *c->ret = kvm_arch_check_processor_compat(c->opaque);
4762}
4763
4764int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4765 struct module *module)
4766{
4767 struct kvm_cpu_compat_check c;
4768 int r;
4769 int cpu;
4770
4771 r = kvm_arch_init(opaque);
4772 if (r)
4773 goto out_fail;
4774
4775 /*
4776 * kvm_arch_init makes sure there's at most one caller
4777 * for architectures that support multiple implementations,
4778 * like intel and amd on x86.
4779 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4780 * conflicts in case kvm is already setup for another implementation.
4781 */
4782 r = kvm_irqfd_init();
4783 if (r)
4784 goto out_irqfd;
4785
4786 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4787 r = -ENOMEM;
4788 goto out_free_0;
4789 }
4790
4791 r = kvm_arch_hardware_setup(opaque);
4792 if (r < 0)
4793 goto out_free_1;
4794
4795 c.ret = &r;
4796 c.opaque = opaque;
4797 for_each_online_cpu(cpu) {
4798 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4799 if (r < 0)
4800 goto out_free_2;
4801 }
4802
4803 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4804 kvm_starting_cpu, kvm_dying_cpu);
4805 if (r)
4806 goto out_free_2;
4807 register_reboot_notifier(&kvm_reboot_notifier);
4808
4809 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4810 if (!vcpu_align)
4811 vcpu_align = __alignof__(struct kvm_vcpu);
4812 kvm_vcpu_cache =
4813 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4814 SLAB_ACCOUNT,
4815 offsetof(struct kvm_vcpu, arch),
4816 sizeof_field(struct kvm_vcpu, arch),
4817 NULL);
4818 if (!kvm_vcpu_cache) {
4819 r = -ENOMEM;
4820 goto out_free_3;
4821 }
4822
4823 r = kvm_async_pf_init();
4824 if (r)
4825 goto out_free;
4826
4827 kvm_chardev_ops.owner = module;
4828 kvm_vm_fops.owner = module;
4829 kvm_vcpu_fops.owner = module;
4830
4831 r = misc_register(&kvm_dev);
4832 if (r) {
4833 pr_err("kvm: misc device register failed\n");
4834 goto out_unreg;
4835 }
4836
4837 register_syscore_ops(&kvm_syscore_ops);
4838
4839 kvm_preempt_ops.sched_in = kvm_sched_in;
4840 kvm_preempt_ops.sched_out = kvm_sched_out;
4841
4842 kvm_init_debug();
4843
4844 r = kvm_vfio_ops_init();
4845 WARN_ON(r);
4846
4847 return 0;
4848
4849out_unreg:
4850 kvm_async_pf_deinit();
4851out_free:
4852 kmem_cache_destroy(kvm_vcpu_cache);
4853out_free_3:
4854 unregister_reboot_notifier(&kvm_reboot_notifier);
4855 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4856out_free_2:
4857 kvm_arch_hardware_unsetup();
4858out_free_1:
4859 free_cpumask_var(cpus_hardware_enabled);
4860out_free_0:
4861 kvm_irqfd_exit();
4862out_irqfd:
4863 kvm_arch_exit();
4864out_fail:
4865 return r;
4866}
4867EXPORT_SYMBOL_GPL(kvm_init);
4868
4869void kvm_exit(void)
4870{
4871 debugfs_remove_recursive(kvm_debugfs_dir);
4872 misc_deregister(&kvm_dev);
4873 kmem_cache_destroy(kvm_vcpu_cache);
4874 kvm_async_pf_deinit();
4875 unregister_syscore_ops(&kvm_syscore_ops);
4876 unregister_reboot_notifier(&kvm_reboot_notifier);
4877 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4878 on_each_cpu(hardware_disable_nolock, NULL, 1);
4879 kvm_arch_hardware_unsetup();
4880 kvm_arch_exit();
4881 kvm_irqfd_exit();
4882 free_cpumask_var(cpus_hardware_enabled);
4883 kvm_vfio_ops_exit();
4884}
4885EXPORT_SYMBOL_GPL(kvm_exit);
4886
4887struct kvm_vm_worker_thread_context {
4888 struct kvm *kvm;
4889 struct task_struct *parent;
4890 struct completion init_done;
4891 kvm_vm_thread_fn_t thread_fn;
4892 uintptr_t data;
4893 int err;
4894};
4895
4896static int kvm_vm_worker_thread(void *context)
4897{
4898 /*
4899 * The init_context is allocated on the stack of the parent thread, so
4900 * we have to locally copy anything that is needed beyond initialization
4901 */
4902 struct kvm_vm_worker_thread_context *init_context = context;
4903 struct kvm *kvm = init_context->kvm;
4904 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4905 uintptr_t data = init_context->data;
4906 int err;
4907
4908 err = kthread_park(current);
4909 /* kthread_park(current) is never supposed to return an error */
4910 WARN_ON(err != 0);
4911 if (err)
4912 goto init_complete;
4913
4914 err = cgroup_attach_task_all(init_context->parent, current);
4915 if (err) {
4916 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4917 __func__, err);
4918 goto init_complete;
4919 }
4920
4921 set_user_nice(current, task_nice(init_context->parent));
4922
4923init_complete:
4924 init_context->err = err;
4925 complete(&init_context->init_done);
4926 init_context = NULL;
4927
4928 if (err)
4929 return err;
4930
4931 /* Wait to be woken up by the spawner before proceeding. */
4932 kthread_parkme();
4933
4934 if (!kthread_should_stop())
4935 err = thread_fn(kvm, data);
4936
4937 return err;
4938}
4939
4940int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4941 uintptr_t data, const char *name,
4942 struct task_struct **thread_ptr)
4943{
4944 struct kvm_vm_worker_thread_context init_context = {};
4945 struct task_struct *thread;
4946
4947 *thread_ptr = NULL;
4948 init_context.kvm = kvm;
4949 init_context.parent = current;
4950 init_context.thread_fn = thread_fn;
4951 init_context.data = data;
4952 init_completion(&init_context.init_done);
4953
4954 thread = kthread_run(kvm_vm_worker_thread, &init_context,
4955 "%s-%d", name, task_pid_nr(current));
4956 if (IS_ERR(thread))
4957 return PTR_ERR(thread);
4958
4959 /* kthread_run is never supposed to return NULL */
4960 WARN_ON(thread == NULL);
4961
4962 wait_for_completion(&init_context.init_done);
4963
4964 if (!init_context.err)
4965 *thread_ptr = thread;
4966
4967 return init_context.err;
4968}