Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v3.1
   1#include <linux/mm.h>
 
 
   2#include <linux/hugetlb.h>
   3#include <linux/huge_mm.h>
   4#include <linux/mount.h>
 
   5#include <linux/seq_file.h>
   6#include <linux/highmem.h>
   7#include <linux/ptrace.h>
   8#include <linux/slab.h>
   9#include <linux/pagemap.h>
  10#include <linux/mempolicy.h>
  11#include <linux/rmap.h>
  12#include <linux/swap.h>
 
  13#include <linux/swapops.h>
 
 
 
 
 
 
 
  14
  15#include <asm/elf.h>
  16#include <asm/uaccess.h>
  17#include <asm/tlbflush.h>
  18#include "internal.h"
  19
 
 
  20void task_mem(struct seq_file *m, struct mm_struct *mm)
  21{
  22	unsigned long data, text, lib, swap;
  23	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  24
 
 
 
 
  25	/*
  26	 * Note: to minimize their overhead, mm maintains hiwater_vm and
  27	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
  28	 * collector of these hiwater stats must therefore get total_vm
  29	 * and rss too, which will usually be the higher.  Barriers? not
  30	 * worth the effort, such snapshots can always be inconsistent.
  31	 */
  32	hiwater_vm = total_vm = mm->total_vm;
  33	if (hiwater_vm < mm->hiwater_vm)
  34		hiwater_vm = mm->hiwater_vm;
  35	hiwater_rss = total_rss = get_mm_rss(mm);
  36	if (hiwater_rss < mm->hiwater_rss)
  37		hiwater_rss = mm->hiwater_rss;
  38
  39	data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  40	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  41	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
 
 
  42	swap = get_mm_counter(mm, MM_SWAPENTS);
  43	seq_printf(m,
  44		"VmPeak:\t%8lu kB\n"
  45		"VmSize:\t%8lu kB\n"
  46		"VmLck:\t%8lu kB\n"
  47		"VmHWM:\t%8lu kB\n"
  48		"VmRSS:\t%8lu kB\n"
  49		"VmData:\t%8lu kB\n"
  50		"VmStk:\t%8lu kB\n"
  51		"VmExe:\t%8lu kB\n"
  52		"VmLib:\t%8lu kB\n"
  53		"VmPTE:\t%8lu kB\n"
  54		"VmSwap:\t%8lu kB\n",
  55		hiwater_vm << (PAGE_SHIFT-10),
  56		(total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
  57		mm->locked_vm << (PAGE_SHIFT-10),
  58		hiwater_rss << (PAGE_SHIFT-10),
  59		total_rss << (PAGE_SHIFT-10),
  60		data << (PAGE_SHIFT-10),
  61		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  62		(PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
  63		swap << (PAGE_SHIFT-10));
  64}
 
  65
  66unsigned long task_vsize(struct mm_struct *mm)
  67{
  68	return PAGE_SIZE * mm->total_vm;
  69}
  70
  71unsigned long task_statm(struct mm_struct *mm,
  72			 unsigned long *shared, unsigned long *text,
  73			 unsigned long *data, unsigned long *resident)
  74{
  75	*shared = get_mm_counter(mm, MM_FILEPAGES);
 
  76	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  77								>> PAGE_SHIFT;
  78	*data = mm->total_vm - mm->shared_vm;
  79	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  80	return mm->total_vm;
  81}
  82
  83static void pad_len_spaces(struct seq_file *m, int len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  84{
  85	len = 25 + sizeof(void*) * 6 - len;
  86	if (len < 1)
  87		len = 1;
  88	seq_printf(m, "%*c", len, ' ');
  89}
 
 
 
 
  90
  91static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
 
  92{
  93	if (vma && vma != priv->tail_vma) {
  94		struct mm_struct *mm = vma->vm_mm;
  95		up_read(&mm->mmap_sem);
  96		mmput(mm);
 
 
 
  97	}
 
 
  98}
  99
 100static void *m_start(struct seq_file *m, loff_t *pos)
 101{
 102	struct proc_maps_private *priv = m->private;
 103	unsigned long last_addr = m->version;
 104	struct mm_struct *mm;
 105	struct vm_area_struct *vma, *tail_vma = NULL;
 106	loff_t l = *pos;
 107
 108	/* Clear the per syscall fields in priv */
 109	priv->task = NULL;
 110	priv->tail_vma = NULL;
 111
 112	/*
 113	 * We remember last_addr rather than next_addr to hit with
 114	 * mmap_cache most of the time. We have zero last_addr at
 115	 * the beginning and also after lseek. We will have -1 last_addr
 116	 * after the end of the vmas.
 117	 */
 118
 
 119	if (last_addr == -1UL)
 120		return NULL;
 121
 122	priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
 123	if (!priv->task)
 124		return ERR_PTR(-ESRCH);
 125
 126	mm = mm_for_maps(priv->task);
 127	if (!mm || IS_ERR(mm))
 128		return mm;
 129	down_read(&mm->mmap_sem);
 130
 131	tail_vma = get_gate_vma(priv->task->mm);
 132	priv->tail_vma = tail_vma;
 133
 134	/* Start with last addr hint */
 135	vma = find_vma(mm, last_addr);
 136	if (last_addr && vma) {
 137		vma = vma->vm_next;
 138		goto out;
 139	}
 140
 141	/*
 142	 * Check the vma index is within the range and do
 143	 * sequential scan until m_index.
 144	 */
 145	vma = NULL;
 146	if ((unsigned long)l < mm->map_count) {
 147		vma = mm->mmap;
 148		while (l-- && vma)
 149			vma = vma->vm_next;
 150		goto out;
 151	}
 152
 153	if (l != mm->map_count)
 154		tail_vma = NULL; /* After gate vma */
 
 
 155
 156out:
 157	if (vma)
 158		return vma;
 159
 160	/* End of vmas has been reached */
 161	m->version = (tail_vma != NULL)? 0: -1UL;
 162	up_read(&mm->mmap_sem);
 163	mmput(mm);
 164	return tail_vma;
 
 
 165}
 166
 167static void *m_next(struct seq_file *m, void *v, loff_t *pos)
 168{
 169	struct proc_maps_private *priv = m->private;
 170	struct vm_area_struct *vma = v;
 171	struct vm_area_struct *tail_vma = priv->tail_vma;
 172
 173	(*pos)++;
 174	if (vma && (vma != tail_vma) && vma->vm_next)
 175		return vma->vm_next;
 176	vma_stop(priv, vma);
 177	return (vma != tail_vma)? tail_vma: NULL;
 
 
 
 178}
 179
 180static void m_stop(struct seq_file *m, void *v)
 
 181{
 182	struct proc_maps_private *priv = m->private;
 183	struct vm_area_struct *vma = v;
 184
 185	if (!IS_ERR(vma))
 186		vma_stop(priv, vma);
 187	if (priv->task)
 188		put_task_struct(priv->task);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 189}
 190
 191static int do_maps_open(struct inode *inode, struct file *file,
 192			const struct seq_operations *ops)
 193{
 194	struct proc_maps_private *priv;
 195	int ret = -ENOMEM;
 196	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
 197	if (priv) {
 198		priv->pid = proc_pid(inode);
 199		ret = seq_open(file, ops);
 200		if (!ret) {
 201			struct seq_file *m = file->private_data;
 202			m->private = priv;
 203		} else {
 204			kfree(priv);
 205		}
 206	}
 207	return ret;
 208}
 209
 210static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 211{
 
 212	struct mm_struct *mm = vma->vm_mm;
 213	struct file *file = vma->vm_file;
 214	vm_flags_t flags = vma->vm_flags;
 215	unsigned long ino = 0;
 216	unsigned long long pgoff = 0;
 217	unsigned long start, end;
 218	dev_t dev = 0;
 219	int len;
 220
 221	if (file) {
 222		struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
 
 223		dev = inode->i_sb->s_dev;
 224		ino = inode->i_ino;
 225		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
 226	}
 227
 228	/* We don't show the stack guard page in /proc/maps */
 229	start = vma->vm_start;
 230	if (stack_guard_page_start(vma, start))
 231		start += PAGE_SIZE;
 232	end = vma->vm_end;
 233	if (stack_guard_page_end(vma, end))
 234		end -= PAGE_SIZE;
 235
 236	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
 237			start,
 238			end,
 239			flags & VM_READ ? 'r' : '-',
 240			flags & VM_WRITE ? 'w' : '-',
 241			flags & VM_EXEC ? 'x' : '-',
 242			flags & VM_MAYSHARE ? 's' : 'p',
 243			pgoff,
 244			MAJOR(dev), MINOR(dev), ino, &len);
 245
 246	/*
 247	 * Print the dentry name for named mappings, and a
 248	 * special [heap] marker for the heap:
 249	 */
 250	if (file) {
 251		pad_len_spaces(m, len);
 252		seq_path(m, &file->f_path, "\n");
 253	} else {
 254		const char *name = arch_vma_name(vma);
 255		if (!name) {
 256			if (mm) {
 257				if (vma->vm_start <= mm->brk &&
 258						vma->vm_end >= mm->start_brk) {
 259					name = "[heap]";
 260				} else if (vma->vm_start <= mm->start_stack &&
 261					   vma->vm_end >= mm->start_stack) {
 262					name = "[stack]";
 263				}
 264			} else {
 265				name = "[vdso]";
 266			}
 
 
 
 
 
 
 
 
 
 
 
 
 267		}
 268		if (name) {
 269			pad_len_spaces(m, len);
 270			seq_puts(m, name);
 
 
 
 
 
 
 271		}
 272	}
 
 
 
 
 
 
 273	seq_putc(m, '\n');
 274}
 275
 276static int show_map(struct seq_file *m, void *v)
 277{
 278	struct vm_area_struct *vma = v;
 279	struct proc_maps_private *priv = m->private;
 280	struct task_struct *task = priv->task;
 281
 282	show_map_vma(m, vma);
 283
 284	if (m->count < m->size)  /* vma is copied successfully */
 285		m->version = (vma != get_gate_vma(task->mm))
 286			? vma->vm_start : 0;
 287	return 0;
 288}
 289
 290static const struct seq_operations proc_pid_maps_op = {
 291	.start	= m_start,
 292	.next	= m_next,
 293	.stop	= m_stop,
 294	.show	= show_map
 295};
 296
 297static int maps_open(struct inode *inode, struct file *file)
 298{
 299	return do_maps_open(inode, file, &proc_pid_maps_op);
 300}
 301
 302const struct file_operations proc_maps_operations = {
 303	.open		= maps_open,
 304	.read		= seq_read,
 305	.llseek		= seq_lseek,
 306	.release	= seq_release_private,
 307};
 308
 309/*
 310 * Proportional Set Size(PSS): my share of RSS.
 311 *
 312 * PSS of a process is the count of pages it has in memory, where each
 313 * page is divided by the number of processes sharing it.  So if a
 314 * process has 1000 pages all to itself, and 1000 shared with one other
 315 * process, its PSS will be 1500.
 316 *
 317 * To keep (accumulated) division errors low, we adopt a 64bit
 318 * fixed-point pss counter to minimize division errors. So (pss >>
 319 * PSS_SHIFT) would be the real byte count.
 320 *
 321 * A shift of 12 before division means (assuming 4K page size):
 322 * 	- 1M 3-user-pages add up to 8KB errors;
 323 * 	- supports mapcount up to 2^24, or 16M;
 324 * 	- supports PSS up to 2^52 bytes, or 4PB.
 325 */
 326#define PSS_SHIFT 12
 327
 328#ifdef CONFIG_PROC_PAGE_MONITOR
 329struct mem_size_stats {
 330	struct vm_area_struct *vma;
 331	unsigned long resident;
 332	unsigned long shared_clean;
 333	unsigned long shared_dirty;
 334	unsigned long private_clean;
 335	unsigned long private_dirty;
 336	unsigned long referenced;
 337	unsigned long anonymous;
 
 338	unsigned long anonymous_thp;
 
 
 339	unsigned long swap;
 
 
 
 340	u64 pss;
 
 
 
 
 
 
 341};
 342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 343
 344static void smaps_pte_entry(pte_t ptent, unsigned long addr,
 345		unsigned long ptent_size, struct mm_walk *walk)
 
 346{
 347	struct mem_size_stats *mss = walk->private;
 348	struct vm_area_struct *vma = mss->vma;
 349	struct page *page;
 350	int mapcount;
 
 
 
 
 
 
 
 
 351
 352	if (is_swap_pte(ptent)) {
 353		mss->swap += ptent_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 354		return;
 355	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 356
 357	if (!pte_present(ptent))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 358		return;
 
 359
 360	page = vm_normal_page(vma, addr, ptent);
 361	if (!page)
 362		return;
 363
 364	if (PageAnon(page))
 365		mss->anonymous += ptent_size;
 366
 367	mss->resident += ptent_size;
 368	/* Accumulate the size in pages that have been accessed. */
 369	if (pte_young(ptent) || PageReferenced(page))
 370		mss->referenced += ptent_size;
 371	mapcount = page_mapcount(page);
 372	if (mapcount >= 2) {
 373		if (pte_dirty(ptent) || PageDirty(page))
 374			mss->shared_dirty += ptent_size;
 375		else
 376			mss->shared_clean += ptent_size;
 377		mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
 378	} else {
 379		if (pte_dirty(ptent) || PageDirty(page))
 380			mss->private_dirty += ptent_size;
 381		else
 382			mss->private_clean += ptent_size;
 383		mss->pss += (ptent_size << PSS_SHIFT);
 
 
 384	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 385}
 
 386
 387static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 388			   struct mm_walk *walk)
 389{
 390	struct mem_size_stats *mss = walk->private;
 391	struct vm_area_struct *vma = mss->vma;
 392	pte_t *pte;
 393	spinlock_t *ptl;
 394
 395	spin_lock(&walk->mm->page_table_lock);
 396	if (pmd_trans_huge(*pmd)) {
 397		if (pmd_trans_splitting(*pmd)) {
 398			spin_unlock(&walk->mm->page_table_lock);
 399			wait_split_huge_page(vma->anon_vma, pmd);
 400		} else {
 401			smaps_pte_entry(*(pte_t *)pmd, addr,
 402					HPAGE_PMD_SIZE, walk);
 403			spin_unlock(&walk->mm->page_table_lock);
 404			mss->anonymous_thp += HPAGE_PMD_SIZE;
 405			return 0;
 406		}
 407	} else {
 408		spin_unlock(&walk->mm->page_table_lock);
 409	}
 410	/*
 411	 * The mmap_sem held all the way back in m_start() is what
 412	 * keeps khugepaged out of here and from collapsing things
 413	 * in here.
 414	 */
 415	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 
 
 
 
 416	for (; addr != end; pte++, addr += PAGE_SIZE)
 417		smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
 418	pte_unmap_unlock(pte - 1, ptl);
 
 419	cond_resched();
 420	return 0;
 421}
 422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 423static int show_smap(struct seq_file *m, void *v)
 424{
 425	struct proc_maps_private *priv = m->private;
 426	struct task_struct *task = priv->task;
 427	struct vm_area_struct *vma = v;
 428	struct mem_size_stats mss;
 429	struct mm_walk smaps_walk = {
 430		.pmd_entry = smaps_pte_range,
 431		.mm = vma->vm_mm,
 432		.private = &mss,
 433	};
 434
 435	memset(&mss, 0, sizeof mss);
 436	mss.vma = vma;
 437	/* mmap_sem is held in m_start */
 438	if (vma->vm_mm && !is_vm_hugetlb_page(vma))
 439		walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
 440
 441	show_map_vma(m, vma);
 442
 443	seq_printf(m,
 444		   "Size:           %8lu kB\n"
 445		   "Rss:            %8lu kB\n"
 446		   "Pss:            %8lu kB\n"
 447		   "Shared_Clean:   %8lu kB\n"
 448		   "Shared_Dirty:   %8lu kB\n"
 449		   "Private_Clean:  %8lu kB\n"
 450		   "Private_Dirty:  %8lu kB\n"
 451		   "Referenced:     %8lu kB\n"
 452		   "Anonymous:      %8lu kB\n"
 453		   "AnonHugePages:  %8lu kB\n"
 454		   "Swap:           %8lu kB\n"
 455		   "KernelPageSize: %8lu kB\n"
 456		   "MMUPageSize:    %8lu kB\n"
 457		   "Locked:         %8lu kB\n",
 458		   (vma->vm_end - vma->vm_start) >> 10,
 459		   mss.resident >> 10,
 460		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
 461		   mss.shared_clean  >> 10,
 462		   mss.shared_dirty  >> 10,
 463		   mss.private_clean >> 10,
 464		   mss.private_dirty >> 10,
 465		   mss.referenced >> 10,
 466		   mss.anonymous >> 10,
 467		   mss.anonymous_thp >> 10,
 468		   mss.swap >> 10,
 469		   vma_kernel_pagesize(vma) >> 10,
 470		   vma_mmu_pagesize(vma) >> 10,
 471		   (vma->vm_flags & VM_LOCKED) ?
 472			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
 473
 474	if (m->count < m->size)  /* vma is copied successfully */
 475		m->version = (vma != get_gate_vma(task->mm))
 476			? vma->vm_start : 0;
 477	return 0;
 478}
 479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 480static const struct seq_operations proc_pid_smaps_op = {
 481	.start	= m_start,
 482	.next	= m_next,
 483	.stop	= m_stop,
 484	.show	= show_smap
 485};
 486
 487static int smaps_open(struct inode *inode, struct file *file)
 488{
 489	return do_maps_open(inode, file, &proc_pid_smaps_op);
 490}
 491
 492const struct file_operations proc_smaps_operations = {
 493	.open		= smaps_open,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494	.read		= seq_read,
 495	.llseek		= seq_lseek,
 496	.release	= seq_release_private,
 
 
 
 
 
 
 
 
 
 
 
 
 
 497};
 498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 499static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
 500				unsigned long end, struct mm_walk *walk)
 501{
 502	struct vm_area_struct *vma = walk->private;
 
 503	pte_t *pte, ptent;
 504	spinlock_t *ptl;
 505	struct page *page;
 506
 507	split_huge_page_pmd(walk->mm, pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508
 509	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 
 
 
 
 510	for (; addr != end; pte++, addr += PAGE_SIZE) {
 511		ptent = *pte;
 
 
 
 
 
 
 512		if (!pte_present(ptent))
 513			continue;
 514
 515		page = vm_normal_page(vma, addr, ptent);
 516		if (!page)
 517			continue;
 518
 519		/* Clear accessed and referenced bits. */
 520		ptep_test_and_clear_young(vma, addr, pte);
 
 521		ClearPageReferenced(page);
 522	}
 523	pte_unmap_unlock(pte - 1, ptl);
 524	cond_resched();
 525	return 0;
 526}
 527
 528#define CLEAR_REFS_ALL 1
 529#define CLEAR_REFS_ANON 2
 530#define CLEAR_REFS_MAPPED 3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531
 532static ssize_t clear_refs_write(struct file *file, const char __user *buf,
 533				size_t count, loff_t *ppos)
 534{
 535	struct task_struct *task;
 536	char buffer[PROC_NUMBUF];
 537	struct mm_struct *mm;
 538	struct vm_area_struct *vma;
 539	int type;
 
 540	int rv;
 541
 542	memset(buffer, 0, sizeof(buffer));
 543	if (count > sizeof(buffer) - 1)
 544		count = sizeof(buffer) - 1;
 545	if (copy_from_user(buffer, buf, count))
 546		return -EFAULT;
 547	rv = kstrtoint(strstrip(buffer), 10, &type);
 548	if (rv < 0)
 549		return rv;
 550	if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
 
 551		return -EINVAL;
 552	task = get_proc_task(file->f_path.dentry->d_inode);
 
 553	if (!task)
 554		return -ESRCH;
 555	mm = get_task_mm(task);
 556	if (mm) {
 557		struct mm_walk clear_refs_walk = {
 558			.pmd_entry = clear_refs_pte_range,
 559			.mm = mm,
 
 560		};
 561		down_read(&mm->mmap_sem);
 562		for (vma = mm->mmap; vma; vma = vma->vm_next) {
 563			clear_refs_walk.private = vma;
 564			if (is_vm_hugetlb_page(vma))
 565				continue;
 
 566			/*
 567			 * Writing 1 to /proc/pid/clear_refs affects all pages.
 568			 *
 569			 * Writing 2 to /proc/pid/clear_refs only affects
 570			 * Anonymous pages.
 571			 *
 572			 * Writing 3 to /proc/pid/clear_refs only affects file
 573			 * mapped pages.
 574			 */
 575			if (type == CLEAR_REFS_ANON && vma->vm_file)
 576				continue;
 577			if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
 578				continue;
 579			walk_page_range(vma->vm_start, vma->vm_end,
 580					&clear_refs_walk);
 581		}
 582		flush_tlb_mm(mm);
 583		up_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 584		mmput(mm);
 585	}
 586	put_task_struct(task);
 587
 588	return count;
 589}
 590
 591const struct file_operations proc_clear_refs_operations = {
 592	.write		= clear_refs_write,
 593	.llseek		= noop_llseek,
 594};
 595
 
 
 
 
 596struct pagemapread {
 597	int pos, len;
 598	u64 *buffer;
 
 599};
 600
 601#define PM_ENTRY_BYTES      sizeof(u64)
 602#define PM_STATUS_BITS      3
 603#define PM_STATUS_OFFSET    (64 - PM_STATUS_BITS)
 604#define PM_STATUS_MASK      (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
 605#define PM_STATUS(nr)       (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
 606#define PM_PSHIFT_BITS      6
 607#define PM_PSHIFT_OFFSET    (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
 608#define PM_PSHIFT_MASK      (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
 609#define PM_PSHIFT(x)        (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
 610#define PM_PFRAME_MASK      ((1LL << PM_PSHIFT_OFFSET) - 1)
 611#define PM_PFRAME(x)        ((x) & PM_PFRAME_MASK)
 612
 613#define PM_PRESENT          PM_STATUS(4LL)
 614#define PM_SWAP             PM_STATUS(2LL)
 615#define PM_NOT_PRESENT      PM_PSHIFT(PAGE_SHIFT)
 616#define PM_END_OF_BUFFER    1
 617
 618static int add_to_pagemap(unsigned long addr, u64 pfn,
 
 
 
 
 
 619			  struct pagemapread *pm)
 620{
 621	pm->buffer[pm->pos++] = pfn;
 622	if (pm->pos >= pm->len)
 623		return PM_END_OF_BUFFER;
 624	return 0;
 625}
 626
 627static int pagemap_pte_hole(unsigned long start, unsigned long end,
 628				struct mm_walk *walk)
 629{
 630	struct pagemapread *pm = walk->private;
 631	unsigned long addr;
 632	int err = 0;
 633	for (addr = start; addr < end; addr += PAGE_SIZE) {
 634		err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
 635		if (err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636			break;
 
 
 
 
 
 
 
 
 
 637	}
 
 638	return err;
 639}
 640
 641static u64 swap_pte_to_pagemap_entry(pte_t pte)
 
 642{
 643	swp_entry_t e = pte_to_swp_entry(pte);
 644	return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
 645}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646
 647static u64 pte_to_pagemap_entry(pte_t pte)
 648{
 649	u64 pme = 0;
 650	if (is_swap_pte(pte))
 651		pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
 652			| PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
 653	else if (pte_present(pte))
 654		pme = PM_PFRAME(pte_pfn(pte))
 655			| PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
 656	return pme;
 657}
 658
 659static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 660			     struct mm_walk *walk)
 661{
 662	struct vm_area_struct *vma;
 663	struct pagemapread *pm = walk->private;
 664	pte_t *pte;
 
 665	int err = 0;
 
 
 666
 667	split_huge_page_pmd(walk->mm, pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 668
 669	/* find the first VMA at or above 'addr' */
 670	vma = find_vma(walk->mm, addr);
 671	for (; addr != end; addr += PAGE_SIZE) {
 672		u64 pfn = PM_NOT_PRESENT;
 
 673
 674		/* check to see if we've left 'vma' behind
 675		 * and need a new, higher one */
 676		if (vma && (addr >= vma->vm_end))
 677			vma = find_vma(walk->mm, addr);
 678
 679		/* check that 'vma' actually covers this address,
 680		 * and that it isn't a huge page vma */
 681		if (vma && (vma->vm_start <= addr) &&
 682		    !is_vm_hugetlb_page(vma)) {
 683			pte = pte_offset_map(pmd, addr);
 684			pfn = pte_to_pagemap_entry(*pte);
 685			/* unmap before userspace copy */
 686			pte_unmap(pte);
 687		}
 688		err = add_to_pagemap(addr, pfn, pm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 689		if (err)
 690			return err;
 691	}
 
 692
 693	cond_resched();
 694
 695	return err;
 696}
 697
 698#ifdef CONFIG_HUGETLB_PAGE
 699static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
 700{
 701	u64 pme = 0;
 702	if (pte_present(pte))
 703		pme = PM_PFRAME(pte_pfn(pte) + offset)
 704			| PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
 705	return pme;
 706}
 707
 708/* This function walks within one hugetlb entry in the single call */
 709static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
 710				 unsigned long addr, unsigned long end,
 711				 struct mm_walk *walk)
 712{
 713	struct pagemapread *pm = walk->private;
 
 
 714	int err = 0;
 715	u64 pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 716
 717	for (; addr != end; addr += PAGE_SIZE) {
 718		int offset = (addr & ~hmask) >> PAGE_SHIFT;
 719		pfn = huge_pte_to_pagemap_entry(*pte, offset);
 720		err = add_to_pagemap(addr, pfn, pm);
 721		if (err)
 722			return err;
 
 
 723	}
 724
 725	cond_resched();
 726
 727	return err;
 728}
 
 
 729#endif /* HUGETLB_PAGE */
 730
 
 
 
 
 
 
 
 731/*
 732 * /proc/pid/pagemap - an array mapping virtual pages to pfns
 733 *
 734 * For each page in the address space, this file contains one 64-bit entry
 735 * consisting of the following:
 736 *
 737 * Bits 0-55  page frame number (PFN) if present
 738 * Bits 0-4   swap type if swapped
 739 * Bits 5-55  swap offset if swapped
 740 * Bits 55-60 page shift (page size = 1<<page shift)
 741 * Bit  61    reserved for future use
 
 
 
 742 * Bit  62    page swapped
 743 * Bit  63    page present
 744 *
 745 * If the page is not present but in swap, then the PFN contains an
 746 * encoding of the swap file number and the page's offset into the
 747 * swap. Unmapped pages return a null PFN. This allows determining
 748 * precisely which pages are mapped (or in swap) and comparing mapped
 749 * pages between processes.
 750 *
 751 * Efficient users of this interface will use /proc/pid/maps to
 752 * determine which areas of memory are actually mapped and llseek to
 753 * skip over unmapped regions.
 754 */
 755#define PAGEMAP_WALK_SIZE	(PMD_SIZE)
 756#define PAGEMAP_WALK_MASK	(PMD_MASK)
 757static ssize_t pagemap_read(struct file *file, char __user *buf,
 758			    size_t count, loff_t *ppos)
 759{
 760	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 761	struct mm_struct *mm;
 762	struct pagemapread pm;
 763	int ret = -ESRCH;
 764	struct mm_walk pagemap_walk = {};
 765	unsigned long src;
 766	unsigned long svpfn;
 767	unsigned long start_vaddr;
 768	unsigned long end_vaddr;
 769	int copied = 0;
 770
 771	if (!task)
 772		goto out;
 773
 774	ret = -EINVAL;
 775	/* file position must be aligned */
 776	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
 777		goto out_task;
 778
 779	ret = 0;
 780	if (!count)
 781		goto out_task;
 
 
 
 782
 783	pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
 784	pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
 785	ret = -ENOMEM;
 786	if (!pm.buffer)
 787		goto out_task;
 788
 789	mm = mm_for_maps(task);
 790	ret = PTR_ERR(mm);
 791	if (!mm || IS_ERR(mm))
 792		goto out_free;
 793
 794	pagemap_walk.pmd_entry = pagemap_pte_range;
 795	pagemap_walk.pte_hole = pagemap_pte_hole;
 796#ifdef CONFIG_HUGETLB_PAGE
 797	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
 798#endif
 799	pagemap_walk.mm = mm;
 800	pagemap_walk.private = &pm;
 801
 802	src = *ppos;
 803	svpfn = src / PM_ENTRY_BYTES;
 804	start_vaddr = svpfn << PAGE_SHIFT;
 805	end_vaddr = TASK_SIZE_OF(task);
 806
 807	/* watch out for wraparound */
 808	if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809		start_vaddr = end_vaddr;
 810
 811	/*
 812	 * The odds are that this will stop walking way
 813	 * before end_vaddr, because the length of the
 814	 * user buffer is tracked in "pm", and the walk
 815	 * will stop when we hit the end of the buffer.
 816	 */
 817	ret = 0;
 818	while (count && (start_vaddr < end_vaddr)) {
 819		int len;
 820		unsigned long end;
 821
 822		pm.pos = 0;
 823		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
 824		/* overflow ? */
 825		if (end < start_vaddr || end > end_vaddr)
 826			end = end_vaddr;
 827		down_read(&mm->mmap_sem);
 828		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
 829		up_read(&mm->mmap_sem);
 
 
 830		start_vaddr = end;
 831
 832		len = min(count, PM_ENTRY_BYTES * pm.pos);
 833		if (copy_to_user(buf, pm.buffer, len)) {
 834			ret = -EFAULT;
 835			goto out_mm;
 836		}
 837		copied += len;
 838		buf += len;
 839		count -= len;
 840	}
 841	*ppos += copied;
 842	if (!ret || ret == PM_END_OF_BUFFER)
 843		ret = copied;
 844
 845out_mm:
 846	mmput(mm);
 847out_free:
 848	kfree(pm.buffer);
 849out_task:
 850	put_task_struct(task);
 851out:
 852	return ret;
 853}
 854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 855const struct file_operations proc_pagemap_operations = {
 856	.llseek		= mem_lseek, /* borrow this */
 857	.read		= pagemap_read,
 
 
 
 
 858};
 859#endif /* CONFIG_PROC_PAGE_MONITOR */
 860
 861#ifdef CONFIG_NUMA
 862
 863struct numa_maps {
 864	struct vm_area_struct *vma;
 865	unsigned long pages;
 866	unsigned long anon;
 867	unsigned long active;
 868	unsigned long writeback;
 869	unsigned long mapcount_max;
 870	unsigned long dirty;
 871	unsigned long swapcache;
 872	unsigned long node[MAX_NUMNODES];
 873};
 874
 875struct numa_maps_private {
 876	struct proc_maps_private proc_maps;
 877	struct numa_maps md;
 878};
 879
 880static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
 881			unsigned long nr_pages)
 882{
 883	int count = page_mapcount(page);
 884
 885	md->pages += nr_pages;
 886	if (pte_dirty || PageDirty(page))
 887		md->dirty += nr_pages;
 888
 889	if (PageSwapCache(page))
 890		md->swapcache += nr_pages;
 891
 892	if (PageActive(page) || PageUnevictable(page))
 893		md->active += nr_pages;
 894
 895	if (PageWriteback(page))
 896		md->writeback += nr_pages;
 897
 898	if (PageAnon(page))
 899		md->anon += nr_pages;
 900
 901	if (count > md->mapcount_max)
 902		md->mapcount_max = count;
 903
 904	md->node[page_to_nid(page)] += nr_pages;
 905}
 906
 907static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
 908		unsigned long addr)
 909{
 910	struct page *page;
 911	int nid;
 912
 913	if (!pte_present(pte))
 914		return NULL;
 915
 916	page = vm_normal_page(vma, addr, pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917	if (!page)
 918		return NULL;
 919
 920	if (PageReserved(page))
 921		return NULL;
 922
 923	nid = page_to_nid(page);
 924	if (!node_isset(nid, node_states[N_HIGH_MEMORY]))
 925		return NULL;
 926
 927	return page;
 928}
 
 929
 930static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
 931		unsigned long end, struct mm_walk *walk)
 932{
 933	struct numa_maps *md;
 
 934	spinlock_t *ptl;
 935	pte_t *orig_pte;
 936	pte_t *pte;
 937
 938	md = walk->private;
 939	spin_lock(&walk->mm->page_table_lock);
 940	if (pmd_trans_huge(*pmd)) {
 941		if (pmd_trans_splitting(*pmd)) {
 942			spin_unlock(&walk->mm->page_table_lock);
 943			wait_split_huge_page(md->vma->anon_vma, pmd);
 944		} else {
 945			pte_t huge_pte = *(pte_t *)pmd;
 946			struct page *page;
 947
 948			page = can_gather_numa_stats(huge_pte, md->vma, addr);
 949			if (page)
 950				gather_stats(page, md, pte_dirty(huge_pte),
 951						HPAGE_PMD_SIZE/PAGE_SIZE);
 952			spin_unlock(&walk->mm->page_table_lock);
 953			return 0;
 954		}
 955	} else {
 956		spin_unlock(&walk->mm->page_table_lock);
 957	}
 958
 959	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 
 
 
 
 960	do {
 961		struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
 
 962		if (!page)
 963			continue;
 964		gather_stats(page, md, pte_dirty(*pte), 1);
 965
 966	} while (pte++, addr += PAGE_SIZE, addr != end);
 967	pte_unmap_unlock(orig_pte, ptl);
 
 968	return 0;
 969}
 970#ifdef CONFIG_HUGETLB_PAGE
 971static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
 972		unsigned long addr, unsigned long end, struct mm_walk *walk)
 973{
 
 974	struct numa_maps *md;
 975	struct page *page;
 976
 977	if (pte_none(*pte))
 978		return 0;
 979
 980	page = pte_page(*pte);
 981	if (!page)
 982		return 0;
 983
 984	md = walk->private;
 985	gather_stats(page, md, pte_dirty(*pte), 1);
 986	return 0;
 987}
 988
 989#else
 990static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
 991		unsigned long addr, unsigned long end, struct mm_walk *walk)
 992{
 993	return 0;
 994}
 995#endif
 996
 
 
 
 
 
 
 997/*
 998 * Display pages allocated per node and memory policy via /proc.
 999 */
1000static int show_numa_map(struct seq_file *m, void *v)
1001{
1002	struct numa_maps_private *numa_priv = m->private;
1003	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1004	struct vm_area_struct *vma = v;
1005	struct numa_maps *md = &numa_priv->md;
1006	struct file *file = vma->vm_file;
1007	struct mm_struct *mm = vma->vm_mm;
1008	struct mm_walk walk = {};
1009	struct mempolicy *pol;
1010	int n;
1011	char buffer[50];
1012
1013	if (!mm)
1014		return 0;
1015
1016	/* Ensure we start with an empty set of numa_maps statistics. */
1017	memset(md, 0, sizeof(*md));
1018
1019	md->vma = vma;
1020
1021	walk.hugetlb_entry = gather_hugetbl_stats;
1022	walk.pmd_entry = gather_pte_stats;
1023	walk.private = md;
1024	walk.mm = mm;
1025
1026	pol = get_vma_policy(proc_priv->task, vma, vma->vm_start);
1027	mpol_to_str(buffer, sizeof(buffer), pol, 0);
1028	mpol_cond_put(pol);
1029
1030	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1031
1032	if (file) {
1033		seq_printf(m, " file=");
1034		seq_path(m, &file->f_path, "\n\t= ");
1035	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1036		seq_printf(m, " heap");
1037	} else if (vma->vm_start <= mm->start_stack &&
1038			vma->vm_end >= mm->start_stack) {
1039		seq_printf(m, " stack");
1040	}
1041
1042	walk_page_range(vma->vm_start, vma->vm_end, &walk);
 
 
 
 
1043
1044	if (!md->pages)
1045		goto out;
1046
1047	if (md->anon)
1048		seq_printf(m, " anon=%lu", md->anon);
1049
1050	if (md->dirty)
1051		seq_printf(m, " dirty=%lu", md->dirty);
1052
1053	if (md->pages != md->anon && md->pages != md->dirty)
1054		seq_printf(m, " mapped=%lu", md->pages);
1055
1056	if (md->mapcount_max > 1)
1057		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1058
1059	if (md->swapcache)
1060		seq_printf(m, " swapcache=%lu", md->swapcache);
1061
1062	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1063		seq_printf(m, " active=%lu", md->active);
1064
1065	if (md->writeback)
1066		seq_printf(m, " writeback=%lu", md->writeback);
1067
1068	for_each_node_state(n, N_HIGH_MEMORY)
1069		if (md->node[n])
1070			seq_printf(m, " N%d=%lu", n, md->node[n]);
 
 
1071out:
1072	seq_putc(m, '\n');
1073
1074	if (m->count < m->size)
1075		m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1076	return 0;
1077}
1078
1079static const struct seq_operations proc_pid_numa_maps_op = {
1080        .start  = m_start,
1081        .next   = m_next,
1082        .stop   = m_stop,
1083        .show   = show_numa_map,
1084};
1085
1086static int numa_maps_open(struct inode *inode, struct file *file)
1087{
1088	struct numa_maps_private *priv;
1089	int ret = -ENOMEM;
1090	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1091	if (priv) {
1092		priv->proc_maps.pid = proc_pid(inode);
1093		ret = seq_open(file, &proc_pid_numa_maps_op);
1094		if (!ret) {
1095			struct seq_file *m = file->private_data;
1096			m->private = priv;
1097		} else {
1098			kfree(priv);
1099		}
1100	}
1101	return ret;
1102}
1103
1104const struct file_operations proc_numa_maps_operations = {
1105	.open		= numa_maps_open,
1106	.read		= seq_read,
1107	.llseek		= seq_lseek,
1108	.release	= seq_release_private,
1109};
 
1110#endif /* CONFIG_NUMA */
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/pagewalk.h>
   3#include <linux/mm_inline.h>
   4#include <linux/hugetlb.h>
   5#include <linux/huge_mm.h>
   6#include <linux/mount.h>
   7#include <linux/ksm.h>
   8#include <linux/seq_file.h>
   9#include <linux/highmem.h>
  10#include <linux/ptrace.h>
  11#include <linux/slab.h>
  12#include <linux/pagemap.h>
  13#include <linux/mempolicy.h>
  14#include <linux/rmap.h>
  15#include <linux/swap.h>
  16#include <linux/sched/mm.h>
  17#include <linux/swapops.h>
  18#include <linux/mmu_notifier.h>
  19#include <linux/page_idle.h>
  20#include <linux/shmem_fs.h>
  21#include <linux/uaccess.h>
  22#include <linux/pkeys.h>
  23#include <linux/minmax.h>
  24#include <linux/overflow.h>
  25
  26#include <asm/elf.h>
  27#include <asm/tlb.h>
  28#include <asm/tlbflush.h>
  29#include "internal.h"
  30
  31#define SEQ_PUT_DEC(str, val) \
  32		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
  33void task_mem(struct seq_file *m, struct mm_struct *mm)
  34{
  35	unsigned long text, lib, swap, anon, file, shmem;
  36	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  37
  38	anon = get_mm_counter(mm, MM_ANONPAGES);
  39	file = get_mm_counter(mm, MM_FILEPAGES);
  40	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  41
  42	/*
  43	 * Note: to minimize their overhead, mm maintains hiwater_vm and
  44	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
  45	 * collector of these hiwater stats must therefore get total_vm
  46	 * and rss too, which will usually be the higher.  Barriers? not
  47	 * worth the effort, such snapshots can always be inconsistent.
  48	 */
  49	hiwater_vm = total_vm = mm->total_vm;
  50	if (hiwater_vm < mm->hiwater_vm)
  51		hiwater_vm = mm->hiwater_vm;
  52	hiwater_rss = total_rss = anon + file + shmem;
  53	if (hiwater_rss < mm->hiwater_rss)
  54		hiwater_rss = mm->hiwater_rss;
  55
  56	/* split executable areas between text and lib */
  57	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
  58	text = min(text, mm->exec_vm << PAGE_SHIFT);
  59	lib = (mm->exec_vm << PAGE_SHIFT) - text;
  60
  61	swap = get_mm_counter(mm, MM_SWAPENTS);
  62	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
  63	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
  64	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
  65	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
  66	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
  67	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
  68	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
  69	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
  70	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
  71	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
  72	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
  73	seq_put_decimal_ull_width(m,
  74		    " kB\nVmExe:\t", text >> 10, 8);
  75	seq_put_decimal_ull_width(m,
  76		    " kB\nVmLib:\t", lib >> 10, 8);
  77	seq_put_decimal_ull_width(m,
  78		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
  79	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
  80	seq_puts(m, " kB\n");
  81	hugetlb_report_usage(m, mm);
 
  82}
  83#undef SEQ_PUT_DEC
  84
  85unsigned long task_vsize(struct mm_struct *mm)
  86{
  87	return PAGE_SIZE * mm->total_vm;
  88}
  89
  90unsigned long task_statm(struct mm_struct *mm,
  91			 unsigned long *shared, unsigned long *text,
  92			 unsigned long *data, unsigned long *resident)
  93{
  94	*shared = get_mm_counter(mm, MM_FILEPAGES) +
  95			get_mm_counter(mm, MM_SHMEMPAGES);
  96	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  97								>> PAGE_SHIFT;
  98	*data = mm->data_vm + mm->stack_vm;
  99	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
 100	return mm->total_vm;
 101}
 102
 103#ifdef CONFIG_NUMA
 104/*
 105 * Save get_task_policy() for show_numa_map().
 106 */
 107static void hold_task_mempolicy(struct proc_maps_private *priv)
 108{
 109	struct task_struct *task = priv->task;
 110
 111	task_lock(task);
 112	priv->task_mempolicy = get_task_policy(task);
 113	mpol_get(priv->task_mempolicy);
 114	task_unlock(task);
 115}
 116static void release_task_mempolicy(struct proc_maps_private *priv)
 117{
 118	mpol_put(priv->task_mempolicy);
 119}
 120#else
 121static void hold_task_mempolicy(struct proc_maps_private *priv)
 122{
 
 
 
 
 123}
 124static void release_task_mempolicy(struct proc_maps_private *priv)
 125{
 126}
 127#endif
 128
 129static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
 130						loff_t *ppos)
 131{
 132	struct vm_area_struct *vma = vma_next(&priv->iter);
 133
 134	if (vma) {
 135		*ppos = vma->vm_start;
 136	} else {
 137		*ppos = -2UL;
 138		vma = get_gate_vma(priv->mm);
 139	}
 140
 141	return vma;
 142}
 143
 144static void *m_start(struct seq_file *m, loff_t *ppos)
 145{
 146	struct proc_maps_private *priv = m->private;
 147	unsigned long last_addr = *ppos;
 148	struct mm_struct *mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 149
 150	/* See m_next(). Zero at the start or after lseek. */
 151	if (last_addr == -1UL)
 152		return NULL;
 153
 154	priv->task = get_proc_task(priv->inode);
 155	if (!priv->task)
 156		return ERR_PTR(-ESRCH);
 157
 158	mm = priv->mm;
 159	if (!mm || !mmget_not_zero(mm)) {
 160		put_task_struct(priv->task);
 161		priv->task = NULL;
 162		return NULL;
 
 
 
 
 
 
 
 
 163	}
 164
 165	if (mmap_read_lock_killable(mm)) {
 166		mmput(mm);
 167		put_task_struct(priv->task);
 168		priv->task = NULL;
 169		return ERR_PTR(-EINTR);
 
 
 
 
 
 170	}
 171
 172	vma_iter_init(&priv->iter, mm, last_addr);
 173	hold_task_mempolicy(priv);
 174	if (last_addr == -2UL)
 175		return get_gate_vma(mm);
 176
 177	return proc_get_vma(priv, ppos);
 178}
 
 179
 180static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
 181{
 182	if (*ppos == -2UL) {
 183		*ppos = -1UL;
 184		return NULL;
 185	}
 186	return proc_get_vma(m->private, ppos);
 187}
 188
 189static void m_stop(struct seq_file *m, void *v)
 190{
 191	struct proc_maps_private *priv = m->private;
 192	struct mm_struct *mm = priv->mm;
 
 193
 194	if (!priv->task)
 195		return;
 196
 197	release_task_mempolicy(priv);
 198	mmap_read_unlock(mm);
 199	mmput(mm);
 200	put_task_struct(priv->task);
 201	priv->task = NULL;
 202}
 203
 204static int proc_maps_open(struct inode *inode, struct file *file,
 205			const struct seq_operations *ops, int psize)
 206{
 207	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
 
 208
 209	if (!priv)
 210		return -ENOMEM;
 211
 212	priv->inode = inode;
 213	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
 214	if (IS_ERR(priv->mm)) {
 215		int err = PTR_ERR(priv->mm);
 216
 217		seq_release_private(inode, file);
 218		return err;
 219	}
 220
 221	return 0;
 222}
 223
 224static int proc_map_release(struct inode *inode, struct file *file)
 225{
 226	struct seq_file *seq = file->private_data;
 227	struct proc_maps_private *priv = seq->private;
 228
 229	if (priv->mm)
 230		mmdrop(priv->mm);
 231
 232	return seq_release_private(inode, file);
 233}
 234
 235static int do_maps_open(struct inode *inode, struct file *file,
 236			const struct seq_operations *ops)
 237{
 238	return proc_maps_open(inode, file, ops,
 239				sizeof(struct proc_maps_private));
 
 
 
 
 
 
 
 
 
 
 
 
 240}
 241
 242static void show_vma_header_prefix(struct seq_file *m,
 243				   unsigned long start, unsigned long end,
 244				   vm_flags_t flags, unsigned long long pgoff,
 245				   dev_t dev, unsigned long ino)
 246{
 247	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
 248	seq_put_hex_ll(m, NULL, start, 8);
 249	seq_put_hex_ll(m, "-", end, 8);
 250	seq_putc(m, ' ');
 251	seq_putc(m, flags & VM_READ ? 'r' : '-');
 252	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
 253	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
 254	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
 255	seq_put_hex_ll(m, " ", pgoff, 8);
 256	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
 257	seq_put_hex_ll(m, ":", MINOR(dev), 2);
 258	seq_put_decimal_ull(m, " ", ino);
 259	seq_putc(m, ' ');
 260}
 261
 262static void
 263show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
 264{
 265	struct anon_vma_name *anon_name = NULL;
 266	struct mm_struct *mm = vma->vm_mm;
 267	struct file *file = vma->vm_file;
 268	vm_flags_t flags = vma->vm_flags;
 269	unsigned long ino = 0;
 270	unsigned long long pgoff = 0;
 271	unsigned long start, end;
 272	dev_t dev = 0;
 273	const char *name = NULL;
 274
 275	if (file) {
 276		const struct inode *inode = file_user_inode(vma->vm_file);
 277
 278		dev = inode->i_sb->s_dev;
 279		ino = inode->i_ino;
 280		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
 281	}
 282
 
 283	start = vma->vm_start;
 
 
 284	end = vma->vm_end;
 285	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
 286	if (mm)
 287		anon_name = anon_vma_name(vma);
 
 
 
 
 
 
 
 
 
 288
 289	/*
 290	 * Print the dentry name for named mappings, and a
 291	 * special [heap] marker for the heap:
 292	 */
 293	if (file) {
 294		seq_pad(m, ' ');
 295		/*
 296		 * If user named this anon shared memory via
 297		 * prctl(PR_SET_VMA ..., use the provided name.
 298		 */
 299		if (anon_name)
 300			seq_printf(m, "[anon_shmem:%s]", anon_name->name);
 301		else
 302			seq_path(m, file_user_path(file), "\n");
 303		goto done;
 304	}
 305
 306	if (vma->vm_ops && vma->vm_ops->name) {
 307		name = vma->vm_ops->name(vma);
 308		if (name)
 309			goto done;
 310	}
 311
 312	name = arch_vma_name(vma);
 313	if (!name) {
 314		if (!mm) {
 315			name = "[vdso]";
 316			goto done;
 317		}
 318
 319		if (vma_is_initial_heap(vma)) {
 320			name = "[heap]";
 321			goto done;
 322		}
 323
 324		if (vma_is_initial_stack(vma)) {
 325			name = "[stack]";
 326			goto done;
 327		}
 328
 329		if (anon_name) {
 330			seq_pad(m, ' ');
 331			seq_printf(m, "[anon:%s]", anon_name->name);
 332		}
 333	}
 334
 335done:
 336	if (name) {
 337		seq_pad(m, ' ');
 338		seq_puts(m, name);
 339	}
 340	seq_putc(m, '\n');
 341}
 342
 343static int show_map(struct seq_file *m, void *v)
 344{
 345	show_map_vma(m, v);
 
 
 
 
 
 
 
 
 346	return 0;
 347}
 348
 349static const struct seq_operations proc_pid_maps_op = {
 350	.start	= m_start,
 351	.next	= m_next,
 352	.stop	= m_stop,
 353	.show	= show_map
 354};
 355
 356static int pid_maps_open(struct inode *inode, struct file *file)
 357{
 358	return do_maps_open(inode, file, &proc_pid_maps_op);
 359}
 360
 361const struct file_operations proc_pid_maps_operations = {
 362	.open		= pid_maps_open,
 363	.read		= seq_read,
 364	.llseek		= seq_lseek,
 365	.release	= proc_map_release,
 366};
 367
 368/*
 369 * Proportional Set Size(PSS): my share of RSS.
 370 *
 371 * PSS of a process is the count of pages it has in memory, where each
 372 * page is divided by the number of processes sharing it.  So if a
 373 * process has 1000 pages all to itself, and 1000 shared with one other
 374 * process, its PSS will be 1500.
 375 *
 376 * To keep (accumulated) division errors low, we adopt a 64bit
 377 * fixed-point pss counter to minimize division errors. So (pss >>
 378 * PSS_SHIFT) would be the real byte count.
 379 *
 380 * A shift of 12 before division means (assuming 4K page size):
 381 * 	- 1M 3-user-pages add up to 8KB errors;
 382 * 	- supports mapcount up to 2^24, or 16M;
 383 * 	- supports PSS up to 2^52 bytes, or 4PB.
 384 */
 385#define PSS_SHIFT 12
 386
 387#ifdef CONFIG_PROC_PAGE_MONITOR
 388struct mem_size_stats {
 
 389	unsigned long resident;
 390	unsigned long shared_clean;
 391	unsigned long shared_dirty;
 392	unsigned long private_clean;
 393	unsigned long private_dirty;
 394	unsigned long referenced;
 395	unsigned long anonymous;
 396	unsigned long lazyfree;
 397	unsigned long anonymous_thp;
 398	unsigned long shmem_thp;
 399	unsigned long file_thp;
 400	unsigned long swap;
 401	unsigned long shared_hugetlb;
 402	unsigned long private_hugetlb;
 403	unsigned long ksm;
 404	u64 pss;
 405	u64 pss_anon;
 406	u64 pss_file;
 407	u64 pss_shmem;
 408	u64 pss_dirty;
 409	u64 pss_locked;
 410	u64 swap_pss;
 411};
 412
 413static void smaps_page_accumulate(struct mem_size_stats *mss,
 414		struct page *page, unsigned long size, unsigned long pss,
 415		bool dirty, bool locked, bool private)
 416{
 417	mss->pss += pss;
 418
 419	if (PageAnon(page))
 420		mss->pss_anon += pss;
 421	else if (PageSwapBacked(page))
 422		mss->pss_shmem += pss;
 423	else
 424		mss->pss_file += pss;
 425
 426	if (locked)
 427		mss->pss_locked += pss;
 428
 429	if (dirty || PageDirty(page)) {
 430		mss->pss_dirty += pss;
 431		if (private)
 432			mss->private_dirty += size;
 433		else
 434			mss->shared_dirty += size;
 435	} else {
 436		if (private)
 437			mss->private_clean += size;
 438		else
 439			mss->shared_clean += size;
 440	}
 441}
 442
 443static void smaps_account(struct mem_size_stats *mss, struct page *page,
 444		bool compound, bool young, bool dirty, bool locked,
 445		bool migration)
 446{
 447	int i, nr = compound ? compound_nr(page) : 1;
 448	unsigned long size = nr * PAGE_SIZE;
 449
 450	/*
 451	 * First accumulate quantities that depend only on |size| and the type
 452	 * of the compound page.
 453	 */
 454	if (PageAnon(page)) {
 455		mss->anonymous += size;
 456		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
 457			mss->lazyfree += size;
 458	}
 459
 460	if (PageKsm(page))
 461		mss->ksm += size;
 462
 463	mss->resident += size;
 464	/* Accumulate the size in pages that have been accessed. */
 465	if (young || page_is_young(page) || PageReferenced(page))
 466		mss->referenced += size;
 467
 468	/*
 469	 * Then accumulate quantities that may depend on sharing, or that may
 470	 * differ page-by-page.
 471	 *
 472	 * page_count(page) == 1 guarantees the page is mapped exactly once.
 473	 * If any subpage of the compound page mapped with PTE it would elevate
 474	 * page_count().
 475	 *
 476	 * The page_mapcount() is called to get a snapshot of the mapcount.
 477	 * Without holding the page lock this snapshot can be slightly wrong as
 478	 * we cannot always read the mapcount atomically.  It is not safe to
 479	 * call page_mapcount() even with PTL held if the page is not mapped,
 480	 * especially for migration entries.  Treat regular migration entries
 481	 * as mapcount == 1.
 482	 */
 483	if ((page_count(page) == 1) || migration) {
 484		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
 485			locked, true);
 486		return;
 487	}
 488	for (i = 0; i < nr; i++, page++) {
 489		int mapcount = page_mapcount(page);
 490		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
 491		if (mapcount >= 2)
 492			pss /= mapcount;
 493		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
 494				      mapcount < 2);
 495	}
 496}
 497
 498#ifdef CONFIG_SHMEM
 499static int smaps_pte_hole(unsigned long addr, unsigned long end,
 500			  __always_unused int depth, struct mm_walk *walk)
 501{
 502	struct mem_size_stats *mss = walk->private;
 503	struct vm_area_struct *vma = walk->vma;
 504
 505	mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
 506					      linear_page_index(vma, addr),
 507					      linear_page_index(vma, end));
 508
 509	return 0;
 510}
 511#else
 512#define smaps_pte_hole		NULL
 513#endif /* CONFIG_SHMEM */
 514
 515static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
 516{
 517#ifdef CONFIG_SHMEM
 518	if (walk->ops->pte_hole) {
 519		/* depth is not used */
 520		smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
 521	}
 522#endif
 523}
 524
 525static void smaps_pte_entry(pte_t *pte, unsigned long addr,
 526		struct mm_walk *walk)
 527{
 528	struct mem_size_stats *mss = walk->private;
 529	struct vm_area_struct *vma = walk->vma;
 530	bool locked = !!(vma->vm_flags & VM_LOCKED);
 531	struct page *page = NULL;
 532	bool migration = false, young = false, dirty = false;
 533	pte_t ptent = ptep_get(pte);
 534
 535	if (pte_present(ptent)) {
 536		page = vm_normal_page(vma, addr, ptent);
 537		young = pte_young(ptent);
 538		dirty = pte_dirty(ptent);
 539	} else if (is_swap_pte(ptent)) {
 540		swp_entry_t swpent = pte_to_swp_entry(ptent);
 541
 542		if (!non_swap_entry(swpent)) {
 543			int mapcount;
 544
 545			mss->swap += PAGE_SIZE;
 546			mapcount = swp_swapcount(swpent);
 547			if (mapcount >= 2) {
 548				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
 549
 550				do_div(pss_delta, mapcount);
 551				mss->swap_pss += pss_delta;
 552			} else {
 553				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
 554			}
 555		} else if (is_pfn_swap_entry(swpent)) {
 556			if (is_migration_entry(swpent))
 557				migration = true;
 558			page = pfn_swap_entry_to_page(swpent);
 559		}
 560	} else {
 561		smaps_pte_hole_lookup(addr, walk);
 562		return;
 563	}
 564
 
 565	if (!page)
 566		return;
 567
 568	smaps_account(mss, page, false, young, dirty, locked, migration);
 569}
 570
 571#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 572static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
 573		struct mm_walk *walk)
 574{
 575	struct mem_size_stats *mss = walk->private;
 576	struct vm_area_struct *vma = walk->vma;
 577	bool locked = !!(vma->vm_flags & VM_LOCKED);
 578	struct page *page = NULL;
 579	bool migration = false;
 580
 581	if (pmd_present(*pmd)) {
 582		page = vm_normal_page_pmd(vma, addr, *pmd);
 583	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
 584		swp_entry_t entry = pmd_to_swp_entry(*pmd);
 585
 586		if (is_migration_entry(entry)) {
 587			migration = true;
 588			page = pfn_swap_entry_to_page(entry);
 589		}
 590	}
 591	if (IS_ERR_OR_NULL(page))
 592		return;
 593	if (PageAnon(page))
 594		mss->anonymous_thp += HPAGE_PMD_SIZE;
 595	else if (PageSwapBacked(page))
 596		mss->shmem_thp += HPAGE_PMD_SIZE;
 597	else if (is_zone_device_page(page))
 598		/* pass */;
 599	else
 600		mss->file_thp += HPAGE_PMD_SIZE;
 601
 602	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
 603		      locked, migration);
 604}
 605#else
 606static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
 607		struct mm_walk *walk)
 608{
 609}
 610#endif
 611
 612static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 613			   struct mm_walk *walk)
 614{
 615	struct vm_area_struct *vma = walk->vma;
 
 616	pte_t *pte;
 617	spinlock_t *ptl;
 618
 619	ptl = pmd_trans_huge_lock(pmd, vma);
 620	if (ptl) {
 621		smaps_pmd_entry(pmd, addr, walk);
 622		spin_unlock(ptl);
 623		goto out;
 
 
 
 
 
 
 
 
 
 624	}
 625
 
 
 
 
 626	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 627	if (!pte) {
 628		walk->action = ACTION_AGAIN;
 629		return 0;
 630	}
 631	for (; addr != end; pte++, addr += PAGE_SIZE)
 632		smaps_pte_entry(pte, addr, walk);
 633	pte_unmap_unlock(pte - 1, ptl);
 634out:
 635	cond_resched();
 636	return 0;
 637}
 638
 639static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
 640{
 641	/*
 642	 * Don't forget to update Documentation/ on changes.
 643	 */
 644	static const char mnemonics[BITS_PER_LONG][2] = {
 645		/*
 646		 * In case if we meet a flag we don't know about.
 647		 */
 648		[0 ... (BITS_PER_LONG-1)] = "??",
 649
 650		[ilog2(VM_READ)]	= "rd",
 651		[ilog2(VM_WRITE)]	= "wr",
 652		[ilog2(VM_EXEC)]	= "ex",
 653		[ilog2(VM_SHARED)]	= "sh",
 654		[ilog2(VM_MAYREAD)]	= "mr",
 655		[ilog2(VM_MAYWRITE)]	= "mw",
 656		[ilog2(VM_MAYEXEC)]	= "me",
 657		[ilog2(VM_MAYSHARE)]	= "ms",
 658		[ilog2(VM_GROWSDOWN)]	= "gd",
 659		[ilog2(VM_PFNMAP)]	= "pf",
 660		[ilog2(VM_LOCKED)]	= "lo",
 661		[ilog2(VM_IO)]		= "io",
 662		[ilog2(VM_SEQ_READ)]	= "sr",
 663		[ilog2(VM_RAND_READ)]	= "rr",
 664		[ilog2(VM_DONTCOPY)]	= "dc",
 665		[ilog2(VM_DONTEXPAND)]	= "de",
 666		[ilog2(VM_LOCKONFAULT)]	= "lf",
 667		[ilog2(VM_ACCOUNT)]	= "ac",
 668		[ilog2(VM_NORESERVE)]	= "nr",
 669		[ilog2(VM_HUGETLB)]	= "ht",
 670		[ilog2(VM_SYNC)]	= "sf",
 671		[ilog2(VM_ARCH_1)]	= "ar",
 672		[ilog2(VM_WIPEONFORK)]	= "wf",
 673		[ilog2(VM_DONTDUMP)]	= "dd",
 674#ifdef CONFIG_ARM64_BTI
 675		[ilog2(VM_ARM64_BTI)]	= "bt",
 676#endif
 677#ifdef CONFIG_MEM_SOFT_DIRTY
 678		[ilog2(VM_SOFTDIRTY)]	= "sd",
 679#endif
 680		[ilog2(VM_MIXEDMAP)]	= "mm",
 681		[ilog2(VM_HUGEPAGE)]	= "hg",
 682		[ilog2(VM_NOHUGEPAGE)]	= "nh",
 683		[ilog2(VM_MERGEABLE)]	= "mg",
 684		[ilog2(VM_UFFD_MISSING)]= "um",
 685		[ilog2(VM_UFFD_WP)]	= "uw",
 686#ifdef CONFIG_ARM64_MTE
 687		[ilog2(VM_MTE)]		= "mt",
 688		[ilog2(VM_MTE_ALLOWED)]	= "",
 689#endif
 690#ifdef CONFIG_ARCH_HAS_PKEYS
 691		/* These come out via ProtectionKey: */
 692		[ilog2(VM_PKEY_BIT0)]	= "",
 693		[ilog2(VM_PKEY_BIT1)]	= "",
 694		[ilog2(VM_PKEY_BIT2)]	= "",
 695		[ilog2(VM_PKEY_BIT3)]	= "",
 696#if VM_PKEY_BIT4
 697		[ilog2(VM_PKEY_BIT4)]	= "",
 698#endif
 699#endif /* CONFIG_ARCH_HAS_PKEYS */
 700#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
 701		[ilog2(VM_UFFD_MINOR)]	= "ui",
 702#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
 703#ifdef CONFIG_X86_USER_SHADOW_STACK
 704		[ilog2(VM_SHADOW_STACK)] = "ss",
 705#endif
 706	};
 707	size_t i;
 708
 709	seq_puts(m, "VmFlags: ");
 710	for (i = 0; i < BITS_PER_LONG; i++) {
 711		if (!mnemonics[i][0])
 712			continue;
 713		if (vma->vm_flags & (1UL << i)) {
 714			seq_putc(m, mnemonics[i][0]);
 715			seq_putc(m, mnemonics[i][1]);
 716			seq_putc(m, ' ');
 717		}
 718	}
 719	seq_putc(m, '\n');
 720}
 721
 722#ifdef CONFIG_HUGETLB_PAGE
 723static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
 724				 unsigned long addr, unsigned long end,
 725				 struct mm_walk *walk)
 726{
 727	struct mem_size_stats *mss = walk->private;
 728	struct vm_area_struct *vma = walk->vma;
 729	struct page *page = NULL;
 730	pte_t ptent = ptep_get(pte);
 731
 732	if (pte_present(ptent)) {
 733		page = vm_normal_page(vma, addr, ptent);
 734	} else if (is_swap_pte(ptent)) {
 735		swp_entry_t swpent = pte_to_swp_entry(ptent);
 736
 737		if (is_pfn_swap_entry(swpent))
 738			page = pfn_swap_entry_to_page(swpent);
 739	}
 740	if (page) {
 741		if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
 742			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
 743		else
 744			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
 745	}
 746	return 0;
 747}
 748#else
 749#define smaps_hugetlb_range	NULL
 750#endif /* HUGETLB_PAGE */
 751
 752static const struct mm_walk_ops smaps_walk_ops = {
 753	.pmd_entry		= smaps_pte_range,
 754	.hugetlb_entry		= smaps_hugetlb_range,
 755	.walk_lock		= PGWALK_RDLOCK,
 756};
 757
 758static const struct mm_walk_ops smaps_shmem_walk_ops = {
 759	.pmd_entry		= smaps_pte_range,
 760	.hugetlb_entry		= smaps_hugetlb_range,
 761	.pte_hole		= smaps_pte_hole,
 762	.walk_lock		= PGWALK_RDLOCK,
 763};
 764
 765/*
 766 * Gather mem stats from @vma with the indicated beginning
 767 * address @start, and keep them in @mss.
 768 *
 769 * Use vm_start of @vma as the beginning address if @start is 0.
 770 */
 771static void smap_gather_stats(struct vm_area_struct *vma,
 772		struct mem_size_stats *mss, unsigned long start)
 773{
 774	const struct mm_walk_ops *ops = &smaps_walk_ops;
 775
 776	/* Invalid start */
 777	if (start >= vma->vm_end)
 778		return;
 779
 780	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
 781		/*
 782		 * For shared or readonly shmem mappings we know that all
 783		 * swapped out pages belong to the shmem object, and we can
 784		 * obtain the swap value much more efficiently. For private
 785		 * writable mappings, we might have COW pages that are
 786		 * not affected by the parent swapped out pages of the shmem
 787		 * object, so we have to distinguish them during the page walk.
 788		 * Unless we know that the shmem object (or the part mapped by
 789		 * our VMA) has no swapped out pages at all.
 790		 */
 791		unsigned long shmem_swapped = shmem_swap_usage(vma);
 792
 793		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
 794					!(vma->vm_flags & VM_WRITE))) {
 795			mss->swap += shmem_swapped;
 796		} else {
 797			ops = &smaps_shmem_walk_ops;
 798		}
 799	}
 800
 801	/* mmap_lock is held in m_start */
 802	if (!start)
 803		walk_page_vma(vma, ops, mss);
 804	else
 805		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
 806}
 807
 808#define SEQ_PUT_DEC(str, val) \
 809		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
 810
 811/* Show the contents common for smaps and smaps_rollup */
 812static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
 813	bool rollup_mode)
 814{
 815	SEQ_PUT_DEC("Rss:            ", mss->resident);
 816	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
 817	SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
 818	if (rollup_mode) {
 819		/*
 820		 * These are meaningful only for smaps_rollup, otherwise two of
 821		 * them are zero, and the other one is the same as Pss.
 822		 */
 823		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
 824			mss->pss_anon >> PSS_SHIFT);
 825		SEQ_PUT_DEC(" kB\nPss_File:       ",
 826			mss->pss_file >> PSS_SHIFT);
 827		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
 828			mss->pss_shmem >> PSS_SHIFT);
 829	}
 830	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
 831	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
 832	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
 833	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
 834	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
 835	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
 836	SEQ_PUT_DEC(" kB\nKSM:            ", mss->ksm);
 837	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
 838	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
 839	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
 840	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
 841	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
 842	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
 843				  mss->private_hugetlb >> 10, 7);
 844	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
 845	SEQ_PUT_DEC(" kB\nSwapPss:        ",
 846					mss->swap_pss >> PSS_SHIFT);
 847	SEQ_PUT_DEC(" kB\nLocked:         ",
 848					mss->pss_locked >> PSS_SHIFT);
 849	seq_puts(m, " kB\n");
 850}
 851
 852static int show_smap(struct seq_file *m, void *v)
 853{
 
 
 854	struct vm_area_struct *vma = v;
 855	struct mem_size_stats mss = {};
 
 
 
 
 
 856
 857	smap_gather_stats(vma, &mss, 0);
 
 
 
 
 858
 859	show_map_vma(m, vma);
 860
 861	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
 862	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
 863	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
 864	seq_puts(m, " kB\n");
 865
 866	__show_smap(m, &mss, false);
 867
 868	seq_printf(m, "THPeligible:    %8u\n",
 869		   !!thp_vma_allowable_orders(vma, vma->vm_flags, true, false,
 870					      true, THP_ORDERS_ALL));
 871
 872	if (arch_pkeys_enabled())
 873		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
 874	show_smap_vma_flags(m, vma);
 875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876	return 0;
 877}
 878
 879static int show_smaps_rollup(struct seq_file *m, void *v)
 880{
 881	struct proc_maps_private *priv = m->private;
 882	struct mem_size_stats mss = {};
 883	struct mm_struct *mm = priv->mm;
 884	struct vm_area_struct *vma;
 885	unsigned long vma_start = 0, last_vma_end = 0;
 886	int ret = 0;
 887	VMA_ITERATOR(vmi, mm, 0);
 888
 889	priv->task = get_proc_task(priv->inode);
 890	if (!priv->task)
 891		return -ESRCH;
 892
 893	if (!mm || !mmget_not_zero(mm)) {
 894		ret = -ESRCH;
 895		goto out_put_task;
 896	}
 897
 898	ret = mmap_read_lock_killable(mm);
 899	if (ret)
 900		goto out_put_mm;
 901
 902	hold_task_mempolicy(priv);
 903	vma = vma_next(&vmi);
 904
 905	if (unlikely(!vma))
 906		goto empty_set;
 907
 908	vma_start = vma->vm_start;
 909	do {
 910		smap_gather_stats(vma, &mss, 0);
 911		last_vma_end = vma->vm_end;
 912
 913		/*
 914		 * Release mmap_lock temporarily if someone wants to
 915		 * access it for write request.
 916		 */
 917		if (mmap_lock_is_contended(mm)) {
 918			vma_iter_invalidate(&vmi);
 919			mmap_read_unlock(mm);
 920			ret = mmap_read_lock_killable(mm);
 921			if (ret) {
 922				release_task_mempolicy(priv);
 923				goto out_put_mm;
 924			}
 925
 926			/*
 927			 * After dropping the lock, there are four cases to
 928			 * consider. See the following example for explanation.
 929			 *
 930			 *   +------+------+-----------+
 931			 *   | VMA1 | VMA2 | VMA3      |
 932			 *   +------+------+-----------+
 933			 *   |      |      |           |
 934			 *  4k     8k     16k         400k
 935			 *
 936			 * Suppose we drop the lock after reading VMA2 due to
 937			 * contention, then we get:
 938			 *
 939			 *	last_vma_end = 16k
 940			 *
 941			 * 1) VMA2 is freed, but VMA3 exists:
 942			 *
 943			 *    vma_next(vmi) will return VMA3.
 944			 *    In this case, just continue from VMA3.
 945			 *
 946			 * 2) VMA2 still exists:
 947			 *
 948			 *    vma_next(vmi) will return VMA3.
 949			 *    In this case, just continue from VMA3.
 950			 *
 951			 * 3) No more VMAs can be found:
 952			 *
 953			 *    vma_next(vmi) will return NULL.
 954			 *    No more things to do, just break.
 955			 *
 956			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
 957			 *
 958			 *    vma_next(vmi) will return VMA' whose range
 959			 *    contains last_vma_end.
 960			 *    Iterate VMA' from last_vma_end.
 961			 */
 962			vma = vma_next(&vmi);
 963			/* Case 3 above */
 964			if (!vma)
 965				break;
 966
 967			/* Case 1 and 2 above */
 968			if (vma->vm_start >= last_vma_end)
 969				continue;
 970
 971			/* Case 4 above */
 972			if (vma->vm_end > last_vma_end)
 973				smap_gather_stats(vma, &mss, last_vma_end);
 974		}
 975	} for_each_vma(vmi, vma);
 976
 977empty_set:
 978	show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
 979	seq_pad(m, ' ');
 980	seq_puts(m, "[rollup]\n");
 981
 982	__show_smap(m, &mss, true);
 983
 984	release_task_mempolicy(priv);
 985	mmap_read_unlock(mm);
 986
 987out_put_mm:
 988	mmput(mm);
 989out_put_task:
 990	put_task_struct(priv->task);
 991	priv->task = NULL;
 992
 993	return ret;
 994}
 995#undef SEQ_PUT_DEC
 996
 997static const struct seq_operations proc_pid_smaps_op = {
 998	.start	= m_start,
 999	.next	= m_next,
1000	.stop	= m_stop,
1001	.show	= show_smap
1002};
1003
1004static int pid_smaps_open(struct inode *inode, struct file *file)
1005{
1006	return do_maps_open(inode, file, &proc_pid_smaps_op);
1007}
1008
1009static int smaps_rollup_open(struct inode *inode, struct file *file)
1010{
1011	int ret;
1012	struct proc_maps_private *priv;
1013
1014	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1015	if (!priv)
1016		return -ENOMEM;
1017
1018	ret = single_open(file, show_smaps_rollup, priv);
1019	if (ret)
1020		goto out_free;
1021
1022	priv->inode = inode;
1023	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1024	if (IS_ERR(priv->mm)) {
1025		ret = PTR_ERR(priv->mm);
1026
1027		single_release(inode, file);
1028		goto out_free;
1029	}
1030
1031	return 0;
1032
1033out_free:
1034	kfree(priv);
1035	return ret;
1036}
1037
1038static int smaps_rollup_release(struct inode *inode, struct file *file)
1039{
1040	struct seq_file *seq = file->private_data;
1041	struct proc_maps_private *priv = seq->private;
1042
1043	if (priv->mm)
1044		mmdrop(priv->mm);
1045
1046	kfree(priv);
1047	return single_release(inode, file);
1048}
1049
1050const struct file_operations proc_pid_smaps_operations = {
1051	.open		= pid_smaps_open,
1052	.read		= seq_read,
1053	.llseek		= seq_lseek,
1054	.release	= proc_map_release,
1055};
1056
1057const struct file_operations proc_pid_smaps_rollup_operations = {
1058	.open		= smaps_rollup_open,
1059	.read		= seq_read,
1060	.llseek		= seq_lseek,
1061	.release	= smaps_rollup_release,
1062};
1063
1064enum clear_refs_types {
1065	CLEAR_REFS_ALL = 1,
1066	CLEAR_REFS_ANON,
1067	CLEAR_REFS_MAPPED,
1068	CLEAR_REFS_SOFT_DIRTY,
1069	CLEAR_REFS_MM_HIWATER_RSS,
1070	CLEAR_REFS_LAST,
1071};
1072
1073struct clear_refs_private {
1074	enum clear_refs_types type;
1075};
1076
1077#ifdef CONFIG_MEM_SOFT_DIRTY
1078
1079static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1080{
1081	struct page *page;
1082
1083	if (!pte_write(pte))
1084		return false;
1085	if (!is_cow_mapping(vma->vm_flags))
1086		return false;
1087	if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1088		return false;
1089	page = vm_normal_page(vma, addr, pte);
1090	if (!page)
1091		return false;
1092	return page_maybe_dma_pinned(page);
1093}
1094
1095static inline void clear_soft_dirty(struct vm_area_struct *vma,
1096		unsigned long addr, pte_t *pte)
1097{
1098	/*
1099	 * The soft-dirty tracker uses #PF-s to catch writes
1100	 * to pages, so write-protect the pte as well. See the
1101	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1102	 * of how soft-dirty works.
1103	 */
1104	pte_t ptent = ptep_get(pte);
1105
1106	if (pte_present(ptent)) {
1107		pte_t old_pte;
1108
1109		if (pte_is_pinned(vma, addr, ptent))
1110			return;
1111		old_pte = ptep_modify_prot_start(vma, addr, pte);
1112		ptent = pte_wrprotect(old_pte);
1113		ptent = pte_clear_soft_dirty(ptent);
1114		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1115	} else if (is_swap_pte(ptent)) {
1116		ptent = pte_swp_clear_soft_dirty(ptent);
1117		set_pte_at(vma->vm_mm, addr, pte, ptent);
1118	}
1119}
1120#else
1121static inline void clear_soft_dirty(struct vm_area_struct *vma,
1122		unsigned long addr, pte_t *pte)
1123{
1124}
1125#endif
1126
1127#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1128static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1129		unsigned long addr, pmd_t *pmdp)
1130{
1131	pmd_t old, pmd = *pmdp;
1132
1133	if (pmd_present(pmd)) {
1134		/* See comment in change_huge_pmd() */
1135		old = pmdp_invalidate(vma, addr, pmdp);
1136		if (pmd_dirty(old))
1137			pmd = pmd_mkdirty(pmd);
1138		if (pmd_young(old))
1139			pmd = pmd_mkyoung(pmd);
1140
1141		pmd = pmd_wrprotect(pmd);
1142		pmd = pmd_clear_soft_dirty(pmd);
1143
1144		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1145	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1146		pmd = pmd_swp_clear_soft_dirty(pmd);
1147		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1148	}
1149}
1150#else
1151static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1152		unsigned long addr, pmd_t *pmdp)
1153{
1154}
1155#endif
1156
1157static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1158				unsigned long end, struct mm_walk *walk)
1159{
1160	struct clear_refs_private *cp = walk->private;
1161	struct vm_area_struct *vma = walk->vma;
1162	pte_t *pte, ptent;
1163	spinlock_t *ptl;
1164	struct page *page;
1165
1166	ptl = pmd_trans_huge_lock(pmd, vma);
1167	if (ptl) {
1168		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1169			clear_soft_dirty_pmd(vma, addr, pmd);
1170			goto out;
1171		}
1172
1173		if (!pmd_present(*pmd))
1174			goto out;
1175
1176		page = pmd_page(*pmd);
1177
1178		/* Clear accessed and referenced bits. */
1179		pmdp_test_and_clear_young(vma, addr, pmd);
1180		test_and_clear_page_young(page);
1181		ClearPageReferenced(page);
1182out:
1183		spin_unlock(ptl);
1184		return 0;
1185	}
1186
1187	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1188	if (!pte) {
1189		walk->action = ACTION_AGAIN;
1190		return 0;
1191	}
1192	for (; addr != end; pte++, addr += PAGE_SIZE) {
1193		ptent = ptep_get(pte);
1194
1195		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1196			clear_soft_dirty(vma, addr, pte);
1197			continue;
1198		}
1199
1200		if (!pte_present(ptent))
1201			continue;
1202
1203		page = vm_normal_page(vma, addr, ptent);
1204		if (!page)
1205			continue;
1206
1207		/* Clear accessed and referenced bits. */
1208		ptep_test_and_clear_young(vma, addr, pte);
1209		test_and_clear_page_young(page);
1210		ClearPageReferenced(page);
1211	}
1212	pte_unmap_unlock(pte - 1, ptl);
1213	cond_resched();
1214	return 0;
1215}
1216
1217static int clear_refs_test_walk(unsigned long start, unsigned long end,
1218				struct mm_walk *walk)
1219{
1220	struct clear_refs_private *cp = walk->private;
1221	struct vm_area_struct *vma = walk->vma;
1222
1223	if (vma->vm_flags & VM_PFNMAP)
1224		return 1;
1225
1226	/*
1227	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1228	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1229	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1230	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1231	 */
1232	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1233		return 1;
1234	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1235		return 1;
1236	return 0;
1237}
1238
1239static const struct mm_walk_ops clear_refs_walk_ops = {
1240	.pmd_entry		= clear_refs_pte_range,
1241	.test_walk		= clear_refs_test_walk,
1242	.walk_lock		= PGWALK_WRLOCK,
1243};
1244
1245static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1246				size_t count, loff_t *ppos)
1247{
1248	struct task_struct *task;
1249	char buffer[PROC_NUMBUF] = {};
1250	struct mm_struct *mm;
1251	struct vm_area_struct *vma;
1252	enum clear_refs_types type;
1253	int itype;
1254	int rv;
1255
 
1256	if (count > sizeof(buffer) - 1)
1257		count = sizeof(buffer) - 1;
1258	if (copy_from_user(buffer, buf, count))
1259		return -EFAULT;
1260	rv = kstrtoint(strstrip(buffer), 10, &itype);
1261	if (rv < 0)
1262		return rv;
1263	type = (enum clear_refs_types)itype;
1264	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1265		return -EINVAL;
1266
1267	task = get_proc_task(file_inode(file));
1268	if (!task)
1269		return -ESRCH;
1270	mm = get_task_mm(task);
1271	if (mm) {
1272		VMA_ITERATOR(vmi, mm, 0);
1273		struct mmu_notifier_range range;
1274		struct clear_refs_private cp = {
1275			.type = type,
1276		};
1277
1278		if (mmap_write_lock_killable(mm)) {
1279			count = -EINTR;
1280			goto out_mm;
1281		}
1282		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1283			/*
1284			 * Writing 5 to /proc/pid/clear_refs resets the peak
1285			 * resident set size to this mm's current rss value.
 
 
 
 
 
1286			 */
1287			reset_mm_hiwater_rss(mm);
1288			goto out_unlock;
 
 
 
 
1289		}
1290
1291		if (type == CLEAR_REFS_SOFT_DIRTY) {
1292			for_each_vma(vmi, vma) {
1293				if (!(vma->vm_flags & VM_SOFTDIRTY))
1294					continue;
1295				vm_flags_clear(vma, VM_SOFTDIRTY);
1296				vma_set_page_prot(vma);
1297			}
1298
1299			inc_tlb_flush_pending(mm);
1300			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1301						0, mm, 0, -1UL);
1302			mmu_notifier_invalidate_range_start(&range);
1303		}
1304		walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1305		if (type == CLEAR_REFS_SOFT_DIRTY) {
1306			mmu_notifier_invalidate_range_end(&range);
1307			flush_tlb_mm(mm);
1308			dec_tlb_flush_pending(mm);
1309		}
1310out_unlock:
1311		mmap_write_unlock(mm);
1312out_mm:
1313		mmput(mm);
1314	}
1315	put_task_struct(task);
1316
1317	return count;
1318}
1319
1320const struct file_operations proc_clear_refs_operations = {
1321	.write		= clear_refs_write,
1322	.llseek		= noop_llseek,
1323};
1324
1325typedef struct {
1326	u64 pme;
1327} pagemap_entry_t;
1328
1329struct pagemapread {
1330	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1331	pagemap_entry_t *buffer;
1332	bool show_pfn;
1333};
1334
1335#define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1336#define PAGEMAP_WALK_MASK	(PMD_MASK)
1337
1338#define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1339#define PM_PFRAME_BITS		55
1340#define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1341#define PM_SOFT_DIRTY		BIT_ULL(55)
1342#define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1343#define PM_UFFD_WP		BIT_ULL(57)
1344#define PM_FILE			BIT_ULL(61)
1345#define PM_SWAP			BIT_ULL(62)
1346#define PM_PRESENT		BIT_ULL(63)
1347
 
 
1348#define PM_END_OF_BUFFER    1
1349
1350static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1351{
1352	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1353}
1354
1355static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1356			  struct pagemapread *pm)
1357{
1358	pm->buffer[pm->pos++] = *pme;
1359	if (pm->pos >= pm->len)
1360		return PM_END_OF_BUFFER;
1361	return 0;
1362}
1363
1364static int pagemap_pte_hole(unsigned long start, unsigned long end,
1365			    __always_unused int depth, struct mm_walk *walk)
1366{
1367	struct pagemapread *pm = walk->private;
1368	unsigned long addr = start;
1369	int err = 0;
1370
1371	while (addr < end) {
1372		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1373		pagemap_entry_t pme = make_pme(0, 0);
1374		/* End of address space hole, which we mark as non-present. */
1375		unsigned long hole_end;
1376
1377		if (vma)
1378			hole_end = min(end, vma->vm_start);
1379		else
1380			hole_end = end;
1381
1382		for (; addr < hole_end; addr += PAGE_SIZE) {
1383			err = add_to_pagemap(addr, &pme, pm);
1384			if (err)
1385				goto out;
1386		}
1387
1388		if (!vma)
1389			break;
1390
1391		/* Addresses in the VMA. */
1392		if (vma->vm_flags & VM_SOFTDIRTY)
1393			pme = make_pme(0, PM_SOFT_DIRTY);
1394		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1395			err = add_to_pagemap(addr, &pme, pm);
1396			if (err)
1397				goto out;
1398		}
1399	}
1400out:
1401	return err;
1402}
1403
1404static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1405		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1406{
1407	u64 frame = 0, flags = 0;
1408	struct page *page = NULL;
1409	bool migration = false;
1410
1411	if (pte_present(pte)) {
1412		if (pm->show_pfn)
1413			frame = pte_pfn(pte);
1414		flags |= PM_PRESENT;
1415		page = vm_normal_page(vma, addr, pte);
1416		if (pte_soft_dirty(pte))
1417			flags |= PM_SOFT_DIRTY;
1418		if (pte_uffd_wp(pte))
1419			flags |= PM_UFFD_WP;
1420	} else if (is_swap_pte(pte)) {
1421		swp_entry_t entry;
1422		if (pte_swp_soft_dirty(pte))
1423			flags |= PM_SOFT_DIRTY;
1424		if (pte_swp_uffd_wp(pte))
1425			flags |= PM_UFFD_WP;
1426		entry = pte_to_swp_entry(pte);
1427		if (pm->show_pfn) {
1428			pgoff_t offset;
1429			/*
1430			 * For PFN swap offsets, keeping the offset field
1431			 * to be PFN only to be compatible with old smaps.
1432			 */
1433			if (is_pfn_swap_entry(entry))
1434				offset = swp_offset_pfn(entry);
1435			else
1436				offset = swp_offset(entry);
1437			frame = swp_type(entry) |
1438			    (offset << MAX_SWAPFILES_SHIFT);
1439		}
1440		flags |= PM_SWAP;
1441		migration = is_migration_entry(entry);
1442		if (is_pfn_swap_entry(entry))
1443			page = pfn_swap_entry_to_page(entry);
1444		if (pte_marker_entry_uffd_wp(entry))
1445			flags |= PM_UFFD_WP;
1446	}
1447
1448	if (page && !PageAnon(page))
1449		flags |= PM_FILE;
1450	if (page && !migration && page_mapcount(page) == 1)
1451		flags |= PM_MMAP_EXCLUSIVE;
1452	if (vma->vm_flags & VM_SOFTDIRTY)
1453		flags |= PM_SOFT_DIRTY;
1454
1455	return make_pme(frame, flags);
 
 
1456}
1457
1458static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1459			     struct mm_walk *walk)
1460{
1461	struct vm_area_struct *vma = walk->vma;
1462	struct pagemapread *pm = walk->private;
1463	spinlock_t *ptl;
1464	pte_t *pte, *orig_pte;
1465	int err = 0;
1466#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1467	bool migration = false;
1468
1469	ptl = pmd_trans_huge_lock(pmdp, vma);
1470	if (ptl) {
1471		u64 flags = 0, frame = 0;
1472		pmd_t pmd = *pmdp;
1473		struct page *page = NULL;
1474
1475		if (vma->vm_flags & VM_SOFTDIRTY)
1476			flags |= PM_SOFT_DIRTY;
1477
1478		if (pmd_present(pmd)) {
1479			page = pmd_page(pmd);
1480
1481			flags |= PM_PRESENT;
1482			if (pmd_soft_dirty(pmd))
1483				flags |= PM_SOFT_DIRTY;
1484			if (pmd_uffd_wp(pmd))
1485				flags |= PM_UFFD_WP;
1486			if (pm->show_pfn)
1487				frame = pmd_pfn(pmd) +
1488					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1489		}
1490#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1491		else if (is_swap_pmd(pmd)) {
1492			swp_entry_t entry = pmd_to_swp_entry(pmd);
1493			unsigned long offset;
1494
1495			if (pm->show_pfn) {
1496				if (is_pfn_swap_entry(entry))
1497					offset = swp_offset_pfn(entry);
1498				else
1499					offset = swp_offset(entry);
1500				offset = offset +
1501					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1502				frame = swp_type(entry) |
1503					(offset << MAX_SWAPFILES_SHIFT);
1504			}
1505			flags |= PM_SWAP;
1506			if (pmd_swp_soft_dirty(pmd))
1507				flags |= PM_SOFT_DIRTY;
1508			if (pmd_swp_uffd_wp(pmd))
1509				flags |= PM_UFFD_WP;
1510			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1511			migration = is_migration_entry(entry);
1512			page = pfn_swap_entry_to_page(entry);
1513		}
1514#endif
1515
1516		if (page && !migration && page_mapcount(page) == 1)
1517			flags |= PM_MMAP_EXCLUSIVE;
1518
1519		for (; addr != end; addr += PAGE_SIZE) {
1520			pagemap_entry_t pme = make_pme(frame, flags);
1521
1522			err = add_to_pagemap(addr, &pme, pm);
1523			if (err)
1524				break;
1525			if (pm->show_pfn) {
1526				if (flags & PM_PRESENT)
1527					frame++;
1528				else if (flags & PM_SWAP)
1529					frame += (1 << MAX_SWAPFILES_SHIFT);
1530			}
 
 
 
 
1531		}
1532		spin_unlock(ptl);
1533		return err;
1534	}
1535#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1536
1537	/*
1538	 * We can assume that @vma always points to a valid one and @end never
1539	 * goes beyond vma->vm_end.
1540	 */
1541	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1542	if (!pte) {
1543		walk->action = ACTION_AGAIN;
1544		return err;
1545	}
1546	for (; addr < end; pte++, addr += PAGE_SIZE) {
1547		pagemap_entry_t pme;
1548
1549		pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
1550		err = add_to_pagemap(addr, &pme, pm);
1551		if (err)
1552			break;
1553	}
1554	pte_unmap_unlock(orig_pte, ptl);
1555
1556	cond_resched();
1557
1558	return err;
1559}
1560
1561#ifdef CONFIG_HUGETLB_PAGE
 
 
 
 
 
 
 
 
 
1562/* This function walks within one hugetlb entry in the single call */
1563static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1564				 unsigned long addr, unsigned long end,
1565				 struct mm_walk *walk)
1566{
1567	struct pagemapread *pm = walk->private;
1568	struct vm_area_struct *vma = walk->vma;
1569	u64 flags = 0, frame = 0;
1570	int err = 0;
1571	pte_t pte;
1572
1573	if (vma->vm_flags & VM_SOFTDIRTY)
1574		flags |= PM_SOFT_DIRTY;
1575
1576	pte = huge_ptep_get(ptep);
1577	if (pte_present(pte)) {
1578		struct page *page = pte_page(pte);
1579
1580		if (!PageAnon(page))
1581			flags |= PM_FILE;
1582
1583		if (page_mapcount(page) == 1)
1584			flags |= PM_MMAP_EXCLUSIVE;
1585
1586		if (huge_pte_uffd_wp(pte))
1587			flags |= PM_UFFD_WP;
1588
1589		flags |= PM_PRESENT;
1590		if (pm->show_pfn)
1591			frame = pte_pfn(pte) +
1592				((addr & ~hmask) >> PAGE_SHIFT);
1593	} else if (pte_swp_uffd_wp_any(pte)) {
1594		flags |= PM_UFFD_WP;
1595	}
1596
1597	for (; addr != end; addr += PAGE_SIZE) {
1598		pagemap_entry_t pme = make_pme(frame, flags);
1599
1600		err = add_to_pagemap(addr, &pme, pm);
1601		if (err)
1602			return err;
1603		if (pm->show_pfn && (flags & PM_PRESENT))
1604			frame++;
1605	}
1606
1607	cond_resched();
1608
1609	return err;
1610}
1611#else
1612#define pagemap_hugetlb_range	NULL
1613#endif /* HUGETLB_PAGE */
1614
1615static const struct mm_walk_ops pagemap_ops = {
1616	.pmd_entry	= pagemap_pmd_range,
1617	.pte_hole	= pagemap_pte_hole,
1618	.hugetlb_entry	= pagemap_hugetlb_range,
1619	.walk_lock	= PGWALK_RDLOCK,
1620};
1621
1622/*
1623 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1624 *
1625 * For each page in the address space, this file contains one 64-bit entry
1626 * consisting of the following:
1627 *
1628 * Bits 0-54  page frame number (PFN) if present
1629 * Bits 0-4   swap type if swapped
1630 * Bits 5-54  swap offset if swapped
1631 * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1632 * Bit  56    page exclusively mapped
1633 * Bit  57    pte is uffd-wp write-protected
1634 * Bits 58-60 zero
1635 * Bit  61    page is file-page or shared-anon
1636 * Bit  62    page swapped
1637 * Bit  63    page present
1638 *
1639 * If the page is not present but in swap, then the PFN contains an
1640 * encoding of the swap file number and the page's offset into the
1641 * swap. Unmapped pages return a null PFN. This allows determining
1642 * precisely which pages are mapped (or in swap) and comparing mapped
1643 * pages between processes.
1644 *
1645 * Efficient users of this interface will use /proc/pid/maps to
1646 * determine which areas of memory are actually mapped and llseek to
1647 * skip over unmapped regions.
1648 */
 
 
1649static ssize_t pagemap_read(struct file *file, char __user *buf,
1650			    size_t count, loff_t *ppos)
1651{
1652	struct mm_struct *mm = file->private_data;
 
1653	struct pagemapread pm;
 
 
1654	unsigned long src;
1655	unsigned long svpfn;
1656	unsigned long start_vaddr;
1657	unsigned long end_vaddr;
1658	int ret = 0, copied = 0;
1659
1660	if (!mm || !mmget_not_zero(mm))
1661		goto out;
1662
1663	ret = -EINVAL;
1664	/* file position must be aligned */
1665	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1666		goto out_mm;
1667
1668	ret = 0;
1669	if (!count)
1670		goto out_mm;
1671
1672	/* do not disclose physical addresses: attack vector */
1673	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1674
1675	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1676	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1677	ret = -ENOMEM;
1678	if (!pm.buffer)
1679		goto out_mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
1680
1681	src = *ppos;
1682	svpfn = src / PM_ENTRY_BYTES;
1683	end_vaddr = mm->task_size;
 
1684
1685	/* watch out for wraparound */
1686	start_vaddr = end_vaddr;
1687	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
1688		unsigned long end;
1689
1690		ret = mmap_read_lock_killable(mm);
1691		if (ret)
1692			goto out_free;
1693		start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
1694		mmap_read_unlock(mm);
1695
1696		end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
1697		if (end >= start_vaddr && end < mm->task_size)
1698			end_vaddr = end;
1699	}
1700
1701	/* Ensure the address is inside the task */
1702	if (start_vaddr > mm->task_size)
1703		start_vaddr = end_vaddr;
1704
 
 
 
 
 
 
1705	ret = 0;
1706	while (count && (start_vaddr < end_vaddr)) {
1707		int len;
1708		unsigned long end;
1709
1710		pm.pos = 0;
1711		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1712		/* overflow ? */
1713		if (end < start_vaddr || end > end_vaddr)
1714			end = end_vaddr;
1715		ret = mmap_read_lock_killable(mm);
1716		if (ret)
1717			goto out_free;
1718		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1719		mmap_read_unlock(mm);
1720		start_vaddr = end;
1721
1722		len = min(count, PM_ENTRY_BYTES * pm.pos);
1723		if (copy_to_user(buf, pm.buffer, len)) {
1724			ret = -EFAULT;
1725			goto out_free;
1726		}
1727		copied += len;
1728		buf += len;
1729		count -= len;
1730	}
1731	*ppos += copied;
1732	if (!ret || ret == PM_END_OF_BUFFER)
1733		ret = copied;
1734
 
 
1735out_free:
1736	kfree(pm.buffer);
1737out_mm:
1738	mmput(mm);
1739out:
1740	return ret;
1741}
1742
1743static int pagemap_open(struct inode *inode, struct file *file)
1744{
1745	struct mm_struct *mm;
1746
1747	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1748	if (IS_ERR(mm))
1749		return PTR_ERR(mm);
1750	file->private_data = mm;
1751	return 0;
1752}
1753
1754static int pagemap_release(struct inode *inode, struct file *file)
1755{
1756	struct mm_struct *mm = file->private_data;
1757
1758	if (mm)
1759		mmdrop(mm);
1760	return 0;
1761}
1762
1763#define PM_SCAN_CATEGORIES	(PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN |	\
1764				 PAGE_IS_FILE |	PAGE_IS_PRESENT |	\
1765				 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO |	\
1766				 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY)
1767#define PM_SCAN_FLAGS		(PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
1768
1769struct pagemap_scan_private {
1770	struct pm_scan_arg arg;
1771	unsigned long masks_of_interest, cur_vma_category;
1772	struct page_region *vec_buf;
1773	unsigned long vec_buf_len, vec_buf_index, found_pages;
1774	struct page_region __user *vec_out;
1775};
1776
1777static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
1778					   struct vm_area_struct *vma,
1779					   unsigned long addr, pte_t pte)
1780{
1781	unsigned long categories = 0;
1782
1783	if (pte_present(pte)) {
1784		struct page *page;
1785
1786		categories |= PAGE_IS_PRESENT;
1787		if (!pte_uffd_wp(pte))
1788			categories |= PAGE_IS_WRITTEN;
1789
1790		if (p->masks_of_interest & PAGE_IS_FILE) {
1791			page = vm_normal_page(vma, addr, pte);
1792			if (page && !PageAnon(page))
1793				categories |= PAGE_IS_FILE;
1794		}
1795
1796		if (is_zero_pfn(pte_pfn(pte)))
1797			categories |= PAGE_IS_PFNZERO;
1798		if (pte_soft_dirty(pte))
1799			categories |= PAGE_IS_SOFT_DIRTY;
1800	} else if (is_swap_pte(pte)) {
1801		swp_entry_t swp;
1802
1803		categories |= PAGE_IS_SWAPPED;
1804		if (!pte_swp_uffd_wp_any(pte))
1805			categories |= PAGE_IS_WRITTEN;
1806
1807		if (p->masks_of_interest & PAGE_IS_FILE) {
1808			swp = pte_to_swp_entry(pte);
1809			if (is_pfn_swap_entry(swp) &&
1810			    !PageAnon(pfn_swap_entry_to_page(swp)))
1811				categories |= PAGE_IS_FILE;
1812		}
1813		if (pte_swp_soft_dirty(pte))
1814			categories |= PAGE_IS_SOFT_DIRTY;
1815	}
1816
1817	return categories;
1818}
1819
1820static void make_uffd_wp_pte(struct vm_area_struct *vma,
1821			     unsigned long addr, pte_t *pte)
1822{
1823	pte_t ptent = ptep_get(pte);
1824
1825	if (pte_present(ptent)) {
1826		pte_t old_pte;
1827
1828		old_pte = ptep_modify_prot_start(vma, addr, pte);
1829		ptent = pte_mkuffd_wp(ptent);
1830		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1831	} else if (is_swap_pte(ptent)) {
1832		ptent = pte_swp_mkuffd_wp(ptent);
1833		set_pte_at(vma->vm_mm, addr, pte, ptent);
1834	} else {
1835		set_pte_at(vma->vm_mm, addr, pte,
1836			   make_pte_marker(PTE_MARKER_UFFD_WP));
1837	}
1838}
1839
1840#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1841static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
1842					  struct vm_area_struct *vma,
1843					  unsigned long addr, pmd_t pmd)
1844{
1845	unsigned long categories = PAGE_IS_HUGE;
1846
1847	if (pmd_present(pmd)) {
1848		struct page *page;
1849
1850		categories |= PAGE_IS_PRESENT;
1851		if (!pmd_uffd_wp(pmd))
1852			categories |= PAGE_IS_WRITTEN;
1853
1854		if (p->masks_of_interest & PAGE_IS_FILE) {
1855			page = vm_normal_page_pmd(vma, addr, pmd);
1856			if (page && !PageAnon(page))
1857				categories |= PAGE_IS_FILE;
1858		}
1859
1860		if (is_zero_pfn(pmd_pfn(pmd)))
1861			categories |= PAGE_IS_PFNZERO;
1862		if (pmd_soft_dirty(pmd))
1863			categories |= PAGE_IS_SOFT_DIRTY;
1864	} else if (is_swap_pmd(pmd)) {
1865		swp_entry_t swp;
1866
1867		categories |= PAGE_IS_SWAPPED;
1868		if (!pmd_swp_uffd_wp(pmd))
1869			categories |= PAGE_IS_WRITTEN;
1870		if (pmd_swp_soft_dirty(pmd))
1871			categories |= PAGE_IS_SOFT_DIRTY;
1872
1873		if (p->masks_of_interest & PAGE_IS_FILE) {
1874			swp = pmd_to_swp_entry(pmd);
1875			if (is_pfn_swap_entry(swp) &&
1876			    !PageAnon(pfn_swap_entry_to_page(swp)))
1877				categories |= PAGE_IS_FILE;
1878		}
1879	}
1880
1881	return categories;
1882}
1883
1884static void make_uffd_wp_pmd(struct vm_area_struct *vma,
1885			     unsigned long addr, pmd_t *pmdp)
1886{
1887	pmd_t old, pmd = *pmdp;
1888
1889	if (pmd_present(pmd)) {
1890		old = pmdp_invalidate_ad(vma, addr, pmdp);
1891		pmd = pmd_mkuffd_wp(old);
1892		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1893	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1894		pmd = pmd_swp_mkuffd_wp(pmd);
1895		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1896	}
1897}
1898#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1899
1900#ifdef CONFIG_HUGETLB_PAGE
1901static unsigned long pagemap_hugetlb_category(pte_t pte)
1902{
1903	unsigned long categories = PAGE_IS_HUGE;
1904
1905	/*
1906	 * According to pagemap_hugetlb_range(), file-backed HugeTLB
1907	 * page cannot be swapped. So PAGE_IS_FILE is not checked for
1908	 * swapped pages.
1909	 */
1910	if (pte_present(pte)) {
1911		categories |= PAGE_IS_PRESENT;
1912		if (!huge_pte_uffd_wp(pte))
1913			categories |= PAGE_IS_WRITTEN;
1914		if (!PageAnon(pte_page(pte)))
1915			categories |= PAGE_IS_FILE;
1916		if (is_zero_pfn(pte_pfn(pte)))
1917			categories |= PAGE_IS_PFNZERO;
1918		if (pte_soft_dirty(pte))
1919			categories |= PAGE_IS_SOFT_DIRTY;
1920	} else if (is_swap_pte(pte)) {
1921		categories |= PAGE_IS_SWAPPED;
1922		if (!pte_swp_uffd_wp_any(pte))
1923			categories |= PAGE_IS_WRITTEN;
1924		if (pte_swp_soft_dirty(pte))
1925			categories |= PAGE_IS_SOFT_DIRTY;
1926	}
1927
1928	return categories;
1929}
1930
1931static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
1932				  unsigned long addr, pte_t *ptep,
1933				  pte_t ptent)
1934{
1935	unsigned long psize;
1936
1937	if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
1938		return;
1939
1940	psize = huge_page_size(hstate_vma(vma));
1941
1942	if (is_hugetlb_entry_migration(ptent))
1943		set_huge_pte_at(vma->vm_mm, addr, ptep,
1944				pte_swp_mkuffd_wp(ptent), psize);
1945	else if (!huge_pte_none(ptent))
1946		huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
1947					     huge_pte_mkuffd_wp(ptent));
1948	else
1949		set_huge_pte_at(vma->vm_mm, addr, ptep,
1950				make_pte_marker(PTE_MARKER_UFFD_WP), psize);
1951}
1952#endif /* CONFIG_HUGETLB_PAGE */
1953
1954#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1955static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
1956				       unsigned long addr, unsigned long end)
1957{
1958	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
1959
1960	if (cur_buf->start != addr)
1961		cur_buf->end = addr;
1962	else
1963		cur_buf->start = cur_buf->end = 0;
1964
1965	p->found_pages -= (end - addr) / PAGE_SIZE;
1966}
1967#endif
1968
1969static bool pagemap_scan_is_interesting_page(unsigned long categories,
1970					     const struct pagemap_scan_private *p)
1971{
1972	categories ^= p->arg.category_inverted;
1973	if ((categories & p->arg.category_mask) != p->arg.category_mask)
1974		return false;
1975	if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
1976		return false;
1977
1978	return true;
1979}
1980
1981static bool pagemap_scan_is_interesting_vma(unsigned long categories,
1982					    const struct pagemap_scan_private *p)
1983{
1984	unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
1985
1986	categories ^= p->arg.category_inverted;
1987	if ((categories & required) != required)
1988		return false;
1989
1990	return true;
1991}
1992
1993static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
1994				  struct mm_walk *walk)
1995{
1996	struct pagemap_scan_private *p = walk->private;
1997	struct vm_area_struct *vma = walk->vma;
1998	unsigned long vma_category = 0;
1999	bool wp_allowed = userfaultfd_wp_async(vma) &&
2000	    userfaultfd_wp_use_markers(vma);
2001
2002	if (!wp_allowed) {
2003		/* User requested explicit failure over wp-async capability */
2004		if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
2005			return -EPERM;
2006		/*
2007		 * User requires wr-protect, and allows silently skipping
2008		 * unsupported vmas.
2009		 */
2010		if (p->arg.flags & PM_SCAN_WP_MATCHING)
2011			return 1;
2012		/*
2013		 * Then the request doesn't involve wr-protects at all,
2014		 * fall through to the rest checks, and allow vma walk.
2015		 */
2016	}
2017
2018	if (vma->vm_flags & VM_PFNMAP)
2019		return 1;
2020
2021	if (wp_allowed)
2022		vma_category |= PAGE_IS_WPALLOWED;
2023
2024	if (vma->vm_flags & VM_SOFTDIRTY)
2025		vma_category |= PAGE_IS_SOFT_DIRTY;
2026
2027	if (!pagemap_scan_is_interesting_vma(vma_category, p))
2028		return 1;
2029
2030	p->cur_vma_category = vma_category;
2031
2032	return 0;
2033}
2034
2035static bool pagemap_scan_push_range(unsigned long categories,
2036				    struct pagemap_scan_private *p,
2037				    unsigned long addr, unsigned long end)
2038{
2039	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2040
2041	/*
2042	 * When there is no output buffer provided at all, the sentinel values
2043	 * won't match here. There is no other way for `cur_buf->end` to be
2044	 * non-zero other than it being non-empty.
2045	 */
2046	if (addr == cur_buf->end && categories == cur_buf->categories) {
2047		cur_buf->end = end;
2048		return true;
2049	}
2050
2051	if (cur_buf->end) {
2052		if (p->vec_buf_index >= p->vec_buf_len - 1)
2053			return false;
2054
2055		cur_buf = &p->vec_buf[++p->vec_buf_index];
2056	}
2057
2058	cur_buf->start = addr;
2059	cur_buf->end = end;
2060	cur_buf->categories = categories;
2061
2062	return true;
2063}
2064
2065static int pagemap_scan_output(unsigned long categories,
2066			       struct pagemap_scan_private *p,
2067			       unsigned long addr, unsigned long *end)
2068{
2069	unsigned long n_pages, total_pages;
2070	int ret = 0;
2071
2072	if (!p->vec_buf)
2073		return 0;
2074
2075	categories &= p->arg.return_mask;
2076
2077	n_pages = (*end - addr) / PAGE_SIZE;
2078	if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2079	    total_pages > p->arg.max_pages) {
2080		size_t n_too_much = total_pages - p->arg.max_pages;
2081		*end -= n_too_much * PAGE_SIZE;
2082		n_pages -= n_too_much;
2083		ret = -ENOSPC;
2084	}
2085
2086	if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2087		*end = addr;
2088		n_pages = 0;
2089		ret = -ENOSPC;
2090	}
2091
2092	p->found_pages += n_pages;
2093	if (ret)
2094		p->arg.walk_end = *end;
2095
2096	return ret;
2097}
2098
2099static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2100				  unsigned long end, struct mm_walk *walk)
2101{
2102#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2103	struct pagemap_scan_private *p = walk->private;
2104	struct vm_area_struct *vma = walk->vma;
2105	unsigned long categories;
2106	spinlock_t *ptl;
2107	int ret = 0;
2108
2109	ptl = pmd_trans_huge_lock(pmd, vma);
2110	if (!ptl)
2111		return -ENOENT;
2112
2113	categories = p->cur_vma_category |
2114		     pagemap_thp_category(p, vma, start, *pmd);
2115
2116	if (!pagemap_scan_is_interesting_page(categories, p))
2117		goto out_unlock;
2118
2119	ret = pagemap_scan_output(categories, p, start, &end);
2120	if (start == end)
2121		goto out_unlock;
2122
2123	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2124		goto out_unlock;
2125	if (~categories & PAGE_IS_WRITTEN)
2126		goto out_unlock;
2127
2128	/*
2129	 * Break huge page into small pages if the WP operation
2130	 * needs to be performed on a portion of the huge page.
2131	 */
2132	if (end != start + HPAGE_SIZE) {
2133		spin_unlock(ptl);
2134		split_huge_pmd(vma, pmd, start);
2135		pagemap_scan_backout_range(p, start, end);
2136		/* Report as if there was no THP */
2137		return -ENOENT;
2138	}
2139
2140	make_uffd_wp_pmd(vma, start, pmd);
2141	flush_tlb_range(vma, start, end);
2142out_unlock:
2143	spin_unlock(ptl);
2144	return ret;
2145#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2146	return -ENOENT;
2147#endif
2148}
2149
2150static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2151				  unsigned long end, struct mm_walk *walk)
2152{
2153	struct pagemap_scan_private *p = walk->private;
2154	struct vm_area_struct *vma = walk->vma;
2155	unsigned long addr, flush_end = 0;
2156	pte_t *pte, *start_pte;
2157	spinlock_t *ptl;
2158	int ret;
2159
2160	arch_enter_lazy_mmu_mode();
2161
2162	ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2163	if (ret != -ENOENT) {
2164		arch_leave_lazy_mmu_mode();
2165		return ret;
2166	}
2167
2168	ret = 0;
2169	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2170	if (!pte) {
2171		arch_leave_lazy_mmu_mode();
2172		walk->action = ACTION_AGAIN;
2173		return 0;
2174	}
2175
2176	if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) {
2177		/* Fast path for performing exclusive WP */
2178		for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2179			if (pte_uffd_wp(ptep_get(pte)))
2180				continue;
2181			make_uffd_wp_pte(vma, addr, pte);
2182			if (!flush_end)
2183				start = addr;
2184			flush_end = addr + PAGE_SIZE;
2185		}
2186		goto flush_and_return;
2187	}
2188
2189	if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2190	    p->arg.category_mask == PAGE_IS_WRITTEN &&
2191	    p->arg.return_mask == PAGE_IS_WRITTEN) {
2192		for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2193			unsigned long next = addr + PAGE_SIZE;
2194
2195			if (pte_uffd_wp(ptep_get(pte)))
2196				continue;
2197			ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2198						  p, addr, &next);
2199			if (next == addr)
2200				break;
2201			if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2202				continue;
2203			make_uffd_wp_pte(vma, addr, pte);
2204			if (!flush_end)
2205				start = addr;
2206			flush_end = next;
2207		}
2208		goto flush_and_return;
2209	}
2210
2211	for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2212		unsigned long categories = p->cur_vma_category |
2213					   pagemap_page_category(p, vma, addr, ptep_get(pte));
2214		unsigned long next = addr + PAGE_SIZE;
2215
2216		if (!pagemap_scan_is_interesting_page(categories, p))
2217			continue;
2218
2219		ret = pagemap_scan_output(categories, p, addr, &next);
2220		if (next == addr)
2221			break;
2222
2223		if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2224			continue;
2225		if (~categories & PAGE_IS_WRITTEN)
2226			continue;
2227
2228		make_uffd_wp_pte(vma, addr, pte);
2229		if (!flush_end)
2230			start = addr;
2231		flush_end = next;
2232	}
2233
2234flush_and_return:
2235	if (flush_end)
2236		flush_tlb_range(vma, start, addr);
2237
2238	pte_unmap_unlock(start_pte, ptl);
2239	arch_leave_lazy_mmu_mode();
2240
2241	cond_resched();
2242	return ret;
2243}
2244
2245#ifdef CONFIG_HUGETLB_PAGE
2246static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2247				      unsigned long start, unsigned long end,
2248				      struct mm_walk *walk)
2249{
2250	struct pagemap_scan_private *p = walk->private;
2251	struct vm_area_struct *vma = walk->vma;
2252	unsigned long categories;
2253	spinlock_t *ptl;
2254	int ret = 0;
2255	pte_t pte;
2256
2257	if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2258		/* Go the short route when not write-protecting pages. */
2259
2260		pte = huge_ptep_get(ptep);
2261		categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2262
2263		if (!pagemap_scan_is_interesting_page(categories, p))
2264			return 0;
2265
2266		return pagemap_scan_output(categories, p, start, &end);
2267	}
2268
2269	i_mmap_lock_write(vma->vm_file->f_mapping);
2270	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2271
2272	pte = huge_ptep_get(ptep);
2273	categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2274
2275	if (!pagemap_scan_is_interesting_page(categories, p))
2276		goto out_unlock;
2277
2278	ret = pagemap_scan_output(categories, p, start, &end);
2279	if (start == end)
2280		goto out_unlock;
2281
2282	if (~categories & PAGE_IS_WRITTEN)
2283		goto out_unlock;
2284
2285	if (end != start + HPAGE_SIZE) {
2286		/* Partial HugeTLB page WP isn't possible. */
2287		pagemap_scan_backout_range(p, start, end);
2288		p->arg.walk_end = start;
2289		ret = 0;
2290		goto out_unlock;
2291	}
2292
2293	make_uffd_wp_huge_pte(vma, start, ptep, pte);
2294	flush_hugetlb_tlb_range(vma, start, end);
2295
2296out_unlock:
2297	spin_unlock(ptl);
2298	i_mmap_unlock_write(vma->vm_file->f_mapping);
2299
2300	return ret;
2301}
2302#else
2303#define pagemap_scan_hugetlb_entry NULL
2304#endif
2305
2306static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2307				 int depth, struct mm_walk *walk)
2308{
2309	struct pagemap_scan_private *p = walk->private;
2310	struct vm_area_struct *vma = walk->vma;
2311	int ret, err;
2312
2313	if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2314		return 0;
2315
2316	ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2317	if (addr == end)
2318		return ret;
2319
2320	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2321		return ret;
2322
2323	err = uffd_wp_range(vma, addr, end - addr, true);
2324	if (err < 0)
2325		ret = err;
2326
2327	return ret;
2328}
2329
2330static const struct mm_walk_ops pagemap_scan_ops = {
2331	.test_walk = pagemap_scan_test_walk,
2332	.pmd_entry = pagemap_scan_pmd_entry,
2333	.pte_hole = pagemap_scan_pte_hole,
2334	.hugetlb_entry = pagemap_scan_hugetlb_entry,
2335};
2336
2337static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2338				 unsigned long uarg)
2339{
2340	if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2341		return -EFAULT;
2342
2343	if (arg->size != sizeof(struct pm_scan_arg))
2344		return -EINVAL;
2345
2346	/* Validate requested features */
2347	if (arg->flags & ~PM_SCAN_FLAGS)
2348		return -EINVAL;
2349	if ((arg->category_inverted | arg->category_mask |
2350	     arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2351		return -EINVAL;
2352
2353	arg->start = untagged_addr((unsigned long)arg->start);
2354	arg->end = untagged_addr((unsigned long)arg->end);
2355	arg->vec = untagged_addr((unsigned long)arg->vec);
2356
2357	/* Validate memory pointers */
2358	if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2359		return -EINVAL;
2360	if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2361		return -EFAULT;
2362	if (!arg->vec && arg->vec_len)
2363		return -EINVAL;
2364	if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2365			      arg->vec_len * sizeof(struct page_region)))
2366		return -EFAULT;
2367
2368	/* Fixup default values */
2369	arg->end = ALIGN(arg->end, PAGE_SIZE);
2370	arg->walk_end = 0;
2371	if (!arg->max_pages)
2372		arg->max_pages = ULONG_MAX;
2373
2374	return 0;
2375}
2376
2377static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2378				       unsigned long uargl)
2379{
2380	struct pm_scan_arg __user *uarg	= (void __user *)uargl;
2381
2382	if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2383		return -EFAULT;
2384
2385	return 0;
2386}
2387
2388static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2389{
2390	if (!p->arg.vec_len)
2391		return 0;
2392
2393	p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2394			       p->arg.vec_len);
2395	p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2396				   GFP_KERNEL);
2397	if (!p->vec_buf)
2398		return -ENOMEM;
2399
2400	p->vec_buf->start = p->vec_buf->end = 0;
2401	p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2402
2403	return 0;
2404}
2405
2406static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2407{
2408	const struct page_region *buf = p->vec_buf;
2409	long n = p->vec_buf_index;
2410
2411	if (!p->vec_buf)
2412		return 0;
2413
2414	if (buf[n].end != buf[n].start)
2415		n++;
2416
2417	if (!n)
2418		return 0;
2419
2420	if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2421		return -EFAULT;
2422
2423	p->arg.vec_len -= n;
2424	p->vec_out += n;
2425
2426	p->vec_buf_index = 0;
2427	p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2428	p->vec_buf->start = p->vec_buf->end = 0;
2429
2430	return n;
2431}
2432
2433static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2434{
2435	struct pagemap_scan_private p = {0};
2436	unsigned long walk_start;
2437	size_t n_ranges_out = 0;
2438	int ret;
2439
2440	ret = pagemap_scan_get_args(&p.arg, uarg);
2441	if (ret)
2442		return ret;
2443
2444	p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2445			      p.arg.return_mask;
2446	ret = pagemap_scan_init_bounce_buffer(&p);
2447	if (ret)
2448		return ret;
2449
2450	for (walk_start = p.arg.start; walk_start < p.arg.end;
2451			walk_start = p.arg.walk_end) {
2452		struct mmu_notifier_range range;
2453		long n_out;
2454
2455		if (fatal_signal_pending(current)) {
2456			ret = -EINTR;
2457			break;
2458		}
2459
2460		ret = mmap_read_lock_killable(mm);
2461		if (ret)
2462			break;
2463
2464		/* Protection change for the range is going to happen. */
2465		if (p.arg.flags & PM_SCAN_WP_MATCHING) {
2466			mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
2467						mm, walk_start, p.arg.end);
2468			mmu_notifier_invalidate_range_start(&range);
2469		}
2470
2471		ret = walk_page_range(mm, walk_start, p.arg.end,
2472				      &pagemap_scan_ops, &p);
2473
2474		if (p.arg.flags & PM_SCAN_WP_MATCHING)
2475			mmu_notifier_invalidate_range_end(&range);
2476
2477		mmap_read_unlock(mm);
2478
2479		n_out = pagemap_scan_flush_buffer(&p);
2480		if (n_out < 0)
2481			ret = n_out;
2482		else
2483			n_ranges_out += n_out;
2484
2485		if (ret != -ENOSPC)
2486			break;
2487
2488		if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
2489			break;
2490	}
2491
2492	/* ENOSPC signifies early stop (buffer full) from the walk. */
2493	if (!ret || ret == -ENOSPC)
2494		ret = n_ranges_out;
2495
2496	/* The walk_end isn't set when ret is zero */
2497	if (!p.arg.walk_end)
2498		p.arg.walk_end = p.arg.end;
2499	if (pagemap_scan_writeback_args(&p.arg, uarg))
2500		ret = -EFAULT;
2501
2502	kfree(p.vec_buf);
2503	return ret;
2504}
2505
2506static long do_pagemap_cmd(struct file *file, unsigned int cmd,
2507			   unsigned long arg)
2508{
2509	struct mm_struct *mm = file->private_data;
2510
2511	switch (cmd) {
2512	case PAGEMAP_SCAN:
2513		return do_pagemap_scan(mm, arg);
2514
2515	default:
2516		return -EINVAL;
2517	}
2518}
2519
2520const struct file_operations proc_pagemap_operations = {
2521	.llseek		= mem_lseek, /* borrow this */
2522	.read		= pagemap_read,
2523	.open		= pagemap_open,
2524	.release	= pagemap_release,
2525	.unlocked_ioctl = do_pagemap_cmd,
2526	.compat_ioctl	= do_pagemap_cmd,
2527};
2528#endif /* CONFIG_PROC_PAGE_MONITOR */
2529
2530#ifdef CONFIG_NUMA
2531
2532struct numa_maps {
 
2533	unsigned long pages;
2534	unsigned long anon;
2535	unsigned long active;
2536	unsigned long writeback;
2537	unsigned long mapcount_max;
2538	unsigned long dirty;
2539	unsigned long swapcache;
2540	unsigned long node[MAX_NUMNODES];
2541};
2542
2543struct numa_maps_private {
2544	struct proc_maps_private proc_maps;
2545	struct numa_maps md;
2546};
2547
2548static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
2549			unsigned long nr_pages)
2550{
2551	int count = page_mapcount(page);
2552
2553	md->pages += nr_pages;
2554	if (pte_dirty || PageDirty(page))
2555		md->dirty += nr_pages;
2556
2557	if (PageSwapCache(page))
2558		md->swapcache += nr_pages;
2559
2560	if (PageActive(page) || PageUnevictable(page))
2561		md->active += nr_pages;
2562
2563	if (PageWriteback(page))
2564		md->writeback += nr_pages;
2565
2566	if (PageAnon(page))
2567		md->anon += nr_pages;
2568
2569	if (count > md->mapcount_max)
2570		md->mapcount_max = count;
2571
2572	md->node[page_to_nid(page)] += nr_pages;
2573}
2574
2575static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
2576		unsigned long addr)
2577{
2578	struct page *page;
2579	int nid;
2580
2581	if (!pte_present(pte))
2582		return NULL;
2583
2584	page = vm_normal_page(vma, addr, pte);
2585	if (!page || is_zone_device_page(page))
2586		return NULL;
2587
2588	if (PageReserved(page))
2589		return NULL;
2590
2591	nid = page_to_nid(page);
2592	if (!node_isset(nid, node_states[N_MEMORY]))
2593		return NULL;
2594
2595	return page;
2596}
2597
2598#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2599static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
2600					      struct vm_area_struct *vma,
2601					      unsigned long addr)
2602{
2603	struct page *page;
2604	int nid;
2605
2606	if (!pmd_present(pmd))
2607		return NULL;
2608
2609	page = vm_normal_page_pmd(vma, addr, pmd);
2610	if (!page)
2611		return NULL;
2612
2613	if (PageReserved(page))
2614		return NULL;
2615
2616	nid = page_to_nid(page);
2617	if (!node_isset(nid, node_states[N_MEMORY]))
2618		return NULL;
2619
2620	return page;
2621}
2622#endif
2623
2624static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
2625		unsigned long end, struct mm_walk *walk)
2626{
2627	struct numa_maps *md = walk->private;
2628	struct vm_area_struct *vma = walk->vma;
2629	spinlock_t *ptl;
2630	pte_t *orig_pte;
2631	pte_t *pte;
2632
2633#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2634	ptl = pmd_trans_huge_lock(pmd, vma);
2635	if (ptl) {
2636		struct page *page;
2637
2638		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
2639		if (page)
2640			gather_stats(page, md, pmd_dirty(*pmd),
2641				     HPAGE_PMD_SIZE/PAGE_SIZE);
2642		spin_unlock(ptl);
2643		return 0;
 
 
 
 
 
 
 
 
2644	}
2645#endif
2646	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2647	if (!pte) {
2648		walk->action = ACTION_AGAIN;
2649		return 0;
2650	}
2651	do {
2652		pte_t ptent = ptep_get(pte);
2653		struct page *page = can_gather_numa_stats(ptent, vma, addr);
2654		if (!page)
2655			continue;
2656		gather_stats(page, md, pte_dirty(ptent), 1);
2657
2658	} while (pte++, addr += PAGE_SIZE, addr != end);
2659	pte_unmap_unlock(orig_pte, ptl);
2660	cond_resched();
2661	return 0;
2662}
2663#ifdef CONFIG_HUGETLB_PAGE
2664static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2665		unsigned long addr, unsigned long end, struct mm_walk *walk)
2666{
2667	pte_t huge_pte = huge_ptep_get(pte);
2668	struct numa_maps *md;
2669	struct page *page;
2670
2671	if (!pte_present(huge_pte))
2672		return 0;
2673
2674	page = pte_page(huge_pte);
 
 
2675
2676	md = walk->private;
2677	gather_stats(page, md, pte_dirty(huge_pte), 1);
2678	return 0;
2679}
2680
2681#else
2682static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2683		unsigned long addr, unsigned long end, struct mm_walk *walk)
2684{
2685	return 0;
2686}
2687#endif
2688
2689static const struct mm_walk_ops show_numa_ops = {
2690	.hugetlb_entry = gather_hugetlb_stats,
2691	.pmd_entry = gather_pte_stats,
2692	.walk_lock = PGWALK_RDLOCK,
2693};
2694
2695/*
2696 * Display pages allocated per node and memory policy via /proc.
2697 */
2698static int show_numa_map(struct seq_file *m, void *v)
2699{
2700	struct numa_maps_private *numa_priv = m->private;
2701	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
2702	struct vm_area_struct *vma = v;
2703	struct numa_maps *md = &numa_priv->md;
2704	struct file *file = vma->vm_file;
2705	struct mm_struct *mm = vma->vm_mm;
2706	char buffer[64];
2707	struct mempolicy *pol;
2708	pgoff_t ilx;
2709	int nid;
2710
2711	if (!mm)
2712		return 0;
2713
2714	/* Ensure we start with an empty set of numa_maps statistics. */
2715	memset(md, 0, sizeof(*md));
2716
2717	pol = __get_vma_policy(vma, vma->vm_start, &ilx);
2718	if (pol) {
2719		mpol_to_str(buffer, sizeof(buffer), pol);
2720		mpol_cond_put(pol);
2721	} else {
2722		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
2723	}
 
 
 
2724
2725	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2726
2727	if (file) {
2728		seq_puts(m, " file=");
2729		seq_path(m, file_user_path(file), "\n\t= ");
2730	} else if (vma_is_initial_heap(vma)) {
2731		seq_puts(m, " heap");
2732	} else if (vma_is_initial_stack(vma)) {
2733		seq_puts(m, " stack");
 
2734	}
2735
2736	if (is_vm_hugetlb_page(vma))
2737		seq_puts(m, " huge");
2738
2739	/* mmap_lock is held by m_start */
2740	walk_page_vma(vma, &show_numa_ops, md);
2741
2742	if (!md->pages)
2743		goto out;
2744
2745	if (md->anon)
2746		seq_printf(m, " anon=%lu", md->anon);
2747
2748	if (md->dirty)
2749		seq_printf(m, " dirty=%lu", md->dirty);
2750
2751	if (md->pages != md->anon && md->pages != md->dirty)
2752		seq_printf(m, " mapped=%lu", md->pages);
2753
2754	if (md->mapcount_max > 1)
2755		seq_printf(m, " mapmax=%lu", md->mapcount_max);
2756
2757	if (md->swapcache)
2758		seq_printf(m, " swapcache=%lu", md->swapcache);
2759
2760	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2761		seq_printf(m, " active=%lu", md->active);
2762
2763	if (md->writeback)
2764		seq_printf(m, " writeback=%lu", md->writeback);
2765
2766	for_each_node_state(nid, N_MEMORY)
2767		if (md->node[nid])
2768			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2769
2770	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2771out:
2772	seq_putc(m, '\n');
 
 
 
2773	return 0;
2774}
2775
2776static const struct seq_operations proc_pid_numa_maps_op = {
2777	.start  = m_start,
2778	.next   = m_next,
2779	.stop   = m_stop,
2780	.show   = show_numa_map,
2781};
2782
2783static int pid_numa_maps_open(struct inode *inode, struct file *file)
2784{
2785	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2786				sizeof(struct numa_maps_private));
 
 
 
 
 
 
 
 
 
 
 
 
2787}
2788
2789const struct file_operations proc_pid_numa_maps_operations = {
2790	.open		= pid_numa_maps_open,
2791	.read		= seq_read,
2792	.llseek		= seq_lseek,
2793	.release	= proc_map_release,
2794};
2795
2796#endif /* CONFIG_NUMA */