Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v3.1
   1#include <linux/mm.h>
 
   2#include <linux/hugetlb.h>
   3#include <linux/huge_mm.h>
   4#include <linux/mount.h>
   5#include <linux/seq_file.h>
   6#include <linux/highmem.h>
   7#include <linux/ptrace.h>
   8#include <linux/slab.h>
   9#include <linux/pagemap.h>
  10#include <linux/mempolicy.h>
  11#include <linux/rmap.h>
  12#include <linux/swap.h>
  13#include <linux/swapops.h>
 
  14
  15#include <asm/elf.h>
  16#include <asm/uaccess.h>
  17#include <asm/tlbflush.h>
  18#include "internal.h"
  19
  20void task_mem(struct seq_file *m, struct mm_struct *mm)
  21{
  22	unsigned long data, text, lib, swap;
  23	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  24
  25	/*
  26	 * Note: to minimize their overhead, mm maintains hiwater_vm and
  27	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
  28	 * collector of these hiwater stats must therefore get total_vm
  29	 * and rss too, which will usually be the higher.  Barriers? not
  30	 * worth the effort, such snapshots can always be inconsistent.
  31	 */
  32	hiwater_vm = total_vm = mm->total_vm;
  33	if (hiwater_vm < mm->hiwater_vm)
  34		hiwater_vm = mm->hiwater_vm;
  35	hiwater_rss = total_rss = get_mm_rss(mm);
  36	if (hiwater_rss < mm->hiwater_rss)
  37		hiwater_rss = mm->hiwater_rss;
  38
  39	data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  40	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  41	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  42	swap = get_mm_counter(mm, MM_SWAPENTS);
  43	seq_printf(m,
  44		"VmPeak:\t%8lu kB\n"
  45		"VmSize:\t%8lu kB\n"
  46		"VmLck:\t%8lu kB\n"
 
  47		"VmHWM:\t%8lu kB\n"
  48		"VmRSS:\t%8lu kB\n"
  49		"VmData:\t%8lu kB\n"
  50		"VmStk:\t%8lu kB\n"
  51		"VmExe:\t%8lu kB\n"
  52		"VmLib:\t%8lu kB\n"
  53		"VmPTE:\t%8lu kB\n"
  54		"VmSwap:\t%8lu kB\n",
  55		hiwater_vm << (PAGE_SHIFT-10),
  56		(total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
  57		mm->locked_vm << (PAGE_SHIFT-10),
 
  58		hiwater_rss << (PAGE_SHIFT-10),
  59		total_rss << (PAGE_SHIFT-10),
  60		data << (PAGE_SHIFT-10),
  61		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  62		(PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
 
  63		swap << (PAGE_SHIFT-10));
  64}
  65
  66unsigned long task_vsize(struct mm_struct *mm)
  67{
  68	return PAGE_SIZE * mm->total_vm;
  69}
  70
  71unsigned long task_statm(struct mm_struct *mm,
  72			 unsigned long *shared, unsigned long *text,
  73			 unsigned long *data, unsigned long *resident)
  74{
  75	*shared = get_mm_counter(mm, MM_FILEPAGES);
  76	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  77								>> PAGE_SHIFT;
  78	*data = mm->total_vm - mm->shared_vm;
  79	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  80	return mm->total_vm;
  81}
  82
  83static void pad_len_spaces(struct seq_file *m, int len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  84{
  85	len = 25 + sizeof(void*) * 6 - len;
  86	if (len < 1)
  87		len = 1;
  88	seq_printf(m, "%*c", len, ' ');
 
 
 
 
 
 
  89}
 
 
 
 
 
 
 
 
  90
  91static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
  92{
  93	if (vma && vma != priv->tail_vma) {
  94		struct mm_struct *mm = vma->vm_mm;
 
  95		up_read(&mm->mmap_sem);
  96		mmput(mm);
  97	}
  98}
  99
 100static void *m_start(struct seq_file *m, loff_t *pos)
 101{
 102	struct proc_maps_private *priv = m->private;
 103	unsigned long last_addr = m->version;
 104	struct mm_struct *mm;
 105	struct vm_area_struct *vma, *tail_vma = NULL;
 106	loff_t l = *pos;
 107
 108	/* Clear the per syscall fields in priv */
 109	priv->task = NULL;
 110	priv->tail_vma = NULL;
 111
 112	/*
 113	 * We remember last_addr rather than next_addr to hit with
 114	 * mmap_cache most of the time. We have zero last_addr at
 115	 * the beginning and also after lseek. We will have -1 last_addr
 116	 * after the end of the vmas.
 117	 */
 118
 119	if (last_addr == -1UL)
 120		return NULL;
 121
 122	priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
 123	if (!priv->task)
 124		return ERR_PTR(-ESRCH);
 125
 126	mm = mm_for_maps(priv->task);
 127	if (!mm || IS_ERR(mm))
 128		return mm;
 129	down_read(&mm->mmap_sem);
 130
 131	tail_vma = get_gate_vma(priv->task->mm);
 132	priv->tail_vma = tail_vma;
 133
 134	/* Start with last addr hint */
 135	vma = find_vma(mm, last_addr);
 136	if (last_addr && vma) {
 137		vma = vma->vm_next;
 138		goto out;
 139	}
 140
 141	/*
 142	 * Check the vma index is within the range and do
 143	 * sequential scan until m_index.
 144	 */
 145	vma = NULL;
 146	if ((unsigned long)l < mm->map_count) {
 147		vma = mm->mmap;
 148		while (l-- && vma)
 149			vma = vma->vm_next;
 150		goto out;
 151	}
 152
 153	if (l != mm->map_count)
 154		tail_vma = NULL; /* After gate vma */
 155
 156out:
 157	if (vma)
 158		return vma;
 159
 
 160	/* End of vmas has been reached */
 161	m->version = (tail_vma != NULL)? 0: -1UL;
 162	up_read(&mm->mmap_sem);
 163	mmput(mm);
 164	return tail_vma;
 165}
 166
 167static void *m_next(struct seq_file *m, void *v, loff_t *pos)
 168{
 169	struct proc_maps_private *priv = m->private;
 170	struct vm_area_struct *vma = v;
 171	struct vm_area_struct *tail_vma = priv->tail_vma;
 172
 173	(*pos)++;
 174	if (vma && (vma != tail_vma) && vma->vm_next)
 175		return vma->vm_next;
 176	vma_stop(priv, vma);
 177	return (vma != tail_vma)? tail_vma: NULL;
 178}
 179
 180static void m_stop(struct seq_file *m, void *v)
 181{
 182	struct proc_maps_private *priv = m->private;
 183	struct vm_area_struct *vma = v;
 184
 185	if (!IS_ERR(vma))
 186		vma_stop(priv, vma);
 187	if (priv->task)
 188		put_task_struct(priv->task);
 189}
 190
 191static int do_maps_open(struct inode *inode, struct file *file,
 192			const struct seq_operations *ops)
 193{
 194	struct proc_maps_private *priv;
 195	int ret = -ENOMEM;
 196	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
 197	if (priv) {
 198		priv->pid = proc_pid(inode);
 199		ret = seq_open(file, ops);
 200		if (!ret) {
 201			struct seq_file *m = file->private_data;
 202			m->private = priv;
 203		} else {
 204			kfree(priv);
 205		}
 206	}
 207	return ret;
 208}
 209
 210static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
 
 211{
 212	struct mm_struct *mm = vma->vm_mm;
 213	struct file *file = vma->vm_file;
 
 
 214	vm_flags_t flags = vma->vm_flags;
 215	unsigned long ino = 0;
 216	unsigned long long pgoff = 0;
 217	unsigned long start, end;
 218	dev_t dev = 0;
 219	int len;
 220
 221	if (file) {
 222		struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
 223		dev = inode->i_sb->s_dev;
 224		ino = inode->i_ino;
 225		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
 226	}
 227
 228	/* We don't show the stack guard page in /proc/maps */
 229	start = vma->vm_start;
 230	if (stack_guard_page_start(vma, start))
 231		start += PAGE_SIZE;
 232	end = vma->vm_end;
 233	if (stack_guard_page_end(vma, end))
 234		end -= PAGE_SIZE;
 235
 236	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
 
 237			start,
 238			end,
 239			flags & VM_READ ? 'r' : '-',
 240			flags & VM_WRITE ? 'w' : '-',
 241			flags & VM_EXEC ? 'x' : '-',
 242			flags & VM_MAYSHARE ? 's' : 'p',
 243			pgoff,
 244			MAJOR(dev), MINOR(dev), ino, &len);
 245
 246	/*
 247	 * Print the dentry name for named mappings, and a
 248	 * special [heap] marker for the heap:
 249	 */
 250	if (file) {
 251		pad_len_spaces(m, len);
 252		seq_path(m, &file->f_path, "\n");
 253	} else {
 254		const char *name = arch_vma_name(vma);
 255		if (!name) {
 256			if (mm) {
 257				if (vma->vm_start <= mm->brk &&
 258						vma->vm_end >= mm->start_brk) {
 259					name = "[heap]";
 260				} else if (vma->vm_start <= mm->start_stack &&
 261					   vma->vm_end >= mm->start_stack) {
 262					name = "[stack]";
 263				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 264			} else {
 265				name = "[vdso]";
 
 
 266			}
 267		}
 268		if (name) {
 269			pad_len_spaces(m, len);
 270			seq_puts(m, name);
 271		}
 
 
 272	}
 273	seq_putc(m, '\n');
 274}
 275
 276static int show_map(struct seq_file *m, void *v)
 277{
 278	struct vm_area_struct *vma = v;
 279	struct proc_maps_private *priv = m->private;
 280	struct task_struct *task = priv->task;
 281
 282	show_map_vma(m, vma);
 283
 284	if (m->count < m->size)  /* vma is copied successfully */
 285		m->version = (vma != get_gate_vma(task->mm))
 286			? vma->vm_start : 0;
 287	return 0;
 288}
 289
 
 
 
 
 
 
 
 
 
 
 290static const struct seq_operations proc_pid_maps_op = {
 291	.start	= m_start,
 292	.next	= m_next,
 293	.stop	= m_stop,
 294	.show	= show_map
 
 
 
 
 
 
 
 295};
 296
 297static int maps_open(struct inode *inode, struct file *file)
 298{
 299	return do_maps_open(inode, file, &proc_pid_maps_op);
 300}
 301
 302const struct file_operations proc_maps_operations = {
 303	.open		= maps_open,
 
 
 
 
 
 
 
 
 
 
 
 
 304	.read		= seq_read,
 305	.llseek		= seq_lseek,
 306	.release	= seq_release_private,
 307};
 308
 309/*
 310 * Proportional Set Size(PSS): my share of RSS.
 311 *
 312 * PSS of a process is the count of pages it has in memory, where each
 313 * page is divided by the number of processes sharing it.  So if a
 314 * process has 1000 pages all to itself, and 1000 shared with one other
 315 * process, its PSS will be 1500.
 316 *
 317 * To keep (accumulated) division errors low, we adopt a 64bit
 318 * fixed-point pss counter to minimize division errors. So (pss >>
 319 * PSS_SHIFT) would be the real byte count.
 320 *
 321 * A shift of 12 before division means (assuming 4K page size):
 322 * 	- 1M 3-user-pages add up to 8KB errors;
 323 * 	- supports mapcount up to 2^24, or 16M;
 324 * 	- supports PSS up to 2^52 bytes, or 4PB.
 325 */
 326#define PSS_SHIFT 12
 327
 328#ifdef CONFIG_PROC_PAGE_MONITOR
 329struct mem_size_stats {
 330	struct vm_area_struct *vma;
 331	unsigned long resident;
 332	unsigned long shared_clean;
 333	unsigned long shared_dirty;
 334	unsigned long private_clean;
 335	unsigned long private_dirty;
 336	unsigned long referenced;
 337	unsigned long anonymous;
 338	unsigned long anonymous_thp;
 339	unsigned long swap;
 
 340	u64 pss;
 341};
 342
 343
 344static void smaps_pte_entry(pte_t ptent, unsigned long addr,
 345		unsigned long ptent_size, struct mm_walk *walk)
 346{
 347	struct mem_size_stats *mss = walk->private;
 348	struct vm_area_struct *vma = mss->vma;
 349	struct page *page;
 
 350	int mapcount;
 351
 352	if (is_swap_pte(ptent)) {
 353		mss->swap += ptent_size;
 354		return;
 355	}
 356
 357	if (!pte_present(ptent))
 358		return;
 
 
 
 
 
 
 359
 360	page = vm_normal_page(vma, addr, ptent);
 361	if (!page)
 362		return;
 363
 364	if (PageAnon(page))
 365		mss->anonymous += ptent_size;
 366
 
 
 
 367	mss->resident += ptent_size;
 368	/* Accumulate the size in pages that have been accessed. */
 369	if (pte_young(ptent) || PageReferenced(page))
 370		mss->referenced += ptent_size;
 371	mapcount = page_mapcount(page);
 372	if (mapcount >= 2) {
 373		if (pte_dirty(ptent) || PageDirty(page))
 374			mss->shared_dirty += ptent_size;
 375		else
 376			mss->shared_clean += ptent_size;
 377		mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
 378	} else {
 379		if (pte_dirty(ptent) || PageDirty(page))
 380			mss->private_dirty += ptent_size;
 381		else
 382			mss->private_clean += ptent_size;
 383		mss->pss += (ptent_size << PSS_SHIFT);
 384	}
 385}
 386
 387static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 388			   struct mm_walk *walk)
 389{
 390	struct mem_size_stats *mss = walk->private;
 391	struct vm_area_struct *vma = mss->vma;
 392	pte_t *pte;
 393	spinlock_t *ptl;
 394
 395	spin_lock(&walk->mm->page_table_lock);
 396	if (pmd_trans_huge(*pmd)) {
 397		if (pmd_trans_splitting(*pmd)) {
 398			spin_unlock(&walk->mm->page_table_lock);
 399			wait_split_huge_page(vma->anon_vma, pmd);
 400		} else {
 401			smaps_pte_entry(*(pte_t *)pmd, addr,
 402					HPAGE_PMD_SIZE, walk);
 403			spin_unlock(&walk->mm->page_table_lock);
 404			mss->anonymous_thp += HPAGE_PMD_SIZE;
 405			return 0;
 406		}
 407	} else {
 408		spin_unlock(&walk->mm->page_table_lock);
 409	}
 
 
 
 410	/*
 411	 * The mmap_sem held all the way back in m_start() is what
 412	 * keeps khugepaged out of here and from collapsing things
 413	 * in here.
 414	 */
 415	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 416	for (; addr != end; pte++, addr += PAGE_SIZE)
 417		smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
 418	pte_unmap_unlock(pte - 1, ptl);
 419	cond_resched();
 420	return 0;
 421}
 422
 423static int show_smap(struct seq_file *m, void *v)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424{
 425	struct proc_maps_private *priv = m->private;
 426	struct task_struct *task = priv->task;
 427	struct vm_area_struct *vma = v;
 428	struct mem_size_stats mss;
 429	struct mm_walk smaps_walk = {
 430		.pmd_entry = smaps_pte_range,
 431		.mm = vma->vm_mm,
 432		.private = &mss,
 433	};
 434
 435	memset(&mss, 0, sizeof mss);
 436	mss.vma = vma;
 437	/* mmap_sem is held in m_start */
 438	if (vma->vm_mm && !is_vm_hugetlb_page(vma))
 439		walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
 440
 441	show_map_vma(m, vma);
 442
 443	seq_printf(m,
 444		   "Size:           %8lu kB\n"
 445		   "Rss:            %8lu kB\n"
 446		   "Pss:            %8lu kB\n"
 447		   "Shared_Clean:   %8lu kB\n"
 448		   "Shared_Dirty:   %8lu kB\n"
 449		   "Private_Clean:  %8lu kB\n"
 450		   "Private_Dirty:  %8lu kB\n"
 451		   "Referenced:     %8lu kB\n"
 452		   "Anonymous:      %8lu kB\n"
 453		   "AnonHugePages:  %8lu kB\n"
 454		   "Swap:           %8lu kB\n"
 455		   "KernelPageSize: %8lu kB\n"
 456		   "MMUPageSize:    %8lu kB\n"
 457		   "Locked:         %8lu kB\n",
 458		   (vma->vm_end - vma->vm_start) >> 10,
 459		   mss.resident >> 10,
 460		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
 461		   mss.shared_clean  >> 10,
 462		   mss.shared_dirty  >> 10,
 463		   mss.private_clean >> 10,
 464		   mss.private_dirty >> 10,
 465		   mss.referenced >> 10,
 466		   mss.anonymous >> 10,
 467		   mss.anonymous_thp >> 10,
 468		   mss.swap >> 10,
 469		   vma_kernel_pagesize(vma) >> 10,
 470		   vma_mmu_pagesize(vma) >> 10,
 471		   (vma->vm_flags & VM_LOCKED) ?
 472			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
 473
 
 
 
 
 
 
 474	if (m->count < m->size)  /* vma is copied successfully */
 475		m->version = (vma != get_gate_vma(task->mm))
 476			? vma->vm_start : 0;
 477	return 0;
 478}
 479
 
 
 
 
 
 
 
 
 
 
 480static const struct seq_operations proc_pid_smaps_op = {
 481	.start	= m_start,
 482	.next	= m_next,
 483	.stop	= m_stop,
 484	.show	= show_smap
 
 
 
 
 
 
 
 485};
 486
 487static int smaps_open(struct inode *inode, struct file *file)
 488{
 489	return do_maps_open(inode, file, &proc_pid_smaps_op);
 490}
 491
 492const struct file_operations proc_smaps_operations = {
 493	.open		= smaps_open,
 
 
 
 
 
 
 
 
 
 
 
 
 494	.read		= seq_read,
 495	.llseek		= seq_lseek,
 496	.release	= seq_release_private,
 497};
 498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 499static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
 500				unsigned long end, struct mm_walk *walk)
 501{
 502	struct vm_area_struct *vma = walk->private;
 
 503	pte_t *pte, ptent;
 504	spinlock_t *ptl;
 505	struct page *page;
 506
 507	split_huge_page_pmd(walk->mm, pmd);
 
 
 508
 509	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 510	for (; addr != end; pte++, addr += PAGE_SIZE) {
 511		ptent = *pte;
 
 
 
 
 
 
 512		if (!pte_present(ptent))
 513			continue;
 514
 515		page = vm_normal_page(vma, addr, ptent);
 516		if (!page)
 517			continue;
 518
 519		/* Clear accessed and referenced bits. */
 520		ptep_test_and_clear_young(vma, addr, pte);
 521		ClearPageReferenced(page);
 522	}
 523	pte_unmap_unlock(pte - 1, ptl);
 524	cond_resched();
 525	return 0;
 526}
 527
 528#define CLEAR_REFS_ALL 1
 529#define CLEAR_REFS_ANON 2
 530#define CLEAR_REFS_MAPPED 3
 531
 532static ssize_t clear_refs_write(struct file *file, const char __user *buf,
 533				size_t count, loff_t *ppos)
 534{
 535	struct task_struct *task;
 536	char buffer[PROC_NUMBUF];
 537	struct mm_struct *mm;
 538	struct vm_area_struct *vma;
 539	int type;
 
 540	int rv;
 541
 542	memset(buffer, 0, sizeof(buffer));
 543	if (count > sizeof(buffer) - 1)
 544		count = sizeof(buffer) - 1;
 545	if (copy_from_user(buffer, buf, count))
 546		return -EFAULT;
 547	rv = kstrtoint(strstrip(buffer), 10, &type);
 548	if (rv < 0)
 549		return rv;
 550	if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
 
 551		return -EINVAL;
 552	task = get_proc_task(file->f_path.dentry->d_inode);
 
 
 
 
 
 
 
 553	if (!task)
 554		return -ESRCH;
 555	mm = get_task_mm(task);
 556	if (mm) {
 
 
 
 557		struct mm_walk clear_refs_walk = {
 558			.pmd_entry = clear_refs_pte_range,
 559			.mm = mm,
 
 560		};
 561		down_read(&mm->mmap_sem);
 
 
 562		for (vma = mm->mmap; vma; vma = vma->vm_next) {
 563			clear_refs_walk.private = vma;
 564			if (is_vm_hugetlb_page(vma))
 565				continue;
 566			/*
 567			 * Writing 1 to /proc/pid/clear_refs affects all pages.
 568			 *
 569			 * Writing 2 to /proc/pid/clear_refs only affects
 570			 * Anonymous pages.
 571			 *
 572			 * Writing 3 to /proc/pid/clear_refs only affects file
 573			 * mapped pages.
 574			 */
 575			if (type == CLEAR_REFS_ANON && vma->vm_file)
 576				continue;
 577			if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
 578				continue;
 579			walk_page_range(vma->vm_start, vma->vm_end,
 580					&clear_refs_walk);
 581		}
 
 
 582		flush_tlb_mm(mm);
 583		up_read(&mm->mmap_sem);
 584		mmput(mm);
 585	}
 586	put_task_struct(task);
 587
 588	return count;
 589}
 590
 591const struct file_operations proc_clear_refs_operations = {
 592	.write		= clear_refs_write,
 593	.llseek		= noop_llseek,
 594};
 595
 
 
 
 
 596struct pagemapread {
 597	int pos, len;
 598	u64 *buffer;
 
 599};
 600
 601#define PM_ENTRY_BYTES      sizeof(u64)
 
 
 
 602#define PM_STATUS_BITS      3
 603#define PM_STATUS_OFFSET    (64 - PM_STATUS_BITS)
 604#define PM_STATUS_MASK      (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
 605#define PM_STATUS(nr)       (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
 606#define PM_PSHIFT_BITS      6
 607#define PM_PSHIFT_OFFSET    (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
 608#define PM_PSHIFT_MASK      (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
 609#define PM_PSHIFT(x)        (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
 610#define PM_PFRAME_MASK      ((1LL << PM_PSHIFT_OFFSET) - 1)
 611#define PM_PFRAME(x)        ((x) & PM_PFRAME_MASK)
 
 
 612
 
 613#define PM_PRESENT          PM_STATUS(4LL)
 614#define PM_SWAP             PM_STATUS(2LL)
 615#define PM_NOT_PRESENT      PM_PSHIFT(PAGE_SHIFT)
 
 616#define PM_END_OF_BUFFER    1
 617
 618static int add_to_pagemap(unsigned long addr, u64 pfn,
 
 
 
 
 
 619			  struct pagemapread *pm)
 620{
 621	pm->buffer[pm->pos++] = pfn;
 622	if (pm->pos >= pm->len)
 623		return PM_END_OF_BUFFER;
 624	return 0;
 625}
 626
 627static int pagemap_pte_hole(unsigned long start, unsigned long end,
 628				struct mm_walk *walk)
 629{
 630	struct pagemapread *pm = walk->private;
 631	unsigned long addr;
 632	int err = 0;
 
 
 633	for (addr = start; addr < end; addr += PAGE_SIZE) {
 634		err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
 635		if (err)
 636			break;
 637	}
 638	return err;
 639}
 640
 641static u64 swap_pte_to_pagemap_entry(pte_t pte)
 
 642{
 643	swp_entry_t e = pte_to_swp_entry(pte);
 644	return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645}
 646
 647static u64 pte_to_pagemap_entry(pte_t pte)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648{
 649	u64 pme = 0;
 650	if (is_swap_pte(pte))
 651		pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
 652			| PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
 653	else if (pte_present(pte))
 654		pme = PM_PFRAME(pte_pfn(pte))
 655			| PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
 656	return pme;
 657}
 
 658
 659static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 660			     struct mm_walk *walk)
 661{
 662	struct vm_area_struct *vma;
 663	struct pagemapread *pm = walk->private;
 
 664	pte_t *pte;
 665	int err = 0;
 666
 667	split_huge_page_pmd(walk->mm, pmd);
 668
 669	/* find the first VMA at or above 'addr' */
 670	vma = find_vma(walk->mm, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671	for (; addr != end; addr += PAGE_SIZE) {
 672		u64 pfn = PM_NOT_PRESENT;
 673
 674		/* check to see if we've left 'vma' behind
 675		 * and need a new, higher one */
 676		if (vma && (addr >= vma->vm_end))
 677			vma = find_vma(walk->mm, addr);
 
 
 
 
 
 
 678
 679		/* check that 'vma' actually covers this address,
 680		 * and that it isn't a huge page vma */
 681		if (vma && (vma->vm_start <= addr) &&
 682		    !is_vm_hugetlb_page(vma)) {
 683			pte = pte_offset_map(pmd, addr);
 684			pfn = pte_to_pagemap_entry(*pte);
 685			/* unmap before userspace copy */
 686			pte_unmap(pte);
 687		}
 688		err = add_to_pagemap(addr, pfn, pm);
 689		if (err)
 690			return err;
 691	}
 692
 693	cond_resched();
 694
 695	return err;
 696}
 697
 698#ifdef CONFIG_HUGETLB_PAGE
 699static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
 
 700{
 701	u64 pme = 0;
 702	if (pte_present(pte))
 703		pme = PM_PFRAME(pte_pfn(pte) + offset)
 704			| PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
 705	return pme;
 
 
 
 706}
 707
 708/* This function walks within one hugetlb entry in the single call */
 709static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
 710				 unsigned long addr, unsigned long end,
 711				 struct mm_walk *walk)
 712{
 713	struct pagemapread *pm = walk->private;
 
 714	int err = 0;
 715	u64 pfn;
 
 
 
 
 
 
 
 
 
 716
 717	for (; addr != end; addr += PAGE_SIZE) {
 718		int offset = (addr & ~hmask) >> PAGE_SHIFT;
 719		pfn = huge_pte_to_pagemap_entry(*pte, offset);
 720		err = add_to_pagemap(addr, pfn, pm);
 721		if (err)
 722			return err;
 723	}
 724
 725	cond_resched();
 726
 727	return err;
 728}
 729#endif /* HUGETLB_PAGE */
 730
 731/*
 732 * /proc/pid/pagemap - an array mapping virtual pages to pfns
 733 *
 734 * For each page in the address space, this file contains one 64-bit entry
 735 * consisting of the following:
 736 *
 737 * Bits 0-55  page frame number (PFN) if present
 738 * Bits 0-4   swap type if swapped
 739 * Bits 5-55  swap offset if swapped
 740 * Bits 55-60 page shift (page size = 1<<page shift)
 741 * Bit  61    reserved for future use
 742 * Bit  62    page swapped
 743 * Bit  63    page present
 744 *
 745 * If the page is not present but in swap, then the PFN contains an
 746 * encoding of the swap file number and the page's offset into the
 747 * swap. Unmapped pages return a null PFN. This allows determining
 748 * precisely which pages are mapped (or in swap) and comparing mapped
 749 * pages between processes.
 750 *
 751 * Efficient users of this interface will use /proc/pid/maps to
 752 * determine which areas of memory are actually mapped and llseek to
 753 * skip over unmapped regions.
 754 */
 755#define PAGEMAP_WALK_SIZE	(PMD_SIZE)
 756#define PAGEMAP_WALK_MASK	(PMD_MASK)
 757static ssize_t pagemap_read(struct file *file, char __user *buf,
 758			    size_t count, loff_t *ppos)
 759{
 760	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 761	struct mm_struct *mm;
 762	struct pagemapread pm;
 763	int ret = -ESRCH;
 764	struct mm_walk pagemap_walk = {};
 765	unsigned long src;
 766	unsigned long svpfn;
 767	unsigned long start_vaddr;
 768	unsigned long end_vaddr;
 769	int copied = 0;
 770
 771	if (!task)
 772		goto out;
 773
 774	ret = -EINVAL;
 775	/* file position must be aligned */
 776	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
 777		goto out_task;
 778
 779	ret = 0;
 780	if (!count)
 781		goto out_task;
 782
 783	pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
 784	pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
 
 785	ret = -ENOMEM;
 786	if (!pm.buffer)
 787		goto out_task;
 788
 789	mm = mm_for_maps(task);
 790	ret = PTR_ERR(mm);
 791	if (!mm || IS_ERR(mm))
 792		goto out_free;
 793
 794	pagemap_walk.pmd_entry = pagemap_pte_range;
 795	pagemap_walk.pte_hole = pagemap_pte_hole;
 796#ifdef CONFIG_HUGETLB_PAGE
 797	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
 798#endif
 799	pagemap_walk.mm = mm;
 800	pagemap_walk.private = &pm;
 801
 802	src = *ppos;
 803	svpfn = src / PM_ENTRY_BYTES;
 804	start_vaddr = svpfn << PAGE_SHIFT;
 805	end_vaddr = TASK_SIZE_OF(task);
 806
 807	/* watch out for wraparound */
 808	if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
 809		start_vaddr = end_vaddr;
 810
 811	/*
 812	 * The odds are that this will stop walking way
 813	 * before end_vaddr, because the length of the
 814	 * user buffer is tracked in "pm", and the walk
 815	 * will stop when we hit the end of the buffer.
 816	 */
 817	ret = 0;
 818	while (count && (start_vaddr < end_vaddr)) {
 819		int len;
 820		unsigned long end;
 821
 822		pm.pos = 0;
 823		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
 824		/* overflow ? */
 825		if (end < start_vaddr || end > end_vaddr)
 826			end = end_vaddr;
 827		down_read(&mm->mmap_sem);
 828		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
 829		up_read(&mm->mmap_sem);
 830		start_vaddr = end;
 831
 832		len = min(count, PM_ENTRY_BYTES * pm.pos);
 833		if (copy_to_user(buf, pm.buffer, len)) {
 834			ret = -EFAULT;
 835			goto out_mm;
 836		}
 837		copied += len;
 838		buf += len;
 839		count -= len;
 840	}
 841	*ppos += copied;
 842	if (!ret || ret == PM_END_OF_BUFFER)
 843		ret = copied;
 844
 845out_mm:
 846	mmput(mm);
 847out_free:
 848	kfree(pm.buffer);
 849out_task:
 850	put_task_struct(task);
 851out:
 852	return ret;
 853}
 854
 
 
 
 
 
 
 
 
 855const struct file_operations proc_pagemap_operations = {
 856	.llseek		= mem_lseek, /* borrow this */
 857	.read		= pagemap_read,
 
 858};
 859#endif /* CONFIG_PROC_PAGE_MONITOR */
 860
 861#ifdef CONFIG_NUMA
 862
 863struct numa_maps {
 864	struct vm_area_struct *vma;
 865	unsigned long pages;
 866	unsigned long anon;
 867	unsigned long active;
 868	unsigned long writeback;
 869	unsigned long mapcount_max;
 870	unsigned long dirty;
 871	unsigned long swapcache;
 872	unsigned long node[MAX_NUMNODES];
 873};
 874
 875struct numa_maps_private {
 876	struct proc_maps_private proc_maps;
 877	struct numa_maps md;
 878};
 879
 880static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
 881			unsigned long nr_pages)
 882{
 883	int count = page_mapcount(page);
 884
 885	md->pages += nr_pages;
 886	if (pte_dirty || PageDirty(page))
 887		md->dirty += nr_pages;
 888
 889	if (PageSwapCache(page))
 890		md->swapcache += nr_pages;
 891
 892	if (PageActive(page) || PageUnevictable(page))
 893		md->active += nr_pages;
 894
 895	if (PageWriteback(page))
 896		md->writeback += nr_pages;
 897
 898	if (PageAnon(page))
 899		md->anon += nr_pages;
 900
 901	if (count > md->mapcount_max)
 902		md->mapcount_max = count;
 903
 904	md->node[page_to_nid(page)] += nr_pages;
 905}
 906
 907static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
 908		unsigned long addr)
 909{
 910	struct page *page;
 911	int nid;
 912
 913	if (!pte_present(pte))
 914		return NULL;
 915
 916	page = vm_normal_page(vma, addr, pte);
 917	if (!page)
 918		return NULL;
 919
 920	if (PageReserved(page))
 921		return NULL;
 922
 923	nid = page_to_nid(page);
 924	if (!node_isset(nid, node_states[N_HIGH_MEMORY]))
 925		return NULL;
 926
 927	return page;
 928}
 929
 930static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
 931		unsigned long end, struct mm_walk *walk)
 932{
 933	struct numa_maps *md;
 934	spinlock_t *ptl;
 935	pte_t *orig_pte;
 936	pte_t *pte;
 937
 938	md = walk->private;
 939	spin_lock(&walk->mm->page_table_lock);
 940	if (pmd_trans_huge(*pmd)) {
 941		if (pmd_trans_splitting(*pmd)) {
 942			spin_unlock(&walk->mm->page_table_lock);
 943			wait_split_huge_page(md->vma->anon_vma, pmd);
 944		} else {
 945			pte_t huge_pte = *(pte_t *)pmd;
 946			struct page *page;
 947
 948			page = can_gather_numa_stats(huge_pte, md->vma, addr);
 949			if (page)
 950				gather_stats(page, md, pte_dirty(huge_pte),
 951						HPAGE_PMD_SIZE/PAGE_SIZE);
 952			spin_unlock(&walk->mm->page_table_lock);
 953			return 0;
 954		}
 955	} else {
 956		spin_unlock(&walk->mm->page_table_lock);
 
 957	}
 958
 
 
 959	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 960	do {
 961		struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
 962		if (!page)
 963			continue;
 964		gather_stats(page, md, pte_dirty(*pte), 1);
 965
 966	} while (pte++, addr += PAGE_SIZE, addr != end);
 967	pte_unmap_unlock(orig_pte, ptl);
 968	return 0;
 969}
 970#ifdef CONFIG_HUGETLB_PAGE
 971static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
 972		unsigned long addr, unsigned long end, struct mm_walk *walk)
 973{
 974	struct numa_maps *md;
 975	struct page *page;
 976
 977	if (pte_none(*pte))
 978		return 0;
 979
 980	page = pte_page(*pte);
 981	if (!page)
 982		return 0;
 983
 984	md = walk->private;
 985	gather_stats(page, md, pte_dirty(*pte), 1);
 986	return 0;
 987}
 988
 989#else
 990static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
 991		unsigned long addr, unsigned long end, struct mm_walk *walk)
 992{
 993	return 0;
 994}
 995#endif
 996
 997/*
 998 * Display pages allocated per node and memory policy via /proc.
 999 */
1000static int show_numa_map(struct seq_file *m, void *v)
1001{
1002	struct numa_maps_private *numa_priv = m->private;
1003	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1004	struct vm_area_struct *vma = v;
1005	struct numa_maps *md = &numa_priv->md;
1006	struct file *file = vma->vm_file;
 
1007	struct mm_struct *mm = vma->vm_mm;
1008	struct mm_walk walk = {};
1009	struct mempolicy *pol;
1010	int n;
1011	char buffer[50];
1012
1013	if (!mm)
1014		return 0;
1015
1016	/* Ensure we start with an empty set of numa_maps statistics. */
1017	memset(md, 0, sizeof(*md));
1018
1019	md->vma = vma;
1020
1021	walk.hugetlb_entry = gather_hugetbl_stats;
1022	walk.pmd_entry = gather_pte_stats;
1023	walk.private = md;
1024	walk.mm = mm;
1025
1026	pol = get_vma_policy(proc_priv->task, vma, vma->vm_start);
1027	mpol_to_str(buffer, sizeof(buffer), pol, 0);
1028	mpol_cond_put(pol);
1029
1030	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1031
1032	if (file) {
1033		seq_printf(m, " file=");
1034		seq_path(m, &file->f_path, "\n\t= ");
1035	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1036		seq_printf(m, " heap");
1037	} else if (vma->vm_start <= mm->start_stack &&
1038			vma->vm_end >= mm->start_stack) {
1039		seq_printf(m, " stack");
 
 
 
 
 
 
 
 
 
 
1040	}
1041
 
 
 
1042	walk_page_range(vma->vm_start, vma->vm_end, &walk);
1043
1044	if (!md->pages)
1045		goto out;
1046
1047	if (md->anon)
1048		seq_printf(m, " anon=%lu", md->anon);
1049
1050	if (md->dirty)
1051		seq_printf(m, " dirty=%lu", md->dirty);
1052
1053	if (md->pages != md->anon && md->pages != md->dirty)
1054		seq_printf(m, " mapped=%lu", md->pages);
1055
1056	if (md->mapcount_max > 1)
1057		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1058
1059	if (md->swapcache)
1060		seq_printf(m, " swapcache=%lu", md->swapcache);
1061
1062	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1063		seq_printf(m, " active=%lu", md->active);
1064
1065	if (md->writeback)
1066		seq_printf(m, " writeback=%lu", md->writeback);
1067
1068	for_each_node_state(n, N_HIGH_MEMORY)
1069		if (md->node[n])
1070			seq_printf(m, " N%d=%lu", n, md->node[n]);
1071out:
1072	seq_putc(m, '\n');
1073
1074	if (m->count < m->size)
1075		m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1076	return 0;
1077}
1078
 
 
 
 
 
 
 
 
 
 
1079static const struct seq_operations proc_pid_numa_maps_op = {
1080        .start  = m_start,
1081        .next   = m_next,
1082        .stop   = m_stop,
1083        .show   = show_numa_map,
 
 
 
 
 
 
 
1084};
1085
1086static int numa_maps_open(struct inode *inode, struct file *file)
 
1087{
1088	struct numa_maps_private *priv;
1089	int ret = -ENOMEM;
1090	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1091	if (priv) {
1092		priv->proc_maps.pid = proc_pid(inode);
1093		ret = seq_open(file, &proc_pid_numa_maps_op);
1094		if (!ret) {
1095			struct seq_file *m = file->private_data;
1096			m->private = priv;
1097		} else {
1098			kfree(priv);
1099		}
1100	}
1101	return ret;
1102}
1103
1104const struct file_operations proc_numa_maps_operations = {
1105	.open		= numa_maps_open,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106	.read		= seq_read,
1107	.llseek		= seq_lseek,
1108	.release	= seq_release_private,
1109};
1110#endif /* CONFIG_NUMA */
v3.15
   1#include <linux/mm.h>
   2#include <linux/vmacache.h>
   3#include <linux/hugetlb.h>
   4#include <linux/huge_mm.h>
   5#include <linux/mount.h>
   6#include <linux/seq_file.h>
   7#include <linux/highmem.h>
   8#include <linux/ptrace.h>
   9#include <linux/slab.h>
  10#include <linux/pagemap.h>
  11#include <linux/mempolicy.h>
  12#include <linux/rmap.h>
  13#include <linux/swap.h>
  14#include <linux/swapops.h>
  15#include <linux/mmu_notifier.h>
  16
  17#include <asm/elf.h>
  18#include <asm/uaccess.h>
  19#include <asm/tlbflush.h>
  20#include "internal.h"
  21
  22void task_mem(struct seq_file *m, struct mm_struct *mm)
  23{
  24	unsigned long data, text, lib, swap;
  25	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  26
  27	/*
  28	 * Note: to minimize their overhead, mm maintains hiwater_vm and
  29	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
  30	 * collector of these hiwater stats must therefore get total_vm
  31	 * and rss too, which will usually be the higher.  Barriers? not
  32	 * worth the effort, such snapshots can always be inconsistent.
  33	 */
  34	hiwater_vm = total_vm = mm->total_vm;
  35	if (hiwater_vm < mm->hiwater_vm)
  36		hiwater_vm = mm->hiwater_vm;
  37	hiwater_rss = total_rss = get_mm_rss(mm);
  38	if (hiwater_rss < mm->hiwater_rss)
  39		hiwater_rss = mm->hiwater_rss;
  40
  41	data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  42	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  43	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  44	swap = get_mm_counter(mm, MM_SWAPENTS);
  45	seq_printf(m,
  46		"VmPeak:\t%8lu kB\n"
  47		"VmSize:\t%8lu kB\n"
  48		"VmLck:\t%8lu kB\n"
  49		"VmPin:\t%8lu kB\n"
  50		"VmHWM:\t%8lu kB\n"
  51		"VmRSS:\t%8lu kB\n"
  52		"VmData:\t%8lu kB\n"
  53		"VmStk:\t%8lu kB\n"
  54		"VmExe:\t%8lu kB\n"
  55		"VmLib:\t%8lu kB\n"
  56		"VmPTE:\t%8lu kB\n"
  57		"VmSwap:\t%8lu kB\n",
  58		hiwater_vm << (PAGE_SHIFT-10),
  59		total_vm << (PAGE_SHIFT-10),
  60		mm->locked_vm << (PAGE_SHIFT-10),
  61		mm->pinned_vm << (PAGE_SHIFT-10),
  62		hiwater_rss << (PAGE_SHIFT-10),
  63		total_rss << (PAGE_SHIFT-10),
  64		data << (PAGE_SHIFT-10),
  65		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  66		(PTRS_PER_PTE * sizeof(pte_t) *
  67		 atomic_long_read(&mm->nr_ptes)) >> 10,
  68		swap << (PAGE_SHIFT-10));
  69}
  70
  71unsigned long task_vsize(struct mm_struct *mm)
  72{
  73	return PAGE_SIZE * mm->total_vm;
  74}
  75
  76unsigned long task_statm(struct mm_struct *mm,
  77			 unsigned long *shared, unsigned long *text,
  78			 unsigned long *data, unsigned long *resident)
  79{
  80	*shared = get_mm_counter(mm, MM_FILEPAGES);
  81	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  82								>> PAGE_SHIFT;
  83	*data = mm->total_vm - mm->shared_vm;
  84	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  85	return mm->total_vm;
  86}
  87
  88#ifdef CONFIG_NUMA
  89/*
  90 * These functions are for numa_maps but called in generic **maps seq_file
  91 * ->start(), ->stop() ops.
  92 *
  93 * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
  94 * Each mempolicy object is controlled by reference counting. The problem here
  95 * is how to avoid accessing dead mempolicy object.
  96 *
  97 * Because we're holding mmap_sem while reading seq_file, it's safe to access
  98 * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
  99 *
 100 * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
 101 * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
 102 * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
 103 * gurantee the task never exits under us. But taking task_lock() around
 104 * get_vma_plicy() causes lock order problem.
 105 *
 106 * To access task->mempolicy without lock, we hold a reference count of an
 107 * object pointed by task->mempolicy and remember it. This will guarantee
 108 * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
 109 */
 110static void hold_task_mempolicy(struct proc_maps_private *priv)
 111{
 112	struct task_struct *task = priv->task;
 113
 114	task_lock(task);
 115	priv->task_mempolicy = task->mempolicy;
 116	mpol_get(priv->task_mempolicy);
 117	task_unlock(task);
 118}
 119static void release_task_mempolicy(struct proc_maps_private *priv)
 120{
 121	mpol_put(priv->task_mempolicy);
 122}
 123#else
 124static void hold_task_mempolicy(struct proc_maps_private *priv)
 125{
 126}
 127static void release_task_mempolicy(struct proc_maps_private *priv)
 128{
 129}
 130#endif
 131
 132static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
 133{
 134	if (vma && vma != priv->tail_vma) {
 135		struct mm_struct *mm = vma->vm_mm;
 136		release_task_mempolicy(priv);
 137		up_read(&mm->mmap_sem);
 138		mmput(mm);
 139	}
 140}
 141
 142static void *m_start(struct seq_file *m, loff_t *pos)
 143{
 144	struct proc_maps_private *priv = m->private;
 145	unsigned long last_addr = m->version;
 146	struct mm_struct *mm;
 147	struct vm_area_struct *vma, *tail_vma = NULL;
 148	loff_t l = *pos;
 149
 150	/* Clear the per syscall fields in priv */
 151	priv->task = NULL;
 152	priv->tail_vma = NULL;
 153
 154	/*
 155	 * We remember last_addr rather than next_addr to hit with
 156	 * vmacache most of the time. We have zero last_addr at
 157	 * the beginning and also after lseek. We will have -1 last_addr
 158	 * after the end of the vmas.
 159	 */
 160
 161	if (last_addr == -1UL)
 162		return NULL;
 163
 164	priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
 165	if (!priv->task)
 166		return ERR_PTR(-ESRCH);
 167
 168	mm = mm_access(priv->task, PTRACE_MODE_READ);
 169	if (!mm || IS_ERR(mm))
 170		return mm;
 171	down_read(&mm->mmap_sem);
 172
 173	tail_vma = get_gate_vma(priv->task->mm);
 174	priv->tail_vma = tail_vma;
 175	hold_task_mempolicy(priv);
 176	/* Start with last addr hint */
 177	vma = find_vma(mm, last_addr);
 178	if (last_addr && vma) {
 179		vma = vma->vm_next;
 180		goto out;
 181	}
 182
 183	/*
 184	 * Check the vma index is within the range and do
 185	 * sequential scan until m_index.
 186	 */
 187	vma = NULL;
 188	if ((unsigned long)l < mm->map_count) {
 189		vma = mm->mmap;
 190		while (l-- && vma)
 191			vma = vma->vm_next;
 192		goto out;
 193	}
 194
 195	if (l != mm->map_count)
 196		tail_vma = NULL; /* After gate vma */
 197
 198out:
 199	if (vma)
 200		return vma;
 201
 202	release_task_mempolicy(priv);
 203	/* End of vmas has been reached */
 204	m->version = (tail_vma != NULL)? 0: -1UL;
 205	up_read(&mm->mmap_sem);
 206	mmput(mm);
 207	return tail_vma;
 208}
 209
 210static void *m_next(struct seq_file *m, void *v, loff_t *pos)
 211{
 212	struct proc_maps_private *priv = m->private;
 213	struct vm_area_struct *vma = v;
 214	struct vm_area_struct *tail_vma = priv->tail_vma;
 215
 216	(*pos)++;
 217	if (vma && (vma != tail_vma) && vma->vm_next)
 218		return vma->vm_next;
 219	vma_stop(priv, vma);
 220	return (vma != tail_vma)? tail_vma: NULL;
 221}
 222
 223static void m_stop(struct seq_file *m, void *v)
 224{
 225	struct proc_maps_private *priv = m->private;
 226	struct vm_area_struct *vma = v;
 227
 228	if (!IS_ERR(vma))
 229		vma_stop(priv, vma);
 230	if (priv->task)
 231		put_task_struct(priv->task);
 232}
 233
 234static int do_maps_open(struct inode *inode, struct file *file,
 235			const struct seq_operations *ops)
 236{
 237	struct proc_maps_private *priv;
 238	int ret = -ENOMEM;
 239	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
 240	if (priv) {
 241		priv->pid = proc_pid(inode);
 242		ret = seq_open(file, ops);
 243		if (!ret) {
 244			struct seq_file *m = file->private_data;
 245			m->private = priv;
 246		} else {
 247			kfree(priv);
 248		}
 249	}
 250	return ret;
 251}
 252
 253static void
 254show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
 255{
 256	struct mm_struct *mm = vma->vm_mm;
 257	struct file *file = vma->vm_file;
 258	struct proc_maps_private *priv = m->private;
 259	struct task_struct *task = priv->task;
 260	vm_flags_t flags = vma->vm_flags;
 261	unsigned long ino = 0;
 262	unsigned long long pgoff = 0;
 263	unsigned long start, end;
 264	dev_t dev = 0;
 265	const char *name = NULL;
 266
 267	if (file) {
 268		struct inode *inode = file_inode(vma->vm_file);
 269		dev = inode->i_sb->s_dev;
 270		ino = inode->i_ino;
 271		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
 272	}
 273
 274	/* We don't show the stack guard page in /proc/maps */
 275	start = vma->vm_start;
 276	if (stack_guard_page_start(vma, start))
 277		start += PAGE_SIZE;
 278	end = vma->vm_end;
 279	if (stack_guard_page_end(vma, end))
 280		end -= PAGE_SIZE;
 281
 282	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
 283	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
 284			start,
 285			end,
 286			flags & VM_READ ? 'r' : '-',
 287			flags & VM_WRITE ? 'w' : '-',
 288			flags & VM_EXEC ? 'x' : '-',
 289			flags & VM_MAYSHARE ? 's' : 'p',
 290			pgoff,
 291			MAJOR(dev), MINOR(dev), ino);
 292
 293	/*
 294	 * Print the dentry name for named mappings, and a
 295	 * special [heap] marker for the heap:
 296	 */
 297	if (file) {
 298		seq_pad(m, ' ');
 299		seq_path(m, &file->f_path, "\n");
 300		goto done;
 301	}
 302
 303	name = arch_vma_name(vma);
 304	if (!name) {
 305		pid_t tid;
 306
 307		if (!mm) {
 308			name = "[vdso]";
 309			goto done;
 310		}
 311
 312		if (vma->vm_start <= mm->brk &&
 313		    vma->vm_end >= mm->start_brk) {
 314			name = "[heap]";
 315			goto done;
 316		}
 317
 318		tid = vm_is_stack(task, vma, is_pid);
 319
 320		if (tid != 0) {
 321			/*
 322			 * Thread stack in /proc/PID/task/TID/maps or
 323			 * the main process stack.
 324			 */
 325			if (!is_pid || (vma->vm_start <= mm->start_stack &&
 326			    vma->vm_end >= mm->start_stack)) {
 327				name = "[stack]";
 328			} else {
 329				/* Thread stack in /proc/PID/maps */
 330				seq_pad(m, ' ');
 331				seq_printf(m, "[stack:%d]", tid);
 332			}
 333		}
 334	}
 335
 336done:
 337	if (name) {
 338		seq_pad(m, ' ');
 339		seq_puts(m, name);
 340	}
 341	seq_putc(m, '\n');
 342}
 343
 344static int show_map(struct seq_file *m, void *v, int is_pid)
 345{
 346	struct vm_area_struct *vma = v;
 347	struct proc_maps_private *priv = m->private;
 348	struct task_struct *task = priv->task;
 349
 350	show_map_vma(m, vma, is_pid);
 351
 352	if (m->count < m->size)  /* vma is copied successfully */
 353		m->version = (vma != get_gate_vma(task->mm))
 354			? vma->vm_start : 0;
 355	return 0;
 356}
 357
 358static int show_pid_map(struct seq_file *m, void *v)
 359{
 360	return show_map(m, v, 1);
 361}
 362
 363static int show_tid_map(struct seq_file *m, void *v)
 364{
 365	return show_map(m, v, 0);
 366}
 367
 368static const struct seq_operations proc_pid_maps_op = {
 369	.start	= m_start,
 370	.next	= m_next,
 371	.stop	= m_stop,
 372	.show	= show_pid_map
 373};
 374
 375static const struct seq_operations proc_tid_maps_op = {
 376	.start	= m_start,
 377	.next	= m_next,
 378	.stop	= m_stop,
 379	.show	= show_tid_map
 380};
 381
 382static int pid_maps_open(struct inode *inode, struct file *file)
 383{
 384	return do_maps_open(inode, file, &proc_pid_maps_op);
 385}
 386
 387static int tid_maps_open(struct inode *inode, struct file *file)
 388{
 389	return do_maps_open(inode, file, &proc_tid_maps_op);
 390}
 391
 392const struct file_operations proc_pid_maps_operations = {
 393	.open		= pid_maps_open,
 394	.read		= seq_read,
 395	.llseek		= seq_lseek,
 396	.release	= seq_release_private,
 397};
 398
 399const struct file_operations proc_tid_maps_operations = {
 400	.open		= tid_maps_open,
 401	.read		= seq_read,
 402	.llseek		= seq_lseek,
 403	.release	= seq_release_private,
 404};
 405
 406/*
 407 * Proportional Set Size(PSS): my share of RSS.
 408 *
 409 * PSS of a process is the count of pages it has in memory, where each
 410 * page is divided by the number of processes sharing it.  So if a
 411 * process has 1000 pages all to itself, and 1000 shared with one other
 412 * process, its PSS will be 1500.
 413 *
 414 * To keep (accumulated) division errors low, we adopt a 64bit
 415 * fixed-point pss counter to minimize division errors. So (pss >>
 416 * PSS_SHIFT) would be the real byte count.
 417 *
 418 * A shift of 12 before division means (assuming 4K page size):
 419 * 	- 1M 3-user-pages add up to 8KB errors;
 420 * 	- supports mapcount up to 2^24, or 16M;
 421 * 	- supports PSS up to 2^52 bytes, or 4PB.
 422 */
 423#define PSS_SHIFT 12
 424
 425#ifdef CONFIG_PROC_PAGE_MONITOR
 426struct mem_size_stats {
 427	struct vm_area_struct *vma;
 428	unsigned long resident;
 429	unsigned long shared_clean;
 430	unsigned long shared_dirty;
 431	unsigned long private_clean;
 432	unsigned long private_dirty;
 433	unsigned long referenced;
 434	unsigned long anonymous;
 435	unsigned long anonymous_thp;
 436	unsigned long swap;
 437	unsigned long nonlinear;
 438	u64 pss;
 439};
 440
 441
 442static void smaps_pte_entry(pte_t ptent, unsigned long addr,
 443		unsigned long ptent_size, struct mm_walk *walk)
 444{
 445	struct mem_size_stats *mss = walk->private;
 446	struct vm_area_struct *vma = mss->vma;
 447	pgoff_t pgoff = linear_page_index(vma, addr);
 448	struct page *page = NULL;
 449	int mapcount;
 450
 451	if (pte_present(ptent)) {
 452		page = vm_normal_page(vma, addr, ptent);
 453	} else if (is_swap_pte(ptent)) {
 454		swp_entry_t swpent = pte_to_swp_entry(ptent);
 455
 456		if (!non_swap_entry(swpent))
 457			mss->swap += ptent_size;
 458		else if (is_migration_entry(swpent))
 459			page = migration_entry_to_page(swpent);
 460	} else if (pte_file(ptent)) {
 461		if (pte_to_pgoff(ptent) != pgoff)
 462			mss->nonlinear += ptent_size;
 463	}
 464
 
 465	if (!page)
 466		return;
 467
 468	if (PageAnon(page))
 469		mss->anonymous += ptent_size;
 470
 471	if (page->index != pgoff)
 472		mss->nonlinear += ptent_size;
 473
 474	mss->resident += ptent_size;
 475	/* Accumulate the size in pages that have been accessed. */
 476	if (pte_young(ptent) || PageReferenced(page))
 477		mss->referenced += ptent_size;
 478	mapcount = page_mapcount(page);
 479	if (mapcount >= 2) {
 480		if (pte_dirty(ptent) || PageDirty(page))
 481			mss->shared_dirty += ptent_size;
 482		else
 483			mss->shared_clean += ptent_size;
 484		mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
 485	} else {
 486		if (pte_dirty(ptent) || PageDirty(page))
 487			mss->private_dirty += ptent_size;
 488		else
 489			mss->private_clean += ptent_size;
 490		mss->pss += (ptent_size << PSS_SHIFT);
 491	}
 492}
 493
 494static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 495			   struct mm_walk *walk)
 496{
 497	struct mem_size_stats *mss = walk->private;
 498	struct vm_area_struct *vma = mss->vma;
 499	pte_t *pte;
 500	spinlock_t *ptl;
 501
 502	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
 503		smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
 504		spin_unlock(ptl);
 505		mss->anonymous_thp += HPAGE_PMD_SIZE;
 506		return 0;
 
 
 
 
 
 
 
 
 
 507	}
 508
 509	if (pmd_trans_unstable(pmd))
 510		return 0;
 511	/*
 512	 * The mmap_sem held all the way back in m_start() is what
 513	 * keeps khugepaged out of here and from collapsing things
 514	 * in here.
 515	 */
 516	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 517	for (; addr != end; pte++, addr += PAGE_SIZE)
 518		smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
 519	pte_unmap_unlock(pte - 1, ptl);
 520	cond_resched();
 521	return 0;
 522}
 523
 524static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
 525{
 526	/*
 527	 * Don't forget to update Documentation/ on changes.
 528	 */
 529	static const char mnemonics[BITS_PER_LONG][2] = {
 530		/*
 531		 * In case if we meet a flag we don't know about.
 532		 */
 533		[0 ... (BITS_PER_LONG-1)] = "??",
 534
 535		[ilog2(VM_READ)]	= "rd",
 536		[ilog2(VM_WRITE)]	= "wr",
 537		[ilog2(VM_EXEC)]	= "ex",
 538		[ilog2(VM_SHARED)]	= "sh",
 539		[ilog2(VM_MAYREAD)]	= "mr",
 540		[ilog2(VM_MAYWRITE)]	= "mw",
 541		[ilog2(VM_MAYEXEC)]	= "me",
 542		[ilog2(VM_MAYSHARE)]	= "ms",
 543		[ilog2(VM_GROWSDOWN)]	= "gd",
 544		[ilog2(VM_PFNMAP)]	= "pf",
 545		[ilog2(VM_DENYWRITE)]	= "dw",
 546		[ilog2(VM_LOCKED)]	= "lo",
 547		[ilog2(VM_IO)]		= "io",
 548		[ilog2(VM_SEQ_READ)]	= "sr",
 549		[ilog2(VM_RAND_READ)]	= "rr",
 550		[ilog2(VM_DONTCOPY)]	= "dc",
 551		[ilog2(VM_DONTEXPAND)]	= "de",
 552		[ilog2(VM_ACCOUNT)]	= "ac",
 553		[ilog2(VM_NORESERVE)]	= "nr",
 554		[ilog2(VM_HUGETLB)]	= "ht",
 555		[ilog2(VM_NONLINEAR)]	= "nl",
 556		[ilog2(VM_ARCH_1)]	= "ar",
 557		[ilog2(VM_DONTDUMP)]	= "dd",
 558#ifdef CONFIG_MEM_SOFT_DIRTY
 559		[ilog2(VM_SOFTDIRTY)]	= "sd",
 560#endif
 561		[ilog2(VM_MIXEDMAP)]	= "mm",
 562		[ilog2(VM_HUGEPAGE)]	= "hg",
 563		[ilog2(VM_NOHUGEPAGE)]	= "nh",
 564		[ilog2(VM_MERGEABLE)]	= "mg",
 565	};
 566	size_t i;
 567
 568	seq_puts(m, "VmFlags: ");
 569	for (i = 0; i < BITS_PER_LONG; i++) {
 570		if (vma->vm_flags & (1UL << i)) {
 571			seq_printf(m, "%c%c ",
 572				   mnemonics[i][0], mnemonics[i][1]);
 573		}
 574	}
 575	seq_putc(m, '\n');
 576}
 577
 578static int show_smap(struct seq_file *m, void *v, int is_pid)
 579{
 580	struct proc_maps_private *priv = m->private;
 581	struct task_struct *task = priv->task;
 582	struct vm_area_struct *vma = v;
 583	struct mem_size_stats mss;
 584	struct mm_walk smaps_walk = {
 585		.pmd_entry = smaps_pte_range,
 586		.mm = vma->vm_mm,
 587		.private = &mss,
 588	};
 589
 590	memset(&mss, 0, sizeof mss);
 591	mss.vma = vma;
 592	/* mmap_sem is held in m_start */
 593	if (vma->vm_mm && !is_vm_hugetlb_page(vma))
 594		walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
 595
 596	show_map_vma(m, vma, is_pid);
 597
 598	seq_printf(m,
 599		   "Size:           %8lu kB\n"
 600		   "Rss:            %8lu kB\n"
 601		   "Pss:            %8lu kB\n"
 602		   "Shared_Clean:   %8lu kB\n"
 603		   "Shared_Dirty:   %8lu kB\n"
 604		   "Private_Clean:  %8lu kB\n"
 605		   "Private_Dirty:  %8lu kB\n"
 606		   "Referenced:     %8lu kB\n"
 607		   "Anonymous:      %8lu kB\n"
 608		   "AnonHugePages:  %8lu kB\n"
 609		   "Swap:           %8lu kB\n"
 610		   "KernelPageSize: %8lu kB\n"
 611		   "MMUPageSize:    %8lu kB\n"
 612		   "Locked:         %8lu kB\n",
 613		   (vma->vm_end - vma->vm_start) >> 10,
 614		   mss.resident >> 10,
 615		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
 616		   mss.shared_clean  >> 10,
 617		   mss.shared_dirty  >> 10,
 618		   mss.private_clean >> 10,
 619		   mss.private_dirty >> 10,
 620		   mss.referenced >> 10,
 621		   mss.anonymous >> 10,
 622		   mss.anonymous_thp >> 10,
 623		   mss.swap >> 10,
 624		   vma_kernel_pagesize(vma) >> 10,
 625		   vma_mmu_pagesize(vma) >> 10,
 626		   (vma->vm_flags & VM_LOCKED) ?
 627			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
 628
 629	if (vma->vm_flags & VM_NONLINEAR)
 630		seq_printf(m, "Nonlinear:      %8lu kB\n",
 631				mss.nonlinear >> 10);
 632
 633	show_smap_vma_flags(m, vma);
 634
 635	if (m->count < m->size)  /* vma is copied successfully */
 636		m->version = (vma != get_gate_vma(task->mm))
 637			? vma->vm_start : 0;
 638	return 0;
 639}
 640
 641static int show_pid_smap(struct seq_file *m, void *v)
 642{
 643	return show_smap(m, v, 1);
 644}
 645
 646static int show_tid_smap(struct seq_file *m, void *v)
 647{
 648	return show_smap(m, v, 0);
 649}
 650
 651static const struct seq_operations proc_pid_smaps_op = {
 652	.start	= m_start,
 653	.next	= m_next,
 654	.stop	= m_stop,
 655	.show	= show_pid_smap
 656};
 657
 658static const struct seq_operations proc_tid_smaps_op = {
 659	.start	= m_start,
 660	.next	= m_next,
 661	.stop	= m_stop,
 662	.show	= show_tid_smap
 663};
 664
 665static int pid_smaps_open(struct inode *inode, struct file *file)
 666{
 667	return do_maps_open(inode, file, &proc_pid_smaps_op);
 668}
 669
 670static int tid_smaps_open(struct inode *inode, struct file *file)
 671{
 672	return do_maps_open(inode, file, &proc_tid_smaps_op);
 673}
 674
 675const struct file_operations proc_pid_smaps_operations = {
 676	.open		= pid_smaps_open,
 677	.read		= seq_read,
 678	.llseek		= seq_lseek,
 679	.release	= seq_release_private,
 680};
 681
 682const struct file_operations proc_tid_smaps_operations = {
 683	.open		= tid_smaps_open,
 684	.read		= seq_read,
 685	.llseek		= seq_lseek,
 686	.release	= seq_release_private,
 687};
 688
 689/*
 690 * We do not want to have constant page-shift bits sitting in
 691 * pagemap entries and are about to reuse them some time soon.
 692 *
 693 * Here's the "migration strategy":
 694 * 1. when the system boots these bits remain what they are,
 695 *    but a warning about future change is printed in log;
 696 * 2. once anyone clears soft-dirty bits via clear_refs file,
 697 *    these flag is set to denote, that user is aware of the
 698 *    new API and those page-shift bits change their meaning.
 699 *    The respective warning is printed in dmesg;
 700 * 3. In a couple of releases we will remove all the mentions
 701 *    of page-shift in pagemap entries.
 702 */
 703
 704static bool soft_dirty_cleared __read_mostly;
 705
 706enum clear_refs_types {
 707	CLEAR_REFS_ALL = 1,
 708	CLEAR_REFS_ANON,
 709	CLEAR_REFS_MAPPED,
 710	CLEAR_REFS_SOFT_DIRTY,
 711	CLEAR_REFS_LAST,
 712};
 713
 714struct clear_refs_private {
 715	struct vm_area_struct *vma;
 716	enum clear_refs_types type;
 717};
 718
 719static inline void clear_soft_dirty(struct vm_area_struct *vma,
 720		unsigned long addr, pte_t *pte)
 721{
 722#ifdef CONFIG_MEM_SOFT_DIRTY
 723	/*
 724	 * The soft-dirty tracker uses #PF-s to catch writes
 725	 * to pages, so write-protect the pte as well. See the
 726	 * Documentation/vm/soft-dirty.txt for full description
 727	 * of how soft-dirty works.
 728	 */
 729	pte_t ptent = *pte;
 730
 731	if (pte_present(ptent)) {
 732		ptent = pte_wrprotect(ptent);
 733		ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
 734	} else if (is_swap_pte(ptent)) {
 735		ptent = pte_swp_clear_soft_dirty(ptent);
 736	} else if (pte_file(ptent)) {
 737		ptent = pte_file_clear_soft_dirty(ptent);
 738	}
 739
 740	if (vma->vm_flags & VM_SOFTDIRTY)
 741		vma->vm_flags &= ~VM_SOFTDIRTY;
 742
 743	set_pte_at(vma->vm_mm, addr, pte, ptent);
 744#endif
 745}
 746
 747static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
 748				unsigned long end, struct mm_walk *walk)
 749{
 750	struct clear_refs_private *cp = walk->private;
 751	struct vm_area_struct *vma = cp->vma;
 752	pte_t *pte, ptent;
 753	spinlock_t *ptl;
 754	struct page *page;
 755
 756	split_huge_page_pmd(vma, addr, pmd);
 757	if (pmd_trans_unstable(pmd))
 758		return 0;
 759
 760	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 761	for (; addr != end; pte++, addr += PAGE_SIZE) {
 762		ptent = *pte;
 763
 764		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
 765			clear_soft_dirty(vma, addr, pte);
 766			continue;
 767		}
 768
 769		if (!pte_present(ptent))
 770			continue;
 771
 772		page = vm_normal_page(vma, addr, ptent);
 773		if (!page)
 774			continue;
 775
 776		/* Clear accessed and referenced bits. */
 777		ptep_test_and_clear_young(vma, addr, pte);
 778		ClearPageReferenced(page);
 779	}
 780	pte_unmap_unlock(pte - 1, ptl);
 781	cond_resched();
 782	return 0;
 783}
 784
 
 
 
 
 785static ssize_t clear_refs_write(struct file *file, const char __user *buf,
 786				size_t count, loff_t *ppos)
 787{
 788	struct task_struct *task;
 789	char buffer[PROC_NUMBUF];
 790	struct mm_struct *mm;
 791	struct vm_area_struct *vma;
 792	enum clear_refs_types type;
 793	int itype;
 794	int rv;
 795
 796	memset(buffer, 0, sizeof(buffer));
 797	if (count > sizeof(buffer) - 1)
 798		count = sizeof(buffer) - 1;
 799	if (copy_from_user(buffer, buf, count))
 800		return -EFAULT;
 801	rv = kstrtoint(strstrip(buffer), 10, &itype);
 802	if (rv < 0)
 803		return rv;
 804	type = (enum clear_refs_types)itype;
 805	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
 806		return -EINVAL;
 807
 808	if (type == CLEAR_REFS_SOFT_DIRTY) {
 809		soft_dirty_cleared = true;
 810		pr_warn_once("The pagemap bits 55-60 has changed their meaning! "
 811				"See the linux/Documentation/vm/pagemap.txt for details.\n");
 812	}
 813
 814	task = get_proc_task(file_inode(file));
 815	if (!task)
 816		return -ESRCH;
 817	mm = get_task_mm(task);
 818	if (mm) {
 819		struct clear_refs_private cp = {
 820			.type = type,
 821		};
 822		struct mm_walk clear_refs_walk = {
 823			.pmd_entry = clear_refs_pte_range,
 824			.mm = mm,
 825			.private = &cp,
 826		};
 827		down_read(&mm->mmap_sem);
 828		if (type == CLEAR_REFS_SOFT_DIRTY)
 829			mmu_notifier_invalidate_range_start(mm, 0, -1);
 830		for (vma = mm->mmap; vma; vma = vma->vm_next) {
 831			cp.vma = vma;
 832			if (is_vm_hugetlb_page(vma))
 833				continue;
 834			/*
 835			 * Writing 1 to /proc/pid/clear_refs affects all pages.
 836			 *
 837			 * Writing 2 to /proc/pid/clear_refs only affects
 838			 * Anonymous pages.
 839			 *
 840			 * Writing 3 to /proc/pid/clear_refs only affects file
 841			 * mapped pages.
 842			 */
 843			if (type == CLEAR_REFS_ANON && vma->vm_file)
 844				continue;
 845			if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
 846				continue;
 847			walk_page_range(vma->vm_start, vma->vm_end,
 848					&clear_refs_walk);
 849		}
 850		if (type == CLEAR_REFS_SOFT_DIRTY)
 851			mmu_notifier_invalidate_range_end(mm, 0, -1);
 852		flush_tlb_mm(mm);
 853		up_read(&mm->mmap_sem);
 854		mmput(mm);
 855	}
 856	put_task_struct(task);
 857
 858	return count;
 859}
 860
 861const struct file_operations proc_clear_refs_operations = {
 862	.write		= clear_refs_write,
 863	.llseek		= noop_llseek,
 864};
 865
 866typedef struct {
 867	u64 pme;
 868} pagemap_entry_t;
 869
 870struct pagemapread {
 871	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
 872	pagemap_entry_t *buffer;
 873	bool v2;
 874};
 875
 876#define PAGEMAP_WALK_SIZE	(PMD_SIZE)
 877#define PAGEMAP_WALK_MASK	(PMD_MASK)
 878
 879#define PM_ENTRY_BYTES      sizeof(pagemap_entry_t)
 880#define PM_STATUS_BITS      3
 881#define PM_STATUS_OFFSET    (64 - PM_STATUS_BITS)
 882#define PM_STATUS_MASK      (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
 883#define PM_STATUS(nr)       (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
 884#define PM_PSHIFT_BITS      6
 885#define PM_PSHIFT_OFFSET    (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
 886#define PM_PSHIFT_MASK      (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
 887#define __PM_PSHIFT(x)      (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
 888#define PM_PFRAME_MASK      ((1LL << PM_PSHIFT_OFFSET) - 1)
 889#define PM_PFRAME(x)        ((x) & PM_PFRAME_MASK)
 890/* in "new" pagemap pshift bits are occupied with more status bits */
 891#define PM_STATUS2(v2, x)   (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
 892
 893#define __PM_SOFT_DIRTY      (1LL)
 894#define PM_PRESENT          PM_STATUS(4LL)
 895#define PM_SWAP             PM_STATUS(2LL)
 896#define PM_FILE             PM_STATUS(1LL)
 897#define PM_NOT_PRESENT(v2)  PM_STATUS2(v2, 0)
 898#define PM_END_OF_BUFFER    1
 899
 900static inline pagemap_entry_t make_pme(u64 val)
 901{
 902	return (pagemap_entry_t) { .pme = val };
 903}
 904
 905static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
 906			  struct pagemapread *pm)
 907{
 908	pm->buffer[pm->pos++] = *pme;
 909	if (pm->pos >= pm->len)
 910		return PM_END_OF_BUFFER;
 911	return 0;
 912}
 913
 914static int pagemap_pte_hole(unsigned long start, unsigned long end,
 915				struct mm_walk *walk)
 916{
 917	struct pagemapread *pm = walk->private;
 918	unsigned long addr;
 919	int err = 0;
 920	pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
 921
 922	for (addr = start; addr < end; addr += PAGE_SIZE) {
 923		err = add_to_pagemap(addr, &pme, pm);
 924		if (err)
 925			break;
 926	}
 927	return err;
 928}
 929
 930static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
 931		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
 932{
 933	u64 frame, flags;
 934	struct page *page = NULL;
 935	int flags2 = 0;
 936
 937	if (pte_present(pte)) {
 938		frame = pte_pfn(pte);
 939		flags = PM_PRESENT;
 940		page = vm_normal_page(vma, addr, pte);
 941		if (pte_soft_dirty(pte))
 942			flags2 |= __PM_SOFT_DIRTY;
 943	} else if (is_swap_pte(pte)) {
 944		swp_entry_t entry;
 945		if (pte_swp_soft_dirty(pte))
 946			flags2 |= __PM_SOFT_DIRTY;
 947		entry = pte_to_swp_entry(pte);
 948		frame = swp_type(entry) |
 949			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
 950		flags = PM_SWAP;
 951		if (is_migration_entry(entry))
 952			page = migration_entry_to_page(entry);
 953	} else {
 954		if (vma->vm_flags & VM_SOFTDIRTY)
 955			flags2 |= __PM_SOFT_DIRTY;
 956		*pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
 957		return;
 958	}
 959
 960	if (page && !PageAnon(page))
 961		flags |= PM_FILE;
 962	if ((vma->vm_flags & VM_SOFTDIRTY))
 963		flags2 |= __PM_SOFT_DIRTY;
 964
 965	*pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
 966}
 967
 968#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 969static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
 970		pmd_t pmd, int offset, int pmd_flags2)
 971{
 972	/*
 973	 * Currently pmd for thp is always present because thp can not be
 974	 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
 975	 * This if-check is just to prepare for future implementation.
 976	 */
 977	if (pmd_present(pmd))
 978		*pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
 979				| PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
 980	else
 981		*pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
 982}
 983#else
 984static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
 985		pmd_t pmd, int offset, int pmd_flags2)
 986{
 
 
 
 
 
 
 
 
 987}
 988#endif
 989
 990static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 991			     struct mm_walk *walk)
 992{
 993	struct vm_area_struct *vma;
 994	struct pagemapread *pm = walk->private;
 995	spinlock_t *ptl;
 996	pte_t *pte;
 997	int err = 0;
 998	pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
 
 999
1000	/* find the first VMA at or above 'addr' */
1001	vma = find_vma(walk->mm, addr);
1002	if (vma && pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1003		int pmd_flags2;
1004
1005		if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
1006			pmd_flags2 = __PM_SOFT_DIRTY;
1007		else
1008			pmd_flags2 = 0;
1009
1010		for (; addr != end; addr += PAGE_SIZE) {
1011			unsigned long offset;
1012
1013			offset = (addr & ~PAGEMAP_WALK_MASK) >>
1014					PAGE_SHIFT;
1015			thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
1016			err = add_to_pagemap(addr, &pme, pm);
1017			if (err)
1018				break;
1019		}
1020		spin_unlock(ptl);
1021		return err;
1022	}
1023
1024	if (pmd_trans_unstable(pmd))
1025		return 0;
1026	for (; addr != end; addr += PAGE_SIZE) {
1027		int flags2;
1028
1029		/* check to see if we've left 'vma' behind
1030		 * and need a new, higher one */
1031		if (vma && (addr >= vma->vm_end)) {
1032			vma = find_vma(walk->mm, addr);
1033			if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1034				flags2 = __PM_SOFT_DIRTY;
1035			else
1036				flags2 = 0;
1037			pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
1038		}
1039
1040		/* check that 'vma' actually covers this address,
1041		 * and that it isn't a huge page vma */
1042		if (vma && (vma->vm_start <= addr) &&
1043		    !is_vm_hugetlb_page(vma)) {
1044			pte = pte_offset_map(pmd, addr);
1045			pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
1046			/* unmap before userspace copy */
1047			pte_unmap(pte);
1048		}
1049		err = add_to_pagemap(addr, &pme, pm);
1050		if (err)
1051			return err;
1052	}
1053
1054	cond_resched();
1055
1056	return err;
1057}
1058
1059#ifdef CONFIG_HUGETLB_PAGE
1060static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1061					pte_t pte, int offset, int flags2)
1062{
 
1063	if (pte_present(pte))
1064		*pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset)	|
1065				PM_STATUS2(pm->v2, flags2)		|
1066				PM_PRESENT);
1067	else
1068		*pme = make_pme(PM_NOT_PRESENT(pm->v2)			|
1069				PM_STATUS2(pm->v2, flags2));
1070}
1071
1072/* This function walks within one hugetlb entry in the single call */
1073static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
1074				 unsigned long addr, unsigned long end,
1075				 struct mm_walk *walk)
1076{
1077	struct pagemapread *pm = walk->private;
1078	struct vm_area_struct *vma;
1079	int err = 0;
1080	int flags2;
1081	pagemap_entry_t pme;
1082
1083	vma = find_vma(walk->mm, addr);
1084	WARN_ON_ONCE(!vma);
1085
1086	if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1087		flags2 = __PM_SOFT_DIRTY;
1088	else
1089		flags2 = 0;
1090
1091	for (; addr != end; addr += PAGE_SIZE) {
1092		int offset = (addr & ~hmask) >> PAGE_SHIFT;
1093		huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
1094		err = add_to_pagemap(addr, &pme, pm);
1095		if (err)
1096			return err;
1097	}
1098
1099	cond_resched();
1100
1101	return err;
1102}
1103#endif /* HUGETLB_PAGE */
1104
1105/*
1106 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1107 *
1108 * For each page in the address space, this file contains one 64-bit entry
1109 * consisting of the following:
1110 *
1111 * Bits 0-54  page frame number (PFN) if present
1112 * Bits 0-4   swap type if swapped
1113 * Bits 5-54  swap offset if swapped
1114 * Bits 55-60 page shift (page size = 1<<page shift)
1115 * Bit  61    page is file-page or shared-anon
1116 * Bit  62    page swapped
1117 * Bit  63    page present
1118 *
1119 * If the page is not present but in swap, then the PFN contains an
1120 * encoding of the swap file number and the page's offset into the
1121 * swap. Unmapped pages return a null PFN. This allows determining
1122 * precisely which pages are mapped (or in swap) and comparing mapped
1123 * pages between processes.
1124 *
1125 * Efficient users of this interface will use /proc/pid/maps to
1126 * determine which areas of memory are actually mapped and llseek to
1127 * skip over unmapped regions.
1128 */
 
 
1129static ssize_t pagemap_read(struct file *file, char __user *buf,
1130			    size_t count, loff_t *ppos)
1131{
1132	struct task_struct *task = get_proc_task(file_inode(file));
1133	struct mm_struct *mm;
1134	struct pagemapread pm;
1135	int ret = -ESRCH;
1136	struct mm_walk pagemap_walk = {};
1137	unsigned long src;
1138	unsigned long svpfn;
1139	unsigned long start_vaddr;
1140	unsigned long end_vaddr;
1141	int copied = 0;
1142
1143	if (!task)
1144		goto out;
1145
1146	ret = -EINVAL;
1147	/* file position must be aligned */
1148	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1149		goto out_task;
1150
1151	ret = 0;
1152	if (!count)
1153		goto out_task;
1154
1155	pm.v2 = soft_dirty_cleared;
1156	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1157	pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1158	ret = -ENOMEM;
1159	if (!pm.buffer)
1160		goto out_task;
1161
1162	mm = mm_access(task, PTRACE_MODE_READ);
1163	ret = PTR_ERR(mm);
1164	if (!mm || IS_ERR(mm))
1165		goto out_free;
1166
1167	pagemap_walk.pmd_entry = pagemap_pte_range;
1168	pagemap_walk.pte_hole = pagemap_pte_hole;
1169#ifdef CONFIG_HUGETLB_PAGE
1170	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1171#endif
1172	pagemap_walk.mm = mm;
1173	pagemap_walk.private = &pm;
1174
1175	src = *ppos;
1176	svpfn = src / PM_ENTRY_BYTES;
1177	start_vaddr = svpfn << PAGE_SHIFT;
1178	end_vaddr = TASK_SIZE_OF(task);
1179
1180	/* watch out for wraparound */
1181	if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
1182		start_vaddr = end_vaddr;
1183
1184	/*
1185	 * The odds are that this will stop walking way
1186	 * before end_vaddr, because the length of the
1187	 * user buffer is tracked in "pm", and the walk
1188	 * will stop when we hit the end of the buffer.
1189	 */
1190	ret = 0;
1191	while (count && (start_vaddr < end_vaddr)) {
1192		int len;
1193		unsigned long end;
1194
1195		pm.pos = 0;
1196		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1197		/* overflow ? */
1198		if (end < start_vaddr || end > end_vaddr)
1199			end = end_vaddr;
1200		down_read(&mm->mmap_sem);
1201		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1202		up_read(&mm->mmap_sem);
1203		start_vaddr = end;
1204
1205		len = min(count, PM_ENTRY_BYTES * pm.pos);
1206		if (copy_to_user(buf, pm.buffer, len)) {
1207			ret = -EFAULT;
1208			goto out_mm;
1209		}
1210		copied += len;
1211		buf += len;
1212		count -= len;
1213	}
1214	*ppos += copied;
1215	if (!ret || ret == PM_END_OF_BUFFER)
1216		ret = copied;
1217
1218out_mm:
1219	mmput(mm);
1220out_free:
1221	kfree(pm.buffer);
1222out_task:
1223	put_task_struct(task);
1224out:
1225	return ret;
1226}
1227
1228static int pagemap_open(struct inode *inode, struct file *file)
1229{
1230	pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1231			"to stop being page-shift some time soon. See the "
1232			"linux/Documentation/vm/pagemap.txt for details.\n");
1233	return 0;
1234}
1235
1236const struct file_operations proc_pagemap_operations = {
1237	.llseek		= mem_lseek, /* borrow this */
1238	.read		= pagemap_read,
1239	.open		= pagemap_open,
1240};
1241#endif /* CONFIG_PROC_PAGE_MONITOR */
1242
1243#ifdef CONFIG_NUMA
1244
1245struct numa_maps {
1246	struct vm_area_struct *vma;
1247	unsigned long pages;
1248	unsigned long anon;
1249	unsigned long active;
1250	unsigned long writeback;
1251	unsigned long mapcount_max;
1252	unsigned long dirty;
1253	unsigned long swapcache;
1254	unsigned long node[MAX_NUMNODES];
1255};
1256
1257struct numa_maps_private {
1258	struct proc_maps_private proc_maps;
1259	struct numa_maps md;
1260};
1261
1262static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1263			unsigned long nr_pages)
1264{
1265	int count = page_mapcount(page);
1266
1267	md->pages += nr_pages;
1268	if (pte_dirty || PageDirty(page))
1269		md->dirty += nr_pages;
1270
1271	if (PageSwapCache(page))
1272		md->swapcache += nr_pages;
1273
1274	if (PageActive(page) || PageUnevictable(page))
1275		md->active += nr_pages;
1276
1277	if (PageWriteback(page))
1278		md->writeback += nr_pages;
1279
1280	if (PageAnon(page))
1281		md->anon += nr_pages;
1282
1283	if (count > md->mapcount_max)
1284		md->mapcount_max = count;
1285
1286	md->node[page_to_nid(page)] += nr_pages;
1287}
1288
1289static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1290		unsigned long addr)
1291{
1292	struct page *page;
1293	int nid;
1294
1295	if (!pte_present(pte))
1296		return NULL;
1297
1298	page = vm_normal_page(vma, addr, pte);
1299	if (!page)
1300		return NULL;
1301
1302	if (PageReserved(page))
1303		return NULL;
1304
1305	nid = page_to_nid(page);
1306	if (!node_isset(nid, node_states[N_MEMORY]))
1307		return NULL;
1308
1309	return page;
1310}
1311
1312static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1313		unsigned long end, struct mm_walk *walk)
1314{
1315	struct numa_maps *md;
1316	spinlock_t *ptl;
1317	pte_t *orig_pte;
1318	pte_t *pte;
1319
1320	md = walk->private;
 
 
 
 
 
 
 
 
1321
1322	if (pmd_trans_huge_lock(pmd, md->vma, &ptl) == 1) {
1323		pte_t huge_pte = *(pte_t *)pmd;
1324		struct page *page;
1325
1326		page = can_gather_numa_stats(huge_pte, md->vma, addr);
1327		if (page)
1328			gather_stats(page, md, pte_dirty(huge_pte),
1329				     HPAGE_PMD_SIZE/PAGE_SIZE);
1330		spin_unlock(ptl);
1331		return 0;
1332	}
1333
1334	if (pmd_trans_unstable(pmd))
1335		return 0;
1336	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1337	do {
1338		struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
1339		if (!page)
1340			continue;
1341		gather_stats(page, md, pte_dirty(*pte), 1);
1342
1343	} while (pte++, addr += PAGE_SIZE, addr != end);
1344	pte_unmap_unlock(orig_pte, ptl);
1345	return 0;
1346}
1347#ifdef CONFIG_HUGETLB_PAGE
1348static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1349		unsigned long addr, unsigned long end, struct mm_walk *walk)
1350{
1351	struct numa_maps *md;
1352	struct page *page;
1353
1354	if (!pte_present(*pte))
1355		return 0;
1356
1357	page = pte_page(*pte);
1358	if (!page)
1359		return 0;
1360
1361	md = walk->private;
1362	gather_stats(page, md, pte_dirty(*pte), 1);
1363	return 0;
1364}
1365
1366#else
1367static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1368		unsigned long addr, unsigned long end, struct mm_walk *walk)
1369{
1370	return 0;
1371}
1372#endif
1373
1374/*
1375 * Display pages allocated per node and memory policy via /proc.
1376 */
1377static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1378{
1379	struct numa_maps_private *numa_priv = m->private;
1380	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1381	struct vm_area_struct *vma = v;
1382	struct numa_maps *md = &numa_priv->md;
1383	struct file *file = vma->vm_file;
1384	struct task_struct *task = proc_priv->task;
1385	struct mm_struct *mm = vma->vm_mm;
1386	struct mm_walk walk = {};
1387	struct mempolicy *pol;
1388	char buffer[64];
1389	int nid;
1390
1391	if (!mm)
1392		return 0;
1393
1394	/* Ensure we start with an empty set of numa_maps statistics. */
1395	memset(md, 0, sizeof(*md));
1396
1397	md->vma = vma;
1398
1399	walk.hugetlb_entry = gather_hugetbl_stats;
1400	walk.pmd_entry = gather_pte_stats;
1401	walk.private = md;
1402	walk.mm = mm;
1403
1404	pol = get_vma_policy(task, vma, vma->vm_start);
1405	mpol_to_str(buffer, sizeof(buffer), pol);
1406	mpol_cond_put(pol);
1407
1408	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1409
1410	if (file) {
1411		seq_printf(m, " file=");
1412		seq_path(m, &file->f_path, "\n\t= ");
1413	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1414		seq_printf(m, " heap");
1415	} else {
1416		pid_t tid = vm_is_stack(task, vma, is_pid);
1417		if (tid != 0) {
1418			/*
1419			 * Thread stack in /proc/PID/task/TID/maps or
1420			 * the main process stack.
1421			 */
1422			if (!is_pid || (vma->vm_start <= mm->start_stack &&
1423			    vma->vm_end >= mm->start_stack))
1424				seq_printf(m, " stack");
1425			else
1426				seq_printf(m, " stack:%d", tid);
1427		}
1428	}
1429
1430	if (is_vm_hugetlb_page(vma))
1431		seq_printf(m, " huge");
1432
1433	walk_page_range(vma->vm_start, vma->vm_end, &walk);
1434
1435	if (!md->pages)
1436		goto out;
1437
1438	if (md->anon)
1439		seq_printf(m, " anon=%lu", md->anon);
1440
1441	if (md->dirty)
1442		seq_printf(m, " dirty=%lu", md->dirty);
1443
1444	if (md->pages != md->anon && md->pages != md->dirty)
1445		seq_printf(m, " mapped=%lu", md->pages);
1446
1447	if (md->mapcount_max > 1)
1448		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1449
1450	if (md->swapcache)
1451		seq_printf(m, " swapcache=%lu", md->swapcache);
1452
1453	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1454		seq_printf(m, " active=%lu", md->active);
1455
1456	if (md->writeback)
1457		seq_printf(m, " writeback=%lu", md->writeback);
1458
1459	for_each_node_state(nid, N_MEMORY)
1460		if (md->node[nid])
1461			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1462out:
1463	seq_putc(m, '\n');
1464
1465	if (m->count < m->size)
1466		m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1467	return 0;
1468}
1469
1470static int show_pid_numa_map(struct seq_file *m, void *v)
1471{
1472	return show_numa_map(m, v, 1);
1473}
1474
1475static int show_tid_numa_map(struct seq_file *m, void *v)
1476{
1477	return show_numa_map(m, v, 0);
1478}
1479
1480static const struct seq_operations proc_pid_numa_maps_op = {
1481	.start  = m_start,
1482	.next   = m_next,
1483	.stop   = m_stop,
1484	.show   = show_pid_numa_map,
1485};
1486
1487static const struct seq_operations proc_tid_numa_maps_op = {
1488	.start  = m_start,
1489	.next   = m_next,
1490	.stop   = m_stop,
1491	.show   = show_tid_numa_map,
1492};
1493
1494static int numa_maps_open(struct inode *inode, struct file *file,
1495			  const struct seq_operations *ops)
1496{
1497	struct numa_maps_private *priv;
1498	int ret = -ENOMEM;
1499	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1500	if (priv) {
1501		priv->proc_maps.pid = proc_pid(inode);
1502		ret = seq_open(file, ops);
1503		if (!ret) {
1504			struct seq_file *m = file->private_data;
1505			m->private = priv;
1506		} else {
1507			kfree(priv);
1508		}
1509	}
1510	return ret;
1511}
1512
1513static int pid_numa_maps_open(struct inode *inode, struct file *file)
1514{
1515	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1516}
1517
1518static int tid_numa_maps_open(struct inode *inode, struct file *file)
1519{
1520	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1521}
1522
1523const struct file_operations proc_pid_numa_maps_operations = {
1524	.open		= pid_numa_maps_open,
1525	.read		= seq_read,
1526	.llseek		= seq_lseek,
1527	.release	= seq_release_private,
1528};
1529
1530const struct file_operations proc_tid_numa_maps_operations = {
1531	.open		= tid_numa_maps_open,
1532	.read		= seq_read,
1533	.llseek		= seq_lseek,
1534	.release	= seq_release_private,
1535};
1536#endif /* CONFIG_NUMA */