Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Core IEEE1394 transaction logic
   3 *
   4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bug.h>
  22#include <linux/completion.h>
  23#include <linux/device.h>
  24#include <linux/errno.h>
  25#include <linux/firewire.h>
  26#include <linux/firewire-constants.h>
  27#include <linux/fs.h>
  28#include <linux/init.h>
  29#include <linux/idr.h>
  30#include <linux/jiffies.h>
  31#include <linux/kernel.h>
  32#include <linux/list.h>
  33#include <linux/module.h>
 
  34#include <linux/slab.h>
  35#include <linux/spinlock.h>
  36#include <linux/string.h>
  37#include <linux/timer.h>
  38#include <linux/types.h>
  39#include <linux/workqueue.h>
  40
  41#include <asm/byteorder.h>
  42
  43#include "core.h"
  44
  45#define HEADER_PRI(pri)			((pri) << 0)
  46#define HEADER_TCODE(tcode)		((tcode) << 4)
  47#define HEADER_RETRY(retry)		((retry) << 8)
  48#define HEADER_TLABEL(tlabel)		((tlabel) << 10)
  49#define HEADER_DESTINATION(destination)	((destination) << 16)
  50#define HEADER_SOURCE(source)		((source) << 16)
  51#define HEADER_RCODE(rcode)		((rcode) << 12)
  52#define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
  53#define HEADER_DATA_LENGTH(length)	((length) << 16)
  54#define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
  55
  56#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
  57#define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
  58#define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
  59#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
  60#define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
  61#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
  62#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
  63#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
  64
  65#define HEADER_DESTINATION_IS_BROADCAST(q) \
  66	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
  67
  68#define PHY_PACKET_CONFIG	0x0
  69#define PHY_PACKET_LINK_ON	0x1
  70#define PHY_PACKET_SELF_ID	0x2
  71
  72#define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
  73#define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
  74#define PHY_IDENTIFIER(id)		((id) << 30)
  75
  76/* returns 0 if the split timeout handler is already running */
  77static int try_cancel_split_timeout(struct fw_transaction *t)
  78{
  79	if (t->is_split_transaction)
  80		return del_timer(&t->split_timeout_timer);
  81	else
  82		return 1;
  83}
  84
  85static int close_transaction(struct fw_transaction *transaction,
  86			     struct fw_card *card, int rcode)
  87{
  88	struct fw_transaction *t;
  89	unsigned long flags;
  90
  91	spin_lock_irqsave(&card->lock, flags);
  92	list_for_each_entry(t, &card->transaction_list, link) {
  93		if (t == transaction) {
  94			if (!try_cancel_split_timeout(t)) {
  95				spin_unlock_irqrestore(&card->lock, flags);
  96				goto timed_out;
  97			}
  98			list_del_init(&t->link);
  99			card->tlabel_mask &= ~(1ULL << t->tlabel);
 
 100			break;
 101		}
 102	}
 103	spin_unlock_irqrestore(&card->lock, flags);
 104
 105	if (&t->link != &card->transaction_list) {
 106		t->callback(card, rcode, NULL, 0, t->callback_data);
 
 
 
 
 
 107		return 0;
 108	}
 109
 110 timed_out:
 111	return -ENOENT;
 112}
 113
 114/*
 115 * Only valid for transactions that are potentially pending (ie have
 116 * been sent).
 117 */
 118int fw_cancel_transaction(struct fw_card *card,
 119			  struct fw_transaction *transaction)
 120{
 
 
 121	/*
 122	 * Cancel the packet transmission if it's still queued.  That
 123	 * will call the packet transmission callback which cancels
 124	 * the transaction.
 125	 */
 126
 127	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
 128		return 0;
 129
 130	/*
 131	 * If the request packet has already been sent, we need to see
 132	 * if the transaction is still pending and remove it in that case.
 133	 */
 134
 135	return close_transaction(transaction, card, RCODE_CANCELLED);
 
 
 
 
 
 
 
 
 
 
 136}
 137EXPORT_SYMBOL(fw_cancel_transaction);
 138
 139static void split_transaction_timeout_callback(unsigned long data)
 140{
 141	struct fw_transaction *t = (struct fw_transaction *)data;
 142	struct fw_card *card = t->card;
 143	unsigned long flags;
 144
 145	spin_lock_irqsave(&card->lock, flags);
 146	if (list_empty(&t->link)) {
 147		spin_unlock_irqrestore(&card->lock, flags);
 148		return;
 149	}
 150	list_del(&t->link);
 151	card->tlabel_mask &= ~(1ULL << t->tlabel);
 152	spin_unlock_irqrestore(&card->lock, flags);
 153
 154	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
 
 
 
 
 
 155}
 156
 157static void start_split_transaction_timeout(struct fw_transaction *t,
 158					    struct fw_card *card)
 159{
 160	unsigned long flags;
 161
 162	spin_lock_irqsave(&card->lock, flags);
 163
 164	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
 165		spin_unlock_irqrestore(&card->lock, flags);
 166		return;
 167	}
 168
 169	t->is_split_transaction = true;
 170	mod_timer(&t->split_timeout_timer,
 171		  jiffies + card->split_timeout_jiffies);
 172
 173	spin_unlock_irqrestore(&card->lock, flags);
 174}
 175
 
 
 176static void transmit_complete_callback(struct fw_packet *packet,
 177				       struct fw_card *card, int status)
 178{
 179	struct fw_transaction *t =
 180	    container_of(packet, struct fw_transaction, packet);
 181
 182	switch (status) {
 183	case ACK_COMPLETE:
 184		close_transaction(t, card, RCODE_COMPLETE);
 185		break;
 186	case ACK_PENDING:
 
 
 
 187		start_split_transaction_timeout(t, card);
 188		break;
 
 189	case ACK_BUSY_X:
 190	case ACK_BUSY_A:
 191	case ACK_BUSY_B:
 192		close_transaction(t, card, RCODE_BUSY);
 193		break;
 194	case ACK_DATA_ERROR:
 195		close_transaction(t, card, RCODE_DATA_ERROR);
 196		break;
 197	case ACK_TYPE_ERROR:
 198		close_transaction(t, card, RCODE_TYPE_ERROR);
 199		break;
 200	default:
 201		/*
 202		 * In this case the ack is really a juju specific
 203		 * rcode, so just forward that to the callback.
 204		 */
 205		close_transaction(t, card, status);
 206		break;
 207	}
 208}
 209
 210static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
 211		int destination_id, int source_id, int generation, int speed,
 212		unsigned long long offset, void *payload, size_t length)
 213{
 214	int ext_tcode;
 215
 216	if (tcode == TCODE_STREAM_DATA) {
 217		packet->header[0] =
 218			HEADER_DATA_LENGTH(length) |
 219			destination_id |
 220			HEADER_TCODE(TCODE_STREAM_DATA);
 221		packet->header_length = 4;
 222		packet->payload = payload;
 223		packet->payload_length = length;
 224
 225		goto common;
 226	}
 227
 228	if (tcode > 0x10) {
 229		ext_tcode = tcode & ~0x10;
 230		tcode = TCODE_LOCK_REQUEST;
 231	} else
 232		ext_tcode = 0;
 233
 234	packet->header[0] =
 235		HEADER_RETRY(RETRY_X) |
 236		HEADER_TLABEL(tlabel) |
 237		HEADER_TCODE(tcode) |
 238		HEADER_DESTINATION(destination_id);
 239	packet->header[1] =
 240		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
 241	packet->header[2] =
 242		offset;
 243
 244	switch (tcode) {
 245	case TCODE_WRITE_QUADLET_REQUEST:
 246		packet->header[3] = *(u32 *)payload;
 247		packet->header_length = 16;
 248		packet->payload_length = 0;
 249		break;
 250
 251	case TCODE_LOCK_REQUEST:
 252	case TCODE_WRITE_BLOCK_REQUEST:
 253		packet->header[3] =
 254			HEADER_DATA_LENGTH(length) |
 255			HEADER_EXTENDED_TCODE(ext_tcode);
 256		packet->header_length = 16;
 257		packet->payload = payload;
 258		packet->payload_length = length;
 259		break;
 260
 261	case TCODE_READ_QUADLET_REQUEST:
 262		packet->header_length = 12;
 263		packet->payload_length = 0;
 264		break;
 265
 266	case TCODE_READ_BLOCK_REQUEST:
 267		packet->header[3] =
 268			HEADER_DATA_LENGTH(length) |
 269			HEADER_EXTENDED_TCODE(ext_tcode);
 270		packet->header_length = 16;
 271		packet->payload_length = 0;
 272		break;
 273
 274	default:
 275		WARN(1, "wrong tcode %d\n", tcode);
 276	}
 277 common:
 278	packet->speed = speed;
 279	packet->generation = generation;
 280	packet->ack = 0;
 281	packet->payload_mapped = false;
 282}
 283
 284static int allocate_tlabel(struct fw_card *card)
 285{
 286	int tlabel;
 287
 288	tlabel = card->current_tlabel;
 289	while (card->tlabel_mask & (1ULL << tlabel)) {
 290		tlabel = (tlabel + 1) & 0x3f;
 291		if (tlabel == card->current_tlabel)
 292			return -EBUSY;
 293	}
 294
 295	card->current_tlabel = (tlabel + 1) & 0x3f;
 296	card->tlabel_mask |= 1ULL << tlabel;
 297
 298	return tlabel;
 299}
 300
 301/**
 302 * fw_send_request() - submit a request packet for transmission
 
 303 * @card:		interface to send the request at
 304 * @t:			transaction instance to which the request belongs
 305 * @tcode:		transaction code
 306 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 307 * @generation:		bus generation in which request and response are valid
 308 * @speed:		transmission speed
 309 * @offset:		48bit wide offset into destination's address space
 310 * @payload:		data payload for the request subaction
 311 * @length:		length of the payload, in bytes
 312 * @callback:		function to be called when the transaction is completed
 
 
 313 * @callback_data:	data to be passed to the transaction completion callback
 314 *
 315 * Submit a request packet into the asynchronous request transmission queue.
 316 * Can be called from atomic context.  If you prefer a blocking API, use
 317 * fw_run_transaction() in a context that can sleep.
 318 *
 319 * In case of lock requests, specify one of the firewire-core specific %TCODE_
 320 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
 321 *
 322 * Make sure that the value in @destination_id is not older than the one in
 323 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
 324 *
 325 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
 326 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
 327 * It will contain tag, channel, and sy data instead of a node ID then.
 328 *
 329 * The payload buffer at @data is going to be DMA-mapped except in case of
 330 * @length <= 8 or of local (loopback) requests.  Hence make sure that the
 331 * buffer complies with the restrictions of the streaming DMA mapping API.
 332 * @payload must not be freed before the @callback is called.
 333 *
 334 * In case of request types without payload, @data is NULL and @length is 0.
 335 *
 336 * After the transaction is completed successfully or unsuccessfully, the
 337 * @callback will be called.  Among its parameters is the response code which
 338 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
 339 * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
 340 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
 341 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
 342 * generation, or missing ACK respectively.
 343 *
 344 * Note some timing corner cases:  fw_send_request() may complete much earlier
 345 * than when the request packet actually hits the wire.  On the other hand,
 346 * transaction completion and hence execution of @callback may happen even
 347 * before fw_send_request() returns.
 348 */
 349void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
 350		     int destination_id, int generation, int speed,
 351		     unsigned long long offset, void *payload, size_t length,
 352		     fw_transaction_callback_t callback, void *callback_data)
 353{
 354	unsigned long flags;
 355	int tlabel;
 356
 357	/*
 358	 * Allocate tlabel from the bitmap and put the transaction on
 359	 * the list while holding the card spinlock.
 360	 */
 361
 362	spin_lock_irqsave(&card->lock, flags);
 363
 364	tlabel = allocate_tlabel(card);
 365	if (tlabel < 0) {
 366		spin_unlock_irqrestore(&card->lock, flags);
 367		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
 
 
 
 
 
 
 
 
 
 
 
 
 368		return;
 369	}
 370
 371	t->node_id = destination_id;
 372	t->tlabel = tlabel;
 373	t->card = card;
 374	t->is_split_transaction = false;
 375	setup_timer(&t->split_timeout_timer,
 376		    split_transaction_timeout_callback, (unsigned long)t);
 377	t->callback = callback;
 
 378	t->callback_data = callback_data;
 379
 380	fw_fill_request(&t->packet, tcode, t->tlabel,
 381			destination_id, card->node_id, generation,
 382			speed, offset, payload, length);
 383	t->packet.callback = transmit_complete_callback;
 384
 385	list_add_tail(&t->link, &card->transaction_list);
 386
 387	spin_unlock_irqrestore(&card->lock, flags);
 388
 389	card->driver->send_request(card, &t->packet);
 390}
 391EXPORT_SYMBOL(fw_send_request);
 392
 393struct transaction_callback_data {
 394	struct completion done;
 395	void *payload;
 396	int rcode;
 397};
 398
 399static void transaction_callback(struct fw_card *card, int rcode,
 400				 void *payload, size_t length, void *data)
 401{
 402	struct transaction_callback_data *d = data;
 403
 404	if (rcode == RCODE_COMPLETE)
 405		memcpy(d->payload, payload, length);
 406	d->rcode = rcode;
 407	complete(&d->done);
 408}
 409
 410/**
 411 * fw_run_transaction() - send request and sleep until transaction is completed
 
 
 
 
 
 
 
 
 412 *
 413 * Returns the RCODE.  See fw_send_request() for parameter documentation.
 414 * Unlike fw_send_request(), @data points to the payload of the request or/and
 415 * to the payload of the response.  DMA mapping restrictions apply to outbound
 416 * request payloads of >= 8 bytes but not to inbound response payloads.
 417 */
 418int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
 419		       int generation, int speed, unsigned long long offset,
 420		       void *payload, size_t length)
 421{
 422	struct transaction_callback_data d;
 423	struct fw_transaction t;
 424
 425	init_timer_on_stack(&t.split_timeout_timer);
 426	init_completion(&d.done);
 427	d.payload = payload;
 428	fw_send_request(card, &t, tcode, destination_id, generation, speed,
 429			offset, payload, length, transaction_callback, &d);
 430	wait_for_completion(&d.done);
 431	destroy_timer_on_stack(&t.split_timeout_timer);
 432
 433	return d.rcode;
 434}
 435EXPORT_SYMBOL(fw_run_transaction);
 436
 437static DEFINE_MUTEX(phy_config_mutex);
 438static DECLARE_COMPLETION(phy_config_done);
 439
 440static void transmit_phy_packet_callback(struct fw_packet *packet,
 441					 struct fw_card *card, int status)
 442{
 443	complete(&phy_config_done);
 444}
 445
 446static struct fw_packet phy_config_packet = {
 447	.header_length	= 12,
 448	.header[0]	= TCODE_LINK_INTERNAL << 4,
 449	.payload_length	= 0,
 450	.speed		= SCODE_100,
 451	.callback	= transmit_phy_packet_callback,
 452};
 453
 454void fw_send_phy_config(struct fw_card *card,
 455			int node_id, int generation, int gap_count)
 456{
 457	long timeout = DIV_ROUND_UP(HZ, 10);
 458	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
 459
 460	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
 461		data |= PHY_CONFIG_ROOT_ID(node_id);
 462
 463	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
 464		gap_count = card->driver->read_phy_reg(card, 1);
 465		if (gap_count < 0)
 466			return;
 467
 468		gap_count &= 63;
 469		if (gap_count == 63)
 470			return;
 471	}
 472	data |= PHY_CONFIG_GAP_COUNT(gap_count);
 473
 474	mutex_lock(&phy_config_mutex);
 475
 476	phy_config_packet.header[1] = data;
 477	phy_config_packet.header[2] = ~data;
 478	phy_config_packet.generation = generation;
 479	INIT_COMPLETION(phy_config_done);
 480
 481	card->driver->send_request(card, &phy_config_packet);
 482	wait_for_completion_timeout(&phy_config_done, timeout);
 483
 484	mutex_unlock(&phy_config_mutex);
 485}
 486
 487static struct fw_address_handler *lookup_overlapping_address_handler(
 488	struct list_head *list, unsigned long long offset, size_t length)
 489{
 490	struct fw_address_handler *handler;
 491
 492	list_for_each_entry(handler, list, link) {
 493		if (handler->offset < offset + length &&
 494		    offset < handler->offset + handler->length)
 495			return handler;
 496	}
 497
 498	return NULL;
 499}
 500
 501static bool is_enclosing_handler(struct fw_address_handler *handler,
 502				 unsigned long long offset, size_t length)
 503{
 504	return handler->offset <= offset &&
 505		offset + length <= handler->offset + handler->length;
 506}
 507
 508static struct fw_address_handler *lookup_enclosing_address_handler(
 509	struct list_head *list, unsigned long long offset, size_t length)
 510{
 511	struct fw_address_handler *handler;
 512
 513	list_for_each_entry(handler, list, link) {
 514		if (is_enclosing_handler(handler, offset, length))
 515			return handler;
 516	}
 517
 518	return NULL;
 519}
 520
 521static DEFINE_SPINLOCK(address_handler_lock);
 522static LIST_HEAD(address_handler_list);
 523
 524const struct fw_address_region fw_high_memory_region =
 525	{ .start = 0x000100000000ULL, .end = 0xffffe0000000ULL,  };
 526EXPORT_SYMBOL(fw_high_memory_region);
 527
 
 
 
 528#if 0
 529const struct fw_address_region fw_low_memory_region =
 530	{ .start = 0x000000000000ULL, .end = 0x000100000000ULL,  };
 531const struct fw_address_region fw_private_region =
 532	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
 533const struct fw_address_region fw_csr_region =
 534	{ .start = CSR_REGISTER_BASE,
 535	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
 536const struct fw_address_region fw_unit_space_region =
 537	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
 538#endif  /*  0  */
 539
 540static bool is_in_fcp_region(u64 offset, size_t length)
 541{
 542	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 543		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
 544}
 545
 546/**
 547 * fw_core_add_address_handler() - register for incoming requests
 548 * @handler:	callback
 549 * @region:	region in the IEEE 1212 node space address range
 550 *
 551 * region->start, ->end, and handler->length have to be quadlet-aligned.
 552 *
 553 * When a request is received that falls within the specified address range,
 554 * the specified callback is invoked.  The parameters passed to the callback
 555 * give the details of the particular request.
 556 *
 
 557 * Return value:  0 on success, non-zero otherwise.
 558 *
 559 * The start offset of the handler's address region is determined by
 560 * fw_core_add_address_handler() and is returned in handler->offset.
 561 *
 562 * Address allocations are exclusive, except for the FCP registers.
 563 */
 564int fw_core_add_address_handler(struct fw_address_handler *handler,
 565				const struct fw_address_region *region)
 566{
 567	struct fw_address_handler *other;
 568	unsigned long flags;
 569	int ret = -EBUSY;
 570
 571	if (region->start & 0xffff000000000003ULL ||
 572	    region->start >= region->end ||
 573	    region->end   > 0x0001000000000000ULL ||
 574	    handler->length & 3 ||
 575	    handler->length == 0)
 576		return -EINVAL;
 577
 578	spin_lock_irqsave(&address_handler_lock, flags);
 579
 580	handler->offset = region->start;
 581	while (handler->offset + handler->length <= region->end) {
 582		if (is_in_fcp_region(handler->offset, handler->length))
 583			other = NULL;
 584		else
 585			other = lookup_overlapping_address_handler
 586					(&address_handler_list,
 587					 handler->offset, handler->length);
 588		if (other != NULL) {
 589			handler->offset += other->length;
 590		} else {
 591			list_add_tail(&handler->link, &address_handler_list);
 592			ret = 0;
 593			break;
 594		}
 595	}
 596
 597	spin_unlock_irqrestore(&address_handler_lock, flags);
 598
 599	return ret;
 600}
 601EXPORT_SYMBOL(fw_core_add_address_handler);
 602
 603/**
 604 * fw_core_remove_address_handler() - unregister an address handler
 
 
 
 
 
 
 605 */
 606void fw_core_remove_address_handler(struct fw_address_handler *handler)
 607{
 608	unsigned long flags;
 609
 610	spin_lock_irqsave(&address_handler_lock, flags);
 611	list_del(&handler->link);
 612	spin_unlock_irqrestore(&address_handler_lock, flags);
 613}
 614EXPORT_SYMBOL(fw_core_remove_address_handler);
 615
 616struct fw_request {
 
 617	struct fw_packet response;
 618	u32 request_header[4];
 619	int ack;
 
 620	u32 length;
 621	u32 data[0];
 622};
 623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624static void free_response_callback(struct fw_packet *packet,
 625				   struct fw_card *card, int status)
 626{
 627	struct fw_request *request;
 628
 629	request = container_of(packet, struct fw_request, response);
 630	kfree(request);
 
 
 
 631}
 632
 633int fw_get_response_length(struct fw_request *r)
 634{
 635	int tcode, ext_tcode, data_length;
 636
 637	tcode = HEADER_GET_TCODE(r->request_header[0]);
 638
 639	switch (tcode) {
 640	case TCODE_WRITE_QUADLET_REQUEST:
 641	case TCODE_WRITE_BLOCK_REQUEST:
 642		return 0;
 643
 644	case TCODE_READ_QUADLET_REQUEST:
 645		return 4;
 646
 647	case TCODE_READ_BLOCK_REQUEST:
 648		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 649		return data_length;
 650
 651	case TCODE_LOCK_REQUEST:
 652		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
 653		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 654		switch (ext_tcode) {
 655		case EXTCODE_FETCH_ADD:
 656		case EXTCODE_LITTLE_ADD:
 657			return data_length;
 658		default:
 659			return data_length / 2;
 660		}
 661
 662	default:
 663		WARN(1, "wrong tcode %d\n", tcode);
 664		return 0;
 665	}
 666}
 667
 668void fw_fill_response(struct fw_packet *response, u32 *request_header,
 669		      int rcode, void *payload, size_t length)
 670{
 671	int tcode, tlabel, extended_tcode, source, destination;
 672
 673	tcode          = HEADER_GET_TCODE(request_header[0]);
 674	tlabel         = HEADER_GET_TLABEL(request_header[0]);
 675	source         = HEADER_GET_DESTINATION(request_header[0]);
 676	destination    = HEADER_GET_SOURCE(request_header[1]);
 677	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
 678
 679	response->header[0] =
 680		HEADER_RETRY(RETRY_1) |
 681		HEADER_TLABEL(tlabel) |
 682		HEADER_DESTINATION(destination);
 683	response->header[1] =
 684		HEADER_SOURCE(source) |
 685		HEADER_RCODE(rcode);
 686	response->header[2] = 0;
 687
 688	switch (tcode) {
 689	case TCODE_WRITE_QUADLET_REQUEST:
 690	case TCODE_WRITE_BLOCK_REQUEST:
 691		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
 692		response->header_length = 12;
 693		response->payload_length = 0;
 694		break;
 695
 696	case TCODE_READ_QUADLET_REQUEST:
 697		response->header[0] |=
 698			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
 699		if (payload != NULL)
 700			response->header[3] = *(u32 *)payload;
 701		else
 702			response->header[3] = 0;
 703		response->header_length = 16;
 704		response->payload_length = 0;
 705		break;
 706
 707	case TCODE_READ_BLOCK_REQUEST:
 708	case TCODE_LOCK_REQUEST:
 709		response->header[0] |= HEADER_TCODE(tcode + 2);
 710		response->header[3] =
 711			HEADER_DATA_LENGTH(length) |
 712			HEADER_EXTENDED_TCODE(extended_tcode);
 713		response->header_length = 16;
 714		response->payload = payload;
 715		response->payload_length = length;
 716		break;
 717
 718	default:
 719		WARN(1, "wrong tcode %d\n", tcode);
 720	}
 721
 722	response->payload_mapped = false;
 723}
 724EXPORT_SYMBOL(fw_fill_response);
 725
 726static u32 compute_split_timeout_timestamp(struct fw_card *card,
 727					   u32 request_timestamp)
 728{
 729	unsigned int cycles;
 730	u32 timestamp;
 731
 732	cycles = card->split_timeout_cycles;
 733	cycles += request_timestamp & 0x1fff;
 734
 735	timestamp = request_timestamp & ~0x1fff;
 736	timestamp += (cycles / 8000) << 13;
 737	timestamp |= cycles % 8000;
 738
 739	return timestamp;
 740}
 741
 742static struct fw_request *allocate_request(struct fw_card *card,
 743					   struct fw_packet *p)
 744{
 745	struct fw_request *request;
 746	u32 *data, length;
 747	int request_tcode;
 748
 749	request_tcode = HEADER_GET_TCODE(p->header[0]);
 750	switch (request_tcode) {
 751	case TCODE_WRITE_QUADLET_REQUEST:
 752		data = &p->header[3];
 753		length = 4;
 754		break;
 755
 756	case TCODE_WRITE_BLOCK_REQUEST:
 757	case TCODE_LOCK_REQUEST:
 758		data = p->payload;
 759		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 760		break;
 761
 762	case TCODE_READ_QUADLET_REQUEST:
 763		data = NULL;
 764		length = 4;
 765		break;
 766
 767	case TCODE_READ_BLOCK_REQUEST:
 768		data = NULL;
 769		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 770		break;
 771
 772	default:
 773		fw_error("ERROR - corrupt request received - %08x %08x %08x\n",
 774			 p->header[0], p->header[1], p->header[2]);
 775		return NULL;
 776	}
 777
 778	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
 779	if (request == NULL)
 780		return NULL;
 
 781
 782	request->response.speed = p->speed;
 783	request->response.timestamp =
 784			compute_split_timeout_timestamp(card, p->timestamp);
 785	request->response.generation = p->generation;
 786	request->response.ack = 0;
 787	request->response.callback = free_response_callback;
 788	request->ack = p->ack;
 
 789	request->length = length;
 790	if (data)
 791		memcpy(request->data, data, length);
 792
 793	memcpy(request->request_header, p->header, sizeof(p->header));
 794
 795	return request;
 796}
 797
 
 
 
 
 
 
 
 
 
 798void fw_send_response(struct fw_card *card,
 799		      struct fw_request *request, int rcode)
 800{
 801	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
 802		return;
 803
 804	/* unified transaction or broadcast transaction: don't respond */
 805	if (request->ack != ACK_PENDING ||
 806	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
 807		kfree(request);
 808		return;
 809	}
 810
 811	if (rcode == RCODE_COMPLETE)
 812		fw_fill_response(&request->response, request->request_header,
 813				 rcode, request->data,
 814				 fw_get_response_length(request));
 815	else
 816		fw_fill_response(&request->response, request->request_header,
 817				 rcode, NULL, 0);
 818
 
 
 
 819	card->driver->send_response(card, &request->response);
 820}
 821EXPORT_SYMBOL(fw_send_response);
 822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823static void handle_exclusive_region_request(struct fw_card *card,
 824					    struct fw_packet *p,
 825					    struct fw_request *request,
 826					    unsigned long long offset)
 827{
 828	struct fw_address_handler *handler;
 829	unsigned long flags;
 830	int tcode, destination, source;
 831
 832	destination = HEADER_GET_DESTINATION(p->header[0]);
 833	source      = HEADER_GET_SOURCE(p->header[1]);
 834	tcode       = HEADER_GET_TCODE(p->header[0]);
 835	if (tcode == TCODE_LOCK_REQUEST)
 836		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
 837
 838	spin_lock_irqsave(&address_handler_lock, flags);
 839	handler = lookup_enclosing_address_handler(&address_handler_list,
 840						   offset, request->length);
 841	spin_unlock_irqrestore(&address_handler_lock, flags);
 842
 843	/*
 844	 * FIXME: lookup the fw_node corresponding to the sender of
 845	 * this request and pass that to the address handler instead
 846	 * of the node ID.  We may also want to move the address
 847	 * allocations to fw_node so we only do this callback if the
 848	 * upper layers registered it for this node.
 849	 */
 850
 851	if (handler == NULL)
 852		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 853	else
 854		handler->address_callback(card, request,
 855					  tcode, destination, source,
 856					  p->generation, offset,
 857					  request->data, request->length,
 858					  handler->callback_data);
 
 
 
 
 859}
 860
 861static void handle_fcp_region_request(struct fw_card *card,
 862				      struct fw_packet *p,
 863				      struct fw_request *request,
 864				      unsigned long long offset)
 865{
 866	struct fw_address_handler *handler;
 867	unsigned long flags;
 868	int tcode, destination, source;
 869
 870	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 871	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
 872	    request->length > 0x200) {
 873		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 874
 875		return;
 876	}
 877
 878	tcode       = HEADER_GET_TCODE(p->header[0]);
 879	destination = HEADER_GET_DESTINATION(p->header[0]);
 880	source      = HEADER_GET_SOURCE(p->header[1]);
 881
 882	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
 883	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
 884		fw_send_response(card, request, RCODE_TYPE_ERROR);
 885
 886		return;
 887	}
 888
 889	spin_lock_irqsave(&address_handler_lock, flags);
 890	list_for_each_entry(handler, &address_handler_list, link) {
 891		if (is_enclosing_handler(handler, offset, request->length))
 892			handler->address_callback(card, NULL, tcode,
 893						  destination, source,
 894						  p->generation, offset,
 895						  request->data,
 896						  request->length,
 897						  handler->callback_data);
 898	}
 899	spin_unlock_irqrestore(&address_handler_lock, flags);
 900
 901	fw_send_response(card, request, RCODE_COMPLETE);
 902}
 903
 904void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
 905{
 906	struct fw_request *request;
 907	unsigned long long offset;
 908
 909	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
 910		return;
 911
 912	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
 913		fw_cdev_handle_phy_packet(card, p);
 914		return;
 915	}
 916
 917	request = allocate_request(card, p);
 918	if (request == NULL) {
 919		/* FIXME: send statically allocated busy packet. */
 920		return;
 921	}
 922
 923	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
 924		p->header[2];
 925
 926	if (!is_in_fcp_region(offset, request->length))
 927		handle_exclusive_region_request(card, p, request, offset);
 928	else
 929		handle_fcp_region_request(card, p, request, offset);
 930
 931}
 932EXPORT_SYMBOL(fw_core_handle_request);
 933
 934void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
 935{
 936	struct fw_transaction *t;
 937	unsigned long flags;
 938	u32 *data;
 939	size_t data_length;
 940	int tcode, tlabel, source, rcode;
 941
 942	tcode	= HEADER_GET_TCODE(p->header[0]);
 943	tlabel	= HEADER_GET_TLABEL(p->header[0]);
 944	source	= HEADER_GET_SOURCE(p->header[1]);
 945	rcode	= HEADER_GET_RCODE(p->header[1]);
 946
 947	spin_lock_irqsave(&card->lock, flags);
 948	list_for_each_entry(t, &card->transaction_list, link) {
 949		if (t->node_id == source && t->tlabel == tlabel) {
 950			if (!try_cancel_split_timeout(t)) {
 951				spin_unlock_irqrestore(&card->lock, flags);
 952				goto timed_out;
 953			}
 954			list_del_init(&t->link);
 955			card->tlabel_mask &= ~(1ULL << t->tlabel);
 
 956			break;
 957		}
 958	}
 959	spin_unlock_irqrestore(&card->lock, flags);
 960
 961	if (&t->link == &card->transaction_list) {
 962 timed_out:
 963		fw_notify("Unsolicited response (source %x, tlabel %x)\n",
 964			  source, tlabel);
 965		return;
 966	}
 967
 968	/*
 969	 * FIXME: sanity check packet, is length correct, does tcodes
 970	 * and addresses match.
 971	 */
 972
 973	switch (tcode) {
 974	case TCODE_READ_QUADLET_RESPONSE:
 975		data = (u32 *) &p->header[3];
 976		data_length = 4;
 977		break;
 978
 979	case TCODE_WRITE_RESPONSE:
 980		data = NULL;
 981		data_length = 0;
 982		break;
 983
 984	case TCODE_READ_BLOCK_RESPONSE:
 985	case TCODE_LOCK_RESPONSE:
 986		data = p->payload;
 987		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
 988		break;
 989
 990	default:
 991		/* Should never happen, this is just to shut up gcc. */
 992		data = NULL;
 993		data_length = 0;
 994		break;
 995	}
 996
 997	/*
 998	 * The response handler may be executed while the request handler
 999	 * is still pending.  Cancel the request handler.
1000	 */
1001	card->driver->cancel_packet(card, &t->packet);
1002
1003	t->callback(card, rcode, data, data_length, t->callback_data);
 
 
 
 
 
1004}
1005EXPORT_SYMBOL(fw_core_handle_response);
1006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1007static const struct fw_address_region topology_map_region =
1008	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1009	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1010
1011static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1012		int tcode, int destination, int source, int generation,
1013		unsigned long long offset, void *payload, size_t length,
1014		void *callback_data)
1015{
1016	int start;
1017
1018	if (!TCODE_IS_READ_REQUEST(tcode)) {
1019		fw_send_response(card, request, RCODE_TYPE_ERROR);
1020		return;
1021	}
1022
1023	if ((offset & 3) > 0 || (length & 3) > 0) {
1024		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1025		return;
1026	}
1027
1028	start = (offset - topology_map_region.start) / 4;
1029	memcpy(payload, &card->topology_map[start], length);
1030
1031	fw_send_response(card, request, RCODE_COMPLETE);
1032}
1033
1034static struct fw_address_handler topology_map = {
1035	.length			= 0x400,
1036	.address_callback	= handle_topology_map,
1037};
1038
1039static const struct fw_address_region registers_region =
1040	{ .start = CSR_REGISTER_BASE,
1041	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1042
1043static void update_split_timeout(struct fw_card *card)
1044{
1045	unsigned int cycles;
1046
1047	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1048
1049	cycles = max(cycles, 800u); /* minimum as per the spec */
1050	cycles = min(cycles, 3u * 8000u); /* maximum OHCI timeout */
1051
1052	card->split_timeout_cycles = cycles;
1053	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1054}
1055
1056static void handle_registers(struct fw_card *card, struct fw_request *request,
1057		int tcode, int destination, int source, int generation,
1058		unsigned long long offset, void *payload, size_t length,
1059		void *callback_data)
1060{
1061	int reg = offset & ~CSR_REGISTER_BASE;
1062	__be32 *data = payload;
1063	int rcode = RCODE_COMPLETE;
1064	unsigned long flags;
1065
1066	switch (reg) {
1067	case CSR_PRIORITY_BUDGET:
1068		if (!card->priority_budget_implemented) {
1069			rcode = RCODE_ADDRESS_ERROR;
1070			break;
1071		}
1072		/* else fall through */
1073
1074	case CSR_NODE_IDS:
1075		/*
1076		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1077		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1078		 */
1079		/* fall through */
1080
1081	case CSR_STATE_CLEAR:
1082	case CSR_STATE_SET:
1083	case CSR_CYCLE_TIME:
1084	case CSR_BUS_TIME:
1085	case CSR_BUSY_TIMEOUT:
1086		if (tcode == TCODE_READ_QUADLET_REQUEST)
1087			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1088		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1089			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1090		else
1091			rcode = RCODE_TYPE_ERROR;
1092		break;
1093
1094	case CSR_RESET_START:
1095		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1096			card->driver->write_csr(card, CSR_STATE_CLEAR,
1097						CSR_STATE_BIT_ABDICATE);
1098		else
1099			rcode = RCODE_TYPE_ERROR;
1100		break;
1101
1102	case CSR_SPLIT_TIMEOUT_HI:
1103		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1104			*data = cpu_to_be32(card->split_timeout_hi);
1105		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1106			spin_lock_irqsave(&card->lock, flags);
1107			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1108			update_split_timeout(card);
1109			spin_unlock_irqrestore(&card->lock, flags);
1110		} else {
1111			rcode = RCODE_TYPE_ERROR;
1112		}
1113		break;
1114
1115	case CSR_SPLIT_TIMEOUT_LO:
1116		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1117			*data = cpu_to_be32(card->split_timeout_lo);
1118		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1119			spin_lock_irqsave(&card->lock, flags);
1120			card->split_timeout_lo =
1121					be32_to_cpu(*data) & 0xfff80000;
1122			update_split_timeout(card);
1123			spin_unlock_irqrestore(&card->lock, flags);
1124		} else {
1125			rcode = RCODE_TYPE_ERROR;
1126		}
1127		break;
1128
1129	case CSR_MAINT_UTILITY:
1130		if (tcode == TCODE_READ_QUADLET_REQUEST)
1131			*data = card->maint_utility_register;
1132		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1133			card->maint_utility_register = *data;
1134		else
1135			rcode = RCODE_TYPE_ERROR;
1136		break;
1137
1138	case CSR_BROADCAST_CHANNEL:
1139		if (tcode == TCODE_READ_QUADLET_REQUEST)
1140			*data = cpu_to_be32(card->broadcast_channel);
1141		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1142			card->broadcast_channel =
1143			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1144			    BROADCAST_CHANNEL_INITIAL;
1145		else
1146			rcode = RCODE_TYPE_ERROR;
1147		break;
1148
1149	case CSR_BUS_MANAGER_ID:
1150	case CSR_BANDWIDTH_AVAILABLE:
1151	case CSR_CHANNELS_AVAILABLE_HI:
1152	case CSR_CHANNELS_AVAILABLE_LO:
1153		/*
1154		 * FIXME: these are handled by the OHCI hardware and
1155		 * the stack never sees these request. If we add
1156		 * support for a new type of controller that doesn't
1157		 * handle this in hardware we need to deal with these
1158		 * transactions.
1159		 */
1160		BUG();
1161		break;
1162
1163	default:
1164		rcode = RCODE_ADDRESS_ERROR;
1165		break;
1166	}
1167
1168	fw_send_response(card, request, rcode);
1169}
1170
1171static struct fw_address_handler registers = {
1172	.length			= 0x400,
1173	.address_callback	= handle_registers,
1174};
1175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1177MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1178MODULE_LICENSE("GPL");
1179
1180static const u32 vendor_textual_descriptor[] = {
1181	/* textual descriptor leaf () */
1182	0x00060000,
1183	0x00000000,
1184	0x00000000,
1185	0x4c696e75,		/* L i n u */
1186	0x78204669,		/* x   F i */
1187	0x72657769,		/* r e w i */
1188	0x72650000,		/* r e     */
1189};
1190
1191static const u32 model_textual_descriptor[] = {
1192	/* model descriptor leaf () */
1193	0x00030000,
1194	0x00000000,
1195	0x00000000,
1196	0x4a756a75,		/* J u j u */
1197};
1198
1199static struct fw_descriptor vendor_id_descriptor = {
1200	.length = ARRAY_SIZE(vendor_textual_descriptor),
1201	.immediate = 0x03d00d1e,
1202	.key = 0x81000000,
1203	.data = vendor_textual_descriptor,
1204};
1205
1206static struct fw_descriptor model_id_descriptor = {
1207	.length = ARRAY_SIZE(model_textual_descriptor),
1208	.immediate = 0x17000001,
1209	.key = 0x81000000,
1210	.data = model_textual_descriptor,
1211};
1212
1213static int __init fw_core_init(void)
1214{
1215	int ret;
1216
1217	fw_workqueue = alloc_workqueue("firewire",
1218				       WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1219	if (!fw_workqueue)
1220		return -ENOMEM;
1221
1222	ret = bus_register(&fw_bus_type);
1223	if (ret < 0) {
1224		destroy_workqueue(fw_workqueue);
1225		return ret;
1226	}
1227
1228	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1229	if (fw_cdev_major < 0) {
1230		bus_unregister(&fw_bus_type);
1231		destroy_workqueue(fw_workqueue);
1232		return fw_cdev_major;
1233	}
1234
1235	fw_core_add_address_handler(&topology_map, &topology_map_region);
1236	fw_core_add_address_handler(&registers, &registers_region);
 
1237	fw_core_add_descriptor(&vendor_id_descriptor);
1238	fw_core_add_descriptor(&model_id_descriptor);
1239
1240	return 0;
1241}
1242
1243static void __exit fw_core_cleanup(void)
1244{
1245	unregister_chrdev(fw_cdev_major, "firewire");
1246	bus_unregister(&fw_bus_type);
1247	destroy_workqueue(fw_workqueue);
1248	idr_destroy(&fw_device_idr);
1249}
1250
1251module_init(fw_core_init);
1252module_exit(fw_core_cleanup);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Core IEEE1394 transaction logic
   4 *
   5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/bug.h>
   9#include <linux/completion.h>
  10#include <linux/device.h>
  11#include <linux/errno.h>
  12#include <linux/firewire.h>
  13#include <linux/firewire-constants.h>
  14#include <linux/fs.h>
  15#include <linux/init.h>
  16#include <linux/idr.h>
  17#include <linux/jiffies.h>
  18#include <linux/kernel.h>
  19#include <linux/list.h>
  20#include <linux/module.h>
  21#include <linux/rculist.h>
  22#include <linux/slab.h>
  23#include <linux/spinlock.h>
  24#include <linux/string.h>
  25#include <linux/timer.h>
  26#include <linux/types.h>
  27#include <linux/workqueue.h>
  28
  29#include <asm/byteorder.h>
  30
  31#include "core.h"
  32
  33#define HEADER_PRI(pri)			((pri) << 0)
  34#define HEADER_TCODE(tcode)		((tcode) << 4)
  35#define HEADER_RETRY(retry)		((retry) << 8)
  36#define HEADER_TLABEL(tlabel)		((tlabel) << 10)
  37#define HEADER_DESTINATION(destination)	((destination) << 16)
  38#define HEADER_SOURCE(source)		((source) << 16)
  39#define HEADER_RCODE(rcode)		((rcode) << 12)
  40#define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
  41#define HEADER_DATA_LENGTH(length)	((length) << 16)
  42#define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
  43
  44#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
  45#define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
  46#define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
  47#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
  48#define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
  49#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
  50#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
  51#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
  52
  53#define HEADER_DESTINATION_IS_BROADCAST(q) \
  54	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
  55
  56#define PHY_PACKET_CONFIG	0x0
  57#define PHY_PACKET_LINK_ON	0x1
  58#define PHY_PACKET_SELF_ID	0x2
  59
  60#define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
  61#define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
  62#define PHY_IDENTIFIER(id)		((id) << 30)
  63
  64/* returns 0 if the split timeout handler is already running */
  65static int try_cancel_split_timeout(struct fw_transaction *t)
  66{
  67	if (t->is_split_transaction)
  68		return del_timer(&t->split_timeout_timer);
  69	else
  70		return 1;
  71}
  72
  73static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
  74			     u32 response_tstamp)
  75{
  76	struct fw_transaction *t = NULL, *iter;
  77	unsigned long flags;
  78
  79	spin_lock_irqsave(&card->lock, flags);
  80	list_for_each_entry(iter, &card->transaction_list, link) {
  81		if (iter == transaction) {
  82			if (!try_cancel_split_timeout(iter)) {
  83				spin_unlock_irqrestore(&card->lock, flags);
  84				goto timed_out;
  85			}
  86			list_del_init(&iter->link);
  87			card->tlabel_mask &= ~(1ULL << iter->tlabel);
  88			t = iter;
  89			break;
  90		}
  91	}
  92	spin_unlock_irqrestore(&card->lock, flags);
  93
  94	if (t) {
  95		if (!t->with_tstamp) {
  96			t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
  97		} else {
  98			t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp,
  99						NULL, 0, t->callback_data);
 100		}
 101		return 0;
 102	}
 103
 104 timed_out:
 105	return -ENOENT;
 106}
 107
 108/*
 109 * Only valid for transactions that are potentially pending (ie have
 110 * been sent).
 111 */
 112int fw_cancel_transaction(struct fw_card *card,
 113			  struct fw_transaction *transaction)
 114{
 115	u32 tstamp;
 116
 117	/*
 118	 * Cancel the packet transmission if it's still queued.  That
 119	 * will call the packet transmission callback which cancels
 120	 * the transaction.
 121	 */
 122
 123	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
 124		return 0;
 125
 126	/*
 127	 * If the request packet has already been sent, we need to see
 128	 * if the transaction is still pending and remove it in that case.
 129	 */
 130
 131	if (transaction->packet.ack == 0) {
 132		// The timestamp is reused since it was just read now.
 133		tstamp = transaction->packet.timestamp;
 134	} else {
 135		u32 curr_cycle_time = 0;
 136
 137		(void)fw_card_read_cycle_time(card, &curr_cycle_time);
 138		tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
 139	}
 140
 141	return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
 142}
 143EXPORT_SYMBOL(fw_cancel_transaction);
 144
 145static void split_transaction_timeout_callback(struct timer_list *timer)
 146{
 147	struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
 148	struct fw_card *card = t->card;
 149	unsigned long flags;
 150
 151	spin_lock_irqsave(&card->lock, flags);
 152	if (list_empty(&t->link)) {
 153		spin_unlock_irqrestore(&card->lock, flags);
 154		return;
 155	}
 156	list_del(&t->link);
 157	card->tlabel_mask &= ~(1ULL << t->tlabel);
 158	spin_unlock_irqrestore(&card->lock, flags);
 159
 160	if (!t->with_tstamp) {
 161		t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
 162	} else {
 163		t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
 164					t->split_timeout_cycle, NULL, 0, t->callback_data);
 165	}
 166}
 167
 168static void start_split_transaction_timeout(struct fw_transaction *t,
 169					    struct fw_card *card)
 170{
 171	unsigned long flags;
 172
 173	spin_lock_irqsave(&card->lock, flags);
 174
 175	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
 176		spin_unlock_irqrestore(&card->lock, flags);
 177		return;
 178	}
 179
 180	t->is_split_transaction = true;
 181	mod_timer(&t->split_timeout_timer,
 182		  jiffies + card->split_timeout_jiffies);
 183
 184	spin_unlock_irqrestore(&card->lock, flags);
 185}
 186
 187static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
 188
 189static void transmit_complete_callback(struct fw_packet *packet,
 190				       struct fw_card *card, int status)
 191{
 192	struct fw_transaction *t =
 193	    container_of(packet, struct fw_transaction, packet);
 194
 195	switch (status) {
 196	case ACK_COMPLETE:
 197		close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
 198		break;
 199	case ACK_PENDING:
 200	{
 201		t->split_timeout_cycle =
 202			compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
 203		start_split_transaction_timeout(t, card);
 204		break;
 205	}
 206	case ACK_BUSY_X:
 207	case ACK_BUSY_A:
 208	case ACK_BUSY_B:
 209		close_transaction(t, card, RCODE_BUSY, packet->timestamp);
 210		break;
 211	case ACK_DATA_ERROR:
 212		close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
 213		break;
 214	case ACK_TYPE_ERROR:
 215		close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
 216		break;
 217	default:
 218		/*
 219		 * In this case the ack is really a juju specific
 220		 * rcode, so just forward that to the callback.
 221		 */
 222		close_transaction(t, card, status, packet->timestamp);
 223		break;
 224	}
 225}
 226
 227static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
 228		int destination_id, int source_id, int generation, int speed,
 229		unsigned long long offset, void *payload, size_t length)
 230{
 231	int ext_tcode;
 232
 233	if (tcode == TCODE_STREAM_DATA) {
 234		packet->header[0] =
 235			HEADER_DATA_LENGTH(length) |
 236			destination_id |
 237			HEADER_TCODE(TCODE_STREAM_DATA);
 238		packet->header_length = 4;
 239		packet->payload = payload;
 240		packet->payload_length = length;
 241
 242		goto common;
 243	}
 244
 245	if (tcode > 0x10) {
 246		ext_tcode = tcode & ~0x10;
 247		tcode = TCODE_LOCK_REQUEST;
 248	} else
 249		ext_tcode = 0;
 250
 251	packet->header[0] =
 252		HEADER_RETRY(RETRY_X) |
 253		HEADER_TLABEL(tlabel) |
 254		HEADER_TCODE(tcode) |
 255		HEADER_DESTINATION(destination_id);
 256	packet->header[1] =
 257		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
 258	packet->header[2] =
 259		offset;
 260
 261	switch (tcode) {
 262	case TCODE_WRITE_QUADLET_REQUEST:
 263		packet->header[3] = *(u32 *)payload;
 264		packet->header_length = 16;
 265		packet->payload_length = 0;
 266		break;
 267
 268	case TCODE_LOCK_REQUEST:
 269	case TCODE_WRITE_BLOCK_REQUEST:
 270		packet->header[3] =
 271			HEADER_DATA_LENGTH(length) |
 272			HEADER_EXTENDED_TCODE(ext_tcode);
 273		packet->header_length = 16;
 274		packet->payload = payload;
 275		packet->payload_length = length;
 276		break;
 277
 278	case TCODE_READ_QUADLET_REQUEST:
 279		packet->header_length = 12;
 280		packet->payload_length = 0;
 281		break;
 282
 283	case TCODE_READ_BLOCK_REQUEST:
 284		packet->header[3] =
 285			HEADER_DATA_LENGTH(length) |
 286			HEADER_EXTENDED_TCODE(ext_tcode);
 287		packet->header_length = 16;
 288		packet->payload_length = 0;
 289		break;
 290
 291	default:
 292		WARN(1, "wrong tcode %d\n", tcode);
 293	}
 294 common:
 295	packet->speed = speed;
 296	packet->generation = generation;
 297	packet->ack = 0;
 298	packet->payload_mapped = false;
 299}
 300
 301static int allocate_tlabel(struct fw_card *card)
 302{
 303	int tlabel;
 304
 305	tlabel = card->current_tlabel;
 306	while (card->tlabel_mask & (1ULL << tlabel)) {
 307		tlabel = (tlabel + 1) & 0x3f;
 308		if (tlabel == card->current_tlabel)
 309			return -EBUSY;
 310	}
 311
 312	card->current_tlabel = (tlabel + 1) & 0x3f;
 313	card->tlabel_mask |= 1ULL << tlabel;
 314
 315	return tlabel;
 316}
 317
 318/**
 319 * __fw_send_request() - submit a request packet for transmission to generate callback for response
 320 *			 subaction with or without time stamp.
 321 * @card:		interface to send the request at
 322 * @t:			transaction instance to which the request belongs
 323 * @tcode:		transaction code
 324 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 325 * @generation:		bus generation in which request and response are valid
 326 * @speed:		transmission speed
 327 * @offset:		48bit wide offset into destination's address space
 328 * @payload:		data payload for the request subaction
 329 * @length:		length of the payload, in bytes
 330 * @callback:		union of two functions whether to receive time stamp or not for response
 331 *			subaction.
 332 * @with_tstamp:	Whether to receive time stamp or not for response subaction.
 333 * @callback_data:	data to be passed to the transaction completion callback
 334 *
 335 * Submit a request packet into the asynchronous request transmission queue.
 336 * Can be called from atomic context.  If you prefer a blocking API, use
 337 * fw_run_transaction() in a context that can sleep.
 338 *
 339 * In case of lock requests, specify one of the firewire-core specific %TCODE_
 340 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
 341 *
 342 * Make sure that the value in @destination_id is not older than the one in
 343 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
 344 *
 345 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
 346 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
 347 * It will contain tag, channel, and sy data instead of a node ID then.
 348 *
 349 * The payload buffer at @data is going to be DMA-mapped except in case of
 350 * @length <= 8 or of local (loopback) requests.  Hence make sure that the
 351 * buffer complies with the restrictions of the streaming DMA mapping API.
 352 * @payload must not be freed before the @callback is called.
 353 *
 354 * In case of request types without payload, @data is NULL and @length is 0.
 355 *
 356 * After the transaction is completed successfully or unsuccessfully, the
 357 * @callback will be called.  Among its parameters is the response code which
 358 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
 359 * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
 360 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
 361 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
 362 * generation, or missing ACK respectively.
 363 *
 364 * Note some timing corner cases:  fw_send_request() may complete much earlier
 365 * than when the request packet actually hits the wire.  On the other hand,
 366 * transaction completion and hence execution of @callback may happen even
 367 * before fw_send_request() returns.
 368 */
 369void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
 370		int destination_id, int generation, int speed, unsigned long long offset,
 371		void *payload, size_t length, union fw_transaction_callback callback,
 372		bool with_tstamp, void *callback_data)
 373{
 374	unsigned long flags;
 375	int tlabel;
 376
 377	/*
 378	 * Allocate tlabel from the bitmap and put the transaction on
 379	 * the list while holding the card spinlock.
 380	 */
 381
 382	spin_lock_irqsave(&card->lock, flags);
 383
 384	tlabel = allocate_tlabel(card);
 385	if (tlabel < 0) {
 386		spin_unlock_irqrestore(&card->lock, flags);
 387		if (!with_tstamp) {
 388			callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
 389		} else {
 390			// Timestamping on behalf of hardware.
 391			u32 curr_cycle_time = 0;
 392			u32 tstamp;
 393
 394			(void)fw_card_read_cycle_time(card, &curr_cycle_time);
 395			tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
 396
 397			callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
 398					     callback_data);
 399		}
 400		return;
 401	}
 402
 403	t->node_id = destination_id;
 404	t->tlabel = tlabel;
 405	t->card = card;
 406	t->is_split_transaction = false;
 407	timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
 
 408	t->callback = callback;
 409	t->with_tstamp = with_tstamp;
 410	t->callback_data = callback_data;
 411
 412	fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation,
 
 413			speed, offset, payload, length);
 414	t->packet.callback = transmit_complete_callback;
 415
 416	list_add_tail(&t->link, &card->transaction_list);
 417
 418	spin_unlock_irqrestore(&card->lock, flags);
 419
 420	card->driver->send_request(card, &t->packet);
 421}
 422EXPORT_SYMBOL_GPL(__fw_send_request);
 423
 424struct transaction_callback_data {
 425	struct completion done;
 426	void *payload;
 427	int rcode;
 428};
 429
 430static void transaction_callback(struct fw_card *card, int rcode,
 431				 void *payload, size_t length, void *data)
 432{
 433	struct transaction_callback_data *d = data;
 434
 435	if (rcode == RCODE_COMPLETE)
 436		memcpy(d->payload, payload, length);
 437	d->rcode = rcode;
 438	complete(&d->done);
 439}
 440
 441/**
 442 * fw_run_transaction() - send request and sleep until transaction is completed
 443 * @card:		card interface for this request
 444 * @tcode:		transaction code
 445 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 446 * @generation:		bus generation in which request and response are valid
 447 * @speed:		transmission speed
 448 * @offset:		48bit wide offset into destination's address space
 449 * @payload:		data payload for the request subaction
 450 * @length:		length of the payload, in bytes
 451 *
 452 * Returns the RCODE.  See fw_send_request() for parameter documentation.
 453 * Unlike fw_send_request(), @data points to the payload of the request or/and
 454 * to the payload of the response.  DMA mapping restrictions apply to outbound
 455 * request payloads of >= 8 bytes but not to inbound response payloads.
 456 */
 457int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
 458		       int generation, int speed, unsigned long long offset,
 459		       void *payload, size_t length)
 460{
 461	struct transaction_callback_data d;
 462	struct fw_transaction t;
 463
 464	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
 465	init_completion(&d.done);
 466	d.payload = payload;
 467	fw_send_request(card, &t, tcode, destination_id, generation, speed,
 468			offset, payload, length, transaction_callback, &d);
 469	wait_for_completion(&d.done);
 470	destroy_timer_on_stack(&t.split_timeout_timer);
 471
 472	return d.rcode;
 473}
 474EXPORT_SYMBOL(fw_run_transaction);
 475
 476static DEFINE_MUTEX(phy_config_mutex);
 477static DECLARE_COMPLETION(phy_config_done);
 478
 479static void transmit_phy_packet_callback(struct fw_packet *packet,
 480					 struct fw_card *card, int status)
 481{
 482	complete(&phy_config_done);
 483}
 484
 485static struct fw_packet phy_config_packet = {
 486	.header_length	= 12,
 487	.header[0]	= TCODE_LINK_INTERNAL << 4,
 488	.payload_length	= 0,
 489	.speed		= SCODE_100,
 490	.callback	= transmit_phy_packet_callback,
 491};
 492
 493void fw_send_phy_config(struct fw_card *card,
 494			int node_id, int generation, int gap_count)
 495{
 496	long timeout = DIV_ROUND_UP(HZ, 10);
 497	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
 498
 499	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
 500		data |= PHY_CONFIG_ROOT_ID(node_id);
 501
 502	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
 503		gap_count = card->driver->read_phy_reg(card, 1);
 504		if (gap_count < 0)
 505			return;
 506
 507		gap_count &= 63;
 508		if (gap_count == 63)
 509			return;
 510	}
 511	data |= PHY_CONFIG_GAP_COUNT(gap_count);
 512
 513	mutex_lock(&phy_config_mutex);
 514
 515	phy_config_packet.header[1] = data;
 516	phy_config_packet.header[2] = ~data;
 517	phy_config_packet.generation = generation;
 518	reinit_completion(&phy_config_done);
 519
 520	card->driver->send_request(card, &phy_config_packet);
 521	wait_for_completion_timeout(&phy_config_done, timeout);
 522
 523	mutex_unlock(&phy_config_mutex);
 524}
 525
 526static struct fw_address_handler *lookup_overlapping_address_handler(
 527	struct list_head *list, unsigned long long offset, size_t length)
 528{
 529	struct fw_address_handler *handler;
 530
 531	list_for_each_entry_rcu(handler, list, link) {
 532		if (handler->offset < offset + length &&
 533		    offset < handler->offset + handler->length)
 534			return handler;
 535	}
 536
 537	return NULL;
 538}
 539
 540static bool is_enclosing_handler(struct fw_address_handler *handler,
 541				 unsigned long long offset, size_t length)
 542{
 543	return handler->offset <= offset &&
 544		offset + length <= handler->offset + handler->length;
 545}
 546
 547static struct fw_address_handler *lookup_enclosing_address_handler(
 548	struct list_head *list, unsigned long long offset, size_t length)
 549{
 550	struct fw_address_handler *handler;
 551
 552	list_for_each_entry_rcu(handler, list, link) {
 553		if (is_enclosing_handler(handler, offset, length))
 554			return handler;
 555	}
 556
 557	return NULL;
 558}
 559
 560static DEFINE_SPINLOCK(address_handler_list_lock);
 561static LIST_HEAD(address_handler_list);
 562
 563const struct fw_address_region fw_high_memory_region =
 564	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
 565EXPORT_SYMBOL(fw_high_memory_region);
 566
 567static const struct fw_address_region low_memory_region =
 568	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
 569
 570#if 0
 
 
 571const struct fw_address_region fw_private_region =
 572	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
 573const struct fw_address_region fw_csr_region =
 574	{ .start = CSR_REGISTER_BASE,
 575	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
 576const struct fw_address_region fw_unit_space_region =
 577	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
 578#endif  /*  0  */
 579
 
 
 
 
 
 
 580/**
 581 * fw_core_add_address_handler() - register for incoming requests
 582 * @handler:	callback
 583 * @region:	region in the IEEE 1212 node space address range
 584 *
 585 * region->start, ->end, and handler->length have to be quadlet-aligned.
 586 *
 587 * When a request is received that falls within the specified address range,
 588 * the specified callback is invoked.  The parameters passed to the callback
 589 * give the details of the particular request.
 590 *
 591 * To be called in process context.
 592 * Return value:  0 on success, non-zero otherwise.
 593 *
 594 * The start offset of the handler's address region is determined by
 595 * fw_core_add_address_handler() and is returned in handler->offset.
 596 *
 597 * Address allocations are exclusive, except for the FCP registers.
 598 */
 599int fw_core_add_address_handler(struct fw_address_handler *handler,
 600				const struct fw_address_region *region)
 601{
 602	struct fw_address_handler *other;
 
 603	int ret = -EBUSY;
 604
 605	if (region->start & 0xffff000000000003ULL ||
 606	    region->start >= region->end ||
 607	    region->end   > 0x0001000000000000ULL ||
 608	    handler->length & 3 ||
 609	    handler->length == 0)
 610		return -EINVAL;
 611
 612	spin_lock(&address_handler_list_lock);
 613
 614	handler->offset = region->start;
 615	while (handler->offset + handler->length <= region->end) {
 616		if (is_in_fcp_region(handler->offset, handler->length))
 617			other = NULL;
 618		else
 619			other = lookup_overlapping_address_handler
 620					(&address_handler_list,
 621					 handler->offset, handler->length);
 622		if (other != NULL) {
 623			handler->offset += other->length;
 624		} else {
 625			list_add_tail_rcu(&handler->link, &address_handler_list);
 626			ret = 0;
 627			break;
 628		}
 629	}
 630
 631	spin_unlock(&address_handler_list_lock);
 632
 633	return ret;
 634}
 635EXPORT_SYMBOL(fw_core_add_address_handler);
 636
 637/**
 638 * fw_core_remove_address_handler() - unregister an address handler
 639 * @handler: callback
 640 *
 641 * To be called in process context.
 642 *
 643 * When fw_core_remove_address_handler() returns, @handler->callback() is
 644 * guaranteed to not run on any CPU anymore.
 645 */
 646void fw_core_remove_address_handler(struct fw_address_handler *handler)
 647{
 648	spin_lock(&address_handler_list_lock);
 649	list_del_rcu(&handler->link);
 650	spin_unlock(&address_handler_list_lock);
 651	synchronize_rcu();
 
 652}
 653EXPORT_SYMBOL(fw_core_remove_address_handler);
 654
 655struct fw_request {
 656	struct kref kref;
 657	struct fw_packet response;
 658	u32 request_header[4];
 659	int ack;
 660	u32 timestamp;
 661	u32 length;
 662	u32 data[];
 663};
 664
 665void fw_request_get(struct fw_request *request)
 666{
 667	kref_get(&request->kref);
 668}
 669
 670static void release_request(struct kref *kref)
 671{
 672	struct fw_request *request = container_of(kref, struct fw_request, kref);
 673
 674	kfree(request);
 675}
 676
 677void fw_request_put(struct fw_request *request)
 678{
 679	kref_put(&request->kref, release_request);
 680}
 681
 682static void free_response_callback(struct fw_packet *packet,
 683				   struct fw_card *card, int status)
 684{
 685	struct fw_request *request = container_of(packet, struct fw_request, response);
 686
 687	// Decrease the reference count since not at in-flight.
 688	fw_request_put(request);
 689
 690	// Decrease the reference count to release the object.
 691	fw_request_put(request);
 692}
 693
 694int fw_get_response_length(struct fw_request *r)
 695{
 696	int tcode, ext_tcode, data_length;
 697
 698	tcode = HEADER_GET_TCODE(r->request_header[0]);
 699
 700	switch (tcode) {
 701	case TCODE_WRITE_QUADLET_REQUEST:
 702	case TCODE_WRITE_BLOCK_REQUEST:
 703		return 0;
 704
 705	case TCODE_READ_QUADLET_REQUEST:
 706		return 4;
 707
 708	case TCODE_READ_BLOCK_REQUEST:
 709		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 710		return data_length;
 711
 712	case TCODE_LOCK_REQUEST:
 713		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
 714		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 715		switch (ext_tcode) {
 716		case EXTCODE_FETCH_ADD:
 717		case EXTCODE_LITTLE_ADD:
 718			return data_length;
 719		default:
 720			return data_length / 2;
 721		}
 722
 723	default:
 724		WARN(1, "wrong tcode %d\n", tcode);
 725		return 0;
 726	}
 727}
 728
 729void fw_fill_response(struct fw_packet *response, u32 *request_header,
 730		      int rcode, void *payload, size_t length)
 731{
 732	int tcode, tlabel, extended_tcode, source, destination;
 733
 734	tcode          = HEADER_GET_TCODE(request_header[0]);
 735	tlabel         = HEADER_GET_TLABEL(request_header[0]);
 736	source         = HEADER_GET_DESTINATION(request_header[0]);
 737	destination    = HEADER_GET_SOURCE(request_header[1]);
 738	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
 739
 740	response->header[0] =
 741		HEADER_RETRY(RETRY_1) |
 742		HEADER_TLABEL(tlabel) |
 743		HEADER_DESTINATION(destination);
 744	response->header[1] =
 745		HEADER_SOURCE(source) |
 746		HEADER_RCODE(rcode);
 747	response->header[2] = 0;
 748
 749	switch (tcode) {
 750	case TCODE_WRITE_QUADLET_REQUEST:
 751	case TCODE_WRITE_BLOCK_REQUEST:
 752		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
 753		response->header_length = 12;
 754		response->payload_length = 0;
 755		break;
 756
 757	case TCODE_READ_QUADLET_REQUEST:
 758		response->header[0] |=
 759			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
 760		if (payload != NULL)
 761			response->header[3] = *(u32 *)payload;
 762		else
 763			response->header[3] = 0;
 764		response->header_length = 16;
 765		response->payload_length = 0;
 766		break;
 767
 768	case TCODE_READ_BLOCK_REQUEST:
 769	case TCODE_LOCK_REQUEST:
 770		response->header[0] |= HEADER_TCODE(tcode + 2);
 771		response->header[3] =
 772			HEADER_DATA_LENGTH(length) |
 773			HEADER_EXTENDED_TCODE(extended_tcode);
 774		response->header_length = 16;
 775		response->payload = payload;
 776		response->payload_length = length;
 777		break;
 778
 779	default:
 780		WARN(1, "wrong tcode %d\n", tcode);
 781	}
 782
 783	response->payload_mapped = false;
 784}
 785EXPORT_SYMBOL(fw_fill_response);
 786
 787static u32 compute_split_timeout_timestamp(struct fw_card *card,
 788					   u32 request_timestamp)
 789{
 790	unsigned int cycles;
 791	u32 timestamp;
 792
 793	cycles = card->split_timeout_cycles;
 794	cycles += request_timestamp & 0x1fff;
 795
 796	timestamp = request_timestamp & ~0x1fff;
 797	timestamp += (cycles / 8000) << 13;
 798	timestamp |= cycles % 8000;
 799
 800	return timestamp;
 801}
 802
 803static struct fw_request *allocate_request(struct fw_card *card,
 804					   struct fw_packet *p)
 805{
 806	struct fw_request *request;
 807	u32 *data, length;
 808	int request_tcode;
 809
 810	request_tcode = HEADER_GET_TCODE(p->header[0]);
 811	switch (request_tcode) {
 812	case TCODE_WRITE_QUADLET_REQUEST:
 813		data = &p->header[3];
 814		length = 4;
 815		break;
 816
 817	case TCODE_WRITE_BLOCK_REQUEST:
 818	case TCODE_LOCK_REQUEST:
 819		data = p->payload;
 820		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 821		break;
 822
 823	case TCODE_READ_QUADLET_REQUEST:
 824		data = NULL;
 825		length = 4;
 826		break;
 827
 828	case TCODE_READ_BLOCK_REQUEST:
 829		data = NULL;
 830		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 831		break;
 832
 833	default:
 834		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
 835			 p->header[0], p->header[1], p->header[2]);
 836		return NULL;
 837	}
 838
 839	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
 840	if (request == NULL)
 841		return NULL;
 842	kref_init(&request->kref);
 843
 844	request->response.speed = p->speed;
 845	request->response.timestamp =
 846			compute_split_timeout_timestamp(card, p->timestamp);
 847	request->response.generation = p->generation;
 848	request->response.ack = 0;
 849	request->response.callback = free_response_callback;
 850	request->ack = p->ack;
 851	request->timestamp = p->timestamp;
 852	request->length = length;
 853	if (data)
 854		memcpy(request->data, data, length);
 855
 856	memcpy(request->request_header, p->header, sizeof(p->header));
 857
 858	return request;
 859}
 860
 861/**
 862 * fw_send_response: - send response packet for asynchronous transaction.
 863 * @card:	interface to send the response at.
 864 * @request:	firewire request data for the transaction.
 865 * @rcode:	response code to send.
 866 *
 867 * Submit a response packet into the asynchronous response transmission queue. The @request
 868 * is going to be released when the transmission successfully finishes later.
 869 */
 870void fw_send_response(struct fw_card *card,
 871		      struct fw_request *request, int rcode)
 872{
 
 
 
 873	/* unified transaction or broadcast transaction: don't respond */
 874	if (request->ack != ACK_PENDING ||
 875	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
 876		fw_request_put(request);
 877		return;
 878	}
 879
 880	if (rcode == RCODE_COMPLETE)
 881		fw_fill_response(&request->response, request->request_header,
 882				 rcode, request->data,
 883				 fw_get_response_length(request));
 884	else
 885		fw_fill_response(&request->response, request->request_header,
 886				 rcode, NULL, 0);
 887
 888	// Increase the reference count so that the object is kept during in-flight.
 889	fw_request_get(request);
 890
 891	card->driver->send_response(card, &request->response);
 892}
 893EXPORT_SYMBOL(fw_send_response);
 894
 895/**
 896 * fw_get_request_speed() - returns speed at which the @request was received
 897 * @request: firewire request data
 898 */
 899int fw_get_request_speed(struct fw_request *request)
 900{
 901	return request->response.speed;
 902}
 903EXPORT_SYMBOL(fw_get_request_speed);
 904
 905/**
 906 * fw_request_get_timestamp: Get timestamp of the request.
 907 * @request: The opaque pointer to request structure.
 908 *
 909 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
 910 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
 911 * field of isochronous cycle time register.
 912 *
 913 * Returns: timestamp of the request.
 914 */
 915u32 fw_request_get_timestamp(const struct fw_request *request)
 916{
 917	return request->timestamp;
 918}
 919EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
 920
 921static void handle_exclusive_region_request(struct fw_card *card,
 922					    struct fw_packet *p,
 923					    struct fw_request *request,
 924					    unsigned long long offset)
 925{
 926	struct fw_address_handler *handler;
 
 927	int tcode, destination, source;
 928
 929	destination = HEADER_GET_DESTINATION(p->header[0]);
 930	source      = HEADER_GET_SOURCE(p->header[1]);
 931	tcode       = HEADER_GET_TCODE(p->header[0]);
 932	if (tcode == TCODE_LOCK_REQUEST)
 933		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
 934
 935	rcu_read_lock();
 936	handler = lookup_enclosing_address_handler(&address_handler_list,
 937						   offset, request->length);
 938	if (handler)
 
 
 
 
 
 
 
 
 
 
 
 
 939		handler->address_callback(card, request,
 940					  tcode, destination, source,
 941					  p->generation, offset,
 942					  request->data, request->length,
 943					  handler->callback_data);
 944	rcu_read_unlock();
 945
 946	if (!handler)
 947		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 948}
 949
 950static void handle_fcp_region_request(struct fw_card *card,
 951				      struct fw_packet *p,
 952				      struct fw_request *request,
 953				      unsigned long long offset)
 954{
 955	struct fw_address_handler *handler;
 
 956	int tcode, destination, source;
 957
 958	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 959	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
 960	    request->length > 0x200) {
 961		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 962
 963		return;
 964	}
 965
 966	tcode       = HEADER_GET_TCODE(p->header[0]);
 967	destination = HEADER_GET_DESTINATION(p->header[0]);
 968	source      = HEADER_GET_SOURCE(p->header[1]);
 969
 970	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
 971	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
 972		fw_send_response(card, request, RCODE_TYPE_ERROR);
 973
 974		return;
 975	}
 976
 977	rcu_read_lock();
 978	list_for_each_entry_rcu(handler, &address_handler_list, link) {
 979		if (is_enclosing_handler(handler, offset, request->length))
 980			handler->address_callback(card, request, tcode,
 981						  destination, source,
 982						  p->generation, offset,
 983						  request->data,
 984						  request->length,
 985						  handler->callback_data);
 986	}
 987	rcu_read_unlock();
 988
 989	fw_send_response(card, request, RCODE_COMPLETE);
 990}
 991
 992void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
 993{
 994	struct fw_request *request;
 995	unsigned long long offset;
 996
 997	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
 998		return;
 999
1000	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
1001		fw_cdev_handle_phy_packet(card, p);
1002		return;
1003	}
1004
1005	request = allocate_request(card, p);
1006	if (request == NULL) {
1007		/* FIXME: send statically allocated busy packet. */
1008		return;
1009	}
1010
1011	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
1012		p->header[2];
1013
1014	if (!is_in_fcp_region(offset, request->length))
1015		handle_exclusive_region_request(card, p, request, offset);
1016	else
1017		handle_fcp_region_request(card, p, request, offset);
1018
1019}
1020EXPORT_SYMBOL(fw_core_handle_request);
1021
1022void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1023{
1024	struct fw_transaction *t = NULL, *iter;
1025	unsigned long flags;
1026	u32 *data;
1027	size_t data_length;
1028	int tcode, tlabel, source, rcode;
1029
1030	tcode	= HEADER_GET_TCODE(p->header[0]);
1031	tlabel	= HEADER_GET_TLABEL(p->header[0]);
1032	source	= HEADER_GET_SOURCE(p->header[1]);
1033	rcode	= HEADER_GET_RCODE(p->header[1]);
1034
1035	spin_lock_irqsave(&card->lock, flags);
1036	list_for_each_entry(iter, &card->transaction_list, link) {
1037		if (iter->node_id == source && iter->tlabel == tlabel) {
1038			if (!try_cancel_split_timeout(iter)) {
1039				spin_unlock_irqrestore(&card->lock, flags);
1040				goto timed_out;
1041			}
1042			list_del_init(&iter->link);
1043			card->tlabel_mask &= ~(1ULL << iter->tlabel);
1044			t = iter;
1045			break;
1046		}
1047	}
1048	spin_unlock_irqrestore(&card->lock, flags);
1049
1050	if (!t) {
1051 timed_out:
1052		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1053			  source, tlabel);
1054		return;
1055	}
1056
1057	/*
1058	 * FIXME: sanity check packet, is length correct, does tcodes
1059	 * and addresses match.
1060	 */
1061
1062	switch (tcode) {
1063	case TCODE_READ_QUADLET_RESPONSE:
1064		data = (u32 *) &p->header[3];
1065		data_length = 4;
1066		break;
1067
1068	case TCODE_WRITE_RESPONSE:
1069		data = NULL;
1070		data_length = 0;
1071		break;
1072
1073	case TCODE_READ_BLOCK_RESPONSE:
1074	case TCODE_LOCK_RESPONSE:
1075		data = p->payload;
1076		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
1077		break;
1078
1079	default:
1080		/* Should never happen, this is just to shut up gcc. */
1081		data = NULL;
1082		data_length = 0;
1083		break;
1084	}
1085
1086	/*
1087	 * The response handler may be executed while the request handler
1088	 * is still pending.  Cancel the request handler.
1089	 */
1090	card->driver->cancel_packet(card, &t->packet);
1091
1092	if (!t->with_tstamp) {
1093		t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1094	} else {
1095		t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1096					data_length, t->callback_data);
1097	}
1098}
1099EXPORT_SYMBOL(fw_core_handle_response);
1100
1101/**
1102 * fw_rcode_string - convert a firewire result code to an error description
1103 * @rcode: the result code
1104 */
1105const char *fw_rcode_string(int rcode)
1106{
1107	static const char *const names[] = {
1108		[RCODE_COMPLETE]       = "no error",
1109		[RCODE_CONFLICT_ERROR] = "conflict error",
1110		[RCODE_DATA_ERROR]     = "data error",
1111		[RCODE_TYPE_ERROR]     = "type error",
1112		[RCODE_ADDRESS_ERROR]  = "address error",
1113		[RCODE_SEND_ERROR]     = "send error",
1114		[RCODE_CANCELLED]      = "timeout",
1115		[RCODE_BUSY]           = "busy",
1116		[RCODE_GENERATION]     = "bus reset",
1117		[RCODE_NO_ACK]         = "no ack",
1118	};
1119
1120	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1121		return names[rcode];
1122	else
1123		return "unknown";
1124}
1125EXPORT_SYMBOL(fw_rcode_string);
1126
1127static const struct fw_address_region topology_map_region =
1128	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1129	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1130
1131static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1132		int tcode, int destination, int source, int generation,
1133		unsigned long long offset, void *payload, size_t length,
1134		void *callback_data)
1135{
1136	int start;
1137
1138	if (!TCODE_IS_READ_REQUEST(tcode)) {
1139		fw_send_response(card, request, RCODE_TYPE_ERROR);
1140		return;
1141	}
1142
1143	if ((offset & 3) > 0 || (length & 3) > 0) {
1144		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1145		return;
1146	}
1147
1148	start = (offset - topology_map_region.start) / 4;
1149	memcpy(payload, &card->topology_map[start], length);
1150
1151	fw_send_response(card, request, RCODE_COMPLETE);
1152}
1153
1154static struct fw_address_handler topology_map = {
1155	.length			= 0x400,
1156	.address_callback	= handle_topology_map,
1157};
1158
1159static const struct fw_address_region registers_region =
1160	{ .start = CSR_REGISTER_BASE,
1161	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1162
1163static void update_split_timeout(struct fw_card *card)
1164{
1165	unsigned int cycles;
1166
1167	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1168
1169	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1170	cycles = clamp(cycles, 800u, 3u * 8000u);
1171
1172	card->split_timeout_cycles = cycles;
1173	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1174}
1175
1176static void handle_registers(struct fw_card *card, struct fw_request *request,
1177		int tcode, int destination, int source, int generation,
1178		unsigned long long offset, void *payload, size_t length,
1179		void *callback_data)
1180{
1181	int reg = offset & ~CSR_REGISTER_BASE;
1182	__be32 *data = payload;
1183	int rcode = RCODE_COMPLETE;
1184	unsigned long flags;
1185
1186	switch (reg) {
1187	case CSR_PRIORITY_BUDGET:
1188		if (!card->priority_budget_implemented) {
1189			rcode = RCODE_ADDRESS_ERROR;
1190			break;
1191		}
1192		fallthrough;
1193
1194	case CSR_NODE_IDS:
1195		/*
1196		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1197		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1198		 */
1199		fallthrough;
1200
1201	case CSR_STATE_CLEAR:
1202	case CSR_STATE_SET:
1203	case CSR_CYCLE_TIME:
1204	case CSR_BUS_TIME:
1205	case CSR_BUSY_TIMEOUT:
1206		if (tcode == TCODE_READ_QUADLET_REQUEST)
1207			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1208		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1209			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1210		else
1211			rcode = RCODE_TYPE_ERROR;
1212		break;
1213
1214	case CSR_RESET_START:
1215		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1216			card->driver->write_csr(card, CSR_STATE_CLEAR,
1217						CSR_STATE_BIT_ABDICATE);
1218		else
1219			rcode = RCODE_TYPE_ERROR;
1220		break;
1221
1222	case CSR_SPLIT_TIMEOUT_HI:
1223		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1224			*data = cpu_to_be32(card->split_timeout_hi);
1225		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1226			spin_lock_irqsave(&card->lock, flags);
1227			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1228			update_split_timeout(card);
1229			spin_unlock_irqrestore(&card->lock, flags);
1230		} else {
1231			rcode = RCODE_TYPE_ERROR;
1232		}
1233		break;
1234
1235	case CSR_SPLIT_TIMEOUT_LO:
1236		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1237			*data = cpu_to_be32(card->split_timeout_lo);
1238		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1239			spin_lock_irqsave(&card->lock, flags);
1240			card->split_timeout_lo =
1241					be32_to_cpu(*data) & 0xfff80000;
1242			update_split_timeout(card);
1243			spin_unlock_irqrestore(&card->lock, flags);
1244		} else {
1245			rcode = RCODE_TYPE_ERROR;
1246		}
1247		break;
1248
1249	case CSR_MAINT_UTILITY:
1250		if (tcode == TCODE_READ_QUADLET_REQUEST)
1251			*data = card->maint_utility_register;
1252		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1253			card->maint_utility_register = *data;
1254		else
1255			rcode = RCODE_TYPE_ERROR;
1256		break;
1257
1258	case CSR_BROADCAST_CHANNEL:
1259		if (tcode == TCODE_READ_QUADLET_REQUEST)
1260			*data = cpu_to_be32(card->broadcast_channel);
1261		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1262			card->broadcast_channel =
1263			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1264			    BROADCAST_CHANNEL_INITIAL;
1265		else
1266			rcode = RCODE_TYPE_ERROR;
1267		break;
1268
1269	case CSR_BUS_MANAGER_ID:
1270	case CSR_BANDWIDTH_AVAILABLE:
1271	case CSR_CHANNELS_AVAILABLE_HI:
1272	case CSR_CHANNELS_AVAILABLE_LO:
1273		/*
1274		 * FIXME: these are handled by the OHCI hardware and
1275		 * the stack never sees these request. If we add
1276		 * support for a new type of controller that doesn't
1277		 * handle this in hardware we need to deal with these
1278		 * transactions.
1279		 */
1280		BUG();
1281		break;
1282
1283	default:
1284		rcode = RCODE_ADDRESS_ERROR;
1285		break;
1286	}
1287
1288	fw_send_response(card, request, rcode);
1289}
1290
1291static struct fw_address_handler registers = {
1292	.length			= 0x400,
1293	.address_callback	= handle_registers,
1294};
1295
1296static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1297		int tcode, int destination, int source, int generation,
1298		unsigned long long offset, void *payload, size_t length,
1299		void *callback_data)
1300{
1301	/*
1302	 * This catches requests not handled by the physical DMA unit,
1303	 * i.e., wrong transaction types or unauthorized source nodes.
1304	 */
1305	fw_send_response(card, request, RCODE_TYPE_ERROR);
1306}
1307
1308static struct fw_address_handler low_memory = {
1309	.length			= FW_MAX_PHYSICAL_RANGE,
1310	.address_callback	= handle_low_memory,
1311};
1312
1313MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1314MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1315MODULE_LICENSE("GPL");
1316
1317static const u32 vendor_textual_descriptor[] = {
1318	/* textual descriptor leaf () */
1319	0x00060000,
1320	0x00000000,
1321	0x00000000,
1322	0x4c696e75,		/* L i n u */
1323	0x78204669,		/* x   F i */
1324	0x72657769,		/* r e w i */
1325	0x72650000,		/* r e     */
1326};
1327
1328static const u32 model_textual_descriptor[] = {
1329	/* model descriptor leaf () */
1330	0x00030000,
1331	0x00000000,
1332	0x00000000,
1333	0x4a756a75,		/* J u j u */
1334};
1335
1336static struct fw_descriptor vendor_id_descriptor = {
1337	.length = ARRAY_SIZE(vendor_textual_descriptor),
1338	.immediate = 0x03001f11,
1339	.key = 0x81000000,
1340	.data = vendor_textual_descriptor,
1341};
1342
1343static struct fw_descriptor model_id_descriptor = {
1344	.length = ARRAY_SIZE(model_textual_descriptor),
1345	.immediate = 0x17023901,
1346	.key = 0x81000000,
1347	.data = model_textual_descriptor,
1348};
1349
1350static int __init fw_core_init(void)
1351{
1352	int ret;
1353
1354	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
 
1355	if (!fw_workqueue)
1356		return -ENOMEM;
1357
1358	ret = bus_register(&fw_bus_type);
1359	if (ret < 0) {
1360		destroy_workqueue(fw_workqueue);
1361		return ret;
1362	}
1363
1364	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1365	if (fw_cdev_major < 0) {
1366		bus_unregister(&fw_bus_type);
1367		destroy_workqueue(fw_workqueue);
1368		return fw_cdev_major;
1369	}
1370
1371	fw_core_add_address_handler(&topology_map, &topology_map_region);
1372	fw_core_add_address_handler(&registers, &registers_region);
1373	fw_core_add_address_handler(&low_memory, &low_memory_region);
1374	fw_core_add_descriptor(&vendor_id_descriptor);
1375	fw_core_add_descriptor(&model_id_descriptor);
1376
1377	return 0;
1378}
1379
1380static void __exit fw_core_cleanup(void)
1381{
1382	unregister_chrdev(fw_cdev_major, "firewire");
1383	bus_unregister(&fw_bus_type);
1384	destroy_workqueue(fw_workqueue);
1385	idr_destroy(&fw_device_idr);
1386}
1387
1388module_init(fw_core_init);
1389module_exit(fw_core_cleanup);