Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Core IEEE1394 transaction logic
   3 *
   4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bug.h>
  22#include <linux/completion.h>
  23#include <linux/device.h>
  24#include <linux/errno.h>
  25#include <linux/firewire.h>
  26#include <linux/firewire-constants.h>
  27#include <linux/fs.h>
  28#include <linux/init.h>
  29#include <linux/idr.h>
  30#include <linux/jiffies.h>
  31#include <linux/kernel.h>
  32#include <linux/list.h>
  33#include <linux/module.h>
 
  34#include <linux/slab.h>
  35#include <linux/spinlock.h>
  36#include <linux/string.h>
  37#include <linux/timer.h>
  38#include <linux/types.h>
  39#include <linux/workqueue.h>
  40
  41#include <asm/byteorder.h>
  42
  43#include "core.h"
  44
  45#define HEADER_PRI(pri)			((pri) << 0)
  46#define HEADER_TCODE(tcode)		((tcode) << 4)
  47#define HEADER_RETRY(retry)		((retry) << 8)
  48#define HEADER_TLABEL(tlabel)		((tlabel) << 10)
  49#define HEADER_DESTINATION(destination)	((destination) << 16)
  50#define HEADER_SOURCE(source)		((source) << 16)
  51#define HEADER_RCODE(rcode)		((rcode) << 12)
  52#define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
  53#define HEADER_DATA_LENGTH(length)	((length) << 16)
  54#define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
  55
  56#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
  57#define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
  58#define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
  59#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
  60#define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
  61#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
  62#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
  63#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
  64
  65#define HEADER_DESTINATION_IS_BROADCAST(q) \
  66	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
  67
  68#define PHY_PACKET_CONFIG	0x0
  69#define PHY_PACKET_LINK_ON	0x1
  70#define PHY_PACKET_SELF_ID	0x2
  71
  72#define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
  73#define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
  74#define PHY_IDENTIFIER(id)		((id) << 30)
  75
  76/* returns 0 if the split timeout handler is already running */
  77static int try_cancel_split_timeout(struct fw_transaction *t)
  78{
  79	if (t->is_split_transaction)
  80		return del_timer(&t->split_timeout_timer);
  81	else
  82		return 1;
  83}
  84
  85static int close_transaction(struct fw_transaction *transaction,
  86			     struct fw_card *card, int rcode)
  87{
  88	struct fw_transaction *t;
  89	unsigned long flags;
  90
  91	spin_lock_irqsave(&card->lock, flags);
  92	list_for_each_entry(t, &card->transaction_list, link) {
  93		if (t == transaction) {
  94			if (!try_cancel_split_timeout(t)) {
  95				spin_unlock_irqrestore(&card->lock, flags);
  96				goto timed_out;
  97			}
  98			list_del_init(&t->link);
  99			card->tlabel_mask &= ~(1ULL << t->tlabel);
 100			break;
 101		}
 102	}
 103	spin_unlock_irqrestore(&card->lock, flags);
 104
 105	if (&t->link != &card->transaction_list) {
 106		t->callback(card, rcode, NULL, 0, t->callback_data);
 107		return 0;
 108	}
 109
 110 timed_out:
 111	return -ENOENT;
 112}
 113
 114/*
 115 * Only valid for transactions that are potentially pending (ie have
 116 * been sent).
 117 */
 118int fw_cancel_transaction(struct fw_card *card,
 119			  struct fw_transaction *transaction)
 120{
 121	/*
 122	 * Cancel the packet transmission if it's still queued.  That
 123	 * will call the packet transmission callback which cancels
 124	 * the transaction.
 125	 */
 126
 127	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
 128		return 0;
 129
 130	/*
 131	 * If the request packet has already been sent, we need to see
 132	 * if the transaction is still pending and remove it in that case.
 133	 */
 134
 135	return close_transaction(transaction, card, RCODE_CANCELLED);
 136}
 137EXPORT_SYMBOL(fw_cancel_transaction);
 138
 139static void split_transaction_timeout_callback(unsigned long data)
 140{
 141	struct fw_transaction *t = (struct fw_transaction *)data;
 142	struct fw_card *card = t->card;
 143	unsigned long flags;
 144
 145	spin_lock_irqsave(&card->lock, flags);
 146	if (list_empty(&t->link)) {
 147		spin_unlock_irqrestore(&card->lock, flags);
 148		return;
 149	}
 150	list_del(&t->link);
 151	card->tlabel_mask &= ~(1ULL << t->tlabel);
 152	spin_unlock_irqrestore(&card->lock, flags);
 153
 154	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
 155}
 156
 157static void start_split_transaction_timeout(struct fw_transaction *t,
 158					    struct fw_card *card)
 159{
 160	unsigned long flags;
 161
 162	spin_lock_irqsave(&card->lock, flags);
 163
 164	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
 165		spin_unlock_irqrestore(&card->lock, flags);
 166		return;
 167	}
 168
 169	t->is_split_transaction = true;
 170	mod_timer(&t->split_timeout_timer,
 171		  jiffies + card->split_timeout_jiffies);
 172
 173	spin_unlock_irqrestore(&card->lock, flags);
 174}
 175
 176static void transmit_complete_callback(struct fw_packet *packet,
 177				       struct fw_card *card, int status)
 178{
 179	struct fw_transaction *t =
 180	    container_of(packet, struct fw_transaction, packet);
 181
 182	switch (status) {
 183	case ACK_COMPLETE:
 184		close_transaction(t, card, RCODE_COMPLETE);
 185		break;
 186	case ACK_PENDING:
 187		start_split_transaction_timeout(t, card);
 188		break;
 189	case ACK_BUSY_X:
 190	case ACK_BUSY_A:
 191	case ACK_BUSY_B:
 192		close_transaction(t, card, RCODE_BUSY);
 193		break;
 194	case ACK_DATA_ERROR:
 195		close_transaction(t, card, RCODE_DATA_ERROR);
 196		break;
 197	case ACK_TYPE_ERROR:
 198		close_transaction(t, card, RCODE_TYPE_ERROR);
 199		break;
 200	default:
 201		/*
 202		 * In this case the ack is really a juju specific
 203		 * rcode, so just forward that to the callback.
 204		 */
 205		close_transaction(t, card, status);
 206		break;
 207	}
 208}
 209
 210static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
 211		int destination_id, int source_id, int generation, int speed,
 212		unsigned long long offset, void *payload, size_t length)
 213{
 214	int ext_tcode;
 215
 216	if (tcode == TCODE_STREAM_DATA) {
 217		packet->header[0] =
 218			HEADER_DATA_LENGTH(length) |
 219			destination_id |
 220			HEADER_TCODE(TCODE_STREAM_DATA);
 221		packet->header_length = 4;
 222		packet->payload = payload;
 223		packet->payload_length = length;
 224
 225		goto common;
 226	}
 227
 228	if (tcode > 0x10) {
 229		ext_tcode = tcode & ~0x10;
 230		tcode = TCODE_LOCK_REQUEST;
 231	} else
 232		ext_tcode = 0;
 233
 234	packet->header[0] =
 235		HEADER_RETRY(RETRY_X) |
 236		HEADER_TLABEL(tlabel) |
 237		HEADER_TCODE(tcode) |
 238		HEADER_DESTINATION(destination_id);
 239	packet->header[1] =
 240		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
 241	packet->header[2] =
 242		offset;
 243
 244	switch (tcode) {
 245	case TCODE_WRITE_QUADLET_REQUEST:
 246		packet->header[3] = *(u32 *)payload;
 247		packet->header_length = 16;
 248		packet->payload_length = 0;
 249		break;
 250
 251	case TCODE_LOCK_REQUEST:
 252	case TCODE_WRITE_BLOCK_REQUEST:
 253		packet->header[3] =
 254			HEADER_DATA_LENGTH(length) |
 255			HEADER_EXTENDED_TCODE(ext_tcode);
 256		packet->header_length = 16;
 257		packet->payload = payload;
 258		packet->payload_length = length;
 259		break;
 260
 261	case TCODE_READ_QUADLET_REQUEST:
 262		packet->header_length = 12;
 263		packet->payload_length = 0;
 264		break;
 265
 266	case TCODE_READ_BLOCK_REQUEST:
 267		packet->header[3] =
 268			HEADER_DATA_LENGTH(length) |
 269			HEADER_EXTENDED_TCODE(ext_tcode);
 270		packet->header_length = 16;
 271		packet->payload_length = 0;
 272		break;
 273
 274	default:
 275		WARN(1, "wrong tcode %d\n", tcode);
 276	}
 277 common:
 278	packet->speed = speed;
 279	packet->generation = generation;
 280	packet->ack = 0;
 281	packet->payload_mapped = false;
 282}
 283
 284static int allocate_tlabel(struct fw_card *card)
 285{
 286	int tlabel;
 287
 288	tlabel = card->current_tlabel;
 289	while (card->tlabel_mask & (1ULL << tlabel)) {
 290		tlabel = (tlabel + 1) & 0x3f;
 291		if (tlabel == card->current_tlabel)
 292			return -EBUSY;
 293	}
 294
 295	card->current_tlabel = (tlabel + 1) & 0x3f;
 296	card->tlabel_mask |= 1ULL << tlabel;
 297
 298	return tlabel;
 299}
 300
 301/**
 302 * fw_send_request() - submit a request packet for transmission
 303 * @card:		interface to send the request at
 304 * @t:			transaction instance to which the request belongs
 305 * @tcode:		transaction code
 306 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 307 * @generation:		bus generation in which request and response are valid
 308 * @speed:		transmission speed
 309 * @offset:		48bit wide offset into destination's address space
 310 * @payload:		data payload for the request subaction
 311 * @length:		length of the payload, in bytes
 312 * @callback:		function to be called when the transaction is completed
 313 * @callback_data:	data to be passed to the transaction completion callback
 314 *
 315 * Submit a request packet into the asynchronous request transmission queue.
 316 * Can be called from atomic context.  If you prefer a blocking API, use
 317 * fw_run_transaction() in a context that can sleep.
 318 *
 319 * In case of lock requests, specify one of the firewire-core specific %TCODE_
 320 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
 321 *
 322 * Make sure that the value in @destination_id is not older than the one in
 323 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
 324 *
 325 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
 326 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
 327 * It will contain tag, channel, and sy data instead of a node ID then.
 328 *
 329 * The payload buffer at @data is going to be DMA-mapped except in case of
 330 * @length <= 8 or of local (loopback) requests.  Hence make sure that the
 331 * buffer complies with the restrictions of the streaming DMA mapping API.
 332 * @payload must not be freed before the @callback is called.
 333 *
 334 * In case of request types without payload, @data is NULL and @length is 0.
 335 *
 336 * After the transaction is completed successfully or unsuccessfully, the
 337 * @callback will be called.  Among its parameters is the response code which
 338 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
 339 * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
 340 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
 341 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
 342 * generation, or missing ACK respectively.
 343 *
 344 * Note some timing corner cases:  fw_send_request() may complete much earlier
 345 * than when the request packet actually hits the wire.  On the other hand,
 346 * transaction completion and hence execution of @callback may happen even
 347 * before fw_send_request() returns.
 348 */
 349void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
 350		     int destination_id, int generation, int speed,
 351		     unsigned long long offset, void *payload, size_t length,
 352		     fw_transaction_callback_t callback, void *callback_data)
 353{
 354	unsigned long flags;
 355	int tlabel;
 356
 357	/*
 358	 * Allocate tlabel from the bitmap and put the transaction on
 359	 * the list while holding the card spinlock.
 360	 */
 361
 362	spin_lock_irqsave(&card->lock, flags);
 363
 364	tlabel = allocate_tlabel(card);
 365	if (tlabel < 0) {
 366		spin_unlock_irqrestore(&card->lock, flags);
 367		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
 368		return;
 369	}
 370
 371	t->node_id = destination_id;
 372	t->tlabel = tlabel;
 373	t->card = card;
 374	t->is_split_transaction = false;
 375	setup_timer(&t->split_timeout_timer,
 376		    split_transaction_timeout_callback, (unsigned long)t);
 377	t->callback = callback;
 378	t->callback_data = callback_data;
 379
 380	fw_fill_request(&t->packet, tcode, t->tlabel,
 381			destination_id, card->node_id, generation,
 382			speed, offset, payload, length);
 383	t->packet.callback = transmit_complete_callback;
 384
 385	list_add_tail(&t->link, &card->transaction_list);
 386
 387	spin_unlock_irqrestore(&card->lock, flags);
 388
 389	card->driver->send_request(card, &t->packet);
 390}
 391EXPORT_SYMBOL(fw_send_request);
 392
 393struct transaction_callback_data {
 394	struct completion done;
 395	void *payload;
 396	int rcode;
 397};
 398
 399static void transaction_callback(struct fw_card *card, int rcode,
 400				 void *payload, size_t length, void *data)
 401{
 402	struct transaction_callback_data *d = data;
 403
 404	if (rcode == RCODE_COMPLETE)
 405		memcpy(d->payload, payload, length);
 406	d->rcode = rcode;
 407	complete(&d->done);
 408}
 409
 410/**
 411 * fw_run_transaction() - send request and sleep until transaction is completed
 412 *
 413 * Returns the RCODE.  See fw_send_request() for parameter documentation.
 414 * Unlike fw_send_request(), @data points to the payload of the request or/and
 415 * to the payload of the response.  DMA mapping restrictions apply to outbound
 416 * request payloads of >= 8 bytes but not to inbound response payloads.
 417 */
 418int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
 419		       int generation, int speed, unsigned long long offset,
 420		       void *payload, size_t length)
 421{
 422	struct transaction_callback_data d;
 423	struct fw_transaction t;
 424
 425	init_timer_on_stack(&t.split_timeout_timer);
 426	init_completion(&d.done);
 427	d.payload = payload;
 428	fw_send_request(card, &t, tcode, destination_id, generation, speed,
 429			offset, payload, length, transaction_callback, &d);
 430	wait_for_completion(&d.done);
 431	destroy_timer_on_stack(&t.split_timeout_timer);
 432
 433	return d.rcode;
 434}
 435EXPORT_SYMBOL(fw_run_transaction);
 436
 437static DEFINE_MUTEX(phy_config_mutex);
 438static DECLARE_COMPLETION(phy_config_done);
 439
 440static void transmit_phy_packet_callback(struct fw_packet *packet,
 441					 struct fw_card *card, int status)
 442{
 443	complete(&phy_config_done);
 444}
 445
 446static struct fw_packet phy_config_packet = {
 447	.header_length	= 12,
 448	.header[0]	= TCODE_LINK_INTERNAL << 4,
 449	.payload_length	= 0,
 450	.speed		= SCODE_100,
 451	.callback	= transmit_phy_packet_callback,
 452};
 453
 454void fw_send_phy_config(struct fw_card *card,
 455			int node_id, int generation, int gap_count)
 456{
 457	long timeout = DIV_ROUND_UP(HZ, 10);
 458	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
 459
 460	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
 461		data |= PHY_CONFIG_ROOT_ID(node_id);
 462
 463	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
 464		gap_count = card->driver->read_phy_reg(card, 1);
 465		if (gap_count < 0)
 466			return;
 467
 468		gap_count &= 63;
 469		if (gap_count == 63)
 470			return;
 471	}
 472	data |= PHY_CONFIG_GAP_COUNT(gap_count);
 473
 474	mutex_lock(&phy_config_mutex);
 475
 476	phy_config_packet.header[1] = data;
 477	phy_config_packet.header[2] = ~data;
 478	phy_config_packet.generation = generation;
 479	INIT_COMPLETION(phy_config_done);
 480
 481	card->driver->send_request(card, &phy_config_packet);
 482	wait_for_completion_timeout(&phy_config_done, timeout);
 483
 484	mutex_unlock(&phy_config_mutex);
 485}
 486
 487static struct fw_address_handler *lookup_overlapping_address_handler(
 488	struct list_head *list, unsigned long long offset, size_t length)
 489{
 490	struct fw_address_handler *handler;
 491
 492	list_for_each_entry(handler, list, link) {
 493		if (handler->offset < offset + length &&
 494		    offset < handler->offset + handler->length)
 495			return handler;
 496	}
 497
 498	return NULL;
 499}
 500
 501static bool is_enclosing_handler(struct fw_address_handler *handler,
 502				 unsigned long long offset, size_t length)
 503{
 504	return handler->offset <= offset &&
 505		offset + length <= handler->offset + handler->length;
 506}
 507
 508static struct fw_address_handler *lookup_enclosing_address_handler(
 509	struct list_head *list, unsigned long long offset, size_t length)
 510{
 511	struct fw_address_handler *handler;
 512
 513	list_for_each_entry(handler, list, link) {
 514		if (is_enclosing_handler(handler, offset, length))
 515			return handler;
 516	}
 517
 518	return NULL;
 519}
 520
 521static DEFINE_SPINLOCK(address_handler_lock);
 522static LIST_HEAD(address_handler_list);
 523
 524const struct fw_address_region fw_high_memory_region =
 525	{ .start = 0x000100000000ULL, .end = 0xffffe0000000ULL,  };
 526EXPORT_SYMBOL(fw_high_memory_region);
 527
 
 
 
 528#if 0
 529const struct fw_address_region fw_low_memory_region =
 530	{ .start = 0x000000000000ULL, .end = 0x000100000000ULL,  };
 531const struct fw_address_region fw_private_region =
 532	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
 533const struct fw_address_region fw_csr_region =
 534	{ .start = CSR_REGISTER_BASE,
 535	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
 536const struct fw_address_region fw_unit_space_region =
 537	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
 538#endif  /*  0  */
 539
 540static bool is_in_fcp_region(u64 offset, size_t length)
 541{
 542	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 543		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
 544}
 545
 546/**
 547 * fw_core_add_address_handler() - register for incoming requests
 548 * @handler:	callback
 549 * @region:	region in the IEEE 1212 node space address range
 550 *
 551 * region->start, ->end, and handler->length have to be quadlet-aligned.
 552 *
 553 * When a request is received that falls within the specified address range,
 554 * the specified callback is invoked.  The parameters passed to the callback
 555 * give the details of the particular request.
 556 *
 
 557 * Return value:  0 on success, non-zero otherwise.
 558 *
 559 * The start offset of the handler's address region is determined by
 560 * fw_core_add_address_handler() and is returned in handler->offset.
 561 *
 562 * Address allocations are exclusive, except for the FCP registers.
 563 */
 564int fw_core_add_address_handler(struct fw_address_handler *handler,
 565				const struct fw_address_region *region)
 566{
 567	struct fw_address_handler *other;
 568	unsigned long flags;
 569	int ret = -EBUSY;
 570
 571	if (region->start & 0xffff000000000003ULL ||
 572	    region->start >= region->end ||
 573	    region->end   > 0x0001000000000000ULL ||
 574	    handler->length & 3 ||
 575	    handler->length == 0)
 576		return -EINVAL;
 577
 578	spin_lock_irqsave(&address_handler_lock, flags);
 579
 580	handler->offset = region->start;
 581	while (handler->offset + handler->length <= region->end) {
 582		if (is_in_fcp_region(handler->offset, handler->length))
 583			other = NULL;
 584		else
 585			other = lookup_overlapping_address_handler
 586					(&address_handler_list,
 587					 handler->offset, handler->length);
 588		if (other != NULL) {
 589			handler->offset += other->length;
 590		} else {
 591			list_add_tail(&handler->link, &address_handler_list);
 592			ret = 0;
 593			break;
 594		}
 595	}
 596
 597	spin_unlock_irqrestore(&address_handler_lock, flags);
 598
 599	return ret;
 600}
 601EXPORT_SYMBOL(fw_core_add_address_handler);
 602
 603/**
 604 * fw_core_remove_address_handler() - unregister an address handler
 
 
 
 
 
 605 */
 606void fw_core_remove_address_handler(struct fw_address_handler *handler)
 607{
 608	unsigned long flags;
 609
 610	spin_lock_irqsave(&address_handler_lock, flags);
 611	list_del(&handler->link);
 612	spin_unlock_irqrestore(&address_handler_lock, flags);
 613}
 614EXPORT_SYMBOL(fw_core_remove_address_handler);
 615
 616struct fw_request {
 617	struct fw_packet response;
 618	u32 request_header[4];
 619	int ack;
 620	u32 length;
 621	u32 data[0];
 622};
 623
 624static void free_response_callback(struct fw_packet *packet,
 625				   struct fw_card *card, int status)
 626{
 627	struct fw_request *request;
 628
 629	request = container_of(packet, struct fw_request, response);
 630	kfree(request);
 631}
 632
 633int fw_get_response_length(struct fw_request *r)
 634{
 635	int tcode, ext_tcode, data_length;
 636
 637	tcode = HEADER_GET_TCODE(r->request_header[0]);
 638
 639	switch (tcode) {
 640	case TCODE_WRITE_QUADLET_REQUEST:
 641	case TCODE_WRITE_BLOCK_REQUEST:
 642		return 0;
 643
 644	case TCODE_READ_QUADLET_REQUEST:
 645		return 4;
 646
 647	case TCODE_READ_BLOCK_REQUEST:
 648		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 649		return data_length;
 650
 651	case TCODE_LOCK_REQUEST:
 652		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
 653		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 654		switch (ext_tcode) {
 655		case EXTCODE_FETCH_ADD:
 656		case EXTCODE_LITTLE_ADD:
 657			return data_length;
 658		default:
 659			return data_length / 2;
 660		}
 661
 662	default:
 663		WARN(1, "wrong tcode %d\n", tcode);
 664		return 0;
 665	}
 666}
 667
 668void fw_fill_response(struct fw_packet *response, u32 *request_header,
 669		      int rcode, void *payload, size_t length)
 670{
 671	int tcode, tlabel, extended_tcode, source, destination;
 672
 673	tcode          = HEADER_GET_TCODE(request_header[0]);
 674	tlabel         = HEADER_GET_TLABEL(request_header[0]);
 675	source         = HEADER_GET_DESTINATION(request_header[0]);
 676	destination    = HEADER_GET_SOURCE(request_header[1]);
 677	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
 678
 679	response->header[0] =
 680		HEADER_RETRY(RETRY_1) |
 681		HEADER_TLABEL(tlabel) |
 682		HEADER_DESTINATION(destination);
 683	response->header[1] =
 684		HEADER_SOURCE(source) |
 685		HEADER_RCODE(rcode);
 686	response->header[2] = 0;
 687
 688	switch (tcode) {
 689	case TCODE_WRITE_QUADLET_REQUEST:
 690	case TCODE_WRITE_BLOCK_REQUEST:
 691		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
 692		response->header_length = 12;
 693		response->payload_length = 0;
 694		break;
 695
 696	case TCODE_READ_QUADLET_REQUEST:
 697		response->header[0] |=
 698			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
 699		if (payload != NULL)
 700			response->header[3] = *(u32 *)payload;
 701		else
 702			response->header[3] = 0;
 703		response->header_length = 16;
 704		response->payload_length = 0;
 705		break;
 706
 707	case TCODE_READ_BLOCK_REQUEST:
 708	case TCODE_LOCK_REQUEST:
 709		response->header[0] |= HEADER_TCODE(tcode + 2);
 710		response->header[3] =
 711			HEADER_DATA_LENGTH(length) |
 712			HEADER_EXTENDED_TCODE(extended_tcode);
 713		response->header_length = 16;
 714		response->payload = payload;
 715		response->payload_length = length;
 716		break;
 717
 718	default:
 719		WARN(1, "wrong tcode %d\n", tcode);
 720	}
 721
 722	response->payload_mapped = false;
 723}
 724EXPORT_SYMBOL(fw_fill_response);
 725
 726static u32 compute_split_timeout_timestamp(struct fw_card *card,
 727					   u32 request_timestamp)
 728{
 729	unsigned int cycles;
 730	u32 timestamp;
 731
 732	cycles = card->split_timeout_cycles;
 733	cycles += request_timestamp & 0x1fff;
 734
 735	timestamp = request_timestamp & ~0x1fff;
 736	timestamp += (cycles / 8000) << 13;
 737	timestamp |= cycles % 8000;
 738
 739	return timestamp;
 740}
 741
 742static struct fw_request *allocate_request(struct fw_card *card,
 743					   struct fw_packet *p)
 744{
 745	struct fw_request *request;
 746	u32 *data, length;
 747	int request_tcode;
 748
 749	request_tcode = HEADER_GET_TCODE(p->header[0]);
 750	switch (request_tcode) {
 751	case TCODE_WRITE_QUADLET_REQUEST:
 752		data = &p->header[3];
 753		length = 4;
 754		break;
 755
 756	case TCODE_WRITE_BLOCK_REQUEST:
 757	case TCODE_LOCK_REQUEST:
 758		data = p->payload;
 759		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 760		break;
 761
 762	case TCODE_READ_QUADLET_REQUEST:
 763		data = NULL;
 764		length = 4;
 765		break;
 766
 767	case TCODE_READ_BLOCK_REQUEST:
 768		data = NULL;
 769		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 770		break;
 771
 772	default:
 773		fw_error("ERROR - corrupt request received - %08x %08x %08x\n",
 774			 p->header[0], p->header[1], p->header[2]);
 775		return NULL;
 776	}
 777
 778	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
 779	if (request == NULL)
 780		return NULL;
 781
 782	request->response.speed = p->speed;
 783	request->response.timestamp =
 784			compute_split_timeout_timestamp(card, p->timestamp);
 785	request->response.generation = p->generation;
 786	request->response.ack = 0;
 787	request->response.callback = free_response_callback;
 788	request->ack = p->ack;
 789	request->length = length;
 790	if (data)
 791		memcpy(request->data, data, length);
 792
 793	memcpy(request->request_header, p->header, sizeof(p->header));
 794
 795	return request;
 796}
 797
 798void fw_send_response(struct fw_card *card,
 799		      struct fw_request *request, int rcode)
 800{
 801	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
 802		return;
 803
 804	/* unified transaction or broadcast transaction: don't respond */
 805	if (request->ack != ACK_PENDING ||
 806	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
 807		kfree(request);
 808		return;
 809	}
 810
 811	if (rcode == RCODE_COMPLETE)
 812		fw_fill_response(&request->response, request->request_header,
 813				 rcode, request->data,
 814				 fw_get_response_length(request));
 815	else
 816		fw_fill_response(&request->response, request->request_header,
 817				 rcode, NULL, 0);
 818
 819	card->driver->send_response(card, &request->response);
 820}
 821EXPORT_SYMBOL(fw_send_response);
 822
 
 
 
 
 
 
 
 
 
 823static void handle_exclusive_region_request(struct fw_card *card,
 824					    struct fw_packet *p,
 825					    struct fw_request *request,
 826					    unsigned long long offset)
 827{
 828	struct fw_address_handler *handler;
 829	unsigned long flags;
 830	int tcode, destination, source;
 831
 832	destination = HEADER_GET_DESTINATION(p->header[0]);
 833	source      = HEADER_GET_SOURCE(p->header[1]);
 834	tcode       = HEADER_GET_TCODE(p->header[0]);
 835	if (tcode == TCODE_LOCK_REQUEST)
 836		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
 837
 838	spin_lock_irqsave(&address_handler_lock, flags);
 839	handler = lookup_enclosing_address_handler(&address_handler_list,
 840						   offset, request->length);
 841	spin_unlock_irqrestore(&address_handler_lock, flags);
 842
 843	/*
 844	 * FIXME: lookup the fw_node corresponding to the sender of
 845	 * this request and pass that to the address handler instead
 846	 * of the node ID.  We may also want to move the address
 847	 * allocations to fw_node so we only do this callback if the
 848	 * upper layers registered it for this node.
 849	 */
 850
 851	if (handler == NULL)
 852		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 853	else
 854		handler->address_callback(card, request,
 855					  tcode, destination, source,
 856					  p->generation, offset,
 857					  request->data, request->length,
 858					  handler->callback_data);
 
 
 
 
 859}
 860
 861static void handle_fcp_region_request(struct fw_card *card,
 862				      struct fw_packet *p,
 863				      struct fw_request *request,
 864				      unsigned long long offset)
 865{
 866	struct fw_address_handler *handler;
 867	unsigned long flags;
 868	int tcode, destination, source;
 869
 870	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 871	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
 872	    request->length > 0x200) {
 873		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 874
 875		return;
 876	}
 877
 878	tcode       = HEADER_GET_TCODE(p->header[0]);
 879	destination = HEADER_GET_DESTINATION(p->header[0]);
 880	source      = HEADER_GET_SOURCE(p->header[1]);
 881
 882	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
 883	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
 884		fw_send_response(card, request, RCODE_TYPE_ERROR);
 885
 886		return;
 887	}
 888
 889	spin_lock_irqsave(&address_handler_lock, flags);
 890	list_for_each_entry(handler, &address_handler_list, link) {
 891		if (is_enclosing_handler(handler, offset, request->length))
 892			handler->address_callback(card, NULL, tcode,
 893						  destination, source,
 894						  p->generation, offset,
 895						  request->data,
 896						  request->length,
 897						  handler->callback_data);
 898	}
 899	spin_unlock_irqrestore(&address_handler_lock, flags);
 900
 901	fw_send_response(card, request, RCODE_COMPLETE);
 902}
 903
 904void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
 905{
 906	struct fw_request *request;
 907	unsigned long long offset;
 908
 909	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
 910		return;
 911
 912	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
 913		fw_cdev_handle_phy_packet(card, p);
 914		return;
 915	}
 916
 917	request = allocate_request(card, p);
 918	if (request == NULL) {
 919		/* FIXME: send statically allocated busy packet. */
 920		return;
 921	}
 922
 923	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
 924		p->header[2];
 925
 926	if (!is_in_fcp_region(offset, request->length))
 927		handle_exclusive_region_request(card, p, request, offset);
 928	else
 929		handle_fcp_region_request(card, p, request, offset);
 930
 931}
 932EXPORT_SYMBOL(fw_core_handle_request);
 933
 934void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
 935{
 936	struct fw_transaction *t;
 937	unsigned long flags;
 938	u32 *data;
 939	size_t data_length;
 940	int tcode, tlabel, source, rcode;
 941
 942	tcode	= HEADER_GET_TCODE(p->header[0]);
 943	tlabel	= HEADER_GET_TLABEL(p->header[0]);
 944	source	= HEADER_GET_SOURCE(p->header[1]);
 945	rcode	= HEADER_GET_RCODE(p->header[1]);
 946
 947	spin_lock_irqsave(&card->lock, flags);
 948	list_for_each_entry(t, &card->transaction_list, link) {
 949		if (t->node_id == source && t->tlabel == tlabel) {
 950			if (!try_cancel_split_timeout(t)) {
 951				spin_unlock_irqrestore(&card->lock, flags);
 952				goto timed_out;
 953			}
 954			list_del_init(&t->link);
 955			card->tlabel_mask &= ~(1ULL << t->tlabel);
 956			break;
 957		}
 958	}
 959	spin_unlock_irqrestore(&card->lock, flags);
 960
 961	if (&t->link == &card->transaction_list) {
 962 timed_out:
 963		fw_notify("Unsolicited response (source %x, tlabel %x)\n",
 964			  source, tlabel);
 965		return;
 966	}
 967
 968	/*
 969	 * FIXME: sanity check packet, is length correct, does tcodes
 970	 * and addresses match.
 971	 */
 972
 973	switch (tcode) {
 974	case TCODE_READ_QUADLET_RESPONSE:
 975		data = (u32 *) &p->header[3];
 976		data_length = 4;
 977		break;
 978
 979	case TCODE_WRITE_RESPONSE:
 980		data = NULL;
 981		data_length = 0;
 982		break;
 983
 984	case TCODE_READ_BLOCK_RESPONSE:
 985	case TCODE_LOCK_RESPONSE:
 986		data = p->payload;
 987		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
 988		break;
 989
 990	default:
 991		/* Should never happen, this is just to shut up gcc. */
 992		data = NULL;
 993		data_length = 0;
 994		break;
 995	}
 996
 997	/*
 998	 * The response handler may be executed while the request handler
 999	 * is still pending.  Cancel the request handler.
1000	 */
1001	card->driver->cancel_packet(card, &t->packet);
1002
1003	t->callback(card, rcode, data, data_length, t->callback_data);
1004}
1005EXPORT_SYMBOL(fw_core_handle_response);
1006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1007static const struct fw_address_region topology_map_region =
1008	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1009	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1010
1011static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1012		int tcode, int destination, int source, int generation,
1013		unsigned long long offset, void *payload, size_t length,
1014		void *callback_data)
1015{
1016	int start;
1017
1018	if (!TCODE_IS_READ_REQUEST(tcode)) {
1019		fw_send_response(card, request, RCODE_TYPE_ERROR);
1020		return;
1021	}
1022
1023	if ((offset & 3) > 0 || (length & 3) > 0) {
1024		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1025		return;
1026	}
1027
1028	start = (offset - topology_map_region.start) / 4;
1029	memcpy(payload, &card->topology_map[start], length);
1030
1031	fw_send_response(card, request, RCODE_COMPLETE);
1032}
1033
1034static struct fw_address_handler topology_map = {
1035	.length			= 0x400,
1036	.address_callback	= handle_topology_map,
1037};
1038
1039static const struct fw_address_region registers_region =
1040	{ .start = CSR_REGISTER_BASE,
1041	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1042
1043static void update_split_timeout(struct fw_card *card)
1044{
1045	unsigned int cycles;
1046
1047	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1048
1049	cycles = max(cycles, 800u); /* minimum as per the spec */
1050	cycles = min(cycles, 3u * 8000u); /* maximum OHCI timeout */
1051
1052	card->split_timeout_cycles = cycles;
1053	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1054}
1055
1056static void handle_registers(struct fw_card *card, struct fw_request *request,
1057		int tcode, int destination, int source, int generation,
1058		unsigned long long offset, void *payload, size_t length,
1059		void *callback_data)
1060{
1061	int reg = offset & ~CSR_REGISTER_BASE;
1062	__be32 *data = payload;
1063	int rcode = RCODE_COMPLETE;
1064	unsigned long flags;
1065
1066	switch (reg) {
1067	case CSR_PRIORITY_BUDGET:
1068		if (!card->priority_budget_implemented) {
1069			rcode = RCODE_ADDRESS_ERROR;
1070			break;
1071		}
1072		/* else fall through */
1073
1074	case CSR_NODE_IDS:
1075		/*
1076		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1077		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1078		 */
1079		/* fall through */
1080
1081	case CSR_STATE_CLEAR:
1082	case CSR_STATE_SET:
1083	case CSR_CYCLE_TIME:
1084	case CSR_BUS_TIME:
1085	case CSR_BUSY_TIMEOUT:
1086		if (tcode == TCODE_READ_QUADLET_REQUEST)
1087			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1088		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1089			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1090		else
1091			rcode = RCODE_TYPE_ERROR;
1092		break;
1093
1094	case CSR_RESET_START:
1095		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1096			card->driver->write_csr(card, CSR_STATE_CLEAR,
1097						CSR_STATE_BIT_ABDICATE);
1098		else
1099			rcode = RCODE_TYPE_ERROR;
1100		break;
1101
1102	case CSR_SPLIT_TIMEOUT_HI:
1103		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1104			*data = cpu_to_be32(card->split_timeout_hi);
1105		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1106			spin_lock_irqsave(&card->lock, flags);
1107			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1108			update_split_timeout(card);
1109			spin_unlock_irqrestore(&card->lock, flags);
1110		} else {
1111			rcode = RCODE_TYPE_ERROR;
1112		}
1113		break;
1114
1115	case CSR_SPLIT_TIMEOUT_LO:
1116		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1117			*data = cpu_to_be32(card->split_timeout_lo);
1118		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1119			spin_lock_irqsave(&card->lock, flags);
1120			card->split_timeout_lo =
1121					be32_to_cpu(*data) & 0xfff80000;
1122			update_split_timeout(card);
1123			spin_unlock_irqrestore(&card->lock, flags);
1124		} else {
1125			rcode = RCODE_TYPE_ERROR;
1126		}
1127		break;
1128
1129	case CSR_MAINT_UTILITY:
1130		if (tcode == TCODE_READ_QUADLET_REQUEST)
1131			*data = card->maint_utility_register;
1132		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1133			card->maint_utility_register = *data;
1134		else
1135			rcode = RCODE_TYPE_ERROR;
1136		break;
1137
1138	case CSR_BROADCAST_CHANNEL:
1139		if (tcode == TCODE_READ_QUADLET_REQUEST)
1140			*data = cpu_to_be32(card->broadcast_channel);
1141		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1142			card->broadcast_channel =
1143			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1144			    BROADCAST_CHANNEL_INITIAL;
1145		else
1146			rcode = RCODE_TYPE_ERROR;
1147		break;
1148
1149	case CSR_BUS_MANAGER_ID:
1150	case CSR_BANDWIDTH_AVAILABLE:
1151	case CSR_CHANNELS_AVAILABLE_HI:
1152	case CSR_CHANNELS_AVAILABLE_LO:
1153		/*
1154		 * FIXME: these are handled by the OHCI hardware and
1155		 * the stack never sees these request. If we add
1156		 * support for a new type of controller that doesn't
1157		 * handle this in hardware we need to deal with these
1158		 * transactions.
1159		 */
1160		BUG();
1161		break;
1162
1163	default:
1164		rcode = RCODE_ADDRESS_ERROR;
1165		break;
1166	}
1167
1168	fw_send_response(card, request, rcode);
1169}
1170
1171static struct fw_address_handler registers = {
1172	.length			= 0x400,
1173	.address_callback	= handle_registers,
1174};
1175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1177MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1178MODULE_LICENSE("GPL");
1179
1180static const u32 vendor_textual_descriptor[] = {
1181	/* textual descriptor leaf () */
1182	0x00060000,
1183	0x00000000,
1184	0x00000000,
1185	0x4c696e75,		/* L i n u */
1186	0x78204669,		/* x   F i */
1187	0x72657769,		/* r e w i */
1188	0x72650000,		/* r e     */
1189};
1190
1191static const u32 model_textual_descriptor[] = {
1192	/* model descriptor leaf () */
1193	0x00030000,
1194	0x00000000,
1195	0x00000000,
1196	0x4a756a75,		/* J u j u */
1197};
1198
1199static struct fw_descriptor vendor_id_descriptor = {
1200	.length = ARRAY_SIZE(vendor_textual_descriptor),
1201	.immediate = 0x03d00d1e,
1202	.key = 0x81000000,
1203	.data = vendor_textual_descriptor,
1204};
1205
1206static struct fw_descriptor model_id_descriptor = {
1207	.length = ARRAY_SIZE(model_textual_descriptor),
1208	.immediate = 0x17000001,
1209	.key = 0x81000000,
1210	.data = model_textual_descriptor,
1211};
1212
1213static int __init fw_core_init(void)
1214{
1215	int ret;
1216
1217	fw_workqueue = alloc_workqueue("firewire",
1218				       WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1219	if (!fw_workqueue)
1220		return -ENOMEM;
1221
1222	ret = bus_register(&fw_bus_type);
1223	if (ret < 0) {
1224		destroy_workqueue(fw_workqueue);
1225		return ret;
1226	}
1227
1228	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1229	if (fw_cdev_major < 0) {
1230		bus_unregister(&fw_bus_type);
1231		destroy_workqueue(fw_workqueue);
1232		return fw_cdev_major;
1233	}
1234
1235	fw_core_add_address_handler(&topology_map, &topology_map_region);
1236	fw_core_add_address_handler(&registers, &registers_region);
 
1237	fw_core_add_descriptor(&vendor_id_descriptor);
1238	fw_core_add_descriptor(&model_id_descriptor);
1239
1240	return 0;
1241}
1242
1243static void __exit fw_core_cleanup(void)
1244{
1245	unregister_chrdev(fw_cdev_major, "firewire");
1246	bus_unregister(&fw_bus_type);
1247	destroy_workqueue(fw_workqueue);
1248	idr_destroy(&fw_device_idr);
1249}
1250
1251module_init(fw_core_init);
1252module_exit(fw_core_cleanup);
v4.6
   1/*
   2 * Core IEEE1394 transaction logic
   3 *
   4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bug.h>
  22#include <linux/completion.h>
  23#include <linux/device.h>
  24#include <linux/errno.h>
  25#include <linux/firewire.h>
  26#include <linux/firewire-constants.h>
  27#include <linux/fs.h>
  28#include <linux/init.h>
  29#include <linux/idr.h>
  30#include <linux/jiffies.h>
  31#include <linux/kernel.h>
  32#include <linux/list.h>
  33#include <linux/module.h>
  34#include <linux/rculist.h>
  35#include <linux/slab.h>
  36#include <linux/spinlock.h>
  37#include <linux/string.h>
  38#include <linux/timer.h>
  39#include <linux/types.h>
  40#include <linux/workqueue.h>
  41
  42#include <asm/byteorder.h>
  43
  44#include "core.h"
  45
  46#define HEADER_PRI(pri)			((pri) << 0)
  47#define HEADER_TCODE(tcode)		((tcode) << 4)
  48#define HEADER_RETRY(retry)		((retry) << 8)
  49#define HEADER_TLABEL(tlabel)		((tlabel) << 10)
  50#define HEADER_DESTINATION(destination)	((destination) << 16)
  51#define HEADER_SOURCE(source)		((source) << 16)
  52#define HEADER_RCODE(rcode)		((rcode) << 12)
  53#define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
  54#define HEADER_DATA_LENGTH(length)	((length) << 16)
  55#define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
  56
  57#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
  58#define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
  59#define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
  60#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
  61#define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
  62#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
  63#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
  64#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
  65
  66#define HEADER_DESTINATION_IS_BROADCAST(q) \
  67	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
  68
  69#define PHY_PACKET_CONFIG	0x0
  70#define PHY_PACKET_LINK_ON	0x1
  71#define PHY_PACKET_SELF_ID	0x2
  72
  73#define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
  74#define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
  75#define PHY_IDENTIFIER(id)		((id) << 30)
  76
  77/* returns 0 if the split timeout handler is already running */
  78static int try_cancel_split_timeout(struct fw_transaction *t)
  79{
  80	if (t->is_split_transaction)
  81		return del_timer(&t->split_timeout_timer);
  82	else
  83		return 1;
  84}
  85
  86static int close_transaction(struct fw_transaction *transaction,
  87			     struct fw_card *card, int rcode)
  88{
  89	struct fw_transaction *t;
  90	unsigned long flags;
  91
  92	spin_lock_irqsave(&card->lock, flags);
  93	list_for_each_entry(t, &card->transaction_list, link) {
  94		if (t == transaction) {
  95			if (!try_cancel_split_timeout(t)) {
  96				spin_unlock_irqrestore(&card->lock, flags);
  97				goto timed_out;
  98			}
  99			list_del_init(&t->link);
 100			card->tlabel_mask &= ~(1ULL << t->tlabel);
 101			break;
 102		}
 103	}
 104	spin_unlock_irqrestore(&card->lock, flags);
 105
 106	if (&t->link != &card->transaction_list) {
 107		t->callback(card, rcode, NULL, 0, t->callback_data);
 108		return 0;
 109	}
 110
 111 timed_out:
 112	return -ENOENT;
 113}
 114
 115/*
 116 * Only valid for transactions that are potentially pending (ie have
 117 * been sent).
 118 */
 119int fw_cancel_transaction(struct fw_card *card,
 120			  struct fw_transaction *transaction)
 121{
 122	/*
 123	 * Cancel the packet transmission if it's still queued.  That
 124	 * will call the packet transmission callback which cancels
 125	 * the transaction.
 126	 */
 127
 128	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
 129		return 0;
 130
 131	/*
 132	 * If the request packet has already been sent, we need to see
 133	 * if the transaction is still pending and remove it in that case.
 134	 */
 135
 136	return close_transaction(transaction, card, RCODE_CANCELLED);
 137}
 138EXPORT_SYMBOL(fw_cancel_transaction);
 139
 140static void split_transaction_timeout_callback(unsigned long data)
 141{
 142	struct fw_transaction *t = (struct fw_transaction *)data;
 143	struct fw_card *card = t->card;
 144	unsigned long flags;
 145
 146	spin_lock_irqsave(&card->lock, flags);
 147	if (list_empty(&t->link)) {
 148		spin_unlock_irqrestore(&card->lock, flags);
 149		return;
 150	}
 151	list_del(&t->link);
 152	card->tlabel_mask &= ~(1ULL << t->tlabel);
 153	spin_unlock_irqrestore(&card->lock, flags);
 154
 155	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
 156}
 157
 158static void start_split_transaction_timeout(struct fw_transaction *t,
 159					    struct fw_card *card)
 160{
 161	unsigned long flags;
 162
 163	spin_lock_irqsave(&card->lock, flags);
 164
 165	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
 166		spin_unlock_irqrestore(&card->lock, flags);
 167		return;
 168	}
 169
 170	t->is_split_transaction = true;
 171	mod_timer(&t->split_timeout_timer,
 172		  jiffies + card->split_timeout_jiffies);
 173
 174	spin_unlock_irqrestore(&card->lock, flags);
 175}
 176
 177static void transmit_complete_callback(struct fw_packet *packet,
 178				       struct fw_card *card, int status)
 179{
 180	struct fw_transaction *t =
 181	    container_of(packet, struct fw_transaction, packet);
 182
 183	switch (status) {
 184	case ACK_COMPLETE:
 185		close_transaction(t, card, RCODE_COMPLETE);
 186		break;
 187	case ACK_PENDING:
 188		start_split_transaction_timeout(t, card);
 189		break;
 190	case ACK_BUSY_X:
 191	case ACK_BUSY_A:
 192	case ACK_BUSY_B:
 193		close_transaction(t, card, RCODE_BUSY);
 194		break;
 195	case ACK_DATA_ERROR:
 196		close_transaction(t, card, RCODE_DATA_ERROR);
 197		break;
 198	case ACK_TYPE_ERROR:
 199		close_transaction(t, card, RCODE_TYPE_ERROR);
 200		break;
 201	default:
 202		/*
 203		 * In this case the ack is really a juju specific
 204		 * rcode, so just forward that to the callback.
 205		 */
 206		close_transaction(t, card, status);
 207		break;
 208	}
 209}
 210
 211static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
 212		int destination_id, int source_id, int generation, int speed,
 213		unsigned long long offset, void *payload, size_t length)
 214{
 215	int ext_tcode;
 216
 217	if (tcode == TCODE_STREAM_DATA) {
 218		packet->header[0] =
 219			HEADER_DATA_LENGTH(length) |
 220			destination_id |
 221			HEADER_TCODE(TCODE_STREAM_DATA);
 222		packet->header_length = 4;
 223		packet->payload = payload;
 224		packet->payload_length = length;
 225
 226		goto common;
 227	}
 228
 229	if (tcode > 0x10) {
 230		ext_tcode = tcode & ~0x10;
 231		tcode = TCODE_LOCK_REQUEST;
 232	} else
 233		ext_tcode = 0;
 234
 235	packet->header[0] =
 236		HEADER_RETRY(RETRY_X) |
 237		HEADER_TLABEL(tlabel) |
 238		HEADER_TCODE(tcode) |
 239		HEADER_DESTINATION(destination_id);
 240	packet->header[1] =
 241		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
 242	packet->header[2] =
 243		offset;
 244
 245	switch (tcode) {
 246	case TCODE_WRITE_QUADLET_REQUEST:
 247		packet->header[3] = *(u32 *)payload;
 248		packet->header_length = 16;
 249		packet->payload_length = 0;
 250		break;
 251
 252	case TCODE_LOCK_REQUEST:
 253	case TCODE_WRITE_BLOCK_REQUEST:
 254		packet->header[3] =
 255			HEADER_DATA_LENGTH(length) |
 256			HEADER_EXTENDED_TCODE(ext_tcode);
 257		packet->header_length = 16;
 258		packet->payload = payload;
 259		packet->payload_length = length;
 260		break;
 261
 262	case TCODE_READ_QUADLET_REQUEST:
 263		packet->header_length = 12;
 264		packet->payload_length = 0;
 265		break;
 266
 267	case TCODE_READ_BLOCK_REQUEST:
 268		packet->header[3] =
 269			HEADER_DATA_LENGTH(length) |
 270			HEADER_EXTENDED_TCODE(ext_tcode);
 271		packet->header_length = 16;
 272		packet->payload_length = 0;
 273		break;
 274
 275	default:
 276		WARN(1, "wrong tcode %d\n", tcode);
 277	}
 278 common:
 279	packet->speed = speed;
 280	packet->generation = generation;
 281	packet->ack = 0;
 282	packet->payload_mapped = false;
 283}
 284
 285static int allocate_tlabel(struct fw_card *card)
 286{
 287	int tlabel;
 288
 289	tlabel = card->current_tlabel;
 290	while (card->tlabel_mask & (1ULL << tlabel)) {
 291		tlabel = (tlabel + 1) & 0x3f;
 292		if (tlabel == card->current_tlabel)
 293			return -EBUSY;
 294	}
 295
 296	card->current_tlabel = (tlabel + 1) & 0x3f;
 297	card->tlabel_mask |= 1ULL << tlabel;
 298
 299	return tlabel;
 300}
 301
 302/**
 303 * fw_send_request() - submit a request packet for transmission
 304 * @card:		interface to send the request at
 305 * @t:			transaction instance to which the request belongs
 306 * @tcode:		transaction code
 307 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 308 * @generation:		bus generation in which request and response are valid
 309 * @speed:		transmission speed
 310 * @offset:		48bit wide offset into destination's address space
 311 * @payload:		data payload for the request subaction
 312 * @length:		length of the payload, in bytes
 313 * @callback:		function to be called when the transaction is completed
 314 * @callback_data:	data to be passed to the transaction completion callback
 315 *
 316 * Submit a request packet into the asynchronous request transmission queue.
 317 * Can be called from atomic context.  If you prefer a blocking API, use
 318 * fw_run_transaction() in a context that can sleep.
 319 *
 320 * In case of lock requests, specify one of the firewire-core specific %TCODE_
 321 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
 322 *
 323 * Make sure that the value in @destination_id is not older than the one in
 324 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
 325 *
 326 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
 327 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
 328 * It will contain tag, channel, and sy data instead of a node ID then.
 329 *
 330 * The payload buffer at @data is going to be DMA-mapped except in case of
 331 * @length <= 8 or of local (loopback) requests.  Hence make sure that the
 332 * buffer complies with the restrictions of the streaming DMA mapping API.
 333 * @payload must not be freed before the @callback is called.
 334 *
 335 * In case of request types without payload, @data is NULL and @length is 0.
 336 *
 337 * After the transaction is completed successfully or unsuccessfully, the
 338 * @callback will be called.  Among its parameters is the response code which
 339 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
 340 * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
 341 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
 342 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
 343 * generation, or missing ACK respectively.
 344 *
 345 * Note some timing corner cases:  fw_send_request() may complete much earlier
 346 * than when the request packet actually hits the wire.  On the other hand,
 347 * transaction completion and hence execution of @callback may happen even
 348 * before fw_send_request() returns.
 349 */
 350void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
 351		     int destination_id, int generation, int speed,
 352		     unsigned long long offset, void *payload, size_t length,
 353		     fw_transaction_callback_t callback, void *callback_data)
 354{
 355	unsigned long flags;
 356	int tlabel;
 357
 358	/*
 359	 * Allocate tlabel from the bitmap and put the transaction on
 360	 * the list while holding the card spinlock.
 361	 */
 362
 363	spin_lock_irqsave(&card->lock, flags);
 364
 365	tlabel = allocate_tlabel(card);
 366	if (tlabel < 0) {
 367		spin_unlock_irqrestore(&card->lock, flags);
 368		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
 369		return;
 370	}
 371
 372	t->node_id = destination_id;
 373	t->tlabel = tlabel;
 374	t->card = card;
 375	t->is_split_transaction = false;
 376	setup_timer(&t->split_timeout_timer,
 377		    split_transaction_timeout_callback, (unsigned long)t);
 378	t->callback = callback;
 379	t->callback_data = callback_data;
 380
 381	fw_fill_request(&t->packet, tcode, t->tlabel,
 382			destination_id, card->node_id, generation,
 383			speed, offset, payload, length);
 384	t->packet.callback = transmit_complete_callback;
 385
 386	list_add_tail(&t->link, &card->transaction_list);
 387
 388	spin_unlock_irqrestore(&card->lock, flags);
 389
 390	card->driver->send_request(card, &t->packet);
 391}
 392EXPORT_SYMBOL(fw_send_request);
 393
 394struct transaction_callback_data {
 395	struct completion done;
 396	void *payload;
 397	int rcode;
 398};
 399
 400static void transaction_callback(struct fw_card *card, int rcode,
 401				 void *payload, size_t length, void *data)
 402{
 403	struct transaction_callback_data *d = data;
 404
 405	if (rcode == RCODE_COMPLETE)
 406		memcpy(d->payload, payload, length);
 407	d->rcode = rcode;
 408	complete(&d->done);
 409}
 410
 411/**
 412 * fw_run_transaction() - send request and sleep until transaction is completed
 413 *
 414 * Returns the RCODE.  See fw_send_request() for parameter documentation.
 415 * Unlike fw_send_request(), @data points to the payload of the request or/and
 416 * to the payload of the response.  DMA mapping restrictions apply to outbound
 417 * request payloads of >= 8 bytes but not to inbound response payloads.
 418 */
 419int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
 420		       int generation, int speed, unsigned long long offset,
 421		       void *payload, size_t length)
 422{
 423	struct transaction_callback_data d;
 424	struct fw_transaction t;
 425
 426	init_timer_on_stack(&t.split_timeout_timer);
 427	init_completion(&d.done);
 428	d.payload = payload;
 429	fw_send_request(card, &t, tcode, destination_id, generation, speed,
 430			offset, payload, length, transaction_callback, &d);
 431	wait_for_completion(&d.done);
 432	destroy_timer_on_stack(&t.split_timeout_timer);
 433
 434	return d.rcode;
 435}
 436EXPORT_SYMBOL(fw_run_transaction);
 437
 438static DEFINE_MUTEX(phy_config_mutex);
 439static DECLARE_COMPLETION(phy_config_done);
 440
 441static void transmit_phy_packet_callback(struct fw_packet *packet,
 442					 struct fw_card *card, int status)
 443{
 444	complete(&phy_config_done);
 445}
 446
 447static struct fw_packet phy_config_packet = {
 448	.header_length	= 12,
 449	.header[0]	= TCODE_LINK_INTERNAL << 4,
 450	.payload_length	= 0,
 451	.speed		= SCODE_100,
 452	.callback	= transmit_phy_packet_callback,
 453};
 454
 455void fw_send_phy_config(struct fw_card *card,
 456			int node_id, int generation, int gap_count)
 457{
 458	long timeout = DIV_ROUND_UP(HZ, 10);
 459	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
 460
 461	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
 462		data |= PHY_CONFIG_ROOT_ID(node_id);
 463
 464	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
 465		gap_count = card->driver->read_phy_reg(card, 1);
 466		if (gap_count < 0)
 467			return;
 468
 469		gap_count &= 63;
 470		if (gap_count == 63)
 471			return;
 472	}
 473	data |= PHY_CONFIG_GAP_COUNT(gap_count);
 474
 475	mutex_lock(&phy_config_mutex);
 476
 477	phy_config_packet.header[1] = data;
 478	phy_config_packet.header[2] = ~data;
 479	phy_config_packet.generation = generation;
 480	reinit_completion(&phy_config_done);
 481
 482	card->driver->send_request(card, &phy_config_packet);
 483	wait_for_completion_timeout(&phy_config_done, timeout);
 484
 485	mutex_unlock(&phy_config_mutex);
 486}
 487
 488static struct fw_address_handler *lookup_overlapping_address_handler(
 489	struct list_head *list, unsigned long long offset, size_t length)
 490{
 491	struct fw_address_handler *handler;
 492
 493	list_for_each_entry_rcu(handler, list, link) {
 494		if (handler->offset < offset + length &&
 495		    offset < handler->offset + handler->length)
 496			return handler;
 497	}
 498
 499	return NULL;
 500}
 501
 502static bool is_enclosing_handler(struct fw_address_handler *handler,
 503				 unsigned long long offset, size_t length)
 504{
 505	return handler->offset <= offset &&
 506		offset + length <= handler->offset + handler->length;
 507}
 508
 509static struct fw_address_handler *lookup_enclosing_address_handler(
 510	struct list_head *list, unsigned long long offset, size_t length)
 511{
 512	struct fw_address_handler *handler;
 513
 514	list_for_each_entry_rcu(handler, list, link) {
 515		if (is_enclosing_handler(handler, offset, length))
 516			return handler;
 517	}
 518
 519	return NULL;
 520}
 521
 522static DEFINE_SPINLOCK(address_handler_list_lock);
 523static LIST_HEAD(address_handler_list);
 524
 525const struct fw_address_region fw_high_memory_region =
 526	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
 527EXPORT_SYMBOL(fw_high_memory_region);
 528
 529static const struct fw_address_region low_memory_region =
 530	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
 531
 532#if 0
 
 
 533const struct fw_address_region fw_private_region =
 534	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
 535const struct fw_address_region fw_csr_region =
 536	{ .start = CSR_REGISTER_BASE,
 537	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
 538const struct fw_address_region fw_unit_space_region =
 539	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
 540#endif  /*  0  */
 541
 542static bool is_in_fcp_region(u64 offset, size_t length)
 543{
 544	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 545		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
 546}
 547
 548/**
 549 * fw_core_add_address_handler() - register for incoming requests
 550 * @handler:	callback
 551 * @region:	region in the IEEE 1212 node space address range
 552 *
 553 * region->start, ->end, and handler->length have to be quadlet-aligned.
 554 *
 555 * When a request is received that falls within the specified address range,
 556 * the specified callback is invoked.  The parameters passed to the callback
 557 * give the details of the particular request.
 558 *
 559 * To be called in process context.
 560 * Return value:  0 on success, non-zero otherwise.
 561 *
 562 * The start offset of the handler's address region is determined by
 563 * fw_core_add_address_handler() and is returned in handler->offset.
 564 *
 565 * Address allocations are exclusive, except for the FCP registers.
 566 */
 567int fw_core_add_address_handler(struct fw_address_handler *handler,
 568				const struct fw_address_region *region)
 569{
 570	struct fw_address_handler *other;
 
 571	int ret = -EBUSY;
 572
 573	if (region->start & 0xffff000000000003ULL ||
 574	    region->start >= region->end ||
 575	    region->end   > 0x0001000000000000ULL ||
 576	    handler->length & 3 ||
 577	    handler->length == 0)
 578		return -EINVAL;
 579
 580	spin_lock(&address_handler_list_lock);
 581
 582	handler->offset = region->start;
 583	while (handler->offset + handler->length <= region->end) {
 584		if (is_in_fcp_region(handler->offset, handler->length))
 585			other = NULL;
 586		else
 587			other = lookup_overlapping_address_handler
 588					(&address_handler_list,
 589					 handler->offset, handler->length);
 590		if (other != NULL) {
 591			handler->offset += other->length;
 592		} else {
 593			list_add_tail_rcu(&handler->link, &address_handler_list);
 594			ret = 0;
 595			break;
 596		}
 597	}
 598
 599	spin_unlock(&address_handler_list_lock);
 600
 601	return ret;
 602}
 603EXPORT_SYMBOL(fw_core_add_address_handler);
 604
 605/**
 606 * fw_core_remove_address_handler() - unregister an address handler
 607 *
 608 * To be called in process context.
 609 *
 610 * When fw_core_remove_address_handler() returns, @handler->callback() is
 611 * guaranteed to not run on any CPU anymore.
 612 */
 613void fw_core_remove_address_handler(struct fw_address_handler *handler)
 614{
 615	spin_lock(&address_handler_list_lock);
 616	list_del_rcu(&handler->link);
 617	spin_unlock(&address_handler_list_lock);
 618	synchronize_rcu();
 
 619}
 620EXPORT_SYMBOL(fw_core_remove_address_handler);
 621
 622struct fw_request {
 623	struct fw_packet response;
 624	u32 request_header[4];
 625	int ack;
 626	u32 length;
 627	u32 data[0];
 628};
 629
 630static void free_response_callback(struct fw_packet *packet,
 631				   struct fw_card *card, int status)
 632{
 633	struct fw_request *request;
 634
 635	request = container_of(packet, struct fw_request, response);
 636	kfree(request);
 637}
 638
 639int fw_get_response_length(struct fw_request *r)
 640{
 641	int tcode, ext_tcode, data_length;
 642
 643	tcode = HEADER_GET_TCODE(r->request_header[0]);
 644
 645	switch (tcode) {
 646	case TCODE_WRITE_QUADLET_REQUEST:
 647	case TCODE_WRITE_BLOCK_REQUEST:
 648		return 0;
 649
 650	case TCODE_READ_QUADLET_REQUEST:
 651		return 4;
 652
 653	case TCODE_READ_BLOCK_REQUEST:
 654		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 655		return data_length;
 656
 657	case TCODE_LOCK_REQUEST:
 658		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
 659		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 660		switch (ext_tcode) {
 661		case EXTCODE_FETCH_ADD:
 662		case EXTCODE_LITTLE_ADD:
 663			return data_length;
 664		default:
 665			return data_length / 2;
 666		}
 667
 668	default:
 669		WARN(1, "wrong tcode %d\n", tcode);
 670		return 0;
 671	}
 672}
 673
 674void fw_fill_response(struct fw_packet *response, u32 *request_header,
 675		      int rcode, void *payload, size_t length)
 676{
 677	int tcode, tlabel, extended_tcode, source, destination;
 678
 679	tcode          = HEADER_GET_TCODE(request_header[0]);
 680	tlabel         = HEADER_GET_TLABEL(request_header[0]);
 681	source         = HEADER_GET_DESTINATION(request_header[0]);
 682	destination    = HEADER_GET_SOURCE(request_header[1]);
 683	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
 684
 685	response->header[0] =
 686		HEADER_RETRY(RETRY_1) |
 687		HEADER_TLABEL(tlabel) |
 688		HEADER_DESTINATION(destination);
 689	response->header[1] =
 690		HEADER_SOURCE(source) |
 691		HEADER_RCODE(rcode);
 692	response->header[2] = 0;
 693
 694	switch (tcode) {
 695	case TCODE_WRITE_QUADLET_REQUEST:
 696	case TCODE_WRITE_BLOCK_REQUEST:
 697		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
 698		response->header_length = 12;
 699		response->payload_length = 0;
 700		break;
 701
 702	case TCODE_READ_QUADLET_REQUEST:
 703		response->header[0] |=
 704			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
 705		if (payload != NULL)
 706			response->header[3] = *(u32 *)payload;
 707		else
 708			response->header[3] = 0;
 709		response->header_length = 16;
 710		response->payload_length = 0;
 711		break;
 712
 713	case TCODE_READ_BLOCK_REQUEST:
 714	case TCODE_LOCK_REQUEST:
 715		response->header[0] |= HEADER_TCODE(tcode + 2);
 716		response->header[3] =
 717			HEADER_DATA_LENGTH(length) |
 718			HEADER_EXTENDED_TCODE(extended_tcode);
 719		response->header_length = 16;
 720		response->payload = payload;
 721		response->payload_length = length;
 722		break;
 723
 724	default:
 725		WARN(1, "wrong tcode %d\n", tcode);
 726	}
 727
 728	response->payload_mapped = false;
 729}
 730EXPORT_SYMBOL(fw_fill_response);
 731
 732static u32 compute_split_timeout_timestamp(struct fw_card *card,
 733					   u32 request_timestamp)
 734{
 735	unsigned int cycles;
 736	u32 timestamp;
 737
 738	cycles = card->split_timeout_cycles;
 739	cycles += request_timestamp & 0x1fff;
 740
 741	timestamp = request_timestamp & ~0x1fff;
 742	timestamp += (cycles / 8000) << 13;
 743	timestamp |= cycles % 8000;
 744
 745	return timestamp;
 746}
 747
 748static struct fw_request *allocate_request(struct fw_card *card,
 749					   struct fw_packet *p)
 750{
 751	struct fw_request *request;
 752	u32 *data, length;
 753	int request_tcode;
 754
 755	request_tcode = HEADER_GET_TCODE(p->header[0]);
 756	switch (request_tcode) {
 757	case TCODE_WRITE_QUADLET_REQUEST:
 758		data = &p->header[3];
 759		length = 4;
 760		break;
 761
 762	case TCODE_WRITE_BLOCK_REQUEST:
 763	case TCODE_LOCK_REQUEST:
 764		data = p->payload;
 765		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 766		break;
 767
 768	case TCODE_READ_QUADLET_REQUEST:
 769		data = NULL;
 770		length = 4;
 771		break;
 772
 773	case TCODE_READ_BLOCK_REQUEST:
 774		data = NULL;
 775		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 776		break;
 777
 778	default:
 779		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
 780			 p->header[0], p->header[1], p->header[2]);
 781		return NULL;
 782	}
 783
 784	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
 785	if (request == NULL)
 786		return NULL;
 787
 788	request->response.speed = p->speed;
 789	request->response.timestamp =
 790			compute_split_timeout_timestamp(card, p->timestamp);
 791	request->response.generation = p->generation;
 792	request->response.ack = 0;
 793	request->response.callback = free_response_callback;
 794	request->ack = p->ack;
 795	request->length = length;
 796	if (data)
 797		memcpy(request->data, data, length);
 798
 799	memcpy(request->request_header, p->header, sizeof(p->header));
 800
 801	return request;
 802}
 803
 804void fw_send_response(struct fw_card *card,
 805		      struct fw_request *request, int rcode)
 806{
 807	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
 808		return;
 809
 810	/* unified transaction or broadcast transaction: don't respond */
 811	if (request->ack != ACK_PENDING ||
 812	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
 813		kfree(request);
 814		return;
 815	}
 816
 817	if (rcode == RCODE_COMPLETE)
 818		fw_fill_response(&request->response, request->request_header,
 819				 rcode, request->data,
 820				 fw_get_response_length(request));
 821	else
 822		fw_fill_response(&request->response, request->request_header,
 823				 rcode, NULL, 0);
 824
 825	card->driver->send_response(card, &request->response);
 826}
 827EXPORT_SYMBOL(fw_send_response);
 828
 829/**
 830 * fw_get_request_speed() - returns speed at which the @request was received
 831 */
 832int fw_get_request_speed(struct fw_request *request)
 833{
 834	return request->response.speed;
 835}
 836EXPORT_SYMBOL(fw_get_request_speed);
 837
 838static void handle_exclusive_region_request(struct fw_card *card,
 839					    struct fw_packet *p,
 840					    struct fw_request *request,
 841					    unsigned long long offset)
 842{
 843	struct fw_address_handler *handler;
 
 844	int tcode, destination, source;
 845
 846	destination = HEADER_GET_DESTINATION(p->header[0]);
 847	source      = HEADER_GET_SOURCE(p->header[1]);
 848	tcode       = HEADER_GET_TCODE(p->header[0]);
 849	if (tcode == TCODE_LOCK_REQUEST)
 850		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
 851
 852	rcu_read_lock();
 853	handler = lookup_enclosing_address_handler(&address_handler_list,
 854						   offset, request->length);
 855	if (handler)
 
 
 
 
 
 
 
 
 
 
 
 
 856		handler->address_callback(card, request,
 857					  tcode, destination, source,
 858					  p->generation, offset,
 859					  request->data, request->length,
 860					  handler->callback_data);
 861	rcu_read_unlock();
 862
 863	if (!handler)
 864		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 865}
 866
 867static void handle_fcp_region_request(struct fw_card *card,
 868				      struct fw_packet *p,
 869				      struct fw_request *request,
 870				      unsigned long long offset)
 871{
 872	struct fw_address_handler *handler;
 
 873	int tcode, destination, source;
 874
 875	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 876	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
 877	    request->length > 0x200) {
 878		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 879
 880		return;
 881	}
 882
 883	tcode       = HEADER_GET_TCODE(p->header[0]);
 884	destination = HEADER_GET_DESTINATION(p->header[0]);
 885	source      = HEADER_GET_SOURCE(p->header[1]);
 886
 887	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
 888	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
 889		fw_send_response(card, request, RCODE_TYPE_ERROR);
 890
 891		return;
 892	}
 893
 894	rcu_read_lock();
 895	list_for_each_entry_rcu(handler, &address_handler_list, link) {
 896		if (is_enclosing_handler(handler, offset, request->length))
 897			handler->address_callback(card, NULL, tcode,
 898						  destination, source,
 899						  p->generation, offset,
 900						  request->data,
 901						  request->length,
 902						  handler->callback_data);
 903	}
 904	rcu_read_unlock();
 905
 906	fw_send_response(card, request, RCODE_COMPLETE);
 907}
 908
 909void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
 910{
 911	struct fw_request *request;
 912	unsigned long long offset;
 913
 914	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
 915		return;
 916
 917	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
 918		fw_cdev_handle_phy_packet(card, p);
 919		return;
 920	}
 921
 922	request = allocate_request(card, p);
 923	if (request == NULL) {
 924		/* FIXME: send statically allocated busy packet. */
 925		return;
 926	}
 927
 928	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
 929		p->header[2];
 930
 931	if (!is_in_fcp_region(offset, request->length))
 932		handle_exclusive_region_request(card, p, request, offset);
 933	else
 934		handle_fcp_region_request(card, p, request, offset);
 935
 936}
 937EXPORT_SYMBOL(fw_core_handle_request);
 938
 939void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
 940{
 941	struct fw_transaction *t;
 942	unsigned long flags;
 943	u32 *data;
 944	size_t data_length;
 945	int tcode, tlabel, source, rcode;
 946
 947	tcode	= HEADER_GET_TCODE(p->header[0]);
 948	tlabel	= HEADER_GET_TLABEL(p->header[0]);
 949	source	= HEADER_GET_SOURCE(p->header[1]);
 950	rcode	= HEADER_GET_RCODE(p->header[1]);
 951
 952	spin_lock_irqsave(&card->lock, flags);
 953	list_for_each_entry(t, &card->transaction_list, link) {
 954		if (t->node_id == source && t->tlabel == tlabel) {
 955			if (!try_cancel_split_timeout(t)) {
 956				spin_unlock_irqrestore(&card->lock, flags);
 957				goto timed_out;
 958			}
 959			list_del_init(&t->link);
 960			card->tlabel_mask &= ~(1ULL << t->tlabel);
 961			break;
 962		}
 963	}
 964	spin_unlock_irqrestore(&card->lock, flags);
 965
 966	if (&t->link == &card->transaction_list) {
 967 timed_out:
 968		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
 969			  source, tlabel);
 970		return;
 971	}
 972
 973	/*
 974	 * FIXME: sanity check packet, is length correct, does tcodes
 975	 * and addresses match.
 976	 */
 977
 978	switch (tcode) {
 979	case TCODE_READ_QUADLET_RESPONSE:
 980		data = (u32 *) &p->header[3];
 981		data_length = 4;
 982		break;
 983
 984	case TCODE_WRITE_RESPONSE:
 985		data = NULL;
 986		data_length = 0;
 987		break;
 988
 989	case TCODE_READ_BLOCK_RESPONSE:
 990	case TCODE_LOCK_RESPONSE:
 991		data = p->payload;
 992		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
 993		break;
 994
 995	default:
 996		/* Should never happen, this is just to shut up gcc. */
 997		data = NULL;
 998		data_length = 0;
 999		break;
1000	}
1001
1002	/*
1003	 * The response handler may be executed while the request handler
1004	 * is still pending.  Cancel the request handler.
1005	 */
1006	card->driver->cancel_packet(card, &t->packet);
1007
1008	t->callback(card, rcode, data, data_length, t->callback_data);
1009}
1010EXPORT_SYMBOL(fw_core_handle_response);
1011
1012/**
1013 * fw_rcode_string - convert a firewire result code to an error description
1014 * @rcode: the result code
1015 */
1016const char *fw_rcode_string(int rcode)
1017{
1018	static const char *const names[] = {
1019		[RCODE_COMPLETE]       = "no error",
1020		[RCODE_CONFLICT_ERROR] = "conflict error",
1021		[RCODE_DATA_ERROR]     = "data error",
1022		[RCODE_TYPE_ERROR]     = "type error",
1023		[RCODE_ADDRESS_ERROR]  = "address error",
1024		[RCODE_SEND_ERROR]     = "send error",
1025		[RCODE_CANCELLED]      = "timeout",
1026		[RCODE_BUSY]           = "busy",
1027		[RCODE_GENERATION]     = "bus reset",
1028		[RCODE_NO_ACK]         = "no ack",
1029	};
1030
1031	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1032		return names[rcode];
1033	else
1034		return "unknown";
1035}
1036EXPORT_SYMBOL(fw_rcode_string);
1037
1038static const struct fw_address_region topology_map_region =
1039	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1040	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1041
1042static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1043		int tcode, int destination, int source, int generation,
1044		unsigned long long offset, void *payload, size_t length,
1045		void *callback_data)
1046{
1047	int start;
1048
1049	if (!TCODE_IS_READ_REQUEST(tcode)) {
1050		fw_send_response(card, request, RCODE_TYPE_ERROR);
1051		return;
1052	}
1053
1054	if ((offset & 3) > 0 || (length & 3) > 0) {
1055		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1056		return;
1057	}
1058
1059	start = (offset - topology_map_region.start) / 4;
1060	memcpy(payload, &card->topology_map[start], length);
1061
1062	fw_send_response(card, request, RCODE_COMPLETE);
1063}
1064
1065static struct fw_address_handler topology_map = {
1066	.length			= 0x400,
1067	.address_callback	= handle_topology_map,
1068};
1069
1070static const struct fw_address_region registers_region =
1071	{ .start = CSR_REGISTER_BASE,
1072	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1073
1074static void update_split_timeout(struct fw_card *card)
1075{
1076	unsigned int cycles;
1077
1078	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1079
1080	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1081	cycles = clamp(cycles, 800u, 3u * 8000u);
1082
1083	card->split_timeout_cycles = cycles;
1084	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1085}
1086
1087static void handle_registers(struct fw_card *card, struct fw_request *request,
1088		int tcode, int destination, int source, int generation,
1089		unsigned long long offset, void *payload, size_t length,
1090		void *callback_data)
1091{
1092	int reg = offset & ~CSR_REGISTER_BASE;
1093	__be32 *data = payload;
1094	int rcode = RCODE_COMPLETE;
1095	unsigned long flags;
1096
1097	switch (reg) {
1098	case CSR_PRIORITY_BUDGET:
1099		if (!card->priority_budget_implemented) {
1100			rcode = RCODE_ADDRESS_ERROR;
1101			break;
1102		}
1103		/* else fall through */
1104
1105	case CSR_NODE_IDS:
1106		/*
1107		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1108		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1109		 */
1110		/* fall through */
1111
1112	case CSR_STATE_CLEAR:
1113	case CSR_STATE_SET:
1114	case CSR_CYCLE_TIME:
1115	case CSR_BUS_TIME:
1116	case CSR_BUSY_TIMEOUT:
1117		if (tcode == TCODE_READ_QUADLET_REQUEST)
1118			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1119		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1120			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1121		else
1122			rcode = RCODE_TYPE_ERROR;
1123		break;
1124
1125	case CSR_RESET_START:
1126		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1127			card->driver->write_csr(card, CSR_STATE_CLEAR,
1128						CSR_STATE_BIT_ABDICATE);
1129		else
1130			rcode = RCODE_TYPE_ERROR;
1131		break;
1132
1133	case CSR_SPLIT_TIMEOUT_HI:
1134		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1135			*data = cpu_to_be32(card->split_timeout_hi);
1136		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1137			spin_lock_irqsave(&card->lock, flags);
1138			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1139			update_split_timeout(card);
1140			spin_unlock_irqrestore(&card->lock, flags);
1141		} else {
1142			rcode = RCODE_TYPE_ERROR;
1143		}
1144		break;
1145
1146	case CSR_SPLIT_TIMEOUT_LO:
1147		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1148			*data = cpu_to_be32(card->split_timeout_lo);
1149		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1150			spin_lock_irqsave(&card->lock, flags);
1151			card->split_timeout_lo =
1152					be32_to_cpu(*data) & 0xfff80000;
1153			update_split_timeout(card);
1154			spin_unlock_irqrestore(&card->lock, flags);
1155		} else {
1156			rcode = RCODE_TYPE_ERROR;
1157		}
1158		break;
1159
1160	case CSR_MAINT_UTILITY:
1161		if (tcode == TCODE_READ_QUADLET_REQUEST)
1162			*data = card->maint_utility_register;
1163		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1164			card->maint_utility_register = *data;
1165		else
1166			rcode = RCODE_TYPE_ERROR;
1167		break;
1168
1169	case CSR_BROADCAST_CHANNEL:
1170		if (tcode == TCODE_READ_QUADLET_REQUEST)
1171			*data = cpu_to_be32(card->broadcast_channel);
1172		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1173			card->broadcast_channel =
1174			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1175			    BROADCAST_CHANNEL_INITIAL;
1176		else
1177			rcode = RCODE_TYPE_ERROR;
1178		break;
1179
1180	case CSR_BUS_MANAGER_ID:
1181	case CSR_BANDWIDTH_AVAILABLE:
1182	case CSR_CHANNELS_AVAILABLE_HI:
1183	case CSR_CHANNELS_AVAILABLE_LO:
1184		/*
1185		 * FIXME: these are handled by the OHCI hardware and
1186		 * the stack never sees these request. If we add
1187		 * support for a new type of controller that doesn't
1188		 * handle this in hardware we need to deal with these
1189		 * transactions.
1190		 */
1191		BUG();
1192		break;
1193
1194	default:
1195		rcode = RCODE_ADDRESS_ERROR;
1196		break;
1197	}
1198
1199	fw_send_response(card, request, rcode);
1200}
1201
1202static struct fw_address_handler registers = {
1203	.length			= 0x400,
1204	.address_callback	= handle_registers,
1205};
1206
1207static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1208		int tcode, int destination, int source, int generation,
1209		unsigned long long offset, void *payload, size_t length,
1210		void *callback_data)
1211{
1212	/*
1213	 * This catches requests not handled by the physical DMA unit,
1214	 * i.e., wrong transaction types or unauthorized source nodes.
1215	 */
1216	fw_send_response(card, request, RCODE_TYPE_ERROR);
1217}
1218
1219static struct fw_address_handler low_memory = {
1220	.length			= FW_MAX_PHYSICAL_RANGE,
1221	.address_callback	= handle_low_memory,
1222};
1223
1224MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1225MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1226MODULE_LICENSE("GPL");
1227
1228static const u32 vendor_textual_descriptor[] = {
1229	/* textual descriptor leaf () */
1230	0x00060000,
1231	0x00000000,
1232	0x00000000,
1233	0x4c696e75,		/* L i n u */
1234	0x78204669,		/* x   F i */
1235	0x72657769,		/* r e w i */
1236	0x72650000,		/* r e     */
1237};
1238
1239static const u32 model_textual_descriptor[] = {
1240	/* model descriptor leaf () */
1241	0x00030000,
1242	0x00000000,
1243	0x00000000,
1244	0x4a756a75,		/* J u j u */
1245};
1246
1247static struct fw_descriptor vendor_id_descriptor = {
1248	.length = ARRAY_SIZE(vendor_textual_descriptor),
1249	.immediate = 0x03001f11,
1250	.key = 0x81000000,
1251	.data = vendor_textual_descriptor,
1252};
1253
1254static struct fw_descriptor model_id_descriptor = {
1255	.length = ARRAY_SIZE(model_textual_descriptor),
1256	.immediate = 0x17023901,
1257	.key = 0x81000000,
1258	.data = model_textual_descriptor,
1259};
1260
1261static int __init fw_core_init(void)
1262{
1263	int ret;
1264
1265	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
 
1266	if (!fw_workqueue)
1267		return -ENOMEM;
1268
1269	ret = bus_register(&fw_bus_type);
1270	if (ret < 0) {
1271		destroy_workqueue(fw_workqueue);
1272		return ret;
1273	}
1274
1275	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1276	if (fw_cdev_major < 0) {
1277		bus_unregister(&fw_bus_type);
1278		destroy_workqueue(fw_workqueue);
1279		return fw_cdev_major;
1280	}
1281
1282	fw_core_add_address_handler(&topology_map, &topology_map_region);
1283	fw_core_add_address_handler(&registers, &registers_region);
1284	fw_core_add_address_handler(&low_memory, &low_memory_region);
1285	fw_core_add_descriptor(&vendor_id_descriptor);
1286	fw_core_add_descriptor(&model_id_descriptor);
1287
1288	return 0;
1289}
1290
1291static void __exit fw_core_cleanup(void)
1292{
1293	unregister_chrdev(fw_cdev_major, "firewire");
1294	bus_unregister(&fw_bus_type);
1295	destroy_workqueue(fw_workqueue);
1296	idr_destroy(&fw_device_idr);
1297}
1298
1299module_init(fw_core_init);
1300module_exit(fw_core_cleanup);