Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Core IEEE1394 transaction logic
   3 *
   4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bug.h>
  22#include <linux/completion.h>
  23#include <linux/device.h>
  24#include <linux/errno.h>
  25#include <linux/firewire.h>
  26#include <linux/firewire-constants.h>
  27#include <linux/fs.h>
  28#include <linux/init.h>
  29#include <linux/idr.h>
  30#include <linux/jiffies.h>
  31#include <linux/kernel.h>
  32#include <linux/list.h>
  33#include <linux/module.h>
 
  34#include <linux/slab.h>
  35#include <linux/spinlock.h>
  36#include <linux/string.h>
  37#include <linux/timer.h>
  38#include <linux/types.h>
  39#include <linux/workqueue.h>
  40
  41#include <asm/byteorder.h>
  42
  43#include "core.h"
  44
  45#define HEADER_PRI(pri)			((pri) << 0)
  46#define HEADER_TCODE(tcode)		((tcode) << 4)
  47#define HEADER_RETRY(retry)		((retry) << 8)
  48#define HEADER_TLABEL(tlabel)		((tlabel) << 10)
  49#define HEADER_DESTINATION(destination)	((destination) << 16)
  50#define HEADER_SOURCE(source)		((source) << 16)
  51#define HEADER_RCODE(rcode)		((rcode) << 12)
  52#define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
  53#define HEADER_DATA_LENGTH(length)	((length) << 16)
  54#define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
  55
  56#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
  57#define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
  58#define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
  59#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
  60#define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
  61#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
  62#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
  63#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
  64
  65#define HEADER_DESTINATION_IS_BROADCAST(q) \
  66	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
  67
  68#define PHY_PACKET_CONFIG	0x0
  69#define PHY_PACKET_LINK_ON	0x1
  70#define PHY_PACKET_SELF_ID	0x2
  71
  72#define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
  73#define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
  74#define PHY_IDENTIFIER(id)		((id) << 30)
  75
  76/* returns 0 if the split timeout handler is already running */
  77static int try_cancel_split_timeout(struct fw_transaction *t)
  78{
  79	if (t->is_split_transaction)
  80		return del_timer(&t->split_timeout_timer);
  81	else
  82		return 1;
  83}
  84
  85static int close_transaction(struct fw_transaction *transaction,
  86			     struct fw_card *card, int rcode)
  87{
  88	struct fw_transaction *t;
  89	unsigned long flags;
  90
  91	spin_lock_irqsave(&card->lock, flags);
  92	list_for_each_entry(t, &card->transaction_list, link) {
  93		if (t == transaction) {
  94			if (!try_cancel_split_timeout(t)) {
  95				spin_unlock_irqrestore(&card->lock, flags);
  96				goto timed_out;
  97			}
  98			list_del_init(&t->link);
  99			card->tlabel_mask &= ~(1ULL << t->tlabel);
 
 100			break;
 101		}
 102	}
 103	spin_unlock_irqrestore(&card->lock, flags);
 104
 105	if (&t->link != &card->transaction_list) {
 106		t->callback(card, rcode, NULL, 0, t->callback_data);
 107		return 0;
 108	}
 109
 110 timed_out:
 111	return -ENOENT;
 112}
 113
 114/*
 115 * Only valid for transactions that are potentially pending (ie have
 116 * been sent).
 117 */
 118int fw_cancel_transaction(struct fw_card *card,
 119			  struct fw_transaction *transaction)
 120{
 121	/*
 122	 * Cancel the packet transmission if it's still queued.  That
 123	 * will call the packet transmission callback which cancels
 124	 * the transaction.
 125	 */
 126
 127	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
 128		return 0;
 129
 130	/*
 131	 * If the request packet has already been sent, we need to see
 132	 * if the transaction is still pending and remove it in that case.
 133	 */
 134
 135	return close_transaction(transaction, card, RCODE_CANCELLED);
 136}
 137EXPORT_SYMBOL(fw_cancel_transaction);
 138
 139static void split_transaction_timeout_callback(unsigned long data)
 140{
 141	struct fw_transaction *t = (struct fw_transaction *)data;
 142	struct fw_card *card = t->card;
 143	unsigned long flags;
 144
 145	spin_lock_irqsave(&card->lock, flags);
 146	if (list_empty(&t->link)) {
 147		spin_unlock_irqrestore(&card->lock, flags);
 148		return;
 149	}
 150	list_del(&t->link);
 151	card->tlabel_mask &= ~(1ULL << t->tlabel);
 152	spin_unlock_irqrestore(&card->lock, flags);
 153
 154	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
 155}
 156
 157static void start_split_transaction_timeout(struct fw_transaction *t,
 158					    struct fw_card *card)
 159{
 160	unsigned long flags;
 161
 162	spin_lock_irqsave(&card->lock, flags);
 163
 164	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
 165		spin_unlock_irqrestore(&card->lock, flags);
 166		return;
 167	}
 168
 169	t->is_split_transaction = true;
 170	mod_timer(&t->split_timeout_timer,
 171		  jiffies + card->split_timeout_jiffies);
 172
 173	spin_unlock_irqrestore(&card->lock, flags);
 174}
 175
 176static void transmit_complete_callback(struct fw_packet *packet,
 177				       struct fw_card *card, int status)
 178{
 179	struct fw_transaction *t =
 180	    container_of(packet, struct fw_transaction, packet);
 181
 182	switch (status) {
 183	case ACK_COMPLETE:
 184		close_transaction(t, card, RCODE_COMPLETE);
 185		break;
 186	case ACK_PENDING:
 187		start_split_transaction_timeout(t, card);
 188		break;
 189	case ACK_BUSY_X:
 190	case ACK_BUSY_A:
 191	case ACK_BUSY_B:
 192		close_transaction(t, card, RCODE_BUSY);
 193		break;
 194	case ACK_DATA_ERROR:
 195		close_transaction(t, card, RCODE_DATA_ERROR);
 196		break;
 197	case ACK_TYPE_ERROR:
 198		close_transaction(t, card, RCODE_TYPE_ERROR);
 199		break;
 200	default:
 201		/*
 202		 * In this case the ack is really a juju specific
 203		 * rcode, so just forward that to the callback.
 204		 */
 205		close_transaction(t, card, status);
 206		break;
 207	}
 208}
 209
 210static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
 211		int destination_id, int source_id, int generation, int speed,
 212		unsigned long long offset, void *payload, size_t length)
 213{
 214	int ext_tcode;
 215
 216	if (tcode == TCODE_STREAM_DATA) {
 217		packet->header[0] =
 218			HEADER_DATA_LENGTH(length) |
 219			destination_id |
 220			HEADER_TCODE(TCODE_STREAM_DATA);
 221		packet->header_length = 4;
 222		packet->payload = payload;
 223		packet->payload_length = length;
 224
 225		goto common;
 226	}
 227
 228	if (tcode > 0x10) {
 229		ext_tcode = tcode & ~0x10;
 230		tcode = TCODE_LOCK_REQUEST;
 231	} else
 232		ext_tcode = 0;
 233
 234	packet->header[0] =
 235		HEADER_RETRY(RETRY_X) |
 236		HEADER_TLABEL(tlabel) |
 237		HEADER_TCODE(tcode) |
 238		HEADER_DESTINATION(destination_id);
 239	packet->header[1] =
 240		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
 241	packet->header[2] =
 242		offset;
 243
 244	switch (tcode) {
 245	case TCODE_WRITE_QUADLET_REQUEST:
 246		packet->header[3] = *(u32 *)payload;
 247		packet->header_length = 16;
 248		packet->payload_length = 0;
 249		break;
 250
 251	case TCODE_LOCK_REQUEST:
 252	case TCODE_WRITE_BLOCK_REQUEST:
 253		packet->header[3] =
 254			HEADER_DATA_LENGTH(length) |
 255			HEADER_EXTENDED_TCODE(ext_tcode);
 256		packet->header_length = 16;
 257		packet->payload = payload;
 258		packet->payload_length = length;
 259		break;
 260
 261	case TCODE_READ_QUADLET_REQUEST:
 262		packet->header_length = 12;
 263		packet->payload_length = 0;
 264		break;
 265
 266	case TCODE_READ_BLOCK_REQUEST:
 267		packet->header[3] =
 268			HEADER_DATA_LENGTH(length) |
 269			HEADER_EXTENDED_TCODE(ext_tcode);
 270		packet->header_length = 16;
 271		packet->payload_length = 0;
 272		break;
 273
 274	default:
 275		WARN(1, "wrong tcode %d\n", tcode);
 276	}
 277 common:
 278	packet->speed = speed;
 279	packet->generation = generation;
 280	packet->ack = 0;
 281	packet->payload_mapped = false;
 282}
 283
 284static int allocate_tlabel(struct fw_card *card)
 285{
 286	int tlabel;
 287
 288	tlabel = card->current_tlabel;
 289	while (card->tlabel_mask & (1ULL << tlabel)) {
 290		tlabel = (tlabel + 1) & 0x3f;
 291		if (tlabel == card->current_tlabel)
 292			return -EBUSY;
 293	}
 294
 295	card->current_tlabel = (tlabel + 1) & 0x3f;
 296	card->tlabel_mask |= 1ULL << tlabel;
 297
 298	return tlabel;
 299}
 300
 301/**
 302 * fw_send_request() - submit a request packet for transmission
 303 * @card:		interface to send the request at
 304 * @t:			transaction instance to which the request belongs
 305 * @tcode:		transaction code
 306 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 307 * @generation:		bus generation in which request and response are valid
 308 * @speed:		transmission speed
 309 * @offset:		48bit wide offset into destination's address space
 310 * @payload:		data payload for the request subaction
 311 * @length:		length of the payload, in bytes
 312 * @callback:		function to be called when the transaction is completed
 313 * @callback_data:	data to be passed to the transaction completion callback
 314 *
 315 * Submit a request packet into the asynchronous request transmission queue.
 316 * Can be called from atomic context.  If you prefer a blocking API, use
 317 * fw_run_transaction() in a context that can sleep.
 318 *
 319 * In case of lock requests, specify one of the firewire-core specific %TCODE_
 320 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
 321 *
 322 * Make sure that the value in @destination_id is not older than the one in
 323 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
 324 *
 325 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
 326 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
 327 * It will contain tag, channel, and sy data instead of a node ID then.
 328 *
 329 * The payload buffer at @data is going to be DMA-mapped except in case of
 330 * @length <= 8 or of local (loopback) requests.  Hence make sure that the
 331 * buffer complies with the restrictions of the streaming DMA mapping API.
 332 * @payload must not be freed before the @callback is called.
 333 *
 334 * In case of request types without payload, @data is NULL and @length is 0.
 335 *
 336 * After the transaction is completed successfully or unsuccessfully, the
 337 * @callback will be called.  Among its parameters is the response code which
 338 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
 339 * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
 340 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
 341 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
 342 * generation, or missing ACK respectively.
 343 *
 344 * Note some timing corner cases:  fw_send_request() may complete much earlier
 345 * than when the request packet actually hits the wire.  On the other hand,
 346 * transaction completion and hence execution of @callback may happen even
 347 * before fw_send_request() returns.
 348 */
 349void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
 350		     int destination_id, int generation, int speed,
 351		     unsigned long long offset, void *payload, size_t length,
 352		     fw_transaction_callback_t callback, void *callback_data)
 353{
 354	unsigned long flags;
 355	int tlabel;
 356
 357	/*
 358	 * Allocate tlabel from the bitmap and put the transaction on
 359	 * the list while holding the card spinlock.
 360	 */
 361
 362	spin_lock_irqsave(&card->lock, flags);
 363
 364	tlabel = allocate_tlabel(card);
 365	if (tlabel < 0) {
 366		spin_unlock_irqrestore(&card->lock, flags);
 367		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
 368		return;
 369	}
 370
 371	t->node_id = destination_id;
 372	t->tlabel = tlabel;
 373	t->card = card;
 374	t->is_split_transaction = false;
 375	setup_timer(&t->split_timeout_timer,
 376		    split_transaction_timeout_callback, (unsigned long)t);
 377	t->callback = callback;
 378	t->callback_data = callback_data;
 379
 380	fw_fill_request(&t->packet, tcode, t->tlabel,
 381			destination_id, card->node_id, generation,
 382			speed, offset, payload, length);
 383	t->packet.callback = transmit_complete_callback;
 384
 385	list_add_tail(&t->link, &card->transaction_list);
 386
 387	spin_unlock_irqrestore(&card->lock, flags);
 388
 389	card->driver->send_request(card, &t->packet);
 390}
 391EXPORT_SYMBOL(fw_send_request);
 392
 393struct transaction_callback_data {
 394	struct completion done;
 395	void *payload;
 396	int rcode;
 397};
 398
 399static void transaction_callback(struct fw_card *card, int rcode,
 400				 void *payload, size_t length, void *data)
 401{
 402	struct transaction_callback_data *d = data;
 403
 404	if (rcode == RCODE_COMPLETE)
 405		memcpy(d->payload, payload, length);
 406	d->rcode = rcode;
 407	complete(&d->done);
 408}
 409
 410/**
 411 * fw_run_transaction() - send request and sleep until transaction is completed
 
 
 
 
 
 
 
 
 412 *
 413 * Returns the RCODE.  See fw_send_request() for parameter documentation.
 414 * Unlike fw_send_request(), @data points to the payload of the request or/and
 415 * to the payload of the response.  DMA mapping restrictions apply to outbound
 416 * request payloads of >= 8 bytes but not to inbound response payloads.
 417 */
 418int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
 419		       int generation, int speed, unsigned long long offset,
 420		       void *payload, size_t length)
 421{
 422	struct transaction_callback_data d;
 423	struct fw_transaction t;
 424
 425	init_timer_on_stack(&t.split_timeout_timer);
 426	init_completion(&d.done);
 427	d.payload = payload;
 428	fw_send_request(card, &t, tcode, destination_id, generation, speed,
 429			offset, payload, length, transaction_callback, &d);
 430	wait_for_completion(&d.done);
 431	destroy_timer_on_stack(&t.split_timeout_timer);
 432
 433	return d.rcode;
 434}
 435EXPORT_SYMBOL(fw_run_transaction);
 436
 437static DEFINE_MUTEX(phy_config_mutex);
 438static DECLARE_COMPLETION(phy_config_done);
 439
 440static void transmit_phy_packet_callback(struct fw_packet *packet,
 441					 struct fw_card *card, int status)
 442{
 443	complete(&phy_config_done);
 444}
 445
 446static struct fw_packet phy_config_packet = {
 447	.header_length	= 12,
 448	.header[0]	= TCODE_LINK_INTERNAL << 4,
 449	.payload_length	= 0,
 450	.speed		= SCODE_100,
 451	.callback	= transmit_phy_packet_callback,
 452};
 453
 454void fw_send_phy_config(struct fw_card *card,
 455			int node_id, int generation, int gap_count)
 456{
 457	long timeout = DIV_ROUND_UP(HZ, 10);
 458	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
 459
 460	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
 461		data |= PHY_CONFIG_ROOT_ID(node_id);
 462
 463	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
 464		gap_count = card->driver->read_phy_reg(card, 1);
 465		if (gap_count < 0)
 466			return;
 467
 468		gap_count &= 63;
 469		if (gap_count == 63)
 470			return;
 471	}
 472	data |= PHY_CONFIG_GAP_COUNT(gap_count);
 473
 474	mutex_lock(&phy_config_mutex);
 475
 476	phy_config_packet.header[1] = data;
 477	phy_config_packet.header[2] = ~data;
 478	phy_config_packet.generation = generation;
 479	INIT_COMPLETION(phy_config_done);
 480
 481	card->driver->send_request(card, &phy_config_packet);
 482	wait_for_completion_timeout(&phy_config_done, timeout);
 483
 484	mutex_unlock(&phy_config_mutex);
 485}
 486
 487static struct fw_address_handler *lookup_overlapping_address_handler(
 488	struct list_head *list, unsigned long long offset, size_t length)
 489{
 490	struct fw_address_handler *handler;
 491
 492	list_for_each_entry(handler, list, link) {
 493		if (handler->offset < offset + length &&
 494		    offset < handler->offset + handler->length)
 495			return handler;
 496	}
 497
 498	return NULL;
 499}
 500
 501static bool is_enclosing_handler(struct fw_address_handler *handler,
 502				 unsigned long long offset, size_t length)
 503{
 504	return handler->offset <= offset &&
 505		offset + length <= handler->offset + handler->length;
 506}
 507
 508static struct fw_address_handler *lookup_enclosing_address_handler(
 509	struct list_head *list, unsigned long long offset, size_t length)
 510{
 511	struct fw_address_handler *handler;
 512
 513	list_for_each_entry(handler, list, link) {
 514		if (is_enclosing_handler(handler, offset, length))
 515			return handler;
 516	}
 517
 518	return NULL;
 519}
 520
 521static DEFINE_SPINLOCK(address_handler_lock);
 522static LIST_HEAD(address_handler_list);
 523
 524const struct fw_address_region fw_high_memory_region =
 525	{ .start = 0x000100000000ULL, .end = 0xffffe0000000ULL,  };
 526EXPORT_SYMBOL(fw_high_memory_region);
 527
 
 
 
 528#if 0
 529const struct fw_address_region fw_low_memory_region =
 530	{ .start = 0x000000000000ULL, .end = 0x000100000000ULL,  };
 531const struct fw_address_region fw_private_region =
 532	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
 533const struct fw_address_region fw_csr_region =
 534	{ .start = CSR_REGISTER_BASE,
 535	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
 536const struct fw_address_region fw_unit_space_region =
 537	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
 538#endif  /*  0  */
 539
 540static bool is_in_fcp_region(u64 offset, size_t length)
 541{
 542	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 543		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
 544}
 545
 546/**
 547 * fw_core_add_address_handler() - register for incoming requests
 548 * @handler:	callback
 549 * @region:	region in the IEEE 1212 node space address range
 550 *
 551 * region->start, ->end, and handler->length have to be quadlet-aligned.
 552 *
 553 * When a request is received that falls within the specified address range,
 554 * the specified callback is invoked.  The parameters passed to the callback
 555 * give the details of the particular request.
 556 *
 
 557 * Return value:  0 on success, non-zero otherwise.
 558 *
 559 * The start offset of the handler's address region is determined by
 560 * fw_core_add_address_handler() and is returned in handler->offset.
 561 *
 562 * Address allocations are exclusive, except for the FCP registers.
 563 */
 564int fw_core_add_address_handler(struct fw_address_handler *handler,
 565				const struct fw_address_region *region)
 566{
 567	struct fw_address_handler *other;
 568	unsigned long flags;
 569	int ret = -EBUSY;
 570
 571	if (region->start & 0xffff000000000003ULL ||
 572	    region->start >= region->end ||
 573	    region->end   > 0x0001000000000000ULL ||
 574	    handler->length & 3 ||
 575	    handler->length == 0)
 576		return -EINVAL;
 577
 578	spin_lock_irqsave(&address_handler_lock, flags);
 579
 580	handler->offset = region->start;
 581	while (handler->offset + handler->length <= region->end) {
 582		if (is_in_fcp_region(handler->offset, handler->length))
 583			other = NULL;
 584		else
 585			other = lookup_overlapping_address_handler
 586					(&address_handler_list,
 587					 handler->offset, handler->length);
 588		if (other != NULL) {
 589			handler->offset += other->length;
 590		} else {
 591			list_add_tail(&handler->link, &address_handler_list);
 592			ret = 0;
 593			break;
 594		}
 595	}
 596
 597	spin_unlock_irqrestore(&address_handler_lock, flags);
 598
 599	return ret;
 600}
 601EXPORT_SYMBOL(fw_core_add_address_handler);
 602
 603/**
 604 * fw_core_remove_address_handler() - unregister an address handler
 
 
 
 
 
 
 605 */
 606void fw_core_remove_address_handler(struct fw_address_handler *handler)
 607{
 608	unsigned long flags;
 609
 610	spin_lock_irqsave(&address_handler_lock, flags);
 611	list_del(&handler->link);
 612	spin_unlock_irqrestore(&address_handler_lock, flags);
 613}
 614EXPORT_SYMBOL(fw_core_remove_address_handler);
 615
 616struct fw_request {
 617	struct fw_packet response;
 618	u32 request_header[4];
 619	int ack;
 
 620	u32 length;
 621	u32 data[0];
 622};
 623
 624static void free_response_callback(struct fw_packet *packet,
 625				   struct fw_card *card, int status)
 626{
 627	struct fw_request *request;
 628
 629	request = container_of(packet, struct fw_request, response);
 630	kfree(request);
 631}
 632
 633int fw_get_response_length(struct fw_request *r)
 634{
 635	int tcode, ext_tcode, data_length;
 636
 637	tcode = HEADER_GET_TCODE(r->request_header[0]);
 638
 639	switch (tcode) {
 640	case TCODE_WRITE_QUADLET_REQUEST:
 641	case TCODE_WRITE_BLOCK_REQUEST:
 642		return 0;
 643
 644	case TCODE_READ_QUADLET_REQUEST:
 645		return 4;
 646
 647	case TCODE_READ_BLOCK_REQUEST:
 648		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 649		return data_length;
 650
 651	case TCODE_LOCK_REQUEST:
 652		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
 653		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 654		switch (ext_tcode) {
 655		case EXTCODE_FETCH_ADD:
 656		case EXTCODE_LITTLE_ADD:
 657			return data_length;
 658		default:
 659			return data_length / 2;
 660		}
 661
 662	default:
 663		WARN(1, "wrong tcode %d\n", tcode);
 664		return 0;
 665	}
 666}
 667
 668void fw_fill_response(struct fw_packet *response, u32 *request_header,
 669		      int rcode, void *payload, size_t length)
 670{
 671	int tcode, tlabel, extended_tcode, source, destination;
 672
 673	tcode          = HEADER_GET_TCODE(request_header[0]);
 674	tlabel         = HEADER_GET_TLABEL(request_header[0]);
 675	source         = HEADER_GET_DESTINATION(request_header[0]);
 676	destination    = HEADER_GET_SOURCE(request_header[1]);
 677	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
 678
 679	response->header[0] =
 680		HEADER_RETRY(RETRY_1) |
 681		HEADER_TLABEL(tlabel) |
 682		HEADER_DESTINATION(destination);
 683	response->header[1] =
 684		HEADER_SOURCE(source) |
 685		HEADER_RCODE(rcode);
 686	response->header[2] = 0;
 687
 688	switch (tcode) {
 689	case TCODE_WRITE_QUADLET_REQUEST:
 690	case TCODE_WRITE_BLOCK_REQUEST:
 691		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
 692		response->header_length = 12;
 693		response->payload_length = 0;
 694		break;
 695
 696	case TCODE_READ_QUADLET_REQUEST:
 697		response->header[0] |=
 698			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
 699		if (payload != NULL)
 700			response->header[3] = *(u32 *)payload;
 701		else
 702			response->header[3] = 0;
 703		response->header_length = 16;
 704		response->payload_length = 0;
 705		break;
 706
 707	case TCODE_READ_BLOCK_REQUEST:
 708	case TCODE_LOCK_REQUEST:
 709		response->header[0] |= HEADER_TCODE(tcode + 2);
 710		response->header[3] =
 711			HEADER_DATA_LENGTH(length) |
 712			HEADER_EXTENDED_TCODE(extended_tcode);
 713		response->header_length = 16;
 714		response->payload = payload;
 715		response->payload_length = length;
 716		break;
 717
 718	default:
 719		WARN(1, "wrong tcode %d\n", tcode);
 720	}
 721
 722	response->payload_mapped = false;
 723}
 724EXPORT_SYMBOL(fw_fill_response);
 725
 726static u32 compute_split_timeout_timestamp(struct fw_card *card,
 727					   u32 request_timestamp)
 728{
 729	unsigned int cycles;
 730	u32 timestamp;
 731
 732	cycles = card->split_timeout_cycles;
 733	cycles += request_timestamp & 0x1fff;
 734
 735	timestamp = request_timestamp & ~0x1fff;
 736	timestamp += (cycles / 8000) << 13;
 737	timestamp |= cycles % 8000;
 738
 739	return timestamp;
 740}
 741
 742static struct fw_request *allocate_request(struct fw_card *card,
 743					   struct fw_packet *p)
 744{
 745	struct fw_request *request;
 746	u32 *data, length;
 747	int request_tcode;
 748
 749	request_tcode = HEADER_GET_TCODE(p->header[0]);
 750	switch (request_tcode) {
 751	case TCODE_WRITE_QUADLET_REQUEST:
 752		data = &p->header[3];
 753		length = 4;
 754		break;
 755
 756	case TCODE_WRITE_BLOCK_REQUEST:
 757	case TCODE_LOCK_REQUEST:
 758		data = p->payload;
 759		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 760		break;
 761
 762	case TCODE_READ_QUADLET_REQUEST:
 763		data = NULL;
 764		length = 4;
 765		break;
 766
 767	case TCODE_READ_BLOCK_REQUEST:
 768		data = NULL;
 769		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 770		break;
 771
 772	default:
 773		fw_error("ERROR - corrupt request received - %08x %08x %08x\n",
 774			 p->header[0], p->header[1], p->header[2]);
 775		return NULL;
 776	}
 777
 778	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
 779	if (request == NULL)
 780		return NULL;
 781
 782	request->response.speed = p->speed;
 783	request->response.timestamp =
 784			compute_split_timeout_timestamp(card, p->timestamp);
 785	request->response.generation = p->generation;
 786	request->response.ack = 0;
 787	request->response.callback = free_response_callback;
 788	request->ack = p->ack;
 
 789	request->length = length;
 790	if (data)
 791		memcpy(request->data, data, length);
 792
 793	memcpy(request->request_header, p->header, sizeof(p->header));
 794
 795	return request;
 796}
 797
 798void fw_send_response(struct fw_card *card,
 799		      struct fw_request *request, int rcode)
 800{
 801	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
 802		return;
 803
 804	/* unified transaction or broadcast transaction: don't respond */
 805	if (request->ack != ACK_PENDING ||
 806	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
 807		kfree(request);
 808		return;
 809	}
 810
 811	if (rcode == RCODE_COMPLETE)
 812		fw_fill_response(&request->response, request->request_header,
 813				 rcode, request->data,
 814				 fw_get_response_length(request));
 815	else
 816		fw_fill_response(&request->response, request->request_header,
 817				 rcode, NULL, 0);
 818
 819	card->driver->send_response(card, &request->response);
 820}
 821EXPORT_SYMBOL(fw_send_response);
 822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823static void handle_exclusive_region_request(struct fw_card *card,
 824					    struct fw_packet *p,
 825					    struct fw_request *request,
 826					    unsigned long long offset)
 827{
 828	struct fw_address_handler *handler;
 829	unsigned long flags;
 830	int tcode, destination, source;
 831
 832	destination = HEADER_GET_DESTINATION(p->header[0]);
 833	source      = HEADER_GET_SOURCE(p->header[1]);
 834	tcode       = HEADER_GET_TCODE(p->header[0]);
 835	if (tcode == TCODE_LOCK_REQUEST)
 836		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
 837
 838	spin_lock_irqsave(&address_handler_lock, flags);
 839	handler = lookup_enclosing_address_handler(&address_handler_list,
 840						   offset, request->length);
 841	spin_unlock_irqrestore(&address_handler_lock, flags);
 842
 843	/*
 844	 * FIXME: lookup the fw_node corresponding to the sender of
 845	 * this request and pass that to the address handler instead
 846	 * of the node ID.  We may also want to move the address
 847	 * allocations to fw_node so we only do this callback if the
 848	 * upper layers registered it for this node.
 849	 */
 850
 851	if (handler == NULL)
 852		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 853	else
 854		handler->address_callback(card, request,
 855					  tcode, destination, source,
 856					  p->generation, offset,
 857					  request->data, request->length,
 858					  handler->callback_data);
 
 
 
 
 859}
 860
 861static void handle_fcp_region_request(struct fw_card *card,
 862				      struct fw_packet *p,
 863				      struct fw_request *request,
 864				      unsigned long long offset)
 865{
 866	struct fw_address_handler *handler;
 867	unsigned long flags;
 868	int tcode, destination, source;
 869
 870	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 871	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
 872	    request->length > 0x200) {
 873		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 874
 875		return;
 876	}
 877
 878	tcode       = HEADER_GET_TCODE(p->header[0]);
 879	destination = HEADER_GET_DESTINATION(p->header[0]);
 880	source      = HEADER_GET_SOURCE(p->header[1]);
 881
 882	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
 883	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
 884		fw_send_response(card, request, RCODE_TYPE_ERROR);
 885
 886		return;
 887	}
 888
 889	spin_lock_irqsave(&address_handler_lock, flags);
 890	list_for_each_entry(handler, &address_handler_list, link) {
 891		if (is_enclosing_handler(handler, offset, request->length))
 892			handler->address_callback(card, NULL, tcode,
 893						  destination, source,
 894						  p->generation, offset,
 895						  request->data,
 896						  request->length,
 897						  handler->callback_data);
 898	}
 899	spin_unlock_irqrestore(&address_handler_lock, flags);
 900
 901	fw_send_response(card, request, RCODE_COMPLETE);
 902}
 903
 904void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
 905{
 906	struct fw_request *request;
 907	unsigned long long offset;
 908
 909	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
 910		return;
 911
 912	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
 913		fw_cdev_handle_phy_packet(card, p);
 914		return;
 915	}
 916
 917	request = allocate_request(card, p);
 918	if (request == NULL) {
 919		/* FIXME: send statically allocated busy packet. */
 920		return;
 921	}
 922
 923	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
 924		p->header[2];
 925
 926	if (!is_in_fcp_region(offset, request->length))
 927		handle_exclusive_region_request(card, p, request, offset);
 928	else
 929		handle_fcp_region_request(card, p, request, offset);
 930
 931}
 932EXPORT_SYMBOL(fw_core_handle_request);
 933
 934void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
 935{
 936	struct fw_transaction *t;
 937	unsigned long flags;
 938	u32 *data;
 939	size_t data_length;
 940	int tcode, tlabel, source, rcode;
 941
 942	tcode	= HEADER_GET_TCODE(p->header[0]);
 943	tlabel	= HEADER_GET_TLABEL(p->header[0]);
 944	source	= HEADER_GET_SOURCE(p->header[1]);
 945	rcode	= HEADER_GET_RCODE(p->header[1]);
 946
 947	spin_lock_irqsave(&card->lock, flags);
 948	list_for_each_entry(t, &card->transaction_list, link) {
 949		if (t->node_id == source && t->tlabel == tlabel) {
 950			if (!try_cancel_split_timeout(t)) {
 951				spin_unlock_irqrestore(&card->lock, flags);
 952				goto timed_out;
 953			}
 954			list_del_init(&t->link);
 955			card->tlabel_mask &= ~(1ULL << t->tlabel);
 
 956			break;
 957		}
 958	}
 959	spin_unlock_irqrestore(&card->lock, flags);
 960
 961	if (&t->link == &card->transaction_list) {
 962 timed_out:
 963		fw_notify("Unsolicited response (source %x, tlabel %x)\n",
 964			  source, tlabel);
 965		return;
 966	}
 967
 968	/*
 969	 * FIXME: sanity check packet, is length correct, does tcodes
 970	 * and addresses match.
 971	 */
 972
 973	switch (tcode) {
 974	case TCODE_READ_QUADLET_RESPONSE:
 975		data = (u32 *) &p->header[3];
 976		data_length = 4;
 977		break;
 978
 979	case TCODE_WRITE_RESPONSE:
 980		data = NULL;
 981		data_length = 0;
 982		break;
 983
 984	case TCODE_READ_BLOCK_RESPONSE:
 985	case TCODE_LOCK_RESPONSE:
 986		data = p->payload;
 987		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
 988		break;
 989
 990	default:
 991		/* Should never happen, this is just to shut up gcc. */
 992		data = NULL;
 993		data_length = 0;
 994		break;
 995	}
 996
 997	/*
 998	 * The response handler may be executed while the request handler
 999	 * is still pending.  Cancel the request handler.
1000	 */
1001	card->driver->cancel_packet(card, &t->packet);
1002
1003	t->callback(card, rcode, data, data_length, t->callback_data);
1004}
1005EXPORT_SYMBOL(fw_core_handle_response);
1006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1007static const struct fw_address_region topology_map_region =
1008	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1009	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1010
1011static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1012		int tcode, int destination, int source, int generation,
1013		unsigned long long offset, void *payload, size_t length,
1014		void *callback_data)
1015{
1016	int start;
1017
1018	if (!TCODE_IS_READ_REQUEST(tcode)) {
1019		fw_send_response(card, request, RCODE_TYPE_ERROR);
1020		return;
1021	}
1022
1023	if ((offset & 3) > 0 || (length & 3) > 0) {
1024		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1025		return;
1026	}
1027
1028	start = (offset - topology_map_region.start) / 4;
1029	memcpy(payload, &card->topology_map[start], length);
1030
1031	fw_send_response(card, request, RCODE_COMPLETE);
1032}
1033
1034static struct fw_address_handler topology_map = {
1035	.length			= 0x400,
1036	.address_callback	= handle_topology_map,
1037};
1038
1039static const struct fw_address_region registers_region =
1040	{ .start = CSR_REGISTER_BASE,
1041	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1042
1043static void update_split_timeout(struct fw_card *card)
1044{
1045	unsigned int cycles;
1046
1047	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1048
1049	cycles = max(cycles, 800u); /* minimum as per the spec */
1050	cycles = min(cycles, 3u * 8000u); /* maximum OHCI timeout */
1051
1052	card->split_timeout_cycles = cycles;
1053	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1054}
1055
1056static void handle_registers(struct fw_card *card, struct fw_request *request,
1057		int tcode, int destination, int source, int generation,
1058		unsigned long long offset, void *payload, size_t length,
1059		void *callback_data)
1060{
1061	int reg = offset & ~CSR_REGISTER_BASE;
1062	__be32 *data = payload;
1063	int rcode = RCODE_COMPLETE;
1064	unsigned long flags;
1065
1066	switch (reg) {
1067	case CSR_PRIORITY_BUDGET:
1068		if (!card->priority_budget_implemented) {
1069			rcode = RCODE_ADDRESS_ERROR;
1070			break;
1071		}
1072		/* else fall through */
1073
1074	case CSR_NODE_IDS:
1075		/*
1076		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1077		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1078		 */
1079		/* fall through */
1080
1081	case CSR_STATE_CLEAR:
1082	case CSR_STATE_SET:
1083	case CSR_CYCLE_TIME:
1084	case CSR_BUS_TIME:
1085	case CSR_BUSY_TIMEOUT:
1086		if (tcode == TCODE_READ_QUADLET_REQUEST)
1087			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1088		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1089			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1090		else
1091			rcode = RCODE_TYPE_ERROR;
1092		break;
1093
1094	case CSR_RESET_START:
1095		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1096			card->driver->write_csr(card, CSR_STATE_CLEAR,
1097						CSR_STATE_BIT_ABDICATE);
1098		else
1099			rcode = RCODE_TYPE_ERROR;
1100		break;
1101
1102	case CSR_SPLIT_TIMEOUT_HI:
1103		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1104			*data = cpu_to_be32(card->split_timeout_hi);
1105		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1106			spin_lock_irqsave(&card->lock, flags);
1107			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1108			update_split_timeout(card);
1109			spin_unlock_irqrestore(&card->lock, flags);
1110		} else {
1111			rcode = RCODE_TYPE_ERROR;
1112		}
1113		break;
1114
1115	case CSR_SPLIT_TIMEOUT_LO:
1116		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1117			*data = cpu_to_be32(card->split_timeout_lo);
1118		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1119			spin_lock_irqsave(&card->lock, flags);
1120			card->split_timeout_lo =
1121					be32_to_cpu(*data) & 0xfff80000;
1122			update_split_timeout(card);
1123			spin_unlock_irqrestore(&card->lock, flags);
1124		} else {
1125			rcode = RCODE_TYPE_ERROR;
1126		}
1127		break;
1128
1129	case CSR_MAINT_UTILITY:
1130		if (tcode == TCODE_READ_QUADLET_REQUEST)
1131			*data = card->maint_utility_register;
1132		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1133			card->maint_utility_register = *data;
1134		else
1135			rcode = RCODE_TYPE_ERROR;
1136		break;
1137
1138	case CSR_BROADCAST_CHANNEL:
1139		if (tcode == TCODE_READ_QUADLET_REQUEST)
1140			*data = cpu_to_be32(card->broadcast_channel);
1141		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1142			card->broadcast_channel =
1143			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1144			    BROADCAST_CHANNEL_INITIAL;
1145		else
1146			rcode = RCODE_TYPE_ERROR;
1147		break;
1148
1149	case CSR_BUS_MANAGER_ID:
1150	case CSR_BANDWIDTH_AVAILABLE:
1151	case CSR_CHANNELS_AVAILABLE_HI:
1152	case CSR_CHANNELS_AVAILABLE_LO:
1153		/*
1154		 * FIXME: these are handled by the OHCI hardware and
1155		 * the stack never sees these request. If we add
1156		 * support for a new type of controller that doesn't
1157		 * handle this in hardware we need to deal with these
1158		 * transactions.
1159		 */
1160		BUG();
1161		break;
1162
1163	default:
1164		rcode = RCODE_ADDRESS_ERROR;
1165		break;
1166	}
1167
1168	fw_send_response(card, request, rcode);
1169}
1170
1171static struct fw_address_handler registers = {
1172	.length			= 0x400,
1173	.address_callback	= handle_registers,
1174};
1175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1177MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1178MODULE_LICENSE("GPL");
1179
1180static const u32 vendor_textual_descriptor[] = {
1181	/* textual descriptor leaf () */
1182	0x00060000,
1183	0x00000000,
1184	0x00000000,
1185	0x4c696e75,		/* L i n u */
1186	0x78204669,		/* x   F i */
1187	0x72657769,		/* r e w i */
1188	0x72650000,		/* r e     */
1189};
1190
1191static const u32 model_textual_descriptor[] = {
1192	/* model descriptor leaf () */
1193	0x00030000,
1194	0x00000000,
1195	0x00000000,
1196	0x4a756a75,		/* J u j u */
1197};
1198
1199static struct fw_descriptor vendor_id_descriptor = {
1200	.length = ARRAY_SIZE(vendor_textual_descriptor),
1201	.immediate = 0x03d00d1e,
1202	.key = 0x81000000,
1203	.data = vendor_textual_descriptor,
1204};
1205
1206static struct fw_descriptor model_id_descriptor = {
1207	.length = ARRAY_SIZE(model_textual_descriptor),
1208	.immediate = 0x17000001,
1209	.key = 0x81000000,
1210	.data = model_textual_descriptor,
1211};
1212
1213static int __init fw_core_init(void)
1214{
1215	int ret;
1216
1217	fw_workqueue = alloc_workqueue("firewire",
1218				       WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1219	if (!fw_workqueue)
1220		return -ENOMEM;
1221
1222	ret = bus_register(&fw_bus_type);
1223	if (ret < 0) {
1224		destroy_workqueue(fw_workqueue);
1225		return ret;
1226	}
1227
1228	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1229	if (fw_cdev_major < 0) {
1230		bus_unregister(&fw_bus_type);
1231		destroy_workqueue(fw_workqueue);
1232		return fw_cdev_major;
1233	}
1234
1235	fw_core_add_address_handler(&topology_map, &topology_map_region);
1236	fw_core_add_address_handler(&registers, &registers_region);
 
1237	fw_core_add_descriptor(&vendor_id_descriptor);
1238	fw_core_add_descriptor(&model_id_descriptor);
1239
1240	return 0;
1241}
1242
1243static void __exit fw_core_cleanup(void)
1244{
1245	unregister_chrdev(fw_cdev_major, "firewire");
1246	bus_unregister(&fw_bus_type);
1247	destroy_workqueue(fw_workqueue);
1248	idr_destroy(&fw_device_idr);
1249}
1250
1251module_init(fw_core_init);
1252module_exit(fw_core_cleanup);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Core IEEE1394 transaction logic
   4 *
   5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/bug.h>
   9#include <linux/completion.h>
  10#include <linux/device.h>
  11#include <linux/errno.h>
  12#include <linux/firewire.h>
  13#include <linux/firewire-constants.h>
  14#include <linux/fs.h>
  15#include <linux/init.h>
  16#include <linux/idr.h>
  17#include <linux/jiffies.h>
  18#include <linux/kernel.h>
  19#include <linux/list.h>
  20#include <linux/module.h>
  21#include <linux/rculist.h>
  22#include <linux/slab.h>
  23#include <linux/spinlock.h>
  24#include <linux/string.h>
  25#include <linux/timer.h>
  26#include <linux/types.h>
  27#include <linux/workqueue.h>
  28
  29#include <asm/byteorder.h>
  30
  31#include "core.h"
  32
  33#define HEADER_PRI(pri)			((pri) << 0)
  34#define HEADER_TCODE(tcode)		((tcode) << 4)
  35#define HEADER_RETRY(retry)		((retry) << 8)
  36#define HEADER_TLABEL(tlabel)		((tlabel) << 10)
  37#define HEADER_DESTINATION(destination)	((destination) << 16)
  38#define HEADER_SOURCE(source)		((source) << 16)
  39#define HEADER_RCODE(rcode)		((rcode) << 12)
  40#define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
  41#define HEADER_DATA_LENGTH(length)	((length) << 16)
  42#define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
  43
  44#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
  45#define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
  46#define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
  47#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
  48#define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
  49#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
  50#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
  51#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
  52
  53#define HEADER_DESTINATION_IS_BROADCAST(q) \
  54	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
  55
  56#define PHY_PACKET_CONFIG	0x0
  57#define PHY_PACKET_LINK_ON	0x1
  58#define PHY_PACKET_SELF_ID	0x2
  59
  60#define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
  61#define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
  62#define PHY_IDENTIFIER(id)		((id) << 30)
  63
  64/* returns 0 if the split timeout handler is already running */
  65static int try_cancel_split_timeout(struct fw_transaction *t)
  66{
  67	if (t->is_split_transaction)
  68		return del_timer(&t->split_timeout_timer);
  69	else
  70		return 1;
  71}
  72
  73static int close_transaction(struct fw_transaction *transaction,
  74			     struct fw_card *card, int rcode)
  75{
  76	struct fw_transaction *t = NULL, *iter;
  77	unsigned long flags;
  78
  79	spin_lock_irqsave(&card->lock, flags);
  80	list_for_each_entry(iter, &card->transaction_list, link) {
  81		if (iter == transaction) {
  82			if (!try_cancel_split_timeout(iter)) {
  83				spin_unlock_irqrestore(&card->lock, flags);
  84				goto timed_out;
  85			}
  86			list_del_init(&iter->link);
  87			card->tlabel_mask &= ~(1ULL << iter->tlabel);
  88			t = iter;
  89			break;
  90		}
  91	}
  92	spin_unlock_irqrestore(&card->lock, flags);
  93
  94	if (t) {
  95		t->callback(card, rcode, NULL, 0, t->callback_data);
  96		return 0;
  97	}
  98
  99 timed_out:
 100	return -ENOENT;
 101}
 102
 103/*
 104 * Only valid for transactions that are potentially pending (ie have
 105 * been sent).
 106 */
 107int fw_cancel_transaction(struct fw_card *card,
 108			  struct fw_transaction *transaction)
 109{
 110	/*
 111	 * Cancel the packet transmission if it's still queued.  That
 112	 * will call the packet transmission callback which cancels
 113	 * the transaction.
 114	 */
 115
 116	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
 117		return 0;
 118
 119	/*
 120	 * If the request packet has already been sent, we need to see
 121	 * if the transaction is still pending and remove it in that case.
 122	 */
 123
 124	return close_transaction(transaction, card, RCODE_CANCELLED);
 125}
 126EXPORT_SYMBOL(fw_cancel_transaction);
 127
 128static void split_transaction_timeout_callback(struct timer_list *timer)
 129{
 130	struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
 131	struct fw_card *card = t->card;
 132	unsigned long flags;
 133
 134	spin_lock_irqsave(&card->lock, flags);
 135	if (list_empty(&t->link)) {
 136		spin_unlock_irqrestore(&card->lock, flags);
 137		return;
 138	}
 139	list_del(&t->link);
 140	card->tlabel_mask &= ~(1ULL << t->tlabel);
 141	spin_unlock_irqrestore(&card->lock, flags);
 142
 143	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
 144}
 145
 146static void start_split_transaction_timeout(struct fw_transaction *t,
 147					    struct fw_card *card)
 148{
 149	unsigned long flags;
 150
 151	spin_lock_irqsave(&card->lock, flags);
 152
 153	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
 154		spin_unlock_irqrestore(&card->lock, flags);
 155		return;
 156	}
 157
 158	t->is_split_transaction = true;
 159	mod_timer(&t->split_timeout_timer,
 160		  jiffies + card->split_timeout_jiffies);
 161
 162	spin_unlock_irqrestore(&card->lock, flags);
 163}
 164
 165static void transmit_complete_callback(struct fw_packet *packet,
 166				       struct fw_card *card, int status)
 167{
 168	struct fw_transaction *t =
 169	    container_of(packet, struct fw_transaction, packet);
 170
 171	switch (status) {
 172	case ACK_COMPLETE:
 173		close_transaction(t, card, RCODE_COMPLETE);
 174		break;
 175	case ACK_PENDING:
 176		start_split_transaction_timeout(t, card);
 177		break;
 178	case ACK_BUSY_X:
 179	case ACK_BUSY_A:
 180	case ACK_BUSY_B:
 181		close_transaction(t, card, RCODE_BUSY);
 182		break;
 183	case ACK_DATA_ERROR:
 184		close_transaction(t, card, RCODE_DATA_ERROR);
 185		break;
 186	case ACK_TYPE_ERROR:
 187		close_transaction(t, card, RCODE_TYPE_ERROR);
 188		break;
 189	default:
 190		/*
 191		 * In this case the ack is really a juju specific
 192		 * rcode, so just forward that to the callback.
 193		 */
 194		close_transaction(t, card, status);
 195		break;
 196	}
 197}
 198
 199static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
 200		int destination_id, int source_id, int generation, int speed,
 201		unsigned long long offset, void *payload, size_t length)
 202{
 203	int ext_tcode;
 204
 205	if (tcode == TCODE_STREAM_DATA) {
 206		packet->header[0] =
 207			HEADER_DATA_LENGTH(length) |
 208			destination_id |
 209			HEADER_TCODE(TCODE_STREAM_DATA);
 210		packet->header_length = 4;
 211		packet->payload = payload;
 212		packet->payload_length = length;
 213
 214		goto common;
 215	}
 216
 217	if (tcode > 0x10) {
 218		ext_tcode = tcode & ~0x10;
 219		tcode = TCODE_LOCK_REQUEST;
 220	} else
 221		ext_tcode = 0;
 222
 223	packet->header[0] =
 224		HEADER_RETRY(RETRY_X) |
 225		HEADER_TLABEL(tlabel) |
 226		HEADER_TCODE(tcode) |
 227		HEADER_DESTINATION(destination_id);
 228	packet->header[1] =
 229		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
 230	packet->header[2] =
 231		offset;
 232
 233	switch (tcode) {
 234	case TCODE_WRITE_QUADLET_REQUEST:
 235		packet->header[3] = *(u32 *)payload;
 236		packet->header_length = 16;
 237		packet->payload_length = 0;
 238		break;
 239
 240	case TCODE_LOCK_REQUEST:
 241	case TCODE_WRITE_BLOCK_REQUEST:
 242		packet->header[3] =
 243			HEADER_DATA_LENGTH(length) |
 244			HEADER_EXTENDED_TCODE(ext_tcode);
 245		packet->header_length = 16;
 246		packet->payload = payload;
 247		packet->payload_length = length;
 248		break;
 249
 250	case TCODE_READ_QUADLET_REQUEST:
 251		packet->header_length = 12;
 252		packet->payload_length = 0;
 253		break;
 254
 255	case TCODE_READ_BLOCK_REQUEST:
 256		packet->header[3] =
 257			HEADER_DATA_LENGTH(length) |
 258			HEADER_EXTENDED_TCODE(ext_tcode);
 259		packet->header_length = 16;
 260		packet->payload_length = 0;
 261		break;
 262
 263	default:
 264		WARN(1, "wrong tcode %d\n", tcode);
 265	}
 266 common:
 267	packet->speed = speed;
 268	packet->generation = generation;
 269	packet->ack = 0;
 270	packet->payload_mapped = false;
 271}
 272
 273static int allocate_tlabel(struct fw_card *card)
 274{
 275	int tlabel;
 276
 277	tlabel = card->current_tlabel;
 278	while (card->tlabel_mask & (1ULL << tlabel)) {
 279		tlabel = (tlabel + 1) & 0x3f;
 280		if (tlabel == card->current_tlabel)
 281			return -EBUSY;
 282	}
 283
 284	card->current_tlabel = (tlabel + 1) & 0x3f;
 285	card->tlabel_mask |= 1ULL << tlabel;
 286
 287	return tlabel;
 288}
 289
 290/**
 291 * fw_send_request() - submit a request packet for transmission
 292 * @card:		interface to send the request at
 293 * @t:			transaction instance to which the request belongs
 294 * @tcode:		transaction code
 295 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 296 * @generation:		bus generation in which request and response are valid
 297 * @speed:		transmission speed
 298 * @offset:		48bit wide offset into destination's address space
 299 * @payload:		data payload for the request subaction
 300 * @length:		length of the payload, in bytes
 301 * @callback:		function to be called when the transaction is completed
 302 * @callback_data:	data to be passed to the transaction completion callback
 303 *
 304 * Submit a request packet into the asynchronous request transmission queue.
 305 * Can be called from atomic context.  If you prefer a blocking API, use
 306 * fw_run_transaction() in a context that can sleep.
 307 *
 308 * In case of lock requests, specify one of the firewire-core specific %TCODE_
 309 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
 310 *
 311 * Make sure that the value in @destination_id is not older than the one in
 312 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
 313 *
 314 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
 315 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
 316 * It will contain tag, channel, and sy data instead of a node ID then.
 317 *
 318 * The payload buffer at @data is going to be DMA-mapped except in case of
 319 * @length <= 8 or of local (loopback) requests.  Hence make sure that the
 320 * buffer complies with the restrictions of the streaming DMA mapping API.
 321 * @payload must not be freed before the @callback is called.
 322 *
 323 * In case of request types without payload, @data is NULL and @length is 0.
 324 *
 325 * After the transaction is completed successfully or unsuccessfully, the
 326 * @callback will be called.  Among its parameters is the response code which
 327 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
 328 * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
 329 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
 330 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
 331 * generation, or missing ACK respectively.
 332 *
 333 * Note some timing corner cases:  fw_send_request() may complete much earlier
 334 * than when the request packet actually hits the wire.  On the other hand,
 335 * transaction completion and hence execution of @callback may happen even
 336 * before fw_send_request() returns.
 337 */
 338void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
 339		     int destination_id, int generation, int speed,
 340		     unsigned long long offset, void *payload, size_t length,
 341		     fw_transaction_callback_t callback, void *callback_data)
 342{
 343	unsigned long flags;
 344	int tlabel;
 345
 346	/*
 347	 * Allocate tlabel from the bitmap and put the transaction on
 348	 * the list while holding the card spinlock.
 349	 */
 350
 351	spin_lock_irqsave(&card->lock, flags);
 352
 353	tlabel = allocate_tlabel(card);
 354	if (tlabel < 0) {
 355		spin_unlock_irqrestore(&card->lock, flags);
 356		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
 357		return;
 358	}
 359
 360	t->node_id = destination_id;
 361	t->tlabel = tlabel;
 362	t->card = card;
 363	t->is_split_transaction = false;
 364	timer_setup(&t->split_timeout_timer,
 365		    split_transaction_timeout_callback, 0);
 366	t->callback = callback;
 367	t->callback_data = callback_data;
 368
 369	fw_fill_request(&t->packet, tcode, t->tlabel,
 370			destination_id, card->node_id, generation,
 371			speed, offset, payload, length);
 372	t->packet.callback = transmit_complete_callback;
 373
 374	list_add_tail(&t->link, &card->transaction_list);
 375
 376	spin_unlock_irqrestore(&card->lock, flags);
 377
 378	card->driver->send_request(card, &t->packet);
 379}
 380EXPORT_SYMBOL(fw_send_request);
 381
 382struct transaction_callback_data {
 383	struct completion done;
 384	void *payload;
 385	int rcode;
 386};
 387
 388static void transaction_callback(struct fw_card *card, int rcode,
 389				 void *payload, size_t length, void *data)
 390{
 391	struct transaction_callback_data *d = data;
 392
 393	if (rcode == RCODE_COMPLETE)
 394		memcpy(d->payload, payload, length);
 395	d->rcode = rcode;
 396	complete(&d->done);
 397}
 398
 399/**
 400 * fw_run_transaction() - send request and sleep until transaction is completed
 401 * @card:		card interface for this request
 402 * @tcode:		transaction code
 403 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 404 * @generation:		bus generation in which request and response are valid
 405 * @speed:		transmission speed
 406 * @offset:		48bit wide offset into destination's address space
 407 * @payload:		data payload for the request subaction
 408 * @length:		length of the payload, in bytes
 409 *
 410 * Returns the RCODE.  See fw_send_request() for parameter documentation.
 411 * Unlike fw_send_request(), @data points to the payload of the request or/and
 412 * to the payload of the response.  DMA mapping restrictions apply to outbound
 413 * request payloads of >= 8 bytes but not to inbound response payloads.
 414 */
 415int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
 416		       int generation, int speed, unsigned long long offset,
 417		       void *payload, size_t length)
 418{
 419	struct transaction_callback_data d;
 420	struct fw_transaction t;
 421
 422	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
 423	init_completion(&d.done);
 424	d.payload = payload;
 425	fw_send_request(card, &t, tcode, destination_id, generation, speed,
 426			offset, payload, length, transaction_callback, &d);
 427	wait_for_completion(&d.done);
 428	destroy_timer_on_stack(&t.split_timeout_timer);
 429
 430	return d.rcode;
 431}
 432EXPORT_SYMBOL(fw_run_transaction);
 433
 434static DEFINE_MUTEX(phy_config_mutex);
 435static DECLARE_COMPLETION(phy_config_done);
 436
 437static void transmit_phy_packet_callback(struct fw_packet *packet,
 438					 struct fw_card *card, int status)
 439{
 440	complete(&phy_config_done);
 441}
 442
 443static struct fw_packet phy_config_packet = {
 444	.header_length	= 12,
 445	.header[0]	= TCODE_LINK_INTERNAL << 4,
 446	.payload_length	= 0,
 447	.speed		= SCODE_100,
 448	.callback	= transmit_phy_packet_callback,
 449};
 450
 451void fw_send_phy_config(struct fw_card *card,
 452			int node_id, int generation, int gap_count)
 453{
 454	long timeout = DIV_ROUND_UP(HZ, 10);
 455	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
 456
 457	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
 458		data |= PHY_CONFIG_ROOT_ID(node_id);
 459
 460	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
 461		gap_count = card->driver->read_phy_reg(card, 1);
 462		if (gap_count < 0)
 463			return;
 464
 465		gap_count &= 63;
 466		if (gap_count == 63)
 467			return;
 468	}
 469	data |= PHY_CONFIG_GAP_COUNT(gap_count);
 470
 471	mutex_lock(&phy_config_mutex);
 472
 473	phy_config_packet.header[1] = data;
 474	phy_config_packet.header[2] = ~data;
 475	phy_config_packet.generation = generation;
 476	reinit_completion(&phy_config_done);
 477
 478	card->driver->send_request(card, &phy_config_packet);
 479	wait_for_completion_timeout(&phy_config_done, timeout);
 480
 481	mutex_unlock(&phy_config_mutex);
 482}
 483
 484static struct fw_address_handler *lookup_overlapping_address_handler(
 485	struct list_head *list, unsigned long long offset, size_t length)
 486{
 487	struct fw_address_handler *handler;
 488
 489	list_for_each_entry_rcu(handler, list, link) {
 490		if (handler->offset < offset + length &&
 491		    offset < handler->offset + handler->length)
 492			return handler;
 493	}
 494
 495	return NULL;
 496}
 497
 498static bool is_enclosing_handler(struct fw_address_handler *handler,
 499				 unsigned long long offset, size_t length)
 500{
 501	return handler->offset <= offset &&
 502		offset + length <= handler->offset + handler->length;
 503}
 504
 505static struct fw_address_handler *lookup_enclosing_address_handler(
 506	struct list_head *list, unsigned long long offset, size_t length)
 507{
 508	struct fw_address_handler *handler;
 509
 510	list_for_each_entry_rcu(handler, list, link) {
 511		if (is_enclosing_handler(handler, offset, length))
 512			return handler;
 513	}
 514
 515	return NULL;
 516}
 517
 518static DEFINE_SPINLOCK(address_handler_list_lock);
 519static LIST_HEAD(address_handler_list);
 520
 521const struct fw_address_region fw_high_memory_region =
 522	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
 523EXPORT_SYMBOL(fw_high_memory_region);
 524
 525static const struct fw_address_region low_memory_region =
 526	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
 527
 528#if 0
 
 
 529const struct fw_address_region fw_private_region =
 530	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
 531const struct fw_address_region fw_csr_region =
 532	{ .start = CSR_REGISTER_BASE,
 533	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
 534const struct fw_address_region fw_unit_space_region =
 535	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
 536#endif  /*  0  */
 537
 538static bool is_in_fcp_region(u64 offset, size_t length)
 539{
 540	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 541		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
 542}
 543
 544/**
 545 * fw_core_add_address_handler() - register for incoming requests
 546 * @handler:	callback
 547 * @region:	region in the IEEE 1212 node space address range
 548 *
 549 * region->start, ->end, and handler->length have to be quadlet-aligned.
 550 *
 551 * When a request is received that falls within the specified address range,
 552 * the specified callback is invoked.  The parameters passed to the callback
 553 * give the details of the particular request.
 554 *
 555 * To be called in process context.
 556 * Return value:  0 on success, non-zero otherwise.
 557 *
 558 * The start offset of the handler's address region is determined by
 559 * fw_core_add_address_handler() and is returned in handler->offset.
 560 *
 561 * Address allocations are exclusive, except for the FCP registers.
 562 */
 563int fw_core_add_address_handler(struct fw_address_handler *handler,
 564				const struct fw_address_region *region)
 565{
 566	struct fw_address_handler *other;
 
 567	int ret = -EBUSY;
 568
 569	if (region->start & 0xffff000000000003ULL ||
 570	    region->start >= region->end ||
 571	    region->end   > 0x0001000000000000ULL ||
 572	    handler->length & 3 ||
 573	    handler->length == 0)
 574		return -EINVAL;
 575
 576	spin_lock(&address_handler_list_lock);
 577
 578	handler->offset = region->start;
 579	while (handler->offset + handler->length <= region->end) {
 580		if (is_in_fcp_region(handler->offset, handler->length))
 581			other = NULL;
 582		else
 583			other = lookup_overlapping_address_handler
 584					(&address_handler_list,
 585					 handler->offset, handler->length);
 586		if (other != NULL) {
 587			handler->offset += other->length;
 588		} else {
 589			list_add_tail_rcu(&handler->link, &address_handler_list);
 590			ret = 0;
 591			break;
 592		}
 593	}
 594
 595	spin_unlock(&address_handler_list_lock);
 596
 597	return ret;
 598}
 599EXPORT_SYMBOL(fw_core_add_address_handler);
 600
 601/**
 602 * fw_core_remove_address_handler() - unregister an address handler
 603 * @handler: callback
 604 *
 605 * To be called in process context.
 606 *
 607 * When fw_core_remove_address_handler() returns, @handler->callback() is
 608 * guaranteed to not run on any CPU anymore.
 609 */
 610void fw_core_remove_address_handler(struct fw_address_handler *handler)
 611{
 612	spin_lock(&address_handler_list_lock);
 613	list_del_rcu(&handler->link);
 614	spin_unlock(&address_handler_list_lock);
 615	synchronize_rcu();
 
 616}
 617EXPORT_SYMBOL(fw_core_remove_address_handler);
 618
 619struct fw_request {
 620	struct fw_packet response;
 621	u32 request_header[4];
 622	int ack;
 623	u32 timestamp;
 624	u32 length;
 625	u32 data[];
 626};
 627
 628static void free_response_callback(struct fw_packet *packet,
 629				   struct fw_card *card, int status)
 630{
 631	struct fw_request *request;
 632
 633	request = container_of(packet, struct fw_request, response);
 634	kfree(request);
 635}
 636
 637int fw_get_response_length(struct fw_request *r)
 638{
 639	int tcode, ext_tcode, data_length;
 640
 641	tcode = HEADER_GET_TCODE(r->request_header[0]);
 642
 643	switch (tcode) {
 644	case TCODE_WRITE_QUADLET_REQUEST:
 645	case TCODE_WRITE_BLOCK_REQUEST:
 646		return 0;
 647
 648	case TCODE_READ_QUADLET_REQUEST:
 649		return 4;
 650
 651	case TCODE_READ_BLOCK_REQUEST:
 652		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 653		return data_length;
 654
 655	case TCODE_LOCK_REQUEST:
 656		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
 657		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 658		switch (ext_tcode) {
 659		case EXTCODE_FETCH_ADD:
 660		case EXTCODE_LITTLE_ADD:
 661			return data_length;
 662		default:
 663			return data_length / 2;
 664		}
 665
 666	default:
 667		WARN(1, "wrong tcode %d\n", tcode);
 668		return 0;
 669	}
 670}
 671
 672void fw_fill_response(struct fw_packet *response, u32 *request_header,
 673		      int rcode, void *payload, size_t length)
 674{
 675	int tcode, tlabel, extended_tcode, source, destination;
 676
 677	tcode          = HEADER_GET_TCODE(request_header[0]);
 678	tlabel         = HEADER_GET_TLABEL(request_header[0]);
 679	source         = HEADER_GET_DESTINATION(request_header[0]);
 680	destination    = HEADER_GET_SOURCE(request_header[1]);
 681	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
 682
 683	response->header[0] =
 684		HEADER_RETRY(RETRY_1) |
 685		HEADER_TLABEL(tlabel) |
 686		HEADER_DESTINATION(destination);
 687	response->header[1] =
 688		HEADER_SOURCE(source) |
 689		HEADER_RCODE(rcode);
 690	response->header[2] = 0;
 691
 692	switch (tcode) {
 693	case TCODE_WRITE_QUADLET_REQUEST:
 694	case TCODE_WRITE_BLOCK_REQUEST:
 695		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
 696		response->header_length = 12;
 697		response->payload_length = 0;
 698		break;
 699
 700	case TCODE_READ_QUADLET_REQUEST:
 701		response->header[0] |=
 702			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
 703		if (payload != NULL)
 704			response->header[3] = *(u32 *)payload;
 705		else
 706			response->header[3] = 0;
 707		response->header_length = 16;
 708		response->payload_length = 0;
 709		break;
 710
 711	case TCODE_READ_BLOCK_REQUEST:
 712	case TCODE_LOCK_REQUEST:
 713		response->header[0] |= HEADER_TCODE(tcode + 2);
 714		response->header[3] =
 715			HEADER_DATA_LENGTH(length) |
 716			HEADER_EXTENDED_TCODE(extended_tcode);
 717		response->header_length = 16;
 718		response->payload = payload;
 719		response->payload_length = length;
 720		break;
 721
 722	default:
 723		WARN(1, "wrong tcode %d\n", tcode);
 724	}
 725
 726	response->payload_mapped = false;
 727}
 728EXPORT_SYMBOL(fw_fill_response);
 729
 730static u32 compute_split_timeout_timestamp(struct fw_card *card,
 731					   u32 request_timestamp)
 732{
 733	unsigned int cycles;
 734	u32 timestamp;
 735
 736	cycles = card->split_timeout_cycles;
 737	cycles += request_timestamp & 0x1fff;
 738
 739	timestamp = request_timestamp & ~0x1fff;
 740	timestamp += (cycles / 8000) << 13;
 741	timestamp |= cycles % 8000;
 742
 743	return timestamp;
 744}
 745
 746static struct fw_request *allocate_request(struct fw_card *card,
 747					   struct fw_packet *p)
 748{
 749	struct fw_request *request;
 750	u32 *data, length;
 751	int request_tcode;
 752
 753	request_tcode = HEADER_GET_TCODE(p->header[0]);
 754	switch (request_tcode) {
 755	case TCODE_WRITE_QUADLET_REQUEST:
 756		data = &p->header[3];
 757		length = 4;
 758		break;
 759
 760	case TCODE_WRITE_BLOCK_REQUEST:
 761	case TCODE_LOCK_REQUEST:
 762		data = p->payload;
 763		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 764		break;
 765
 766	case TCODE_READ_QUADLET_REQUEST:
 767		data = NULL;
 768		length = 4;
 769		break;
 770
 771	case TCODE_READ_BLOCK_REQUEST:
 772		data = NULL;
 773		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 774		break;
 775
 776	default:
 777		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
 778			 p->header[0], p->header[1], p->header[2]);
 779		return NULL;
 780	}
 781
 782	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
 783	if (request == NULL)
 784		return NULL;
 785
 786	request->response.speed = p->speed;
 787	request->response.timestamp =
 788			compute_split_timeout_timestamp(card, p->timestamp);
 789	request->response.generation = p->generation;
 790	request->response.ack = 0;
 791	request->response.callback = free_response_callback;
 792	request->ack = p->ack;
 793	request->timestamp = p->timestamp;
 794	request->length = length;
 795	if (data)
 796		memcpy(request->data, data, length);
 797
 798	memcpy(request->request_header, p->header, sizeof(p->header));
 799
 800	return request;
 801}
 802
 803void fw_send_response(struct fw_card *card,
 804		      struct fw_request *request, int rcode)
 805{
 806	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
 807		return;
 808
 809	/* unified transaction or broadcast transaction: don't respond */
 810	if (request->ack != ACK_PENDING ||
 811	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
 812		kfree(request);
 813		return;
 814	}
 815
 816	if (rcode == RCODE_COMPLETE)
 817		fw_fill_response(&request->response, request->request_header,
 818				 rcode, request->data,
 819				 fw_get_response_length(request));
 820	else
 821		fw_fill_response(&request->response, request->request_header,
 822				 rcode, NULL, 0);
 823
 824	card->driver->send_response(card, &request->response);
 825}
 826EXPORT_SYMBOL(fw_send_response);
 827
 828/**
 829 * fw_get_request_speed() - returns speed at which the @request was received
 830 * @request: firewire request data
 831 */
 832int fw_get_request_speed(struct fw_request *request)
 833{
 834	return request->response.speed;
 835}
 836EXPORT_SYMBOL(fw_get_request_speed);
 837
 838/**
 839 * fw_request_get_timestamp: Get timestamp of the request.
 840 * @request: The opaque pointer to request structure.
 841 *
 842 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
 843 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
 844 * field of isochronous cycle time register.
 845 *
 846 * Returns: timestamp of the request.
 847 */
 848u32 fw_request_get_timestamp(const struct fw_request *request)
 849{
 850	return request->timestamp;
 851}
 852EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
 853
 854static void handle_exclusive_region_request(struct fw_card *card,
 855					    struct fw_packet *p,
 856					    struct fw_request *request,
 857					    unsigned long long offset)
 858{
 859	struct fw_address_handler *handler;
 
 860	int tcode, destination, source;
 861
 862	destination = HEADER_GET_DESTINATION(p->header[0]);
 863	source      = HEADER_GET_SOURCE(p->header[1]);
 864	tcode       = HEADER_GET_TCODE(p->header[0]);
 865	if (tcode == TCODE_LOCK_REQUEST)
 866		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
 867
 868	rcu_read_lock();
 869	handler = lookup_enclosing_address_handler(&address_handler_list,
 870						   offset, request->length);
 871	if (handler)
 
 
 
 
 
 
 
 
 
 
 
 
 872		handler->address_callback(card, request,
 873					  tcode, destination, source,
 874					  p->generation, offset,
 875					  request->data, request->length,
 876					  handler->callback_data);
 877	rcu_read_unlock();
 878
 879	if (!handler)
 880		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 881}
 882
 883static void handle_fcp_region_request(struct fw_card *card,
 884				      struct fw_packet *p,
 885				      struct fw_request *request,
 886				      unsigned long long offset)
 887{
 888	struct fw_address_handler *handler;
 
 889	int tcode, destination, source;
 890
 891	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 892	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
 893	    request->length > 0x200) {
 894		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 895
 896		return;
 897	}
 898
 899	tcode       = HEADER_GET_TCODE(p->header[0]);
 900	destination = HEADER_GET_DESTINATION(p->header[0]);
 901	source      = HEADER_GET_SOURCE(p->header[1]);
 902
 903	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
 904	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
 905		fw_send_response(card, request, RCODE_TYPE_ERROR);
 906
 907		return;
 908	}
 909
 910	rcu_read_lock();
 911	list_for_each_entry_rcu(handler, &address_handler_list, link) {
 912		if (is_enclosing_handler(handler, offset, request->length))
 913			handler->address_callback(card, NULL, tcode,
 914						  destination, source,
 915						  p->generation, offset,
 916						  request->data,
 917						  request->length,
 918						  handler->callback_data);
 919	}
 920	rcu_read_unlock();
 921
 922	fw_send_response(card, request, RCODE_COMPLETE);
 923}
 924
 925void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
 926{
 927	struct fw_request *request;
 928	unsigned long long offset;
 929
 930	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
 931		return;
 932
 933	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
 934		fw_cdev_handle_phy_packet(card, p);
 935		return;
 936	}
 937
 938	request = allocate_request(card, p);
 939	if (request == NULL) {
 940		/* FIXME: send statically allocated busy packet. */
 941		return;
 942	}
 943
 944	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
 945		p->header[2];
 946
 947	if (!is_in_fcp_region(offset, request->length))
 948		handle_exclusive_region_request(card, p, request, offset);
 949	else
 950		handle_fcp_region_request(card, p, request, offset);
 951
 952}
 953EXPORT_SYMBOL(fw_core_handle_request);
 954
 955void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
 956{
 957	struct fw_transaction *t = NULL, *iter;
 958	unsigned long flags;
 959	u32 *data;
 960	size_t data_length;
 961	int tcode, tlabel, source, rcode;
 962
 963	tcode	= HEADER_GET_TCODE(p->header[0]);
 964	tlabel	= HEADER_GET_TLABEL(p->header[0]);
 965	source	= HEADER_GET_SOURCE(p->header[1]);
 966	rcode	= HEADER_GET_RCODE(p->header[1]);
 967
 968	spin_lock_irqsave(&card->lock, flags);
 969	list_for_each_entry(iter, &card->transaction_list, link) {
 970		if (iter->node_id == source && iter->tlabel == tlabel) {
 971			if (!try_cancel_split_timeout(iter)) {
 972				spin_unlock_irqrestore(&card->lock, flags);
 973				goto timed_out;
 974			}
 975			list_del_init(&iter->link);
 976			card->tlabel_mask &= ~(1ULL << iter->tlabel);
 977			t = iter;
 978			break;
 979		}
 980	}
 981	spin_unlock_irqrestore(&card->lock, flags);
 982
 983	if (!t) {
 984 timed_out:
 985		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
 986			  source, tlabel);
 987		return;
 988	}
 989
 990	/*
 991	 * FIXME: sanity check packet, is length correct, does tcodes
 992	 * and addresses match.
 993	 */
 994
 995	switch (tcode) {
 996	case TCODE_READ_QUADLET_RESPONSE:
 997		data = (u32 *) &p->header[3];
 998		data_length = 4;
 999		break;
1000
1001	case TCODE_WRITE_RESPONSE:
1002		data = NULL;
1003		data_length = 0;
1004		break;
1005
1006	case TCODE_READ_BLOCK_RESPONSE:
1007	case TCODE_LOCK_RESPONSE:
1008		data = p->payload;
1009		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
1010		break;
1011
1012	default:
1013		/* Should never happen, this is just to shut up gcc. */
1014		data = NULL;
1015		data_length = 0;
1016		break;
1017	}
1018
1019	/*
1020	 * The response handler may be executed while the request handler
1021	 * is still pending.  Cancel the request handler.
1022	 */
1023	card->driver->cancel_packet(card, &t->packet);
1024
1025	t->callback(card, rcode, data, data_length, t->callback_data);
1026}
1027EXPORT_SYMBOL(fw_core_handle_response);
1028
1029/**
1030 * fw_rcode_string - convert a firewire result code to an error description
1031 * @rcode: the result code
1032 */
1033const char *fw_rcode_string(int rcode)
1034{
1035	static const char *const names[] = {
1036		[RCODE_COMPLETE]       = "no error",
1037		[RCODE_CONFLICT_ERROR] = "conflict error",
1038		[RCODE_DATA_ERROR]     = "data error",
1039		[RCODE_TYPE_ERROR]     = "type error",
1040		[RCODE_ADDRESS_ERROR]  = "address error",
1041		[RCODE_SEND_ERROR]     = "send error",
1042		[RCODE_CANCELLED]      = "timeout",
1043		[RCODE_BUSY]           = "busy",
1044		[RCODE_GENERATION]     = "bus reset",
1045		[RCODE_NO_ACK]         = "no ack",
1046	};
1047
1048	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1049		return names[rcode];
1050	else
1051		return "unknown";
1052}
1053EXPORT_SYMBOL(fw_rcode_string);
1054
1055static const struct fw_address_region topology_map_region =
1056	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1057	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1058
1059static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1060		int tcode, int destination, int source, int generation,
1061		unsigned long long offset, void *payload, size_t length,
1062		void *callback_data)
1063{
1064	int start;
1065
1066	if (!TCODE_IS_READ_REQUEST(tcode)) {
1067		fw_send_response(card, request, RCODE_TYPE_ERROR);
1068		return;
1069	}
1070
1071	if ((offset & 3) > 0 || (length & 3) > 0) {
1072		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1073		return;
1074	}
1075
1076	start = (offset - topology_map_region.start) / 4;
1077	memcpy(payload, &card->topology_map[start], length);
1078
1079	fw_send_response(card, request, RCODE_COMPLETE);
1080}
1081
1082static struct fw_address_handler topology_map = {
1083	.length			= 0x400,
1084	.address_callback	= handle_topology_map,
1085};
1086
1087static const struct fw_address_region registers_region =
1088	{ .start = CSR_REGISTER_BASE,
1089	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1090
1091static void update_split_timeout(struct fw_card *card)
1092{
1093	unsigned int cycles;
1094
1095	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1096
1097	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1098	cycles = clamp(cycles, 800u, 3u * 8000u);
1099
1100	card->split_timeout_cycles = cycles;
1101	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1102}
1103
1104static void handle_registers(struct fw_card *card, struct fw_request *request,
1105		int tcode, int destination, int source, int generation,
1106		unsigned long long offset, void *payload, size_t length,
1107		void *callback_data)
1108{
1109	int reg = offset & ~CSR_REGISTER_BASE;
1110	__be32 *data = payload;
1111	int rcode = RCODE_COMPLETE;
1112	unsigned long flags;
1113
1114	switch (reg) {
1115	case CSR_PRIORITY_BUDGET:
1116		if (!card->priority_budget_implemented) {
1117			rcode = RCODE_ADDRESS_ERROR;
1118			break;
1119		}
1120		fallthrough;
1121
1122	case CSR_NODE_IDS:
1123		/*
1124		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1125		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1126		 */
1127		fallthrough;
1128
1129	case CSR_STATE_CLEAR:
1130	case CSR_STATE_SET:
1131	case CSR_CYCLE_TIME:
1132	case CSR_BUS_TIME:
1133	case CSR_BUSY_TIMEOUT:
1134		if (tcode == TCODE_READ_QUADLET_REQUEST)
1135			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1136		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1137			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1138		else
1139			rcode = RCODE_TYPE_ERROR;
1140		break;
1141
1142	case CSR_RESET_START:
1143		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1144			card->driver->write_csr(card, CSR_STATE_CLEAR,
1145						CSR_STATE_BIT_ABDICATE);
1146		else
1147			rcode = RCODE_TYPE_ERROR;
1148		break;
1149
1150	case CSR_SPLIT_TIMEOUT_HI:
1151		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1152			*data = cpu_to_be32(card->split_timeout_hi);
1153		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1154			spin_lock_irqsave(&card->lock, flags);
1155			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1156			update_split_timeout(card);
1157			spin_unlock_irqrestore(&card->lock, flags);
1158		} else {
1159			rcode = RCODE_TYPE_ERROR;
1160		}
1161		break;
1162
1163	case CSR_SPLIT_TIMEOUT_LO:
1164		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1165			*data = cpu_to_be32(card->split_timeout_lo);
1166		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1167			spin_lock_irqsave(&card->lock, flags);
1168			card->split_timeout_lo =
1169					be32_to_cpu(*data) & 0xfff80000;
1170			update_split_timeout(card);
1171			spin_unlock_irqrestore(&card->lock, flags);
1172		} else {
1173			rcode = RCODE_TYPE_ERROR;
1174		}
1175		break;
1176
1177	case CSR_MAINT_UTILITY:
1178		if (tcode == TCODE_READ_QUADLET_REQUEST)
1179			*data = card->maint_utility_register;
1180		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1181			card->maint_utility_register = *data;
1182		else
1183			rcode = RCODE_TYPE_ERROR;
1184		break;
1185
1186	case CSR_BROADCAST_CHANNEL:
1187		if (tcode == TCODE_READ_QUADLET_REQUEST)
1188			*data = cpu_to_be32(card->broadcast_channel);
1189		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1190			card->broadcast_channel =
1191			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1192			    BROADCAST_CHANNEL_INITIAL;
1193		else
1194			rcode = RCODE_TYPE_ERROR;
1195		break;
1196
1197	case CSR_BUS_MANAGER_ID:
1198	case CSR_BANDWIDTH_AVAILABLE:
1199	case CSR_CHANNELS_AVAILABLE_HI:
1200	case CSR_CHANNELS_AVAILABLE_LO:
1201		/*
1202		 * FIXME: these are handled by the OHCI hardware and
1203		 * the stack never sees these request. If we add
1204		 * support for a new type of controller that doesn't
1205		 * handle this in hardware we need to deal with these
1206		 * transactions.
1207		 */
1208		BUG();
1209		break;
1210
1211	default:
1212		rcode = RCODE_ADDRESS_ERROR;
1213		break;
1214	}
1215
1216	fw_send_response(card, request, rcode);
1217}
1218
1219static struct fw_address_handler registers = {
1220	.length			= 0x400,
1221	.address_callback	= handle_registers,
1222};
1223
1224static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1225		int tcode, int destination, int source, int generation,
1226		unsigned long long offset, void *payload, size_t length,
1227		void *callback_data)
1228{
1229	/*
1230	 * This catches requests not handled by the physical DMA unit,
1231	 * i.e., wrong transaction types or unauthorized source nodes.
1232	 */
1233	fw_send_response(card, request, RCODE_TYPE_ERROR);
1234}
1235
1236static struct fw_address_handler low_memory = {
1237	.length			= FW_MAX_PHYSICAL_RANGE,
1238	.address_callback	= handle_low_memory,
1239};
1240
1241MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1242MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1243MODULE_LICENSE("GPL");
1244
1245static const u32 vendor_textual_descriptor[] = {
1246	/* textual descriptor leaf () */
1247	0x00060000,
1248	0x00000000,
1249	0x00000000,
1250	0x4c696e75,		/* L i n u */
1251	0x78204669,		/* x   F i */
1252	0x72657769,		/* r e w i */
1253	0x72650000,		/* r e     */
1254};
1255
1256static const u32 model_textual_descriptor[] = {
1257	/* model descriptor leaf () */
1258	0x00030000,
1259	0x00000000,
1260	0x00000000,
1261	0x4a756a75,		/* J u j u */
1262};
1263
1264static struct fw_descriptor vendor_id_descriptor = {
1265	.length = ARRAY_SIZE(vendor_textual_descriptor),
1266	.immediate = 0x03001f11,
1267	.key = 0x81000000,
1268	.data = vendor_textual_descriptor,
1269};
1270
1271static struct fw_descriptor model_id_descriptor = {
1272	.length = ARRAY_SIZE(model_textual_descriptor),
1273	.immediate = 0x17023901,
1274	.key = 0x81000000,
1275	.data = model_textual_descriptor,
1276};
1277
1278static int __init fw_core_init(void)
1279{
1280	int ret;
1281
1282	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
 
1283	if (!fw_workqueue)
1284		return -ENOMEM;
1285
1286	ret = bus_register(&fw_bus_type);
1287	if (ret < 0) {
1288		destroy_workqueue(fw_workqueue);
1289		return ret;
1290	}
1291
1292	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1293	if (fw_cdev_major < 0) {
1294		bus_unregister(&fw_bus_type);
1295		destroy_workqueue(fw_workqueue);
1296		return fw_cdev_major;
1297	}
1298
1299	fw_core_add_address_handler(&topology_map, &topology_map_region);
1300	fw_core_add_address_handler(&registers, &registers_region);
1301	fw_core_add_address_handler(&low_memory, &low_memory_region);
1302	fw_core_add_descriptor(&vendor_id_descriptor);
1303	fw_core_add_descriptor(&model_id_descriptor);
1304
1305	return 0;
1306}
1307
1308static void __exit fw_core_cleanup(void)
1309{
1310	unregister_chrdev(fw_cdev_major, "firewire");
1311	bus_unregister(&fw_bus_type);
1312	destroy_workqueue(fw_workqueue);
1313	idr_destroy(&fw_device_idr);
1314}
1315
1316module_init(fw_core_init);
1317module_exit(fw_core_cleanup);