Loading...
1/*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23#include <linux/slab.h>
24#include <linux/time.h>
25#include <linux/math64.h>
26#include <sound/core.h>
27#include <sound/control.h>
28#include <sound/info.h>
29#include <sound/pcm.h>
30#include <sound/pcm_params.h>
31#include <sound/timer.h>
32
33/*
34 * fill ring buffer with silence
35 * runtime->silence_start: starting pointer to silence area
36 * runtime->silence_filled: size filled with silence
37 * runtime->silence_threshold: threshold from application
38 * runtime->silence_size: maximal size from application
39 *
40 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41 */
42void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43{
44 struct snd_pcm_runtime *runtime = substream->runtime;
45 snd_pcm_uframes_t frames, ofs, transfer;
46
47 if (runtime->silence_size < runtime->boundary) {
48 snd_pcm_sframes_t noise_dist, n;
49 if (runtime->silence_start != runtime->control->appl_ptr) {
50 n = runtime->control->appl_ptr - runtime->silence_start;
51 if (n < 0)
52 n += runtime->boundary;
53 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54 runtime->silence_filled -= n;
55 else
56 runtime->silence_filled = 0;
57 runtime->silence_start = runtime->control->appl_ptr;
58 }
59 if (runtime->silence_filled >= runtime->buffer_size)
60 return;
61 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63 return;
64 frames = runtime->silence_threshold - noise_dist;
65 if (frames > runtime->silence_size)
66 frames = runtime->silence_size;
67 } else {
68 if (new_hw_ptr == ULONG_MAX) { /* initialization */
69 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70 if (avail > runtime->buffer_size)
71 avail = runtime->buffer_size;
72 runtime->silence_filled = avail > 0 ? avail : 0;
73 runtime->silence_start = (runtime->status->hw_ptr +
74 runtime->silence_filled) %
75 runtime->boundary;
76 } else {
77 ofs = runtime->status->hw_ptr;
78 frames = new_hw_ptr - ofs;
79 if ((snd_pcm_sframes_t)frames < 0)
80 frames += runtime->boundary;
81 runtime->silence_filled -= frames;
82 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
83 runtime->silence_filled = 0;
84 runtime->silence_start = new_hw_ptr;
85 } else {
86 runtime->silence_start = ofs;
87 }
88 }
89 frames = runtime->buffer_size - runtime->silence_filled;
90 }
91 if (snd_BUG_ON(frames > runtime->buffer_size))
92 return;
93 if (frames == 0)
94 return;
95 ofs = runtime->silence_start % runtime->buffer_size;
96 while (frames > 0) {
97 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
98 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
99 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
100 if (substream->ops->silence) {
101 int err;
102 err = substream->ops->silence(substream, -1, ofs, transfer);
103 snd_BUG_ON(err < 0);
104 } else {
105 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
106 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
107 }
108 } else {
109 unsigned int c;
110 unsigned int channels = runtime->channels;
111 if (substream->ops->silence) {
112 for (c = 0; c < channels; ++c) {
113 int err;
114 err = substream->ops->silence(substream, c, ofs, transfer);
115 snd_BUG_ON(err < 0);
116 }
117 } else {
118 size_t dma_csize = runtime->dma_bytes / channels;
119 for (c = 0; c < channels; ++c) {
120 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
121 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
122 }
123 }
124 }
125 runtime->silence_filled += transfer;
126 frames -= transfer;
127 ofs = 0;
128 }
129}
130
131#ifdef CONFIG_SND_DEBUG
132void snd_pcm_debug_name(struct snd_pcm_substream *substream,
133 char *name, size_t len)
134{
135 snprintf(name, len, "pcmC%dD%d%c:%d",
136 substream->pcm->card->number,
137 substream->pcm->device,
138 substream->stream ? 'c' : 'p',
139 substream->number);
140}
141EXPORT_SYMBOL(snd_pcm_debug_name);
142#endif
143
144#define XRUN_DEBUG_BASIC (1<<0)
145#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
146#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
147#define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */
148#define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */
149#define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */
150#define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */
151
152#ifdef CONFIG_SND_PCM_XRUN_DEBUG
153
154#define xrun_debug(substream, mask) \
155 ((substream)->pstr->xrun_debug & (mask))
156#else
157#define xrun_debug(substream, mask) 0
158#endif
159
160#define dump_stack_on_xrun(substream) do { \
161 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
162 dump_stack(); \
163 } while (0)
164
165static void xrun(struct snd_pcm_substream *substream)
166{
167 struct snd_pcm_runtime *runtime = substream->runtime;
168
169 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
170 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
171 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
172 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
173 char name[16];
174 snd_pcm_debug_name(substream, name, sizeof(name));
175 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
176 dump_stack_on_xrun(substream);
177 }
178}
179
180#ifdef CONFIG_SND_PCM_XRUN_DEBUG
181#define hw_ptr_error(substream, fmt, args...) \
182 do { \
183 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
184 xrun_log_show(substream); \
185 if (printk_ratelimit()) { \
186 snd_printd("PCM: " fmt, ##args); \
187 } \
188 dump_stack_on_xrun(substream); \
189 } \
190 } while (0)
191
192#define XRUN_LOG_CNT 10
193
194struct hwptr_log_entry {
195 unsigned int in_interrupt;
196 unsigned long jiffies;
197 snd_pcm_uframes_t pos;
198 snd_pcm_uframes_t period_size;
199 snd_pcm_uframes_t buffer_size;
200 snd_pcm_uframes_t old_hw_ptr;
201 snd_pcm_uframes_t hw_ptr_base;
202};
203
204struct snd_pcm_hwptr_log {
205 unsigned int idx;
206 unsigned int hit: 1;
207 struct hwptr_log_entry entries[XRUN_LOG_CNT];
208};
209
210static void xrun_log(struct snd_pcm_substream *substream,
211 snd_pcm_uframes_t pos, int in_interrupt)
212{
213 struct snd_pcm_runtime *runtime = substream->runtime;
214 struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
215 struct hwptr_log_entry *entry;
216
217 if (log == NULL) {
218 log = kzalloc(sizeof(*log), GFP_ATOMIC);
219 if (log == NULL)
220 return;
221 runtime->hwptr_log = log;
222 } else {
223 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
224 return;
225 }
226 entry = &log->entries[log->idx];
227 entry->in_interrupt = in_interrupt;
228 entry->jiffies = jiffies;
229 entry->pos = pos;
230 entry->period_size = runtime->period_size;
231 entry->buffer_size = runtime->buffer_size;
232 entry->old_hw_ptr = runtime->status->hw_ptr;
233 entry->hw_ptr_base = runtime->hw_ptr_base;
234 log->idx = (log->idx + 1) % XRUN_LOG_CNT;
235}
236
237static void xrun_log_show(struct snd_pcm_substream *substream)
238{
239 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
240 struct hwptr_log_entry *entry;
241 char name[16];
242 unsigned int idx;
243 int cnt;
244
245 if (log == NULL)
246 return;
247 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
248 return;
249 snd_pcm_debug_name(substream, name, sizeof(name));
250 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
251 entry = &log->entries[idx];
252 if (entry->period_size == 0)
253 break;
254 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
255 "hwptr=%ld/%ld\n",
256 name, entry->in_interrupt ? "[Q] " : "",
257 entry->jiffies,
258 (unsigned long)entry->pos,
259 (unsigned long)entry->period_size,
260 (unsigned long)entry->buffer_size,
261 (unsigned long)entry->old_hw_ptr,
262 (unsigned long)entry->hw_ptr_base);
263 idx++;
264 idx %= XRUN_LOG_CNT;
265 }
266 log->hit = 1;
267}
268
269#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
270
271#define hw_ptr_error(substream, fmt, args...) do { } while (0)
272#define xrun_log(substream, pos, in_interrupt) do { } while (0)
273#define xrun_log_show(substream) do { } while (0)
274
275#endif
276
277int snd_pcm_update_state(struct snd_pcm_substream *substream,
278 struct snd_pcm_runtime *runtime)
279{
280 snd_pcm_uframes_t avail;
281
282 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
283 avail = snd_pcm_playback_avail(runtime);
284 else
285 avail = snd_pcm_capture_avail(runtime);
286 if (avail > runtime->avail_max)
287 runtime->avail_max = avail;
288 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
289 if (avail >= runtime->buffer_size) {
290 snd_pcm_drain_done(substream);
291 return -EPIPE;
292 }
293 } else {
294 if (avail >= runtime->stop_threshold) {
295 xrun(substream);
296 return -EPIPE;
297 }
298 }
299 if (runtime->twake) {
300 if (avail >= runtime->twake)
301 wake_up(&runtime->tsleep);
302 } else if (avail >= runtime->control->avail_min)
303 wake_up(&runtime->sleep);
304 return 0;
305}
306
307static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
308 unsigned int in_interrupt)
309{
310 struct snd_pcm_runtime *runtime = substream->runtime;
311 snd_pcm_uframes_t pos;
312 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
313 snd_pcm_sframes_t hdelta, delta;
314 unsigned long jdelta;
315
316 old_hw_ptr = runtime->status->hw_ptr;
317 pos = substream->ops->pointer(substream);
318 if (pos == SNDRV_PCM_POS_XRUN) {
319 xrun(substream);
320 return -EPIPE;
321 }
322 if (pos >= runtime->buffer_size) {
323 if (printk_ratelimit()) {
324 char name[16];
325 snd_pcm_debug_name(substream, name, sizeof(name));
326 xrun_log_show(substream);
327 snd_printd(KERN_ERR "BUG: %s, pos = %ld, "
328 "buffer size = %ld, period size = %ld\n",
329 name, pos, runtime->buffer_size,
330 runtime->period_size);
331 }
332 pos = 0;
333 }
334 pos -= pos % runtime->min_align;
335 if (xrun_debug(substream, XRUN_DEBUG_LOG))
336 xrun_log(substream, pos, in_interrupt);
337 hw_base = runtime->hw_ptr_base;
338 new_hw_ptr = hw_base + pos;
339 if (in_interrupt) {
340 /* we know that one period was processed */
341 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
342 delta = runtime->hw_ptr_interrupt + runtime->period_size;
343 if (delta > new_hw_ptr) {
344 /* check for double acknowledged interrupts */
345 hdelta = jiffies - runtime->hw_ptr_jiffies;
346 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
347 hw_base += runtime->buffer_size;
348 if (hw_base >= runtime->boundary)
349 hw_base = 0;
350 new_hw_ptr = hw_base + pos;
351 goto __delta;
352 }
353 }
354 }
355 /* new_hw_ptr might be lower than old_hw_ptr in case when */
356 /* pointer crosses the end of the ring buffer */
357 if (new_hw_ptr < old_hw_ptr) {
358 hw_base += runtime->buffer_size;
359 if (hw_base >= runtime->boundary)
360 hw_base = 0;
361 new_hw_ptr = hw_base + pos;
362 }
363 __delta:
364 delta = new_hw_ptr - old_hw_ptr;
365 if (delta < 0)
366 delta += runtime->boundary;
367 if (xrun_debug(substream, in_interrupt ?
368 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
369 char name[16];
370 snd_pcm_debug_name(substream, name, sizeof(name));
371 snd_printd("%s_update: %s: pos=%u/%u/%u, "
372 "hwptr=%ld/%ld/%ld/%ld\n",
373 in_interrupt ? "period" : "hwptr",
374 name,
375 (unsigned int)pos,
376 (unsigned int)runtime->period_size,
377 (unsigned int)runtime->buffer_size,
378 (unsigned long)delta,
379 (unsigned long)old_hw_ptr,
380 (unsigned long)new_hw_ptr,
381 (unsigned long)runtime->hw_ptr_base);
382 }
383
384 if (runtime->no_period_wakeup) {
385 snd_pcm_sframes_t xrun_threshold;
386 /*
387 * Without regular period interrupts, we have to check
388 * the elapsed time to detect xruns.
389 */
390 jdelta = jiffies - runtime->hw_ptr_jiffies;
391 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
392 goto no_delta_check;
393 hdelta = jdelta - delta * HZ / runtime->rate;
394 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
395 while (hdelta > xrun_threshold) {
396 delta += runtime->buffer_size;
397 hw_base += runtime->buffer_size;
398 if (hw_base >= runtime->boundary)
399 hw_base = 0;
400 new_hw_ptr = hw_base + pos;
401 hdelta -= runtime->hw_ptr_buffer_jiffies;
402 }
403 goto no_delta_check;
404 }
405
406 /* something must be really wrong */
407 if (delta >= runtime->buffer_size + runtime->period_size) {
408 hw_ptr_error(substream,
409 "Unexpected hw_pointer value %s"
410 "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
411 "old_hw_ptr=%ld)\n",
412 in_interrupt ? "[Q] " : "[P]",
413 substream->stream, (long)pos,
414 (long)new_hw_ptr, (long)old_hw_ptr);
415 return 0;
416 }
417
418 /* Do jiffies check only in xrun_debug mode */
419 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
420 goto no_jiffies_check;
421
422 /* Skip the jiffies check for hardwares with BATCH flag.
423 * Such hardware usually just increases the position at each IRQ,
424 * thus it can't give any strange position.
425 */
426 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
427 goto no_jiffies_check;
428 hdelta = delta;
429 if (hdelta < runtime->delay)
430 goto no_jiffies_check;
431 hdelta -= runtime->delay;
432 jdelta = jiffies - runtime->hw_ptr_jiffies;
433 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
434 delta = jdelta /
435 (((runtime->period_size * HZ) / runtime->rate)
436 + HZ/100);
437 /* move new_hw_ptr according jiffies not pos variable */
438 new_hw_ptr = old_hw_ptr;
439 hw_base = delta;
440 /* use loop to avoid checks for delta overflows */
441 /* the delta value is small or zero in most cases */
442 while (delta > 0) {
443 new_hw_ptr += runtime->period_size;
444 if (new_hw_ptr >= runtime->boundary)
445 new_hw_ptr -= runtime->boundary;
446 delta--;
447 }
448 /* align hw_base to buffer_size */
449 hw_ptr_error(substream,
450 "hw_ptr skipping! %s"
451 "(pos=%ld, delta=%ld, period=%ld, "
452 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
453 in_interrupt ? "[Q] " : "",
454 (long)pos, (long)hdelta,
455 (long)runtime->period_size, jdelta,
456 ((hdelta * HZ) / runtime->rate), hw_base,
457 (unsigned long)old_hw_ptr,
458 (unsigned long)new_hw_ptr);
459 /* reset values to proper state */
460 delta = 0;
461 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
462 }
463 no_jiffies_check:
464 if (delta > runtime->period_size + runtime->period_size / 2) {
465 hw_ptr_error(substream,
466 "Lost interrupts? %s"
467 "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
468 "old_hw_ptr=%ld)\n",
469 in_interrupt ? "[Q] " : "",
470 substream->stream, (long)delta,
471 (long)new_hw_ptr,
472 (long)old_hw_ptr);
473 }
474
475 no_delta_check:
476 if (runtime->status->hw_ptr == new_hw_ptr)
477 return 0;
478
479 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
480 runtime->silence_size > 0)
481 snd_pcm_playback_silence(substream, new_hw_ptr);
482
483 if (in_interrupt) {
484 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
485 if (delta < 0)
486 delta += runtime->boundary;
487 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
488 runtime->hw_ptr_interrupt += delta;
489 if (runtime->hw_ptr_interrupt >= runtime->boundary)
490 runtime->hw_ptr_interrupt -= runtime->boundary;
491 }
492 runtime->hw_ptr_base = hw_base;
493 runtime->status->hw_ptr = new_hw_ptr;
494 runtime->hw_ptr_jiffies = jiffies;
495 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
496 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
497
498 return snd_pcm_update_state(substream, runtime);
499}
500
501/* CAUTION: call it with irq disabled */
502int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
503{
504 return snd_pcm_update_hw_ptr0(substream, 0);
505}
506
507/**
508 * snd_pcm_set_ops - set the PCM operators
509 * @pcm: the pcm instance
510 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
511 * @ops: the operator table
512 *
513 * Sets the given PCM operators to the pcm instance.
514 */
515void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
516{
517 struct snd_pcm_str *stream = &pcm->streams[direction];
518 struct snd_pcm_substream *substream;
519
520 for (substream = stream->substream; substream != NULL; substream = substream->next)
521 substream->ops = ops;
522}
523
524EXPORT_SYMBOL(snd_pcm_set_ops);
525
526/**
527 * snd_pcm_sync - set the PCM sync id
528 * @substream: the pcm substream
529 *
530 * Sets the PCM sync identifier for the card.
531 */
532void snd_pcm_set_sync(struct snd_pcm_substream *substream)
533{
534 struct snd_pcm_runtime *runtime = substream->runtime;
535
536 runtime->sync.id32[0] = substream->pcm->card->number;
537 runtime->sync.id32[1] = -1;
538 runtime->sync.id32[2] = -1;
539 runtime->sync.id32[3] = -1;
540}
541
542EXPORT_SYMBOL(snd_pcm_set_sync);
543
544/*
545 * Standard ioctl routine
546 */
547
548static inline unsigned int div32(unsigned int a, unsigned int b,
549 unsigned int *r)
550{
551 if (b == 0) {
552 *r = 0;
553 return UINT_MAX;
554 }
555 *r = a % b;
556 return a / b;
557}
558
559static inline unsigned int div_down(unsigned int a, unsigned int b)
560{
561 if (b == 0)
562 return UINT_MAX;
563 return a / b;
564}
565
566static inline unsigned int div_up(unsigned int a, unsigned int b)
567{
568 unsigned int r;
569 unsigned int q;
570 if (b == 0)
571 return UINT_MAX;
572 q = div32(a, b, &r);
573 if (r)
574 ++q;
575 return q;
576}
577
578static inline unsigned int mul(unsigned int a, unsigned int b)
579{
580 if (a == 0)
581 return 0;
582 if (div_down(UINT_MAX, a) < b)
583 return UINT_MAX;
584 return a * b;
585}
586
587static inline unsigned int muldiv32(unsigned int a, unsigned int b,
588 unsigned int c, unsigned int *r)
589{
590 u_int64_t n = (u_int64_t) a * b;
591 if (c == 0) {
592 snd_BUG_ON(!n);
593 *r = 0;
594 return UINT_MAX;
595 }
596 n = div_u64_rem(n, c, r);
597 if (n >= UINT_MAX) {
598 *r = 0;
599 return UINT_MAX;
600 }
601 return n;
602}
603
604/**
605 * snd_interval_refine - refine the interval value of configurator
606 * @i: the interval value to refine
607 * @v: the interval value to refer to
608 *
609 * Refines the interval value with the reference value.
610 * The interval is changed to the range satisfying both intervals.
611 * The interval status (min, max, integer, etc.) are evaluated.
612 *
613 * Returns non-zero if the value is changed, zero if not changed.
614 */
615int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
616{
617 int changed = 0;
618 if (snd_BUG_ON(snd_interval_empty(i)))
619 return -EINVAL;
620 if (i->min < v->min) {
621 i->min = v->min;
622 i->openmin = v->openmin;
623 changed = 1;
624 } else if (i->min == v->min && !i->openmin && v->openmin) {
625 i->openmin = 1;
626 changed = 1;
627 }
628 if (i->max > v->max) {
629 i->max = v->max;
630 i->openmax = v->openmax;
631 changed = 1;
632 } else if (i->max == v->max && !i->openmax && v->openmax) {
633 i->openmax = 1;
634 changed = 1;
635 }
636 if (!i->integer && v->integer) {
637 i->integer = 1;
638 changed = 1;
639 }
640 if (i->integer) {
641 if (i->openmin) {
642 i->min++;
643 i->openmin = 0;
644 }
645 if (i->openmax) {
646 i->max--;
647 i->openmax = 0;
648 }
649 } else if (!i->openmin && !i->openmax && i->min == i->max)
650 i->integer = 1;
651 if (snd_interval_checkempty(i)) {
652 snd_interval_none(i);
653 return -EINVAL;
654 }
655 return changed;
656}
657
658EXPORT_SYMBOL(snd_interval_refine);
659
660static int snd_interval_refine_first(struct snd_interval *i)
661{
662 if (snd_BUG_ON(snd_interval_empty(i)))
663 return -EINVAL;
664 if (snd_interval_single(i))
665 return 0;
666 i->max = i->min;
667 i->openmax = i->openmin;
668 if (i->openmax)
669 i->max++;
670 return 1;
671}
672
673static int snd_interval_refine_last(struct snd_interval *i)
674{
675 if (snd_BUG_ON(snd_interval_empty(i)))
676 return -EINVAL;
677 if (snd_interval_single(i))
678 return 0;
679 i->min = i->max;
680 i->openmin = i->openmax;
681 if (i->openmin)
682 i->min--;
683 return 1;
684}
685
686void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
687{
688 if (a->empty || b->empty) {
689 snd_interval_none(c);
690 return;
691 }
692 c->empty = 0;
693 c->min = mul(a->min, b->min);
694 c->openmin = (a->openmin || b->openmin);
695 c->max = mul(a->max, b->max);
696 c->openmax = (a->openmax || b->openmax);
697 c->integer = (a->integer && b->integer);
698}
699
700/**
701 * snd_interval_div - refine the interval value with division
702 * @a: dividend
703 * @b: divisor
704 * @c: quotient
705 *
706 * c = a / b
707 *
708 * Returns non-zero if the value is changed, zero if not changed.
709 */
710void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
711{
712 unsigned int r;
713 if (a->empty || b->empty) {
714 snd_interval_none(c);
715 return;
716 }
717 c->empty = 0;
718 c->min = div32(a->min, b->max, &r);
719 c->openmin = (r || a->openmin || b->openmax);
720 if (b->min > 0) {
721 c->max = div32(a->max, b->min, &r);
722 if (r) {
723 c->max++;
724 c->openmax = 1;
725 } else
726 c->openmax = (a->openmax || b->openmin);
727 } else {
728 c->max = UINT_MAX;
729 c->openmax = 0;
730 }
731 c->integer = 0;
732}
733
734/**
735 * snd_interval_muldivk - refine the interval value
736 * @a: dividend 1
737 * @b: dividend 2
738 * @k: divisor (as integer)
739 * @c: result
740 *
741 * c = a * b / k
742 *
743 * Returns non-zero if the value is changed, zero if not changed.
744 */
745void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
746 unsigned int k, struct snd_interval *c)
747{
748 unsigned int r;
749 if (a->empty || b->empty) {
750 snd_interval_none(c);
751 return;
752 }
753 c->empty = 0;
754 c->min = muldiv32(a->min, b->min, k, &r);
755 c->openmin = (r || a->openmin || b->openmin);
756 c->max = muldiv32(a->max, b->max, k, &r);
757 if (r) {
758 c->max++;
759 c->openmax = 1;
760 } else
761 c->openmax = (a->openmax || b->openmax);
762 c->integer = 0;
763}
764
765/**
766 * snd_interval_mulkdiv - refine the interval value
767 * @a: dividend 1
768 * @k: dividend 2 (as integer)
769 * @b: divisor
770 * @c: result
771 *
772 * c = a * k / b
773 *
774 * Returns non-zero if the value is changed, zero if not changed.
775 */
776void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
777 const struct snd_interval *b, struct snd_interval *c)
778{
779 unsigned int r;
780 if (a->empty || b->empty) {
781 snd_interval_none(c);
782 return;
783 }
784 c->empty = 0;
785 c->min = muldiv32(a->min, k, b->max, &r);
786 c->openmin = (r || a->openmin || b->openmax);
787 if (b->min > 0) {
788 c->max = muldiv32(a->max, k, b->min, &r);
789 if (r) {
790 c->max++;
791 c->openmax = 1;
792 } else
793 c->openmax = (a->openmax || b->openmin);
794 } else {
795 c->max = UINT_MAX;
796 c->openmax = 0;
797 }
798 c->integer = 0;
799}
800
801/* ---- */
802
803
804/**
805 * snd_interval_ratnum - refine the interval value
806 * @i: interval to refine
807 * @rats_count: number of ratnum_t
808 * @rats: ratnum_t array
809 * @nump: pointer to store the resultant numerator
810 * @denp: pointer to store the resultant denominator
811 *
812 * Returns non-zero if the value is changed, zero if not changed.
813 */
814int snd_interval_ratnum(struct snd_interval *i,
815 unsigned int rats_count, struct snd_ratnum *rats,
816 unsigned int *nump, unsigned int *denp)
817{
818 unsigned int best_num, best_den;
819 int best_diff;
820 unsigned int k;
821 struct snd_interval t;
822 int err;
823 unsigned int result_num, result_den;
824 int result_diff;
825
826 best_num = best_den = best_diff = 0;
827 for (k = 0; k < rats_count; ++k) {
828 unsigned int num = rats[k].num;
829 unsigned int den;
830 unsigned int q = i->min;
831 int diff;
832 if (q == 0)
833 q = 1;
834 den = div_up(num, q);
835 if (den < rats[k].den_min)
836 continue;
837 if (den > rats[k].den_max)
838 den = rats[k].den_max;
839 else {
840 unsigned int r;
841 r = (den - rats[k].den_min) % rats[k].den_step;
842 if (r != 0)
843 den -= r;
844 }
845 diff = num - q * den;
846 if (diff < 0)
847 diff = -diff;
848 if (best_num == 0 ||
849 diff * best_den < best_diff * den) {
850 best_diff = diff;
851 best_den = den;
852 best_num = num;
853 }
854 }
855 if (best_den == 0) {
856 i->empty = 1;
857 return -EINVAL;
858 }
859 t.min = div_down(best_num, best_den);
860 t.openmin = !!(best_num % best_den);
861
862 result_num = best_num;
863 result_diff = best_diff;
864 result_den = best_den;
865 best_num = best_den = best_diff = 0;
866 for (k = 0; k < rats_count; ++k) {
867 unsigned int num = rats[k].num;
868 unsigned int den;
869 unsigned int q = i->max;
870 int diff;
871 if (q == 0) {
872 i->empty = 1;
873 return -EINVAL;
874 }
875 den = div_down(num, q);
876 if (den > rats[k].den_max)
877 continue;
878 if (den < rats[k].den_min)
879 den = rats[k].den_min;
880 else {
881 unsigned int r;
882 r = (den - rats[k].den_min) % rats[k].den_step;
883 if (r != 0)
884 den += rats[k].den_step - r;
885 }
886 diff = q * den - num;
887 if (diff < 0)
888 diff = -diff;
889 if (best_num == 0 ||
890 diff * best_den < best_diff * den) {
891 best_diff = diff;
892 best_den = den;
893 best_num = num;
894 }
895 }
896 if (best_den == 0) {
897 i->empty = 1;
898 return -EINVAL;
899 }
900 t.max = div_up(best_num, best_den);
901 t.openmax = !!(best_num % best_den);
902 t.integer = 0;
903 err = snd_interval_refine(i, &t);
904 if (err < 0)
905 return err;
906
907 if (snd_interval_single(i)) {
908 if (best_diff * result_den < result_diff * best_den) {
909 result_num = best_num;
910 result_den = best_den;
911 }
912 if (nump)
913 *nump = result_num;
914 if (denp)
915 *denp = result_den;
916 }
917 return err;
918}
919
920EXPORT_SYMBOL(snd_interval_ratnum);
921
922/**
923 * snd_interval_ratden - refine the interval value
924 * @i: interval to refine
925 * @rats_count: number of struct ratden
926 * @rats: struct ratden array
927 * @nump: pointer to store the resultant numerator
928 * @denp: pointer to store the resultant denominator
929 *
930 * Returns non-zero if the value is changed, zero if not changed.
931 */
932static int snd_interval_ratden(struct snd_interval *i,
933 unsigned int rats_count, struct snd_ratden *rats,
934 unsigned int *nump, unsigned int *denp)
935{
936 unsigned int best_num, best_diff, best_den;
937 unsigned int k;
938 struct snd_interval t;
939 int err;
940
941 best_num = best_den = best_diff = 0;
942 for (k = 0; k < rats_count; ++k) {
943 unsigned int num;
944 unsigned int den = rats[k].den;
945 unsigned int q = i->min;
946 int diff;
947 num = mul(q, den);
948 if (num > rats[k].num_max)
949 continue;
950 if (num < rats[k].num_min)
951 num = rats[k].num_max;
952 else {
953 unsigned int r;
954 r = (num - rats[k].num_min) % rats[k].num_step;
955 if (r != 0)
956 num += rats[k].num_step - r;
957 }
958 diff = num - q * den;
959 if (best_num == 0 ||
960 diff * best_den < best_diff * den) {
961 best_diff = diff;
962 best_den = den;
963 best_num = num;
964 }
965 }
966 if (best_den == 0) {
967 i->empty = 1;
968 return -EINVAL;
969 }
970 t.min = div_down(best_num, best_den);
971 t.openmin = !!(best_num % best_den);
972
973 best_num = best_den = best_diff = 0;
974 for (k = 0; k < rats_count; ++k) {
975 unsigned int num;
976 unsigned int den = rats[k].den;
977 unsigned int q = i->max;
978 int diff;
979 num = mul(q, den);
980 if (num < rats[k].num_min)
981 continue;
982 if (num > rats[k].num_max)
983 num = rats[k].num_max;
984 else {
985 unsigned int r;
986 r = (num - rats[k].num_min) % rats[k].num_step;
987 if (r != 0)
988 num -= r;
989 }
990 diff = q * den - num;
991 if (best_num == 0 ||
992 diff * best_den < best_diff * den) {
993 best_diff = diff;
994 best_den = den;
995 best_num = num;
996 }
997 }
998 if (best_den == 0) {
999 i->empty = 1;
1000 return -EINVAL;
1001 }
1002 t.max = div_up(best_num, best_den);
1003 t.openmax = !!(best_num % best_den);
1004 t.integer = 0;
1005 err = snd_interval_refine(i, &t);
1006 if (err < 0)
1007 return err;
1008
1009 if (snd_interval_single(i)) {
1010 if (nump)
1011 *nump = best_num;
1012 if (denp)
1013 *denp = best_den;
1014 }
1015 return err;
1016}
1017
1018/**
1019 * snd_interval_list - refine the interval value from the list
1020 * @i: the interval value to refine
1021 * @count: the number of elements in the list
1022 * @list: the value list
1023 * @mask: the bit-mask to evaluate
1024 *
1025 * Refines the interval value from the list.
1026 * When mask is non-zero, only the elements corresponding to bit 1 are
1027 * evaluated.
1028 *
1029 * Returns non-zero if the value is changed, zero if not changed.
1030 */
1031int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
1032{
1033 unsigned int k;
1034 struct snd_interval list_range;
1035
1036 if (!count) {
1037 i->empty = 1;
1038 return -EINVAL;
1039 }
1040 snd_interval_any(&list_range);
1041 list_range.min = UINT_MAX;
1042 list_range.max = 0;
1043 for (k = 0; k < count; k++) {
1044 if (mask && !(mask & (1 << k)))
1045 continue;
1046 if (!snd_interval_test(i, list[k]))
1047 continue;
1048 list_range.min = min(list_range.min, list[k]);
1049 list_range.max = max(list_range.max, list[k]);
1050 }
1051 return snd_interval_refine(i, &list_range);
1052}
1053
1054EXPORT_SYMBOL(snd_interval_list);
1055
1056static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1057{
1058 unsigned int n;
1059 int changed = 0;
1060 n = (i->min - min) % step;
1061 if (n != 0 || i->openmin) {
1062 i->min += step - n;
1063 changed = 1;
1064 }
1065 n = (i->max - min) % step;
1066 if (n != 0 || i->openmax) {
1067 i->max -= n;
1068 changed = 1;
1069 }
1070 if (snd_interval_checkempty(i)) {
1071 i->empty = 1;
1072 return -EINVAL;
1073 }
1074 return changed;
1075}
1076
1077/* Info constraints helpers */
1078
1079/**
1080 * snd_pcm_hw_rule_add - add the hw-constraint rule
1081 * @runtime: the pcm runtime instance
1082 * @cond: condition bits
1083 * @var: the variable to evaluate
1084 * @func: the evaluation function
1085 * @private: the private data pointer passed to function
1086 * @dep: the dependent variables
1087 *
1088 * Returns zero if successful, or a negative error code on failure.
1089 */
1090int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1091 int var,
1092 snd_pcm_hw_rule_func_t func, void *private,
1093 int dep, ...)
1094{
1095 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1096 struct snd_pcm_hw_rule *c;
1097 unsigned int k;
1098 va_list args;
1099 va_start(args, dep);
1100 if (constrs->rules_num >= constrs->rules_all) {
1101 struct snd_pcm_hw_rule *new;
1102 unsigned int new_rules = constrs->rules_all + 16;
1103 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1104 if (!new) {
1105 va_end(args);
1106 return -ENOMEM;
1107 }
1108 if (constrs->rules) {
1109 memcpy(new, constrs->rules,
1110 constrs->rules_num * sizeof(*c));
1111 kfree(constrs->rules);
1112 }
1113 constrs->rules = new;
1114 constrs->rules_all = new_rules;
1115 }
1116 c = &constrs->rules[constrs->rules_num];
1117 c->cond = cond;
1118 c->func = func;
1119 c->var = var;
1120 c->private = private;
1121 k = 0;
1122 while (1) {
1123 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1124 va_end(args);
1125 return -EINVAL;
1126 }
1127 c->deps[k++] = dep;
1128 if (dep < 0)
1129 break;
1130 dep = va_arg(args, int);
1131 }
1132 constrs->rules_num++;
1133 va_end(args);
1134 return 0;
1135}
1136
1137EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1138
1139/**
1140 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1141 * @runtime: PCM runtime instance
1142 * @var: hw_params variable to apply the mask
1143 * @mask: the bitmap mask
1144 *
1145 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1146 */
1147int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1148 u_int32_t mask)
1149{
1150 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1151 struct snd_mask *maskp = constrs_mask(constrs, var);
1152 *maskp->bits &= mask;
1153 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1154 if (*maskp->bits == 0)
1155 return -EINVAL;
1156 return 0;
1157}
1158
1159/**
1160 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1161 * @runtime: PCM runtime instance
1162 * @var: hw_params variable to apply the mask
1163 * @mask: the 64bit bitmap mask
1164 *
1165 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1166 */
1167int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1168 u_int64_t mask)
1169{
1170 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1171 struct snd_mask *maskp = constrs_mask(constrs, var);
1172 maskp->bits[0] &= (u_int32_t)mask;
1173 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1174 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1175 if (! maskp->bits[0] && ! maskp->bits[1])
1176 return -EINVAL;
1177 return 0;
1178}
1179
1180/**
1181 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1182 * @runtime: PCM runtime instance
1183 * @var: hw_params variable to apply the integer constraint
1184 *
1185 * Apply the constraint of integer to an interval parameter.
1186 */
1187int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1188{
1189 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1190 return snd_interval_setinteger(constrs_interval(constrs, var));
1191}
1192
1193EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1194
1195/**
1196 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1197 * @runtime: PCM runtime instance
1198 * @var: hw_params variable to apply the range
1199 * @min: the minimal value
1200 * @max: the maximal value
1201 *
1202 * Apply the min/max range constraint to an interval parameter.
1203 */
1204int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1205 unsigned int min, unsigned int max)
1206{
1207 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1208 struct snd_interval t;
1209 t.min = min;
1210 t.max = max;
1211 t.openmin = t.openmax = 0;
1212 t.integer = 0;
1213 return snd_interval_refine(constrs_interval(constrs, var), &t);
1214}
1215
1216EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1217
1218static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1219 struct snd_pcm_hw_rule *rule)
1220{
1221 struct snd_pcm_hw_constraint_list *list = rule->private;
1222 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1223}
1224
1225
1226/**
1227 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1228 * @runtime: PCM runtime instance
1229 * @cond: condition bits
1230 * @var: hw_params variable to apply the list constraint
1231 * @l: list
1232 *
1233 * Apply the list of constraints to an interval parameter.
1234 */
1235int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1236 unsigned int cond,
1237 snd_pcm_hw_param_t var,
1238 struct snd_pcm_hw_constraint_list *l)
1239{
1240 return snd_pcm_hw_rule_add(runtime, cond, var,
1241 snd_pcm_hw_rule_list, l,
1242 var, -1);
1243}
1244
1245EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1246
1247static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1248 struct snd_pcm_hw_rule *rule)
1249{
1250 struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1251 unsigned int num = 0, den = 0;
1252 int err;
1253 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1254 r->nrats, r->rats, &num, &den);
1255 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1256 params->rate_num = num;
1257 params->rate_den = den;
1258 }
1259 return err;
1260}
1261
1262/**
1263 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1264 * @runtime: PCM runtime instance
1265 * @cond: condition bits
1266 * @var: hw_params variable to apply the ratnums constraint
1267 * @r: struct snd_ratnums constriants
1268 */
1269int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1270 unsigned int cond,
1271 snd_pcm_hw_param_t var,
1272 struct snd_pcm_hw_constraint_ratnums *r)
1273{
1274 return snd_pcm_hw_rule_add(runtime, cond, var,
1275 snd_pcm_hw_rule_ratnums, r,
1276 var, -1);
1277}
1278
1279EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1280
1281static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1282 struct snd_pcm_hw_rule *rule)
1283{
1284 struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1285 unsigned int num = 0, den = 0;
1286 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1287 r->nrats, r->rats, &num, &den);
1288 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1289 params->rate_num = num;
1290 params->rate_den = den;
1291 }
1292 return err;
1293}
1294
1295/**
1296 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1297 * @runtime: PCM runtime instance
1298 * @cond: condition bits
1299 * @var: hw_params variable to apply the ratdens constraint
1300 * @r: struct snd_ratdens constriants
1301 */
1302int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1303 unsigned int cond,
1304 snd_pcm_hw_param_t var,
1305 struct snd_pcm_hw_constraint_ratdens *r)
1306{
1307 return snd_pcm_hw_rule_add(runtime, cond, var,
1308 snd_pcm_hw_rule_ratdens, r,
1309 var, -1);
1310}
1311
1312EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1313
1314static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1315 struct snd_pcm_hw_rule *rule)
1316{
1317 unsigned int l = (unsigned long) rule->private;
1318 int width = l & 0xffff;
1319 unsigned int msbits = l >> 16;
1320 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1321 if (snd_interval_single(i) && snd_interval_value(i) == width)
1322 params->msbits = msbits;
1323 return 0;
1324}
1325
1326/**
1327 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1328 * @runtime: PCM runtime instance
1329 * @cond: condition bits
1330 * @width: sample bits width
1331 * @msbits: msbits width
1332 */
1333int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1334 unsigned int cond,
1335 unsigned int width,
1336 unsigned int msbits)
1337{
1338 unsigned long l = (msbits << 16) | width;
1339 return snd_pcm_hw_rule_add(runtime, cond, -1,
1340 snd_pcm_hw_rule_msbits,
1341 (void*) l,
1342 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1343}
1344
1345EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1346
1347static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1348 struct snd_pcm_hw_rule *rule)
1349{
1350 unsigned long step = (unsigned long) rule->private;
1351 return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1352}
1353
1354/**
1355 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1356 * @runtime: PCM runtime instance
1357 * @cond: condition bits
1358 * @var: hw_params variable to apply the step constraint
1359 * @step: step size
1360 */
1361int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1362 unsigned int cond,
1363 snd_pcm_hw_param_t var,
1364 unsigned long step)
1365{
1366 return snd_pcm_hw_rule_add(runtime, cond, var,
1367 snd_pcm_hw_rule_step, (void *) step,
1368 var, -1);
1369}
1370
1371EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1372
1373static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1374{
1375 static unsigned int pow2_sizes[] = {
1376 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1377 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1378 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1379 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1380 };
1381 return snd_interval_list(hw_param_interval(params, rule->var),
1382 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1383}
1384
1385/**
1386 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1387 * @runtime: PCM runtime instance
1388 * @cond: condition bits
1389 * @var: hw_params variable to apply the power-of-2 constraint
1390 */
1391int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1392 unsigned int cond,
1393 snd_pcm_hw_param_t var)
1394{
1395 return snd_pcm_hw_rule_add(runtime, cond, var,
1396 snd_pcm_hw_rule_pow2, NULL,
1397 var, -1);
1398}
1399
1400EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1401
1402static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1403 snd_pcm_hw_param_t var)
1404{
1405 if (hw_is_mask(var)) {
1406 snd_mask_any(hw_param_mask(params, var));
1407 params->cmask |= 1 << var;
1408 params->rmask |= 1 << var;
1409 return;
1410 }
1411 if (hw_is_interval(var)) {
1412 snd_interval_any(hw_param_interval(params, var));
1413 params->cmask |= 1 << var;
1414 params->rmask |= 1 << var;
1415 return;
1416 }
1417 snd_BUG();
1418}
1419
1420void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1421{
1422 unsigned int k;
1423 memset(params, 0, sizeof(*params));
1424 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1425 _snd_pcm_hw_param_any(params, k);
1426 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1427 _snd_pcm_hw_param_any(params, k);
1428 params->info = ~0U;
1429}
1430
1431EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1432
1433/**
1434 * snd_pcm_hw_param_value - return @params field @var value
1435 * @params: the hw_params instance
1436 * @var: parameter to retrieve
1437 * @dir: pointer to the direction (-1,0,1) or %NULL
1438 *
1439 * Return the value for field @var if it's fixed in configuration space
1440 * defined by @params. Return -%EINVAL otherwise.
1441 */
1442int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1443 snd_pcm_hw_param_t var, int *dir)
1444{
1445 if (hw_is_mask(var)) {
1446 const struct snd_mask *mask = hw_param_mask_c(params, var);
1447 if (!snd_mask_single(mask))
1448 return -EINVAL;
1449 if (dir)
1450 *dir = 0;
1451 return snd_mask_value(mask);
1452 }
1453 if (hw_is_interval(var)) {
1454 const struct snd_interval *i = hw_param_interval_c(params, var);
1455 if (!snd_interval_single(i))
1456 return -EINVAL;
1457 if (dir)
1458 *dir = i->openmin;
1459 return snd_interval_value(i);
1460 }
1461 return -EINVAL;
1462}
1463
1464EXPORT_SYMBOL(snd_pcm_hw_param_value);
1465
1466void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1467 snd_pcm_hw_param_t var)
1468{
1469 if (hw_is_mask(var)) {
1470 snd_mask_none(hw_param_mask(params, var));
1471 params->cmask |= 1 << var;
1472 params->rmask |= 1 << var;
1473 } else if (hw_is_interval(var)) {
1474 snd_interval_none(hw_param_interval(params, var));
1475 params->cmask |= 1 << var;
1476 params->rmask |= 1 << var;
1477 } else {
1478 snd_BUG();
1479 }
1480}
1481
1482EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1483
1484static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1485 snd_pcm_hw_param_t var)
1486{
1487 int changed;
1488 if (hw_is_mask(var))
1489 changed = snd_mask_refine_first(hw_param_mask(params, var));
1490 else if (hw_is_interval(var))
1491 changed = snd_interval_refine_first(hw_param_interval(params, var));
1492 else
1493 return -EINVAL;
1494 if (changed) {
1495 params->cmask |= 1 << var;
1496 params->rmask |= 1 << var;
1497 }
1498 return changed;
1499}
1500
1501
1502/**
1503 * snd_pcm_hw_param_first - refine config space and return minimum value
1504 * @pcm: PCM instance
1505 * @params: the hw_params instance
1506 * @var: parameter to retrieve
1507 * @dir: pointer to the direction (-1,0,1) or %NULL
1508 *
1509 * Inside configuration space defined by @params remove from @var all
1510 * values > minimum. Reduce configuration space accordingly.
1511 * Return the minimum.
1512 */
1513int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1514 struct snd_pcm_hw_params *params,
1515 snd_pcm_hw_param_t var, int *dir)
1516{
1517 int changed = _snd_pcm_hw_param_first(params, var);
1518 if (changed < 0)
1519 return changed;
1520 if (params->rmask) {
1521 int err = snd_pcm_hw_refine(pcm, params);
1522 if (snd_BUG_ON(err < 0))
1523 return err;
1524 }
1525 return snd_pcm_hw_param_value(params, var, dir);
1526}
1527
1528EXPORT_SYMBOL(snd_pcm_hw_param_first);
1529
1530static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1531 snd_pcm_hw_param_t var)
1532{
1533 int changed;
1534 if (hw_is_mask(var))
1535 changed = snd_mask_refine_last(hw_param_mask(params, var));
1536 else if (hw_is_interval(var))
1537 changed = snd_interval_refine_last(hw_param_interval(params, var));
1538 else
1539 return -EINVAL;
1540 if (changed) {
1541 params->cmask |= 1 << var;
1542 params->rmask |= 1 << var;
1543 }
1544 return changed;
1545}
1546
1547
1548/**
1549 * snd_pcm_hw_param_last - refine config space and return maximum value
1550 * @pcm: PCM instance
1551 * @params: the hw_params instance
1552 * @var: parameter to retrieve
1553 * @dir: pointer to the direction (-1,0,1) or %NULL
1554 *
1555 * Inside configuration space defined by @params remove from @var all
1556 * values < maximum. Reduce configuration space accordingly.
1557 * Return the maximum.
1558 */
1559int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1560 struct snd_pcm_hw_params *params,
1561 snd_pcm_hw_param_t var, int *dir)
1562{
1563 int changed = _snd_pcm_hw_param_last(params, var);
1564 if (changed < 0)
1565 return changed;
1566 if (params->rmask) {
1567 int err = snd_pcm_hw_refine(pcm, params);
1568 if (snd_BUG_ON(err < 0))
1569 return err;
1570 }
1571 return snd_pcm_hw_param_value(params, var, dir);
1572}
1573
1574EXPORT_SYMBOL(snd_pcm_hw_param_last);
1575
1576/**
1577 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1578 * @pcm: PCM instance
1579 * @params: the hw_params instance
1580 *
1581 * Choose one configuration from configuration space defined by @params.
1582 * The configuration chosen is that obtained fixing in this order:
1583 * first access, first format, first subformat, min channels,
1584 * min rate, min period time, max buffer size, min tick time
1585 */
1586int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1587 struct snd_pcm_hw_params *params)
1588{
1589 static int vars[] = {
1590 SNDRV_PCM_HW_PARAM_ACCESS,
1591 SNDRV_PCM_HW_PARAM_FORMAT,
1592 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1593 SNDRV_PCM_HW_PARAM_CHANNELS,
1594 SNDRV_PCM_HW_PARAM_RATE,
1595 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1596 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1597 SNDRV_PCM_HW_PARAM_TICK_TIME,
1598 -1
1599 };
1600 int err, *v;
1601
1602 for (v = vars; *v != -1; v++) {
1603 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1604 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1605 else
1606 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1607 if (snd_BUG_ON(err < 0))
1608 return err;
1609 }
1610 return 0;
1611}
1612
1613static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1614 void *arg)
1615{
1616 struct snd_pcm_runtime *runtime = substream->runtime;
1617 unsigned long flags;
1618 snd_pcm_stream_lock_irqsave(substream, flags);
1619 if (snd_pcm_running(substream) &&
1620 snd_pcm_update_hw_ptr(substream) >= 0)
1621 runtime->status->hw_ptr %= runtime->buffer_size;
1622 else
1623 runtime->status->hw_ptr = 0;
1624 snd_pcm_stream_unlock_irqrestore(substream, flags);
1625 return 0;
1626}
1627
1628static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1629 void *arg)
1630{
1631 struct snd_pcm_channel_info *info = arg;
1632 struct snd_pcm_runtime *runtime = substream->runtime;
1633 int width;
1634 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1635 info->offset = -1;
1636 return 0;
1637 }
1638 width = snd_pcm_format_physical_width(runtime->format);
1639 if (width < 0)
1640 return width;
1641 info->offset = 0;
1642 switch (runtime->access) {
1643 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1644 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1645 info->first = info->channel * width;
1646 info->step = runtime->channels * width;
1647 break;
1648 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1649 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1650 {
1651 size_t size = runtime->dma_bytes / runtime->channels;
1652 info->first = info->channel * size * 8;
1653 info->step = width;
1654 break;
1655 }
1656 default:
1657 snd_BUG();
1658 break;
1659 }
1660 return 0;
1661}
1662
1663static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1664 void *arg)
1665{
1666 struct snd_pcm_hw_params *params = arg;
1667 snd_pcm_format_t format;
1668 int channels, width;
1669
1670 params->fifo_size = substream->runtime->hw.fifo_size;
1671 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1672 format = params_format(params);
1673 channels = params_channels(params);
1674 width = snd_pcm_format_physical_width(format);
1675 params->fifo_size /= width * channels;
1676 }
1677 return 0;
1678}
1679
1680/**
1681 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1682 * @substream: the pcm substream instance
1683 * @cmd: ioctl command
1684 * @arg: ioctl argument
1685 *
1686 * Processes the generic ioctl commands for PCM.
1687 * Can be passed as the ioctl callback for PCM ops.
1688 *
1689 * Returns zero if successful, or a negative error code on failure.
1690 */
1691int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1692 unsigned int cmd, void *arg)
1693{
1694 switch (cmd) {
1695 case SNDRV_PCM_IOCTL1_INFO:
1696 return 0;
1697 case SNDRV_PCM_IOCTL1_RESET:
1698 return snd_pcm_lib_ioctl_reset(substream, arg);
1699 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1700 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1701 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1702 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1703 }
1704 return -ENXIO;
1705}
1706
1707EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1708
1709/**
1710 * snd_pcm_period_elapsed - update the pcm status for the next period
1711 * @substream: the pcm substream instance
1712 *
1713 * This function is called from the interrupt handler when the
1714 * PCM has processed the period size. It will update the current
1715 * pointer, wake up sleepers, etc.
1716 *
1717 * Even if more than one periods have elapsed since the last call, you
1718 * have to call this only once.
1719 */
1720void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1721{
1722 struct snd_pcm_runtime *runtime;
1723 unsigned long flags;
1724
1725 if (PCM_RUNTIME_CHECK(substream))
1726 return;
1727 runtime = substream->runtime;
1728
1729 if (runtime->transfer_ack_begin)
1730 runtime->transfer_ack_begin(substream);
1731
1732 snd_pcm_stream_lock_irqsave(substream, flags);
1733 if (!snd_pcm_running(substream) ||
1734 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1735 goto _end;
1736
1737 if (substream->timer_running)
1738 snd_timer_interrupt(substream->timer, 1);
1739 _end:
1740 snd_pcm_stream_unlock_irqrestore(substream, flags);
1741 if (runtime->transfer_ack_end)
1742 runtime->transfer_ack_end(substream);
1743 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1744}
1745
1746EXPORT_SYMBOL(snd_pcm_period_elapsed);
1747
1748/*
1749 * Wait until avail_min data becomes available
1750 * Returns a negative error code if any error occurs during operation.
1751 * The available space is stored on availp. When err = 0 and avail = 0
1752 * on the capture stream, it indicates the stream is in DRAINING state.
1753 */
1754static int wait_for_avail(struct snd_pcm_substream *substream,
1755 snd_pcm_uframes_t *availp)
1756{
1757 struct snd_pcm_runtime *runtime = substream->runtime;
1758 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1759 wait_queue_t wait;
1760 int err = 0;
1761 snd_pcm_uframes_t avail = 0;
1762 long wait_time, tout;
1763
1764 init_waitqueue_entry(&wait, current);
1765 set_current_state(TASK_INTERRUPTIBLE);
1766 add_wait_queue(&runtime->tsleep, &wait);
1767
1768 if (runtime->no_period_wakeup)
1769 wait_time = MAX_SCHEDULE_TIMEOUT;
1770 else {
1771 wait_time = 10;
1772 if (runtime->rate) {
1773 long t = runtime->period_size * 2 / runtime->rate;
1774 wait_time = max(t, wait_time);
1775 }
1776 wait_time = msecs_to_jiffies(wait_time * 1000);
1777 }
1778
1779 for (;;) {
1780 if (signal_pending(current)) {
1781 err = -ERESTARTSYS;
1782 break;
1783 }
1784
1785 /*
1786 * We need to check if space became available already
1787 * (and thus the wakeup happened already) first to close
1788 * the race of space already having become available.
1789 * This check must happen after been added to the waitqueue
1790 * and having current state be INTERRUPTIBLE.
1791 */
1792 if (is_playback)
1793 avail = snd_pcm_playback_avail(runtime);
1794 else
1795 avail = snd_pcm_capture_avail(runtime);
1796 if (avail >= runtime->twake)
1797 break;
1798 snd_pcm_stream_unlock_irq(substream);
1799
1800 tout = schedule_timeout(wait_time);
1801
1802 snd_pcm_stream_lock_irq(substream);
1803 set_current_state(TASK_INTERRUPTIBLE);
1804 switch (runtime->status->state) {
1805 case SNDRV_PCM_STATE_SUSPENDED:
1806 err = -ESTRPIPE;
1807 goto _endloop;
1808 case SNDRV_PCM_STATE_XRUN:
1809 err = -EPIPE;
1810 goto _endloop;
1811 case SNDRV_PCM_STATE_DRAINING:
1812 if (is_playback)
1813 err = -EPIPE;
1814 else
1815 avail = 0; /* indicate draining */
1816 goto _endloop;
1817 case SNDRV_PCM_STATE_OPEN:
1818 case SNDRV_PCM_STATE_SETUP:
1819 case SNDRV_PCM_STATE_DISCONNECTED:
1820 err = -EBADFD;
1821 goto _endloop;
1822 }
1823 if (!tout) {
1824 snd_printd("%s write error (DMA or IRQ trouble?)\n",
1825 is_playback ? "playback" : "capture");
1826 err = -EIO;
1827 break;
1828 }
1829 }
1830 _endloop:
1831 set_current_state(TASK_RUNNING);
1832 remove_wait_queue(&runtime->tsleep, &wait);
1833 *availp = avail;
1834 return err;
1835}
1836
1837static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1838 unsigned int hwoff,
1839 unsigned long data, unsigned int off,
1840 snd_pcm_uframes_t frames)
1841{
1842 struct snd_pcm_runtime *runtime = substream->runtime;
1843 int err;
1844 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1845 if (substream->ops->copy) {
1846 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1847 return err;
1848 } else {
1849 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1850 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1851 return -EFAULT;
1852 }
1853 return 0;
1854}
1855
1856typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1857 unsigned long data, unsigned int off,
1858 snd_pcm_uframes_t size);
1859
1860static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1861 unsigned long data,
1862 snd_pcm_uframes_t size,
1863 int nonblock,
1864 transfer_f transfer)
1865{
1866 struct snd_pcm_runtime *runtime = substream->runtime;
1867 snd_pcm_uframes_t xfer = 0;
1868 snd_pcm_uframes_t offset = 0;
1869 int err = 0;
1870
1871 if (size == 0)
1872 return 0;
1873
1874 snd_pcm_stream_lock_irq(substream);
1875 switch (runtime->status->state) {
1876 case SNDRV_PCM_STATE_PREPARED:
1877 case SNDRV_PCM_STATE_RUNNING:
1878 case SNDRV_PCM_STATE_PAUSED:
1879 break;
1880 case SNDRV_PCM_STATE_XRUN:
1881 err = -EPIPE;
1882 goto _end_unlock;
1883 case SNDRV_PCM_STATE_SUSPENDED:
1884 err = -ESTRPIPE;
1885 goto _end_unlock;
1886 default:
1887 err = -EBADFD;
1888 goto _end_unlock;
1889 }
1890
1891 runtime->twake = runtime->control->avail_min ? : 1;
1892 while (size > 0) {
1893 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1894 snd_pcm_uframes_t avail;
1895 snd_pcm_uframes_t cont;
1896 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1897 snd_pcm_update_hw_ptr(substream);
1898 avail = snd_pcm_playback_avail(runtime);
1899 if (!avail) {
1900 if (nonblock) {
1901 err = -EAGAIN;
1902 goto _end_unlock;
1903 }
1904 runtime->twake = min_t(snd_pcm_uframes_t, size,
1905 runtime->control->avail_min ? : 1);
1906 err = wait_for_avail(substream, &avail);
1907 if (err < 0)
1908 goto _end_unlock;
1909 }
1910 frames = size > avail ? avail : size;
1911 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1912 if (frames > cont)
1913 frames = cont;
1914 if (snd_BUG_ON(!frames)) {
1915 runtime->twake = 0;
1916 snd_pcm_stream_unlock_irq(substream);
1917 return -EINVAL;
1918 }
1919 appl_ptr = runtime->control->appl_ptr;
1920 appl_ofs = appl_ptr % runtime->buffer_size;
1921 snd_pcm_stream_unlock_irq(substream);
1922 err = transfer(substream, appl_ofs, data, offset, frames);
1923 snd_pcm_stream_lock_irq(substream);
1924 if (err < 0)
1925 goto _end_unlock;
1926 switch (runtime->status->state) {
1927 case SNDRV_PCM_STATE_XRUN:
1928 err = -EPIPE;
1929 goto _end_unlock;
1930 case SNDRV_PCM_STATE_SUSPENDED:
1931 err = -ESTRPIPE;
1932 goto _end_unlock;
1933 default:
1934 break;
1935 }
1936 appl_ptr += frames;
1937 if (appl_ptr >= runtime->boundary)
1938 appl_ptr -= runtime->boundary;
1939 runtime->control->appl_ptr = appl_ptr;
1940 if (substream->ops->ack)
1941 substream->ops->ack(substream);
1942
1943 offset += frames;
1944 size -= frames;
1945 xfer += frames;
1946 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1947 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1948 err = snd_pcm_start(substream);
1949 if (err < 0)
1950 goto _end_unlock;
1951 }
1952 }
1953 _end_unlock:
1954 runtime->twake = 0;
1955 if (xfer > 0 && err >= 0)
1956 snd_pcm_update_state(substream, runtime);
1957 snd_pcm_stream_unlock_irq(substream);
1958 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1959}
1960
1961/* sanity-check for read/write methods */
1962static int pcm_sanity_check(struct snd_pcm_substream *substream)
1963{
1964 struct snd_pcm_runtime *runtime;
1965 if (PCM_RUNTIME_CHECK(substream))
1966 return -ENXIO;
1967 runtime = substream->runtime;
1968 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1969 return -EINVAL;
1970 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1971 return -EBADFD;
1972 return 0;
1973}
1974
1975snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1976{
1977 struct snd_pcm_runtime *runtime;
1978 int nonblock;
1979 int err;
1980
1981 err = pcm_sanity_check(substream);
1982 if (err < 0)
1983 return err;
1984 runtime = substream->runtime;
1985 nonblock = !!(substream->f_flags & O_NONBLOCK);
1986
1987 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1988 runtime->channels > 1)
1989 return -EINVAL;
1990 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1991 snd_pcm_lib_write_transfer);
1992}
1993
1994EXPORT_SYMBOL(snd_pcm_lib_write);
1995
1996static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1997 unsigned int hwoff,
1998 unsigned long data, unsigned int off,
1999 snd_pcm_uframes_t frames)
2000{
2001 struct snd_pcm_runtime *runtime = substream->runtime;
2002 int err;
2003 void __user **bufs = (void __user **)data;
2004 int channels = runtime->channels;
2005 int c;
2006 if (substream->ops->copy) {
2007 if (snd_BUG_ON(!substream->ops->silence))
2008 return -EINVAL;
2009 for (c = 0; c < channels; ++c, ++bufs) {
2010 if (*bufs == NULL) {
2011 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2012 return err;
2013 } else {
2014 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2015 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2016 return err;
2017 }
2018 }
2019 } else {
2020 /* default transfer behaviour */
2021 size_t dma_csize = runtime->dma_bytes / channels;
2022 for (c = 0; c < channels; ++c, ++bufs) {
2023 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2024 if (*bufs == NULL) {
2025 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2026 } else {
2027 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2028 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2029 return -EFAULT;
2030 }
2031 }
2032 }
2033 return 0;
2034}
2035
2036snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2037 void __user **bufs,
2038 snd_pcm_uframes_t frames)
2039{
2040 struct snd_pcm_runtime *runtime;
2041 int nonblock;
2042 int err;
2043
2044 err = pcm_sanity_check(substream);
2045 if (err < 0)
2046 return err;
2047 runtime = substream->runtime;
2048 nonblock = !!(substream->f_flags & O_NONBLOCK);
2049
2050 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2051 return -EINVAL;
2052 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2053 nonblock, snd_pcm_lib_writev_transfer);
2054}
2055
2056EXPORT_SYMBOL(snd_pcm_lib_writev);
2057
2058static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2059 unsigned int hwoff,
2060 unsigned long data, unsigned int off,
2061 snd_pcm_uframes_t frames)
2062{
2063 struct snd_pcm_runtime *runtime = substream->runtime;
2064 int err;
2065 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2066 if (substream->ops->copy) {
2067 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2068 return err;
2069 } else {
2070 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2071 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2072 return -EFAULT;
2073 }
2074 return 0;
2075}
2076
2077static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2078 unsigned long data,
2079 snd_pcm_uframes_t size,
2080 int nonblock,
2081 transfer_f transfer)
2082{
2083 struct snd_pcm_runtime *runtime = substream->runtime;
2084 snd_pcm_uframes_t xfer = 0;
2085 snd_pcm_uframes_t offset = 0;
2086 int err = 0;
2087
2088 if (size == 0)
2089 return 0;
2090
2091 snd_pcm_stream_lock_irq(substream);
2092 switch (runtime->status->state) {
2093 case SNDRV_PCM_STATE_PREPARED:
2094 if (size >= runtime->start_threshold) {
2095 err = snd_pcm_start(substream);
2096 if (err < 0)
2097 goto _end_unlock;
2098 }
2099 break;
2100 case SNDRV_PCM_STATE_DRAINING:
2101 case SNDRV_PCM_STATE_RUNNING:
2102 case SNDRV_PCM_STATE_PAUSED:
2103 break;
2104 case SNDRV_PCM_STATE_XRUN:
2105 err = -EPIPE;
2106 goto _end_unlock;
2107 case SNDRV_PCM_STATE_SUSPENDED:
2108 err = -ESTRPIPE;
2109 goto _end_unlock;
2110 default:
2111 err = -EBADFD;
2112 goto _end_unlock;
2113 }
2114
2115 runtime->twake = runtime->control->avail_min ? : 1;
2116 while (size > 0) {
2117 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2118 snd_pcm_uframes_t avail;
2119 snd_pcm_uframes_t cont;
2120 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2121 snd_pcm_update_hw_ptr(substream);
2122 avail = snd_pcm_capture_avail(runtime);
2123 if (!avail) {
2124 if (runtime->status->state ==
2125 SNDRV_PCM_STATE_DRAINING) {
2126 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2127 goto _end_unlock;
2128 }
2129 if (nonblock) {
2130 err = -EAGAIN;
2131 goto _end_unlock;
2132 }
2133 runtime->twake = min_t(snd_pcm_uframes_t, size,
2134 runtime->control->avail_min ? : 1);
2135 err = wait_for_avail(substream, &avail);
2136 if (err < 0)
2137 goto _end_unlock;
2138 if (!avail)
2139 continue; /* draining */
2140 }
2141 frames = size > avail ? avail : size;
2142 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2143 if (frames > cont)
2144 frames = cont;
2145 if (snd_BUG_ON(!frames)) {
2146 runtime->twake = 0;
2147 snd_pcm_stream_unlock_irq(substream);
2148 return -EINVAL;
2149 }
2150 appl_ptr = runtime->control->appl_ptr;
2151 appl_ofs = appl_ptr % runtime->buffer_size;
2152 snd_pcm_stream_unlock_irq(substream);
2153 err = transfer(substream, appl_ofs, data, offset, frames);
2154 snd_pcm_stream_lock_irq(substream);
2155 if (err < 0)
2156 goto _end_unlock;
2157 switch (runtime->status->state) {
2158 case SNDRV_PCM_STATE_XRUN:
2159 err = -EPIPE;
2160 goto _end_unlock;
2161 case SNDRV_PCM_STATE_SUSPENDED:
2162 err = -ESTRPIPE;
2163 goto _end_unlock;
2164 default:
2165 break;
2166 }
2167 appl_ptr += frames;
2168 if (appl_ptr >= runtime->boundary)
2169 appl_ptr -= runtime->boundary;
2170 runtime->control->appl_ptr = appl_ptr;
2171 if (substream->ops->ack)
2172 substream->ops->ack(substream);
2173
2174 offset += frames;
2175 size -= frames;
2176 xfer += frames;
2177 }
2178 _end_unlock:
2179 runtime->twake = 0;
2180 if (xfer > 0 && err >= 0)
2181 snd_pcm_update_state(substream, runtime);
2182 snd_pcm_stream_unlock_irq(substream);
2183 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2184}
2185
2186snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2187{
2188 struct snd_pcm_runtime *runtime;
2189 int nonblock;
2190 int err;
2191
2192 err = pcm_sanity_check(substream);
2193 if (err < 0)
2194 return err;
2195 runtime = substream->runtime;
2196 nonblock = !!(substream->f_flags & O_NONBLOCK);
2197 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2198 return -EINVAL;
2199 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2200}
2201
2202EXPORT_SYMBOL(snd_pcm_lib_read);
2203
2204static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2205 unsigned int hwoff,
2206 unsigned long data, unsigned int off,
2207 snd_pcm_uframes_t frames)
2208{
2209 struct snd_pcm_runtime *runtime = substream->runtime;
2210 int err;
2211 void __user **bufs = (void __user **)data;
2212 int channels = runtime->channels;
2213 int c;
2214 if (substream->ops->copy) {
2215 for (c = 0; c < channels; ++c, ++bufs) {
2216 char __user *buf;
2217 if (*bufs == NULL)
2218 continue;
2219 buf = *bufs + samples_to_bytes(runtime, off);
2220 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2221 return err;
2222 }
2223 } else {
2224 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2225 for (c = 0; c < channels; ++c, ++bufs) {
2226 char *hwbuf;
2227 char __user *buf;
2228 if (*bufs == NULL)
2229 continue;
2230
2231 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2232 buf = *bufs + samples_to_bytes(runtime, off);
2233 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2234 return -EFAULT;
2235 }
2236 }
2237 return 0;
2238}
2239
2240snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2241 void __user **bufs,
2242 snd_pcm_uframes_t frames)
2243{
2244 struct snd_pcm_runtime *runtime;
2245 int nonblock;
2246 int err;
2247
2248 err = pcm_sanity_check(substream);
2249 if (err < 0)
2250 return err;
2251 runtime = substream->runtime;
2252 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2253 return -EBADFD;
2254
2255 nonblock = !!(substream->f_flags & O_NONBLOCK);
2256 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2257 return -EINVAL;
2258 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2259}
2260
2261EXPORT_SYMBOL(snd_pcm_lib_readv);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Digital Audio (PCM) abstract layer
4 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5 * Abramo Bagnara <abramo@alsa-project.org>
6 */
7
8#include <linux/slab.h>
9#include <linux/sched/signal.h>
10#include <linux/time.h>
11#include <linux/math64.h>
12#include <linux/export.h>
13#include <sound/core.h>
14#include <sound/control.h>
15#include <sound/tlv.h>
16#include <sound/info.h>
17#include <sound/pcm.h>
18#include <sound/pcm_params.h>
19#include <sound/timer.h>
20
21#include "pcm_local.h"
22
23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
24#define CREATE_TRACE_POINTS
25#include "pcm_trace.h"
26#else
27#define trace_hwptr(substream, pos, in_interrupt)
28#define trace_xrun(substream)
29#define trace_hw_ptr_error(substream, reason)
30#define trace_applptr(substream, prev, curr)
31#endif
32
33static int fill_silence_frames(struct snd_pcm_substream *substream,
34 snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35
36/*
37 * fill ring buffer with silence
38 * runtime->silence_start: starting pointer to silence area
39 * runtime->silence_filled: size filled with silence
40 * runtime->silence_threshold: threshold from application
41 * runtime->silence_size: maximal size from application
42 *
43 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
44 */
45void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
46{
47 struct snd_pcm_runtime *runtime = substream->runtime;
48 snd_pcm_uframes_t frames, ofs, transfer;
49 int err;
50
51 if (runtime->silence_size < runtime->boundary) {
52 snd_pcm_sframes_t noise_dist, n;
53 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
54 if (runtime->silence_start != appl_ptr) {
55 n = appl_ptr - runtime->silence_start;
56 if (n < 0)
57 n += runtime->boundary;
58 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
59 runtime->silence_filled -= n;
60 else
61 runtime->silence_filled = 0;
62 runtime->silence_start = appl_ptr;
63 }
64 if (runtime->silence_filled >= runtime->buffer_size)
65 return;
66 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
67 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
68 return;
69 frames = runtime->silence_threshold - noise_dist;
70 if (frames > runtime->silence_size)
71 frames = runtime->silence_size;
72 } else {
73 if (new_hw_ptr == ULONG_MAX) { /* initialization */
74 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
75 if (avail > runtime->buffer_size)
76 avail = runtime->buffer_size;
77 runtime->silence_filled = avail > 0 ? avail : 0;
78 runtime->silence_start = (runtime->status->hw_ptr +
79 runtime->silence_filled) %
80 runtime->boundary;
81 } else {
82 ofs = runtime->status->hw_ptr;
83 frames = new_hw_ptr - ofs;
84 if ((snd_pcm_sframes_t)frames < 0)
85 frames += runtime->boundary;
86 runtime->silence_filled -= frames;
87 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
88 runtime->silence_filled = 0;
89 runtime->silence_start = new_hw_ptr;
90 } else {
91 runtime->silence_start = ofs;
92 }
93 }
94 frames = runtime->buffer_size - runtime->silence_filled;
95 }
96 if (snd_BUG_ON(frames > runtime->buffer_size))
97 return;
98 if (frames == 0)
99 return;
100 ofs = runtime->silence_start % runtime->buffer_size;
101 while (frames > 0) {
102 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
103 err = fill_silence_frames(substream, ofs, transfer);
104 snd_BUG_ON(err < 0);
105 runtime->silence_filled += transfer;
106 frames -= transfer;
107 ofs = 0;
108 }
109 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
110}
111
112#ifdef CONFIG_SND_DEBUG
113void snd_pcm_debug_name(struct snd_pcm_substream *substream,
114 char *name, size_t len)
115{
116 snprintf(name, len, "pcmC%dD%d%c:%d",
117 substream->pcm->card->number,
118 substream->pcm->device,
119 substream->stream ? 'c' : 'p',
120 substream->number);
121}
122EXPORT_SYMBOL(snd_pcm_debug_name);
123#endif
124
125#define XRUN_DEBUG_BASIC (1<<0)
126#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
127#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
128
129#ifdef CONFIG_SND_PCM_XRUN_DEBUG
130
131#define xrun_debug(substream, mask) \
132 ((substream)->pstr->xrun_debug & (mask))
133#else
134#define xrun_debug(substream, mask) 0
135#endif
136
137#define dump_stack_on_xrun(substream) do { \
138 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
139 dump_stack(); \
140 } while (0)
141
142/* call with stream lock held */
143void __snd_pcm_xrun(struct snd_pcm_substream *substream)
144{
145 struct snd_pcm_runtime *runtime = substream->runtime;
146
147 trace_xrun(substream);
148 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
149 struct timespec64 tstamp;
150
151 snd_pcm_gettime(runtime, &tstamp);
152 runtime->status->tstamp.tv_sec = tstamp.tv_sec;
153 runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
154 }
155 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
156 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
157 char name[16];
158 snd_pcm_debug_name(substream, name, sizeof(name));
159 pcm_warn(substream->pcm, "XRUN: %s\n", name);
160 dump_stack_on_xrun(substream);
161 }
162}
163
164#ifdef CONFIG_SND_PCM_XRUN_DEBUG
165#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
166 do { \
167 trace_hw_ptr_error(substream, reason); \
168 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
169 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
170 (in_interrupt) ? 'Q' : 'P', ##args); \
171 dump_stack_on_xrun(substream); \
172 } \
173 } while (0)
174
175#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
176
177#define hw_ptr_error(substream, fmt, args...) do { } while (0)
178
179#endif
180
181int snd_pcm_update_state(struct snd_pcm_substream *substream,
182 struct snd_pcm_runtime *runtime)
183{
184 snd_pcm_uframes_t avail;
185
186 avail = snd_pcm_avail(substream);
187 if (avail > runtime->avail_max)
188 runtime->avail_max = avail;
189 if (runtime->state == SNDRV_PCM_STATE_DRAINING) {
190 if (avail >= runtime->buffer_size) {
191 snd_pcm_drain_done(substream);
192 return -EPIPE;
193 }
194 } else {
195 if (avail >= runtime->stop_threshold) {
196 __snd_pcm_xrun(substream);
197 return -EPIPE;
198 }
199 }
200 if (runtime->twake) {
201 if (avail >= runtime->twake)
202 wake_up(&runtime->tsleep);
203 } else if (avail >= runtime->control->avail_min)
204 wake_up(&runtime->sleep);
205 return 0;
206}
207
208static void update_audio_tstamp(struct snd_pcm_substream *substream,
209 struct timespec64 *curr_tstamp,
210 struct timespec64 *audio_tstamp)
211{
212 struct snd_pcm_runtime *runtime = substream->runtime;
213 u64 audio_frames, audio_nsecs;
214 struct timespec64 driver_tstamp;
215
216 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
217 return;
218
219 if (!(substream->ops->get_time_info) ||
220 (runtime->audio_tstamp_report.actual_type ==
221 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
222
223 /*
224 * provide audio timestamp derived from pointer position
225 * add delay only if requested
226 */
227
228 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
229
230 if (runtime->audio_tstamp_config.report_delay) {
231 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
232 audio_frames -= runtime->delay;
233 else
234 audio_frames += runtime->delay;
235 }
236 audio_nsecs = div_u64(audio_frames * 1000000000LL,
237 runtime->rate);
238 *audio_tstamp = ns_to_timespec64(audio_nsecs);
239 }
240
241 if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
242 runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
243 runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
244 runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
245 runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
246 runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
247 }
248
249
250 /*
251 * re-take a driver timestamp to let apps detect if the reference tstamp
252 * read by low-level hardware was provided with a delay
253 */
254 snd_pcm_gettime(substream->runtime, &driver_tstamp);
255 runtime->driver_tstamp = driver_tstamp;
256}
257
258static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
259 unsigned int in_interrupt)
260{
261 struct snd_pcm_runtime *runtime = substream->runtime;
262 snd_pcm_uframes_t pos;
263 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
264 snd_pcm_sframes_t hdelta, delta;
265 unsigned long jdelta;
266 unsigned long curr_jiffies;
267 struct timespec64 curr_tstamp;
268 struct timespec64 audio_tstamp;
269 int crossed_boundary = 0;
270
271 old_hw_ptr = runtime->status->hw_ptr;
272
273 /*
274 * group pointer, time and jiffies reads to allow for more
275 * accurate correlations/corrections.
276 * The values are stored at the end of this routine after
277 * corrections for hw_ptr position
278 */
279 pos = substream->ops->pointer(substream);
280 curr_jiffies = jiffies;
281 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
282 if ((substream->ops->get_time_info) &&
283 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
284 substream->ops->get_time_info(substream, &curr_tstamp,
285 &audio_tstamp,
286 &runtime->audio_tstamp_config,
287 &runtime->audio_tstamp_report);
288
289 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
290 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
291 snd_pcm_gettime(runtime, &curr_tstamp);
292 } else
293 snd_pcm_gettime(runtime, &curr_tstamp);
294 }
295
296 if (pos == SNDRV_PCM_POS_XRUN) {
297 __snd_pcm_xrun(substream);
298 return -EPIPE;
299 }
300 if (pos >= runtime->buffer_size) {
301 if (printk_ratelimit()) {
302 char name[16];
303 snd_pcm_debug_name(substream, name, sizeof(name));
304 pcm_err(substream->pcm,
305 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
306 name, pos, runtime->buffer_size,
307 runtime->period_size);
308 }
309 pos = 0;
310 }
311 pos -= pos % runtime->min_align;
312 trace_hwptr(substream, pos, in_interrupt);
313 hw_base = runtime->hw_ptr_base;
314 new_hw_ptr = hw_base + pos;
315 if (in_interrupt) {
316 /* we know that one period was processed */
317 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
318 delta = runtime->hw_ptr_interrupt + runtime->period_size;
319 if (delta > new_hw_ptr) {
320 /* check for double acknowledged interrupts */
321 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
322 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
323 hw_base += runtime->buffer_size;
324 if (hw_base >= runtime->boundary) {
325 hw_base = 0;
326 crossed_boundary++;
327 }
328 new_hw_ptr = hw_base + pos;
329 goto __delta;
330 }
331 }
332 }
333 /* new_hw_ptr might be lower than old_hw_ptr in case when */
334 /* pointer crosses the end of the ring buffer */
335 if (new_hw_ptr < old_hw_ptr) {
336 hw_base += runtime->buffer_size;
337 if (hw_base >= runtime->boundary) {
338 hw_base = 0;
339 crossed_boundary++;
340 }
341 new_hw_ptr = hw_base + pos;
342 }
343 __delta:
344 delta = new_hw_ptr - old_hw_ptr;
345 if (delta < 0)
346 delta += runtime->boundary;
347
348 if (runtime->no_period_wakeup) {
349 snd_pcm_sframes_t xrun_threshold;
350 /*
351 * Without regular period interrupts, we have to check
352 * the elapsed time to detect xruns.
353 */
354 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
355 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
356 goto no_delta_check;
357 hdelta = jdelta - delta * HZ / runtime->rate;
358 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
359 while (hdelta > xrun_threshold) {
360 delta += runtime->buffer_size;
361 hw_base += runtime->buffer_size;
362 if (hw_base >= runtime->boundary) {
363 hw_base = 0;
364 crossed_boundary++;
365 }
366 new_hw_ptr = hw_base + pos;
367 hdelta -= runtime->hw_ptr_buffer_jiffies;
368 }
369 goto no_delta_check;
370 }
371
372 /* something must be really wrong */
373 if (delta >= runtime->buffer_size + runtime->period_size) {
374 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
375 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
376 substream->stream, (long)pos,
377 (long)new_hw_ptr, (long)old_hw_ptr);
378 return 0;
379 }
380
381 /* Do jiffies check only in xrun_debug mode */
382 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
383 goto no_jiffies_check;
384
385 /* Skip the jiffies check for hardwares with BATCH flag.
386 * Such hardware usually just increases the position at each IRQ,
387 * thus it can't give any strange position.
388 */
389 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
390 goto no_jiffies_check;
391 hdelta = delta;
392 if (hdelta < runtime->delay)
393 goto no_jiffies_check;
394 hdelta -= runtime->delay;
395 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
396 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
397 delta = jdelta /
398 (((runtime->period_size * HZ) / runtime->rate)
399 + HZ/100);
400 /* move new_hw_ptr according jiffies not pos variable */
401 new_hw_ptr = old_hw_ptr;
402 hw_base = delta;
403 /* use loop to avoid checks for delta overflows */
404 /* the delta value is small or zero in most cases */
405 while (delta > 0) {
406 new_hw_ptr += runtime->period_size;
407 if (new_hw_ptr >= runtime->boundary) {
408 new_hw_ptr -= runtime->boundary;
409 crossed_boundary--;
410 }
411 delta--;
412 }
413 /* align hw_base to buffer_size */
414 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
415 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
416 (long)pos, (long)hdelta,
417 (long)runtime->period_size, jdelta,
418 ((hdelta * HZ) / runtime->rate), hw_base,
419 (unsigned long)old_hw_ptr,
420 (unsigned long)new_hw_ptr);
421 /* reset values to proper state */
422 delta = 0;
423 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
424 }
425 no_jiffies_check:
426 if (delta > runtime->period_size + runtime->period_size / 2) {
427 hw_ptr_error(substream, in_interrupt,
428 "Lost interrupts?",
429 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
430 substream->stream, (long)delta,
431 (long)new_hw_ptr,
432 (long)old_hw_ptr);
433 }
434
435 no_delta_check:
436 if (runtime->status->hw_ptr == new_hw_ptr) {
437 runtime->hw_ptr_jiffies = curr_jiffies;
438 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
439 return 0;
440 }
441
442 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
443 runtime->silence_size > 0)
444 snd_pcm_playback_silence(substream, new_hw_ptr);
445
446 if (in_interrupt) {
447 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
448 if (delta < 0)
449 delta += runtime->boundary;
450 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
451 runtime->hw_ptr_interrupt += delta;
452 if (runtime->hw_ptr_interrupt >= runtime->boundary)
453 runtime->hw_ptr_interrupt -= runtime->boundary;
454 }
455 runtime->hw_ptr_base = hw_base;
456 runtime->status->hw_ptr = new_hw_ptr;
457 runtime->hw_ptr_jiffies = curr_jiffies;
458 if (crossed_boundary) {
459 snd_BUG_ON(crossed_boundary != 1);
460 runtime->hw_ptr_wrap += runtime->boundary;
461 }
462
463 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
464
465 return snd_pcm_update_state(substream, runtime);
466}
467
468/* CAUTION: call it with irq disabled */
469int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
470{
471 return snd_pcm_update_hw_ptr0(substream, 0);
472}
473
474/**
475 * snd_pcm_set_ops - set the PCM operators
476 * @pcm: the pcm instance
477 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
478 * @ops: the operator table
479 *
480 * Sets the given PCM operators to the pcm instance.
481 */
482void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
483 const struct snd_pcm_ops *ops)
484{
485 struct snd_pcm_str *stream = &pcm->streams[direction];
486 struct snd_pcm_substream *substream;
487
488 for (substream = stream->substream; substream != NULL; substream = substream->next)
489 substream->ops = ops;
490}
491EXPORT_SYMBOL(snd_pcm_set_ops);
492
493/**
494 * snd_pcm_set_sync - set the PCM sync id
495 * @substream: the pcm substream
496 *
497 * Sets the PCM sync identifier for the card.
498 */
499void snd_pcm_set_sync(struct snd_pcm_substream *substream)
500{
501 struct snd_pcm_runtime *runtime = substream->runtime;
502
503 runtime->sync.id32[0] = substream->pcm->card->number;
504 runtime->sync.id32[1] = -1;
505 runtime->sync.id32[2] = -1;
506 runtime->sync.id32[3] = -1;
507}
508EXPORT_SYMBOL(snd_pcm_set_sync);
509
510/*
511 * Standard ioctl routine
512 */
513
514static inline unsigned int div32(unsigned int a, unsigned int b,
515 unsigned int *r)
516{
517 if (b == 0) {
518 *r = 0;
519 return UINT_MAX;
520 }
521 *r = a % b;
522 return a / b;
523}
524
525static inline unsigned int div_down(unsigned int a, unsigned int b)
526{
527 if (b == 0)
528 return UINT_MAX;
529 return a / b;
530}
531
532static inline unsigned int div_up(unsigned int a, unsigned int b)
533{
534 unsigned int r;
535 unsigned int q;
536 if (b == 0)
537 return UINT_MAX;
538 q = div32(a, b, &r);
539 if (r)
540 ++q;
541 return q;
542}
543
544static inline unsigned int mul(unsigned int a, unsigned int b)
545{
546 if (a == 0)
547 return 0;
548 if (div_down(UINT_MAX, a) < b)
549 return UINT_MAX;
550 return a * b;
551}
552
553static inline unsigned int muldiv32(unsigned int a, unsigned int b,
554 unsigned int c, unsigned int *r)
555{
556 u_int64_t n = (u_int64_t) a * b;
557 if (c == 0) {
558 *r = 0;
559 return UINT_MAX;
560 }
561 n = div_u64_rem(n, c, r);
562 if (n >= UINT_MAX) {
563 *r = 0;
564 return UINT_MAX;
565 }
566 return n;
567}
568
569/**
570 * snd_interval_refine - refine the interval value of configurator
571 * @i: the interval value to refine
572 * @v: the interval value to refer to
573 *
574 * Refines the interval value with the reference value.
575 * The interval is changed to the range satisfying both intervals.
576 * The interval status (min, max, integer, etc.) are evaluated.
577 *
578 * Return: Positive if the value is changed, zero if it's not changed, or a
579 * negative error code.
580 */
581int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
582{
583 int changed = 0;
584 if (snd_BUG_ON(snd_interval_empty(i)))
585 return -EINVAL;
586 if (i->min < v->min) {
587 i->min = v->min;
588 i->openmin = v->openmin;
589 changed = 1;
590 } else if (i->min == v->min && !i->openmin && v->openmin) {
591 i->openmin = 1;
592 changed = 1;
593 }
594 if (i->max > v->max) {
595 i->max = v->max;
596 i->openmax = v->openmax;
597 changed = 1;
598 } else if (i->max == v->max && !i->openmax && v->openmax) {
599 i->openmax = 1;
600 changed = 1;
601 }
602 if (!i->integer && v->integer) {
603 i->integer = 1;
604 changed = 1;
605 }
606 if (i->integer) {
607 if (i->openmin) {
608 i->min++;
609 i->openmin = 0;
610 }
611 if (i->openmax) {
612 i->max--;
613 i->openmax = 0;
614 }
615 } else if (!i->openmin && !i->openmax && i->min == i->max)
616 i->integer = 1;
617 if (snd_interval_checkempty(i)) {
618 snd_interval_none(i);
619 return -EINVAL;
620 }
621 return changed;
622}
623EXPORT_SYMBOL(snd_interval_refine);
624
625static int snd_interval_refine_first(struct snd_interval *i)
626{
627 const unsigned int last_max = i->max;
628
629 if (snd_BUG_ON(snd_interval_empty(i)))
630 return -EINVAL;
631 if (snd_interval_single(i))
632 return 0;
633 i->max = i->min;
634 if (i->openmin)
635 i->max++;
636 /* only exclude max value if also excluded before refine */
637 i->openmax = (i->openmax && i->max >= last_max);
638 return 1;
639}
640
641static int snd_interval_refine_last(struct snd_interval *i)
642{
643 const unsigned int last_min = i->min;
644
645 if (snd_BUG_ON(snd_interval_empty(i)))
646 return -EINVAL;
647 if (snd_interval_single(i))
648 return 0;
649 i->min = i->max;
650 if (i->openmax)
651 i->min--;
652 /* only exclude min value if also excluded before refine */
653 i->openmin = (i->openmin && i->min <= last_min);
654 return 1;
655}
656
657void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
658{
659 if (a->empty || b->empty) {
660 snd_interval_none(c);
661 return;
662 }
663 c->empty = 0;
664 c->min = mul(a->min, b->min);
665 c->openmin = (a->openmin || b->openmin);
666 c->max = mul(a->max, b->max);
667 c->openmax = (a->openmax || b->openmax);
668 c->integer = (a->integer && b->integer);
669}
670
671/**
672 * snd_interval_div - refine the interval value with division
673 * @a: dividend
674 * @b: divisor
675 * @c: quotient
676 *
677 * c = a / b
678 *
679 * Returns non-zero if the value is changed, zero if not changed.
680 */
681void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
682{
683 unsigned int r;
684 if (a->empty || b->empty) {
685 snd_interval_none(c);
686 return;
687 }
688 c->empty = 0;
689 c->min = div32(a->min, b->max, &r);
690 c->openmin = (r || a->openmin || b->openmax);
691 if (b->min > 0) {
692 c->max = div32(a->max, b->min, &r);
693 if (r) {
694 c->max++;
695 c->openmax = 1;
696 } else
697 c->openmax = (a->openmax || b->openmin);
698 } else {
699 c->max = UINT_MAX;
700 c->openmax = 0;
701 }
702 c->integer = 0;
703}
704
705/**
706 * snd_interval_muldivk - refine the interval value
707 * @a: dividend 1
708 * @b: dividend 2
709 * @k: divisor (as integer)
710 * @c: result
711 *
712 * c = a * b / k
713 *
714 * Returns non-zero if the value is changed, zero if not changed.
715 */
716void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
717 unsigned int k, struct snd_interval *c)
718{
719 unsigned int r;
720 if (a->empty || b->empty) {
721 snd_interval_none(c);
722 return;
723 }
724 c->empty = 0;
725 c->min = muldiv32(a->min, b->min, k, &r);
726 c->openmin = (r || a->openmin || b->openmin);
727 c->max = muldiv32(a->max, b->max, k, &r);
728 if (r) {
729 c->max++;
730 c->openmax = 1;
731 } else
732 c->openmax = (a->openmax || b->openmax);
733 c->integer = 0;
734}
735
736/**
737 * snd_interval_mulkdiv - refine the interval value
738 * @a: dividend 1
739 * @k: dividend 2 (as integer)
740 * @b: divisor
741 * @c: result
742 *
743 * c = a * k / b
744 *
745 * Returns non-zero if the value is changed, zero if not changed.
746 */
747void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
748 const struct snd_interval *b, struct snd_interval *c)
749{
750 unsigned int r;
751 if (a->empty || b->empty) {
752 snd_interval_none(c);
753 return;
754 }
755 c->empty = 0;
756 c->min = muldiv32(a->min, k, b->max, &r);
757 c->openmin = (r || a->openmin || b->openmax);
758 if (b->min > 0) {
759 c->max = muldiv32(a->max, k, b->min, &r);
760 if (r) {
761 c->max++;
762 c->openmax = 1;
763 } else
764 c->openmax = (a->openmax || b->openmin);
765 } else {
766 c->max = UINT_MAX;
767 c->openmax = 0;
768 }
769 c->integer = 0;
770}
771
772/* ---- */
773
774
775/**
776 * snd_interval_ratnum - refine the interval value
777 * @i: interval to refine
778 * @rats_count: number of ratnum_t
779 * @rats: ratnum_t array
780 * @nump: pointer to store the resultant numerator
781 * @denp: pointer to store the resultant denominator
782 *
783 * Return: Positive if the value is changed, zero if it's not changed, or a
784 * negative error code.
785 */
786int snd_interval_ratnum(struct snd_interval *i,
787 unsigned int rats_count, const struct snd_ratnum *rats,
788 unsigned int *nump, unsigned int *denp)
789{
790 unsigned int best_num, best_den;
791 int best_diff;
792 unsigned int k;
793 struct snd_interval t;
794 int err;
795 unsigned int result_num, result_den;
796 int result_diff;
797
798 best_num = best_den = best_diff = 0;
799 for (k = 0; k < rats_count; ++k) {
800 unsigned int num = rats[k].num;
801 unsigned int den;
802 unsigned int q = i->min;
803 int diff;
804 if (q == 0)
805 q = 1;
806 den = div_up(num, q);
807 if (den < rats[k].den_min)
808 continue;
809 if (den > rats[k].den_max)
810 den = rats[k].den_max;
811 else {
812 unsigned int r;
813 r = (den - rats[k].den_min) % rats[k].den_step;
814 if (r != 0)
815 den -= r;
816 }
817 diff = num - q * den;
818 if (diff < 0)
819 diff = -diff;
820 if (best_num == 0 ||
821 diff * best_den < best_diff * den) {
822 best_diff = diff;
823 best_den = den;
824 best_num = num;
825 }
826 }
827 if (best_den == 0) {
828 i->empty = 1;
829 return -EINVAL;
830 }
831 t.min = div_down(best_num, best_den);
832 t.openmin = !!(best_num % best_den);
833
834 result_num = best_num;
835 result_diff = best_diff;
836 result_den = best_den;
837 best_num = best_den = best_diff = 0;
838 for (k = 0; k < rats_count; ++k) {
839 unsigned int num = rats[k].num;
840 unsigned int den;
841 unsigned int q = i->max;
842 int diff;
843 if (q == 0) {
844 i->empty = 1;
845 return -EINVAL;
846 }
847 den = div_down(num, q);
848 if (den > rats[k].den_max)
849 continue;
850 if (den < rats[k].den_min)
851 den = rats[k].den_min;
852 else {
853 unsigned int r;
854 r = (den - rats[k].den_min) % rats[k].den_step;
855 if (r != 0)
856 den += rats[k].den_step - r;
857 }
858 diff = q * den - num;
859 if (diff < 0)
860 diff = -diff;
861 if (best_num == 0 ||
862 diff * best_den < best_diff * den) {
863 best_diff = diff;
864 best_den = den;
865 best_num = num;
866 }
867 }
868 if (best_den == 0) {
869 i->empty = 1;
870 return -EINVAL;
871 }
872 t.max = div_up(best_num, best_den);
873 t.openmax = !!(best_num % best_den);
874 t.integer = 0;
875 err = snd_interval_refine(i, &t);
876 if (err < 0)
877 return err;
878
879 if (snd_interval_single(i)) {
880 if (best_diff * result_den < result_diff * best_den) {
881 result_num = best_num;
882 result_den = best_den;
883 }
884 if (nump)
885 *nump = result_num;
886 if (denp)
887 *denp = result_den;
888 }
889 return err;
890}
891EXPORT_SYMBOL(snd_interval_ratnum);
892
893/**
894 * snd_interval_ratden - refine the interval value
895 * @i: interval to refine
896 * @rats_count: number of struct ratden
897 * @rats: struct ratden array
898 * @nump: pointer to store the resultant numerator
899 * @denp: pointer to store the resultant denominator
900 *
901 * Return: Positive if the value is changed, zero if it's not changed, or a
902 * negative error code.
903 */
904static int snd_interval_ratden(struct snd_interval *i,
905 unsigned int rats_count,
906 const struct snd_ratden *rats,
907 unsigned int *nump, unsigned int *denp)
908{
909 unsigned int best_num, best_diff, best_den;
910 unsigned int k;
911 struct snd_interval t;
912 int err;
913
914 best_num = best_den = best_diff = 0;
915 for (k = 0; k < rats_count; ++k) {
916 unsigned int num;
917 unsigned int den = rats[k].den;
918 unsigned int q = i->min;
919 int diff;
920 num = mul(q, den);
921 if (num > rats[k].num_max)
922 continue;
923 if (num < rats[k].num_min)
924 num = rats[k].num_max;
925 else {
926 unsigned int r;
927 r = (num - rats[k].num_min) % rats[k].num_step;
928 if (r != 0)
929 num += rats[k].num_step - r;
930 }
931 diff = num - q * den;
932 if (best_num == 0 ||
933 diff * best_den < best_diff * den) {
934 best_diff = diff;
935 best_den = den;
936 best_num = num;
937 }
938 }
939 if (best_den == 0) {
940 i->empty = 1;
941 return -EINVAL;
942 }
943 t.min = div_down(best_num, best_den);
944 t.openmin = !!(best_num % best_den);
945
946 best_num = best_den = best_diff = 0;
947 for (k = 0; k < rats_count; ++k) {
948 unsigned int num;
949 unsigned int den = rats[k].den;
950 unsigned int q = i->max;
951 int diff;
952 num = mul(q, den);
953 if (num < rats[k].num_min)
954 continue;
955 if (num > rats[k].num_max)
956 num = rats[k].num_max;
957 else {
958 unsigned int r;
959 r = (num - rats[k].num_min) % rats[k].num_step;
960 if (r != 0)
961 num -= r;
962 }
963 diff = q * den - num;
964 if (best_num == 0 ||
965 diff * best_den < best_diff * den) {
966 best_diff = diff;
967 best_den = den;
968 best_num = num;
969 }
970 }
971 if (best_den == 0) {
972 i->empty = 1;
973 return -EINVAL;
974 }
975 t.max = div_up(best_num, best_den);
976 t.openmax = !!(best_num % best_den);
977 t.integer = 0;
978 err = snd_interval_refine(i, &t);
979 if (err < 0)
980 return err;
981
982 if (snd_interval_single(i)) {
983 if (nump)
984 *nump = best_num;
985 if (denp)
986 *denp = best_den;
987 }
988 return err;
989}
990
991/**
992 * snd_interval_list - refine the interval value from the list
993 * @i: the interval value to refine
994 * @count: the number of elements in the list
995 * @list: the value list
996 * @mask: the bit-mask to evaluate
997 *
998 * Refines the interval value from the list.
999 * When mask is non-zero, only the elements corresponding to bit 1 are
1000 * evaluated.
1001 *
1002 * Return: Positive if the value is changed, zero if it's not changed, or a
1003 * negative error code.
1004 */
1005int snd_interval_list(struct snd_interval *i, unsigned int count,
1006 const unsigned int *list, unsigned int mask)
1007{
1008 unsigned int k;
1009 struct snd_interval list_range;
1010
1011 if (!count) {
1012 i->empty = 1;
1013 return -EINVAL;
1014 }
1015 snd_interval_any(&list_range);
1016 list_range.min = UINT_MAX;
1017 list_range.max = 0;
1018 for (k = 0; k < count; k++) {
1019 if (mask && !(mask & (1 << k)))
1020 continue;
1021 if (!snd_interval_test(i, list[k]))
1022 continue;
1023 list_range.min = min(list_range.min, list[k]);
1024 list_range.max = max(list_range.max, list[k]);
1025 }
1026 return snd_interval_refine(i, &list_range);
1027}
1028EXPORT_SYMBOL(snd_interval_list);
1029
1030/**
1031 * snd_interval_ranges - refine the interval value from the list of ranges
1032 * @i: the interval value to refine
1033 * @count: the number of elements in the list of ranges
1034 * @ranges: the ranges list
1035 * @mask: the bit-mask to evaluate
1036 *
1037 * Refines the interval value from the list of ranges.
1038 * When mask is non-zero, only the elements corresponding to bit 1 are
1039 * evaluated.
1040 *
1041 * Return: Positive if the value is changed, zero if it's not changed, or a
1042 * negative error code.
1043 */
1044int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1045 const struct snd_interval *ranges, unsigned int mask)
1046{
1047 unsigned int k;
1048 struct snd_interval range_union;
1049 struct snd_interval range;
1050
1051 if (!count) {
1052 snd_interval_none(i);
1053 return -EINVAL;
1054 }
1055 snd_interval_any(&range_union);
1056 range_union.min = UINT_MAX;
1057 range_union.max = 0;
1058 for (k = 0; k < count; k++) {
1059 if (mask && !(mask & (1 << k)))
1060 continue;
1061 snd_interval_copy(&range, &ranges[k]);
1062 if (snd_interval_refine(&range, i) < 0)
1063 continue;
1064 if (snd_interval_empty(&range))
1065 continue;
1066
1067 if (range.min < range_union.min) {
1068 range_union.min = range.min;
1069 range_union.openmin = 1;
1070 }
1071 if (range.min == range_union.min && !range.openmin)
1072 range_union.openmin = 0;
1073 if (range.max > range_union.max) {
1074 range_union.max = range.max;
1075 range_union.openmax = 1;
1076 }
1077 if (range.max == range_union.max && !range.openmax)
1078 range_union.openmax = 0;
1079 }
1080 return snd_interval_refine(i, &range_union);
1081}
1082EXPORT_SYMBOL(snd_interval_ranges);
1083
1084static int snd_interval_step(struct snd_interval *i, unsigned int step)
1085{
1086 unsigned int n;
1087 int changed = 0;
1088 n = i->min % step;
1089 if (n != 0 || i->openmin) {
1090 i->min += step - n;
1091 i->openmin = 0;
1092 changed = 1;
1093 }
1094 n = i->max % step;
1095 if (n != 0 || i->openmax) {
1096 i->max -= n;
1097 i->openmax = 0;
1098 changed = 1;
1099 }
1100 if (snd_interval_checkempty(i)) {
1101 i->empty = 1;
1102 return -EINVAL;
1103 }
1104 return changed;
1105}
1106
1107/* Info constraints helpers */
1108
1109/**
1110 * snd_pcm_hw_rule_add - add the hw-constraint rule
1111 * @runtime: the pcm runtime instance
1112 * @cond: condition bits
1113 * @var: the variable to evaluate
1114 * @func: the evaluation function
1115 * @private: the private data pointer passed to function
1116 * @dep: the dependent variables
1117 *
1118 * Return: Zero if successful, or a negative error code on failure.
1119 */
1120int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1121 int var,
1122 snd_pcm_hw_rule_func_t func, void *private,
1123 int dep, ...)
1124{
1125 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1126 struct snd_pcm_hw_rule *c;
1127 unsigned int k;
1128 va_list args;
1129 va_start(args, dep);
1130 if (constrs->rules_num >= constrs->rules_all) {
1131 struct snd_pcm_hw_rule *new;
1132 unsigned int new_rules = constrs->rules_all + 16;
1133 new = krealloc_array(constrs->rules, new_rules,
1134 sizeof(*c), GFP_KERNEL);
1135 if (!new) {
1136 va_end(args);
1137 return -ENOMEM;
1138 }
1139 constrs->rules = new;
1140 constrs->rules_all = new_rules;
1141 }
1142 c = &constrs->rules[constrs->rules_num];
1143 c->cond = cond;
1144 c->func = func;
1145 c->var = var;
1146 c->private = private;
1147 k = 0;
1148 while (1) {
1149 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1150 va_end(args);
1151 return -EINVAL;
1152 }
1153 c->deps[k++] = dep;
1154 if (dep < 0)
1155 break;
1156 dep = va_arg(args, int);
1157 }
1158 constrs->rules_num++;
1159 va_end(args);
1160 return 0;
1161}
1162EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1163
1164/**
1165 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1166 * @runtime: PCM runtime instance
1167 * @var: hw_params variable to apply the mask
1168 * @mask: the bitmap mask
1169 *
1170 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1171 *
1172 * Return: Zero if successful, or a negative error code on failure.
1173 */
1174int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1175 u_int32_t mask)
1176{
1177 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1178 struct snd_mask *maskp = constrs_mask(constrs, var);
1179 *maskp->bits &= mask;
1180 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1181 if (*maskp->bits == 0)
1182 return -EINVAL;
1183 return 0;
1184}
1185
1186/**
1187 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1188 * @runtime: PCM runtime instance
1189 * @var: hw_params variable to apply the mask
1190 * @mask: the 64bit bitmap mask
1191 *
1192 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1193 *
1194 * Return: Zero if successful, or a negative error code on failure.
1195 */
1196int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1197 u_int64_t mask)
1198{
1199 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1200 struct snd_mask *maskp = constrs_mask(constrs, var);
1201 maskp->bits[0] &= (u_int32_t)mask;
1202 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1203 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1204 if (! maskp->bits[0] && ! maskp->bits[1])
1205 return -EINVAL;
1206 return 0;
1207}
1208EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1209
1210/**
1211 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1212 * @runtime: PCM runtime instance
1213 * @var: hw_params variable to apply the integer constraint
1214 *
1215 * Apply the constraint of integer to an interval parameter.
1216 *
1217 * Return: Positive if the value is changed, zero if it's not changed, or a
1218 * negative error code.
1219 */
1220int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1221{
1222 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223 return snd_interval_setinteger(constrs_interval(constrs, var));
1224}
1225EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1226
1227/**
1228 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1229 * @runtime: PCM runtime instance
1230 * @var: hw_params variable to apply the range
1231 * @min: the minimal value
1232 * @max: the maximal value
1233 *
1234 * Apply the min/max range constraint to an interval parameter.
1235 *
1236 * Return: Positive if the value is changed, zero if it's not changed, or a
1237 * negative error code.
1238 */
1239int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1240 unsigned int min, unsigned int max)
1241{
1242 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1243 struct snd_interval t;
1244 t.min = min;
1245 t.max = max;
1246 t.openmin = t.openmax = 0;
1247 t.integer = 0;
1248 return snd_interval_refine(constrs_interval(constrs, var), &t);
1249}
1250EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1251
1252static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1253 struct snd_pcm_hw_rule *rule)
1254{
1255 struct snd_pcm_hw_constraint_list *list = rule->private;
1256 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1257}
1258
1259
1260/**
1261 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1262 * @runtime: PCM runtime instance
1263 * @cond: condition bits
1264 * @var: hw_params variable to apply the list constraint
1265 * @l: list
1266 *
1267 * Apply the list of constraints to an interval parameter.
1268 *
1269 * Return: Zero if successful, or a negative error code on failure.
1270 */
1271int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1272 unsigned int cond,
1273 snd_pcm_hw_param_t var,
1274 const struct snd_pcm_hw_constraint_list *l)
1275{
1276 return snd_pcm_hw_rule_add(runtime, cond, var,
1277 snd_pcm_hw_rule_list, (void *)l,
1278 var, -1);
1279}
1280EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1281
1282static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1283 struct snd_pcm_hw_rule *rule)
1284{
1285 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1286 return snd_interval_ranges(hw_param_interval(params, rule->var),
1287 r->count, r->ranges, r->mask);
1288}
1289
1290
1291/**
1292 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1293 * @runtime: PCM runtime instance
1294 * @cond: condition bits
1295 * @var: hw_params variable to apply the list of range constraints
1296 * @r: ranges
1297 *
1298 * Apply the list of range constraints to an interval parameter.
1299 *
1300 * Return: Zero if successful, or a negative error code on failure.
1301 */
1302int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1303 unsigned int cond,
1304 snd_pcm_hw_param_t var,
1305 const struct snd_pcm_hw_constraint_ranges *r)
1306{
1307 return snd_pcm_hw_rule_add(runtime, cond, var,
1308 snd_pcm_hw_rule_ranges, (void *)r,
1309 var, -1);
1310}
1311EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1312
1313static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1314 struct snd_pcm_hw_rule *rule)
1315{
1316 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1317 unsigned int num = 0, den = 0;
1318 int err;
1319 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1320 r->nrats, r->rats, &num, &den);
1321 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1322 params->rate_num = num;
1323 params->rate_den = den;
1324 }
1325 return err;
1326}
1327
1328/**
1329 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1330 * @runtime: PCM runtime instance
1331 * @cond: condition bits
1332 * @var: hw_params variable to apply the ratnums constraint
1333 * @r: struct snd_ratnums constriants
1334 *
1335 * Return: Zero if successful, or a negative error code on failure.
1336 */
1337int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1338 unsigned int cond,
1339 snd_pcm_hw_param_t var,
1340 const struct snd_pcm_hw_constraint_ratnums *r)
1341{
1342 return snd_pcm_hw_rule_add(runtime, cond, var,
1343 snd_pcm_hw_rule_ratnums, (void *)r,
1344 var, -1);
1345}
1346EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1347
1348static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1349 struct snd_pcm_hw_rule *rule)
1350{
1351 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1352 unsigned int num = 0, den = 0;
1353 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1354 r->nrats, r->rats, &num, &den);
1355 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1356 params->rate_num = num;
1357 params->rate_den = den;
1358 }
1359 return err;
1360}
1361
1362/**
1363 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1364 * @runtime: PCM runtime instance
1365 * @cond: condition bits
1366 * @var: hw_params variable to apply the ratdens constraint
1367 * @r: struct snd_ratdens constriants
1368 *
1369 * Return: Zero if successful, or a negative error code on failure.
1370 */
1371int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1372 unsigned int cond,
1373 snd_pcm_hw_param_t var,
1374 const struct snd_pcm_hw_constraint_ratdens *r)
1375{
1376 return snd_pcm_hw_rule_add(runtime, cond, var,
1377 snd_pcm_hw_rule_ratdens, (void *)r,
1378 var, -1);
1379}
1380EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1381
1382static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1383 struct snd_pcm_hw_rule *rule)
1384{
1385 unsigned int l = (unsigned long) rule->private;
1386 int width = l & 0xffff;
1387 unsigned int msbits = l >> 16;
1388 const struct snd_interval *i =
1389 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1390
1391 if (!snd_interval_single(i))
1392 return 0;
1393
1394 if ((snd_interval_value(i) == width) ||
1395 (width == 0 && snd_interval_value(i) > msbits))
1396 params->msbits = min_not_zero(params->msbits, msbits);
1397
1398 return 0;
1399}
1400
1401/**
1402 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1403 * @runtime: PCM runtime instance
1404 * @cond: condition bits
1405 * @width: sample bits width
1406 * @msbits: msbits width
1407 *
1408 * This constraint will set the number of most significant bits (msbits) if a
1409 * sample format with the specified width has been select. If width is set to 0
1410 * the msbits will be set for any sample format with a width larger than the
1411 * specified msbits.
1412 *
1413 * Return: Zero if successful, or a negative error code on failure.
1414 */
1415int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1416 unsigned int cond,
1417 unsigned int width,
1418 unsigned int msbits)
1419{
1420 unsigned long l = (msbits << 16) | width;
1421 return snd_pcm_hw_rule_add(runtime, cond, -1,
1422 snd_pcm_hw_rule_msbits,
1423 (void*) l,
1424 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1425}
1426EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1427
1428static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1429 struct snd_pcm_hw_rule *rule)
1430{
1431 unsigned long step = (unsigned long) rule->private;
1432 return snd_interval_step(hw_param_interval(params, rule->var), step);
1433}
1434
1435/**
1436 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1437 * @runtime: PCM runtime instance
1438 * @cond: condition bits
1439 * @var: hw_params variable to apply the step constraint
1440 * @step: step size
1441 *
1442 * Return: Zero if successful, or a negative error code on failure.
1443 */
1444int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1445 unsigned int cond,
1446 snd_pcm_hw_param_t var,
1447 unsigned long step)
1448{
1449 return snd_pcm_hw_rule_add(runtime, cond, var,
1450 snd_pcm_hw_rule_step, (void *) step,
1451 var, -1);
1452}
1453EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1454
1455static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1456{
1457 static const unsigned int pow2_sizes[] = {
1458 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1459 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1460 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1461 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1462 };
1463 return snd_interval_list(hw_param_interval(params, rule->var),
1464 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1465}
1466
1467/**
1468 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1469 * @runtime: PCM runtime instance
1470 * @cond: condition bits
1471 * @var: hw_params variable to apply the power-of-2 constraint
1472 *
1473 * Return: Zero if successful, or a negative error code on failure.
1474 */
1475int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1476 unsigned int cond,
1477 snd_pcm_hw_param_t var)
1478{
1479 return snd_pcm_hw_rule_add(runtime, cond, var,
1480 snd_pcm_hw_rule_pow2, NULL,
1481 var, -1);
1482}
1483EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1484
1485static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1486 struct snd_pcm_hw_rule *rule)
1487{
1488 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1489 struct snd_interval *rate;
1490
1491 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1492 return snd_interval_list(rate, 1, &base_rate, 0);
1493}
1494
1495/**
1496 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1497 * @runtime: PCM runtime instance
1498 * @base_rate: the rate at which the hardware does not resample
1499 *
1500 * Return: Zero if successful, or a negative error code on failure.
1501 */
1502int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1503 unsigned int base_rate)
1504{
1505 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1506 SNDRV_PCM_HW_PARAM_RATE,
1507 snd_pcm_hw_rule_noresample_func,
1508 (void *)(uintptr_t)base_rate,
1509 SNDRV_PCM_HW_PARAM_RATE, -1);
1510}
1511EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1512
1513static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1514 snd_pcm_hw_param_t var)
1515{
1516 if (hw_is_mask(var)) {
1517 snd_mask_any(hw_param_mask(params, var));
1518 params->cmask |= 1 << var;
1519 params->rmask |= 1 << var;
1520 return;
1521 }
1522 if (hw_is_interval(var)) {
1523 snd_interval_any(hw_param_interval(params, var));
1524 params->cmask |= 1 << var;
1525 params->rmask |= 1 << var;
1526 return;
1527 }
1528 snd_BUG();
1529}
1530
1531void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1532{
1533 unsigned int k;
1534 memset(params, 0, sizeof(*params));
1535 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1536 _snd_pcm_hw_param_any(params, k);
1537 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1538 _snd_pcm_hw_param_any(params, k);
1539 params->info = ~0U;
1540}
1541EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1542
1543/**
1544 * snd_pcm_hw_param_value - return @params field @var value
1545 * @params: the hw_params instance
1546 * @var: parameter to retrieve
1547 * @dir: pointer to the direction (-1,0,1) or %NULL
1548 *
1549 * Return: The value for field @var if it's fixed in configuration space
1550 * defined by @params. -%EINVAL otherwise.
1551 */
1552int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1553 snd_pcm_hw_param_t var, int *dir)
1554{
1555 if (hw_is_mask(var)) {
1556 const struct snd_mask *mask = hw_param_mask_c(params, var);
1557 if (!snd_mask_single(mask))
1558 return -EINVAL;
1559 if (dir)
1560 *dir = 0;
1561 return snd_mask_value(mask);
1562 }
1563 if (hw_is_interval(var)) {
1564 const struct snd_interval *i = hw_param_interval_c(params, var);
1565 if (!snd_interval_single(i))
1566 return -EINVAL;
1567 if (dir)
1568 *dir = i->openmin;
1569 return snd_interval_value(i);
1570 }
1571 return -EINVAL;
1572}
1573EXPORT_SYMBOL(snd_pcm_hw_param_value);
1574
1575void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1576 snd_pcm_hw_param_t var)
1577{
1578 if (hw_is_mask(var)) {
1579 snd_mask_none(hw_param_mask(params, var));
1580 params->cmask |= 1 << var;
1581 params->rmask |= 1 << var;
1582 } else if (hw_is_interval(var)) {
1583 snd_interval_none(hw_param_interval(params, var));
1584 params->cmask |= 1 << var;
1585 params->rmask |= 1 << var;
1586 } else {
1587 snd_BUG();
1588 }
1589}
1590EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1591
1592static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1593 snd_pcm_hw_param_t var)
1594{
1595 int changed;
1596 if (hw_is_mask(var))
1597 changed = snd_mask_refine_first(hw_param_mask(params, var));
1598 else if (hw_is_interval(var))
1599 changed = snd_interval_refine_first(hw_param_interval(params, var));
1600 else
1601 return -EINVAL;
1602 if (changed > 0) {
1603 params->cmask |= 1 << var;
1604 params->rmask |= 1 << var;
1605 }
1606 return changed;
1607}
1608
1609
1610/**
1611 * snd_pcm_hw_param_first - refine config space and return minimum value
1612 * @pcm: PCM instance
1613 * @params: the hw_params instance
1614 * @var: parameter to retrieve
1615 * @dir: pointer to the direction (-1,0,1) or %NULL
1616 *
1617 * Inside configuration space defined by @params remove from @var all
1618 * values > minimum. Reduce configuration space accordingly.
1619 *
1620 * Return: The minimum, or a negative error code on failure.
1621 */
1622int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1623 struct snd_pcm_hw_params *params,
1624 snd_pcm_hw_param_t var, int *dir)
1625{
1626 int changed = _snd_pcm_hw_param_first(params, var);
1627 if (changed < 0)
1628 return changed;
1629 if (params->rmask) {
1630 int err = snd_pcm_hw_refine(pcm, params);
1631 if (err < 0)
1632 return err;
1633 }
1634 return snd_pcm_hw_param_value(params, var, dir);
1635}
1636EXPORT_SYMBOL(snd_pcm_hw_param_first);
1637
1638static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1639 snd_pcm_hw_param_t var)
1640{
1641 int changed;
1642 if (hw_is_mask(var))
1643 changed = snd_mask_refine_last(hw_param_mask(params, var));
1644 else if (hw_is_interval(var))
1645 changed = snd_interval_refine_last(hw_param_interval(params, var));
1646 else
1647 return -EINVAL;
1648 if (changed > 0) {
1649 params->cmask |= 1 << var;
1650 params->rmask |= 1 << var;
1651 }
1652 return changed;
1653}
1654
1655
1656/**
1657 * snd_pcm_hw_param_last - refine config space and return maximum value
1658 * @pcm: PCM instance
1659 * @params: the hw_params instance
1660 * @var: parameter to retrieve
1661 * @dir: pointer to the direction (-1,0,1) or %NULL
1662 *
1663 * Inside configuration space defined by @params remove from @var all
1664 * values < maximum. Reduce configuration space accordingly.
1665 *
1666 * Return: The maximum, or a negative error code on failure.
1667 */
1668int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1669 struct snd_pcm_hw_params *params,
1670 snd_pcm_hw_param_t var, int *dir)
1671{
1672 int changed = _snd_pcm_hw_param_last(params, var);
1673 if (changed < 0)
1674 return changed;
1675 if (params->rmask) {
1676 int err = snd_pcm_hw_refine(pcm, params);
1677 if (err < 0)
1678 return err;
1679 }
1680 return snd_pcm_hw_param_value(params, var, dir);
1681}
1682EXPORT_SYMBOL(snd_pcm_hw_param_last);
1683
1684static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1685 void *arg)
1686{
1687 struct snd_pcm_runtime *runtime = substream->runtime;
1688 unsigned long flags;
1689 snd_pcm_stream_lock_irqsave(substream, flags);
1690 if (snd_pcm_running(substream) &&
1691 snd_pcm_update_hw_ptr(substream) >= 0)
1692 runtime->status->hw_ptr %= runtime->buffer_size;
1693 else {
1694 runtime->status->hw_ptr = 0;
1695 runtime->hw_ptr_wrap = 0;
1696 }
1697 snd_pcm_stream_unlock_irqrestore(substream, flags);
1698 return 0;
1699}
1700
1701static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1702 void *arg)
1703{
1704 struct snd_pcm_channel_info *info = arg;
1705 struct snd_pcm_runtime *runtime = substream->runtime;
1706 int width;
1707 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1708 info->offset = -1;
1709 return 0;
1710 }
1711 width = snd_pcm_format_physical_width(runtime->format);
1712 if (width < 0)
1713 return width;
1714 info->offset = 0;
1715 switch (runtime->access) {
1716 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1717 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1718 info->first = info->channel * width;
1719 info->step = runtime->channels * width;
1720 break;
1721 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1722 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1723 {
1724 size_t size = runtime->dma_bytes / runtime->channels;
1725 info->first = info->channel * size * 8;
1726 info->step = width;
1727 break;
1728 }
1729 default:
1730 snd_BUG();
1731 break;
1732 }
1733 return 0;
1734}
1735
1736static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1737 void *arg)
1738{
1739 struct snd_pcm_hw_params *params = arg;
1740 snd_pcm_format_t format;
1741 int channels;
1742 ssize_t frame_size;
1743
1744 params->fifo_size = substream->runtime->hw.fifo_size;
1745 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1746 format = params_format(params);
1747 channels = params_channels(params);
1748 frame_size = snd_pcm_format_size(format, channels);
1749 if (frame_size > 0)
1750 params->fifo_size /= frame_size;
1751 }
1752 return 0;
1753}
1754
1755/**
1756 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1757 * @substream: the pcm substream instance
1758 * @cmd: ioctl command
1759 * @arg: ioctl argument
1760 *
1761 * Processes the generic ioctl commands for PCM.
1762 * Can be passed as the ioctl callback for PCM ops.
1763 *
1764 * Return: Zero if successful, or a negative error code on failure.
1765 */
1766int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1767 unsigned int cmd, void *arg)
1768{
1769 switch (cmd) {
1770 case SNDRV_PCM_IOCTL1_RESET:
1771 return snd_pcm_lib_ioctl_reset(substream, arg);
1772 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1773 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1774 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1775 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1776 }
1777 return -ENXIO;
1778}
1779EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1780
1781/**
1782 * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1783 * under acquired lock of PCM substream.
1784 * @substream: the instance of pcm substream.
1785 *
1786 * This function is called when the batch of audio data frames as the same size as the period of
1787 * buffer is already processed in audio data transmission.
1788 *
1789 * The call of function updates the status of runtime with the latest position of audio data
1790 * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1791 * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1792 * substream according to configured threshold.
1793 *
1794 * The function is intended to use for the case that PCM driver operates audio data frames under
1795 * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1796 * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1797 * since lock of PCM substream should be acquired in advance.
1798 *
1799 * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1800 * function:
1801 *
1802 * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1803 * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1804 * - .get_time_info - to retrieve audio time stamp if needed.
1805 *
1806 * Even if more than one periods have elapsed since the last call, you have to call this only once.
1807 */
1808void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1809{
1810 struct snd_pcm_runtime *runtime;
1811
1812 if (PCM_RUNTIME_CHECK(substream))
1813 return;
1814 runtime = substream->runtime;
1815
1816 if (!snd_pcm_running(substream) ||
1817 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1818 goto _end;
1819
1820#ifdef CONFIG_SND_PCM_TIMER
1821 if (substream->timer_running)
1822 snd_timer_interrupt(substream->timer, 1);
1823#endif
1824 _end:
1825 snd_kill_fasync(runtime->fasync, SIGIO, POLL_IN);
1826}
1827EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1828
1829/**
1830 * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1831 * PCM substream.
1832 * @substream: the instance of PCM substream.
1833 *
1834 * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1835 * acquiring lock of PCM substream voluntarily.
1836 *
1837 * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1838 * the batch of audio data frames as the same size as the period of buffer is already processed in
1839 * audio data transmission.
1840 */
1841void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1842{
1843 unsigned long flags;
1844
1845 if (snd_BUG_ON(!substream))
1846 return;
1847
1848 snd_pcm_stream_lock_irqsave(substream, flags);
1849 snd_pcm_period_elapsed_under_stream_lock(substream);
1850 snd_pcm_stream_unlock_irqrestore(substream, flags);
1851}
1852EXPORT_SYMBOL(snd_pcm_period_elapsed);
1853
1854/*
1855 * Wait until avail_min data becomes available
1856 * Returns a negative error code if any error occurs during operation.
1857 * The available space is stored on availp. When err = 0 and avail = 0
1858 * on the capture stream, it indicates the stream is in DRAINING state.
1859 */
1860static int wait_for_avail(struct snd_pcm_substream *substream,
1861 snd_pcm_uframes_t *availp)
1862{
1863 struct snd_pcm_runtime *runtime = substream->runtime;
1864 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1865 wait_queue_entry_t wait;
1866 int err = 0;
1867 snd_pcm_uframes_t avail = 0;
1868 long wait_time, tout;
1869
1870 init_waitqueue_entry(&wait, current);
1871 set_current_state(TASK_INTERRUPTIBLE);
1872 add_wait_queue(&runtime->tsleep, &wait);
1873
1874 if (runtime->no_period_wakeup)
1875 wait_time = MAX_SCHEDULE_TIMEOUT;
1876 else {
1877 /* use wait time from substream if available */
1878 if (substream->wait_time) {
1879 wait_time = substream->wait_time;
1880 } else {
1881 wait_time = 10;
1882
1883 if (runtime->rate) {
1884 long t = runtime->period_size * 2 /
1885 runtime->rate;
1886 wait_time = max(t, wait_time);
1887 }
1888 wait_time = msecs_to_jiffies(wait_time * 1000);
1889 }
1890 }
1891
1892 for (;;) {
1893 if (signal_pending(current)) {
1894 err = -ERESTARTSYS;
1895 break;
1896 }
1897
1898 /*
1899 * We need to check if space became available already
1900 * (and thus the wakeup happened already) first to close
1901 * the race of space already having become available.
1902 * This check must happen after been added to the waitqueue
1903 * and having current state be INTERRUPTIBLE.
1904 */
1905 avail = snd_pcm_avail(substream);
1906 if (avail >= runtime->twake)
1907 break;
1908 snd_pcm_stream_unlock_irq(substream);
1909
1910 tout = schedule_timeout(wait_time);
1911
1912 snd_pcm_stream_lock_irq(substream);
1913 set_current_state(TASK_INTERRUPTIBLE);
1914 switch (runtime->state) {
1915 case SNDRV_PCM_STATE_SUSPENDED:
1916 err = -ESTRPIPE;
1917 goto _endloop;
1918 case SNDRV_PCM_STATE_XRUN:
1919 err = -EPIPE;
1920 goto _endloop;
1921 case SNDRV_PCM_STATE_DRAINING:
1922 if (is_playback)
1923 err = -EPIPE;
1924 else
1925 avail = 0; /* indicate draining */
1926 goto _endloop;
1927 case SNDRV_PCM_STATE_OPEN:
1928 case SNDRV_PCM_STATE_SETUP:
1929 case SNDRV_PCM_STATE_DISCONNECTED:
1930 err = -EBADFD;
1931 goto _endloop;
1932 case SNDRV_PCM_STATE_PAUSED:
1933 continue;
1934 }
1935 if (!tout) {
1936 pcm_dbg(substream->pcm,
1937 "%s write error (DMA or IRQ trouble?)\n",
1938 is_playback ? "playback" : "capture");
1939 err = -EIO;
1940 break;
1941 }
1942 }
1943 _endloop:
1944 set_current_state(TASK_RUNNING);
1945 remove_wait_queue(&runtime->tsleep, &wait);
1946 *availp = avail;
1947 return err;
1948}
1949
1950typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1951 int channel, unsigned long hwoff,
1952 void *buf, unsigned long bytes);
1953
1954typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1955 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1956
1957/* calculate the target DMA-buffer position to be written/read */
1958static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1959 int channel, unsigned long hwoff)
1960{
1961 return runtime->dma_area + hwoff +
1962 channel * (runtime->dma_bytes / runtime->channels);
1963}
1964
1965/* default copy_user ops for write; used for both interleaved and non- modes */
1966static int default_write_copy(struct snd_pcm_substream *substream,
1967 int channel, unsigned long hwoff,
1968 void *buf, unsigned long bytes)
1969{
1970 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1971 (void __user *)buf, bytes))
1972 return -EFAULT;
1973 return 0;
1974}
1975
1976/* default copy_kernel ops for write */
1977static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1978 int channel, unsigned long hwoff,
1979 void *buf, unsigned long bytes)
1980{
1981 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1982 return 0;
1983}
1984
1985/* fill silence instead of copy data; called as a transfer helper
1986 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1987 * a NULL buffer is passed
1988 */
1989static int fill_silence(struct snd_pcm_substream *substream, int channel,
1990 unsigned long hwoff, void *buf, unsigned long bytes)
1991{
1992 struct snd_pcm_runtime *runtime = substream->runtime;
1993
1994 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1995 return 0;
1996 if (substream->ops->fill_silence)
1997 return substream->ops->fill_silence(substream, channel,
1998 hwoff, bytes);
1999
2000 snd_pcm_format_set_silence(runtime->format,
2001 get_dma_ptr(runtime, channel, hwoff),
2002 bytes_to_samples(runtime, bytes));
2003 return 0;
2004}
2005
2006/* default copy_user ops for read; used for both interleaved and non- modes */
2007static int default_read_copy(struct snd_pcm_substream *substream,
2008 int channel, unsigned long hwoff,
2009 void *buf, unsigned long bytes)
2010{
2011 if (copy_to_user((void __user *)buf,
2012 get_dma_ptr(substream->runtime, channel, hwoff),
2013 bytes))
2014 return -EFAULT;
2015 return 0;
2016}
2017
2018/* default copy_kernel ops for read */
2019static int default_read_copy_kernel(struct snd_pcm_substream *substream,
2020 int channel, unsigned long hwoff,
2021 void *buf, unsigned long bytes)
2022{
2023 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
2024 return 0;
2025}
2026
2027/* call transfer function with the converted pointers and sizes;
2028 * for interleaved mode, it's one shot for all samples
2029 */
2030static int interleaved_copy(struct snd_pcm_substream *substream,
2031 snd_pcm_uframes_t hwoff, void *data,
2032 snd_pcm_uframes_t off,
2033 snd_pcm_uframes_t frames,
2034 pcm_transfer_f transfer)
2035{
2036 struct snd_pcm_runtime *runtime = substream->runtime;
2037
2038 /* convert to bytes */
2039 hwoff = frames_to_bytes(runtime, hwoff);
2040 off = frames_to_bytes(runtime, off);
2041 frames = frames_to_bytes(runtime, frames);
2042 return transfer(substream, 0, hwoff, data + off, frames);
2043}
2044
2045/* call transfer function with the converted pointers and sizes for each
2046 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2047 */
2048static int noninterleaved_copy(struct snd_pcm_substream *substream,
2049 snd_pcm_uframes_t hwoff, void *data,
2050 snd_pcm_uframes_t off,
2051 snd_pcm_uframes_t frames,
2052 pcm_transfer_f transfer)
2053{
2054 struct snd_pcm_runtime *runtime = substream->runtime;
2055 int channels = runtime->channels;
2056 void **bufs = data;
2057 int c, err;
2058
2059 /* convert to bytes; note that it's not frames_to_bytes() here.
2060 * in non-interleaved mode, we copy for each channel, thus
2061 * each copy is n_samples bytes x channels = whole frames.
2062 */
2063 off = samples_to_bytes(runtime, off);
2064 frames = samples_to_bytes(runtime, frames);
2065 hwoff = samples_to_bytes(runtime, hwoff);
2066 for (c = 0; c < channels; ++c, ++bufs) {
2067 if (!data || !*bufs)
2068 err = fill_silence(substream, c, hwoff, NULL, frames);
2069 else
2070 err = transfer(substream, c, hwoff, *bufs + off,
2071 frames);
2072 if (err < 0)
2073 return err;
2074 }
2075 return 0;
2076}
2077
2078/* fill silence on the given buffer position;
2079 * called from snd_pcm_playback_silence()
2080 */
2081static int fill_silence_frames(struct snd_pcm_substream *substream,
2082 snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2083{
2084 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2085 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2086 return interleaved_copy(substream, off, NULL, 0, frames,
2087 fill_silence);
2088 else
2089 return noninterleaved_copy(substream, off, NULL, 0, frames,
2090 fill_silence);
2091}
2092
2093/* sanity-check for read/write methods */
2094static int pcm_sanity_check(struct snd_pcm_substream *substream)
2095{
2096 struct snd_pcm_runtime *runtime;
2097 if (PCM_RUNTIME_CHECK(substream))
2098 return -ENXIO;
2099 runtime = substream->runtime;
2100 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2101 return -EINVAL;
2102 if (runtime->state == SNDRV_PCM_STATE_OPEN)
2103 return -EBADFD;
2104 return 0;
2105}
2106
2107static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2108{
2109 switch (runtime->state) {
2110 case SNDRV_PCM_STATE_PREPARED:
2111 case SNDRV_PCM_STATE_RUNNING:
2112 case SNDRV_PCM_STATE_PAUSED:
2113 return 0;
2114 case SNDRV_PCM_STATE_XRUN:
2115 return -EPIPE;
2116 case SNDRV_PCM_STATE_SUSPENDED:
2117 return -ESTRPIPE;
2118 default:
2119 return -EBADFD;
2120 }
2121}
2122
2123/* update to the given appl_ptr and call ack callback if needed;
2124 * when an error is returned, take back to the original value
2125 */
2126int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2127 snd_pcm_uframes_t appl_ptr)
2128{
2129 struct snd_pcm_runtime *runtime = substream->runtime;
2130 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2131 snd_pcm_sframes_t diff;
2132 int ret;
2133
2134 if (old_appl_ptr == appl_ptr)
2135 return 0;
2136
2137 if (appl_ptr >= runtime->boundary)
2138 return -EINVAL;
2139 /*
2140 * check if a rewind is requested by the application
2141 */
2142 if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) {
2143 diff = appl_ptr - old_appl_ptr;
2144 if (diff >= 0) {
2145 if (diff > runtime->buffer_size)
2146 return -EINVAL;
2147 } else {
2148 if (runtime->boundary + diff > runtime->buffer_size)
2149 return -EINVAL;
2150 }
2151 }
2152
2153 runtime->control->appl_ptr = appl_ptr;
2154 if (substream->ops->ack) {
2155 ret = substream->ops->ack(substream);
2156 if (ret < 0) {
2157 runtime->control->appl_ptr = old_appl_ptr;
2158 return ret;
2159 }
2160 }
2161
2162 trace_applptr(substream, old_appl_ptr, appl_ptr);
2163
2164 return 0;
2165}
2166
2167/* the common loop for read/write data */
2168snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2169 void *data, bool interleaved,
2170 snd_pcm_uframes_t size, bool in_kernel)
2171{
2172 struct snd_pcm_runtime *runtime = substream->runtime;
2173 snd_pcm_uframes_t xfer = 0;
2174 snd_pcm_uframes_t offset = 0;
2175 snd_pcm_uframes_t avail;
2176 pcm_copy_f writer;
2177 pcm_transfer_f transfer;
2178 bool nonblock;
2179 bool is_playback;
2180 int err;
2181
2182 err = pcm_sanity_check(substream);
2183 if (err < 0)
2184 return err;
2185
2186 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2187 if (interleaved) {
2188 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2189 runtime->channels > 1)
2190 return -EINVAL;
2191 writer = interleaved_copy;
2192 } else {
2193 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2194 return -EINVAL;
2195 writer = noninterleaved_copy;
2196 }
2197
2198 if (!data) {
2199 if (is_playback)
2200 transfer = fill_silence;
2201 else
2202 return -EINVAL;
2203 } else if (in_kernel) {
2204 if (substream->ops->copy_kernel)
2205 transfer = substream->ops->copy_kernel;
2206 else
2207 transfer = is_playback ?
2208 default_write_copy_kernel : default_read_copy_kernel;
2209 } else {
2210 if (substream->ops->copy_user)
2211 transfer = (pcm_transfer_f)substream->ops->copy_user;
2212 else
2213 transfer = is_playback ?
2214 default_write_copy : default_read_copy;
2215 }
2216
2217 if (size == 0)
2218 return 0;
2219
2220 nonblock = !!(substream->f_flags & O_NONBLOCK);
2221
2222 snd_pcm_stream_lock_irq(substream);
2223 err = pcm_accessible_state(runtime);
2224 if (err < 0)
2225 goto _end_unlock;
2226
2227 runtime->twake = runtime->control->avail_min ? : 1;
2228 if (runtime->state == SNDRV_PCM_STATE_RUNNING)
2229 snd_pcm_update_hw_ptr(substream);
2230
2231 /*
2232 * If size < start_threshold, wait indefinitely. Another
2233 * thread may start capture
2234 */
2235 if (!is_playback &&
2236 runtime->state == SNDRV_PCM_STATE_PREPARED &&
2237 size >= runtime->start_threshold) {
2238 err = snd_pcm_start(substream);
2239 if (err < 0)
2240 goto _end_unlock;
2241 }
2242
2243 avail = snd_pcm_avail(substream);
2244
2245 while (size > 0) {
2246 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2247 snd_pcm_uframes_t cont;
2248 if (!avail) {
2249 if (!is_playback &&
2250 runtime->state == SNDRV_PCM_STATE_DRAINING) {
2251 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2252 goto _end_unlock;
2253 }
2254 if (nonblock) {
2255 err = -EAGAIN;
2256 goto _end_unlock;
2257 }
2258 runtime->twake = min_t(snd_pcm_uframes_t, size,
2259 runtime->control->avail_min ? : 1);
2260 err = wait_for_avail(substream, &avail);
2261 if (err < 0)
2262 goto _end_unlock;
2263 if (!avail)
2264 continue; /* draining */
2265 }
2266 frames = size > avail ? avail : size;
2267 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2268 appl_ofs = appl_ptr % runtime->buffer_size;
2269 cont = runtime->buffer_size - appl_ofs;
2270 if (frames > cont)
2271 frames = cont;
2272 if (snd_BUG_ON(!frames)) {
2273 err = -EINVAL;
2274 goto _end_unlock;
2275 }
2276 if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
2277 err = -EBUSY;
2278 goto _end_unlock;
2279 }
2280 snd_pcm_stream_unlock_irq(substream);
2281 if (!is_playback)
2282 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU);
2283 err = writer(substream, appl_ofs, data, offset, frames,
2284 transfer);
2285 if (is_playback)
2286 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
2287 snd_pcm_stream_lock_irq(substream);
2288 atomic_dec(&runtime->buffer_accessing);
2289 if (err < 0)
2290 goto _end_unlock;
2291 err = pcm_accessible_state(runtime);
2292 if (err < 0)
2293 goto _end_unlock;
2294 appl_ptr += frames;
2295 if (appl_ptr >= runtime->boundary)
2296 appl_ptr -= runtime->boundary;
2297 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2298 if (err < 0)
2299 goto _end_unlock;
2300
2301 offset += frames;
2302 size -= frames;
2303 xfer += frames;
2304 avail -= frames;
2305 if (is_playback &&
2306 runtime->state == SNDRV_PCM_STATE_PREPARED &&
2307 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2308 err = snd_pcm_start(substream);
2309 if (err < 0)
2310 goto _end_unlock;
2311 }
2312 }
2313 _end_unlock:
2314 runtime->twake = 0;
2315 if (xfer > 0 && err >= 0)
2316 snd_pcm_update_state(substream, runtime);
2317 snd_pcm_stream_unlock_irq(substream);
2318 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2319}
2320EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2321
2322/*
2323 * standard channel mapping helpers
2324 */
2325
2326/* default channel maps for multi-channel playbacks, up to 8 channels */
2327const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2328 { .channels = 1,
2329 .map = { SNDRV_CHMAP_MONO } },
2330 { .channels = 2,
2331 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2332 { .channels = 4,
2333 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2334 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2335 { .channels = 6,
2336 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2337 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2338 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2339 { .channels = 8,
2340 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2341 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2342 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2343 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2344 { }
2345};
2346EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2347
2348/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2349const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2350 { .channels = 1,
2351 .map = { SNDRV_CHMAP_MONO } },
2352 { .channels = 2,
2353 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2354 { .channels = 4,
2355 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2356 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2357 { .channels = 6,
2358 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2359 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2360 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2361 { .channels = 8,
2362 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2363 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2364 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2365 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2366 { }
2367};
2368EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2369
2370static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2371{
2372 if (ch > info->max_channels)
2373 return false;
2374 return !info->channel_mask || (info->channel_mask & (1U << ch));
2375}
2376
2377static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2378 struct snd_ctl_elem_info *uinfo)
2379{
2380 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2381
2382 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2383 uinfo->count = info->max_channels;
2384 uinfo->value.integer.min = 0;
2385 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2386 return 0;
2387}
2388
2389/* get callback for channel map ctl element
2390 * stores the channel position firstly matching with the current channels
2391 */
2392static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2393 struct snd_ctl_elem_value *ucontrol)
2394{
2395 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2396 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2397 struct snd_pcm_substream *substream;
2398 const struct snd_pcm_chmap_elem *map;
2399
2400 if (!info->chmap)
2401 return -EINVAL;
2402 substream = snd_pcm_chmap_substream(info, idx);
2403 if (!substream)
2404 return -ENODEV;
2405 memset(ucontrol->value.integer.value, 0,
2406 sizeof(long) * info->max_channels);
2407 if (!substream->runtime)
2408 return 0; /* no channels set */
2409 for (map = info->chmap; map->channels; map++) {
2410 int i;
2411 if (map->channels == substream->runtime->channels &&
2412 valid_chmap_channels(info, map->channels)) {
2413 for (i = 0; i < map->channels; i++)
2414 ucontrol->value.integer.value[i] = map->map[i];
2415 return 0;
2416 }
2417 }
2418 return -EINVAL;
2419}
2420
2421/* tlv callback for channel map ctl element
2422 * expands the pre-defined channel maps in a form of TLV
2423 */
2424static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2425 unsigned int size, unsigned int __user *tlv)
2426{
2427 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2428 const struct snd_pcm_chmap_elem *map;
2429 unsigned int __user *dst;
2430 int c, count = 0;
2431
2432 if (!info->chmap)
2433 return -EINVAL;
2434 if (size < 8)
2435 return -ENOMEM;
2436 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2437 return -EFAULT;
2438 size -= 8;
2439 dst = tlv + 2;
2440 for (map = info->chmap; map->channels; map++) {
2441 int chs_bytes = map->channels * 4;
2442 if (!valid_chmap_channels(info, map->channels))
2443 continue;
2444 if (size < 8)
2445 return -ENOMEM;
2446 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2447 put_user(chs_bytes, dst + 1))
2448 return -EFAULT;
2449 dst += 2;
2450 size -= 8;
2451 count += 8;
2452 if (size < chs_bytes)
2453 return -ENOMEM;
2454 size -= chs_bytes;
2455 count += chs_bytes;
2456 for (c = 0; c < map->channels; c++) {
2457 if (put_user(map->map[c], dst))
2458 return -EFAULT;
2459 dst++;
2460 }
2461 }
2462 if (put_user(count, tlv + 1))
2463 return -EFAULT;
2464 return 0;
2465}
2466
2467static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2468{
2469 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2470 info->pcm->streams[info->stream].chmap_kctl = NULL;
2471 kfree(info);
2472}
2473
2474/**
2475 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2476 * @pcm: the assigned PCM instance
2477 * @stream: stream direction
2478 * @chmap: channel map elements (for query)
2479 * @max_channels: the max number of channels for the stream
2480 * @private_value: the value passed to each kcontrol's private_value field
2481 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2482 *
2483 * Create channel-mapping control elements assigned to the given PCM stream(s).
2484 * Return: Zero if successful, or a negative error value.
2485 */
2486int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2487 const struct snd_pcm_chmap_elem *chmap,
2488 int max_channels,
2489 unsigned long private_value,
2490 struct snd_pcm_chmap **info_ret)
2491{
2492 struct snd_pcm_chmap *info;
2493 struct snd_kcontrol_new knew = {
2494 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2495 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2496 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2497 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2498 .info = pcm_chmap_ctl_info,
2499 .get = pcm_chmap_ctl_get,
2500 .tlv.c = pcm_chmap_ctl_tlv,
2501 };
2502 int err;
2503
2504 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2505 return -EBUSY;
2506 info = kzalloc(sizeof(*info), GFP_KERNEL);
2507 if (!info)
2508 return -ENOMEM;
2509 info->pcm = pcm;
2510 info->stream = stream;
2511 info->chmap = chmap;
2512 info->max_channels = max_channels;
2513 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2514 knew.name = "Playback Channel Map";
2515 else
2516 knew.name = "Capture Channel Map";
2517 knew.device = pcm->device;
2518 knew.count = pcm->streams[stream].substream_count;
2519 knew.private_value = private_value;
2520 info->kctl = snd_ctl_new1(&knew, info);
2521 if (!info->kctl) {
2522 kfree(info);
2523 return -ENOMEM;
2524 }
2525 info->kctl->private_free = pcm_chmap_ctl_private_free;
2526 err = snd_ctl_add(pcm->card, info->kctl);
2527 if (err < 0)
2528 return err;
2529 pcm->streams[stream].chmap_kctl = info->kctl;
2530 if (info_ret)
2531 *info_ret = info;
2532 return 0;
2533}
2534EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);