Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  Digital Audio (PCM) abstract layer
   3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   4 *                   Abramo Bagnara <abramo@alsa-project.org>
   5 *
   6 *
   7 *   This program is free software; you can redistribute it and/or modify
   8 *   it under the terms of the GNU General Public License as published by
   9 *   the Free Software Foundation; either version 2 of the License, or
  10 *   (at your option) any later version.
  11 *
  12 *   This program is distributed in the hope that it will be useful,
  13 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *   GNU General Public License for more details.
  16 *
  17 *   You should have received a copy of the GNU General Public License
  18 *   along with this program; if not, write to the Free Software
  19 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 *
  21 */
  22
  23#include <linux/slab.h>
  24#include <linux/time.h>
  25#include <linux/math64.h>
 
  26#include <sound/core.h>
  27#include <sound/control.h>
 
  28#include <sound/info.h>
  29#include <sound/pcm.h>
  30#include <sound/pcm_params.h>
  31#include <sound/timer.h>
  32
  33/*
  34 * fill ring buffer with silence
  35 * runtime->silence_start: starting pointer to silence area
  36 * runtime->silence_filled: size filled with silence
  37 * runtime->silence_threshold: threshold from application
  38 * runtime->silence_size: maximal size from application
  39 *
  40 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  41 */
  42void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  43{
  44	struct snd_pcm_runtime *runtime = substream->runtime;
  45	snd_pcm_uframes_t frames, ofs, transfer;
  46
  47	if (runtime->silence_size < runtime->boundary) {
  48		snd_pcm_sframes_t noise_dist, n;
  49		if (runtime->silence_start != runtime->control->appl_ptr) {
  50			n = runtime->control->appl_ptr - runtime->silence_start;
  51			if (n < 0)
  52				n += runtime->boundary;
  53			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
  54				runtime->silence_filled -= n;
  55			else
  56				runtime->silence_filled = 0;
  57			runtime->silence_start = runtime->control->appl_ptr;
  58		}
  59		if (runtime->silence_filled >= runtime->buffer_size)
  60			return;
  61		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
  62		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  63			return;
  64		frames = runtime->silence_threshold - noise_dist;
  65		if (frames > runtime->silence_size)
  66			frames = runtime->silence_size;
  67	} else {
  68		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
  69			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
  70			if (avail > runtime->buffer_size)
  71				avail = runtime->buffer_size;
  72			runtime->silence_filled = avail > 0 ? avail : 0;
  73			runtime->silence_start = (runtime->status->hw_ptr +
  74						  runtime->silence_filled) %
  75						 runtime->boundary;
  76		} else {
  77			ofs = runtime->status->hw_ptr;
  78			frames = new_hw_ptr - ofs;
  79			if ((snd_pcm_sframes_t)frames < 0)
  80				frames += runtime->boundary;
  81			runtime->silence_filled -= frames;
  82			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
  83				runtime->silence_filled = 0;
  84				runtime->silence_start = new_hw_ptr;
  85			} else {
  86				runtime->silence_start = ofs;
  87			}
  88		}
  89		frames = runtime->buffer_size - runtime->silence_filled;
  90	}
  91	if (snd_BUG_ON(frames > runtime->buffer_size))
  92		return;
  93	if (frames == 0)
  94		return;
  95	ofs = runtime->silence_start % runtime->buffer_size;
  96	while (frames > 0) {
  97		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
  98		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
  99		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
 100			if (substream->ops->silence) {
 101				int err;
 102				err = substream->ops->silence(substream, -1, ofs, transfer);
 103				snd_BUG_ON(err < 0);
 104			} else {
 105				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
 106				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
 107			}
 108		} else {
 109			unsigned int c;
 110			unsigned int channels = runtime->channels;
 111			if (substream->ops->silence) {
 112				for (c = 0; c < channels; ++c) {
 113					int err;
 114					err = substream->ops->silence(substream, c, ofs, transfer);
 115					snd_BUG_ON(err < 0);
 116				}
 117			} else {
 118				size_t dma_csize = runtime->dma_bytes / channels;
 119				for (c = 0; c < channels; ++c) {
 120					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
 121					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
 122				}
 123			}
 124		}
 125		runtime->silence_filled += transfer;
 126		frames -= transfer;
 127		ofs = 0;
 128	}
 129}
 130
 131#ifdef CONFIG_SND_DEBUG
 132void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 133			   char *name, size_t len)
 134{
 135	snprintf(name, len, "pcmC%dD%d%c:%d",
 136		 substream->pcm->card->number,
 137		 substream->pcm->device,
 138		 substream->stream ? 'c' : 'p',
 139		 substream->number);
 140}
 141EXPORT_SYMBOL(snd_pcm_debug_name);
 142#endif
 143
 144#define XRUN_DEBUG_BASIC	(1<<0)
 145#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
 146#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
 147#define XRUN_DEBUG_PERIODUPDATE	(1<<3)	/* full period update info */
 148#define XRUN_DEBUG_HWPTRUPDATE	(1<<4)	/* full hwptr update info */
 149#define XRUN_DEBUG_LOG		(1<<5)	/* show last 10 positions on err */
 150#define XRUN_DEBUG_LOGONCE	(1<<6)	/* do above only once */
 151
 152#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 153
 154#define xrun_debug(substream, mask) \
 155			((substream)->pstr->xrun_debug & (mask))
 156#else
 157#define xrun_debug(substream, mask)	0
 158#endif
 159
 160#define dump_stack_on_xrun(substream) do {			\
 161		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
 162			dump_stack();				\
 163	} while (0)
 164
 165static void xrun(struct snd_pcm_substream *substream)
 166{
 167	struct snd_pcm_runtime *runtime = substream->runtime;
 168
 169	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 170		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 171	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 172	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 173		char name[16];
 174		snd_pcm_debug_name(substream, name, sizeof(name));
 175		snd_printd(KERN_DEBUG "XRUN: %s\n", name);
 176		dump_stack_on_xrun(substream);
 177	}
 178}
 179
 180#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 181#define hw_ptr_error(substream, fmt, args...)				\
 182	do {								\
 183		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
 184			xrun_log_show(substream);			\
 185			if (printk_ratelimit()) {			\
 186				snd_printd("PCM: " fmt, ##args);	\
 187			}						\
 188			dump_stack_on_xrun(substream);			\
 189		}							\
 190	} while (0)
 191
 192#define XRUN_LOG_CNT	10
 193
 194struct hwptr_log_entry {
 195	unsigned int in_interrupt;
 196	unsigned long jiffies;
 197	snd_pcm_uframes_t pos;
 198	snd_pcm_uframes_t period_size;
 199	snd_pcm_uframes_t buffer_size;
 200	snd_pcm_uframes_t old_hw_ptr;
 201	snd_pcm_uframes_t hw_ptr_base;
 202};
 203
 204struct snd_pcm_hwptr_log {
 205	unsigned int idx;
 206	unsigned int hit: 1;
 207	struct hwptr_log_entry entries[XRUN_LOG_CNT];
 208};
 209
 210static void xrun_log(struct snd_pcm_substream *substream,
 211		     snd_pcm_uframes_t pos, int in_interrupt)
 212{
 213	struct snd_pcm_runtime *runtime = substream->runtime;
 214	struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
 215	struct hwptr_log_entry *entry;
 216
 217	if (log == NULL) {
 218		log = kzalloc(sizeof(*log), GFP_ATOMIC);
 219		if (log == NULL)
 220			return;
 221		runtime->hwptr_log = log;
 222	} else {
 223		if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
 224			return;
 225	}
 226	entry = &log->entries[log->idx];
 227	entry->in_interrupt = in_interrupt;
 228	entry->jiffies = jiffies;
 229	entry->pos = pos;
 230	entry->period_size = runtime->period_size;
 231	entry->buffer_size = runtime->buffer_size;
 232	entry->old_hw_ptr = runtime->status->hw_ptr;
 233	entry->hw_ptr_base = runtime->hw_ptr_base;
 234	log->idx = (log->idx + 1) % XRUN_LOG_CNT;
 235}
 236
 237static void xrun_log_show(struct snd_pcm_substream *substream)
 238{
 239	struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
 240	struct hwptr_log_entry *entry;
 241	char name[16];
 242	unsigned int idx;
 243	int cnt;
 244
 245	if (log == NULL)
 246		return;
 247	if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
 248		return;
 249	snd_pcm_debug_name(substream, name, sizeof(name));
 250	for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
 251		entry = &log->entries[idx];
 252		if (entry->period_size == 0)
 253			break;
 254		snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
 255			   "hwptr=%ld/%ld\n",
 256			   name, entry->in_interrupt ? "[Q] " : "",
 257			   entry->jiffies,
 258			   (unsigned long)entry->pos,
 259			   (unsigned long)entry->period_size,
 260			   (unsigned long)entry->buffer_size,
 261			   (unsigned long)entry->old_hw_ptr,
 262			   (unsigned long)entry->hw_ptr_base);
 263		idx++;
 264		idx %= XRUN_LOG_CNT;
 265	}
 266	log->hit = 1;
 267}
 268
 269#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 270
 271#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 272#define xrun_log(substream, pos, in_interrupt)	do { } while (0)
 273#define xrun_log_show(substream)	do { } while (0)
 274
 275#endif
 276
 277int snd_pcm_update_state(struct snd_pcm_substream *substream,
 278			 struct snd_pcm_runtime *runtime)
 279{
 280	snd_pcm_uframes_t avail;
 281
 282	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 283		avail = snd_pcm_playback_avail(runtime);
 284	else
 285		avail = snd_pcm_capture_avail(runtime);
 286	if (avail > runtime->avail_max)
 287		runtime->avail_max = avail;
 288	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
 289		if (avail >= runtime->buffer_size) {
 290			snd_pcm_drain_done(substream);
 291			return -EPIPE;
 292		}
 293	} else {
 294		if (avail >= runtime->stop_threshold) {
 295			xrun(substream);
 296			return -EPIPE;
 297		}
 298	}
 299	if (runtime->twake) {
 300		if (avail >= runtime->twake)
 301			wake_up(&runtime->tsleep);
 302	} else if (avail >= runtime->control->avail_min)
 303		wake_up(&runtime->sleep);
 304	return 0;
 305}
 306
 307static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 308				  unsigned int in_interrupt)
 309{
 310	struct snd_pcm_runtime *runtime = substream->runtime;
 311	snd_pcm_uframes_t pos;
 312	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 313	snd_pcm_sframes_t hdelta, delta;
 314	unsigned long jdelta;
 
 
 
 
 315
 316	old_hw_ptr = runtime->status->hw_ptr;
 
 
 
 
 
 
 
 317	pos = substream->ops->pointer(substream);
 
 
 
 
 
 
 
 
 
 318	if (pos == SNDRV_PCM_POS_XRUN) {
 319		xrun(substream);
 320		return -EPIPE;
 321	}
 322	if (pos >= runtime->buffer_size) {
 323		if (printk_ratelimit()) {
 324			char name[16];
 325			snd_pcm_debug_name(substream, name, sizeof(name));
 326			xrun_log_show(substream);
 327			snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
 328				   "buffer size = %ld, period size = %ld\n",
 329				   name, pos, runtime->buffer_size,
 330				   runtime->period_size);
 331		}
 332		pos = 0;
 333	}
 334	pos -= pos % runtime->min_align;
 335	if (xrun_debug(substream, XRUN_DEBUG_LOG))
 336		xrun_log(substream, pos, in_interrupt);
 337	hw_base = runtime->hw_ptr_base;
 338	new_hw_ptr = hw_base + pos;
 339	if (in_interrupt) {
 340		/* we know that one period was processed */
 341		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
 342		delta = runtime->hw_ptr_interrupt + runtime->period_size;
 343		if (delta > new_hw_ptr) {
 344			/* check for double acknowledged interrupts */
 345			hdelta = jiffies - runtime->hw_ptr_jiffies;
 346			if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
 347				hw_base += runtime->buffer_size;
 348				if (hw_base >= runtime->boundary)
 349					hw_base = 0;
 
 
 350				new_hw_ptr = hw_base + pos;
 351				goto __delta;
 352			}
 353		}
 354	}
 355	/* new_hw_ptr might be lower than old_hw_ptr in case when */
 356	/* pointer crosses the end of the ring buffer */
 357	if (new_hw_ptr < old_hw_ptr) {
 358		hw_base += runtime->buffer_size;
 359		if (hw_base >= runtime->boundary)
 360			hw_base = 0;
 
 
 361		new_hw_ptr = hw_base + pos;
 362	}
 363      __delta:
 364	delta = new_hw_ptr - old_hw_ptr;
 365	if (delta < 0)
 366		delta += runtime->boundary;
 367	if (xrun_debug(substream, in_interrupt ?
 368			XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
 369		char name[16];
 370		snd_pcm_debug_name(substream, name, sizeof(name));
 371		snd_printd("%s_update: %s: pos=%u/%u/%u, "
 372			   "hwptr=%ld/%ld/%ld/%ld\n",
 373			   in_interrupt ? "period" : "hwptr",
 374			   name,
 375			   (unsigned int)pos,
 376			   (unsigned int)runtime->period_size,
 377			   (unsigned int)runtime->buffer_size,
 378			   (unsigned long)delta,
 379			   (unsigned long)old_hw_ptr,
 380			   (unsigned long)new_hw_ptr,
 381			   (unsigned long)runtime->hw_ptr_base);
 382	}
 383
 384	if (runtime->no_period_wakeup) {
 385		snd_pcm_sframes_t xrun_threshold;
 386		/*
 387		 * Without regular period interrupts, we have to check
 388		 * the elapsed time to detect xruns.
 389		 */
 390		jdelta = jiffies - runtime->hw_ptr_jiffies;
 391		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 392			goto no_delta_check;
 393		hdelta = jdelta - delta * HZ / runtime->rate;
 394		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 395		while (hdelta > xrun_threshold) {
 396			delta += runtime->buffer_size;
 397			hw_base += runtime->buffer_size;
 398			if (hw_base >= runtime->boundary)
 399				hw_base = 0;
 
 
 400			new_hw_ptr = hw_base + pos;
 401			hdelta -= runtime->hw_ptr_buffer_jiffies;
 402		}
 403		goto no_delta_check;
 404	}
 405
 406	/* something must be really wrong */
 407	if (delta >= runtime->buffer_size + runtime->period_size) {
 408		hw_ptr_error(substream,
 409			       "Unexpected hw_pointer value %s"
 410			       "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
 411			       "old_hw_ptr=%ld)\n",
 412				     in_interrupt ? "[Q] " : "[P]",
 413				     substream->stream, (long)pos,
 414				     (long)new_hw_ptr, (long)old_hw_ptr);
 415		return 0;
 416	}
 417
 418	/* Do jiffies check only in xrun_debug mode */
 419	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 420		goto no_jiffies_check;
 421
 422	/* Skip the jiffies check for hardwares with BATCH flag.
 423	 * Such hardware usually just increases the position at each IRQ,
 424	 * thus it can't give any strange position.
 425	 */
 426	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 427		goto no_jiffies_check;
 428	hdelta = delta;
 429	if (hdelta < runtime->delay)
 430		goto no_jiffies_check;
 431	hdelta -= runtime->delay;
 432	jdelta = jiffies - runtime->hw_ptr_jiffies;
 433	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 434		delta = jdelta /
 435			(((runtime->period_size * HZ) / runtime->rate)
 436								+ HZ/100);
 437		/* move new_hw_ptr according jiffies not pos variable */
 438		new_hw_ptr = old_hw_ptr;
 439		hw_base = delta;
 440		/* use loop to avoid checks for delta overflows */
 441		/* the delta value is small or zero in most cases */
 442		while (delta > 0) {
 443			new_hw_ptr += runtime->period_size;
 444			if (new_hw_ptr >= runtime->boundary)
 445				new_hw_ptr -= runtime->boundary;
 
 
 446			delta--;
 447		}
 448		/* align hw_base to buffer_size */
 449		hw_ptr_error(substream,
 450			     "hw_ptr skipping! %s"
 451			     "(pos=%ld, delta=%ld, period=%ld, "
 452			     "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 453			     in_interrupt ? "[Q] " : "",
 454			     (long)pos, (long)hdelta,
 455			     (long)runtime->period_size, jdelta,
 456			     ((hdelta * HZ) / runtime->rate), hw_base,
 457			     (unsigned long)old_hw_ptr,
 458			     (unsigned long)new_hw_ptr);
 459		/* reset values to proper state */
 460		delta = 0;
 461		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 462	}
 463 no_jiffies_check:
 464	if (delta > runtime->period_size + runtime->period_size / 2) {
 465		hw_ptr_error(substream,
 466			     "Lost interrupts? %s"
 467			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
 468			     "old_hw_ptr=%ld)\n",
 469			     in_interrupt ? "[Q] " : "",
 470			     substream->stream, (long)delta,
 471			     (long)new_hw_ptr,
 472			     (long)old_hw_ptr);
 473	}
 474
 475 no_delta_check:
 476	if (runtime->status->hw_ptr == new_hw_ptr)
 477		return 0;
 478
 479	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 480	    runtime->silence_size > 0)
 481		snd_pcm_playback_silence(substream, new_hw_ptr);
 482
 483	if (in_interrupt) {
 484		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 485		if (delta < 0)
 486			delta += runtime->boundary;
 487		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 488		runtime->hw_ptr_interrupt += delta;
 489		if (runtime->hw_ptr_interrupt >= runtime->boundary)
 490			runtime->hw_ptr_interrupt -= runtime->boundary;
 491	}
 492	runtime->hw_ptr_base = hw_base;
 493	runtime->status->hw_ptr = new_hw_ptr;
 494	runtime->hw_ptr_jiffies = jiffies;
 495	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 496		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497
 498	return snd_pcm_update_state(substream, runtime);
 499}
 500
 501/* CAUTION: call it with irq disabled */
 502int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 503{
 504	return snd_pcm_update_hw_ptr0(substream, 0);
 505}
 506
 507/**
 508 * snd_pcm_set_ops - set the PCM operators
 509 * @pcm: the pcm instance
 510 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 511 * @ops: the operator table
 512 *
 513 * Sets the given PCM operators to the pcm instance.
 514 */
 515void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
 
 516{
 517	struct snd_pcm_str *stream = &pcm->streams[direction];
 518	struct snd_pcm_substream *substream;
 519	
 520	for (substream = stream->substream; substream != NULL; substream = substream->next)
 521		substream->ops = ops;
 522}
 523
 524EXPORT_SYMBOL(snd_pcm_set_ops);
 525
 526/**
 527 * snd_pcm_sync - set the PCM sync id
 528 * @substream: the pcm substream
 529 *
 530 * Sets the PCM sync identifier for the card.
 531 */
 532void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 533{
 534	struct snd_pcm_runtime *runtime = substream->runtime;
 535	
 536	runtime->sync.id32[0] = substream->pcm->card->number;
 537	runtime->sync.id32[1] = -1;
 538	runtime->sync.id32[2] = -1;
 539	runtime->sync.id32[3] = -1;
 540}
 541
 542EXPORT_SYMBOL(snd_pcm_set_sync);
 543
 544/*
 545 *  Standard ioctl routine
 546 */
 547
 548static inline unsigned int div32(unsigned int a, unsigned int b, 
 549				 unsigned int *r)
 550{
 551	if (b == 0) {
 552		*r = 0;
 553		return UINT_MAX;
 554	}
 555	*r = a % b;
 556	return a / b;
 557}
 558
 559static inline unsigned int div_down(unsigned int a, unsigned int b)
 560{
 561	if (b == 0)
 562		return UINT_MAX;
 563	return a / b;
 564}
 565
 566static inline unsigned int div_up(unsigned int a, unsigned int b)
 567{
 568	unsigned int r;
 569	unsigned int q;
 570	if (b == 0)
 571		return UINT_MAX;
 572	q = div32(a, b, &r);
 573	if (r)
 574		++q;
 575	return q;
 576}
 577
 578static inline unsigned int mul(unsigned int a, unsigned int b)
 579{
 580	if (a == 0)
 581		return 0;
 582	if (div_down(UINT_MAX, a) < b)
 583		return UINT_MAX;
 584	return a * b;
 585}
 586
 587static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 588				    unsigned int c, unsigned int *r)
 589{
 590	u_int64_t n = (u_int64_t) a * b;
 591	if (c == 0) {
 592		snd_BUG_ON(!n);
 593		*r = 0;
 594		return UINT_MAX;
 595	}
 596	n = div_u64_rem(n, c, r);
 597	if (n >= UINT_MAX) {
 598		*r = 0;
 599		return UINT_MAX;
 600	}
 601	return n;
 602}
 603
 604/**
 605 * snd_interval_refine - refine the interval value of configurator
 606 * @i: the interval value to refine
 607 * @v: the interval value to refer to
 608 *
 609 * Refines the interval value with the reference value.
 610 * The interval is changed to the range satisfying both intervals.
 611 * The interval status (min, max, integer, etc.) are evaluated.
 612 *
 613 * Returns non-zero if the value is changed, zero if not changed.
 
 614 */
 615int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 616{
 617	int changed = 0;
 618	if (snd_BUG_ON(snd_interval_empty(i)))
 619		return -EINVAL;
 620	if (i->min < v->min) {
 621		i->min = v->min;
 622		i->openmin = v->openmin;
 623		changed = 1;
 624	} else if (i->min == v->min && !i->openmin && v->openmin) {
 625		i->openmin = 1;
 626		changed = 1;
 627	}
 628	if (i->max > v->max) {
 629		i->max = v->max;
 630		i->openmax = v->openmax;
 631		changed = 1;
 632	} else if (i->max == v->max && !i->openmax && v->openmax) {
 633		i->openmax = 1;
 634		changed = 1;
 635	}
 636	if (!i->integer && v->integer) {
 637		i->integer = 1;
 638		changed = 1;
 639	}
 640	if (i->integer) {
 641		if (i->openmin) {
 642			i->min++;
 643			i->openmin = 0;
 644		}
 645		if (i->openmax) {
 646			i->max--;
 647			i->openmax = 0;
 648		}
 649	} else if (!i->openmin && !i->openmax && i->min == i->max)
 650		i->integer = 1;
 651	if (snd_interval_checkempty(i)) {
 652		snd_interval_none(i);
 653		return -EINVAL;
 654	}
 655	return changed;
 656}
 657
 658EXPORT_SYMBOL(snd_interval_refine);
 659
 660static int snd_interval_refine_first(struct snd_interval *i)
 661{
 662	if (snd_BUG_ON(snd_interval_empty(i)))
 663		return -EINVAL;
 664	if (snd_interval_single(i))
 665		return 0;
 666	i->max = i->min;
 667	i->openmax = i->openmin;
 668	if (i->openmax)
 669		i->max++;
 670	return 1;
 671}
 672
 673static int snd_interval_refine_last(struct snd_interval *i)
 674{
 675	if (snd_BUG_ON(snd_interval_empty(i)))
 676		return -EINVAL;
 677	if (snd_interval_single(i))
 678		return 0;
 679	i->min = i->max;
 680	i->openmin = i->openmax;
 681	if (i->openmin)
 682		i->min--;
 683	return 1;
 684}
 685
 686void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 687{
 688	if (a->empty || b->empty) {
 689		snd_interval_none(c);
 690		return;
 691	}
 692	c->empty = 0;
 693	c->min = mul(a->min, b->min);
 694	c->openmin = (a->openmin || b->openmin);
 695	c->max = mul(a->max,  b->max);
 696	c->openmax = (a->openmax || b->openmax);
 697	c->integer = (a->integer && b->integer);
 698}
 699
 700/**
 701 * snd_interval_div - refine the interval value with division
 702 * @a: dividend
 703 * @b: divisor
 704 * @c: quotient
 705 *
 706 * c = a / b
 707 *
 708 * Returns non-zero if the value is changed, zero if not changed.
 709 */
 710void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 711{
 712	unsigned int r;
 713	if (a->empty || b->empty) {
 714		snd_interval_none(c);
 715		return;
 716	}
 717	c->empty = 0;
 718	c->min = div32(a->min, b->max, &r);
 719	c->openmin = (r || a->openmin || b->openmax);
 720	if (b->min > 0) {
 721		c->max = div32(a->max, b->min, &r);
 722		if (r) {
 723			c->max++;
 724			c->openmax = 1;
 725		} else
 726			c->openmax = (a->openmax || b->openmin);
 727	} else {
 728		c->max = UINT_MAX;
 729		c->openmax = 0;
 730	}
 731	c->integer = 0;
 732}
 733
 734/**
 735 * snd_interval_muldivk - refine the interval value
 736 * @a: dividend 1
 737 * @b: dividend 2
 738 * @k: divisor (as integer)
 739 * @c: result
 740  *
 741 * c = a * b / k
 742 *
 743 * Returns non-zero if the value is changed, zero if not changed.
 744 */
 745void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 746		      unsigned int k, struct snd_interval *c)
 747{
 748	unsigned int r;
 749	if (a->empty || b->empty) {
 750		snd_interval_none(c);
 751		return;
 752	}
 753	c->empty = 0;
 754	c->min = muldiv32(a->min, b->min, k, &r);
 755	c->openmin = (r || a->openmin || b->openmin);
 756	c->max = muldiv32(a->max, b->max, k, &r);
 757	if (r) {
 758		c->max++;
 759		c->openmax = 1;
 760	} else
 761		c->openmax = (a->openmax || b->openmax);
 762	c->integer = 0;
 763}
 764
 765/**
 766 * snd_interval_mulkdiv - refine the interval value
 767 * @a: dividend 1
 768 * @k: dividend 2 (as integer)
 769 * @b: divisor
 770 * @c: result
 771 *
 772 * c = a * k / b
 773 *
 774 * Returns non-zero if the value is changed, zero if not changed.
 775 */
 776void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 777		      const struct snd_interval *b, struct snd_interval *c)
 778{
 779	unsigned int r;
 780	if (a->empty || b->empty) {
 781		snd_interval_none(c);
 782		return;
 783	}
 784	c->empty = 0;
 785	c->min = muldiv32(a->min, k, b->max, &r);
 786	c->openmin = (r || a->openmin || b->openmax);
 787	if (b->min > 0) {
 788		c->max = muldiv32(a->max, k, b->min, &r);
 789		if (r) {
 790			c->max++;
 791			c->openmax = 1;
 792		} else
 793			c->openmax = (a->openmax || b->openmin);
 794	} else {
 795		c->max = UINT_MAX;
 796		c->openmax = 0;
 797	}
 798	c->integer = 0;
 799}
 800
 801/* ---- */
 802
 803
 804/**
 805 * snd_interval_ratnum - refine the interval value
 806 * @i: interval to refine
 807 * @rats_count: number of ratnum_t 
 808 * @rats: ratnum_t array
 809 * @nump: pointer to store the resultant numerator
 810 * @denp: pointer to store the resultant denominator
 811 *
 812 * Returns non-zero if the value is changed, zero if not changed.
 
 813 */
 814int snd_interval_ratnum(struct snd_interval *i,
 815			unsigned int rats_count, struct snd_ratnum *rats,
 816			unsigned int *nump, unsigned int *denp)
 817{
 818	unsigned int best_num, best_den;
 819	int best_diff;
 820	unsigned int k;
 821	struct snd_interval t;
 822	int err;
 823	unsigned int result_num, result_den;
 824	int result_diff;
 825
 826	best_num = best_den = best_diff = 0;
 827	for (k = 0; k < rats_count; ++k) {
 828		unsigned int num = rats[k].num;
 829		unsigned int den;
 830		unsigned int q = i->min;
 831		int diff;
 832		if (q == 0)
 833			q = 1;
 834		den = div_up(num, q);
 835		if (den < rats[k].den_min)
 836			continue;
 837		if (den > rats[k].den_max)
 838			den = rats[k].den_max;
 839		else {
 840			unsigned int r;
 841			r = (den - rats[k].den_min) % rats[k].den_step;
 842			if (r != 0)
 843				den -= r;
 844		}
 845		diff = num - q * den;
 846		if (diff < 0)
 847			diff = -diff;
 848		if (best_num == 0 ||
 849		    diff * best_den < best_diff * den) {
 850			best_diff = diff;
 851			best_den = den;
 852			best_num = num;
 853		}
 854	}
 855	if (best_den == 0) {
 856		i->empty = 1;
 857		return -EINVAL;
 858	}
 859	t.min = div_down(best_num, best_den);
 860	t.openmin = !!(best_num % best_den);
 861	
 862	result_num = best_num;
 863	result_diff = best_diff;
 864	result_den = best_den;
 865	best_num = best_den = best_diff = 0;
 866	for (k = 0; k < rats_count; ++k) {
 867		unsigned int num = rats[k].num;
 868		unsigned int den;
 869		unsigned int q = i->max;
 870		int diff;
 871		if (q == 0) {
 872			i->empty = 1;
 873			return -EINVAL;
 874		}
 875		den = div_down(num, q);
 876		if (den > rats[k].den_max)
 877			continue;
 878		if (den < rats[k].den_min)
 879			den = rats[k].den_min;
 880		else {
 881			unsigned int r;
 882			r = (den - rats[k].den_min) % rats[k].den_step;
 883			if (r != 0)
 884				den += rats[k].den_step - r;
 885		}
 886		diff = q * den - num;
 887		if (diff < 0)
 888			diff = -diff;
 889		if (best_num == 0 ||
 890		    diff * best_den < best_diff * den) {
 891			best_diff = diff;
 892			best_den = den;
 893			best_num = num;
 894		}
 895	}
 896	if (best_den == 0) {
 897		i->empty = 1;
 898		return -EINVAL;
 899	}
 900	t.max = div_up(best_num, best_den);
 901	t.openmax = !!(best_num % best_den);
 902	t.integer = 0;
 903	err = snd_interval_refine(i, &t);
 904	if (err < 0)
 905		return err;
 906
 907	if (snd_interval_single(i)) {
 908		if (best_diff * result_den < result_diff * best_den) {
 909			result_num = best_num;
 910			result_den = best_den;
 911		}
 912		if (nump)
 913			*nump = result_num;
 914		if (denp)
 915			*denp = result_den;
 916	}
 917	return err;
 918}
 919
 920EXPORT_SYMBOL(snd_interval_ratnum);
 921
 922/**
 923 * snd_interval_ratden - refine the interval value
 924 * @i: interval to refine
 925 * @rats_count: number of struct ratden
 926 * @rats: struct ratden array
 927 * @nump: pointer to store the resultant numerator
 928 * @denp: pointer to store the resultant denominator
 929 *
 930 * Returns non-zero if the value is changed, zero if not changed.
 
 931 */
 932static int snd_interval_ratden(struct snd_interval *i,
 933			       unsigned int rats_count, struct snd_ratden *rats,
 934			       unsigned int *nump, unsigned int *denp)
 935{
 936	unsigned int best_num, best_diff, best_den;
 937	unsigned int k;
 938	struct snd_interval t;
 939	int err;
 940
 941	best_num = best_den = best_diff = 0;
 942	for (k = 0; k < rats_count; ++k) {
 943		unsigned int num;
 944		unsigned int den = rats[k].den;
 945		unsigned int q = i->min;
 946		int diff;
 947		num = mul(q, den);
 948		if (num > rats[k].num_max)
 949			continue;
 950		if (num < rats[k].num_min)
 951			num = rats[k].num_max;
 952		else {
 953			unsigned int r;
 954			r = (num - rats[k].num_min) % rats[k].num_step;
 955			if (r != 0)
 956				num += rats[k].num_step - r;
 957		}
 958		diff = num - q * den;
 959		if (best_num == 0 ||
 960		    diff * best_den < best_diff * den) {
 961			best_diff = diff;
 962			best_den = den;
 963			best_num = num;
 964		}
 965	}
 966	if (best_den == 0) {
 967		i->empty = 1;
 968		return -EINVAL;
 969	}
 970	t.min = div_down(best_num, best_den);
 971	t.openmin = !!(best_num % best_den);
 972	
 973	best_num = best_den = best_diff = 0;
 974	for (k = 0; k < rats_count; ++k) {
 975		unsigned int num;
 976		unsigned int den = rats[k].den;
 977		unsigned int q = i->max;
 978		int diff;
 979		num = mul(q, den);
 980		if (num < rats[k].num_min)
 981			continue;
 982		if (num > rats[k].num_max)
 983			num = rats[k].num_max;
 984		else {
 985			unsigned int r;
 986			r = (num - rats[k].num_min) % rats[k].num_step;
 987			if (r != 0)
 988				num -= r;
 989		}
 990		diff = q * den - num;
 991		if (best_num == 0 ||
 992		    diff * best_den < best_diff * den) {
 993			best_diff = diff;
 994			best_den = den;
 995			best_num = num;
 996		}
 997	}
 998	if (best_den == 0) {
 999		i->empty = 1;
1000		return -EINVAL;
1001	}
1002	t.max = div_up(best_num, best_den);
1003	t.openmax = !!(best_num % best_den);
1004	t.integer = 0;
1005	err = snd_interval_refine(i, &t);
1006	if (err < 0)
1007		return err;
1008
1009	if (snd_interval_single(i)) {
1010		if (nump)
1011			*nump = best_num;
1012		if (denp)
1013			*denp = best_den;
1014	}
1015	return err;
1016}
1017
1018/**
1019 * snd_interval_list - refine the interval value from the list
1020 * @i: the interval value to refine
1021 * @count: the number of elements in the list
1022 * @list: the value list
1023 * @mask: the bit-mask to evaluate
1024 *
1025 * Refines the interval value from the list.
1026 * When mask is non-zero, only the elements corresponding to bit 1 are
1027 * evaluated.
1028 *
1029 * Returns non-zero if the value is changed, zero if not changed.
 
1030 */
1031int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
 
1032{
1033        unsigned int k;
1034	struct snd_interval list_range;
1035
1036	if (!count) {
1037		i->empty = 1;
1038		return -EINVAL;
1039	}
1040	snd_interval_any(&list_range);
1041	list_range.min = UINT_MAX;
1042	list_range.max = 0;
1043        for (k = 0; k < count; k++) {
1044		if (mask && !(mask & (1 << k)))
1045			continue;
1046		if (!snd_interval_test(i, list[k]))
1047			continue;
1048		list_range.min = min(list_range.min, list[k]);
1049		list_range.max = max(list_range.max, list[k]);
1050        }
1051	return snd_interval_refine(i, &list_range);
1052}
1053
1054EXPORT_SYMBOL(snd_interval_list);
1055
1056static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1057{
1058	unsigned int n;
1059	int changed = 0;
1060	n = (i->min - min) % step;
1061	if (n != 0 || i->openmin) {
1062		i->min += step - n;
1063		changed = 1;
1064	}
1065	n = (i->max - min) % step;
1066	if (n != 0 || i->openmax) {
1067		i->max -= n;
1068		changed = 1;
1069	}
1070	if (snd_interval_checkempty(i)) {
1071		i->empty = 1;
1072		return -EINVAL;
1073	}
1074	return changed;
1075}
1076
1077/* Info constraints helpers */
1078
1079/**
1080 * snd_pcm_hw_rule_add - add the hw-constraint rule
1081 * @runtime: the pcm runtime instance
1082 * @cond: condition bits
1083 * @var: the variable to evaluate
1084 * @func: the evaluation function
1085 * @private: the private data pointer passed to function
1086 * @dep: the dependent variables
1087 *
1088 * Returns zero if successful, or a negative error code on failure.
1089 */
1090int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1091			int var,
1092			snd_pcm_hw_rule_func_t func, void *private,
1093			int dep, ...)
1094{
1095	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1096	struct snd_pcm_hw_rule *c;
1097	unsigned int k;
1098	va_list args;
1099	va_start(args, dep);
1100	if (constrs->rules_num >= constrs->rules_all) {
1101		struct snd_pcm_hw_rule *new;
1102		unsigned int new_rules = constrs->rules_all + 16;
1103		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1104		if (!new) {
1105			va_end(args);
1106			return -ENOMEM;
1107		}
1108		if (constrs->rules) {
1109			memcpy(new, constrs->rules,
1110			       constrs->rules_num * sizeof(*c));
1111			kfree(constrs->rules);
1112		}
1113		constrs->rules = new;
1114		constrs->rules_all = new_rules;
1115	}
1116	c = &constrs->rules[constrs->rules_num];
1117	c->cond = cond;
1118	c->func = func;
1119	c->var = var;
1120	c->private = private;
1121	k = 0;
1122	while (1) {
1123		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1124			va_end(args);
1125			return -EINVAL;
1126		}
1127		c->deps[k++] = dep;
1128		if (dep < 0)
1129			break;
1130		dep = va_arg(args, int);
1131	}
1132	constrs->rules_num++;
1133	va_end(args);
1134	return 0;
1135}
1136
1137EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1138
1139/**
1140 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1141 * @runtime: PCM runtime instance
1142 * @var: hw_params variable to apply the mask
1143 * @mask: the bitmap mask
1144 *
1145 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
 
 
1146 */
1147int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1148			       u_int32_t mask)
1149{
1150	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1151	struct snd_mask *maskp = constrs_mask(constrs, var);
1152	*maskp->bits &= mask;
1153	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1154	if (*maskp->bits == 0)
1155		return -EINVAL;
1156	return 0;
1157}
1158
1159/**
1160 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1161 * @runtime: PCM runtime instance
1162 * @var: hw_params variable to apply the mask
1163 * @mask: the 64bit bitmap mask
1164 *
1165 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
 
 
1166 */
1167int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1168				 u_int64_t mask)
1169{
1170	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1171	struct snd_mask *maskp = constrs_mask(constrs, var);
1172	maskp->bits[0] &= (u_int32_t)mask;
1173	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1174	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1175	if (! maskp->bits[0] && ! maskp->bits[1])
1176		return -EINVAL;
1177	return 0;
1178}
 
1179
1180/**
1181 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1182 * @runtime: PCM runtime instance
1183 * @var: hw_params variable to apply the integer constraint
1184 *
1185 * Apply the constraint of integer to an interval parameter.
 
 
 
1186 */
1187int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1188{
1189	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1190	return snd_interval_setinteger(constrs_interval(constrs, var));
1191}
1192
1193EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1194
1195/**
1196 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1197 * @runtime: PCM runtime instance
1198 * @var: hw_params variable to apply the range
1199 * @min: the minimal value
1200 * @max: the maximal value
1201 * 
1202 * Apply the min/max range constraint to an interval parameter.
 
 
 
1203 */
1204int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1205				 unsigned int min, unsigned int max)
1206{
1207	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1208	struct snd_interval t;
1209	t.min = min;
1210	t.max = max;
1211	t.openmin = t.openmax = 0;
1212	t.integer = 0;
1213	return snd_interval_refine(constrs_interval(constrs, var), &t);
1214}
1215
1216EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1217
1218static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1219				struct snd_pcm_hw_rule *rule)
1220{
1221	struct snd_pcm_hw_constraint_list *list = rule->private;
1222	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1223}		
1224
1225
1226/**
1227 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1228 * @runtime: PCM runtime instance
1229 * @cond: condition bits
1230 * @var: hw_params variable to apply the list constraint
1231 * @l: list
1232 * 
1233 * Apply the list of constraints to an interval parameter.
 
 
1234 */
1235int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1236			       unsigned int cond,
1237			       snd_pcm_hw_param_t var,
1238			       struct snd_pcm_hw_constraint_list *l)
1239{
1240	return snd_pcm_hw_rule_add(runtime, cond, var,
1241				   snd_pcm_hw_rule_list, l,
1242				   var, -1);
1243}
1244
1245EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1246
1247static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1248				   struct snd_pcm_hw_rule *rule)
1249{
1250	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1251	unsigned int num = 0, den = 0;
1252	int err;
1253	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1254				  r->nrats, r->rats, &num, &den);
1255	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1256		params->rate_num = num;
1257		params->rate_den = den;
1258	}
1259	return err;
1260}
1261
1262/**
1263 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1264 * @runtime: PCM runtime instance
1265 * @cond: condition bits
1266 * @var: hw_params variable to apply the ratnums constraint
1267 * @r: struct snd_ratnums constriants
 
 
1268 */
1269int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1270				  unsigned int cond,
1271				  snd_pcm_hw_param_t var,
1272				  struct snd_pcm_hw_constraint_ratnums *r)
1273{
1274	return snd_pcm_hw_rule_add(runtime, cond, var,
1275				   snd_pcm_hw_rule_ratnums, r,
1276				   var, -1);
1277}
1278
1279EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1280
1281static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1282				   struct snd_pcm_hw_rule *rule)
1283{
1284	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1285	unsigned int num = 0, den = 0;
1286	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1287				  r->nrats, r->rats, &num, &den);
1288	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1289		params->rate_num = num;
1290		params->rate_den = den;
1291	}
1292	return err;
1293}
1294
1295/**
1296 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1297 * @runtime: PCM runtime instance
1298 * @cond: condition bits
1299 * @var: hw_params variable to apply the ratdens constraint
1300 * @r: struct snd_ratdens constriants
 
 
1301 */
1302int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1303				  unsigned int cond,
1304				  snd_pcm_hw_param_t var,
1305				  struct snd_pcm_hw_constraint_ratdens *r)
1306{
1307	return snd_pcm_hw_rule_add(runtime, cond, var,
1308				   snd_pcm_hw_rule_ratdens, r,
1309				   var, -1);
1310}
1311
1312EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1313
1314static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1315				  struct snd_pcm_hw_rule *rule)
1316{
1317	unsigned int l = (unsigned long) rule->private;
1318	int width = l & 0xffff;
1319	unsigned int msbits = l >> 16;
1320	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1321	if (snd_interval_single(i) && snd_interval_value(i) == width)
1322		params->msbits = msbits;
1323	return 0;
1324}
1325
1326/**
1327 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1328 * @runtime: PCM runtime instance
1329 * @cond: condition bits
1330 * @width: sample bits width
1331 * @msbits: msbits width
 
 
1332 */
1333int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1334				 unsigned int cond,
1335				 unsigned int width,
1336				 unsigned int msbits)
1337{
1338	unsigned long l = (msbits << 16) | width;
1339	return snd_pcm_hw_rule_add(runtime, cond, -1,
1340				    snd_pcm_hw_rule_msbits,
1341				    (void*) l,
1342				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1343}
1344
1345EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1346
1347static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1348				struct snd_pcm_hw_rule *rule)
1349{
1350	unsigned long step = (unsigned long) rule->private;
1351	return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1352}
1353
1354/**
1355 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1356 * @runtime: PCM runtime instance
1357 * @cond: condition bits
1358 * @var: hw_params variable to apply the step constraint
1359 * @step: step size
 
 
1360 */
1361int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1362			       unsigned int cond,
1363			       snd_pcm_hw_param_t var,
1364			       unsigned long step)
1365{
1366	return snd_pcm_hw_rule_add(runtime, cond, var, 
1367				   snd_pcm_hw_rule_step, (void *) step,
1368				   var, -1);
1369}
1370
1371EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1372
1373static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1374{
1375	static unsigned int pow2_sizes[] = {
1376		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1377		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1378		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1379		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1380	};
1381	return snd_interval_list(hw_param_interval(params, rule->var),
1382				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1383}		
1384
1385/**
1386 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1387 * @runtime: PCM runtime instance
1388 * @cond: condition bits
1389 * @var: hw_params variable to apply the power-of-2 constraint
 
 
1390 */
1391int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1392			       unsigned int cond,
1393			       snd_pcm_hw_param_t var)
1394{
1395	return snd_pcm_hw_rule_add(runtime, cond, var, 
1396				   snd_pcm_hw_rule_pow2, NULL,
1397				   var, -1);
1398}
1399
1400EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1402static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1403				  snd_pcm_hw_param_t var)
1404{
1405	if (hw_is_mask(var)) {
1406		snd_mask_any(hw_param_mask(params, var));
1407		params->cmask |= 1 << var;
1408		params->rmask |= 1 << var;
1409		return;
1410	}
1411	if (hw_is_interval(var)) {
1412		snd_interval_any(hw_param_interval(params, var));
1413		params->cmask |= 1 << var;
1414		params->rmask |= 1 << var;
1415		return;
1416	}
1417	snd_BUG();
1418}
1419
1420void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1421{
1422	unsigned int k;
1423	memset(params, 0, sizeof(*params));
1424	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1425		_snd_pcm_hw_param_any(params, k);
1426	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1427		_snd_pcm_hw_param_any(params, k);
1428	params->info = ~0U;
1429}
1430
1431EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1432
1433/**
1434 * snd_pcm_hw_param_value - return @params field @var value
1435 * @params: the hw_params instance
1436 * @var: parameter to retrieve
1437 * @dir: pointer to the direction (-1,0,1) or %NULL
1438 *
1439 * Return the value for field @var if it's fixed in configuration space
1440 * defined by @params. Return -%EINVAL otherwise.
1441 */
1442int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1443			   snd_pcm_hw_param_t var, int *dir)
1444{
1445	if (hw_is_mask(var)) {
1446		const struct snd_mask *mask = hw_param_mask_c(params, var);
1447		if (!snd_mask_single(mask))
1448			return -EINVAL;
1449		if (dir)
1450			*dir = 0;
1451		return snd_mask_value(mask);
1452	}
1453	if (hw_is_interval(var)) {
1454		const struct snd_interval *i = hw_param_interval_c(params, var);
1455		if (!snd_interval_single(i))
1456			return -EINVAL;
1457		if (dir)
1458			*dir = i->openmin;
1459		return snd_interval_value(i);
1460	}
1461	return -EINVAL;
1462}
1463
1464EXPORT_SYMBOL(snd_pcm_hw_param_value);
1465
1466void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1467				snd_pcm_hw_param_t var)
1468{
1469	if (hw_is_mask(var)) {
1470		snd_mask_none(hw_param_mask(params, var));
1471		params->cmask |= 1 << var;
1472		params->rmask |= 1 << var;
1473	} else if (hw_is_interval(var)) {
1474		snd_interval_none(hw_param_interval(params, var));
1475		params->cmask |= 1 << var;
1476		params->rmask |= 1 << var;
1477	} else {
1478		snd_BUG();
1479	}
1480}
1481
1482EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1483
1484static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1485				   snd_pcm_hw_param_t var)
1486{
1487	int changed;
1488	if (hw_is_mask(var))
1489		changed = snd_mask_refine_first(hw_param_mask(params, var));
1490	else if (hw_is_interval(var))
1491		changed = snd_interval_refine_first(hw_param_interval(params, var));
1492	else
1493		return -EINVAL;
1494	if (changed) {
1495		params->cmask |= 1 << var;
1496		params->rmask |= 1 << var;
1497	}
1498	return changed;
1499}
1500
1501
1502/**
1503 * snd_pcm_hw_param_first - refine config space and return minimum value
1504 * @pcm: PCM instance
1505 * @params: the hw_params instance
1506 * @var: parameter to retrieve
1507 * @dir: pointer to the direction (-1,0,1) or %NULL
1508 *
1509 * Inside configuration space defined by @params remove from @var all
1510 * values > minimum. Reduce configuration space accordingly.
1511 * Return the minimum.
 
1512 */
1513int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1514			   struct snd_pcm_hw_params *params, 
1515			   snd_pcm_hw_param_t var, int *dir)
1516{
1517	int changed = _snd_pcm_hw_param_first(params, var);
1518	if (changed < 0)
1519		return changed;
1520	if (params->rmask) {
1521		int err = snd_pcm_hw_refine(pcm, params);
1522		if (snd_BUG_ON(err < 0))
1523			return err;
1524	}
1525	return snd_pcm_hw_param_value(params, var, dir);
1526}
1527
1528EXPORT_SYMBOL(snd_pcm_hw_param_first);
1529
1530static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1531				  snd_pcm_hw_param_t var)
1532{
1533	int changed;
1534	if (hw_is_mask(var))
1535		changed = snd_mask_refine_last(hw_param_mask(params, var));
1536	else if (hw_is_interval(var))
1537		changed = snd_interval_refine_last(hw_param_interval(params, var));
1538	else
1539		return -EINVAL;
1540	if (changed) {
1541		params->cmask |= 1 << var;
1542		params->rmask |= 1 << var;
1543	}
1544	return changed;
1545}
1546
1547
1548/**
1549 * snd_pcm_hw_param_last - refine config space and return maximum value
1550 * @pcm: PCM instance
1551 * @params: the hw_params instance
1552 * @var: parameter to retrieve
1553 * @dir: pointer to the direction (-1,0,1) or %NULL
1554 *
1555 * Inside configuration space defined by @params remove from @var all
1556 * values < maximum. Reduce configuration space accordingly.
1557 * Return the maximum.
 
1558 */
1559int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1560			  struct snd_pcm_hw_params *params,
1561			  snd_pcm_hw_param_t var, int *dir)
1562{
1563	int changed = _snd_pcm_hw_param_last(params, var);
1564	if (changed < 0)
1565		return changed;
1566	if (params->rmask) {
1567		int err = snd_pcm_hw_refine(pcm, params);
1568		if (snd_BUG_ON(err < 0))
1569			return err;
1570	}
1571	return snd_pcm_hw_param_value(params, var, dir);
1572}
1573
1574EXPORT_SYMBOL(snd_pcm_hw_param_last);
1575
1576/**
1577 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1578 * @pcm: PCM instance
1579 * @params: the hw_params instance
1580 *
1581 * Choose one configuration from configuration space defined by @params.
1582 * The configuration chosen is that obtained fixing in this order:
1583 * first access, first format, first subformat, min channels,
1584 * min rate, min period time, max buffer size, min tick time
 
 
1585 */
1586int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1587			     struct snd_pcm_hw_params *params)
1588{
1589	static int vars[] = {
1590		SNDRV_PCM_HW_PARAM_ACCESS,
1591		SNDRV_PCM_HW_PARAM_FORMAT,
1592		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1593		SNDRV_PCM_HW_PARAM_CHANNELS,
1594		SNDRV_PCM_HW_PARAM_RATE,
1595		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1596		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1597		SNDRV_PCM_HW_PARAM_TICK_TIME,
1598		-1
1599	};
1600	int err, *v;
1601
1602	for (v = vars; *v != -1; v++) {
1603		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1604			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1605		else
1606			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1607		if (snd_BUG_ON(err < 0))
1608			return err;
1609	}
1610	return 0;
1611}
1612
1613static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1614				   void *arg)
1615{
1616	struct snd_pcm_runtime *runtime = substream->runtime;
1617	unsigned long flags;
1618	snd_pcm_stream_lock_irqsave(substream, flags);
1619	if (snd_pcm_running(substream) &&
1620	    snd_pcm_update_hw_ptr(substream) >= 0)
1621		runtime->status->hw_ptr %= runtime->buffer_size;
1622	else
1623		runtime->status->hw_ptr = 0;
 
 
1624	snd_pcm_stream_unlock_irqrestore(substream, flags);
1625	return 0;
1626}
1627
1628static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1629					  void *arg)
1630{
1631	struct snd_pcm_channel_info *info = arg;
1632	struct snd_pcm_runtime *runtime = substream->runtime;
1633	int width;
1634	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1635		info->offset = -1;
1636		return 0;
1637	}
1638	width = snd_pcm_format_physical_width(runtime->format);
1639	if (width < 0)
1640		return width;
1641	info->offset = 0;
1642	switch (runtime->access) {
1643	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1644	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1645		info->first = info->channel * width;
1646		info->step = runtime->channels * width;
1647		break;
1648	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1649	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1650	{
1651		size_t size = runtime->dma_bytes / runtime->channels;
1652		info->first = info->channel * size * 8;
1653		info->step = width;
1654		break;
1655	}
1656	default:
1657		snd_BUG();
1658		break;
1659	}
1660	return 0;
1661}
1662
1663static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1664				       void *arg)
1665{
1666	struct snd_pcm_hw_params *params = arg;
1667	snd_pcm_format_t format;
1668	int channels, width;
1669
1670	params->fifo_size = substream->runtime->hw.fifo_size;
1671	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1672		format = params_format(params);
1673		channels = params_channels(params);
1674		width = snd_pcm_format_physical_width(format);
1675		params->fifo_size /= width * channels;
1676	}
1677	return 0;
1678}
1679
1680/**
1681 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1682 * @substream: the pcm substream instance
1683 * @cmd: ioctl command
1684 * @arg: ioctl argument
1685 *
1686 * Processes the generic ioctl commands for PCM.
1687 * Can be passed as the ioctl callback for PCM ops.
1688 *
1689 * Returns zero if successful, or a negative error code on failure.
1690 */
1691int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1692		      unsigned int cmd, void *arg)
1693{
1694	switch (cmd) {
1695	case SNDRV_PCM_IOCTL1_INFO:
1696		return 0;
1697	case SNDRV_PCM_IOCTL1_RESET:
1698		return snd_pcm_lib_ioctl_reset(substream, arg);
1699	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1700		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1701	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1702		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1703	}
1704	return -ENXIO;
1705}
1706
1707EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1708
1709/**
1710 * snd_pcm_period_elapsed - update the pcm status for the next period
1711 * @substream: the pcm substream instance
1712 *
1713 * This function is called from the interrupt handler when the
1714 * PCM has processed the period size.  It will update the current
1715 * pointer, wake up sleepers, etc.
1716 *
1717 * Even if more than one periods have elapsed since the last call, you
1718 * have to call this only once.
1719 */
1720void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1721{
1722	struct snd_pcm_runtime *runtime;
1723	unsigned long flags;
1724
1725	if (PCM_RUNTIME_CHECK(substream))
1726		return;
1727	runtime = substream->runtime;
1728
1729	if (runtime->transfer_ack_begin)
1730		runtime->transfer_ack_begin(substream);
1731
1732	snd_pcm_stream_lock_irqsave(substream, flags);
1733	if (!snd_pcm_running(substream) ||
1734	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1735		goto _end;
1736
1737	if (substream->timer_running)
1738		snd_timer_interrupt(substream->timer, 1);
1739 _end:
1740	snd_pcm_stream_unlock_irqrestore(substream, flags);
1741	if (runtime->transfer_ack_end)
1742		runtime->transfer_ack_end(substream);
1743	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1744}
1745
1746EXPORT_SYMBOL(snd_pcm_period_elapsed);
1747
1748/*
1749 * Wait until avail_min data becomes available
1750 * Returns a negative error code if any error occurs during operation.
1751 * The available space is stored on availp.  When err = 0 and avail = 0
1752 * on the capture stream, it indicates the stream is in DRAINING state.
1753 */
1754static int wait_for_avail(struct snd_pcm_substream *substream,
1755			      snd_pcm_uframes_t *availp)
1756{
1757	struct snd_pcm_runtime *runtime = substream->runtime;
1758	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1759	wait_queue_t wait;
1760	int err = 0;
1761	snd_pcm_uframes_t avail = 0;
1762	long wait_time, tout;
1763
1764	init_waitqueue_entry(&wait, current);
1765	set_current_state(TASK_INTERRUPTIBLE);
1766	add_wait_queue(&runtime->tsleep, &wait);
1767
1768	if (runtime->no_period_wakeup)
1769		wait_time = MAX_SCHEDULE_TIMEOUT;
1770	else {
1771		wait_time = 10;
1772		if (runtime->rate) {
1773			long t = runtime->period_size * 2 / runtime->rate;
1774			wait_time = max(t, wait_time);
1775		}
1776		wait_time = msecs_to_jiffies(wait_time * 1000);
1777	}
1778
1779	for (;;) {
1780		if (signal_pending(current)) {
1781			err = -ERESTARTSYS;
1782			break;
1783		}
1784
1785		/*
1786		 * We need to check if space became available already
1787		 * (and thus the wakeup happened already) first to close
1788		 * the race of space already having become available.
1789		 * This check must happen after been added to the waitqueue
1790		 * and having current state be INTERRUPTIBLE.
1791		 */
1792		if (is_playback)
1793			avail = snd_pcm_playback_avail(runtime);
1794		else
1795			avail = snd_pcm_capture_avail(runtime);
1796		if (avail >= runtime->twake)
1797			break;
1798		snd_pcm_stream_unlock_irq(substream);
1799
1800		tout = schedule_timeout(wait_time);
1801
1802		snd_pcm_stream_lock_irq(substream);
1803		set_current_state(TASK_INTERRUPTIBLE);
1804		switch (runtime->status->state) {
1805		case SNDRV_PCM_STATE_SUSPENDED:
1806			err = -ESTRPIPE;
1807			goto _endloop;
1808		case SNDRV_PCM_STATE_XRUN:
1809			err = -EPIPE;
1810			goto _endloop;
1811		case SNDRV_PCM_STATE_DRAINING:
1812			if (is_playback)
1813				err = -EPIPE;
1814			else 
1815				avail = 0; /* indicate draining */
1816			goto _endloop;
1817		case SNDRV_PCM_STATE_OPEN:
1818		case SNDRV_PCM_STATE_SETUP:
1819		case SNDRV_PCM_STATE_DISCONNECTED:
1820			err = -EBADFD;
1821			goto _endloop;
 
 
1822		}
1823		if (!tout) {
1824			snd_printd("%s write error (DMA or IRQ trouble?)\n",
1825				   is_playback ? "playback" : "capture");
 
1826			err = -EIO;
1827			break;
1828		}
1829	}
1830 _endloop:
1831	set_current_state(TASK_RUNNING);
1832	remove_wait_queue(&runtime->tsleep, &wait);
1833	*availp = avail;
1834	return err;
1835}
1836	
1837static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1838				      unsigned int hwoff,
1839				      unsigned long data, unsigned int off,
1840				      snd_pcm_uframes_t frames)
1841{
1842	struct snd_pcm_runtime *runtime = substream->runtime;
1843	int err;
1844	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1845	if (substream->ops->copy) {
1846		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1847			return err;
1848	} else {
1849		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1850		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1851			return -EFAULT;
1852	}
1853	return 0;
1854}
1855 
1856typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1857			  unsigned long data, unsigned int off,
1858			  snd_pcm_uframes_t size);
1859
1860static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1861					    unsigned long data,
1862					    snd_pcm_uframes_t size,
1863					    int nonblock,
1864					    transfer_f transfer)
1865{
1866	struct snd_pcm_runtime *runtime = substream->runtime;
1867	snd_pcm_uframes_t xfer = 0;
1868	snd_pcm_uframes_t offset = 0;
 
1869	int err = 0;
1870
1871	if (size == 0)
1872		return 0;
1873
1874	snd_pcm_stream_lock_irq(substream);
1875	switch (runtime->status->state) {
1876	case SNDRV_PCM_STATE_PREPARED:
1877	case SNDRV_PCM_STATE_RUNNING:
1878	case SNDRV_PCM_STATE_PAUSED:
1879		break;
1880	case SNDRV_PCM_STATE_XRUN:
1881		err = -EPIPE;
1882		goto _end_unlock;
1883	case SNDRV_PCM_STATE_SUSPENDED:
1884		err = -ESTRPIPE;
1885		goto _end_unlock;
1886	default:
1887		err = -EBADFD;
1888		goto _end_unlock;
1889	}
1890
1891	runtime->twake = runtime->control->avail_min ? : 1;
 
 
 
1892	while (size > 0) {
1893		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1894		snd_pcm_uframes_t avail;
1895		snd_pcm_uframes_t cont;
1896		if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1897			snd_pcm_update_hw_ptr(substream);
1898		avail = snd_pcm_playback_avail(runtime);
1899		if (!avail) {
1900			if (nonblock) {
1901				err = -EAGAIN;
1902				goto _end_unlock;
1903			}
1904			runtime->twake = min_t(snd_pcm_uframes_t, size,
1905					runtime->control->avail_min ? : 1);
1906			err = wait_for_avail(substream, &avail);
1907			if (err < 0)
1908				goto _end_unlock;
1909		}
1910		frames = size > avail ? avail : size;
1911		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1912		if (frames > cont)
1913			frames = cont;
1914		if (snd_BUG_ON(!frames)) {
1915			runtime->twake = 0;
1916			snd_pcm_stream_unlock_irq(substream);
1917			return -EINVAL;
1918		}
1919		appl_ptr = runtime->control->appl_ptr;
1920		appl_ofs = appl_ptr % runtime->buffer_size;
1921		snd_pcm_stream_unlock_irq(substream);
1922		err = transfer(substream, appl_ofs, data, offset, frames);
1923		snd_pcm_stream_lock_irq(substream);
1924		if (err < 0)
1925			goto _end_unlock;
1926		switch (runtime->status->state) {
1927		case SNDRV_PCM_STATE_XRUN:
1928			err = -EPIPE;
1929			goto _end_unlock;
1930		case SNDRV_PCM_STATE_SUSPENDED:
1931			err = -ESTRPIPE;
1932			goto _end_unlock;
1933		default:
1934			break;
1935		}
1936		appl_ptr += frames;
1937		if (appl_ptr >= runtime->boundary)
1938			appl_ptr -= runtime->boundary;
1939		runtime->control->appl_ptr = appl_ptr;
1940		if (substream->ops->ack)
1941			substream->ops->ack(substream);
1942
1943		offset += frames;
1944		size -= frames;
1945		xfer += frames;
 
1946		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1947		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1948			err = snd_pcm_start(substream);
1949			if (err < 0)
1950				goto _end_unlock;
1951		}
1952	}
1953 _end_unlock:
1954	runtime->twake = 0;
1955	if (xfer > 0 && err >= 0)
1956		snd_pcm_update_state(substream, runtime);
1957	snd_pcm_stream_unlock_irq(substream);
1958	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1959}
1960
1961/* sanity-check for read/write methods */
1962static int pcm_sanity_check(struct snd_pcm_substream *substream)
1963{
1964	struct snd_pcm_runtime *runtime;
1965	if (PCM_RUNTIME_CHECK(substream))
1966		return -ENXIO;
1967	runtime = substream->runtime;
1968	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1969		return -EINVAL;
1970	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1971		return -EBADFD;
1972	return 0;
1973}
1974
1975snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1976{
1977	struct snd_pcm_runtime *runtime;
1978	int nonblock;
1979	int err;
1980
1981	err = pcm_sanity_check(substream);
1982	if (err < 0)
1983		return err;
1984	runtime = substream->runtime;
1985	nonblock = !!(substream->f_flags & O_NONBLOCK);
1986
1987	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1988	    runtime->channels > 1)
1989		return -EINVAL;
1990	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1991				  snd_pcm_lib_write_transfer);
1992}
1993
1994EXPORT_SYMBOL(snd_pcm_lib_write);
1995
1996static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1997				       unsigned int hwoff,
1998				       unsigned long data, unsigned int off,
1999				       snd_pcm_uframes_t frames)
2000{
2001	struct snd_pcm_runtime *runtime = substream->runtime;
2002	int err;
2003	void __user **bufs = (void __user **)data;
2004	int channels = runtime->channels;
2005	int c;
2006	if (substream->ops->copy) {
2007		if (snd_BUG_ON(!substream->ops->silence))
2008			return -EINVAL;
2009		for (c = 0; c < channels; ++c, ++bufs) {
2010			if (*bufs == NULL) {
2011				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2012					return err;
2013			} else {
2014				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2015				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2016					return err;
2017			}
2018		}
2019	} else {
2020		/* default transfer behaviour */
2021		size_t dma_csize = runtime->dma_bytes / channels;
2022		for (c = 0; c < channels; ++c, ++bufs) {
2023			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2024			if (*bufs == NULL) {
2025				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2026			} else {
2027				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2028				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2029					return -EFAULT;
2030			}
2031		}
2032	}
2033	return 0;
2034}
2035 
2036snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2037				     void __user **bufs,
2038				     snd_pcm_uframes_t frames)
2039{
2040	struct snd_pcm_runtime *runtime;
2041	int nonblock;
2042	int err;
2043
2044	err = pcm_sanity_check(substream);
2045	if (err < 0)
2046		return err;
2047	runtime = substream->runtime;
2048	nonblock = !!(substream->f_flags & O_NONBLOCK);
2049
2050	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2051		return -EINVAL;
2052	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2053				  nonblock, snd_pcm_lib_writev_transfer);
2054}
2055
2056EXPORT_SYMBOL(snd_pcm_lib_writev);
2057
2058static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2059				     unsigned int hwoff,
2060				     unsigned long data, unsigned int off,
2061				     snd_pcm_uframes_t frames)
2062{
2063	struct snd_pcm_runtime *runtime = substream->runtime;
2064	int err;
2065	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2066	if (substream->ops->copy) {
2067		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2068			return err;
2069	} else {
2070		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2071		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2072			return -EFAULT;
2073	}
2074	return 0;
2075}
2076
2077static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2078					   unsigned long data,
2079					   snd_pcm_uframes_t size,
2080					   int nonblock,
2081					   transfer_f transfer)
2082{
2083	struct snd_pcm_runtime *runtime = substream->runtime;
2084	snd_pcm_uframes_t xfer = 0;
2085	snd_pcm_uframes_t offset = 0;
 
2086	int err = 0;
2087
2088	if (size == 0)
2089		return 0;
2090
2091	snd_pcm_stream_lock_irq(substream);
2092	switch (runtime->status->state) {
2093	case SNDRV_PCM_STATE_PREPARED:
2094		if (size >= runtime->start_threshold) {
2095			err = snd_pcm_start(substream);
2096			if (err < 0)
2097				goto _end_unlock;
2098		}
2099		break;
2100	case SNDRV_PCM_STATE_DRAINING:
2101	case SNDRV_PCM_STATE_RUNNING:
2102	case SNDRV_PCM_STATE_PAUSED:
2103		break;
2104	case SNDRV_PCM_STATE_XRUN:
2105		err = -EPIPE;
2106		goto _end_unlock;
2107	case SNDRV_PCM_STATE_SUSPENDED:
2108		err = -ESTRPIPE;
2109		goto _end_unlock;
2110	default:
2111		err = -EBADFD;
2112		goto _end_unlock;
2113	}
2114
2115	runtime->twake = runtime->control->avail_min ? : 1;
 
 
 
2116	while (size > 0) {
2117		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2118		snd_pcm_uframes_t avail;
2119		snd_pcm_uframes_t cont;
2120		if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2121			snd_pcm_update_hw_ptr(substream);
2122		avail = snd_pcm_capture_avail(runtime);
2123		if (!avail) {
2124			if (runtime->status->state ==
2125			    SNDRV_PCM_STATE_DRAINING) {
2126				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2127				goto _end_unlock;
2128			}
2129			if (nonblock) {
2130				err = -EAGAIN;
2131				goto _end_unlock;
2132			}
2133			runtime->twake = min_t(snd_pcm_uframes_t, size,
2134					runtime->control->avail_min ? : 1);
2135			err = wait_for_avail(substream, &avail);
2136			if (err < 0)
2137				goto _end_unlock;
2138			if (!avail)
2139				continue; /* draining */
2140		}
2141		frames = size > avail ? avail : size;
2142		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2143		if (frames > cont)
2144			frames = cont;
2145		if (snd_BUG_ON(!frames)) {
2146			runtime->twake = 0;
2147			snd_pcm_stream_unlock_irq(substream);
2148			return -EINVAL;
2149		}
2150		appl_ptr = runtime->control->appl_ptr;
2151		appl_ofs = appl_ptr % runtime->buffer_size;
2152		snd_pcm_stream_unlock_irq(substream);
2153		err = transfer(substream, appl_ofs, data, offset, frames);
2154		snd_pcm_stream_lock_irq(substream);
2155		if (err < 0)
2156			goto _end_unlock;
2157		switch (runtime->status->state) {
2158		case SNDRV_PCM_STATE_XRUN:
2159			err = -EPIPE;
2160			goto _end_unlock;
2161		case SNDRV_PCM_STATE_SUSPENDED:
2162			err = -ESTRPIPE;
2163			goto _end_unlock;
2164		default:
2165			break;
2166		}
2167		appl_ptr += frames;
2168		if (appl_ptr >= runtime->boundary)
2169			appl_ptr -= runtime->boundary;
2170		runtime->control->appl_ptr = appl_ptr;
2171		if (substream->ops->ack)
2172			substream->ops->ack(substream);
2173
2174		offset += frames;
2175		size -= frames;
2176		xfer += frames;
 
2177	}
2178 _end_unlock:
2179	runtime->twake = 0;
2180	if (xfer > 0 && err >= 0)
2181		snd_pcm_update_state(substream, runtime);
2182	snd_pcm_stream_unlock_irq(substream);
2183	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2184}
2185
2186snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2187{
2188	struct snd_pcm_runtime *runtime;
2189	int nonblock;
2190	int err;
2191	
2192	err = pcm_sanity_check(substream);
2193	if (err < 0)
2194		return err;
2195	runtime = substream->runtime;
2196	nonblock = !!(substream->f_flags & O_NONBLOCK);
2197	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2198		return -EINVAL;
2199	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2200}
2201
2202EXPORT_SYMBOL(snd_pcm_lib_read);
2203
2204static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2205				      unsigned int hwoff,
2206				      unsigned long data, unsigned int off,
2207				      snd_pcm_uframes_t frames)
2208{
2209	struct snd_pcm_runtime *runtime = substream->runtime;
2210	int err;
2211	void __user **bufs = (void __user **)data;
2212	int channels = runtime->channels;
2213	int c;
2214	if (substream->ops->copy) {
2215		for (c = 0; c < channels; ++c, ++bufs) {
2216			char __user *buf;
2217			if (*bufs == NULL)
2218				continue;
2219			buf = *bufs + samples_to_bytes(runtime, off);
2220			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2221				return err;
2222		}
2223	} else {
2224		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2225		for (c = 0; c < channels; ++c, ++bufs) {
2226			char *hwbuf;
2227			char __user *buf;
2228			if (*bufs == NULL)
2229				continue;
2230
2231			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2232			buf = *bufs + samples_to_bytes(runtime, off);
2233			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2234				return -EFAULT;
2235		}
2236	}
2237	return 0;
2238}
2239 
2240snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2241				    void __user **bufs,
2242				    snd_pcm_uframes_t frames)
2243{
2244	struct snd_pcm_runtime *runtime;
2245	int nonblock;
2246	int err;
2247
2248	err = pcm_sanity_check(substream);
2249	if (err < 0)
2250		return err;
2251	runtime = substream->runtime;
2252	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2253		return -EBADFD;
2254
2255	nonblock = !!(substream->f_flags & O_NONBLOCK);
2256	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2257		return -EINVAL;
2258	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2259}
2260
2261EXPORT_SYMBOL(snd_pcm_lib_readv);
v3.15
   1/*
   2 *  Digital Audio (PCM) abstract layer
   3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   4 *                   Abramo Bagnara <abramo@alsa-project.org>
   5 *
   6 *
   7 *   This program is free software; you can redistribute it and/or modify
   8 *   it under the terms of the GNU General Public License as published by
   9 *   the Free Software Foundation; either version 2 of the License, or
  10 *   (at your option) any later version.
  11 *
  12 *   This program is distributed in the hope that it will be useful,
  13 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *   GNU General Public License for more details.
  16 *
  17 *   You should have received a copy of the GNU General Public License
  18 *   along with this program; if not, write to the Free Software
  19 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 *
  21 */
  22
  23#include <linux/slab.h>
  24#include <linux/time.h>
  25#include <linux/math64.h>
  26#include <linux/export.h>
  27#include <sound/core.h>
  28#include <sound/control.h>
  29#include <sound/tlv.h>
  30#include <sound/info.h>
  31#include <sound/pcm.h>
  32#include <sound/pcm_params.h>
  33#include <sound/timer.h>
  34
  35/*
  36 * fill ring buffer with silence
  37 * runtime->silence_start: starting pointer to silence area
  38 * runtime->silence_filled: size filled with silence
  39 * runtime->silence_threshold: threshold from application
  40 * runtime->silence_size: maximal size from application
  41 *
  42 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  43 */
  44void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  45{
  46	struct snd_pcm_runtime *runtime = substream->runtime;
  47	snd_pcm_uframes_t frames, ofs, transfer;
  48
  49	if (runtime->silence_size < runtime->boundary) {
  50		snd_pcm_sframes_t noise_dist, n;
  51		if (runtime->silence_start != runtime->control->appl_ptr) {
  52			n = runtime->control->appl_ptr - runtime->silence_start;
  53			if (n < 0)
  54				n += runtime->boundary;
  55			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
  56				runtime->silence_filled -= n;
  57			else
  58				runtime->silence_filled = 0;
  59			runtime->silence_start = runtime->control->appl_ptr;
  60		}
  61		if (runtime->silence_filled >= runtime->buffer_size)
  62			return;
  63		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
  64		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  65			return;
  66		frames = runtime->silence_threshold - noise_dist;
  67		if (frames > runtime->silence_size)
  68			frames = runtime->silence_size;
  69	} else {
  70		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
  71			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
  72			if (avail > runtime->buffer_size)
  73				avail = runtime->buffer_size;
  74			runtime->silence_filled = avail > 0 ? avail : 0;
  75			runtime->silence_start = (runtime->status->hw_ptr +
  76						  runtime->silence_filled) %
  77						 runtime->boundary;
  78		} else {
  79			ofs = runtime->status->hw_ptr;
  80			frames = new_hw_ptr - ofs;
  81			if ((snd_pcm_sframes_t)frames < 0)
  82				frames += runtime->boundary;
  83			runtime->silence_filled -= frames;
  84			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
  85				runtime->silence_filled = 0;
  86				runtime->silence_start = new_hw_ptr;
  87			} else {
  88				runtime->silence_start = ofs;
  89			}
  90		}
  91		frames = runtime->buffer_size - runtime->silence_filled;
  92	}
  93	if (snd_BUG_ON(frames > runtime->buffer_size))
  94		return;
  95	if (frames == 0)
  96		return;
  97	ofs = runtime->silence_start % runtime->buffer_size;
  98	while (frames > 0) {
  99		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
 100		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
 101		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
 102			if (substream->ops->silence) {
 103				int err;
 104				err = substream->ops->silence(substream, -1, ofs, transfer);
 105				snd_BUG_ON(err < 0);
 106			} else {
 107				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
 108				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
 109			}
 110		} else {
 111			unsigned int c;
 112			unsigned int channels = runtime->channels;
 113			if (substream->ops->silence) {
 114				for (c = 0; c < channels; ++c) {
 115					int err;
 116					err = substream->ops->silence(substream, c, ofs, transfer);
 117					snd_BUG_ON(err < 0);
 118				}
 119			} else {
 120				size_t dma_csize = runtime->dma_bytes / channels;
 121				for (c = 0; c < channels; ++c) {
 122					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
 123					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
 124				}
 125			}
 126		}
 127		runtime->silence_filled += transfer;
 128		frames -= transfer;
 129		ofs = 0;
 130	}
 131}
 132
 133#ifdef CONFIG_SND_DEBUG
 134void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 135			   char *name, size_t len)
 136{
 137	snprintf(name, len, "pcmC%dD%d%c:%d",
 138		 substream->pcm->card->number,
 139		 substream->pcm->device,
 140		 substream->stream ? 'c' : 'p',
 141		 substream->number);
 142}
 143EXPORT_SYMBOL(snd_pcm_debug_name);
 144#endif
 145
 146#define XRUN_DEBUG_BASIC	(1<<0)
 147#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
 148#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
 149#define XRUN_DEBUG_PERIODUPDATE	(1<<3)	/* full period update info */
 150#define XRUN_DEBUG_HWPTRUPDATE	(1<<4)	/* full hwptr update info */
 151#define XRUN_DEBUG_LOG		(1<<5)	/* show last 10 positions on err */
 152#define XRUN_DEBUG_LOGONCE	(1<<6)	/* do above only once */
 153
 154#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 155
 156#define xrun_debug(substream, mask) \
 157			((substream)->pstr->xrun_debug & (mask))
 158#else
 159#define xrun_debug(substream, mask)	0
 160#endif
 161
 162#define dump_stack_on_xrun(substream) do {			\
 163		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
 164			dump_stack();				\
 165	} while (0)
 166
 167static void xrun(struct snd_pcm_substream *substream)
 168{
 169	struct snd_pcm_runtime *runtime = substream->runtime;
 170
 171	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 172		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 173	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 174	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 175		char name[16];
 176		snd_pcm_debug_name(substream, name, sizeof(name));
 177		pcm_warn(substream->pcm, "XRUN: %s\n", name);
 178		dump_stack_on_xrun(substream);
 179	}
 180}
 181
 182#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 183#define hw_ptr_error(substream, fmt, args...)				\
 184	do {								\
 185		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
 186			xrun_log_show(substream);			\
 187			pr_err_ratelimited("ALSA: PCM: " fmt, ##args);	\
 
 
 188			dump_stack_on_xrun(substream);			\
 189		}							\
 190	} while (0)
 191
 192#define XRUN_LOG_CNT	10
 193
 194struct hwptr_log_entry {
 195	unsigned int in_interrupt;
 196	unsigned long jiffies;
 197	snd_pcm_uframes_t pos;
 198	snd_pcm_uframes_t period_size;
 199	snd_pcm_uframes_t buffer_size;
 200	snd_pcm_uframes_t old_hw_ptr;
 201	snd_pcm_uframes_t hw_ptr_base;
 202};
 203
 204struct snd_pcm_hwptr_log {
 205	unsigned int idx;
 206	unsigned int hit: 1;
 207	struct hwptr_log_entry entries[XRUN_LOG_CNT];
 208};
 209
 210static void xrun_log(struct snd_pcm_substream *substream,
 211		     snd_pcm_uframes_t pos, int in_interrupt)
 212{
 213	struct snd_pcm_runtime *runtime = substream->runtime;
 214	struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
 215	struct hwptr_log_entry *entry;
 216
 217	if (log == NULL) {
 218		log = kzalloc(sizeof(*log), GFP_ATOMIC);
 219		if (log == NULL)
 220			return;
 221		runtime->hwptr_log = log;
 222	} else {
 223		if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
 224			return;
 225	}
 226	entry = &log->entries[log->idx];
 227	entry->in_interrupt = in_interrupt;
 228	entry->jiffies = jiffies;
 229	entry->pos = pos;
 230	entry->period_size = runtime->period_size;
 231	entry->buffer_size = runtime->buffer_size;
 232	entry->old_hw_ptr = runtime->status->hw_ptr;
 233	entry->hw_ptr_base = runtime->hw_ptr_base;
 234	log->idx = (log->idx + 1) % XRUN_LOG_CNT;
 235}
 236
 237static void xrun_log_show(struct snd_pcm_substream *substream)
 238{
 239	struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
 240	struct hwptr_log_entry *entry;
 241	char name[16];
 242	unsigned int idx;
 243	int cnt;
 244
 245	if (log == NULL)
 246		return;
 247	if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
 248		return;
 249	snd_pcm_debug_name(substream, name, sizeof(name));
 250	for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
 251		entry = &log->entries[idx];
 252		if (entry->period_size == 0)
 253			break;
 254		pr_info("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
 255			   "hwptr=%ld/%ld\n",
 256			   name, entry->in_interrupt ? "[Q] " : "",
 257			   entry->jiffies,
 258			   (unsigned long)entry->pos,
 259			   (unsigned long)entry->period_size,
 260			   (unsigned long)entry->buffer_size,
 261			   (unsigned long)entry->old_hw_ptr,
 262			   (unsigned long)entry->hw_ptr_base);
 263		idx++;
 264		idx %= XRUN_LOG_CNT;
 265	}
 266	log->hit = 1;
 267}
 268
 269#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 270
 271#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 272#define xrun_log(substream, pos, in_interrupt)	do { } while (0)
 273#define xrun_log_show(substream)	do { } while (0)
 274
 275#endif
 276
 277int snd_pcm_update_state(struct snd_pcm_substream *substream,
 278			 struct snd_pcm_runtime *runtime)
 279{
 280	snd_pcm_uframes_t avail;
 281
 282	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 283		avail = snd_pcm_playback_avail(runtime);
 284	else
 285		avail = snd_pcm_capture_avail(runtime);
 286	if (avail > runtime->avail_max)
 287		runtime->avail_max = avail;
 288	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
 289		if (avail >= runtime->buffer_size) {
 290			snd_pcm_drain_done(substream);
 291			return -EPIPE;
 292		}
 293	} else {
 294		if (avail >= runtime->stop_threshold) {
 295			xrun(substream);
 296			return -EPIPE;
 297		}
 298	}
 299	if (runtime->twake) {
 300		if (avail >= runtime->twake)
 301			wake_up(&runtime->tsleep);
 302	} else if (avail >= runtime->control->avail_min)
 303		wake_up(&runtime->sleep);
 304	return 0;
 305}
 306
 307static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 308				  unsigned int in_interrupt)
 309{
 310	struct snd_pcm_runtime *runtime = substream->runtime;
 311	snd_pcm_uframes_t pos;
 312	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 313	snd_pcm_sframes_t hdelta, delta;
 314	unsigned long jdelta;
 315	unsigned long curr_jiffies;
 316	struct timespec curr_tstamp;
 317	struct timespec audio_tstamp;
 318	int crossed_boundary = 0;
 319
 320	old_hw_ptr = runtime->status->hw_ptr;
 321
 322	/*
 323	 * group pointer, time and jiffies reads to allow for more
 324	 * accurate correlations/corrections.
 325	 * The values are stored at the end of this routine after
 326	 * corrections for hw_ptr position
 327	 */
 328	pos = substream->ops->pointer(substream);
 329	curr_jiffies = jiffies;
 330	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 331		snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
 332
 333		if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) &&
 334			(substream->ops->wall_clock))
 335			substream->ops->wall_clock(substream, &audio_tstamp);
 336	}
 337
 338	if (pos == SNDRV_PCM_POS_XRUN) {
 339		xrun(substream);
 340		return -EPIPE;
 341	}
 342	if (pos >= runtime->buffer_size) {
 343		if (printk_ratelimit()) {
 344			char name[16];
 345			snd_pcm_debug_name(substream, name, sizeof(name));
 346			xrun_log_show(substream);
 347			pcm_err(substream->pcm,
 348				"BUG: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
 349				name, pos, runtime->buffer_size,
 350				runtime->period_size);
 351		}
 352		pos = 0;
 353	}
 354	pos -= pos % runtime->min_align;
 355	if (xrun_debug(substream, XRUN_DEBUG_LOG))
 356		xrun_log(substream, pos, in_interrupt);
 357	hw_base = runtime->hw_ptr_base;
 358	new_hw_ptr = hw_base + pos;
 359	if (in_interrupt) {
 360		/* we know that one period was processed */
 361		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
 362		delta = runtime->hw_ptr_interrupt + runtime->period_size;
 363		if (delta > new_hw_ptr) {
 364			/* check for double acknowledged interrupts */
 365			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 366			if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
 367				hw_base += runtime->buffer_size;
 368				if (hw_base >= runtime->boundary) {
 369					hw_base = 0;
 370					crossed_boundary++;
 371				}
 372				new_hw_ptr = hw_base + pos;
 373				goto __delta;
 374			}
 375		}
 376	}
 377	/* new_hw_ptr might be lower than old_hw_ptr in case when */
 378	/* pointer crosses the end of the ring buffer */
 379	if (new_hw_ptr < old_hw_ptr) {
 380		hw_base += runtime->buffer_size;
 381		if (hw_base >= runtime->boundary) {
 382			hw_base = 0;
 383			crossed_boundary++;
 384		}
 385		new_hw_ptr = hw_base + pos;
 386	}
 387      __delta:
 388	delta = new_hw_ptr - old_hw_ptr;
 389	if (delta < 0)
 390		delta += runtime->boundary;
 391	if (xrun_debug(substream, in_interrupt ?
 392			XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
 393		char name[16];
 394		snd_pcm_debug_name(substream, name, sizeof(name));
 395		pcm_dbg(substream->pcm,
 396			"%s_update: %s: pos=%u/%u/%u, hwptr=%ld/%ld/%ld/%ld\n",
 397			   in_interrupt ? "period" : "hwptr",
 398			   name,
 399			   (unsigned int)pos,
 400			   (unsigned int)runtime->period_size,
 401			   (unsigned int)runtime->buffer_size,
 402			   (unsigned long)delta,
 403			   (unsigned long)old_hw_ptr,
 404			   (unsigned long)new_hw_ptr,
 405			   (unsigned long)runtime->hw_ptr_base);
 406	}
 407
 408	if (runtime->no_period_wakeup) {
 409		snd_pcm_sframes_t xrun_threshold;
 410		/*
 411		 * Without regular period interrupts, we have to check
 412		 * the elapsed time to detect xruns.
 413		 */
 414		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 415		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 416			goto no_delta_check;
 417		hdelta = jdelta - delta * HZ / runtime->rate;
 418		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 419		while (hdelta > xrun_threshold) {
 420			delta += runtime->buffer_size;
 421			hw_base += runtime->buffer_size;
 422			if (hw_base >= runtime->boundary) {
 423				hw_base = 0;
 424				crossed_boundary++;
 425			}
 426			new_hw_ptr = hw_base + pos;
 427			hdelta -= runtime->hw_ptr_buffer_jiffies;
 428		}
 429		goto no_delta_check;
 430	}
 431
 432	/* something must be really wrong */
 433	if (delta >= runtime->buffer_size + runtime->period_size) {
 434		hw_ptr_error(substream,
 435			       "Unexpected hw_pointer value %s"
 436			       "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
 437			       "old_hw_ptr=%ld)\n",
 438				     in_interrupt ? "[Q] " : "[P]",
 439				     substream->stream, (long)pos,
 440				     (long)new_hw_ptr, (long)old_hw_ptr);
 441		return 0;
 442	}
 443
 444	/* Do jiffies check only in xrun_debug mode */
 445	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 446		goto no_jiffies_check;
 447
 448	/* Skip the jiffies check for hardwares with BATCH flag.
 449	 * Such hardware usually just increases the position at each IRQ,
 450	 * thus it can't give any strange position.
 451	 */
 452	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 453		goto no_jiffies_check;
 454	hdelta = delta;
 455	if (hdelta < runtime->delay)
 456		goto no_jiffies_check;
 457	hdelta -= runtime->delay;
 458	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 459	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 460		delta = jdelta /
 461			(((runtime->period_size * HZ) / runtime->rate)
 462								+ HZ/100);
 463		/* move new_hw_ptr according jiffies not pos variable */
 464		new_hw_ptr = old_hw_ptr;
 465		hw_base = delta;
 466		/* use loop to avoid checks for delta overflows */
 467		/* the delta value is small or zero in most cases */
 468		while (delta > 0) {
 469			new_hw_ptr += runtime->period_size;
 470			if (new_hw_ptr >= runtime->boundary) {
 471				new_hw_ptr -= runtime->boundary;
 472				crossed_boundary--;
 473			}
 474			delta--;
 475		}
 476		/* align hw_base to buffer_size */
 477		hw_ptr_error(substream,
 478			     "hw_ptr skipping! %s"
 479			     "(pos=%ld, delta=%ld, period=%ld, "
 480			     "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 481			     in_interrupt ? "[Q] " : "",
 482			     (long)pos, (long)hdelta,
 483			     (long)runtime->period_size, jdelta,
 484			     ((hdelta * HZ) / runtime->rate), hw_base,
 485			     (unsigned long)old_hw_ptr,
 486			     (unsigned long)new_hw_ptr);
 487		/* reset values to proper state */
 488		delta = 0;
 489		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 490	}
 491 no_jiffies_check:
 492	if (delta > runtime->period_size + runtime->period_size / 2) {
 493		hw_ptr_error(substream,
 494			     "Lost interrupts? %s"
 495			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
 496			     "old_hw_ptr=%ld)\n",
 497			     in_interrupt ? "[Q] " : "",
 498			     substream->stream, (long)delta,
 499			     (long)new_hw_ptr,
 500			     (long)old_hw_ptr);
 501	}
 502
 503 no_delta_check:
 504	if (runtime->status->hw_ptr == new_hw_ptr)
 505		return 0;
 506
 507	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 508	    runtime->silence_size > 0)
 509		snd_pcm_playback_silence(substream, new_hw_ptr);
 510
 511	if (in_interrupt) {
 512		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 513		if (delta < 0)
 514			delta += runtime->boundary;
 515		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 516		runtime->hw_ptr_interrupt += delta;
 517		if (runtime->hw_ptr_interrupt >= runtime->boundary)
 518			runtime->hw_ptr_interrupt -= runtime->boundary;
 519	}
 520	runtime->hw_ptr_base = hw_base;
 521	runtime->status->hw_ptr = new_hw_ptr;
 522	runtime->hw_ptr_jiffies = curr_jiffies;
 523	if (crossed_boundary) {
 524		snd_BUG_ON(crossed_boundary != 1);
 525		runtime->hw_ptr_wrap += runtime->boundary;
 526	}
 527	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 528		runtime->status->tstamp = curr_tstamp;
 529
 530		if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) {
 531			/*
 532			 * no wall clock available, provide audio timestamp
 533			 * derived from pointer position+delay
 534			 */
 535			u64 audio_frames, audio_nsecs;
 536
 537			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 538				audio_frames = runtime->hw_ptr_wrap
 539					+ runtime->status->hw_ptr
 540					- runtime->delay;
 541			else
 542				audio_frames = runtime->hw_ptr_wrap
 543					+ runtime->status->hw_ptr
 544					+ runtime->delay;
 545			audio_nsecs = div_u64(audio_frames * 1000000000LL,
 546					runtime->rate);
 547			audio_tstamp = ns_to_timespec(audio_nsecs);
 548		}
 549		runtime->status->audio_tstamp = audio_tstamp;
 550	}
 551
 552	return snd_pcm_update_state(substream, runtime);
 553}
 554
 555/* CAUTION: call it with irq disabled */
 556int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 557{
 558	return snd_pcm_update_hw_ptr0(substream, 0);
 559}
 560
 561/**
 562 * snd_pcm_set_ops - set the PCM operators
 563 * @pcm: the pcm instance
 564 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 565 * @ops: the operator table
 566 *
 567 * Sets the given PCM operators to the pcm instance.
 568 */
 569void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
 570		     const struct snd_pcm_ops *ops)
 571{
 572	struct snd_pcm_str *stream = &pcm->streams[direction];
 573	struct snd_pcm_substream *substream;
 574	
 575	for (substream = stream->substream; substream != NULL; substream = substream->next)
 576		substream->ops = ops;
 577}
 578
 579EXPORT_SYMBOL(snd_pcm_set_ops);
 580
 581/**
 582 * snd_pcm_sync - set the PCM sync id
 583 * @substream: the pcm substream
 584 *
 585 * Sets the PCM sync identifier for the card.
 586 */
 587void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 588{
 589	struct snd_pcm_runtime *runtime = substream->runtime;
 590	
 591	runtime->sync.id32[0] = substream->pcm->card->number;
 592	runtime->sync.id32[1] = -1;
 593	runtime->sync.id32[2] = -1;
 594	runtime->sync.id32[3] = -1;
 595}
 596
 597EXPORT_SYMBOL(snd_pcm_set_sync);
 598
 599/*
 600 *  Standard ioctl routine
 601 */
 602
 603static inline unsigned int div32(unsigned int a, unsigned int b, 
 604				 unsigned int *r)
 605{
 606	if (b == 0) {
 607		*r = 0;
 608		return UINT_MAX;
 609	}
 610	*r = a % b;
 611	return a / b;
 612}
 613
 614static inline unsigned int div_down(unsigned int a, unsigned int b)
 615{
 616	if (b == 0)
 617		return UINT_MAX;
 618	return a / b;
 619}
 620
 621static inline unsigned int div_up(unsigned int a, unsigned int b)
 622{
 623	unsigned int r;
 624	unsigned int q;
 625	if (b == 0)
 626		return UINT_MAX;
 627	q = div32(a, b, &r);
 628	if (r)
 629		++q;
 630	return q;
 631}
 632
 633static inline unsigned int mul(unsigned int a, unsigned int b)
 634{
 635	if (a == 0)
 636		return 0;
 637	if (div_down(UINT_MAX, a) < b)
 638		return UINT_MAX;
 639	return a * b;
 640}
 641
 642static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 643				    unsigned int c, unsigned int *r)
 644{
 645	u_int64_t n = (u_int64_t) a * b;
 646	if (c == 0) {
 647		snd_BUG_ON(!n);
 648		*r = 0;
 649		return UINT_MAX;
 650	}
 651	n = div_u64_rem(n, c, r);
 652	if (n >= UINT_MAX) {
 653		*r = 0;
 654		return UINT_MAX;
 655	}
 656	return n;
 657}
 658
 659/**
 660 * snd_interval_refine - refine the interval value of configurator
 661 * @i: the interval value to refine
 662 * @v: the interval value to refer to
 663 *
 664 * Refines the interval value with the reference value.
 665 * The interval is changed to the range satisfying both intervals.
 666 * The interval status (min, max, integer, etc.) are evaluated.
 667 *
 668 * Return: Positive if the value is changed, zero if it's not changed, or a
 669 * negative error code.
 670 */
 671int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 672{
 673	int changed = 0;
 674	if (snd_BUG_ON(snd_interval_empty(i)))
 675		return -EINVAL;
 676	if (i->min < v->min) {
 677		i->min = v->min;
 678		i->openmin = v->openmin;
 679		changed = 1;
 680	} else if (i->min == v->min && !i->openmin && v->openmin) {
 681		i->openmin = 1;
 682		changed = 1;
 683	}
 684	if (i->max > v->max) {
 685		i->max = v->max;
 686		i->openmax = v->openmax;
 687		changed = 1;
 688	} else if (i->max == v->max && !i->openmax && v->openmax) {
 689		i->openmax = 1;
 690		changed = 1;
 691	}
 692	if (!i->integer && v->integer) {
 693		i->integer = 1;
 694		changed = 1;
 695	}
 696	if (i->integer) {
 697		if (i->openmin) {
 698			i->min++;
 699			i->openmin = 0;
 700		}
 701		if (i->openmax) {
 702			i->max--;
 703			i->openmax = 0;
 704		}
 705	} else if (!i->openmin && !i->openmax && i->min == i->max)
 706		i->integer = 1;
 707	if (snd_interval_checkempty(i)) {
 708		snd_interval_none(i);
 709		return -EINVAL;
 710	}
 711	return changed;
 712}
 713
 714EXPORT_SYMBOL(snd_interval_refine);
 715
 716static int snd_interval_refine_first(struct snd_interval *i)
 717{
 718	if (snd_BUG_ON(snd_interval_empty(i)))
 719		return -EINVAL;
 720	if (snd_interval_single(i))
 721		return 0;
 722	i->max = i->min;
 723	i->openmax = i->openmin;
 724	if (i->openmax)
 725		i->max++;
 726	return 1;
 727}
 728
 729static int snd_interval_refine_last(struct snd_interval *i)
 730{
 731	if (snd_BUG_ON(snd_interval_empty(i)))
 732		return -EINVAL;
 733	if (snd_interval_single(i))
 734		return 0;
 735	i->min = i->max;
 736	i->openmin = i->openmax;
 737	if (i->openmin)
 738		i->min--;
 739	return 1;
 740}
 741
 742void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 743{
 744	if (a->empty || b->empty) {
 745		snd_interval_none(c);
 746		return;
 747	}
 748	c->empty = 0;
 749	c->min = mul(a->min, b->min);
 750	c->openmin = (a->openmin || b->openmin);
 751	c->max = mul(a->max,  b->max);
 752	c->openmax = (a->openmax || b->openmax);
 753	c->integer = (a->integer && b->integer);
 754}
 755
 756/**
 757 * snd_interval_div - refine the interval value with division
 758 * @a: dividend
 759 * @b: divisor
 760 * @c: quotient
 761 *
 762 * c = a / b
 763 *
 764 * Returns non-zero if the value is changed, zero if not changed.
 765 */
 766void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 767{
 768	unsigned int r;
 769	if (a->empty || b->empty) {
 770		snd_interval_none(c);
 771		return;
 772	}
 773	c->empty = 0;
 774	c->min = div32(a->min, b->max, &r);
 775	c->openmin = (r || a->openmin || b->openmax);
 776	if (b->min > 0) {
 777		c->max = div32(a->max, b->min, &r);
 778		if (r) {
 779			c->max++;
 780			c->openmax = 1;
 781		} else
 782			c->openmax = (a->openmax || b->openmin);
 783	} else {
 784		c->max = UINT_MAX;
 785		c->openmax = 0;
 786	}
 787	c->integer = 0;
 788}
 789
 790/**
 791 * snd_interval_muldivk - refine the interval value
 792 * @a: dividend 1
 793 * @b: dividend 2
 794 * @k: divisor (as integer)
 795 * @c: result
 796  *
 797 * c = a * b / k
 798 *
 799 * Returns non-zero if the value is changed, zero if not changed.
 800 */
 801void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 802		      unsigned int k, struct snd_interval *c)
 803{
 804	unsigned int r;
 805	if (a->empty || b->empty) {
 806		snd_interval_none(c);
 807		return;
 808	}
 809	c->empty = 0;
 810	c->min = muldiv32(a->min, b->min, k, &r);
 811	c->openmin = (r || a->openmin || b->openmin);
 812	c->max = muldiv32(a->max, b->max, k, &r);
 813	if (r) {
 814		c->max++;
 815		c->openmax = 1;
 816	} else
 817		c->openmax = (a->openmax || b->openmax);
 818	c->integer = 0;
 819}
 820
 821/**
 822 * snd_interval_mulkdiv - refine the interval value
 823 * @a: dividend 1
 824 * @k: dividend 2 (as integer)
 825 * @b: divisor
 826 * @c: result
 827 *
 828 * c = a * k / b
 829 *
 830 * Returns non-zero if the value is changed, zero if not changed.
 831 */
 832void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 833		      const struct snd_interval *b, struct snd_interval *c)
 834{
 835	unsigned int r;
 836	if (a->empty || b->empty) {
 837		snd_interval_none(c);
 838		return;
 839	}
 840	c->empty = 0;
 841	c->min = muldiv32(a->min, k, b->max, &r);
 842	c->openmin = (r || a->openmin || b->openmax);
 843	if (b->min > 0) {
 844		c->max = muldiv32(a->max, k, b->min, &r);
 845		if (r) {
 846			c->max++;
 847			c->openmax = 1;
 848		} else
 849			c->openmax = (a->openmax || b->openmin);
 850	} else {
 851		c->max = UINT_MAX;
 852		c->openmax = 0;
 853	}
 854	c->integer = 0;
 855}
 856
 857/* ---- */
 858
 859
 860/**
 861 * snd_interval_ratnum - refine the interval value
 862 * @i: interval to refine
 863 * @rats_count: number of ratnum_t 
 864 * @rats: ratnum_t array
 865 * @nump: pointer to store the resultant numerator
 866 * @denp: pointer to store the resultant denominator
 867 *
 868 * Return: Positive if the value is changed, zero if it's not changed, or a
 869 * negative error code.
 870 */
 871int snd_interval_ratnum(struct snd_interval *i,
 872			unsigned int rats_count, struct snd_ratnum *rats,
 873			unsigned int *nump, unsigned int *denp)
 874{
 875	unsigned int best_num, best_den;
 876	int best_diff;
 877	unsigned int k;
 878	struct snd_interval t;
 879	int err;
 880	unsigned int result_num, result_den;
 881	int result_diff;
 882
 883	best_num = best_den = best_diff = 0;
 884	for (k = 0; k < rats_count; ++k) {
 885		unsigned int num = rats[k].num;
 886		unsigned int den;
 887		unsigned int q = i->min;
 888		int diff;
 889		if (q == 0)
 890			q = 1;
 891		den = div_up(num, q);
 892		if (den < rats[k].den_min)
 893			continue;
 894		if (den > rats[k].den_max)
 895			den = rats[k].den_max;
 896		else {
 897			unsigned int r;
 898			r = (den - rats[k].den_min) % rats[k].den_step;
 899			if (r != 0)
 900				den -= r;
 901		}
 902		diff = num - q * den;
 903		if (diff < 0)
 904			diff = -diff;
 905		if (best_num == 0 ||
 906		    diff * best_den < best_diff * den) {
 907			best_diff = diff;
 908			best_den = den;
 909			best_num = num;
 910		}
 911	}
 912	if (best_den == 0) {
 913		i->empty = 1;
 914		return -EINVAL;
 915	}
 916	t.min = div_down(best_num, best_den);
 917	t.openmin = !!(best_num % best_den);
 918	
 919	result_num = best_num;
 920	result_diff = best_diff;
 921	result_den = best_den;
 922	best_num = best_den = best_diff = 0;
 923	for (k = 0; k < rats_count; ++k) {
 924		unsigned int num = rats[k].num;
 925		unsigned int den;
 926		unsigned int q = i->max;
 927		int diff;
 928		if (q == 0) {
 929			i->empty = 1;
 930			return -EINVAL;
 931		}
 932		den = div_down(num, q);
 933		if (den > rats[k].den_max)
 934			continue;
 935		if (den < rats[k].den_min)
 936			den = rats[k].den_min;
 937		else {
 938			unsigned int r;
 939			r = (den - rats[k].den_min) % rats[k].den_step;
 940			if (r != 0)
 941				den += rats[k].den_step - r;
 942		}
 943		diff = q * den - num;
 944		if (diff < 0)
 945			diff = -diff;
 946		if (best_num == 0 ||
 947		    diff * best_den < best_diff * den) {
 948			best_diff = diff;
 949			best_den = den;
 950			best_num = num;
 951		}
 952	}
 953	if (best_den == 0) {
 954		i->empty = 1;
 955		return -EINVAL;
 956	}
 957	t.max = div_up(best_num, best_den);
 958	t.openmax = !!(best_num % best_den);
 959	t.integer = 0;
 960	err = snd_interval_refine(i, &t);
 961	if (err < 0)
 962		return err;
 963
 964	if (snd_interval_single(i)) {
 965		if (best_diff * result_den < result_diff * best_den) {
 966			result_num = best_num;
 967			result_den = best_den;
 968		}
 969		if (nump)
 970			*nump = result_num;
 971		if (denp)
 972			*denp = result_den;
 973	}
 974	return err;
 975}
 976
 977EXPORT_SYMBOL(snd_interval_ratnum);
 978
 979/**
 980 * snd_interval_ratden - refine the interval value
 981 * @i: interval to refine
 982 * @rats_count: number of struct ratden
 983 * @rats: struct ratden array
 984 * @nump: pointer to store the resultant numerator
 985 * @denp: pointer to store the resultant denominator
 986 *
 987 * Return: Positive if the value is changed, zero if it's not changed, or a
 988 * negative error code.
 989 */
 990static int snd_interval_ratden(struct snd_interval *i,
 991			       unsigned int rats_count, struct snd_ratden *rats,
 992			       unsigned int *nump, unsigned int *denp)
 993{
 994	unsigned int best_num, best_diff, best_den;
 995	unsigned int k;
 996	struct snd_interval t;
 997	int err;
 998
 999	best_num = best_den = best_diff = 0;
1000	for (k = 0; k < rats_count; ++k) {
1001		unsigned int num;
1002		unsigned int den = rats[k].den;
1003		unsigned int q = i->min;
1004		int diff;
1005		num = mul(q, den);
1006		if (num > rats[k].num_max)
1007			continue;
1008		if (num < rats[k].num_min)
1009			num = rats[k].num_max;
1010		else {
1011			unsigned int r;
1012			r = (num - rats[k].num_min) % rats[k].num_step;
1013			if (r != 0)
1014				num += rats[k].num_step - r;
1015		}
1016		diff = num - q * den;
1017		if (best_num == 0 ||
1018		    diff * best_den < best_diff * den) {
1019			best_diff = diff;
1020			best_den = den;
1021			best_num = num;
1022		}
1023	}
1024	if (best_den == 0) {
1025		i->empty = 1;
1026		return -EINVAL;
1027	}
1028	t.min = div_down(best_num, best_den);
1029	t.openmin = !!(best_num % best_den);
1030	
1031	best_num = best_den = best_diff = 0;
1032	for (k = 0; k < rats_count; ++k) {
1033		unsigned int num;
1034		unsigned int den = rats[k].den;
1035		unsigned int q = i->max;
1036		int diff;
1037		num = mul(q, den);
1038		if (num < rats[k].num_min)
1039			continue;
1040		if (num > rats[k].num_max)
1041			num = rats[k].num_max;
1042		else {
1043			unsigned int r;
1044			r = (num - rats[k].num_min) % rats[k].num_step;
1045			if (r != 0)
1046				num -= r;
1047		}
1048		diff = q * den - num;
1049		if (best_num == 0 ||
1050		    diff * best_den < best_diff * den) {
1051			best_diff = diff;
1052			best_den = den;
1053			best_num = num;
1054		}
1055	}
1056	if (best_den == 0) {
1057		i->empty = 1;
1058		return -EINVAL;
1059	}
1060	t.max = div_up(best_num, best_den);
1061	t.openmax = !!(best_num % best_den);
1062	t.integer = 0;
1063	err = snd_interval_refine(i, &t);
1064	if (err < 0)
1065		return err;
1066
1067	if (snd_interval_single(i)) {
1068		if (nump)
1069			*nump = best_num;
1070		if (denp)
1071			*denp = best_den;
1072	}
1073	return err;
1074}
1075
1076/**
1077 * snd_interval_list - refine the interval value from the list
1078 * @i: the interval value to refine
1079 * @count: the number of elements in the list
1080 * @list: the value list
1081 * @mask: the bit-mask to evaluate
1082 *
1083 * Refines the interval value from the list.
1084 * When mask is non-zero, only the elements corresponding to bit 1 are
1085 * evaluated.
1086 *
1087 * Return: Positive if the value is changed, zero if it's not changed, or a
1088 * negative error code.
1089 */
1090int snd_interval_list(struct snd_interval *i, unsigned int count,
1091		      const unsigned int *list, unsigned int mask)
1092{
1093        unsigned int k;
1094	struct snd_interval list_range;
1095
1096	if (!count) {
1097		i->empty = 1;
1098		return -EINVAL;
1099	}
1100	snd_interval_any(&list_range);
1101	list_range.min = UINT_MAX;
1102	list_range.max = 0;
1103        for (k = 0; k < count; k++) {
1104		if (mask && !(mask & (1 << k)))
1105			continue;
1106		if (!snd_interval_test(i, list[k]))
1107			continue;
1108		list_range.min = min(list_range.min, list[k]);
1109		list_range.max = max(list_range.max, list[k]);
1110        }
1111	return snd_interval_refine(i, &list_range);
1112}
1113
1114EXPORT_SYMBOL(snd_interval_list);
1115
1116static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1117{
1118	unsigned int n;
1119	int changed = 0;
1120	n = (i->min - min) % step;
1121	if (n != 0 || i->openmin) {
1122		i->min += step - n;
1123		changed = 1;
1124	}
1125	n = (i->max - min) % step;
1126	if (n != 0 || i->openmax) {
1127		i->max -= n;
1128		changed = 1;
1129	}
1130	if (snd_interval_checkempty(i)) {
1131		i->empty = 1;
1132		return -EINVAL;
1133	}
1134	return changed;
1135}
1136
1137/* Info constraints helpers */
1138
1139/**
1140 * snd_pcm_hw_rule_add - add the hw-constraint rule
1141 * @runtime: the pcm runtime instance
1142 * @cond: condition bits
1143 * @var: the variable to evaluate
1144 * @func: the evaluation function
1145 * @private: the private data pointer passed to function
1146 * @dep: the dependent variables
1147 *
1148 * Return: Zero if successful, or a negative error code on failure.
1149 */
1150int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1151			int var,
1152			snd_pcm_hw_rule_func_t func, void *private,
1153			int dep, ...)
1154{
1155	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1156	struct snd_pcm_hw_rule *c;
1157	unsigned int k;
1158	va_list args;
1159	va_start(args, dep);
1160	if (constrs->rules_num >= constrs->rules_all) {
1161		struct snd_pcm_hw_rule *new;
1162		unsigned int new_rules = constrs->rules_all + 16;
1163		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1164		if (!new) {
1165			va_end(args);
1166			return -ENOMEM;
1167		}
1168		if (constrs->rules) {
1169			memcpy(new, constrs->rules,
1170			       constrs->rules_num * sizeof(*c));
1171			kfree(constrs->rules);
1172		}
1173		constrs->rules = new;
1174		constrs->rules_all = new_rules;
1175	}
1176	c = &constrs->rules[constrs->rules_num];
1177	c->cond = cond;
1178	c->func = func;
1179	c->var = var;
1180	c->private = private;
1181	k = 0;
1182	while (1) {
1183		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1184			va_end(args);
1185			return -EINVAL;
1186		}
1187		c->deps[k++] = dep;
1188		if (dep < 0)
1189			break;
1190		dep = va_arg(args, int);
1191	}
1192	constrs->rules_num++;
1193	va_end(args);
1194	return 0;
1195}
1196
1197EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1198
1199/**
1200 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1201 * @runtime: PCM runtime instance
1202 * @var: hw_params variable to apply the mask
1203 * @mask: the bitmap mask
1204 *
1205 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1206 *
1207 * Return: Zero if successful, or a negative error code on failure.
1208 */
1209int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1210			       u_int32_t mask)
1211{
1212	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1213	struct snd_mask *maskp = constrs_mask(constrs, var);
1214	*maskp->bits &= mask;
1215	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1216	if (*maskp->bits == 0)
1217		return -EINVAL;
1218	return 0;
1219}
1220
1221/**
1222 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1223 * @runtime: PCM runtime instance
1224 * @var: hw_params variable to apply the mask
1225 * @mask: the 64bit bitmap mask
1226 *
1227 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1228 *
1229 * Return: Zero if successful, or a negative error code on failure.
1230 */
1231int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1232				 u_int64_t mask)
1233{
1234	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1235	struct snd_mask *maskp = constrs_mask(constrs, var);
1236	maskp->bits[0] &= (u_int32_t)mask;
1237	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1238	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1239	if (! maskp->bits[0] && ! maskp->bits[1])
1240		return -EINVAL;
1241	return 0;
1242}
1243EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1244
1245/**
1246 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1247 * @runtime: PCM runtime instance
1248 * @var: hw_params variable to apply the integer constraint
1249 *
1250 * Apply the constraint of integer to an interval parameter.
1251 *
1252 * Return: Positive if the value is changed, zero if it's not changed, or a
1253 * negative error code.
1254 */
1255int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1256{
1257	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1258	return snd_interval_setinteger(constrs_interval(constrs, var));
1259}
1260
1261EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1262
1263/**
1264 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1265 * @runtime: PCM runtime instance
1266 * @var: hw_params variable to apply the range
1267 * @min: the minimal value
1268 * @max: the maximal value
1269 * 
1270 * Apply the min/max range constraint to an interval parameter.
1271 *
1272 * Return: Positive if the value is changed, zero if it's not changed, or a
1273 * negative error code.
1274 */
1275int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1276				 unsigned int min, unsigned int max)
1277{
1278	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1279	struct snd_interval t;
1280	t.min = min;
1281	t.max = max;
1282	t.openmin = t.openmax = 0;
1283	t.integer = 0;
1284	return snd_interval_refine(constrs_interval(constrs, var), &t);
1285}
1286
1287EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1288
1289static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1290				struct snd_pcm_hw_rule *rule)
1291{
1292	struct snd_pcm_hw_constraint_list *list = rule->private;
1293	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1294}		
1295
1296
1297/**
1298 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1299 * @runtime: PCM runtime instance
1300 * @cond: condition bits
1301 * @var: hw_params variable to apply the list constraint
1302 * @l: list
1303 * 
1304 * Apply the list of constraints to an interval parameter.
1305 *
1306 * Return: Zero if successful, or a negative error code on failure.
1307 */
1308int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1309			       unsigned int cond,
1310			       snd_pcm_hw_param_t var,
1311			       const struct snd_pcm_hw_constraint_list *l)
1312{
1313	return snd_pcm_hw_rule_add(runtime, cond, var,
1314				   snd_pcm_hw_rule_list, (void *)l,
1315				   var, -1);
1316}
1317
1318EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1319
1320static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1321				   struct snd_pcm_hw_rule *rule)
1322{
1323	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1324	unsigned int num = 0, den = 0;
1325	int err;
1326	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1327				  r->nrats, r->rats, &num, &den);
1328	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1329		params->rate_num = num;
1330		params->rate_den = den;
1331	}
1332	return err;
1333}
1334
1335/**
1336 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1337 * @runtime: PCM runtime instance
1338 * @cond: condition bits
1339 * @var: hw_params variable to apply the ratnums constraint
1340 * @r: struct snd_ratnums constriants
1341 *
1342 * Return: Zero if successful, or a negative error code on failure.
1343 */
1344int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1345				  unsigned int cond,
1346				  snd_pcm_hw_param_t var,
1347				  struct snd_pcm_hw_constraint_ratnums *r)
1348{
1349	return snd_pcm_hw_rule_add(runtime, cond, var,
1350				   snd_pcm_hw_rule_ratnums, r,
1351				   var, -1);
1352}
1353
1354EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1355
1356static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1357				   struct snd_pcm_hw_rule *rule)
1358{
1359	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1360	unsigned int num = 0, den = 0;
1361	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1362				  r->nrats, r->rats, &num, &den);
1363	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1364		params->rate_num = num;
1365		params->rate_den = den;
1366	}
1367	return err;
1368}
1369
1370/**
1371 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1372 * @runtime: PCM runtime instance
1373 * @cond: condition bits
1374 * @var: hw_params variable to apply the ratdens constraint
1375 * @r: struct snd_ratdens constriants
1376 *
1377 * Return: Zero if successful, or a negative error code on failure.
1378 */
1379int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1380				  unsigned int cond,
1381				  snd_pcm_hw_param_t var,
1382				  struct snd_pcm_hw_constraint_ratdens *r)
1383{
1384	return snd_pcm_hw_rule_add(runtime, cond, var,
1385				   snd_pcm_hw_rule_ratdens, r,
1386				   var, -1);
1387}
1388
1389EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1390
1391static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1392				  struct snd_pcm_hw_rule *rule)
1393{
1394	unsigned int l = (unsigned long) rule->private;
1395	int width = l & 0xffff;
1396	unsigned int msbits = l >> 16;
1397	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1398	if (snd_interval_single(i) && snd_interval_value(i) == width)
1399		params->msbits = msbits;
1400	return 0;
1401}
1402
1403/**
1404 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1405 * @runtime: PCM runtime instance
1406 * @cond: condition bits
1407 * @width: sample bits width
1408 * @msbits: msbits width
1409 *
1410 * Return: Zero if successful, or a negative error code on failure.
1411 */
1412int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1413				 unsigned int cond,
1414				 unsigned int width,
1415				 unsigned int msbits)
1416{
1417	unsigned long l = (msbits << 16) | width;
1418	return snd_pcm_hw_rule_add(runtime, cond, -1,
1419				    snd_pcm_hw_rule_msbits,
1420				    (void*) l,
1421				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1422}
1423
1424EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1425
1426static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1427				struct snd_pcm_hw_rule *rule)
1428{
1429	unsigned long step = (unsigned long) rule->private;
1430	return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1431}
1432
1433/**
1434 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1435 * @runtime: PCM runtime instance
1436 * @cond: condition bits
1437 * @var: hw_params variable to apply the step constraint
1438 * @step: step size
1439 *
1440 * Return: Zero if successful, or a negative error code on failure.
1441 */
1442int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1443			       unsigned int cond,
1444			       snd_pcm_hw_param_t var,
1445			       unsigned long step)
1446{
1447	return snd_pcm_hw_rule_add(runtime, cond, var, 
1448				   snd_pcm_hw_rule_step, (void *) step,
1449				   var, -1);
1450}
1451
1452EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1453
1454static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1455{
1456	static unsigned int pow2_sizes[] = {
1457		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1458		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1459		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1460		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1461	};
1462	return snd_interval_list(hw_param_interval(params, rule->var),
1463				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1464}		
1465
1466/**
1467 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1468 * @runtime: PCM runtime instance
1469 * @cond: condition bits
1470 * @var: hw_params variable to apply the power-of-2 constraint
1471 *
1472 * Return: Zero if successful, or a negative error code on failure.
1473 */
1474int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1475			       unsigned int cond,
1476			       snd_pcm_hw_param_t var)
1477{
1478	return snd_pcm_hw_rule_add(runtime, cond, var, 
1479				   snd_pcm_hw_rule_pow2, NULL,
1480				   var, -1);
1481}
1482
1483EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1484
1485static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1486					   struct snd_pcm_hw_rule *rule)
1487{
1488	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1489	struct snd_interval *rate;
1490
1491	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1492	return snd_interval_list(rate, 1, &base_rate, 0);
1493}
1494
1495/**
1496 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1497 * @runtime: PCM runtime instance
1498 * @base_rate: the rate at which the hardware does not resample
1499 *
1500 * Return: Zero if successful, or a negative error code on failure.
1501 */
1502int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1503			       unsigned int base_rate)
1504{
1505	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1506				   SNDRV_PCM_HW_PARAM_RATE,
1507				   snd_pcm_hw_rule_noresample_func,
1508				   (void *)(uintptr_t)base_rate,
1509				   SNDRV_PCM_HW_PARAM_RATE, -1);
1510}
1511EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1512
1513static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1514				  snd_pcm_hw_param_t var)
1515{
1516	if (hw_is_mask(var)) {
1517		snd_mask_any(hw_param_mask(params, var));
1518		params->cmask |= 1 << var;
1519		params->rmask |= 1 << var;
1520		return;
1521	}
1522	if (hw_is_interval(var)) {
1523		snd_interval_any(hw_param_interval(params, var));
1524		params->cmask |= 1 << var;
1525		params->rmask |= 1 << var;
1526		return;
1527	}
1528	snd_BUG();
1529}
1530
1531void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1532{
1533	unsigned int k;
1534	memset(params, 0, sizeof(*params));
1535	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1536		_snd_pcm_hw_param_any(params, k);
1537	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1538		_snd_pcm_hw_param_any(params, k);
1539	params->info = ~0U;
1540}
1541
1542EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1543
1544/**
1545 * snd_pcm_hw_param_value - return @params field @var value
1546 * @params: the hw_params instance
1547 * @var: parameter to retrieve
1548 * @dir: pointer to the direction (-1,0,1) or %NULL
1549 *
1550 * Return: The value for field @var if it's fixed in configuration space
1551 * defined by @params. -%EINVAL otherwise.
1552 */
1553int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1554			   snd_pcm_hw_param_t var, int *dir)
1555{
1556	if (hw_is_mask(var)) {
1557		const struct snd_mask *mask = hw_param_mask_c(params, var);
1558		if (!snd_mask_single(mask))
1559			return -EINVAL;
1560		if (dir)
1561			*dir = 0;
1562		return snd_mask_value(mask);
1563	}
1564	if (hw_is_interval(var)) {
1565		const struct snd_interval *i = hw_param_interval_c(params, var);
1566		if (!snd_interval_single(i))
1567			return -EINVAL;
1568		if (dir)
1569			*dir = i->openmin;
1570		return snd_interval_value(i);
1571	}
1572	return -EINVAL;
1573}
1574
1575EXPORT_SYMBOL(snd_pcm_hw_param_value);
1576
1577void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1578				snd_pcm_hw_param_t var)
1579{
1580	if (hw_is_mask(var)) {
1581		snd_mask_none(hw_param_mask(params, var));
1582		params->cmask |= 1 << var;
1583		params->rmask |= 1 << var;
1584	} else if (hw_is_interval(var)) {
1585		snd_interval_none(hw_param_interval(params, var));
1586		params->cmask |= 1 << var;
1587		params->rmask |= 1 << var;
1588	} else {
1589		snd_BUG();
1590	}
1591}
1592
1593EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1594
1595static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1596				   snd_pcm_hw_param_t var)
1597{
1598	int changed;
1599	if (hw_is_mask(var))
1600		changed = snd_mask_refine_first(hw_param_mask(params, var));
1601	else if (hw_is_interval(var))
1602		changed = snd_interval_refine_first(hw_param_interval(params, var));
1603	else
1604		return -EINVAL;
1605	if (changed) {
1606		params->cmask |= 1 << var;
1607		params->rmask |= 1 << var;
1608	}
1609	return changed;
1610}
1611
1612
1613/**
1614 * snd_pcm_hw_param_first - refine config space and return minimum value
1615 * @pcm: PCM instance
1616 * @params: the hw_params instance
1617 * @var: parameter to retrieve
1618 * @dir: pointer to the direction (-1,0,1) or %NULL
1619 *
1620 * Inside configuration space defined by @params remove from @var all
1621 * values > minimum. Reduce configuration space accordingly.
1622 *
1623 * Return: The minimum, or a negative error code on failure.
1624 */
1625int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1626			   struct snd_pcm_hw_params *params, 
1627			   snd_pcm_hw_param_t var, int *dir)
1628{
1629	int changed = _snd_pcm_hw_param_first(params, var);
1630	if (changed < 0)
1631		return changed;
1632	if (params->rmask) {
1633		int err = snd_pcm_hw_refine(pcm, params);
1634		if (snd_BUG_ON(err < 0))
1635			return err;
1636	}
1637	return snd_pcm_hw_param_value(params, var, dir);
1638}
1639
1640EXPORT_SYMBOL(snd_pcm_hw_param_first);
1641
1642static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1643				  snd_pcm_hw_param_t var)
1644{
1645	int changed;
1646	if (hw_is_mask(var))
1647		changed = snd_mask_refine_last(hw_param_mask(params, var));
1648	else if (hw_is_interval(var))
1649		changed = snd_interval_refine_last(hw_param_interval(params, var));
1650	else
1651		return -EINVAL;
1652	if (changed) {
1653		params->cmask |= 1 << var;
1654		params->rmask |= 1 << var;
1655	}
1656	return changed;
1657}
1658
1659
1660/**
1661 * snd_pcm_hw_param_last - refine config space and return maximum value
1662 * @pcm: PCM instance
1663 * @params: the hw_params instance
1664 * @var: parameter to retrieve
1665 * @dir: pointer to the direction (-1,0,1) or %NULL
1666 *
1667 * Inside configuration space defined by @params remove from @var all
1668 * values < maximum. Reduce configuration space accordingly.
1669 *
1670 * Return: The maximum, or a negative error code on failure.
1671 */
1672int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1673			  struct snd_pcm_hw_params *params,
1674			  snd_pcm_hw_param_t var, int *dir)
1675{
1676	int changed = _snd_pcm_hw_param_last(params, var);
1677	if (changed < 0)
1678		return changed;
1679	if (params->rmask) {
1680		int err = snd_pcm_hw_refine(pcm, params);
1681		if (snd_BUG_ON(err < 0))
1682			return err;
1683	}
1684	return snd_pcm_hw_param_value(params, var, dir);
1685}
1686
1687EXPORT_SYMBOL(snd_pcm_hw_param_last);
1688
1689/**
1690 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1691 * @pcm: PCM instance
1692 * @params: the hw_params instance
1693 *
1694 * Choose one configuration from configuration space defined by @params.
1695 * The configuration chosen is that obtained fixing in this order:
1696 * first access, first format, first subformat, min channels,
1697 * min rate, min period time, max buffer size, min tick time
1698 *
1699 * Return: Zero if successful, or a negative error code on failure.
1700 */
1701int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1702			     struct snd_pcm_hw_params *params)
1703{
1704	static int vars[] = {
1705		SNDRV_PCM_HW_PARAM_ACCESS,
1706		SNDRV_PCM_HW_PARAM_FORMAT,
1707		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1708		SNDRV_PCM_HW_PARAM_CHANNELS,
1709		SNDRV_PCM_HW_PARAM_RATE,
1710		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1711		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1712		SNDRV_PCM_HW_PARAM_TICK_TIME,
1713		-1
1714	};
1715	int err, *v;
1716
1717	for (v = vars; *v != -1; v++) {
1718		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1719			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1720		else
1721			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1722		if (snd_BUG_ON(err < 0))
1723			return err;
1724	}
1725	return 0;
1726}
1727
1728static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1729				   void *arg)
1730{
1731	struct snd_pcm_runtime *runtime = substream->runtime;
1732	unsigned long flags;
1733	snd_pcm_stream_lock_irqsave(substream, flags);
1734	if (snd_pcm_running(substream) &&
1735	    snd_pcm_update_hw_ptr(substream) >= 0)
1736		runtime->status->hw_ptr %= runtime->buffer_size;
1737	else {
1738		runtime->status->hw_ptr = 0;
1739		runtime->hw_ptr_wrap = 0;
1740	}
1741	snd_pcm_stream_unlock_irqrestore(substream, flags);
1742	return 0;
1743}
1744
1745static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1746					  void *arg)
1747{
1748	struct snd_pcm_channel_info *info = arg;
1749	struct snd_pcm_runtime *runtime = substream->runtime;
1750	int width;
1751	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1752		info->offset = -1;
1753		return 0;
1754	}
1755	width = snd_pcm_format_physical_width(runtime->format);
1756	if (width < 0)
1757		return width;
1758	info->offset = 0;
1759	switch (runtime->access) {
1760	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1761	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1762		info->first = info->channel * width;
1763		info->step = runtime->channels * width;
1764		break;
1765	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1766	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1767	{
1768		size_t size = runtime->dma_bytes / runtime->channels;
1769		info->first = info->channel * size * 8;
1770		info->step = width;
1771		break;
1772	}
1773	default:
1774		snd_BUG();
1775		break;
1776	}
1777	return 0;
1778}
1779
1780static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1781				       void *arg)
1782{
1783	struct snd_pcm_hw_params *params = arg;
1784	snd_pcm_format_t format;
1785	int channels, width;
1786
1787	params->fifo_size = substream->runtime->hw.fifo_size;
1788	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1789		format = params_format(params);
1790		channels = params_channels(params);
1791		width = snd_pcm_format_physical_width(format);
1792		params->fifo_size /= width * channels;
1793	}
1794	return 0;
1795}
1796
1797/**
1798 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1799 * @substream: the pcm substream instance
1800 * @cmd: ioctl command
1801 * @arg: ioctl argument
1802 *
1803 * Processes the generic ioctl commands for PCM.
1804 * Can be passed as the ioctl callback for PCM ops.
1805 *
1806 * Return: Zero if successful, or a negative error code on failure.
1807 */
1808int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1809		      unsigned int cmd, void *arg)
1810{
1811	switch (cmd) {
1812	case SNDRV_PCM_IOCTL1_INFO:
1813		return 0;
1814	case SNDRV_PCM_IOCTL1_RESET:
1815		return snd_pcm_lib_ioctl_reset(substream, arg);
1816	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1817		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1818	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1819		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1820	}
1821	return -ENXIO;
1822}
1823
1824EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1825
1826/**
1827 * snd_pcm_period_elapsed - update the pcm status for the next period
1828 * @substream: the pcm substream instance
1829 *
1830 * This function is called from the interrupt handler when the
1831 * PCM has processed the period size.  It will update the current
1832 * pointer, wake up sleepers, etc.
1833 *
1834 * Even if more than one periods have elapsed since the last call, you
1835 * have to call this only once.
1836 */
1837void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1838{
1839	struct snd_pcm_runtime *runtime;
1840	unsigned long flags;
1841
1842	if (PCM_RUNTIME_CHECK(substream))
1843		return;
1844	runtime = substream->runtime;
1845
1846	if (runtime->transfer_ack_begin)
1847		runtime->transfer_ack_begin(substream);
1848
1849	snd_pcm_stream_lock_irqsave(substream, flags);
1850	if (!snd_pcm_running(substream) ||
1851	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1852		goto _end;
1853
1854	if (substream->timer_running)
1855		snd_timer_interrupt(substream->timer, 1);
1856 _end:
1857	snd_pcm_stream_unlock_irqrestore(substream, flags);
1858	if (runtime->transfer_ack_end)
1859		runtime->transfer_ack_end(substream);
1860	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1861}
1862
1863EXPORT_SYMBOL(snd_pcm_period_elapsed);
1864
1865/*
1866 * Wait until avail_min data becomes available
1867 * Returns a negative error code if any error occurs during operation.
1868 * The available space is stored on availp.  When err = 0 and avail = 0
1869 * on the capture stream, it indicates the stream is in DRAINING state.
1870 */
1871static int wait_for_avail(struct snd_pcm_substream *substream,
1872			      snd_pcm_uframes_t *availp)
1873{
1874	struct snd_pcm_runtime *runtime = substream->runtime;
1875	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1876	wait_queue_t wait;
1877	int err = 0;
1878	snd_pcm_uframes_t avail = 0;
1879	long wait_time, tout;
1880
1881	init_waitqueue_entry(&wait, current);
1882	set_current_state(TASK_INTERRUPTIBLE);
1883	add_wait_queue(&runtime->tsleep, &wait);
1884
1885	if (runtime->no_period_wakeup)
1886		wait_time = MAX_SCHEDULE_TIMEOUT;
1887	else {
1888		wait_time = 10;
1889		if (runtime->rate) {
1890			long t = runtime->period_size * 2 / runtime->rate;
1891			wait_time = max(t, wait_time);
1892		}
1893		wait_time = msecs_to_jiffies(wait_time * 1000);
1894	}
1895
1896	for (;;) {
1897		if (signal_pending(current)) {
1898			err = -ERESTARTSYS;
1899			break;
1900		}
1901
1902		/*
1903		 * We need to check if space became available already
1904		 * (and thus the wakeup happened already) first to close
1905		 * the race of space already having become available.
1906		 * This check must happen after been added to the waitqueue
1907		 * and having current state be INTERRUPTIBLE.
1908		 */
1909		if (is_playback)
1910			avail = snd_pcm_playback_avail(runtime);
1911		else
1912			avail = snd_pcm_capture_avail(runtime);
1913		if (avail >= runtime->twake)
1914			break;
1915		snd_pcm_stream_unlock_irq(substream);
1916
1917		tout = schedule_timeout(wait_time);
1918
1919		snd_pcm_stream_lock_irq(substream);
1920		set_current_state(TASK_INTERRUPTIBLE);
1921		switch (runtime->status->state) {
1922		case SNDRV_PCM_STATE_SUSPENDED:
1923			err = -ESTRPIPE;
1924			goto _endloop;
1925		case SNDRV_PCM_STATE_XRUN:
1926			err = -EPIPE;
1927			goto _endloop;
1928		case SNDRV_PCM_STATE_DRAINING:
1929			if (is_playback)
1930				err = -EPIPE;
1931			else 
1932				avail = 0; /* indicate draining */
1933			goto _endloop;
1934		case SNDRV_PCM_STATE_OPEN:
1935		case SNDRV_PCM_STATE_SETUP:
1936		case SNDRV_PCM_STATE_DISCONNECTED:
1937			err = -EBADFD;
1938			goto _endloop;
1939		case SNDRV_PCM_STATE_PAUSED:
1940			continue;
1941		}
1942		if (!tout) {
1943			pcm_dbg(substream->pcm,
1944				"%s write error (DMA or IRQ trouble?)\n",
1945				is_playback ? "playback" : "capture");
1946			err = -EIO;
1947			break;
1948		}
1949	}
1950 _endloop:
1951	set_current_state(TASK_RUNNING);
1952	remove_wait_queue(&runtime->tsleep, &wait);
1953	*availp = avail;
1954	return err;
1955}
1956	
1957static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1958				      unsigned int hwoff,
1959				      unsigned long data, unsigned int off,
1960				      snd_pcm_uframes_t frames)
1961{
1962	struct snd_pcm_runtime *runtime = substream->runtime;
1963	int err;
1964	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1965	if (substream->ops->copy) {
1966		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1967			return err;
1968	} else {
1969		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1970		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1971			return -EFAULT;
1972	}
1973	return 0;
1974}
1975 
1976typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1977			  unsigned long data, unsigned int off,
1978			  snd_pcm_uframes_t size);
1979
1980static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1981					    unsigned long data,
1982					    snd_pcm_uframes_t size,
1983					    int nonblock,
1984					    transfer_f transfer)
1985{
1986	struct snd_pcm_runtime *runtime = substream->runtime;
1987	snd_pcm_uframes_t xfer = 0;
1988	snd_pcm_uframes_t offset = 0;
1989	snd_pcm_uframes_t avail;
1990	int err = 0;
1991
1992	if (size == 0)
1993		return 0;
1994
1995	snd_pcm_stream_lock_irq(substream);
1996	switch (runtime->status->state) {
1997	case SNDRV_PCM_STATE_PREPARED:
1998	case SNDRV_PCM_STATE_RUNNING:
1999	case SNDRV_PCM_STATE_PAUSED:
2000		break;
2001	case SNDRV_PCM_STATE_XRUN:
2002		err = -EPIPE;
2003		goto _end_unlock;
2004	case SNDRV_PCM_STATE_SUSPENDED:
2005		err = -ESTRPIPE;
2006		goto _end_unlock;
2007	default:
2008		err = -EBADFD;
2009		goto _end_unlock;
2010	}
2011
2012	runtime->twake = runtime->control->avail_min ? : 1;
2013	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2014		snd_pcm_update_hw_ptr(substream);
2015	avail = snd_pcm_playback_avail(runtime);
2016	while (size > 0) {
2017		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
 
2018		snd_pcm_uframes_t cont;
 
 
 
2019		if (!avail) {
2020			if (nonblock) {
2021				err = -EAGAIN;
2022				goto _end_unlock;
2023			}
2024			runtime->twake = min_t(snd_pcm_uframes_t, size,
2025					runtime->control->avail_min ? : 1);
2026			err = wait_for_avail(substream, &avail);
2027			if (err < 0)
2028				goto _end_unlock;
2029		}
2030		frames = size > avail ? avail : size;
2031		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2032		if (frames > cont)
2033			frames = cont;
2034		if (snd_BUG_ON(!frames)) {
2035			runtime->twake = 0;
2036			snd_pcm_stream_unlock_irq(substream);
2037			return -EINVAL;
2038		}
2039		appl_ptr = runtime->control->appl_ptr;
2040		appl_ofs = appl_ptr % runtime->buffer_size;
2041		snd_pcm_stream_unlock_irq(substream);
2042		err = transfer(substream, appl_ofs, data, offset, frames);
2043		snd_pcm_stream_lock_irq(substream);
2044		if (err < 0)
2045			goto _end_unlock;
2046		switch (runtime->status->state) {
2047		case SNDRV_PCM_STATE_XRUN:
2048			err = -EPIPE;
2049			goto _end_unlock;
2050		case SNDRV_PCM_STATE_SUSPENDED:
2051			err = -ESTRPIPE;
2052			goto _end_unlock;
2053		default:
2054			break;
2055		}
2056		appl_ptr += frames;
2057		if (appl_ptr >= runtime->boundary)
2058			appl_ptr -= runtime->boundary;
2059		runtime->control->appl_ptr = appl_ptr;
2060		if (substream->ops->ack)
2061			substream->ops->ack(substream);
2062
2063		offset += frames;
2064		size -= frames;
2065		xfer += frames;
2066		avail -= frames;
2067		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2068		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2069			err = snd_pcm_start(substream);
2070			if (err < 0)
2071				goto _end_unlock;
2072		}
2073	}
2074 _end_unlock:
2075	runtime->twake = 0;
2076	if (xfer > 0 && err >= 0)
2077		snd_pcm_update_state(substream, runtime);
2078	snd_pcm_stream_unlock_irq(substream);
2079	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2080}
2081
2082/* sanity-check for read/write methods */
2083static int pcm_sanity_check(struct snd_pcm_substream *substream)
2084{
2085	struct snd_pcm_runtime *runtime;
2086	if (PCM_RUNTIME_CHECK(substream))
2087		return -ENXIO;
2088	runtime = substream->runtime;
2089	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2090		return -EINVAL;
2091	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2092		return -EBADFD;
2093	return 0;
2094}
2095
2096snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2097{
2098	struct snd_pcm_runtime *runtime;
2099	int nonblock;
2100	int err;
2101
2102	err = pcm_sanity_check(substream);
2103	if (err < 0)
2104		return err;
2105	runtime = substream->runtime;
2106	nonblock = !!(substream->f_flags & O_NONBLOCK);
2107
2108	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2109	    runtime->channels > 1)
2110		return -EINVAL;
2111	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2112				  snd_pcm_lib_write_transfer);
2113}
2114
2115EXPORT_SYMBOL(snd_pcm_lib_write);
2116
2117static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2118				       unsigned int hwoff,
2119				       unsigned long data, unsigned int off,
2120				       snd_pcm_uframes_t frames)
2121{
2122	struct snd_pcm_runtime *runtime = substream->runtime;
2123	int err;
2124	void __user **bufs = (void __user **)data;
2125	int channels = runtime->channels;
2126	int c;
2127	if (substream->ops->copy) {
2128		if (snd_BUG_ON(!substream->ops->silence))
2129			return -EINVAL;
2130		for (c = 0; c < channels; ++c, ++bufs) {
2131			if (*bufs == NULL) {
2132				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2133					return err;
2134			} else {
2135				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2136				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2137					return err;
2138			}
2139		}
2140	} else {
2141		/* default transfer behaviour */
2142		size_t dma_csize = runtime->dma_bytes / channels;
2143		for (c = 0; c < channels; ++c, ++bufs) {
2144			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2145			if (*bufs == NULL) {
2146				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2147			} else {
2148				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2149				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2150					return -EFAULT;
2151			}
2152		}
2153	}
2154	return 0;
2155}
2156 
2157snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2158				     void __user **bufs,
2159				     snd_pcm_uframes_t frames)
2160{
2161	struct snd_pcm_runtime *runtime;
2162	int nonblock;
2163	int err;
2164
2165	err = pcm_sanity_check(substream);
2166	if (err < 0)
2167		return err;
2168	runtime = substream->runtime;
2169	nonblock = !!(substream->f_flags & O_NONBLOCK);
2170
2171	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2172		return -EINVAL;
2173	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2174				  nonblock, snd_pcm_lib_writev_transfer);
2175}
2176
2177EXPORT_SYMBOL(snd_pcm_lib_writev);
2178
2179static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2180				     unsigned int hwoff,
2181				     unsigned long data, unsigned int off,
2182				     snd_pcm_uframes_t frames)
2183{
2184	struct snd_pcm_runtime *runtime = substream->runtime;
2185	int err;
2186	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2187	if (substream->ops->copy) {
2188		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2189			return err;
2190	} else {
2191		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2192		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2193			return -EFAULT;
2194	}
2195	return 0;
2196}
2197
2198static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2199					   unsigned long data,
2200					   snd_pcm_uframes_t size,
2201					   int nonblock,
2202					   transfer_f transfer)
2203{
2204	struct snd_pcm_runtime *runtime = substream->runtime;
2205	snd_pcm_uframes_t xfer = 0;
2206	snd_pcm_uframes_t offset = 0;
2207	snd_pcm_uframes_t avail;
2208	int err = 0;
2209
2210	if (size == 0)
2211		return 0;
2212
2213	snd_pcm_stream_lock_irq(substream);
2214	switch (runtime->status->state) {
2215	case SNDRV_PCM_STATE_PREPARED:
2216		if (size >= runtime->start_threshold) {
2217			err = snd_pcm_start(substream);
2218			if (err < 0)
2219				goto _end_unlock;
2220		}
2221		break;
2222	case SNDRV_PCM_STATE_DRAINING:
2223	case SNDRV_PCM_STATE_RUNNING:
2224	case SNDRV_PCM_STATE_PAUSED:
2225		break;
2226	case SNDRV_PCM_STATE_XRUN:
2227		err = -EPIPE;
2228		goto _end_unlock;
2229	case SNDRV_PCM_STATE_SUSPENDED:
2230		err = -ESTRPIPE;
2231		goto _end_unlock;
2232	default:
2233		err = -EBADFD;
2234		goto _end_unlock;
2235	}
2236
2237	runtime->twake = runtime->control->avail_min ? : 1;
2238	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2239		snd_pcm_update_hw_ptr(substream);
2240	avail = snd_pcm_capture_avail(runtime);
2241	while (size > 0) {
2242		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
 
2243		snd_pcm_uframes_t cont;
 
 
 
2244		if (!avail) {
2245			if (runtime->status->state ==
2246			    SNDRV_PCM_STATE_DRAINING) {
2247				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2248				goto _end_unlock;
2249			}
2250			if (nonblock) {
2251				err = -EAGAIN;
2252				goto _end_unlock;
2253			}
2254			runtime->twake = min_t(snd_pcm_uframes_t, size,
2255					runtime->control->avail_min ? : 1);
2256			err = wait_for_avail(substream, &avail);
2257			if (err < 0)
2258				goto _end_unlock;
2259			if (!avail)
2260				continue; /* draining */
2261		}
2262		frames = size > avail ? avail : size;
2263		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2264		if (frames > cont)
2265			frames = cont;
2266		if (snd_BUG_ON(!frames)) {
2267			runtime->twake = 0;
2268			snd_pcm_stream_unlock_irq(substream);
2269			return -EINVAL;
2270		}
2271		appl_ptr = runtime->control->appl_ptr;
2272		appl_ofs = appl_ptr % runtime->buffer_size;
2273		snd_pcm_stream_unlock_irq(substream);
2274		err = transfer(substream, appl_ofs, data, offset, frames);
2275		snd_pcm_stream_lock_irq(substream);
2276		if (err < 0)
2277			goto _end_unlock;
2278		switch (runtime->status->state) {
2279		case SNDRV_PCM_STATE_XRUN:
2280			err = -EPIPE;
2281			goto _end_unlock;
2282		case SNDRV_PCM_STATE_SUSPENDED:
2283			err = -ESTRPIPE;
2284			goto _end_unlock;
2285		default:
2286			break;
2287		}
2288		appl_ptr += frames;
2289		if (appl_ptr >= runtime->boundary)
2290			appl_ptr -= runtime->boundary;
2291		runtime->control->appl_ptr = appl_ptr;
2292		if (substream->ops->ack)
2293			substream->ops->ack(substream);
2294
2295		offset += frames;
2296		size -= frames;
2297		xfer += frames;
2298		avail -= frames;
2299	}
2300 _end_unlock:
2301	runtime->twake = 0;
2302	if (xfer > 0 && err >= 0)
2303		snd_pcm_update_state(substream, runtime);
2304	snd_pcm_stream_unlock_irq(substream);
2305	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2306}
2307
2308snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2309{
2310	struct snd_pcm_runtime *runtime;
2311	int nonblock;
2312	int err;
2313	
2314	err = pcm_sanity_check(substream);
2315	if (err < 0)
2316		return err;
2317	runtime = substream->runtime;
2318	nonblock = !!(substream->f_flags & O_NONBLOCK);
2319	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2320		return -EINVAL;
2321	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2322}
2323
2324EXPORT_SYMBOL(snd_pcm_lib_read);
2325
2326static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2327				      unsigned int hwoff,
2328				      unsigned long data, unsigned int off,
2329				      snd_pcm_uframes_t frames)
2330{
2331	struct snd_pcm_runtime *runtime = substream->runtime;
2332	int err;
2333	void __user **bufs = (void __user **)data;
2334	int channels = runtime->channels;
2335	int c;
2336	if (substream->ops->copy) {
2337		for (c = 0; c < channels; ++c, ++bufs) {
2338			char __user *buf;
2339			if (*bufs == NULL)
2340				continue;
2341			buf = *bufs + samples_to_bytes(runtime, off);
2342			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2343				return err;
2344		}
2345	} else {
2346		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2347		for (c = 0; c < channels; ++c, ++bufs) {
2348			char *hwbuf;
2349			char __user *buf;
2350			if (*bufs == NULL)
2351				continue;
2352
2353			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2354			buf = *bufs + samples_to_bytes(runtime, off);
2355			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2356				return -EFAULT;
2357		}
2358	}
2359	return 0;
2360}
2361 
2362snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2363				    void __user **bufs,
2364				    snd_pcm_uframes_t frames)
2365{
2366	struct snd_pcm_runtime *runtime;
2367	int nonblock;
2368	int err;
2369
2370	err = pcm_sanity_check(substream);
2371	if (err < 0)
2372		return err;
2373	runtime = substream->runtime;
2374	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2375		return -EBADFD;
2376
2377	nonblock = !!(substream->f_flags & O_NONBLOCK);
2378	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2379		return -EINVAL;
2380	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2381}
2382
2383EXPORT_SYMBOL(snd_pcm_lib_readv);
2384
2385/*
2386 * standard channel mapping helpers
2387 */
2388
2389/* default channel maps for multi-channel playbacks, up to 8 channels */
2390const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2391	{ .channels = 1,
2392	  .map = { SNDRV_CHMAP_MONO } },
2393	{ .channels = 2,
2394	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2395	{ .channels = 4,
2396	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2397		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2398	{ .channels = 6,
2399	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2400		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2401		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2402	{ .channels = 8,
2403	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2404		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2405		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2406		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2407	{ }
2408};
2409EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2410
2411/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2412const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2413	{ .channels = 1,
2414	  .map = { SNDRV_CHMAP_MONO } },
2415	{ .channels = 2,
2416	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2417	{ .channels = 4,
2418	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2419		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2420	{ .channels = 6,
2421	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2422		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2423		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2424	{ .channels = 8,
2425	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2426		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2427		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2428		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2429	{ }
2430};
2431EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2432
2433static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2434{
2435	if (ch > info->max_channels)
2436		return false;
2437	return !info->channel_mask || (info->channel_mask & (1U << ch));
2438}
2439
2440static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2441			      struct snd_ctl_elem_info *uinfo)
2442{
2443	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2444
2445	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2446	uinfo->count = 0;
2447	uinfo->count = info->max_channels;
2448	uinfo->value.integer.min = 0;
2449	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2450	return 0;
2451}
2452
2453/* get callback for channel map ctl element
2454 * stores the channel position firstly matching with the current channels
2455 */
2456static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2457			     struct snd_ctl_elem_value *ucontrol)
2458{
2459	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2460	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2461	struct snd_pcm_substream *substream;
2462	const struct snd_pcm_chmap_elem *map;
2463
2464	if (snd_BUG_ON(!info->chmap))
2465		return -EINVAL;
2466	substream = snd_pcm_chmap_substream(info, idx);
2467	if (!substream)
2468		return -ENODEV;
2469	memset(ucontrol->value.integer.value, 0,
2470	       sizeof(ucontrol->value.integer.value));
2471	if (!substream->runtime)
2472		return 0; /* no channels set */
2473	for (map = info->chmap; map->channels; map++) {
2474		int i;
2475		if (map->channels == substream->runtime->channels &&
2476		    valid_chmap_channels(info, map->channels)) {
2477			for (i = 0; i < map->channels; i++)
2478				ucontrol->value.integer.value[i] = map->map[i];
2479			return 0;
2480		}
2481	}
2482	return -EINVAL;
2483}
2484
2485/* tlv callback for channel map ctl element
2486 * expands the pre-defined channel maps in a form of TLV
2487 */
2488static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2489			     unsigned int size, unsigned int __user *tlv)
2490{
2491	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2492	const struct snd_pcm_chmap_elem *map;
2493	unsigned int __user *dst;
2494	int c, count = 0;
2495
2496	if (snd_BUG_ON(!info->chmap))
2497		return -EINVAL;
2498	if (size < 8)
2499		return -ENOMEM;
2500	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2501		return -EFAULT;
2502	size -= 8;
2503	dst = tlv + 2;
2504	for (map = info->chmap; map->channels; map++) {
2505		int chs_bytes = map->channels * 4;
2506		if (!valid_chmap_channels(info, map->channels))
2507			continue;
2508		if (size < 8)
2509			return -ENOMEM;
2510		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2511		    put_user(chs_bytes, dst + 1))
2512			return -EFAULT;
2513		dst += 2;
2514		size -= 8;
2515		count += 8;
2516		if (size < chs_bytes)
2517			return -ENOMEM;
2518		size -= chs_bytes;
2519		count += chs_bytes;
2520		for (c = 0; c < map->channels; c++) {
2521			if (put_user(map->map[c], dst))
2522				return -EFAULT;
2523			dst++;
2524		}
2525	}
2526	if (put_user(count, tlv + 1))
2527		return -EFAULT;
2528	return 0;
2529}
2530
2531static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2532{
2533	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2534	info->pcm->streams[info->stream].chmap_kctl = NULL;
2535	kfree(info);
2536}
2537
2538/**
2539 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2540 * @pcm: the assigned PCM instance
2541 * @stream: stream direction
2542 * @chmap: channel map elements (for query)
2543 * @max_channels: the max number of channels for the stream
2544 * @private_value: the value passed to each kcontrol's private_value field
2545 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2546 *
2547 * Create channel-mapping control elements assigned to the given PCM stream(s).
2548 * Return: Zero if successful, or a negative error value.
2549 */
2550int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2551			   const struct snd_pcm_chmap_elem *chmap,
2552			   int max_channels,
2553			   unsigned long private_value,
2554			   struct snd_pcm_chmap **info_ret)
2555{
2556	struct snd_pcm_chmap *info;
2557	struct snd_kcontrol_new knew = {
2558		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2559		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2560			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2561			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2562		.info = pcm_chmap_ctl_info,
2563		.get = pcm_chmap_ctl_get,
2564		.tlv.c = pcm_chmap_ctl_tlv,
2565	};
2566	int err;
2567
2568	info = kzalloc(sizeof(*info), GFP_KERNEL);
2569	if (!info)
2570		return -ENOMEM;
2571	info->pcm = pcm;
2572	info->stream = stream;
2573	info->chmap = chmap;
2574	info->max_channels = max_channels;
2575	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2576		knew.name = "Playback Channel Map";
2577	else
2578		knew.name = "Capture Channel Map";
2579	knew.device = pcm->device;
2580	knew.count = pcm->streams[stream].substream_count;
2581	knew.private_value = private_value;
2582	info->kctl = snd_ctl_new1(&knew, info);
2583	if (!info->kctl) {
2584		kfree(info);
2585		return -ENOMEM;
2586	}
2587	info->kctl->private_free = pcm_chmap_ctl_private_free;
2588	err = snd_ctl_add(pcm->card, info->kctl);
2589	if (err < 0)
2590		return err;
2591	pcm->streams[stream].chmap_kctl = info->kctl;
2592	if (info_ret)
2593		*info_ret = info;
2594	return 0;
2595}
2596EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);