Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  Digital Audio (PCM) abstract layer
   3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   4 *                   Abramo Bagnara <abramo@alsa-project.org>
   5 *
   6 *
   7 *   This program is free software; you can redistribute it and/or modify
   8 *   it under the terms of the GNU General Public License as published by
   9 *   the Free Software Foundation; either version 2 of the License, or
  10 *   (at your option) any later version.
  11 *
  12 *   This program is distributed in the hope that it will be useful,
  13 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *   GNU General Public License for more details.
  16 *
  17 *   You should have received a copy of the GNU General Public License
  18 *   along with this program; if not, write to the Free Software
  19 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 *
  21 */
  22
  23#include <linux/slab.h>
 
  24#include <linux/time.h>
  25#include <linux/math64.h>
 
  26#include <sound/core.h>
  27#include <sound/control.h>
 
  28#include <sound/info.h>
  29#include <sound/pcm.h>
  30#include <sound/pcm_params.h>
  31#include <sound/timer.h>
  32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  33/*
  34 * fill ring buffer with silence
  35 * runtime->silence_start: starting pointer to silence area
  36 * runtime->silence_filled: size filled with silence
  37 * runtime->silence_threshold: threshold from application
  38 * runtime->silence_size: maximal size from application
  39 *
  40 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  41 */
  42void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  43{
  44	struct snd_pcm_runtime *runtime = substream->runtime;
  45	snd_pcm_uframes_t frames, ofs, transfer;
 
  46
  47	if (runtime->silence_size < runtime->boundary) {
  48		snd_pcm_sframes_t noise_dist, n;
  49		if (runtime->silence_start != runtime->control->appl_ptr) {
  50			n = runtime->control->appl_ptr - runtime->silence_start;
  51			if (n < 0)
  52				n += runtime->boundary;
  53			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
  54				runtime->silence_filled -= n;
  55			else
  56				runtime->silence_filled = 0;
  57			runtime->silence_start = runtime->control->appl_ptr;
  58		}
  59		if (runtime->silence_filled >= runtime->buffer_size)
  60			return;
  61		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
  62		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  63			return;
  64		frames = runtime->silence_threshold - noise_dist;
  65		if (frames > runtime->silence_size)
  66			frames = runtime->silence_size;
  67	} else {
  68		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
  69			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
  70			if (avail > runtime->buffer_size)
  71				avail = runtime->buffer_size;
  72			runtime->silence_filled = avail > 0 ? avail : 0;
  73			runtime->silence_start = (runtime->status->hw_ptr +
  74						  runtime->silence_filled) %
  75						 runtime->boundary;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76		} else {
  77			ofs = runtime->status->hw_ptr;
  78			frames = new_hw_ptr - ofs;
  79			if ((snd_pcm_sframes_t)frames < 0)
  80				frames += runtime->boundary;
  81			runtime->silence_filled -= frames;
  82			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
  83				runtime->silence_filled = 0;
  84				runtime->silence_start = new_hw_ptr;
  85			} else {
  86				runtime->silence_start = ofs;
  87			}
  88		}
 
 
 
 
  89		frames = runtime->buffer_size - runtime->silence_filled;
  90	}
  91	if (snd_BUG_ON(frames > runtime->buffer_size))
  92		return;
  93	if (frames == 0)
  94		return;
  95	ofs = runtime->silence_start % runtime->buffer_size;
  96	while (frames > 0) {
  97		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
  98		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
  99		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
 100			if (substream->ops->silence) {
 101				int err;
 102				err = substream->ops->silence(substream, -1, ofs, transfer);
 103				snd_BUG_ON(err < 0);
 104			} else {
 105				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
 106				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
 107			}
 108		} else {
 109			unsigned int c;
 110			unsigned int channels = runtime->channels;
 111			if (substream->ops->silence) {
 112				for (c = 0; c < channels; ++c) {
 113					int err;
 114					err = substream->ops->silence(substream, c, ofs, transfer);
 115					snd_BUG_ON(err < 0);
 116				}
 117			} else {
 118				size_t dma_csize = runtime->dma_bytes / channels;
 119				for (c = 0; c < channels; ++c) {
 120					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
 121					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
 122				}
 123			}
 124		}
 125		runtime->silence_filled += transfer;
 126		frames -= transfer;
 127		ofs = 0;
 128	}
 
 129}
 130
 131#ifdef CONFIG_SND_DEBUG
 132void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 133			   char *name, size_t len)
 134{
 135	snprintf(name, len, "pcmC%dD%d%c:%d",
 136		 substream->pcm->card->number,
 137		 substream->pcm->device,
 138		 substream->stream ? 'c' : 'p',
 139		 substream->number);
 140}
 141EXPORT_SYMBOL(snd_pcm_debug_name);
 142#endif
 143
 144#define XRUN_DEBUG_BASIC	(1<<0)
 145#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
 146#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
 147#define XRUN_DEBUG_PERIODUPDATE	(1<<3)	/* full period update info */
 148#define XRUN_DEBUG_HWPTRUPDATE	(1<<4)	/* full hwptr update info */
 149#define XRUN_DEBUG_LOG		(1<<5)	/* show last 10 positions on err */
 150#define XRUN_DEBUG_LOGONCE	(1<<6)	/* do above only once */
 151
 152#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 153
 154#define xrun_debug(substream, mask) \
 155			((substream)->pstr->xrun_debug & (mask))
 156#else
 157#define xrun_debug(substream, mask)	0
 158#endif
 159
 160#define dump_stack_on_xrun(substream) do {			\
 161		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
 162			dump_stack();				\
 163	} while (0)
 164
 165static void xrun(struct snd_pcm_substream *substream)
 
 166{
 167	struct snd_pcm_runtime *runtime = substream->runtime;
 168
 169	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 170		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 
 
 
 
 
 
 171	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 172	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 173		char name[16];
 174		snd_pcm_debug_name(substream, name, sizeof(name));
 175		snd_printd(KERN_DEBUG "XRUN: %s\n", name);
 176		dump_stack_on_xrun(substream);
 177	}
 178}
 179
 180#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 181#define hw_ptr_error(substream, fmt, args...)				\
 182	do {								\
 
 183		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
 184			xrun_log_show(substream);			\
 185			if (printk_ratelimit()) {			\
 186				snd_printd("PCM: " fmt, ##args);	\
 187			}						\
 188			dump_stack_on_xrun(substream);			\
 189		}							\
 190	} while (0)
 191
 192#define XRUN_LOG_CNT	10
 193
 194struct hwptr_log_entry {
 195	unsigned int in_interrupt;
 196	unsigned long jiffies;
 197	snd_pcm_uframes_t pos;
 198	snd_pcm_uframes_t period_size;
 199	snd_pcm_uframes_t buffer_size;
 200	snd_pcm_uframes_t old_hw_ptr;
 201	snd_pcm_uframes_t hw_ptr_base;
 202};
 203
 204struct snd_pcm_hwptr_log {
 205	unsigned int idx;
 206	unsigned int hit: 1;
 207	struct hwptr_log_entry entries[XRUN_LOG_CNT];
 208};
 209
 210static void xrun_log(struct snd_pcm_substream *substream,
 211		     snd_pcm_uframes_t pos, int in_interrupt)
 212{
 213	struct snd_pcm_runtime *runtime = substream->runtime;
 214	struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
 215	struct hwptr_log_entry *entry;
 216
 217	if (log == NULL) {
 218		log = kzalloc(sizeof(*log), GFP_ATOMIC);
 219		if (log == NULL)
 220			return;
 221		runtime->hwptr_log = log;
 222	} else {
 223		if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
 224			return;
 225	}
 226	entry = &log->entries[log->idx];
 227	entry->in_interrupt = in_interrupt;
 228	entry->jiffies = jiffies;
 229	entry->pos = pos;
 230	entry->period_size = runtime->period_size;
 231	entry->buffer_size = runtime->buffer_size;
 232	entry->old_hw_ptr = runtime->status->hw_ptr;
 233	entry->hw_ptr_base = runtime->hw_ptr_base;
 234	log->idx = (log->idx + 1) % XRUN_LOG_CNT;
 235}
 236
 237static void xrun_log_show(struct snd_pcm_substream *substream)
 238{
 239	struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
 240	struct hwptr_log_entry *entry;
 241	char name[16];
 242	unsigned int idx;
 243	int cnt;
 244
 245	if (log == NULL)
 246		return;
 247	if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
 248		return;
 249	snd_pcm_debug_name(substream, name, sizeof(name));
 250	for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
 251		entry = &log->entries[idx];
 252		if (entry->period_size == 0)
 253			break;
 254		snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
 255			   "hwptr=%ld/%ld\n",
 256			   name, entry->in_interrupt ? "[Q] " : "",
 257			   entry->jiffies,
 258			   (unsigned long)entry->pos,
 259			   (unsigned long)entry->period_size,
 260			   (unsigned long)entry->buffer_size,
 261			   (unsigned long)entry->old_hw_ptr,
 262			   (unsigned long)entry->hw_ptr_base);
 263		idx++;
 264		idx %= XRUN_LOG_CNT;
 265	}
 266	log->hit = 1;
 267}
 268
 269#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 270
 271#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 272#define xrun_log(substream, pos, in_interrupt)	do { } while (0)
 273#define xrun_log_show(substream)	do { } while (0)
 274
 275#endif
 276
 277int snd_pcm_update_state(struct snd_pcm_substream *substream,
 278			 struct snd_pcm_runtime *runtime)
 279{
 280	snd_pcm_uframes_t avail;
 281
 282	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 283		avail = snd_pcm_playback_avail(runtime);
 284	else
 285		avail = snd_pcm_capture_avail(runtime);
 286	if (avail > runtime->avail_max)
 287		runtime->avail_max = avail;
 288	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
 289		if (avail >= runtime->buffer_size) {
 290			snd_pcm_drain_done(substream);
 291			return -EPIPE;
 292		}
 293	} else {
 294		if (avail >= runtime->stop_threshold) {
 295			xrun(substream);
 296			return -EPIPE;
 297		}
 298	}
 299	if (runtime->twake) {
 300		if (avail >= runtime->twake)
 301			wake_up(&runtime->tsleep);
 302	} else if (avail >= runtime->control->avail_min)
 303		wake_up(&runtime->sleep);
 304	return 0;
 305}
 306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 308				  unsigned int in_interrupt)
 309{
 310	struct snd_pcm_runtime *runtime = substream->runtime;
 311	snd_pcm_uframes_t pos;
 312	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 313	snd_pcm_sframes_t hdelta, delta;
 314	unsigned long jdelta;
 
 
 
 
 315
 316	old_hw_ptr = runtime->status->hw_ptr;
 
 
 
 
 
 
 
 317	pos = substream->ops->pointer(substream);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318	if (pos == SNDRV_PCM_POS_XRUN) {
 319		xrun(substream);
 320		return -EPIPE;
 321	}
 322	if (pos >= runtime->buffer_size) {
 323		if (printk_ratelimit()) {
 324			char name[16];
 325			snd_pcm_debug_name(substream, name, sizeof(name));
 326			xrun_log_show(substream);
 327			snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
 328				   "buffer size = %ld, period size = %ld\n",
 329				   name, pos, runtime->buffer_size,
 330				   runtime->period_size);
 331		}
 332		pos = 0;
 333	}
 334	pos -= pos % runtime->min_align;
 335	if (xrun_debug(substream, XRUN_DEBUG_LOG))
 336		xrun_log(substream, pos, in_interrupt);
 337	hw_base = runtime->hw_ptr_base;
 338	new_hw_ptr = hw_base + pos;
 339	if (in_interrupt) {
 340		/* we know that one period was processed */
 341		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
 342		delta = runtime->hw_ptr_interrupt + runtime->period_size;
 343		if (delta > new_hw_ptr) {
 344			/* check for double acknowledged interrupts */
 345			hdelta = jiffies - runtime->hw_ptr_jiffies;
 346			if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
 347				hw_base += runtime->buffer_size;
 348				if (hw_base >= runtime->boundary)
 349					hw_base = 0;
 
 
 350				new_hw_ptr = hw_base + pos;
 351				goto __delta;
 352			}
 353		}
 354	}
 355	/* new_hw_ptr might be lower than old_hw_ptr in case when */
 356	/* pointer crosses the end of the ring buffer */
 357	if (new_hw_ptr < old_hw_ptr) {
 358		hw_base += runtime->buffer_size;
 359		if (hw_base >= runtime->boundary)
 360			hw_base = 0;
 
 
 361		new_hw_ptr = hw_base + pos;
 362	}
 363      __delta:
 364	delta = new_hw_ptr - old_hw_ptr;
 365	if (delta < 0)
 366		delta += runtime->boundary;
 367	if (xrun_debug(substream, in_interrupt ?
 368			XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
 369		char name[16];
 370		snd_pcm_debug_name(substream, name, sizeof(name));
 371		snd_printd("%s_update: %s: pos=%u/%u/%u, "
 372			   "hwptr=%ld/%ld/%ld/%ld\n",
 373			   in_interrupt ? "period" : "hwptr",
 374			   name,
 375			   (unsigned int)pos,
 376			   (unsigned int)runtime->period_size,
 377			   (unsigned int)runtime->buffer_size,
 378			   (unsigned long)delta,
 379			   (unsigned long)old_hw_ptr,
 380			   (unsigned long)new_hw_ptr,
 381			   (unsigned long)runtime->hw_ptr_base);
 382	}
 383
 384	if (runtime->no_period_wakeup) {
 385		snd_pcm_sframes_t xrun_threshold;
 386		/*
 387		 * Without regular period interrupts, we have to check
 388		 * the elapsed time to detect xruns.
 389		 */
 390		jdelta = jiffies - runtime->hw_ptr_jiffies;
 391		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 392			goto no_delta_check;
 393		hdelta = jdelta - delta * HZ / runtime->rate;
 394		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 395		while (hdelta > xrun_threshold) {
 396			delta += runtime->buffer_size;
 397			hw_base += runtime->buffer_size;
 398			if (hw_base >= runtime->boundary)
 399				hw_base = 0;
 
 
 400			new_hw_ptr = hw_base + pos;
 401			hdelta -= runtime->hw_ptr_buffer_jiffies;
 402		}
 403		goto no_delta_check;
 404	}
 405
 406	/* something must be really wrong */
 407	if (delta >= runtime->buffer_size + runtime->period_size) {
 408		hw_ptr_error(substream,
 409			       "Unexpected hw_pointer value %s"
 410			       "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
 411			       "old_hw_ptr=%ld)\n",
 412				     in_interrupt ? "[Q] " : "[P]",
 413				     substream->stream, (long)pos,
 414				     (long)new_hw_ptr, (long)old_hw_ptr);
 415		return 0;
 416	}
 417
 418	/* Do jiffies check only in xrun_debug mode */
 419	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 420		goto no_jiffies_check;
 421
 422	/* Skip the jiffies check for hardwares with BATCH flag.
 423	 * Such hardware usually just increases the position at each IRQ,
 424	 * thus it can't give any strange position.
 425	 */
 426	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 427		goto no_jiffies_check;
 428	hdelta = delta;
 429	if (hdelta < runtime->delay)
 430		goto no_jiffies_check;
 431	hdelta -= runtime->delay;
 432	jdelta = jiffies - runtime->hw_ptr_jiffies;
 433	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 434		delta = jdelta /
 435			(((runtime->period_size * HZ) / runtime->rate)
 436								+ HZ/100);
 437		/* move new_hw_ptr according jiffies not pos variable */
 438		new_hw_ptr = old_hw_ptr;
 439		hw_base = delta;
 440		/* use loop to avoid checks for delta overflows */
 441		/* the delta value is small or zero in most cases */
 442		while (delta > 0) {
 443			new_hw_ptr += runtime->period_size;
 444			if (new_hw_ptr >= runtime->boundary)
 445				new_hw_ptr -= runtime->boundary;
 
 
 446			delta--;
 447		}
 448		/* align hw_base to buffer_size */
 449		hw_ptr_error(substream,
 450			     "hw_ptr skipping! %s"
 451			     "(pos=%ld, delta=%ld, period=%ld, "
 452			     "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 453			     in_interrupt ? "[Q] " : "",
 454			     (long)pos, (long)hdelta,
 455			     (long)runtime->period_size, jdelta,
 456			     ((hdelta * HZ) / runtime->rate), hw_base,
 457			     (unsigned long)old_hw_ptr,
 458			     (unsigned long)new_hw_ptr);
 459		/* reset values to proper state */
 460		delta = 0;
 461		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 462	}
 463 no_jiffies_check:
 464	if (delta > runtime->period_size + runtime->period_size / 2) {
 465		hw_ptr_error(substream,
 466			     "Lost interrupts? %s"
 467			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
 468			     "old_hw_ptr=%ld)\n",
 469			     in_interrupt ? "[Q] " : "",
 470			     substream->stream, (long)delta,
 471			     (long)new_hw_ptr,
 472			     (long)old_hw_ptr);
 473	}
 474
 475 no_delta_check:
 476	if (runtime->status->hw_ptr == new_hw_ptr)
 
 
 477		return 0;
 
 478
 479	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 480	    runtime->silence_size > 0)
 481		snd_pcm_playback_silence(substream, new_hw_ptr);
 482
 483	if (in_interrupt) {
 484		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 485		if (delta < 0)
 486			delta += runtime->boundary;
 487		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 488		runtime->hw_ptr_interrupt += delta;
 489		if (runtime->hw_ptr_interrupt >= runtime->boundary)
 490			runtime->hw_ptr_interrupt -= runtime->boundary;
 491	}
 492	runtime->hw_ptr_base = hw_base;
 493	runtime->status->hw_ptr = new_hw_ptr;
 494	runtime->hw_ptr_jiffies = jiffies;
 495	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 496		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 
 
 
 
 497
 498	return snd_pcm_update_state(substream, runtime);
 499}
 500
 501/* CAUTION: call it with irq disabled */
 502int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 503{
 504	return snd_pcm_update_hw_ptr0(substream, 0);
 505}
 506
 507/**
 508 * snd_pcm_set_ops - set the PCM operators
 509 * @pcm: the pcm instance
 510 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 511 * @ops: the operator table
 512 *
 513 * Sets the given PCM operators to the pcm instance.
 514 */
 515void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
 
 516{
 517	struct snd_pcm_str *stream = &pcm->streams[direction];
 518	struct snd_pcm_substream *substream;
 519	
 520	for (substream = stream->substream; substream != NULL; substream = substream->next)
 521		substream->ops = ops;
 522}
 523
 524EXPORT_SYMBOL(snd_pcm_set_ops);
 525
 526/**
 527 * snd_pcm_sync - set the PCM sync id
 528 * @substream: the pcm substream
 529 *
 530 * Sets the PCM sync identifier for the card.
 531 */
 532void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 533{
 534	struct snd_pcm_runtime *runtime = substream->runtime;
 535	
 536	runtime->sync.id32[0] = substream->pcm->card->number;
 537	runtime->sync.id32[1] = -1;
 538	runtime->sync.id32[2] = -1;
 539	runtime->sync.id32[3] = -1;
 540}
 541
 542EXPORT_SYMBOL(snd_pcm_set_sync);
 543
 544/*
 545 *  Standard ioctl routine
 546 */
 547
 548static inline unsigned int div32(unsigned int a, unsigned int b, 
 549				 unsigned int *r)
 550{
 551	if (b == 0) {
 552		*r = 0;
 553		return UINT_MAX;
 554	}
 555	*r = a % b;
 556	return a / b;
 557}
 558
 559static inline unsigned int div_down(unsigned int a, unsigned int b)
 560{
 561	if (b == 0)
 562		return UINT_MAX;
 563	return a / b;
 564}
 565
 566static inline unsigned int div_up(unsigned int a, unsigned int b)
 567{
 568	unsigned int r;
 569	unsigned int q;
 570	if (b == 0)
 571		return UINT_MAX;
 572	q = div32(a, b, &r);
 573	if (r)
 574		++q;
 575	return q;
 576}
 577
 578static inline unsigned int mul(unsigned int a, unsigned int b)
 579{
 580	if (a == 0)
 581		return 0;
 582	if (div_down(UINT_MAX, a) < b)
 583		return UINT_MAX;
 584	return a * b;
 585}
 586
 587static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 588				    unsigned int c, unsigned int *r)
 589{
 590	u_int64_t n = (u_int64_t) a * b;
 591	if (c == 0) {
 592		snd_BUG_ON(!n);
 593		*r = 0;
 594		return UINT_MAX;
 595	}
 596	n = div_u64_rem(n, c, r);
 597	if (n >= UINT_MAX) {
 598		*r = 0;
 599		return UINT_MAX;
 600	}
 601	return n;
 602}
 603
 604/**
 605 * snd_interval_refine - refine the interval value of configurator
 606 * @i: the interval value to refine
 607 * @v: the interval value to refer to
 608 *
 609 * Refines the interval value with the reference value.
 610 * The interval is changed to the range satisfying both intervals.
 611 * The interval status (min, max, integer, etc.) are evaluated.
 612 *
 613 * Returns non-zero if the value is changed, zero if not changed.
 
 614 */
 615int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 616{
 617	int changed = 0;
 618	if (snd_BUG_ON(snd_interval_empty(i)))
 619		return -EINVAL;
 620	if (i->min < v->min) {
 621		i->min = v->min;
 622		i->openmin = v->openmin;
 623		changed = 1;
 624	} else if (i->min == v->min && !i->openmin && v->openmin) {
 625		i->openmin = 1;
 626		changed = 1;
 627	}
 628	if (i->max > v->max) {
 629		i->max = v->max;
 630		i->openmax = v->openmax;
 631		changed = 1;
 632	} else if (i->max == v->max && !i->openmax && v->openmax) {
 633		i->openmax = 1;
 634		changed = 1;
 635	}
 636	if (!i->integer && v->integer) {
 637		i->integer = 1;
 638		changed = 1;
 639	}
 640	if (i->integer) {
 641		if (i->openmin) {
 642			i->min++;
 643			i->openmin = 0;
 644		}
 645		if (i->openmax) {
 646			i->max--;
 647			i->openmax = 0;
 648		}
 649	} else if (!i->openmin && !i->openmax && i->min == i->max)
 650		i->integer = 1;
 651	if (snd_interval_checkempty(i)) {
 652		snd_interval_none(i);
 653		return -EINVAL;
 654	}
 655	return changed;
 656}
 657
 658EXPORT_SYMBOL(snd_interval_refine);
 659
 660static int snd_interval_refine_first(struct snd_interval *i)
 661{
 
 
 662	if (snd_BUG_ON(snd_interval_empty(i)))
 663		return -EINVAL;
 664	if (snd_interval_single(i))
 665		return 0;
 666	i->max = i->min;
 667	i->openmax = i->openmin;
 668	if (i->openmax)
 669		i->max++;
 
 
 670	return 1;
 671}
 672
 673static int snd_interval_refine_last(struct snd_interval *i)
 674{
 
 
 675	if (snd_BUG_ON(snd_interval_empty(i)))
 676		return -EINVAL;
 677	if (snd_interval_single(i))
 678		return 0;
 679	i->min = i->max;
 680	i->openmin = i->openmax;
 681	if (i->openmin)
 682		i->min--;
 
 
 683	return 1;
 684}
 685
 686void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 687{
 688	if (a->empty || b->empty) {
 689		snd_interval_none(c);
 690		return;
 691	}
 692	c->empty = 0;
 693	c->min = mul(a->min, b->min);
 694	c->openmin = (a->openmin || b->openmin);
 695	c->max = mul(a->max,  b->max);
 696	c->openmax = (a->openmax || b->openmax);
 697	c->integer = (a->integer && b->integer);
 698}
 699
 700/**
 701 * snd_interval_div - refine the interval value with division
 702 * @a: dividend
 703 * @b: divisor
 704 * @c: quotient
 705 *
 706 * c = a / b
 707 *
 708 * Returns non-zero if the value is changed, zero if not changed.
 709 */
 710void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 711{
 712	unsigned int r;
 713	if (a->empty || b->empty) {
 714		snd_interval_none(c);
 715		return;
 716	}
 717	c->empty = 0;
 718	c->min = div32(a->min, b->max, &r);
 719	c->openmin = (r || a->openmin || b->openmax);
 720	if (b->min > 0) {
 721		c->max = div32(a->max, b->min, &r);
 722		if (r) {
 723			c->max++;
 724			c->openmax = 1;
 725		} else
 726			c->openmax = (a->openmax || b->openmin);
 727	} else {
 728		c->max = UINT_MAX;
 729		c->openmax = 0;
 730	}
 731	c->integer = 0;
 732}
 733
 734/**
 735 * snd_interval_muldivk - refine the interval value
 736 * @a: dividend 1
 737 * @b: dividend 2
 738 * @k: divisor (as integer)
 739 * @c: result
 740  *
 741 * c = a * b / k
 742 *
 743 * Returns non-zero if the value is changed, zero if not changed.
 744 */
 745void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 746		      unsigned int k, struct snd_interval *c)
 747{
 748	unsigned int r;
 749	if (a->empty || b->empty) {
 750		snd_interval_none(c);
 751		return;
 752	}
 753	c->empty = 0;
 754	c->min = muldiv32(a->min, b->min, k, &r);
 755	c->openmin = (r || a->openmin || b->openmin);
 756	c->max = muldiv32(a->max, b->max, k, &r);
 757	if (r) {
 758		c->max++;
 759		c->openmax = 1;
 760	} else
 761		c->openmax = (a->openmax || b->openmax);
 762	c->integer = 0;
 763}
 764
 765/**
 766 * snd_interval_mulkdiv - refine the interval value
 767 * @a: dividend 1
 768 * @k: dividend 2 (as integer)
 769 * @b: divisor
 770 * @c: result
 771 *
 772 * c = a * k / b
 773 *
 774 * Returns non-zero if the value is changed, zero if not changed.
 775 */
 776void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 777		      const struct snd_interval *b, struct snd_interval *c)
 778{
 779	unsigned int r;
 780	if (a->empty || b->empty) {
 781		snd_interval_none(c);
 782		return;
 783	}
 784	c->empty = 0;
 785	c->min = muldiv32(a->min, k, b->max, &r);
 786	c->openmin = (r || a->openmin || b->openmax);
 787	if (b->min > 0) {
 788		c->max = muldiv32(a->max, k, b->min, &r);
 789		if (r) {
 790			c->max++;
 791			c->openmax = 1;
 792		} else
 793			c->openmax = (a->openmax || b->openmin);
 794	} else {
 795		c->max = UINT_MAX;
 796		c->openmax = 0;
 797	}
 798	c->integer = 0;
 799}
 800
 801/* ---- */
 802
 803
 804/**
 805 * snd_interval_ratnum - refine the interval value
 806 * @i: interval to refine
 807 * @rats_count: number of ratnum_t 
 808 * @rats: ratnum_t array
 809 * @nump: pointer to store the resultant numerator
 810 * @denp: pointer to store the resultant denominator
 811 *
 812 * Returns non-zero if the value is changed, zero if not changed.
 
 813 */
 814int snd_interval_ratnum(struct snd_interval *i,
 815			unsigned int rats_count, struct snd_ratnum *rats,
 816			unsigned int *nump, unsigned int *denp)
 817{
 818	unsigned int best_num, best_den;
 819	int best_diff;
 820	unsigned int k;
 821	struct snd_interval t;
 822	int err;
 823	unsigned int result_num, result_den;
 824	int result_diff;
 825
 826	best_num = best_den = best_diff = 0;
 827	for (k = 0; k < rats_count; ++k) {
 828		unsigned int num = rats[k].num;
 829		unsigned int den;
 830		unsigned int q = i->min;
 831		int diff;
 832		if (q == 0)
 833			q = 1;
 834		den = div_up(num, q);
 835		if (den < rats[k].den_min)
 836			continue;
 837		if (den > rats[k].den_max)
 838			den = rats[k].den_max;
 839		else {
 840			unsigned int r;
 841			r = (den - rats[k].den_min) % rats[k].den_step;
 842			if (r != 0)
 843				den -= r;
 844		}
 845		diff = num - q * den;
 846		if (diff < 0)
 847			diff = -diff;
 848		if (best_num == 0 ||
 849		    diff * best_den < best_diff * den) {
 850			best_diff = diff;
 851			best_den = den;
 852			best_num = num;
 853		}
 854	}
 855	if (best_den == 0) {
 856		i->empty = 1;
 857		return -EINVAL;
 858	}
 859	t.min = div_down(best_num, best_den);
 860	t.openmin = !!(best_num % best_den);
 861	
 862	result_num = best_num;
 863	result_diff = best_diff;
 864	result_den = best_den;
 865	best_num = best_den = best_diff = 0;
 866	for (k = 0; k < rats_count; ++k) {
 867		unsigned int num = rats[k].num;
 868		unsigned int den;
 869		unsigned int q = i->max;
 870		int diff;
 871		if (q == 0) {
 872			i->empty = 1;
 873			return -EINVAL;
 874		}
 875		den = div_down(num, q);
 876		if (den > rats[k].den_max)
 877			continue;
 878		if (den < rats[k].den_min)
 879			den = rats[k].den_min;
 880		else {
 881			unsigned int r;
 882			r = (den - rats[k].den_min) % rats[k].den_step;
 883			if (r != 0)
 884				den += rats[k].den_step - r;
 885		}
 886		diff = q * den - num;
 887		if (diff < 0)
 888			diff = -diff;
 889		if (best_num == 0 ||
 890		    diff * best_den < best_diff * den) {
 891			best_diff = diff;
 892			best_den = den;
 893			best_num = num;
 894		}
 895	}
 896	if (best_den == 0) {
 897		i->empty = 1;
 898		return -EINVAL;
 899	}
 900	t.max = div_up(best_num, best_den);
 901	t.openmax = !!(best_num % best_den);
 902	t.integer = 0;
 903	err = snd_interval_refine(i, &t);
 904	if (err < 0)
 905		return err;
 906
 907	if (snd_interval_single(i)) {
 908		if (best_diff * result_den < result_diff * best_den) {
 909			result_num = best_num;
 910			result_den = best_den;
 911		}
 912		if (nump)
 913			*nump = result_num;
 914		if (denp)
 915			*denp = result_den;
 916	}
 917	return err;
 918}
 919
 920EXPORT_SYMBOL(snd_interval_ratnum);
 921
 922/**
 923 * snd_interval_ratden - refine the interval value
 924 * @i: interval to refine
 925 * @rats_count: number of struct ratden
 926 * @rats: struct ratden array
 927 * @nump: pointer to store the resultant numerator
 928 * @denp: pointer to store the resultant denominator
 929 *
 930 * Returns non-zero if the value is changed, zero if not changed.
 
 931 */
 932static int snd_interval_ratden(struct snd_interval *i,
 933			       unsigned int rats_count, struct snd_ratden *rats,
 
 934			       unsigned int *nump, unsigned int *denp)
 935{
 936	unsigned int best_num, best_diff, best_den;
 937	unsigned int k;
 938	struct snd_interval t;
 939	int err;
 940
 941	best_num = best_den = best_diff = 0;
 942	for (k = 0; k < rats_count; ++k) {
 943		unsigned int num;
 944		unsigned int den = rats[k].den;
 945		unsigned int q = i->min;
 946		int diff;
 947		num = mul(q, den);
 948		if (num > rats[k].num_max)
 949			continue;
 950		if (num < rats[k].num_min)
 951			num = rats[k].num_max;
 952		else {
 953			unsigned int r;
 954			r = (num - rats[k].num_min) % rats[k].num_step;
 955			if (r != 0)
 956				num += rats[k].num_step - r;
 957		}
 958		diff = num - q * den;
 959		if (best_num == 0 ||
 960		    diff * best_den < best_diff * den) {
 961			best_diff = diff;
 962			best_den = den;
 963			best_num = num;
 964		}
 965	}
 966	if (best_den == 0) {
 967		i->empty = 1;
 968		return -EINVAL;
 969	}
 970	t.min = div_down(best_num, best_den);
 971	t.openmin = !!(best_num % best_den);
 972	
 973	best_num = best_den = best_diff = 0;
 974	for (k = 0; k < rats_count; ++k) {
 975		unsigned int num;
 976		unsigned int den = rats[k].den;
 977		unsigned int q = i->max;
 978		int diff;
 979		num = mul(q, den);
 980		if (num < rats[k].num_min)
 981			continue;
 982		if (num > rats[k].num_max)
 983			num = rats[k].num_max;
 984		else {
 985			unsigned int r;
 986			r = (num - rats[k].num_min) % rats[k].num_step;
 987			if (r != 0)
 988				num -= r;
 989		}
 990		diff = q * den - num;
 991		if (best_num == 0 ||
 992		    diff * best_den < best_diff * den) {
 993			best_diff = diff;
 994			best_den = den;
 995			best_num = num;
 996		}
 997	}
 998	if (best_den == 0) {
 999		i->empty = 1;
1000		return -EINVAL;
1001	}
1002	t.max = div_up(best_num, best_den);
1003	t.openmax = !!(best_num % best_den);
1004	t.integer = 0;
1005	err = snd_interval_refine(i, &t);
1006	if (err < 0)
1007		return err;
1008
1009	if (snd_interval_single(i)) {
1010		if (nump)
1011			*nump = best_num;
1012		if (denp)
1013			*denp = best_den;
1014	}
1015	return err;
1016}
1017
1018/**
1019 * snd_interval_list - refine the interval value from the list
1020 * @i: the interval value to refine
1021 * @count: the number of elements in the list
1022 * @list: the value list
1023 * @mask: the bit-mask to evaluate
1024 *
1025 * Refines the interval value from the list.
1026 * When mask is non-zero, only the elements corresponding to bit 1 are
1027 * evaluated.
1028 *
1029 * Returns non-zero if the value is changed, zero if not changed.
 
1030 */
1031int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
 
1032{
1033        unsigned int k;
1034	struct snd_interval list_range;
1035
1036	if (!count) {
1037		i->empty = 1;
1038		return -EINVAL;
1039	}
1040	snd_interval_any(&list_range);
1041	list_range.min = UINT_MAX;
1042	list_range.max = 0;
1043        for (k = 0; k < count; k++) {
1044		if (mask && !(mask & (1 << k)))
1045			continue;
1046		if (!snd_interval_test(i, list[k]))
1047			continue;
1048		list_range.min = min(list_range.min, list[k]);
1049		list_range.max = max(list_range.max, list[k]);
1050        }
1051	return snd_interval_refine(i, &list_range);
1052}
1053
1054EXPORT_SYMBOL(snd_interval_list);
1055
1056static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057{
1058	unsigned int n;
1059	int changed = 0;
1060	n = (i->min - min) % step;
1061	if (n != 0 || i->openmin) {
1062		i->min += step - n;
 
1063		changed = 1;
1064	}
1065	n = (i->max - min) % step;
1066	if (n != 0 || i->openmax) {
1067		i->max -= n;
 
1068		changed = 1;
1069	}
1070	if (snd_interval_checkempty(i)) {
1071		i->empty = 1;
1072		return -EINVAL;
1073	}
1074	return changed;
1075}
1076
1077/* Info constraints helpers */
1078
1079/**
1080 * snd_pcm_hw_rule_add - add the hw-constraint rule
1081 * @runtime: the pcm runtime instance
1082 * @cond: condition bits
1083 * @var: the variable to evaluate
1084 * @func: the evaluation function
1085 * @private: the private data pointer passed to function
1086 * @dep: the dependent variables
1087 *
1088 * Returns zero if successful, or a negative error code on failure.
1089 */
1090int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1091			int var,
1092			snd_pcm_hw_rule_func_t func, void *private,
1093			int dep, ...)
1094{
1095	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1096	struct snd_pcm_hw_rule *c;
1097	unsigned int k;
1098	va_list args;
1099	va_start(args, dep);
1100	if (constrs->rules_num >= constrs->rules_all) {
1101		struct snd_pcm_hw_rule *new;
1102		unsigned int new_rules = constrs->rules_all + 16;
1103		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
 
1104		if (!new) {
1105			va_end(args);
1106			return -ENOMEM;
1107		}
1108		if (constrs->rules) {
1109			memcpy(new, constrs->rules,
1110			       constrs->rules_num * sizeof(*c));
1111			kfree(constrs->rules);
1112		}
1113		constrs->rules = new;
1114		constrs->rules_all = new_rules;
1115	}
1116	c = &constrs->rules[constrs->rules_num];
1117	c->cond = cond;
1118	c->func = func;
1119	c->var = var;
1120	c->private = private;
1121	k = 0;
1122	while (1) {
1123		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1124			va_end(args);
1125			return -EINVAL;
1126		}
1127		c->deps[k++] = dep;
1128		if (dep < 0)
1129			break;
1130		dep = va_arg(args, int);
1131	}
1132	constrs->rules_num++;
1133	va_end(args);
1134	return 0;
1135}
1136
1137EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1138
1139/**
1140 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1141 * @runtime: PCM runtime instance
1142 * @var: hw_params variable to apply the mask
1143 * @mask: the bitmap mask
1144 *
1145 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
 
 
1146 */
1147int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1148			       u_int32_t mask)
1149{
1150	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1151	struct snd_mask *maskp = constrs_mask(constrs, var);
1152	*maskp->bits &= mask;
1153	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1154	if (*maskp->bits == 0)
1155		return -EINVAL;
1156	return 0;
1157}
1158
1159/**
1160 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1161 * @runtime: PCM runtime instance
1162 * @var: hw_params variable to apply the mask
1163 * @mask: the 64bit bitmap mask
1164 *
1165 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
 
 
1166 */
1167int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1168				 u_int64_t mask)
1169{
1170	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1171	struct snd_mask *maskp = constrs_mask(constrs, var);
1172	maskp->bits[0] &= (u_int32_t)mask;
1173	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1174	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1175	if (! maskp->bits[0] && ! maskp->bits[1])
1176		return -EINVAL;
1177	return 0;
1178}
 
1179
1180/**
1181 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1182 * @runtime: PCM runtime instance
1183 * @var: hw_params variable to apply the integer constraint
1184 *
1185 * Apply the constraint of integer to an interval parameter.
 
 
 
1186 */
1187int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1188{
1189	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1190	return snd_interval_setinteger(constrs_interval(constrs, var));
1191}
1192
1193EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1194
1195/**
1196 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1197 * @runtime: PCM runtime instance
1198 * @var: hw_params variable to apply the range
1199 * @min: the minimal value
1200 * @max: the maximal value
1201 * 
1202 * Apply the min/max range constraint to an interval parameter.
 
 
 
1203 */
1204int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1205				 unsigned int min, unsigned int max)
1206{
1207	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1208	struct snd_interval t;
1209	t.min = min;
1210	t.max = max;
1211	t.openmin = t.openmax = 0;
1212	t.integer = 0;
1213	return snd_interval_refine(constrs_interval(constrs, var), &t);
1214}
1215
1216EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1217
1218static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1219				struct snd_pcm_hw_rule *rule)
1220{
1221	struct snd_pcm_hw_constraint_list *list = rule->private;
1222	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1223}		
1224
1225
1226/**
1227 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1228 * @runtime: PCM runtime instance
1229 * @cond: condition bits
1230 * @var: hw_params variable to apply the list constraint
1231 * @l: list
1232 * 
1233 * Apply the list of constraints to an interval parameter.
 
 
1234 */
1235int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1236			       unsigned int cond,
1237			       snd_pcm_hw_param_t var,
1238			       struct snd_pcm_hw_constraint_list *l)
1239{
1240	return snd_pcm_hw_rule_add(runtime, cond, var,
1241				   snd_pcm_hw_rule_list, l,
1242				   var, -1);
1243}
1244
1245EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1247static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1248				   struct snd_pcm_hw_rule *rule)
1249{
1250	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1251	unsigned int num = 0, den = 0;
1252	int err;
1253	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1254				  r->nrats, r->rats, &num, &den);
1255	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1256		params->rate_num = num;
1257		params->rate_den = den;
1258	}
1259	return err;
1260}
1261
1262/**
1263 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1264 * @runtime: PCM runtime instance
1265 * @cond: condition bits
1266 * @var: hw_params variable to apply the ratnums constraint
1267 * @r: struct snd_ratnums constriants
 
 
1268 */
1269int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1270				  unsigned int cond,
1271				  snd_pcm_hw_param_t var,
1272				  struct snd_pcm_hw_constraint_ratnums *r)
1273{
1274	return snd_pcm_hw_rule_add(runtime, cond, var,
1275				   snd_pcm_hw_rule_ratnums, r,
1276				   var, -1);
1277}
1278
1279EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1280
1281static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1282				   struct snd_pcm_hw_rule *rule)
1283{
1284	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1285	unsigned int num = 0, den = 0;
1286	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1287				  r->nrats, r->rats, &num, &den);
1288	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1289		params->rate_num = num;
1290		params->rate_den = den;
1291	}
1292	return err;
1293}
1294
1295/**
1296 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1297 * @runtime: PCM runtime instance
1298 * @cond: condition bits
1299 * @var: hw_params variable to apply the ratdens constraint
1300 * @r: struct snd_ratdens constriants
 
 
1301 */
1302int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1303				  unsigned int cond,
1304				  snd_pcm_hw_param_t var,
1305				  struct snd_pcm_hw_constraint_ratdens *r)
1306{
1307	return snd_pcm_hw_rule_add(runtime, cond, var,
1308				   snd_pcm_hw_rule_ratdens, r,
1309				   var, -1);
1310}
1311
1312EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1313
1314static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1315				  struct snd_pcm_hw_rule *rule)
1316{
1317	unsigned int l = (unsigned long) rule->private;
1318	int width = l & 0xffff;
1319	unsigned int msbits = l >> 16;
1320	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1321	if (snd_interval_single(i) && snd_interval_value(i) == width)
1322		params->msbits = msbits;
 
 
 
 
 
 
 
1323	return 0;
1324}
1325
1326/**
1327 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1328 * @runtime: PCM runtime instance
1329 * @cond: condition bits
1330 * @width: sample bits width
1331 * @msbits: msbits width
 
 
 
 
 
 
 
1332 */
1333int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1334				 unsigned int cond,
1335				 unsigned int width,
1336				 unsigned int msbits)
1337{
1338	unsigned long l = (msbits << 16) | width;
1339	return snd_pcm_hw_rule_add(runtime, cond, -1,
1340				    snd_pcm_hw_rule_msbits,
1341				    (void*) l,
1342				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1343}
1344
1345EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1346
1347static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1348				struct snd_pcm_hw_rule *rule)
1349{
1350	unsigned long step = (unsigned long) rule->private;
1351	return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1352}
1353
1354/**
1355 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1356 * @runtime: PCM runtime instance
1357 * @cond: condition bits
1358 * @var: hw_params variable to apply the step constraint
1359 * @step: step size
 
 
1360 */
1361int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1362			       unsigned int cond,
1363			       snd_pcm_hw_param_t var,
1364			       unsigned long step)
1365{
1366	return snd_pcm_hw_rule_add(runtime, cond, var, 
1367				   snd_pcm_hw_rule_step, (void *) step,
1368				   var, -1);
1369}
1370
1371EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1372
1373static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1374{
1375	static unsigned int pow2_sizes[] = {
1376		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1377		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1378		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1379		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1380	};
1381	return snd_interval_list(hw_param_interval(params, rule->var),
1382				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1383}		
1384
1385/**
1386 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1387 * @runtime: PCM runtime instance
1388 * @cond: condition bits
1389 * @var: hw_params variable to apply the power-of-2 constraint
 
 
1390 */
1391int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1392			       unsigned int cond,
1393			       snd_pcm_hw_param_t var)
1394{
1395	return snd_pcm_hw_rule_add(runtime, cond, var, 
1396				   snd_pcm_hw_rule_pow2, NULL,
1397				   var, -1);
1398}
1399
1400EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1402static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1403				  snd_pcm_hw_param_t var)
1404{
1405	if (hw_is_mask(var)) {
1406		snd_mask_any(hw_param_mask(params, var));
1407		params->cmask |= 1 << var;
1408		params->rmask |= 1 << var;
1409		return;
1410	}
1411	if (hw_is_interval(var)) {
1412		snd_interval_any(hw_param_interval(params, var));
1413		params->cmask |= 1 << var;
1414		params->rmask |= 1 << var;
1415		return;
1416	}
1417	snd_BUG();
1418}
1419
1420void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1421{
1422	unsigned int k;
1423	memset(params, 0, sizeof(*params));
1424	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1425		_snd_pcm_hw_param_any(params, k);
1426	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1427		_snd_pcm_hw_param_any(params, k);
1428	params->info = ~0U;
1429}
1430
1431EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1432
1433/**
1434 * snd_pcm_hw_param_value - return @params field @var value
1435 * @params: the hw_params instance
1436 * @var: parameter to retrieve
1437 * @dir: pointer to the direction (-1,0,1) or %NULL
1438 *
1439 * Return the value for field @var if it's fixed in configuration space
1440 * defined by @params. Return -%EINVAL otherwise.
1441 */
1442int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1443			   snd_pcm_hw_param_t var, int *dir)
1444{
1445	if (hw_is_mask(var)) {
1446		const struct snd_mask *mask = hw_param_mask_c(params, var);
1447		if (!snd_mask_single(mask))
1448			return -EINVAL;
1449		if (dir)
1450			*dir = 0;
1451		return snd_mask_value(mask);
1452	}
1453	if (hw_is_interval(var)) {
1454		const struct snd_interval *i = hw_param_interval_c(params, var);
1455		if (!snd_interval_single(i))
1456			return -EINVAL;
1457		if (dir)
1458			*dir = i->openmin;
1459		return snd_interval_value(i);
1460	}
1461	return -EINVAL;
1462}
1463
1464EXPORT_SYMBOL(snd_pcm_hw_param_value);
1465
1466void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1467				snd_pcm_hw_param_t var)
1468{
1469	if (hw_is_mask(var)) {
1470		snd_mask_none(hw_param_mask(params, var));
1471		params->cmask |= 1 << var;
1472		params->rmask |= 1 << var;
1473	} else if (hw_is_interval(var)) {
1474		snd_interval_none(hw_param_interval(params, var));
1475		params->cmask |= 1 << var;
1476		params->rmask |= 1 << var;
1477	} else {
1478		snd_BUG();
1479	}
1480}
1481
1482EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1483
1484static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1485				   snd_pcm_hw_param_t var)
1486{
1487	int changed;
1488	if (hw_is_mask(var))
1489		changed = snd_mask_refine_first(hw_param_mask(params, var));
1490	else if (hw_is_interval(var))
1491		changed = snd_interval_refine_first(hw_param_interval(params, var));
1492	else
1493		return -EINVAL;
1494	if (changed) {
1495		params->cmask |= 1 << var;
1496		params->rmask |= 1 << var;
1497	}
1498	return changed;
1499}
1500
1501
1502/**
1503 * snd_pcm_hw_param_first - refine config space and return minimum value
1504 * @pcm: PCM instance
1505 * @params: the hw_params instance
1506 * @var: parameter to retrieve
1507 * @dir: pointer to the direction (-1,0,1) or %NULL
1508 *
1509 * Inside configuration space defined by @params remove from @var all
1510 * values > minimum. Reduce configuration space accordingly.
1511 * Return the minimum.
 
1512 */
1513int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1514			   struct snd_pcm_hw_params *params, 
1515			   snd_pcm_hw_param_t var, int *dir)
1516{
1517	int changed = _snd_pcm_hw_param_first(params, var);
1518	if (changed < 0)
1519		return changed;
1520	if (params->rmask) {
1521		int err = snd_pcm_hw_refine(pcm, params);
1522		if (snd_BUG_ON(err < 0))
1523			return err;
1524	}
1525	return snd_pcm_hw_param_value(params, var, dir);
1526}
1527
1528EXPORT_SYMBOL(snd_pcm_hw_param_first);
1529
1530static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1531				  snd_pcm_hw_param_t var)
1532{
1533	int changed;
1534	if (hw_is_mask(var))
1535		changed = snd_mask_refine_last(hw_param_mask(params, var));
1536	else if (hw_is_interval(var))
1537		changed = snd_interval_refine_last(hw_param_interval(params, var));
1538	else
1539		return -EINVAL;
1540	if (changed) {
1541		params->cmask |= 1 << var;
1542		params->rmask |= 1 << var;
1543	}
1544	return changed;
1545}
1546
1547
1548/**
1549 * snd_pcm_hw_param_last - refine config space and return maximum value
1550 * @pcm: PCM instance
1551 * @params: the hw_params instance
1552 * @var: parameter to retrieve
1553 * @dir: pointer to the direction (-1,0,1) or %NULL
1554 *
1555 * Inside configuration space defined by @params remove from @var all
1556 * values < maximum. Reduce configuration space accordingly.
1557 * Return the maximum.
 
1558 */
1559int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1560			  struct snd_pcm_hw_params *params,
1561			  snd_pcm_hw_param_t var, int *dir)
1562{
1563	int changed = _snd_pcm_hw_param_last(params, var);
1564	if (changed < 0)
1565		return changed;
1566	if (params->rmask) {
1567		int err = snd_pcm_hw_refine(pcm, params);
1568		if (snd_BUG_ON(err < 0))
1569			return err;
1570	}
1571	return snd_pcm_hw_param_value(params, var, dir);
1572}
1573
1574EXPORT_SYMBOL(snd_pcm_hw_param_last);
1575
1576/**
1577 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1578 * @pcm: PCM instance
1579 * @params: the hw_params instance
1580 *
1581 * Choose one configuration from configuration space defined by @params.
1582 * The configuration chosen is that obtained fixing in this order:
1583 * first access, first format, first subformat, min channels,
1584 * min rate, min period time, max buffer size, min tick time
1585 */
1586int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1587			     struct snd_pcm_hw_params *params)
1588{
1589	static int vars[] = {
1590		SNDRV_PCM_HW_PARAM_ACCESS,
1591		SNDRV_PCM_HW_PARAM_FORMAT,
1592		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1593		SNDRV_PCM_HW_PARAM_CHANNELS,
1594		SNDRV_PCM_HW_PARAM_RATE,
1595		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1596		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1597		SNDRV_PCM_HW_PARAM_TICK_TIME,
1598		-1
1599	};
1600	int err, *v;
1601
1602	for (v = vars; *v != -1; v++) {
1603		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1604			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1605		else
1606			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1607		if (snd_BUG_ON(err < 0))
1608			return err;
1609	}
1610	return 0;
1611}
 
1612
1613static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1614				   void *arg)
1615{
1616	struct snd_pcm_runtime *runtime = substream->runtime;
1617	unsigned long flags;
1618	snd_pcm_stream_lock_irqsave(substream, flags);
1619	if (snd_pcm_running(substream) &&
1620	    snd_pcm_update_hw_ptr(substream) >= 0)
1621		runtime->status->hw_ptr %= runtime->buffer_size;
1622	else
1623		runtime->status->hw_ptr = 0;
1624	snd_pcm_stream_unlock_irqrestore(substream, flags);
 
1625	return 0;
1626}
1627
1628static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1629					  void *arg)
1630{
1631	struct snd_pcm_channel_info *info = arg;
1632	struct snd_pcm_runtime *runtime = substream->runtime;
1633	int width;
1634	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1635		info->offset = -1;
1636		return 0;
1637	}
1638	width = snd_pcm_format_physical_width(runtime->format);
1639	if (width < 0)
1640		return width;
1641	info->offset = 0;
1642	switch (runtime->access) {
1643	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1644	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1645		info->first = info->channel * width;
1646		info->step = runtime->channels * width;
1647		break;
1648	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1649	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1650	{
1651		size_t size = runtime->dma_bytes / runtime->channels;
1652		info->first = info->channel * size * 8;
1653		info->step = width;
1654		break;
1655	}
1656	default:
1657		snd_BUG();
1658		break;
1659	}
1660	return 0;
1661}
1662
1663static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1664				       void *arg)
1665{
1666	struct snd_pcm_hw_params *params = arg;
1667	snd_pcm_format_t format;
1668	int channels, width;
 
1669
1670	params->fifo_size = substream->runtime->hw.fifo_size;
1671	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1672		format = params_format(params);
1673		channels = params_channels(params);
1674		width = snd_pcm_format_physical_width(format);
1675		params->fifo_size /= width * channels;
 
1676	}
1677	return 0;
1678}
1679
1680/**
1681 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1682 * @substream: the pcm substream instance
1683 * @cmd: ioctl command
1684 * @arg: ioctl argument
1685 *
1686 * Processes the generic ioctl commands for PCM.
1687 * Can be passed as the ioctl callback for PCM ops.
1688 *
1689 * Returns zero if successful, or a negative error code on failure.
1690 */
1691int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1692		      unsigned int cmd, void *arg)
1693{
1694	switch (cmd) {
1695	case SNDRV_PCM_IOCTL1_INFO:
1696		return 0;
1697	case SNDRV_PCM_IOCTL1_RESET:
1698		return snd_pcm_lib_ioctl_reset(substream, arg);
1699	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1700		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1701	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1702		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1703	}
1704	return -ENXIO;
1705}
1706
1707EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1708
1709/**
1710 * snd_pcm_period_elapsed - update the pcm status for the next period
1711 * @substream: the pcm substream instance
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1712 *
1713 * This function is called from the interrupt handler when the
1714 * PCM has processed the period size.  It will update the current
1715 * pointer, wake up sleepers, etc.
1716 *
1717 * Even if more than one periods have elapsed since the last call, you
1718 * have to call this only once.
1719 */
1720void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1721{
1722	struct snd_pcm_runtime *runtime;
1723	unsigned long flags;
1724
1725	if (PCM_RUNTIME_CHECK(substream))
1726		return;
1727	runtime = substream->runtime;
1728
1729	if (runtime->transfer_ack_begin)
1730		runtime->transfer_ack_begin(substream);
1731
1732	snd_pcm_stream_lock_irqsave(substream, flags);
1733	if (!snd_pcm_running(substream) ||
1734	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1735		goto _end;
1736
 
1737	if (substream->timer_running)
1738		snd_timer_interrupt(substream->timer, 1);
 
1739 _end:
1740	snd_pcm_stream_unlock_irqrestore(substream, flags);
1741	if (runtime->transfer_ack_end)
1742		runtime->transfer_ack_end(substream);
1743	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1744}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1745
 
 
 
1746EXPORT_SYMBOL(snd_pcm_period_elapsed);
1747
1748/*
1749 * Wait until avail_min data becomes available
1750 * Returns a negative error code if any error occurs during operation.
1751 * The available space is stored on availp.  When err = 0 and avail = 0
1752 * on the capture stream, it indicates the stream is in DRAINING state.
1753 */
1754static int wait_for_avail(struct snd_pcm_substream *substream,
1755			      snd_pcm_uframes_t *availp)
1756{
1757	struct snd_pcm_runtime *runtime = substream->runtime;
1758	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1759	wait_queue_t wait;
1760	int err = 0;
1761	snd_pcm_uframes_t avail = 0;
1762	long wait_time, tout;
1763
1764	init_waitqueue_entry(&wait, current);
1765	set_current_state(TASK_INTERRUPTIBLE);
1766	add_wait_queue(&runtime->tsleep, &wait);
1767
1768	if (runtime->no_period_wakeup)
1769		wait_time = MAX_SCHEDULE_TIMEOUT;
1770	else {
1771		wait_time = 10;
1772		if (runtime->rate) {
1773			long t = runtime->period_size * 2 / runtime->rate;
1774			wait_time = max(t, wait_time);
 
 
 
 
 
 
1775		}
1776		wait_time = msecs_to_jiffies(wait_time * 1000);
1777	}
1778
1779	for (;;) {
1780		if (signal_pending(current)) {
1781			err = -ERESTARTSYS;
1782			break;
1783		}
1784
1785		/*
1786		 * We need to check if space became available already
1787		 * (and thus the wakeup happened already) first to close
1788		 * the race of space already having become available.
1789		 * This check must happen after been added to the waitqueue
1790		 * and having current state be INTERRUPTIBLE.
1791		 */
1792		if (is_playback)
1793			avail = snd_pcm_playback_avail(runtime);
1794		else
1795			avail = snd_pcm_capture_avail(runtime);
1796		if (avail >= runtime->twake)
1797			break;
1798		snd_pcm_stream_unlock_irq(substream);
1799
1800		tout = schedule_timeout(wait_time);
1801
1802		snd_pcm_stream_lock_irq(substream);
1803		set_current_state(TASK_INTERRUPTIBLE);
1804		switch (runtime->status->state) {
1805		case SNDRV_PCM_STATE_SUSPENDED:
1806			err = -ESTRPIPE;
1807			goto _endloop;
1808		case SNDRV_PCM_STATE_XRUN:
1809			err = -EPIPE;
1810			goto _endloop;
1811		case SNDRV_PCM_STATE_DRAINING:
1812			if (is_playback)
1813				err = -EPIPE;
1814			else 
1815				avail = 0; /* indicate draining */
1816			goto _endloop;
1817		case SNDRV_PCM_STATE_OPEN:
1818		case SNDRV_PCM_STATE_SETUP:
1819		case SNDRV_PCM_STATE_DISCONNECTED:
1820			err = -EBADFD;
1821			goto _endloop;
 
 
1822		}
1823		if (!tout) {
1824			snd_printd("%s write error (DMA or IRQ trouble?)\n",
1825				   is_playback ? "playback" : "capture");
 
1826			err = -EIO;
1827			break;
1828		}
1829	}
1830 _endloop:
1831	set_current_state(TASK_RUNNING);
1832	remove_wait_queue(&runtime->tsleep, &wait);
1833	*availp = avail;
1834	return err;
1835}
1836	
1837static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1838				      unsigned int hwoff,
1839				      unsigned long data, unsigned int off,
1840				      snd_pcm_uframes_t frames)
1841{
1842	struct snd_pcm_runtime *runtime = substream->runtime;
1843	int err;
1844	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1845	if (substream->ops->copy) {
1846		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1847			return err;
1848	} else {
1849		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1850		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1851			return -EFAULT;
1852	}
 
 
 
 
 
 
 
 
1853	return 0;
1854}
1855 
1856typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1857			  unsigned long data, unsigned int off,
1858			  snd_pcm_uframes_t size);
1859
1860static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1861					    unsigned long data,
1862					    snd_pcm_uframes_t size,
1863					    int nonblock,
1864					    transfer_f transfer)
1865{
1866	struct snd_pcm_runtime *runtime = substream->runtime;
1867	snd_pcm_uframes_t xfer = 0;
1868	snd_pcm_uframes_t offset = 0;
1869	int err = 0;
1870
1871	if (size == 0)
1872		return 0;
 
 
 
 
 
 
 
 
 
1873
1874	snd_pcm_stream_lock_irq(substream);
1875	switch (runtime->status->state) {
1876	case SNDRV_PCM_STATE_PREPARED:
1877	case SNDRV_PCM_STATE_RUNNING:
1878	case SNDRV_PCM_STATE_PAUSED:
1879		break;
1880	case SNDRV_PCM_STATE_XRUN:
1881		err = -EPIPE;
1882		goto _end_unlock;
1883	case SNDRV_PCM_STATE_SUSPENDED:
1884		err = -ESTRPIPE;
1885		goto _end_unlock;
1886	default:
1887		err = -EBADFD;
1888		goto _end_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889	}
1890
1891	runtime->twake = runtime->control->avail_min ? : 1;
1892	while (size > 0) {
1893		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1894		snd_pcm_uframes_t avail;
1895		snd_pcm_uframes_t cont;
1896		if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1897			snd_pcm_update_hw_ptr(substream);
1898		avail = snd_pcm_playback_avail(runtime);
1899		if (!avail) {
1900			if (nonblock) {
1901				err = -EAGAIN;
1902				goto _end_unlock;
1903			}
1904			runtime->twake = min_t(snd_pcm_uframes_t, size,
1905					runtime->control->avail_min ? : 1);
1906			err = wait_for_avail(substream, &avail);
1907			if (err < 0)
1908				goto _end_unlock;
1909		}
1910		frames = size > avail ? avail : size;
1911		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1912		if (frames > cont)
1913			frames = cont;
1914		if (snd_BUG_ON(!frames)) {
1915			runtime->twake = 0;
1916			snd_pcm_stream_unlock_irq(substream);
1917			return -EINVAL;
1918		}
1919		appl_ptr = runtime->control->appl_ptr;
1920		appl_ofs = appl_ptr % runtime->buffer_size;
1921		snd_pcm_stream_unlock_irq(substream);
1922		err = transfer(substream, appl_ofs, data, offset, frames);
1923		snd_pcm_stream_lock_irq(substream);
1924		if (err < 0)
1925			goto _end_unlock;
1926		switch (runtime->status->state) {
1927		case SNDRV_PCM_STATE_XRUN:
1928			err = -EPIPE;
1929			goto _end_unlock;
1930		case SNDRV_PCM_STATE_SUSPENDED:
1931			err = -ESTRPIPE;
1932			goto _end_unlock;
1933		default:
1934			break;
1935		}
1936		appl_ptr += frames;
1937		if (appl_ptr >= runtime->boundary)
1938			appl_ptr -= runtime->boundary;
1939		runtime->control->appl_ptr = appl_ptr;
1940		if (substream->ops->ack)
1941			substream->ops->ack(substream);
1942
1943		offset += frames;
1944		size -= frames;
1945		xfer += frames;
1946		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1947		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1948			err = snd_pcm_start(substream);
1949			if (err < 0)
1950				goto _end_unlock;
1951		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1952	}
1953 _end_unlock:
1954	runtime->twake = 0;
1955	if (xfer > 0 && err >= 0)
1956		snd_pcm_update_state(substream, runtime);
1957	snd_pcm_stream_unlock_irq(substream);
1958	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
 
 
 
 
 
 
 
 
 
 
1959}
1960
1961/* sanity-check for read/write methods */
1962static int pcm_sanity_check(struct snd_pcm_substream *substream)
1963{
1964	struct snd_pcm_runtime *runtime;
1965	if (PCM_RUNTIME_CHECK(substream))
1966		return -ENXIO;
1967	runtime = substream->runtime;
1968	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1969		return -EINVAL;
1970	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1971		return -EBADFD;
1972	return 0;
1973}
1974
1975snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1976{
1977	struct snd_pcm_runtime *runtime;
1978	int nonblock;
1979	int err;
1980
1981	err = pcm_sanity_check(substream);
1982	if (err < 0)
1983		return err;
1984	runtime = substream->runtime;
1985	nonblock = !!(substream->f_flags & O_NONBLOCK);
1986
1987	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1988	    runtime->channels > 1)
1989		return -EINVAL;
1990	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1991				  snd_pcm_lib_write_transfer);
1992}
1993
1994EXPORT_SYMBOL(snd_pcm_lib_write);
1995
1996static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1997				       unsigned int hwoff,
1998				       unsigned long data, unsigned int off,
1999				       snd_pcm_uframes_t frames)
2000{
2001	struct snd_pcm_runtime *runtime = substream->runtime;
2002	int err;
2003	void __user **bufs = (void __user **)data;
2004	int channels = runtime->channels;
2005	int c;
2006	if (substream->ops->copy) {
2007		if (snd_BUG_ON(!substream->ops->silence))
2008			return -EINVAL;
2009		for (c = 0; c < channels; ++c, ++bufs) {
2010			if (*bufs == NULL) {
2011				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2012					return err;
2013			} else {
2014				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2015				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2016					return err;
2017			}
 
 
 
 
2018		}
2019	} else {
2020		/* default transfer behaviour */
2021		size_t dma_csize = runtime->dma_bytes / channels;
2022		for (c = 0; c < channels; ++c, ++bufs) {
2023			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2024			if (*bufs == NULL) {
2025				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2026			} else {
2027				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2028				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2029					return -EFAULT;
2030			}
2031		}
2032	}
 
 
 
2033	return 0;
2034}
2035 
2036snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2037				     void __user **bufs,
2038				     snd_pcm_uframes_t frames)
 
2039{
2040	struct snd_pcm_runtime *runtime;
2041	int nonblock;
 
 
 
 
 
 
2042	int err;
2043
2044	err = pcm_sanity_check(substream);
2045	if (err < 0)
2046		return err;
2047	runtime = substream->runtime;
2048	nonblock = !!(substream->f_flags & O_NONBLOCK);
2049
2050	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2051		return -EINVAL;
2052	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2053				  nonblock, snd_pcm_lib_writev_transfer);
2054}
2055
2056EXPORT_SYMBOL(snd_pcm_lib_writev);
2057
2058static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2059				     unsigned int hwoff,
2060				     unsigned long data, unsigned int off,
2061				     snd_pcm_uframes_t frames)
2062{
2063	struct snd_pcm_runtime *runtime = substream->runtime;
2064	int err;
2065	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2066	if (substream->ops->copy) {
2067		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2068			return err;
2069	} else {
2070		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2071		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2072			return -EFAULT;
2073	}
2074	return 0;
2075}
2076
2077static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2078					   unsigned long data,
2079					   snd_pcm_uframes_t size,
2080					   int nonblock,
2081					   transfer_f transfer)
2082{
2083	struct snd_pcm_runtime *runtime = substream->runtime;
2084	snd_pcm_uframes_t xfer = 0;
2085	snd_pcm_uframes_t offset = 0;
2086	int err = 0;
 
 
2087
2088	if (size == 0)
2089		return 0;
2090
 
 
2091	snd_pcm_stream_lock_irq(substream);
2092	switch (runtime->status->state) {
2093	case SNDRV_PCM_STATE_PREPARED:
2094		if (size >= runtime->start_threshold) {
2095			err = snd_pcm_start(substream);
2096			if (err < 0)
2097				goto _end_unlock;
2098		}
2099		break;
2100	case SNDRV_PCM_STATE_DRAINING:
2101	case SNDRV_PCM_STATE_RUNNING:
2102	case SNDRV_PCM_STATE_PAUSED:
2103		break;
2104	case SNDRV_PCM_STATE_XRUN:
2105		err = -EPIPE;
2106		goto _end_unlock;
2107	case SNDRV_PCM_STATE_SUSPENDED:
2108		err = -ESTRPIPE;
2109		goto _end_unlock;
2110	default:
2111		err = -EBADFD;
2112		goto _end_unlock;
2113	}
2114
2115	runtime->twake = runtime->control->avail_min ? : 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2116	while (size > 0) {
2117		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2118		snd_pcm_uframes_t avail;
2119		snd_pcm_uframes_t cont;
2120		if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2121			snd_pcm_update_hw_ptr(substream);
2122		avail = snd_pcm_capture_avail(runtime);
2123		if (!avail) {
2124			if (runtime->status->state ==
2125			    SNDRV_PCM_STATE_DRAINING) {
2126				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2127				goto _end_unlock;
2128			}
2129			if (nonblock) {
2130				err = -EAGAIN;
2131				goto _end_unlock;
2132			}
2133			runtime->twake = min_t(snd_pcm_uframes_t, size,
2134					runtime->control->avail_min ? : 1);
2135			err = wait_for_avail(substream, &avail);
2136			if (err < 0)
2137				goto _end_unlock;
2138			if (!avail)
2139				continue; /* draining */
2140		}
2141		frames = size > avail ? avail : size;
2142		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
 
 
2143		if (frames > cont)
2144			frames = cont;
2145		if (snd_BUG_ON(!frames)) {
2146			runtime->twake = 0;
2147			snd_pcm_stream_unlock_irq(substream);
2148			return -EINVAL;
 
 
 
2149		}
2150		appl_ptr = runtime->control->appl_ptr;
2151		appl_ofs = appl_ptr % runtime->buffer_size;
2152		snd_pcm_stream_unlock_irq(substream);
2153		err = transfer(substream, appl_ofs, data, offset, frames);
 
 
 
 
 
2154		snd_pcm_stream_lock_irq(substream);
 
2155		if (err < 0)
2156			goto _end_unlock;
2157		switch (runtime->status->state) {
2158		case SNDRV_PCM_STATE_XRUN:
2159			err = -EPIPE;
2160			goto _end_unlock;
2161		case SNDRV_PCM_STATE_SUSPENDED:
2162			err = -ESTRPIPE;
2163			goto _end_unlock;
2164		default:
2165			break;
2166		}
2167		appl_ptr += frames;
2168		if (appl_ptr >= runtime->boundary)
2169			appl_ptr -= runtime->boundary;
2170		runtime->control->appl_ptr = appl_ptr;
2171		if (substream->ops->ack)
2172			substream->ops->ack(substream);
2173
2174		offset += frames;
2175		size -= frames;
2176		xfer += frames;
 
 
 
 
 
 
 
 
2177	}
2178 _end_unlock:
2179	runtime->twake = 0;
2180	if (xfer > 0 && err >= 0)
2181		snd_pcm_update_state(substream, runtime);
2182	snd_pcm_stream_unlock_irq(substream);
2183	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2184}
 
2185
2186snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2187{
2188	struct snd_pcm_runtime *runtime;
2189	int nonblock;
2190	int err;
2191	
2192	err = pcm_sanity_check(substream);
2193	if (err < 0)
2194		return err;
2195	runtime = substream->runtime;
2196	nonblock = !!(substream->f_flags & O_NONBLOCK);
2197	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2198		return -EINVAL;
2199	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2200}
2201
2202EXPORT_SYMBOL(snd_pcm_lib_read);
 
 
 
 
 
 
 
 
 
 
2203
2204static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2205				      unsigned int hwoff,
2206				      unsigned long data, unsigned int off,
2207				      snd_pcm_uframes_t frames)
 
2208{
2209	struct snd_pcm_runtime *runtime = substream->runtime;
2210	int err;
2211	void __user **bufs = (void __user **)data;
2212	int channels = runtime->channels;
2213	int c;
2214	if (substream->ops->copy) {
2215		for (c = 0; c < channels; ++c, ++bufs) {
2216			char __user *buf;
2217			if (*bufs == NULL)
2218				continue;
2219			buf = *bufs + samples_to_bytes(runtime, off);
2220			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2221				return err;
 
 
 
 
 
 
 
 
2222		}
2223	} else {
2224		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2225		for (c = 0; c < channels; ++c, ++bufs) {
2226			char *hwbuf;
2227			char __user *buf;
2228			if (*bufs == NULL)
2229				continue;
2230
2231			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2232			buf = *bufs + samples_to_bytes(runtime, off);
2233			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2234				return -EFAULT;
 
2235		}
2236	}
 
 
2237	return 0;
2238}
2239 
2240snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2241				    void __user **bufs,
2242				    snd_pcm_uframes_t frames)
2243{
2244	struct snd_pcm_runtime *runtime;
2245	int nonblock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2246	int err;
2247
2248	err = pcm_sanity_check(substream);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2249	if (err < 0)
2250		return err;
2251	runtime = substream->runtime;
2252	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2253		return -EBADFD;
2254
2255	nonblock = !!(substream->f_flags & O_NONBLOCK);
2256	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2257		return -EINVAL;
2258	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2259}
2260
2261EXPORT_SYMBOL(snd_pcm_lib_readv);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Digital Audio (PCM) abstract layer
   4 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   5 *                   Abramo Bagnara <abramo@alsa-project.org>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/slab.h>
   9#include <linux/sched/signal.h>
  10#include <linux/time.h>
  11#include <linux/math64.h>
  12#include <linux/export.h>
  13#include <sound/core.h>
  14#include <sound/control.h>
  15#include <sound/tlv.h>
  16#include <sound/info.h>
  17#include <sound/pcm.h>
  18#include <sound/pcm_params.h>
  19#include <sound/timer.h>
  20
  21#include "pcm_local.h"
  22
  23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
  24#define CREATE_TRACE_POINTS
  25#include "pcm_trace.h"
  26#else
  27#define trace_hwptr(substream, pos, in_interrupt)
  28#define trace_xrun(substream)
  29#define trace_hw_ptr_error(substream, reason)
  30#define trace_applptr(substream, prev, curr)
  31#endif
  32
  33static int fill_silence_frames(struct snd_pcm_substream *substream,
  34			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
  35
  36
  37static inline void update_silence_vars(struct snd_pcm_runtime *runtime,
  38				       snd_pcm_uframes_t ptr,
  39				       snd_pcm_uframes_t new_ptr)
  40{
  41	snd_pcm_sframes_t delta;
  42
  43	delta = new_ptr - ptr;
  44	if (delta == 0)
  45		return;
  46	if (delta < 0)
  47		delta += runtime->boundary;
  48	if ((snd_pcm_uframes_t)delta < runtime->silence_filled)
  49		runtime->silence_filled -= delta;
  50	else
  51		runtime->silence_filled = 0;
  52	runtime->silence_start = new_ptr;
  53}
  54
  55/*
  56 * fill ring buffer with silence
  57 * runtime->silence_start: starting pointer to silence area
  58 * runtime->silence_filled: size filled with silence
  59 * runtime->silence_threshold: threshold from application
  60 * runtime->silence_size: maximal size from application
  61 *
  62 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  63 */
  64void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  65{
  66	struct snd_pcm_runtime *runtime = substream->runtime;
  67	snd_pcm_uframes_t frames, ofs, transfer;
  68	int err;
  69
  70	if (runtime->silence_size < runtime->boundary) {
  71		snd_pcm_sframes_t noise_dist;
  72		snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
  73		update_silence_vars(runtime, runtime->silence_start, appl_ptr);
  74		/* initialization outside pointer updates */
  75		if (new_hw_ptr == ULONG_MAX)
  76			new_hw_ptr = runtime->status->hw_ptr;
  77		/* get hw_avail with the boundary crossing */
  78		noise_dist = appl_ptr - new_hw_ptr;
  79		if (noise_dist < 0)
  80			noise_dist += runtime->boundary;
  81		/* total noise distance */
  82		noise_dist += runtime->silence_filled;
 
 
  83		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  84			return;
  85		frames = runtime->silence_threshold - noise_dist;
  86		if (frames > runtime->silence_size)
  87			frames = runtime->silence_size;
  88	} else {
  89		/*
  90		 * This filling mode aims at free-running mode (used for example by dmix),
  91		 * which doesn't update the application pointer.
  92		 */
  93		snd_pcm_uframes_t hw_ptr = runtime->status->hw_ptr;
  94		if (new_hw_ptr == ULONG_MAX) {
  95			/*
  96			 * Initialization, fill the whole unused buffer with silence.
  97			 *
  98			 * Usually, this is entered while stopped, before data is queued,
  99			 * so both pointers are expected to be zero.
 100			 */
 101			snd_pcm_sframes_t avail = runtime->control->appl_ptr - hw_ptr;
 102			if (avail < 0)
 103				avail += runtime->boundary;
 104			/*
 105			 * In free-running mode, appl_ptr will be zero even while running,
 106			 * so we end up with a huge number. There is no useful way to
 107			 * handle this, so we just clear the whole buffer.
 108			 */
 109			runtime->silence_filled = avail > runtime->buffer_size ? 0 : avail;
 110			runtime->silence_start = hw_ptr;
 111		} else {
 112			/* Silence the just played area immediately */
 113			update_silence_vars(runtime, hw_ptr, new_hw_ptr);
 
 
 
 
 
 
 
 
 
 114		}
 115		/*
 116		 * In this mode, silence_filled actually includes the valid
 117		 * sample data from the user.
 118		 */
 119		frames = runtime->buffer_size - runtime->silence_filled;
 120	}
 121	if (snd_BUG_ON(frames > runtime->buffer_size))
 122		return;
 123	if (frames == 0)
 124		return;
 125	ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
 126	do {
 127		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
 128		err = fill_silence_frames(substream, ofs, transfer);
 129		snd_BUG_ON(err < 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130		runtime->silence_filled += transfer;
 131		frames -= transfer;
 132		ofs = 0;
 133	} while (frames > 0);
 134	snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
 135}
 136
 137#ifdef CONFIG_SND_DEBUG
 138void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 139			   char *name, size_t len)
 140{
 141	snprintf(name, len, "pcmC%dD%d%c:%d",
 142		 substream->pcm->card->number,
 143		 substream->pcm->device,
 144		 substream->stream ? 'c' : 'p',
 145		 substream->number);
 146}
 147EXPORT_SYMBOL(snd_pcm_debug_name);
 148#endif
 149
 150#define XRUN_DEBUG_BASIC	(1<<0)
 151#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
 152#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
 
 
 
 
 153
 154#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 155
 156#define xrun_debug(substream, mask) \
 157			((substream)->pstr->xrun_debug & (mask))
 158#else
 159#define xrun_debug(substream, mask)	0
 160#endif
 161
 162#define dump_stack_on_xrun(substream) do {			\
 163		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
 164			dump_stack();				\
 165	} while (0)
 166
 167/* call with stream lock held */
 168void __snd_pcm_xrun(struct snd_pcm_substream *substream)
 169{
 170	struct snd_pcm_runtime *runtime = substream->runtime;
 171
 172	trace_xrun(substream);
 173	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 174		struct timespec64 tstamp;
 175
 176		snd_pcm_gettime(runtime, &tstamp);
 177		runtime->status->tstamp.tv_sec = tstamp.tv_sec;
 178		runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
 179	}
 180	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 181	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 182		char name[16];
 183		snd_pcm_debug_name(substream, name, sizeof(name));
 184		pcm_warn(substream->pcm, "XRUN: %s\n", name);
 185		dump_stack_on_xrun(substream);
 186	}
 187}
 188
 189#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 190#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)	\
 191	do {								\
 192		trace_hw_ptr_error(substream, reason);	\
 193		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
 194			pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
 195					   (in_interrupt) ? 'Q' : 'P', ##args);	\
 
 
 196			dump_stack_on_xrun(substream);			\
 197		}							\
 198	} while (0)
 199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 201
 202#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 
 
 203
 204#endif
 205
 206int snd_pcm_update_state(struct snd_pcm_substream *substream,
 207			 struct snd_pcm_runtime *runtime)
 208{
 209	snd_pcm_uframes_t avail;
 210
 211	avail = snd_pcm_avail(substream);
 
 
 
 212	if (avail > runtime->avail_max)
 213		runtime->avail_max = avail;
 214	if (runtime->state == SNDRV_PCM_STATE_DRAINING) {
 215		if (avail >= runtime->buffer_size) {
 216			snd_pcm_drain_done(substream);
 217			return -EPIPE;
 218		}
 219	} else {
 220		if (avail >= runtime->stop_threshold) {
 221			__snd_pcm_xrun(substream);
 222			return -EPIPE;
 223		}
 224	}
 225	if (runtime->twake) {
 226		if (avail >= runtime->twake)
 227			wake_up(&runtime->tsleep);
 228	} else if (avail >= runtime->control->avail_min)
 229		wake_up(&runtime->sleep);
 230	return 0;
 231}
 232
 233static void update_audio_tstamp(struct snd_pcm_substream *substream,
 234				struct timespec64 *curr_tstamp,
 235				struct timespec64 *audio_tstamp)
 236{
 237	struct snd_pcm_runtime *runtime = substream->runtime;
 238	u64 audio_frames, audio_nsecs;
 239	struct timespec64 driver_tstamp;
 240
 241	if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
 242		return;
 243
 244	if (!(substream->ops->get_time_info) ||
 245		(runtime->audio_tstamp_report.actual_type ==
 246			SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 247
 248		/*
 249		 * provide audio timestamp derived from pointer position
 250		 * add delay only if requested
 251		 */
 252
 253		audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
 254
 255		if (runtime->audio_tstamp_config.report_delay) {
 256			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 257				audio_frames -=  runtime->delay;
 258			else
 259				audio_frames +=  runtime->delay;
 260		}
 261		audio_nsecs = div_u64(audio_frames * 1000000000LL,
 262				runtime->rate);
 263		*audio_tstamp = ns_to_timespec64(audio_nsecs);
 264	}
 265
 266	if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
 267	    runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
 268		runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
 269		runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
 270		runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
 271		runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
 272	}
 273
 274
 275	/*
 276	 * re-take a driver timestamp to let apps detect if the reference tstamp
 277	 * read by low-level hardware was provided with a delay
 278	 */
 279	snd_pcm_gettime(substream->runtime, &driver_tstamp);
 280	runtime->driver_tstamp = driver_tstamp;
 281}
 282
 283static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 284				  unsigned int in_interrupt)
 285{
 286	struct snd_pcm_runtime *runtime = substream->runtime;
 287	snd_pcm_uframes_t pos;
 288	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 289	snd_pcm_sframes_t hdelta, delta;
 290	unsigned long jdelta;
 291	unsigned long curr_jiffies;
 292	struct timespec64 curr_tstamp;
 293	struct timespec64 audio_tstamp;
 294	int crossed_boundary = 0;
 295
 296	old_hw_ptr = runtime->status->hw_ptr;
 297
 298	/*
 299	 * group pointer, time and jiffies reads to allow for more
 300	 * accurate correlations/corrections.
 301	 * The values are stored at the end of this routine after
 302	 * corrections for hw_ptr position
 303	 */
 304	pos = substream->ops->pointer(substream);
 305	curr_jiffies = jiffies;
 306	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 307		if ((substream->ops->get_time_info) &&
 308			(runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 309			substream->ops->get_time_info(substream, &curr_tstamp,
 310						&audio_tstamp,
 311						&runtime->audio_tstamp_config,
 312						&runtime->audio_tstamp_report);
 313
 314			/* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
 315			if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
 316				snd_pcm_gettime(runtime, &curr_tstamp);
 317		} else
 318			snd_pcm_gettime(runtime, &curr_tstamp);
 319	}
 320
 321	if (pos == SNDRV_PCM_POS_XRUN) {
 322		__snd_pcm_xrun(substream);
 323		return -EPIPE;
 324	}
 325	if (pos >= runtime->buffer_size) {
 326		if (printk_ratelimit()) {
 327			char name[16];
 328			snd_pcm_debug_name(substream, name, sizeof(name));
 329			pcm_err(substream->pcm,
 330				"invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
 331				name, pos, runtime->buffer_size,
 332				runtime->period_size);
 
 333		}
 334		pos = 0;
 335	}
 336	pos -= pos % runtime->min_align;
 337	trace_hwptr(substream, pos, in_interrupt);
 
 338	hw_base = runtime->hw_ptr_base;
 339	new_hw_ptr = hw_base + pos;
 340	if (in_interrupt) {
 341		/* we know that one period was processed */
 342		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
 343		delta = runtime->hw_ptr_interrupt + runtime->period_size;
 344		if (delta > new_hw_ptr) {
 345			/* check for double acknowledged interrupts */
 346			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 347			if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
 348				hw_base += runtime->buffer_size;
 349				if (hw_base >= runtime->boundary) {
 350					hw_base = 0;
 351					crossed_boundary++;
 352				}
 353				new_hw_ptr = hw_base + pos;
 354				goto __delta;
 355			}
 356		}
 357	}
 358	/* new_hw_ptr might be lower than old_hw_ptr in case when */
 359	/* pointer crosses the end of the ring buffer */
 360	if (new_hw_ptr < old_hw_ptr) {
 361		hw_base += runtime->buffer_size;
 362		if (hw_base >= runtime->boundary) {
 363			hw_base = 0;
 364			crossed_boundary++;
 365		}
 366		new_hw_ptr = hw_base + pos;
 367	}
 368      __delta:
 369	delta = new_hw_ptr - old_hw_ptr;
 370	if (delta < 0)
 371		delta += runtime->boundary;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372
 373	if (runtime->no_period_wakeup) {
 374		snd_pcm_sframes_t xrun_threshold;
 375		/*
 376		 * Without regular period interrupts, we have to check
 377		 * the elapsed time to detect xruns.
 378		 */
 379		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 380		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 381			goto no_delta_check;
 382		hdelta = jdelta - delta * HZ / runtime->rate;
 383		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 384		while (hdelta > xrun_threshold) {
 385			delta += runtime->buffer_size;
 386			hw_base += runtime->buffer_size;
 387			if (hw_base >= runtime->boundary) {
 388				hw_base = 0;
 389				crossed_boundary++;
 390			}
 391			new_hw_ptr = hw_base + pos;
 392			hdelta -= runtime->hw_ptr_buffer_jiffies;
 393		}
 394		goto no_delta_check;
 395	}
 396
 397	/* something must be really wrong */
 398	if (delta >= runtime->buffer_size + runtime->period_size) {
 399		hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
 400			     "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 401			     substream->stream, (long)pos,
 402			     (long)new_hw_ptr, (long)old_hw_ptr);
 
 
 
 403		return 0;
 404	}
 405
 406	/* Do jiffies check only in xrun_debug mode */
 407	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 408		goto no_jiffies_check;
 409
 410	/* Skip the jiffies check for hardwares with BATCH flag.
 411	 * Such hardware usually just increases the position at each IRQ,
 412	 * thus it can't give any strange position.
 413	 */
 414	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 415		goto no_jiffies_check;
 416	hdelta = delta;
 417	if (hdelta < runtime->delay)
 418		goto no_jiffies_check;
 419	hdelta -= runtime->delay;
 420	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 421	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 422		delta = jdelta /
 423			(((runtime->period_size * HZ) / runtime->rate)
 424								+ HZ/100);
 425		/* move new_hw_ptr according jiffies not pos variable */
 426		new_hw_ptr = old_hw_ptr;
 427		hw_base = delta;
 428		/* use loop to avoid checks for delta overflows */
 429		/* the delta value is small or zero in most cases */
 430		while (delta > 0) {
 431			new_hw_ptr += runtime->period_size;
 432			if (new_hw_ptr >= runtime->boundary) {
 433				new_hw_ptr -= runtime->boundary;
 434				crossed_boundary--;
 435			}
 436			delta--;
 437		}
 438		/* align hw_base to buffer_size */
 439		hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
 440			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 
 
 
 441			     (long)pos, (long)hdelta,
 442			     (long)runtime->period_size, jdelta,
 443			     ((hdelta * HZ) / runtime->rate), hw_base,
 444			     (unsigned long)old_hw_ptr,
 445			     (unsigned long)new_hw_ptr);
 446		/* reset values to proper state */
 447		delta = 0;
 448		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 449	}
 450 no_jiffies_check:
 451	if (delta > runtime->period_size + runtime->period_size / 2) {
 452		hw_ptr_error(substream, in_interrupt,
 453			     "Lost interrupts?",
 454			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 
 
 455			     substream->stream, (long)delta,
 456			     (long)new_hw_ptr,
 457			     (long)old_hw_ptr);
 458	}
 459
 460 no_delta_check:
 461	if (runtime->status->hw_ptr == new_hw_ptr) {
 462		runtime->hw_ptr_jiffies = curr_jiffies;
 463		update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 464		return 0;
 465	}
 466
 467	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 468	    runtime->silence_size > 0)
 469		snd_pcm_playback_silence(substream, new_hw_ptr);
 470
 471	if (in_interrupt) {
 472		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 473		if (delta < 0)
 474			delta += runtime->boundary;
 475		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 476		runtime->hw_ptr_interrupt += delta;
 477		if (runtime->hw_ptr_interrupt >= runtime->boundary)
 478			runtime->hw_ptr_interrupt -= runtime->boundary;
 479	}
 480	runtime->hw_ptr_base = hw_base;
 481	runtime->status->hw_ptr = new_hw_ptr;
 482	runtime->hw_ptr_jiffies = curr_jiffies;
 483	if (crossed_boundary) {
 484		snd_BUG_ON(crossed_boundary != 1);
 485		runtime->hw_ptr_wrap += runtime->boundary;
 486	}
 487
 488	update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 489
 490	return snd_pcm_update_state(substream, runtime);
 491}
 492
 493/* CAUTION: call it with irq disabled */
 494int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 495{
 496	return snd_pcm_update_hw_ptr0(substream, 0);
 497}
 498
 499/**
 500 * snd_pcm_set_ops - set the PCM operators
 501 * @pcm: the pcm instance
 502 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 503 * @ops: the operator table
 504 *
 505 * Sets the given PCM operators to the pcm instance.
 506 */
 507void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
 508		     const struct snd_pcm_ops *ops)
 509{
 510	struct snd_pcm_str *stream = &pcm->streams[direction];
 511	struct snd_pcm_substream *substream;
 512	
 513	for (substream = stream->substream; substream != NULL; substream = substream->next)
 514		substream->ops = ops;
 515}
 
 516EXPORT_SYMBOL(snd_pcm_set_ops);
 517
 518/**
 519 * snd_pcm_set_sync - set the PCM sync id
 520 * @substream: the pcm substream
 521 *
 522 * Sets the PCM sync identifier for the card.
 523 */
 524void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 525{
 526	struct snd_pcm_runtime *runtime = substream->runtime;
 527	
 528	runtime->sync.id32[0] = substream->pcm->card->number;
 529	runtime->sync.id32[1] = -1;
 530	runtime->sync.id32[2] = -1;
 531	runtime->sync.id32[3] = -1;
 532}
 
 533EXPORT_SYMBOL(snd_pcm_set_sync);
 534
 535/*
 536 *  Standard ioctl routine
 537 */
 538
 539static inline unsigned int div32(unsigned int a, unsigned int b, 
 540				 unsigned int *r)
 541{
 542	if (b == 0) {
 543		*r = 0;
 544		return UINT_MAX;
 545	}
 546	*r = a % b;
 547	return a / b;
 548}
 549
 550static inline unsigned int div_down(unsigned int a, unsigned int b)
 551{
 552	if (b == 0)
 553		return UINT_MAX;
 554	return a / b;
 555}
 556
 557static inline unsigned int div_up(unsigned int a, unsigned int b)
 558{
 559	unsigned int r;
 560	unsigned int q;
 561	if (b == 0)
 562		return UINT_MAX;
 563	q = div32(a, b, &r);
 564	if (r)
 565		++q;
 566	return q;
 567}
 568
 569static inline unsigned int mul(unsigned int a, unsigned int b)
 570{
 571	if (a == 0)
 572		return 0;
 573	if (div_down(UINT_MAX, a) < b)
 574		return UINT_MAX;
 575	return a * b;
 576}
 577
 578static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 579				    unsigned int c, unsigned int *r)
 580{
 581	u_int64_t n = (u_int64_t) a * b;
 582	if (c == 0) {
 
 583		*r = 0;
 584		return UINT_MAX;
 585	}
 586	n = div_u64_rem(n, c, r);
 587	if (n >= UINT_MAX) {
 588		*r = 0;
 589		return UINT_MAX;
 590	}
 591	return n;
 592}
 593
 594/**
 595 * snd_interval_refine - refine the interval value of configurator
 596 * @i: the interval value to refine
 597 * @v: the interval value to refer to
 598 *
 599 * Refines the interval value with the reference value.
 600 * The interval is changed to the range satisfying both intervals.
 601 * The interval status (min, max, integer, etc.) are evaluated.
 602 *
 603 * Return: Positive if the value is changed, zero if it's not changed, or a
 604 * negative error code.
 605 */
 606int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 607{
 608	int changed = 0;
 609	if (snd_BUG_ON(snd_interval_empty(i)))
 610		return -EINVAL;
 611	if (i->min < v->min) {
 612		i->min = v->min;
 613		i->openmin = v->openmin;
 614		changed = 1;
 615	} else if (i->min == v->min && !i->openmin && v->openmin) {
 616		i->openmin = 1;
 617		changed = 1;
 618	}
 619	if (i->max > v->max) {
 620		i->max = v->max;
 621		i->openmax = v->openmax;
 622		changed = 1;
 623	} else if (i->max == v->max && !i->openmax && v->openmax) {
 624		i->openmax = 1;
 625		changed = 1;
 626	}
 627	if (!i->integer && v->integer) {
 628		i->integer = 1;
 629		changed = 1;
 630	}
 631	if (i->integer) {
 632		if (i->openmin) {
 633			i->min++;
 634			i->openmin = 0;
 635		}
 636		if (i->openmax) {
 637			i->max--;
 638			i->openmax = 0;
 639		}
 640	} else if (!i->openmin && !i->openmax && i->min == i->max)
 641		i->integer = 1;
 642	if (snd_interval_checkempty(i)) {
 643		snd_interval_none(i);
 644		return -EINVAL;
 645	}
 646	return changed;
 647}
 
 648EXPORT_SYMBOL(snd_interval_refine);
 649
 650static int snd_interval_refine_first(struct snd_interval *i)
 651{
 652	const unsigned int last_max = i->max;
 653
 654	if (snd_BUG_ON(snd_interval_empty(i)))
 655		return -EINVAL;
 656	if (snd_interval_single(i))
 657		return 0;
 658	i->max = i->min;
 659	if (i->openmin)
 
 660		i->max++;
 661	/* only exclude max value if also excluded before refine */
 662	i->openmax = (i->openmax && i->max >= last_max);
 663	return 1;
 664}
 665
 666static int snd_interval_refine_last(struct snd_interval *i)
 667{
 668	const unsigned int last_min = i->min;
 669
 670	if (snd_BUG_ON(snd_interval_empty(i)))
 671		return -EINVAL;
 672	if (snd_interval_single(i))
 673		return 0;
 674	i->min = i->max;
 675	if (i->openmax)
 
 676		i->min--;
 677	/* only exclude min value if also excluded before refine */
 678	i->openmin = (i->openmin && i->min <= last_min);
 679	return 1;
 680}
 681
 682void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 683{
 684	if (a->empty || b->empty) {
 685		snd_interval_none(c);
 686		return;
 687	}
 688	c->empty = 0;
 689	c->min = mul(a->min, b->min);
 690	c->openmin = (a->openmin || b->openmin);
 691	c->max = mul(a->max,  b->max);
 692	c->openmax = (a->openmax || b->openmax);
 693	c->integer = (a->integer && b->integer);
 694}
 695
 696/**
 697 * snd_interval_div - refine the interval value with division
 698 * @a: dividend
 699 * @b: divisor
 700 * @c: quotient
 701 *
 702 * c = a / b
 703 *
 704 * Returns non-zero if the value is changed, zero if not changed.
 705 */
 706void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 707{
 708	unsigned int r;
 709	if (a->empty || b->empty) {
 710		snd_interval_none(c);
 711		return;
 712	}
 713	c->empty = 0;
 714	c->min = div32(a->min, b->max, &r);
 715	c->openmin = (r || a->openmin || b->openmax);
 716	if (b->min > 0) {
 717		c->max = div32(a->max, b->min, &r);
 718		if (r) {
 719			c->max++;
 720			c->openmax = 1;
 721		} else
 722			c->openmax = (a->openmax || b->openmin);
 723	} else {
 724		c->max = UINT_MAX;
 725		c->openmax = 0;
 726	}
 727	c->integer = 0;
 728}
 729
 730/**
 731 * snd_interval_muldivk - refine the interval value
 732 * @a: dividend 1
 733 * @b: dividend 2
 734 * @k: divisor (as integer)
 735 * @c: result
 736  *
 737 * c = a * b / k
 738 *
 739 * Returns non-zero if the value is changed, zero if not changed.
 740 */
 741void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 742		      unsigned int k, struct snd_interval *c)
 743{
 744	unsigned int r;
 745	if (a->empty || b->empty) {
 746		snd_interval_none(c);
 747		return;
 748	}
 749	c->empty = 0;
 750	c->min = muldiv32(a->min, b->min, k, &r);
 751	c->openmin = (r || a->openmin || b->openmin);
 752	c->max = muldiv32(a->max, b->max, k, &r);
 753	if (r) {
 754		c->max++;
 755		c->openmax = 1;
 756	} else
 757		c->openmax = (a->openmax || b->openmax);
 758	c->integer = 0;
 759}
 760
 761/**
 762 * snd_interval_mulkdiv - refine the interval value
 763 * @a: dividend 1
 764 * @k: dividend 2 (as integer)
 765 * @b: divisor
 766 * @c: result
 767 *
 768 * c = a * k / b
 769 *
 770 * Returns non-zero if the value is changed, zero if not changed.
 771 */
 772void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 773		      const struct snd_interval *b, struct snd_interval *c)
 774{
 775	unsigned int r;
 776	if (a->empty || b->empty) {
 777		snd_interval_none(c);
 778		return;
 779	}
 780	c->empty = 0;
 781	c->min = muldiv32(a->min, k, b->max, &r);
 782	c->openmin = (r || a->openmin || b->openmax);
 783	if (b->min > 0) {
 784		c->max = muldiv32(a->max, k, b->min, &r);
 785		if (r) {
 786			c->max++;
 787			c->openmax = 1;
 788		} else
 789			c->openmax = (a->openmax || b->openmin);
 790	} else {
 791		c->max = UINT_MAX;
 792		c->openmax = 0;
 793	}
 794	c->integer = 0;
 795}
 796
 797/* ---- */
 798
 799
 800/**
 801 * snd_interval_ratnum - refine the interval value
 802 * @i: interval to refine
 803 * @rats_count: number of ratnum_t 
 804 * @rats: ratnum_t array
 805 * @nump: pointer to store the resultant numerator
 806 * @denp: pointer to store the resultant denominator
 807 *
 808 * Return: Positive if the value is changed, zero if it's not changed, or a
 809 * negative error code.
 810 */
 811int snd_interval_ratnum(struct snd_interval *i,
 812			unsigned int rats_count, const struct snd_ratnum *rats,
 813			unsigned int *nump, unsigned int *denp)
 814{
 815	unsigned int best_num, best_den;
 816	int best_diff;
 817	unsigned int k;
 818	struct snd_interval t;
 819	int err;
 820	unsigned int result_num, result_den;
 821	int result_diff;
 822
 823	best_num = best_den = best_diff = 0;
 824	for (k = 0; k < rats_count; ++k) {
 825		unsigned int num = rats[k].num;
 826		unsigned int den;
 827		unsigned int q = i->min;
 828		int diff;
 829		if (q == 0)
 830			q = 1;
 831		den = div_up(num, q);
 832		if (den < rats[k].den_min)
 833			continue;
 834		if (den > rats[k].den_max)
 835			den = rats[k].den_max;
 836		else {
 837			unsigned int r;
 838			r = (den - rats[k].den_min) % rats[k].den_step;
 839			if (r != 0)
 840				den -= r;
 841		}
 842		diff = num - q * den;
 843		if (diff < 0)
 844			diff = -diff;
 845		if (best_num == 0 ||
 846		    diff * best_den < best_diff * den) {
 847			best_diff = diff;
 848			best_den = den;
 849			best_num = num;
 850		}
 851	}
 852	if (best_den == 0) {
 853		i->empty = 1;
 854		return -EINVAL;
 855	}
 856	t.min = div_down(best_num, best_den);
 857	t.openmin = !!(best_num % best_den);
 858	
 859	result_num = best_num;
 860	result_diff = best_diff;
 861	result_den = best_den;
 862	best_num = best_den = best_diff = 0;
 863	for (k = 0; k < rats_count; ++k) {
 864		unsigned int num = rats[k].num;
 865		unsigned int den;
 866		unsigned int q = i->max;
 867		int diff;
 868		if (q == 0) {
 869			i->empty = 1;
 870			return -EINVAL;
 871		}
 872		den = div_down(num, q);
 873		if (den > rats[k].den_max)
 874			continue;
 875		if (den < rats[k].den_min)
 876			den = rats[k].den_min;
 877		else {
 878			unsigned int r;
 879			r = (den - rats[k].den_min) % rats[k].den_step;
 880			if (r != 0)
 881				den += rats[k].den_step - r;
 882		}
 883		diff = q * den - num;
 884		if (diff < 0)
 885			diff = -diff;
 886		if (best_num == 0 ||
 887		    diff * best_den < best_diff * den) {
 888			best_diff = diff;
 889			best_den = den;
 890			best_num = num;
 891		}
 892	}
 893	if (best_den == 0) {
 894		i->empty = 1;
 895		return -EINVAL;
 896	}
 897	t.max = div_up(best_num, best_den);
 898	t.openmax = !!(best_num % best_den);
 899	t.integer = 0;
 900	err = snd_interval_refine(i, &t);
 901	if (err < 0)
 902		return err;
 903
 904	if (snd_interval_single(i)) {
 905		if (best_diff * result_den < result_diff * best_den) {
 906			result_num = best_num;
 907			result_den = best_den;
 908		}
 909		if (nump)
 910			*nump = result_num;
 911		if (denp)
 912			*denp = result_den;
 913	}
 914	return err;
 915}
 
 916EXPORT_SYMBOL(snd_interval_ratnum);
 917
 918/**
 919 * snd_interval_ratden - refine the interval value
 920 * @i: interval to refine
 921 * @rats_count: number of struct ratden
 922 * @rats: struct ratden array
 923 * @nump: pointer to store the resultant numerator
 924 * @denp: pointer to store the resultant denominator
 925 *
 926 * Return: Positive if the value is changed, zero if it's not changed, or a
 927 * negative error code.
 928 */
 929static int snd_interval_ratden(struct snd_interval *i,
 930			       unsigned int rats_count,
 931			       const struct snd_ratden *rats,
 932			       unsigned int *nump, unsigned int *denp)
 933{
 934	unsigned int best_num, best_diff, best_den;
 935	unsigned int k;
 936	struct snd_interval t;
 937	int err;
 938
 939	best_num = best_den = best_diff = 0;
 940	for (k = 0; k < rats_count; ++k) {
 941		unsigned int num;
 942		unsigned int den = rats[k].den;
 943		unsigned int q = i->min;
 944		int diff;
 945		num = mul(q, den);
 946		if (num > rats[k].num_max)
 947			continue;
 948		if (num < rats[k].num_min)
 949			num = rats[k].num_max;
 950		else {
 951			unsigned int r;
 952			r = (num - rats[k].num_min) % rats[k].num_step;
 953			if (r != 0)
 954				num += rats[k].num_step - r;
 955		}
 956		diff = num - q * den;
 957		if (best_num == 0 ||
 958		    diff * best_den < best_diff * den) {
 959			best_diff = diff;
 960			best_den = den;
 961			best_num = num;
 962		}
 963	}
 964	if (best_den == 0) {
 965		i->empty = 1;
 966		return -EINVAL;
 967	}
 968	t.min = div_down(best_num, best_den);
 969	t.openmin = !!(best_num % best_den);
 970	
 971	best_num = best_den = best_diff = 0;
 972	for (k = 0; k < rats_count; ++k) {
 973		unsigned int num;
 974		unsigned int den = rats[k].den;
 975		unsigned int q = i->max;
 976		int diff;
 977		num = mul(q, den);
 978		if (num < rats[k].num_min)
 979			continue;
 980		if (num > rats[k].num_max)
 981			num = rats[k].num_max;
 982		else {
 983			unsigned int r;
 984			r = (num - rats[k].num_min) % rats[k].num_step;
 985			if (r != 0)
 986				num -= r;
 987		}
 988		diff = q * den - num;
 989		if (best_num == 0 ||
 990		    diff * best_den < best_diff * den) {
 991			best_diff = diff;
 992			best_den = den;
 993			best_num = num;
 994		}
 995	}
 996	if (best_den == 0) {
 997		i->empty = 1;
 998		return -EINVAL;
 999	}
1000	t.max = div_up(best_num, best_den);
1001	t.openmax = !!(best_num % best_den);
1002	t.integer = 0;
1003	err = snd_interval_refine(i, &t);
1004	if (err < 0)
1005		return err;
1006
1007	if (snd_interval_single(i)) {
1008		if (nump)
1009			*nump = best_num;
1010		if (denp)
1011			*denp = best_den;
1012	}
1013	return err;
1014}
1015
1016/**
1017 * snd_interval_list - refine the interval value from the list
1018 * @i: the interval value to refine
1019 * @count: the number of elements in the list
1020 * @list: the value list
1021 * @mask: the bit-mask to evaluate
1022 *
1023 * Refines the interval value from the list.
1024 * When mask is non-zero, only the elements corresponding to bit 1 are
1025 * evaluated.
1026 *
1027 * Return: Positive if the value is changed, zero if it's not changed, or a
1028 * negative error code.
1029 */
1030int snd_interval_list(struct snd_interval *i, unsigned int count,
1031		      const unsigned int *list, unsigned int mask)
1032{
1033        unsigned int k;
1034	struct snd_interval list_range;
1035
1036	if (!count) {
1037		i->empty = 1;
1038		return -EINVAL;
1039	}
1040	snd_interval_any(&list_range);
1041	list_range.min = UINT_MAX;
1042	list_range.max = 0;
1043        for (k = 0; k < count; k++) {
1044		if (mask && !(mask & (1 << k)))
1045			continue;
1046		if (!snd_interval_test(i, list[k]))
1047			continue;
1048		list_range.min = min(list_range.min, list[k]);
1049		list_range.max = max(list_range.max, list[k]);
1050        }
1051	return snd_interval_refine(i, &list_range);
1052}
 
1053EXPORT_SYMBOL(snd_interval_list);
1054
1055/**
1056 * snd_interval_ranges - refine the interval value from the list of ranges
1057 * @i: the interval value to refine
1058 * @count: the number of elements in the list of ranges
1059 * @ranges: the ranges list
1060 * @mask: the bit-mask to evaluate
1061 *
1062 * Refines the interval value from the list of ranges.
1063 * When mask is non-zero, only the elements corresponding to bit 1 are
1064 * evaluated.
1065 *
1066 * Return: Positive if the value is changed, zero if it's not changed, or a
1067 * negative error code.
1068 */
1069int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1070			const struct snd_interval *ranges, unsigned int mask)
1071{
1072	unsigned int k;
1073	struct snd_interval range_union;
1074	struct snd_interval range;
1075
1076	if (!count) {
1077		snd_interval_none(i);
1078		return -EINVAL;
1079	}
1080	snd_interval_any(&range_union);
1081	range_union.min = UINT_MAX;
1082	range_union.max = 0;
1083	for (k = 0; k < count; k++) {
1084		if (mask && !(mask & (1 << k)))
1085			continue;
1086		snd_interval_copy(&range, &ranges[k]);
1087		if (snd_interval_refine(&range, i) < 0)
1088			continue;
1089		if (snd_interval_empty(&range))
1090			continue;
1091
1092		if (range.min < range_union.min) {
1093			range_union.min = range.min;
1094			range_union.openmin = 1;
1095		}
1096		if (range.min == range_union.min && !range.openmin)
1097			range_union.openmin = 0;
1098		if (range.max > range_union.max) {
1099			range_union.max = range.max;
1100			range_union.openmax = 1;
1101		}
1102		if (range.max == range_union.max && !range.openmax)
1103			range_union.openmax = 0;
1104	}
1105	return snd_interval_refine(i, &range_union);
1106}
1107EXPORT_SYMBOL(snd_interval_ranges);
1108
1109static int snd_interval_step(struct snd_interval *i, unsigned int step)
1110{
1111	unsigned int n;
1112	int changed = 0;
1113	n = i->min % step;
1114	if (n != 0 || i->openmin) {
1115		i->min += step - n;
1116		i->openmin = 0;
1117		changed = 1;
1118	}
1119	n = i->max % step;
1120	if (n != 0 || i->openmax) {
1121		i->max -= n;
1122		i->openmax = 0;
1123		changed = 1;
1124	}
1125	if (snd_interval_checkempty(i)) {
1126		i->empty = 1;
1127		return -EINVAL;
1128	}
1129	return changed;
1130}
1131
1132/* Info constraints helpers */
1133
1134/**
1135 * snd_pcm_hw_rule_add - add the hw-constraint rule
1136 * @runtime: the pcm runtime instance
1137 * @cond: condition bits
1138 * @var: the variable to evaluate
1139 * @func: the evaluation function
1140 * @private: the private data pointer passed to function
1141 * @dep: the dependent variables
1142 *
1143 * Return: Zero if successful, or a negative error code on failure.
1144 */
1145int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1146			int var,
1147			snd_pcm_hw_rule_func_t func, void *private,
1148			int dep, ...)
1149{
1150	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1151	struct snd_pcm_hw_rule *c;
1152	unsigned int k;
1153	va_list args;
1154	va_start(args, dep);
1155	if (constrs->rules_num >= constrs->rules_all) {
1156		struct snd_pcm_hw_rule *new;
1157		unsigned int new_rules = constrs->rules_all + 16;
1158		new = krealloc_array(constrs->rules, new_rules,
1159				     sizeof(*c), GFP_KERNEL);
1160		if (!new) {
1161			va_end(args);
1162			return -ENOMEM;
1163		}
 
 
 
 
 
1164		constrs->rules = new;
1165		constrs->rules_all = new_rules;
1166	}
1167	c = &constrs->rules[constrs->rules_num];
1168	c->cond = cond;
1169	c->func = func;
1170	c->var = var;
1171	c->private = private;
1172	k = 0;
1173	while (1) {
1174		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1175			va_end(args);
1176			return -EINVAL;
1177		}
1178		c->deps[k++] = dep;
1179		if (dep < 0)
1180			break;
1181		dep = va_arg(args, int);
1182	}
1183	constrs->rules_num++;
1184	va_end(args);
1185	return 0;
1186}
 
1187EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1188
1189/**
1190 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1191 * @runtime: PCM runtime instance
1192 * @var: hw_params variable to apply the mask
1193 * @mask: the bitmap mask
1194 *
1195 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1196 *
1197 * Return: Zero if successful, or a negative error code on failure.
1198 */
1199int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1200			       u_int32_t mask)
1201{
1202	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1203	struct snd_mask *maskp = constrs_mask(constrs, var);
1204	*maskp->bits &= mask;
1205	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1206	if (*maskp->bits == 0)
1207		return -EINVAL;
1208	return 0;
1209}
1210
1211/**
1212 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1213 * @runtime: PCM runtime instance
1214 * @var: hw_params variable to apply the mask
1215 * @mask: the 64bit bitmap mask
1216 *
1217 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1218 *
1219 * Return: Zero if successful, or a negative error code on failure.
1220 */
1221int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1222				 u_int64_t mask)
1223{
1224	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1225	struct snd_mask *maskp = constrs_mask(constrs, var);
1226	maskp->bits[0] &= (u_int32_t)mask;
1227	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1228	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1229	if (! maskp->bits[0] && ! maskp->bits[1])
1230		return -EINVAL;
1231	return 0;
1232}
1233EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1234
1235/**
1236 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1237 * @runtime: PCM runtime instance
1238 * @var: hw_params variable to apply the integer constraint
1239 *
1240 * Apply the constraint of integer to an interval parameter.
1241 *
1242 * Return: Positive if the value is changed, zero if it's not changed, or a
1243 * negative error code.
1244 */
1245int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1246{
1247	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1248	return snd_interval_setinteger(constrs_interval(constrs, var));
1249}
 
1250EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1251
1252/**
1253 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1254 * @runtime: PCM runtime instance
1255 * @var: hw_params variable to apply the range
1256 * @min: the minimal value
1257 * @max: the maximal value
1258 * 
1259 * Apply the min/max range constraint to an interval parameter.
1260 *
1261 * Return: Positive if the value is changed, zero if it's not changed, or a
1262 * negative error code.
1263 */
1264int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1265				 unsigned int min, unsigned int max)
1266{
1267	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1268	struct snd_interval t;
1269	t.min = min;
1270	t.max = max;
1271	t.openmin = t.openmax = 0;
1272	t.integer = 0;
1273	return snd_interval_refine(constrs_interval(constrs, var), &t);
1274}
 
1275EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1276
1277static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1278				struct snd_pcm_hw_rule *rule)
1279{
1280	struct snd_pcm_hw_constraint_list *list = rule->private;
1281	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1282}		
1283
1284
1285/**
1286 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1287 * @runtime: PCM runtime instance
1288 * @cond: condition bits
1289 * @var: hw_params variable to apply the list constraint
1290 * @l: list
1291 * 
1292 * Apply the list of constraints to an interval parameter.
1293 *
1294 * Return: Zero if successful, or a negative error code on failure.
1295 */
1296int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1297			       unsigned int cond,
1298			       snd_pcm_hw_param_t var,
1299			       const struct snd_pcm_hw_constraint_list *l)
1300{
1301	return snd_pcm_hw_rule_add(runtime, cond, var,
1302				   snd_pcm_hw_rule_list, (void *)l,
1303				   var, -1);
1304}
 
1305EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1306
1307static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1308				  struct snd_pcm_hw_rule *rule)
1309{
1310	struct snd_pcm_hw_constraint_ranges *r = rule->private;
1311	return snd_interval_ranges(hw_param_interval(params, rule->var),
1312				   r->count, r->ranges, r->mask);
1313}
1314
1315
1316/**
1317 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1318 * @runtime: PCM runtime instance
1319 * @cond: condition bits
1320 * @var: hw_params variable to apply the list of range constraints
1321 * @r: ranges
1322 *
1323 * Apply the list of range constraints to an interval parameter.
1324 *
1325 * Return: Zero if successful, or a negative error code on failure.
1326 */
1327int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1328				 unsigned int cond,
1329				 snd_pcm_hw_param_t var,
1330				 const struct snd_pcm_hw_constraint_ranges *r)
1331{
1332	return snd_pcm_hw_rule_add(runtime, cond, var,
1333				   snd_pcm_hw_rule_ranges, (void *)r,
1334				   var, -1);
1335}
1336EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1337
1338static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1339				   struct snd_pcm_hw_rule *rule)
1340{
1341	const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1342	unsigned int num = 0, den = 0;
1343	int err;
1344	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1345				  r->nrats, r->rats, &num, &den);
1346	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1347		params->rate_num = num;
1348		params->rate_den = den;
1349	}
1350	return err;
1351}
1352
1353/**
1354 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1355 * @runtime: PCM runtime instance
1356 * @cond: condition bits
1357 * @var: hw_params variable to apply the ratnums constraint
1358 * @r: struct snd_ratnums constriants
1359 *
1360 * Return: Zero if successful, or a negative error code on failure.
1361 */
1362int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1363				  unsigned int cond,
1364				  snd_pcm_hw_param_t var,
1365				  const struct snd_pcm_hw_constraint_ratnums *r)
1366{
1367	return snd_pcm_hw_rule_add(runtime, cond, var,
1368				   snd_pcm_hw_rule_ratnums, (void *)r,
1369				   var, -1);
1370}
 
1371EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1372
1373static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1374				   struct snd_pcm_hw_rule *rule)
1375{
1376	const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1377	unsigned int num = 0, den = 0;
1378	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1379				  r->nrats, r->rats, &num, &den);
1380	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1381		params->rate_num = num;
1382		params->rate_den = den;
1383	}
1384	return err;
1385}
1386
1387/**
1388 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1389 * @runtime: PCM runtime instance
1390 * @cond: condition bits
1391 * @var: hw_params variable to apply the ratdens constraint
1392 * @r: struct snd_ratdens constriants
1393 *
1394 * Return: Zero if successful, or a negative error code on failure.
1395 */
1396int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1397				  unsigned int cond,
1398				  snd_pcm_hw_param_t var,
1399				  const struct snd_pcm_hw_constraint_ratdens *r)
1400{
1401	return snd_pcm_hw_rule_add(runtime, cond, var,
1402				   snd_pcm_hw_rule_ratdens, (void *)r,
1403				   var, -1);
1404}
 
1405EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1406
1407static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1408				  struct snd_pcm_hw_rule *rule)
1409{
1410	unsigned int l = (unsigned long) rule->private;
1411	int width = l & 0xffff;
1412	unsigned int msbits = l >> 16;
1413	const struct snd_interval *i =
1414		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1415
1416	if (!snd_interval_single(i))
1417		return 0;
1418
1419	if ((snd_interval_value(i) == width) ||
1420	    (width == 0 && snd_interval_value(i) > msbits))
1421		params->msbits = min_not_zero(params->msbits, msbits);
1422
1423	return 0;
1424}
1425
1426/**
1427 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1428 * @runtime: PCM runtime instance
1429 * @cond: condition bits
1430 * @width: sample bits width
1431 * @msbits: msbits width
1432 *
1433 * This constraint will set the number of most significant bits (msbits) if a
1434 * sample format with the specified width has been select. If width is set to 0
1435 * the msbits will be set for any sample format with a width larger than the
1436 * specified msbits.
1437 *
1438 * Return: Zero if successful, or a negative error code on failure.
1439 */
1440int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1441				 unsigned int cond,
1442				 unsigned int width,
1443				 unsigned int msbits)
1444{
1445	unsigned long l = (msbits << 16) | width;
1446	return snd_pcm_hw_rule_add(runtime, cond, -1,
1447				    snd_pcm_hw_rule_msbits,
1448				    (void*) l,
1449				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1450}
 
1451EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1452
1453static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1454				struct snd_pcm_hw_rule *rule)
1455{
1456	unsigned long step = (unsigned long) rule->private;
1457	return snd_interval_step(hw_param_interval(params, rule->var), step);
1458}
1459
1460/**
1461 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1462 * @runtime: PCM runtime instance
1463 * @cond: condition bits
1464 * @var: hw_params variable to apply the step constraint
1465 * @step: step size
1466 *
1467 * Return: Zero if successful, or a negative error code on failure.
1468 */
1469int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1470			       unsigned int cond,
1471			       snd_pcm_hw_param_t var,
1472			       unsigned long step)
1473{
1474	return snd_pcm_hw_rule_add(runtime, cond, var, 
1475				   snd_pcm_hw_rule_step, (void *) step,
1476				   var, -1);
1477}
 
1478EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1479
1480static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1481{
1482	static const unsigned int pow2_sizes[] = {
1483		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1484		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1485		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1486		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1487	};
1488	return snd_interval_list(hw_param_interval(params, rule->var),
1489				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1490}		
1491
1492/**
1493 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1494 * @runtime: PCM runtime instance
1495 * @cond: condition bits
1496 * @var: hw_params variable to apply the power-of-2 constraint
1497 *
1498 * Return: Zero if successful, or a negative error code on failure.
1499 */
1500int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1501			       unsigned int cond,
1502			       snd_pcm_hw_param_t var)
1503{
1504	return snd_pcm_hw_rule_add(runtime, cond, var, 
1505				   snd_pcm_hw_rule_pow2, NULL,
1506				   var, -1);
1507}
 
1508EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1509
1510static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1511					   struct snd_pcm_hw_rule *rule)
1512{
1513	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1514	struct snd_interval *rate;
1515
1516	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1517	return snd_interval_list(rate, 1, &base_rate, 0);
1518}
1519
1520/**
1521 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1522 * @runtime: PCM runtime instance
1523 * @base_rate: the rate at which the hardware does not resample
1524 *
1525 * Return: Zero if successful, or a negative error code on failure.
1526 */
1527int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1528			       unsigned int base_rate)
1529{
1530	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1531				   SNDRV_PCM_HW_PARAM_RATE,
1532				   snd_pcm_hw_rule_noresample_func,
1533				   (void *)(uintptr_t)base_rate,
1534				   SNDRV_PCM_HW_PARAM_RATE, -1);
1535}
1536EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1537
1538static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1539				  snd_pcm_hw_param_t var)
1540{
1541	if (hw_is_mask(var)) {
1542		snd_mask_any(hw_param_mask(params, var));
1543		params->cmask |= 1 << var;
1544		params->rmask |= 1 << var;
1545		return;
1546	}
1547	if (hw_is_interval(var)) {
1548		snd_interval_any(hw_param_interval(params, var));
1549		params->cmask |= 1 << var;
1550		params->rmask |= 1 << var;
1551		return;
1552	}
1553	snd_BUG();
1554}
1555
1556void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1557{
1558	unsigned int k;
1559	memset(params, 0, sizeof(*params));
1560	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1561		_snd_pcm_hw_param_any(params, k);
1562	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1563		_snd_pcm_hw_param_any(params, k);
1564	params->info = ~0U;
1565}
 
1566EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1567
1568/**
1569 * snd_pcm_hw_param_value - return @params field @var value
1570 * @params: the hw_params instance
1571 * @var: parameter to retrieve
1572 * @dir: pointer to the direction (-1,0,1) or %NULL
1573 *
1574 * Return: The value for field @var if it's fixed in configuration space
1575 * defined by @params. -%EINVAL otherwise.
1576 */
1577int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1578			   snd_pcm_hw_param_t var, int *dir)
1579{
1580	if (hw_is_mask(var)) {
1581		const struct snd_mask *mask = hw_param_mask_c(params, var);
1582		if (!snd_mask_single(mask))
1583			return -EINVAL;
1584		if (dir)
1585			*dir = 0;
1586		return snd_mask_value(mask);
1587	}
1588	if (hw_is_interval(var)) {
1589		const struct snd_interval *i = hw_param_interval_c(params, var);
1590		if (!snd_interval_single(i))
1591			return -EINVAL;
1592		if (dir)
1593			*dir = i->openmin;
1594		return snd_interval_value(i);
1595	}
1596	return -EINVAL;
1597}
 
1598EXPORT_SYMBOL(snd_pcm_hw_param_value);
1599
1600void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1601				snd_pcm_hw_param_t var)
1602{
1603	if (hw_is_mask(var)) {
1604		snd_mask_none(hw_param_mask(params, var));
1605		params->cmask |= 1 << var;
1606		params->rmask |= 1 << var;
1607	} else if (hw_is_interval(var)) {
1608		snd_interval_none(hw_param_interval(params, var));
1609		params->cmask |= 1 << var;
1610		params->rmask |= 1 << var;
1611	} else {
1612		snd_BUG();
1613	}
1614}
 
1615EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1616
1617static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1618				   snd_pcm_hw_param_t var)
1619{
1620	int changed;
1621	if (hw_is_mask(var))
1622		changed = snd_mask_refine_first(hw_param_mask(params, var));
1623	else if (hw_is_interval(var))
1624		changed = snd_interval_refine_first(hw_param_interval(params, var));
1625	else
1626		return -EINVAL;
1627	if (changed > 0) {
1628		params->cmask |= 1 << var;
1629		params->rmask |= 1 << var;
1630	}
1631	return changed;
1632}
1633
1634
1635/**
1636 * snd_pcm_hw_param_first - refine config space and return minimum value
1637 * @pcm: PCM instance
1638 * @params: the hw_params instance
1639 * @var: parameter to retrieve
1640 * @dir: pointer to the direction (-1,0,1) or %NULL
1641 *
1642 * Inside configuration space defined by @params remove from @var all
1643 * values > minimum. Reduce configuration space accordingly.
1644 *
1645 * Return: The minimum, or a negative error code on failure.
1646 */
1647int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1648			   struct snd_pcm_hw_params *params, 
1649			   snd_pcm_hw_param_t var, int *dir)
1650{
1651	int changed = _snd_pcm_hw_param_first(params, var);
1652	if (changed < 0)
1653		return changed;
1654	if (params->rmask) {
1655		int err = snd_pcm_hw_refine(pcm, params);
1656		if (err < 0)
1657			return err;
1658	}
1659	return snd_pcm_hw_param_value(params, var, dir);
1660}
 
1661EXPORT_SYMBOL(snd_pcm_hw_param_first);
1662
1663static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1664				  snd_pcm_hw_param_t var)
1665{
1666	int changed;
1667	if (hw_is_mask(var))
1668		changed = snd_mask_refine_last(hw_param_mask(params, var));
1669	else if (hw_is_interval(var))
1670		changed = snd_interval_refine_last(hw_param_interval(params, var));
1671	else
1672		return -EINVAL;
1673	if (changed > 0) {
1674		params->cmask |= 1 << var;
1675		params->rmask |= 1 << var;
1676	}
1677	return changed;
1678}
1679
1680
1681/**
1682 * snd_pcm_hw_param_last - refine config space and return maximum value
1683 * @pcm: PCM instance
1684 * @params: the hw_params instance
1685 * @var: parameter to retrieve
1686 * @dir: pointer to the direction (-1,0,1) or %NULL
1687 *
1688 * Inside configuration space defined by @params remove from @var all
1689 * values < maximum. Reduce configuration space accordingly.
1690 *
1691 * Return: The maximum, or a negative error code on failure.
1692 */
1693int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1694			  struct snd_pcm_hw_params *params,
1695			  snd_pcm_hw_param_t var, int *dir)
1696{
1697	int changed = _snd_pcm_hw_param_last(params, var);
1698	if (changed < 0)
1699		return changed;
1700	if (params->rmask) {
1701		int err = snd_pcm_hw_refine(pcm, params);
1702		if (err < 0)
1703			return err;
1704	}
1705	return snd_pcm_hw_param_value(params, var, dir);
1706}
 
1707EXPORT_SYMBOL(snd_pcm_hw_param_last);
1708
1709/**
1710 * snd_pcm_hw_params_bits - Get the number of bits per the sample.
1711 * @p: hardware parameters
 
1712 *
1713 * Return: The number of bits per sample based on the format,
1714 * subformat and msbits the specified hw params has.
1715 */
1716int snd_pcm_hw_params_bits(const struct snd_pcm_hw_params *p)
1717{
1718	snd_pcm_subformat_t subformat = params_subformat(p);
1719	snd_pcm_format_t format = params_format(p);
1720
1721	switch (format) {
1722	case SNDRV_PCM_FORMAT_S32_LE:
1723	case SNDRV_PCM_FORMAT_U32_LE:
1724	case SNDRV_PCM_FORMAT_S32_BE:
1725	case SNDRV_PCM_FORMAT_U32_BE:
1726		switch (subformat) {
1727		case SNDRV_PCM_SUBFORMAT_MSBITS_20:
1728			return 20;
1729		case SNDRV_PCM_SUBFORMAT_MSBITS_24:
1730			return 24;
1731		case SNDRV_PCM_SUBFORMAT_MSBITS_MAX:
1732		case SNDRV_PCM_SUBFORMAT_STD:
1733		default:
1734			break;
1735		}
1736		fallthrough;
1737	default:
1738		return snd_pcm_format_width(format);
 
 
1739	}
 
1740}
1741EXPORT_SYMBOL(snd_pcm_hw_params_bits);
1742
1743static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1744				   void *arg)
1745{
1746	struct snd_pcm_runtime *runtime = substream->runtime;
1747
1748	guard(pcm_stream_lock_irqsave)(substream);
1749	if (snd_pcm_running(substream) &&
1750	    snd_pcm_update_hw_ptr(substream) >= 0)
1751		runtime->status->hw_ptr %= runtime->buffer_size;
1752	else {
1753		runtime->status->hw_ptr = 0;
1754		runtime->hw_ptr_wrap = 0;
1755	}
1756	return 0;
1757}
1758
1759static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1760					  void *arg)
1761{
1762	struct snd_pcm_channel_info *info = arg;
1763	struct snd_pcm_runtime *runtime = substream->runtime;
1764	int width;
1765	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1766		info->offset = -1;
1767		return 0;
1768	}
1769	width = snd_pcm_format_physical_width(runtime->format);
1770	if (width < 0)
1771		return width;
1772	info->offset = 0;
1773	switch (runtime->access) {
1774	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1775	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1776		info->first = info->channel * width;
1777		info->step = runtime->channels * width;
1778		break;
1779	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1780	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1781	{
1782		size_t size = runtime->dma_bytes / runtime->channels;
1783		info->first = info->channel * size * 8;
1784		info->step = width;
1785		break;
1786	}
1787	default:
1788		snd_BUG();
1789		break;
1790	}
1791	return 0;
1792}
1793
1794static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1795				       void *arg)
1796{
1797	struct snd_pcm_hw_params *params = arg;
1798	snd_pcm_format_t format;
1799	int channels;
1800	ssize_t frame_size;
1801
1802	params->fifo_size = substream->runtime->hw.fifo_size;
1803	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1804		format = params_format(params);
1805		channels = params_channels(params);
1806		frame_size = snd_pcm_format_size(format, channels);
1807		if (frame_size > 0)
1808			params->fifo_size /= frame_size;
1809	}
1810	return 0;
1811}
1812
1813/**
1814 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1815 * @substream: the pcm substream instance
1816 * @cmd: ioctl command
1817 * @arg: ioctl argument
1818 *
1819 * Processes the generic ioctl commands for PCM.
1820 * Can be passed as the ioctl callback for PCM ops.
1821 *
1822 * Return: Zero if successful, or a negative error code on failure.
1823 */
1824int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1825		      unsigned int cmd, void *arg)
1826{
1827	switch (cmd) {
 
 
1828	case SNDRV_PCM_IOCTL1_RESET:
1829		return snd_pcm_lib_ioctl_reset(substream, arg);
1830	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1831		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1832	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1833		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1834	}
1835	return -ENXIO;
1836}
 
1837EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1838
1839/**
1840 * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1841 *						under acquired lock of PCM substream.
1842 * @substream: the instance of pcm substream.
1843 *
1844 * This function is called when the batch of audio data frames as the same size as the period of
1845 * buffer is already processed in audio data transmission.
1846 *
1847 * The call of function updates the status of runtime with the latest position of audio data
1848 * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1849 * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1850 * substream according to configured threshold.
1851 *
1852 * The function is intended to use for the case that PCM driver operates audio data frames under
1853 * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1854 * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1855 * since lock of PCM substream should be acquired in advance.
1856 *
1857 * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1858 * function:
1859 *
1860 * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1861 * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1862 * - .get_time_info - to retrieve audio time stamp if needed.
1863 *
1864 * Even if more than one periods have elapsed since the last call, you have to call this only once.
 
1865 */
1866void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1867{
1868	struct snd_pcm_runtime *runtime;
 
1869
1870	if (PCM_RUNTIME_CHECK(substream))
1871		return;
1872	runtime = substream->runtime;
1873
 
 
 
 
1874	if (!snd_pcm_running(substream) ||
1875	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1876		goto _end;
1877
1878#ifdef CONFIG_SND_PCM_TIMER
1879	if (substream->timer_running)
1880		snd_timer_interrupt(substream->timer, 1);
1881#endif
1882 _end:
1883	snd_kill_fasync(runtime->fasync, SIGIO, POLL_IN);
 
 
 
1884}
1885EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1886
1887/**
1888 * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1889 *			      PCM substream.
1890 * @substream: the instance of PCM substream.
1891 *
1892 * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1893 * acquiring lock of PCM substream voluntarily.
1894 *
1895 * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1896 * the batch of audio data frames as the same size as the period of buffer is already processed in
1897 * audio data transmission.
1898 */
1899void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1900{
1901	if (snd_BUG_ON(!substream))
1902		return;
1903
1904	guard(pcm_stream_lock_irqsave)(substream);
1905	snd_pcm_period_elapsed_under_stream_lock(substream);
1906}
1907EXPORT_SYMBOL(snd_pcm_period_elapsed);
1908
1909/*
1910 * Wait until avail_min data becomes available
1911 * Returns a negative error code if any error occurs during operation.
1912 * The available space is stored on availp.  When err = 0 and avail = 0
1913 * on the capture stream, it indicates the stream is in DRAINING state.
1914 */
1915static int wait_for_avail(struct snd_pcm_substream *substream,
1916			      snd_pcm_uframes_t *availp)
1917{
1918	struct snd_pcm_runtime *runtime = substream->runtime;
1919	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1920	wait_queue_entry_t wait;
1921	int err = 0;
1922	snd_pcm_uframes_t avail = 0;
1923	long wait_time, tout;
1924
1925	init_waitqueue_entry(&wait, current);
1926	set_current_state(TASK_INTERRUPTIBLE);
1927	add_wait_queue(&runtime->tsleep, &wait);
1928
1929	if (runtime->no_period_wakeup)
1930		wait_time = MAX_SCHEDULE_TIMEOUT;
1931	else {
1932		/* use wait time from substream if available */
1933		if (substream->wait_time) {
1934			wait_time = substream->wait_time;
1935		} else {
1936			wait_time = 100;
1937
1938			if (runtime->rate) {
1939				long t = runtime->buffer_size * 1100 / runtime->rate;
1940				wait_time = max(t, wait_time);
1941			}
1942		}
1943		wait_time = msecs_to_jiffies(wait_time);
1944	}
1945
1946	for (;;) {
1947		if (signal_pending(current)) {
1948			err = -ERESTARTSYS;
1949			break;
1950		}
1951
1952		/*
1953		 * We need to check if space became available already
1954		 * (and thus the wakeup happened already) first to close
1955		 * the race of space already having become available.
1956		 * This check must happen after been added to the waitqueue
1957		 * and having current state be INTERRUPTIBLE.
1958		 */
1959		avail = snd_pcm_avail(substream);
 
 
 
1960		if (avail >= runtime->twake)
1961			break;
1962		snd_pcm_stream_unlock_irq(substream);
1963
1964		tout = schedule_timeout(wait_time);
1965
1966		snd_pcm_stream_lock_irq(substream);
1967		set_current_state(TASK_INTERRUPTIBLE);
1968		switch (runtime->state) {
1969		case SNDRV_PCM_STATE_SUSPENDED:
1970			err = -ESTRPIPE;
1971			goto _endloop;
1972		case SNDRV_PCM_STATE_XRUN:
1973			err = -EPIPE;
1974			goto _endloop;
1975		case SNDRV_PCM_STATE_DRAINING:
1976			if (is_playback)
1977				err = -EPIPE;
1978			else 
1979				avail = 0; /* indicate draining */
1980			goto _endloop;
1981		case SNDRV_PCM_STATE_OPEN:
1982		case SNDRV_PCM_STATE_SETUP:
1983		case SNDRV_PCM_STATE_DISCONNECTED:
1984			err = -EBADFD;
1985			goto _endloop;
1986		case SNDRV_PCM_STATE_PAUSED:
1987			continue;
1988		}
1989		if (!tout) {
1990			pcm_dbg(substream->pcm,
1991				"%s timeout (DMA or IRQ trouble?)\n",
1992				is_playback ? "playback write" : "capture read");
1993			err = -EIO;
1994			break;
1995		}
1996	}
1997 _endloop:
1998	set_current_state(TASK_RUNNING);
1999	remove_wait_queue(&runtime->tsleep, &wait);
2000	*availp = avail;
2001	return err;
2002}
2003	
2004typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
2005			      int channel, unsigned long hwoff,
2006			      struct iov_iter *iter, unsigned long bytes);
2007
2008typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
2009			  snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f,
2010			  bool);
2011
2012/* calculate the target DMA-buffer position to be written/read */
2013static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
2014			   int channel, unsigned long hwoff)
2015{
2016	return runtime->dma_area + hwoff +
2017		channel * (runtime->dma_bytes / runtime->channels);
2018}
2019
2020/* default copy ops for write; used for both interleaved and non- modes */
2021static int default_write_copy(struct snd_pcm_substream *substream,
2022			      int channel, unsigned long hwoff,
2023			      struct iov_iter *iter, unsigned long bytes)
2024{
2025	if (copy_from_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2026			   bytes, iter) != bytes)
2027		return -EFAULT;
2028	return 0;
2029}
2030
2031/* fill silence instead of copy data; called as a transfer helper
2032 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
2033 * a NULL buffer is passed
2034 */
2035static int fill_silence(struct snd_pcm_substream *substream, int channel,
2036			unsigned long hwoff, struct iov_iter *iter,
2037			unsigned long bytes)
 
 
2038{
2039	struct snd_pcm_runtime *runtime = substream->runtime;
 
 
 
2040
2041	if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
2042		return 0;
2043	if (substream->ops->fill_silence)
2044		return substream->ops->fill_silence(substream, channel,
2045						    hwoff, bytes);
2046
2047	snd_pcm_format_set_silence(runtime->format,
2048				   get_dma_ptr(runtime, channel, hwoff),
2049				   bytes_to_samples(runtime, bytes));
2050	return 0;
2051}
2052
2053/* default copy ops for read; used for both interleaved and non- modes */
2054static int default_read_copy(struct snd_pcm_substream *substream,
2055			     int channel, unsigned long hwoff,
2056			     struct iov_iter *iter, unsigned long bytes)
2057{
2058	if (copy_to_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2059			 bytes, iter) != bytes)
2060		return -EFAULT;
2061	return 0;
2062}
2063
2064/* call transfer with the filled iov_iter */
2065static int do_transfer(struct snd_pcm_substream *substream, int c,
2066		       unsigned long hwoff, void *data, unsigned long bytes,
2067		       pcm_transfer_f transfer, bool in_kernel)
2068{
2069	struct iov_iter iter;
2070	int err, type;
2071
2072	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
2073		type = ITER_SOURCE;
2074	else
2075		type = ITER_DEST;
2076
2077	if (in_kernel) {
2078		struct kvec kvec = { data, bytes };
2079
2080		iov_iter_kvec(&iter, type, &kvec, 1, bytes);
2081		return transfer(substream, c, hwoff, &iter, bytes);
2082	}
2083
2084	err = import_ubuf(type, (__force void __user *)data, bytes, &iter);
2085	if (err)
2086		return err;
2087	return transfer(substream, c, hwoff, &iter, bytes);
2088}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2089
2090/* call transfer function with the converted pointers and sizes;
2091 * for interleaved mode, it's one shot for all samples
2092 */
2093static int interleaved_copy(struct snd_pcm_substream *substream,
2094			    snd_pcm_uframes_t hwoff, void *data,
2095			    snd_pcm_uframes_t off,
2096			    snd_pcm_uframes_t frames,
2097			    pcm_transfer_f transfer,
2098			    bool in_kernel)
2099{
2100	struct snd_pcm_runtime *runtime = substream->runtime;
2101
2102	/* convert to bytes */
2103	hwoff = frames_to_bytes(runtime, hwoff);
2104	off = frames_to_bytes(runtime, off);
2105	frames = frames_to_bytes(runtime, frames);
2106
2107	return do_transfer(substream, 0, hwoff, data + off, frames, transfer,
2108			   in_kernel);
2109}
2110
2111/* call transfer function with the converted pointers and sizes for each
2112 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2113 */
2114static int noninterleaved_copy(struct snd_pcm_substream *substream,
2115			       snd_pcm_uframes_t hwoff, void *data,
2116			       snd_pcm_uframes_t off,
2117			       snd_pcm_uframes_t frames,
2118			       pcm_transfer_f transfer,
2119			       bool in_kernel)
2120{
2121	struct snd_pcm_runtime *runtime = substream->runtime;
2122	int channels = runtime->channels;
2123	void **bufs = data;
2124	int c, err;
2125
2126	/* convert to bytes; note that it's not frames_to_bytes() here.
2127	 * in non-interleaved mode, we copy for each channel, thus
2128	 * each copy is n_samples bytes x channels = whole frames.
2129	 */
2130	off = samples_to_bytes(runtime, off);
2131	frames = samples_to_bytes(runtime, frames);
2132	hwoff = samples_to_bytes(runtime, hwoff);
2133	for (c = 0; c < channels; ++c, ++bufs) {
2134		if (!data || !*bufs)
2135			err = fill_silence(substream, c, hwoff, NULL, frames);
2136		else
2137			err = do_transfer(substream, c, hwoff, *bufs + off,
2138					  frames, transfer, in_kernel);
2139		if (err < 0)
2140			return err;
2141	}
2142	return 0;
2143}
2144
2145/* fill silence on the given buffer position;
2146 * called from snd_pcm_playback_silence()
2147 */
2148static int fill_silence_frames(struct snd_pcm_substream *substream,
2149			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2150{
2151	if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2152	    substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2153		return interleaved_copy(substream, off, NULL, 0, frames,
2154					fill_silence, true);
2155	else
2156		return noninterleaved_copy(substream, off, NULL, 0, frames,
2157					   fill_silence, true);
2158}
2159
2160/* sanity-check for read/write methods */
2161static int pcm_sanity_check(struct snd_pcm_substream *substream)
2162{
2163	struct snd_pcm_runtime *runtime;
2164	if (PCM_RUNTIME_CHECK(substream))
2165		return -ENXIO;
2166	runtime = substream->runtime;
2167	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2168		return -EINVAL;
2169	if (runtime->state == SNDRV_PCM_STATE_OPEN)
2170		return -EBADFD;
2171	return 0;
2172}
2173
2174static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2175{
2176	switch (runtime->state) {
2177	case SNDRV_PCM_STATE_PREPARED:
2178	case SNDRV_PCM_STATE_RUNNING:
2179	case SNDRV_PCM_STATE_PAUSED:
2180		return 0;
2181	case SNDRV_PCM_STATE_XRUN:
2182		return -EPIPE;
2183	case SNDRV_PCM_STATE_SUSPENDED:
2184		return -ESTRPIPE;
2185	default:
2186		return -EBADFD;
2187	}
 
 
 
2188}
2189
2190/* update to the given appl_ptr and call ack callback if needed;
2191 * when an error is returned, take back to the original value
2192 */
2193int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2194			   snd_pcm_uframes_t appl_ptr)
 
2195{
2196	struct snd_pcm_runtime *runtime = substream->runtime;
2197	snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2198	snd_pcm_sframes_t diff;
2199	int ret;
2200
2201	if (old_appl_ptr == appl_ptr)
2202		return 0;
2203
2204	if (appl_ptr >= runtime->boundary)
2205		return -EINVAL;
2206	/*
2207	 * check if a rewind is requested by the application
2208	 */
2209	if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) {
2210		diff = appl_ptr - old_appl_ptr;
2211		if (diff >= 0) {
2212			if (diff > runtime->buffer_size)
2213				return -EINVAL;
2214		} else {
2215			if (runtime->boundary + diff > runtime->buffer_size)
2216				return -EINVAL;
2217		}
2218	}
2219
2220	runtime->control->appl_ptr = appl_ptr;
2221	if (substream->ops->ack) {
2222		ret = substream->ops->ack(substream);
2223		if (ret < 0) {
2224			runtime->control->appl_ptr = old_appl_ptr;
2225			if (ret == -EPIPE)
2226				__snd_pcm_xrun(substream);
2227			return ret;
 
 
2228		}
2229	}
2230
2231	trace_applptr(substream, old_appl_ptr, appl_ptr);
2232
2233	return 0;
2234}
2235
2236/* the common loop for read/write data */
2237snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2238				     void *data, bool interleaved,
2239				     snd_pcm_uframes_t size, bool in_kernel)
2240{
2241	struct snd_pcm_runtime *runtime = substream->runtime;
2242	snd_pcm_uframes_t xfer = 0;
2243	snd_pcm_uframes_t offset = 0;
2244	snd_pcm_uframes_t avail;
2245	pcm_copy_f writer;
2246	pcm_transfer_f transfer;
2247	bool nonblock;
2248	bool is_playback;
2249	int err;
2250
2251	err = pcm_sanity_check(substream);
2252	if (err < 0)
2253		return err;
 
 
 
 
 
 
 
 
 
 
2254
2255	is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2256	if (interleaved) {
2257		if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2258		    runtime->channels > 1)
2259			return -EINVAL;
2260		writer = interleaved_copy;
 
 
 
 
 
2261	} else {
2262		if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2263			return -EINVAL;
2264		writer = noninterleaved_copy;
2265	}
 
 
2266
2267	if (!data) {
2268		if (is_playback)
2269			transfer = fill_silence;
2270		else
2271			return -EINVAL;
2272	} else {
2273		if (substream->ops->copy)
2274			transfer = substream->ops->copy;
2275		else
2276			transfer = is_playback ?
2277				default_write_copy : default_read_copy;
2278	}
2279
2280	if (size == 0)
2281		return 0;
2282
2283	nonblock = !!(substream->f_flags & O_NONBLOCK);
2284
2285	snd_pcm_stream_lock_irq(substream);
2286	err = pcm_accessible_state(runtime);
2287	if (err < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2288		goto _end_unlock;
 
2289
2290	runtime->twake = runtime->control->avail_min ? : 1;
2291	if (runtime->state == SNDRV_PCM_STATE_RUNNING)
2292		snd_pcm_update_hw_ptr(substream);
2293
2294	/*
2295	 * If size < start_threshold, wait indefinitely. Another
2296	 * thread may start capture
2297	 */
2298	if (!is_playback &&
2299	    runtime->state == SNDRV_PCM_STATE_PREPARED &&
2300	    size >= runtime->start_threshold) {
2301		err = snd_pcm_start(substream);
2302		if (err < 0)
2303			goto _end_unlock;
2304	}
2305
2306	avail = snd_pcm_avail(substream);
2307
2308	while (size > 0) {
2309		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
 
2310		snd_pcm_uframes_t cont;
 
 
 
2311		if (!avail) {
2312			if (!is_playback &&
2313			    runtime->state == SNDRV_PCM_STATE_DRAINING) {
2314				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2315				goto _end_unlock;
2316			}
2317			if (nonblock) {
2318				err = -EAGAIN;
2319				goto _end_unlock;
2320			}
2321			runtime->twake = min_t(snd_pcm_uframes_t, size,
2322					runtime->control->avail_min ? : 1);
2323			err = wait_for_avail(substream, &avail);
2324			if (err < 0)
2325				goto _end_unlock;
2326			if (!avail)
2327				continue; /* draining */
2328		}
2329		frames = size > avail ? avail : size;
2330		appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2331		appl_ofs = appl_ptr % runtime->buffer_size;
2332		cont = runtime->buffer_size - appl_ofs;
2333		if (frames > cont)
2334			frames = cont;
2335		if (snd_BUG_ON(!frames)) {
2336			err = -EINVAL;
2337			goto _end_unlock;
2338		}
2339		if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
2340			err = -EBUSY;
2341			goto _end_unlock;
2342		}
 
 
2343		snd_pcm_stream_unlock_irq(substream);
2344		if (!is_playback)
2345			snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU);
2346		err = writer(substream, appl_ofs, data, offset, frames,
2347			     transfer, in_kernel);
2348		if (is_playback)
2349			snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
2350		snd_pcm_stream_lock_irq(substream);
2351		atomic_dec(&runtime->buffer_accessing);
2352		if (err < 0)
2353			goto _end_unlock;
2354		err = pcm_accessible_state(runtime);
2355		if (err < 0)
 
 
 
 
2356			goto _end_unlock;
 
 
 
2357		appl_ptr += frames;
2358		if (appl_ptr >= runtime->boundary)
2359			appl_ptr -= runtime->boundary;
2360		err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2361		if (err < 0)
2362			goto _end_unlock;
2363
2364		offset += frames;
2365		size -= frames;
2366		xfer += frames;
2367		avail -= frames;
2368		if (is_playback &&
2369		    runtime->state == SNDRV_PCM_STATE_PREPARED &&
2370		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2371			err = snd_pcm_start(substream);
2372			if (err < 0)
2373				goto _end_unlock;
2374		}
2375	}
2376 _end_unlock:
2377	runtime->twake = 0;
2378	if (xfer > 0 && err >= 0)
2379		snd_pcm_update_state(substream, runtime);
2380	snd_pcm_stream_unlock_irq(substream);
2381	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2382}
2383EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2384
2385/*
2386 * standard channel mapping helpers
2387 */
2388
2389/* default channel maps for multi-channel playbacks, up to 8 channels */
2390const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2391	{ .channels = 1,
2392	  .map = { SNDRV_CHMAP_MONO } },
2393	{ .channels = 2,
2394	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2395	{ .channels = 4,
2396	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2397		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2398	{ .channels = 6,
2399	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2400		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2401		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2402	{ .channels = 8,
2403	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2404		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2405		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2406		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2407	{ }
2408};
2409EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2410
2411/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2412const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2413	{ .channels = 1,
2414	  .map = { SNDRV_CHMAP_MONO } },
2415	{ .channels = 2,
2416	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2417	{ .channels = 4,
2418	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2419		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2420	{ .channels = 6,
2421	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2422		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2423		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2424	{ .channels = 8,
2425	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2426		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2427		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2428		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2429	{ }
2430};
2431EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2432
2433static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2434{
2435	if (ch > info->max_channels)
2436		return false;
2437	return !info->channel_mask || (info->channel_mask & (1U << ch));
 
 
 
 
 
 
 
 
 
2438}
2439
2440static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2441			      struct snd_ctl_elem_info *uinfo)
2442{
2443	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2444
2445	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2446	uinfo->count = info->max_channels;
2447	uinfo->value.integer.min = 0;
2448	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2449	return 0;
2450}
2451
2452/* get callback for channel map ctl element
2453 * stores the channel position firstly matching with the current channels
2454 */
2455static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2456			     struct snd_ctl_elem_value *ucontrol)
2457{
2458	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2459	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2460	struct snd_pcm_substream *substream;
2461	const struct snd_pcm_chmap_elem *map;
2462
2463	if (!info->chmap)
2464		return -EINVAL;
2465	substream = snd_pcm_chmap_substream(info, idx);
2466	if (!substream)
2467		return -ENODEV;
2468	memset(ucontrol->value.integer.value, 0,
2469	       sizeof(long) * info->max_channels);
2470	if (!substream->runtime)
2471		return 0; /* no channels set */
2472	for (map = info->chmap; map->channels; map++) {
2473		int i;
2474		if (map->channels == substream->runtime->channels &&
2475		    valid_chmap_channels(info, map->channels)) {
2476			for (i = 0; i < map->channels; i++)
2477				ucontrol->value.integer.value[i] = map->map[i];
2478			return 0;
2479		}
2480	}
2481	return -EINVAL;
2482}
2483
2484/* tlv callback for channel map ctl element
2485 * expands the pre-defined channel maps in a form of TLV
2486 */
2487static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2488			     unsigned int size, unsigned int __user *tlv)
2489{
2490	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2491	const struct snd_pcm_chmap_elem *map;
2492	unsigned int __user *dst;
2493	int c, count = 0;
2494
2495	if (!info->chmap)
2496		return -EINVAL;
2497	if (size < 8)
2498		return -ENOMEM;
2499	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2500		return -EFAULT;
2501	size -= 8;
2502	dst = tlv + 2;
2503	for (map = info->chmap; map->channels; map++) {
2504		int chs_bytes = map->channels * 4;
2505		if (!valid_chmap_channels(info, map->channels))
2506			continue;
2507		if (size < 8)
2508			return -ENOMEM;
2509		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2510		    put_user(chs_bytes, dst + 1))
2511			return -EFAULT;
2512		dst += 2;
2513		size -= 8;
2514		count += 8;
2515		if (size < chs_bytes)
2516			return -ENOMEM;
2517		size -= chs_bytes;
2518		count += chs_bytes;
2519		for (c = 0; c < map->channels; c++) {
2520			if (put_user(map->map[c], dst))
2521				return -EFAULT;
2522			dst++;
2523		}
2524	}
2525	if (put_user(count, tlv + 1))
2526		return -EFAULT;
2527	return 0;
2528}
2529
2530static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
 
 
2531{
2532	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2533	info->pcm->streams[info->stream].chmap_kctl = NULL;
2534	kfree(info);
2535}
2536
2537/**
2538 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2539 * @pcm: the assigned PCM instance
2540 * @stream: stream direction
2541 * @chmap: channel map elements (for query)
2542 * @max_channels: the max number of channels for the stream
2543 * @private_value: the value passed to each kcontrol's private_value field
2544 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2545 *
2546 * Create channel-mapping control elements assigned to the given PCM stream(s).
2547 * Return: Zero if successful, or a negative error value.
2548 */
2549int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2550			   const struct snd_pcm_chmap_elem *chmap,
2551			   int max_channels,
2552			   unsigned long private_value,
2553			   struct snd_pcm_chmap **info_ret)
2554{
2555	struct snd_pcm_chmap *info;
2556	struct snd_kcontrol_new knew = {
2557		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2558		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2559			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2560			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2561		.info = pcm_chmap_ctl_info,
2562		.get = pcm_chmap_ctl_get,
2563		.tlv.c = pcm_chmap_ctl_tlv,
2564	};
2565	int err;
2566
2567	if (WARN_ON(pcm->streams[stream].chmap_kctl))
2568		return -EBUSY;
2569	info = kzalloc(sizeof(*info), GFP_KERNEL);
2570	if (!info)
2571		return -ENOMEM;
2572	info->pcm = pcm;
2573	info->stream = stream;
2574	info->chmap = chmap;
2575	info->max_channels = max_channels;
2576	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2577		knew.name = "Playback Channel Map";
2578	else
2579		knew.name = "Capture Channel Map";
2580	knew.device = pcm->device;
2581	knew.count = pcm->streams[stream].substream_count;
2582	knew.private_value = private_value;
2583	info->kctl = snd_ctl_new1(&knew, info);
2584	if (!info->kctl) {
2585		kfree(info);
2586		return -ENOMEM;
2587	}
2588	info->kctl->private_free = pcm_chmap_ctl_private_free;
2589	err = snd_ctl_add(pcm->card, info->kctl);
2590	if (err < 0)
2591		return err;
2592	pcm->streams[stream].chmap_kctl = info->kctl;
2593	if (info_ret)
2594		*info_ret = info;
2595	return 0;
 
 
 
 
2596}
2597EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);