Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *	Linux INET6 implementation
   3 *	Forwarding Information Database
   4 *
   5 *	Authors:
   6 *	Pedro Roque		<roque@di.fc.ul.pt>
   7 *
   8 *	This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
 
  12 */
  13
  14/*
  15 * 	Changes:
  16 * 	Yuji SEKIYA @USAGI:	Support default route on router node;
  17 * 				remove ip6_null_entry from the top of
  18 * 				routing table.
  19 * 	Ville Nuorvala:		Fixed routing subtrees.
  20 */
  21#include <linux/errno.h>
  22#include <linux/types.h>
  23#include <linux/net.h>
  24#include <linux/route.h>
  25#include <linux/netdevice.h>
  26#include <linux/in6.h>
  27#include <linux/init.h>
  28#include <linux/list.h>
  29#include <linux/slab.h>
  30
  31#ifdef 	CONFIG_PROC_FS
  32#include <linux/proc_fs.h>
  33#endif
  34
  35#include <net/ipv6.h>
  36#include <net/ndisc.h>
  37#include <net/addrconf.h>
 
 
  38
 
  39#include <net/ip6_fib.h>
  40#include <net/ip6_route.h>
  41
  42#define RT6_DEBUG 2
  43
  44#if RT6_DEBUG >= 3
  45#define RT6_TRACE(x...) printk(KERN_DEBUG x)
  46#else
  47#define RT6_TRACE(x...) do { ; } while (0)
  48#endif
  49
  50static struct kmem_cache * fib6_node_kmem __read_mostly;
  51
  52enum fib_walk_state_t
  53{
  54#ifdef CONFIG_IPV6_SUBTREES
  55	FWS_S,
  56#endif
  57	FWS_L,
  58	FWS_R,
  59	FWS_C,
  60	FWS_U
  61};
  62
  63struct fib6_cleaner_t
  64{
  65	struct fib6_walker_t w;
  66	struct net *net;
  67	int (*func)(struct rt6_info *, void *arg);
 
  68	void *arg;
 
  69};
  70
  71static DEFINE_RWLOCK(fib6_walker_lock);
  72
  73#ifdef CONFIG_IPV6_SUBTREES
  74#define FWS_INIT FWS_S
  75#else
  76#define FWS_INIT FWS_L
  77#endif
  78
  79static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
  80			      struct rt6_info *rt);
  81static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
  82static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
  83static int fib6_walk(struct fib6_walker_t *w);
  84static int fib6_walk_continue(struct fib6_walker_t *w);
 
 
  85
  86/*
  87 *	A routing update causes an increase of the serial number on the
  88 *	affected subtree. This allows for cached routes to be asynchronously
  89 *	tested when modifications are made to the destination cache as a
  90 *	result of redirects, path MTU changes, etc.
  91 */
  92
  93static __u32 rt_sernum;
  94
  95static void fib6_gc_timer_cb(unsigned long arg);
  96
  97static LIST_HEAD(fib6_walkers);
  98#define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
  99
 100static inline void fib6_walker_link(struct fib6_walker_t *w)
 101{
 102	write_lock_bh(&fib6_walker_lock);
 103	list_add(&w->lh, &fib6_walkers);
 104	write_unlock_bh(&fib6_walker_lock);
 105}
 106
 107static inline void fib6_walker_unlink(struct fib6_walker_t *w)
 108{
 109	write_lock_bh(&fib6_walker_lock);
 110	list_del(&w->lh);
 111	write_unlock_bh(&fib6_walker_lock);
 112}
 113static __inline__ u32 fib6_new_sernum(void)
 
 114{
 115	u32 n = ++rt_sernum;
 116	if ((__s32)n <= 0)
 117		rt_sernum = n = 1;
 118	return n;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 119}
 120
 121/*
 122 *	Auxiliary address test functions for the radix tree.
 123 *
 124 *	These assume a 32bit processor (although it will work on
 125 *	64bit processors)
 126 */
 127
 128/*
 129 *	test bit
 130 */
 131#if defined(__LITTLE_ENDIAN)
 132# define BITOP_BE32_SWIZZLE	(0x1F & ~7)
 133#else
 134# define BITOP_BE32_SWIZZLE	0
 135#endif
 136
 137static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
 138{
 139	const __be32 *addr = token;
 140	/*
 141	 * Here,
 142	 * 	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
 143	 * is optimized version of
 144	 *	htonl(1 << ((~fn_bit)&0x1F))
 145	 * See include/asm-generic/bitops/le.h.
 146	 */
 147	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
 148	       addr[fn_bit >> 5];
 149}
 150
 151static __inline__ struct fib6_node * node_alloc(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152{
 153	struct fib6_node *fn;
 154
 155	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
 
 
 156
 157	return fn;
 158}
 159
 160static __inline__ void node_free(struct fib6_node * fn)
 161{
 162	kmem_cache_free(fib6_node_kmem, fn);
 
 163}
 164
 165static __inline__ void rt6_release(struct rt6_info *rt)
 166{
 167	if (atomic_dec_and_test(&rt->rt6i_ref))
 168		dst_free(&rt->dst);
 
 
 
 
 
 
 
 
 
 
 
 
 
 169}
 170
 171static void fib6_link_table(struct net *net, struct fib6_table *tb)
 172{
 173	unsigned int h;
 174
 175	/*
 176	 * Initialize table lock at a single place to give lockdep a key,
 177	 * tables aren't visible prior to being linked to the list.
 178	 */
 179	rwlock_init(&tb->tb6_lock);
 180
 181	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
 182
 183	/*
 184	 * No protection necessary, this is the only list mutatation
 185	 * operation, tables never disappear once they exist.
 186	 */
 187	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
 188}
 189
 190#ifdef CONFIG_IPV6_MULTIPLE_TABLES
 191
 192static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
 193{
 194	struct fib6_table *table;
 195
 196	table = kzalloc(sizeof(*table), GFP_ATOMIC);
 197	if (table != NULL) {
 198		table->tb6_id = id;
 199		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
 
 200		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
 
 201	}
 202
 203	return table;
 204}
 205
 206struct fib6_table *fib6_new_table(struct net *net, u32 id)
 207{
 208	struct fib6_table *tb;
 209
 210	if (id == 0)
 211		id = RT6_TABLE_MAIN;
 212	tb = fib6_get_table(net, id);
 213	if (tb)
 214		return tb;
 215
 216	tb = fib6_alloc_table(net, id);
 217	if (tb != NULL)
 218		fib6_link_table(net, tb);
 219
 220	return tb;
 221}
 
 222
 223struct fib6_table *fib6_get_table(struct net *net, u32 id)
 224{
 225	struct fib6_table *tb;
 226	struct hlist_head *head;
 227	struct hlist_node *node;
 228	unsigned int h;
 229
 230	if (id == 0)
 231		id = RT6_TABLE_MAIN;
 232	h = id & (FIB6_TABLE_HASHSZ - 1);
 233	rcu_read_lock();
 234	head = &net->ipv6.fib_table_hash[h];
 235	hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
 236		if (tb->tb6_id == id) {
 237			rcu_read_unlock();
 238			return tb;
 239		}
 240	}
 241	rcu_read_unlock();
 242
 243	return NULL;
 244}
 
 245
 246static void __net_init fib6_tables_init(struct net *net)
 247{
 248	fib6_link_table(net, net->ipv6.fib6_main_tbl);
 249	fib6_link_table(net, net->ipv6.fib6_local_tbl);
 250}
 251#else
 252
 253struct fib6_table *fib6_new_table(struct net *net, u32 id)
 254{
 255	return fib6_get_table(net, id);
 256}
 257
 258struct fib6_table *fib6_get_table(struct net *net, u32 id)
 259{
 260	  return net->ipv6.fib6_main_tbl;
 261}
 262
 263struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
 
 264				   int flags, pol_lookup_t lookup)
 265{
 266	return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267}
 268
 269static void __net_init fib6_tables_init(struct net *net)
 270{
 271	fib6_link_table(net, net->ipv6.fib6_main_tbl);
 272}
 273
 274#endif
 275
 276static int fib6_dump_node(struct fib6_walker_t *w)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277{
 278	int res;
 279	struct rt6_info *rt;
 280
 281	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
 282		res = rt6_dump_route(rt, w->args);
 283		if (res < 0) {
 284			/* Frame is full, suspend walking */
 285			w->leaf = rt;
 
 
 
 
 
 
 286			return 1;
 287		}
 288		WARN_ON(res == 0);
 
 
 
 
 
 
 
 
 
 
 289	}
 290	w->leaf = NULL;
 291	return 0;
 292}
 293
 294static void fib6_dump_end(struct netlink_callback *cb)
 295{
 296	struct fib6_walker_t *w = (void*)cb->args[2];
 
 297
 298	if (w) {
 299		if (cb->args[4]) {
 300			cb->args[4] = 0;
 301			fib6_walker_unlink(w);
 302		}
 303		cb->args[2] = 0;
 304		kfree(w);
 305	}
 306	cb->done = (void*)cb->args[3];
 307	cb->args[1] = 3;
 308}
 309
 310static int fib6_dump_done(struct netlink_callback *cb)
 311{
 312	fib6_dump_end(cb);
 313	return cb->done ? cb->done(cb) : 0;
 314}
 315
 316static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
 317			   struct netlink_callback *cb)
 318{
 319	struct fib6_walker_t *w;
 
 320	int res;
 321
 322	w = (void *)cb->args[2];
 323	w->root = &table->tb6_root;
 324
 325	if (cb->args[4] == 0) {
 326		w->count = 0;
 327		w->skip = 0;
 
 328
 329		read_lock_bh(&table->tb6_lock);
 330		res = fib6_walk(w);
 331		read_unlock_bh(&table->tb6_lock);
 332		if (res > 0) {
 333			cb->args[4] = 1;
 334			cb->args[5] = w->root->fn_sernum;
 335		}
 336	} else {
 337		if (cb->args[5] != w->root->fn_sernum) {
 
 338			/* Begin at the root if the tree changed */
 339			cb->args[5] = w->root->fn_sernum;
 340			w->state = FWS_INIT;
 341			w->node = w->root;
 342			w->skip = w->count;
 
 343		} else
 344			w->skip = 0;
 345
 346		read_lock_bh(&table->tb6_lock);
 347		res = fib6_walk_continue(w);
 348		read_unlock_bh(&table->tb6_lock);
 349		if (res <= 0) {
 350			fib6_walker_unlink(w);
 351			cb->args[4] = 0;
 352		}
 353	}
 354
 355	return res;
 356}
 357
 358static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
 359{
 
 
 
 360	struct net *net = sock_net(skb->sk);
 361	unsigned int h, s_h;
 362	unsigned int e = 0, s_e;
 363	struct rt6_rtnl_dump_arg arg;
 364	struct fib6_walker_t *w;
 365	struct fib6_table *tb;
 366	struct hlist_node *node;
 367	struct hlist_head *head;
 368	int res = 0;
 369
 370	s_h = cb->args[0];
 371	s_e = cb->args[1];
 
 
 
 
 
 
 
 
 
 
 372
 373	w = (void *)cb->args[2];
 374	if (w == NULL) {
 375		/* New dump:
 376		 *
 377		 * 1. hook callback destructor.
 378		 */
 379		cb->args[3] = (long)cb->done;
 380		cb->done = fib6_dump_done;
 381
 382		/*
 383		 * 2. allocate and initialize walker.
 384		 */
 385		w = kzalloc(sizeof(*w), GFP_ATOMIC);
 386		if (w == NULL)
 387			return -ENOMEM;
 388		w->func = fib6_dump_node;
 389		cb->args[2] = (long)w;
 390	}
 391
 392	arg.skb = skb;
 393	arg.cb = cb;
 394	arg.net = net;
 395	w->args = &arg;
 396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397	rcu_read_lock();
 398	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
 399		e = 0;
 400		head = &net->ipv6.fib_table_hash[h];
 401		hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
 402			if (e < s_e)
 403				goto next;
 404			res = fib6_dump_table(tb, skb, cb);
 405			if (res != 0)
 406				goto out;
 407next:
 408			e++;
 409		}
 410	}
 411out:
 412	rcu_read_unlock();
 413	cb->args[1] = e;
 414	cb->args[0] = h;
 415
 416	res = res < 0 ? res : skb->len;
 417	if (res <= 0)
 418		fib6_dump_end(cb);
 419	return res;
 420}
 421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 422/*
 423 *	Routing Table
 424 *
 425 *	return the appropriate node for a routing tree "add" operation
 426 *	by either creating and inserting or by returning an existing
 427 *	node.
 428 */
 429
 430static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
 431				     int addrlen, int plen,
 432				     int offset)
 
 
 
 
 433{
 434	struct fib6_node *fn, *in, *ln;
 435	struct fib6_node *pn = NULL;
 436	struct rt6key *key;
 437	int	bit;
 438	__be32	dir = 0;
 439	__u32	sernum = fib6_new_sernum();
 440
 441	RT6_TRACE("fib6_add_1\n");
 442
 443	/* insert node in tree */
 444
 445	fn = root;
 446
 447	do {
 448		key = (struct rt6key *)((u8 *)fn->leaf + offset);
 
 
 449
 450		/*
 451		 *	Prefix match
 452		 */
 453		if (plen < fn->fn_bit ||
 454		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
 
 
 
 
 
 
 
 
 
 455			goto insert_above;
 
 456
 457		/*
 458		 *	Exact match ?
 459		 */
 460
 461		if (plen == fn->fn_bit) {
 462			/* clean up an intermediate node */
 463			if ((fn->fn_flags & RTN_RTINFO) == 0) {
 464				rt6_release(fn->leaf);
 465				fn->leaf = NULL;
 
 
 
 
 
 466			}
 467
 468			fn->fn_sernum = sernum;
 469
 470			return fn;
 471		}
 472
 473		/*
 474		 *	We have more bits to go
 475		 */
 476
 477		/* Try to walk down on tree. */
 478		fn->fn_sernum = sernum;
 479		dir = addr_bit_set(addr, fn->fn_bit);
 480		pn = fn;
 481		fn = dir ? fn->right: fn->left;
 
 
 
 
 482	} while (fn);
 483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484	/*
 485	 *	We walked to the bottom of tree.
 486	 *	Create new leaf node without children.
 487	 */
 488
 489	ln = node_alloc();
 490
 491	if (ln == NULL)
 492		return NULL;
 493	ln->fn_bit = plen;
 494
 495	ln->parent = pn;
 496	ln->fn_sernum = sernum;
 497
 498	if (dir)
 499		pn->right = ln;
 500	else
 501		pn->left  = ln;
 502
 503	return ln;
 504
 505
 506insert_above:
 507	/*
 508	 * split since we don't have a common prefix anymore or
 509	 * we have a less significant route.
 510	 * we've to insert an intermediate node on the list
 511	 * this new node will point to the one we need to create
 512	 * and the current
 513	 */
 514
 515	pn = fn->parent;
 
 516
 517	/* find 1st bit in difference between the 2 addrs.
 518
 519	   See comment in __ipv6_addr_diff: bit may be an invalid value,
 520	   but if it is >= plen, the value is ignored in any case.
 521	 */
 522
 523	bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
 524
 525	/*
 526	 *		(intermediate)[in]
 527	 *	          /	   \
 528	 *	(new leaf node)[ln] (old node)[fn]
 529	 */
 530	if (plen > bit) {
 531		in = node_alloc();
 532		ln = node_alloc();
 533
 534		if (in == NULL || ln == NULL) {
 535			if (in)
 536				node_free(in);
 537			if (ln)
 538				node_free(ln);
 539			return NULL;
 540		}
 541
 542		/*
 543		 * new intermediate node.
 544		 * RTN_RTINFO will
 545		 * be off since that an address that chooses one of
 546		 * the branches would not match less specific routes
 547		 * in the other branch
 548		 */
 549
 550		in->fn_bit = bit;
 551
 552		in->parent = pn;
 553		in->leaf = fn->leaf;
 554		atomic_inc(&in->leaf->rt6i_ref);
 555
 556		in->fn_sernum = sernum;
 557
 558		/* update parent pointer */
 559		if (dir)
 560			pn->right = in;
 561		else
 562			pn->left  = in;
 563
 564		ln->fn_bit = plen;
 565
 566		ln->parent = in;
 567		fn->parent = in;
 568
 569		ln->fn_sernum = sernum;
 570
 571		if (addr_bit_set(addr, bit)) {
 572			in->right = ln;
 573			in->left  = fn;
 574		} else {
 575			in->left  = ln;
 576			in->right = fn;
 577		}
 578	} else { /* plen <= bit */
 579
 580		/*
 581		 *		(new leaf node)[ln]
 582		 *	          /	   \
 583		 *	     (old node)[fn] NULL
 584		 */
 585
 586		ln = node_alloc();
 587
 588		if (ln == NULL)
 589			return NULL;
 590
 591		ln->fn_bit = plen;
 592
 593		ln->parent = pn;
 594
 595		ln->fn_sernum = sernum;
 
 
 
 
 
 596
 597		if (dir)
 598			pn->right = ln;
 599		else
 600			pn->left  = ln;
 
 
 
 601
 602		if (addr_bit_set(&key->addr, plen))
 603			ln->right = fn;
 604		else
 605			ln->left  = fn;
 
 606
 607		fn->parent = ln;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 608	}
 609	return ln;
 610}
 611
 612/*
 613 *	Insert routing information in a node.
 614 */
 615
 616static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
 617			    struct nl_info *info)
 618{
 619	struct rt6_info *iter = NULL;
 620	struct rt6_info **ins;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621
 622	ins = &fn->leaf;
 623
 624	for (iter = fn->leaf; iter; iter=iter->dst.rt6_next) {
 
 
 625		/*
 626		 *	Search for duplicates
 627		 */
 628
 629		if (iter->rt6i_metric == rt->rt6i_metric) {
 630			/*
 631			 *	Same priority level
 632			 */
 
 
 
 633
 634			if (iter->rt6i_dev == rt->rt6i_dev &&
 635			    iter->rt6i_idev == rt->rt6i_idev &&
 636			    ipv6_addr_equal(&iter->rt6i_gateway,
 637					    &rt->rt6i_gateway)) {
 638				if (!(iter->rt6i_flags&RTF_EXPIRES))
 639					return -EEXIST;
 640				iter->rt6i_expires = rt->rt6i_expires;
 641				if (!(rt->rt6i_flags&RTF_EXPIRES)) {
 642					iter->rt6i_flags &= ~RTF_EXPIRES;
 643					iter->rt6i_expires = 0;
 644				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645				return -EEXIST;
 646			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 647		}
 648
 649		if (iter->rt6i_metric > rt->rt6i_metric)
 650			break;
 651
 652		ins = &iter->dst.rt6_next;
 
 
 
 
 
 
 
 
 
 
 
 653	}
 654
 655	/* Reset round-robin state, if necessary */
 656	if (ins == &fn->leaf)
 657		fn->rr_ptr = NULL;
 658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659	/*
 660	 *	insert node
 661	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662
 663	rt->dst.rt6_next = iter;
 664	*ins = rt;
 665	rt->rt6i_node = fn;
 666	atomic_inc(&rt->rt6i_ref);
 667	inet6_rt_notify(RTM_NEWROUTE, rt, info);
 668	info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
 669
 670	if ((fn->fn_flags & RTN_RTINFO) == 0) {
 671		info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
 672		fn->fn_flags |= RTN_RTINFO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 673	}
 674
 675	return 0;
 676}
 677
 678static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
 679{
 680	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
 681	    (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
 682		mod_timer(&net->ipv6.ip6_fib_timer,
 683			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
 684}
 685
 686void fib6_force_start_gc(struct net *net)
 687{
 688	if (!timer_pending(&net->ipv6.ip6_fib_timer))
 689		mod_timer(&net->ipv6.ip6_fib_timer,
 690			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
 691}
 692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 693/*
 694 *	Add routing information to the routing tree.
 695 *	<destination addr>/<source addr>
 696 *	with source addr info in sub-trees
 
 697 */
 698
 699int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
 
 700{
 
 701	struct fib6_node *fn, *pn = NULL;
 702	int err = -ENOMEM;
 
 
 703
 704	fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
 705			rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
 706
 707	if (fn == NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 708		goto out;
 
 709
 710	pn = fn;
 711
 712#ifdef CONFIG_IPV6_SUBTREES
 713	if (rt->rt6i_src.plen) {
 714		struct fib6_node *sn;
 715
 716		if (fn->subtree == NULL) {
 717			struct fib6_node *sfn;
 718
 719			/*
 720			 * Create subtree.
 721			 *
 722			 *		fn[main tree]
 723			 *		|
 724			 *		sfn[subtree root]
 725			 *		   \
 726			 *		    sn[new leaf node]
 727			 */
 728
 729			/* Create subtree root node */
 730			sfn = node_alloc();
 731			if (sfn == NULL)
 732				goto st_failure;
 733
 734			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
 735			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
 
 736			sfn->fn_flags = RTN_ROOT;
 737			sfn->fn_sernum = fib6_new_sernum();
 738
 739			/* Now add the first leaf node to new subtree */
 740
 741			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
 742					sizeof(struct in6_addr), rt->rt6i_src.plen,
 743					offsetof(struct rt6_info, rt6i_src));
 
 744
 745			if (sn == NULL) {
 746				/* If it is failed, discard just allocated
 747				   root, and then (in st_failure) stale node
 748				   in main tree.
 749				 */
 750				node_free(sfn);
 751				goto st_failure;
 
 752			}
 753
 754			/* Now link new subtree to main tree */
 755			sfn->parent = fn;
 756			fn->subtree = sfn;
 757		} else {
 758			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
 759					sizeof(struct in6_addr), rt->rt6i_src.plen,
 760					offsetof(struct rt6_info, rt6i_src));
 761
 762			if (sn == NULL)
 763				goto st_failure;
 
 
 
 764		}
 765
 766		if (fn->leaf == NULL) {
 767			fn->leaf = rt;
 768			atomic_inc(&rt->rt6i_ref);
 
 
 
 
 
 
 769		}
 770		fn = sn;
 771	}
 772#endif
 773
 774	err = fib6_add_rt2node(fn, rt, info);
 775
 776	if (err == 0) {
 
 
 777		fib6_start_gc(info->nl_net, rt);
 778		if (!(rt->rt6i_flags&RTF_CACHE))
 779			fib6_prune_clones(info->nl_net, pn, rt);
 780	}
 781
 782out:
 783	if (err) {
 784#ifdef CONFIG_IPV6_SUBTREES
 785		/*
 786		 * If fib6_add_1 has cleared the old leaf pointer in the
 787		 * super-tree leaf node we have to find a new one for it.
 788		 */
 789		if (pn != fn && pn->leaf == rt) {
 790			pn->leaf = NULL;
 791			atomic_dec(&rt->rt6i_ref);
 792		}
 793		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
 794			pn->leaf = fib6_find_prefix(info->nl_net, pn);
 795#if RT6_DEBUG >= 2
 796			if (!pn->leaf) {
 797				WARN_ON(pn->leaf == NULL);
 798				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
 799			}
 
 
 
 
 
 
 
 
 
 800#endif
 801			atomic_inc(&pn->leaf->rt6i_ref);
 
 
 802		}
 803#endif
 804		dst_free(&rt->dst);
 
 
 805	}
 806	return err;
 807
 808#ifdef CONFIG_IPV6_SUBTREES
 809	/* Subtree creation failed, probably main tree node
 810	   is orphan. If it is, shoot it.
 
 
 
 
 811	 */
 812st_failure:
 813	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
 814		fib6_repair_tree(info->nl_net, fn);
 815	dst_free(&rt->dst);
 
 816	return err;
 817#endif
 818}
 819
 820/*
 821 *	Routing tree lookup
 822 *
 823 */
 824
 825struct lookup_args {
 826	int		offset;		/* key offset on rt6_info	*/
 827	const struct in6_addr	*addr;		/* search key			*/
 828};
 829
 830static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
 831					struct lookup_args *args)
 832{
 833	struct fib6_node *fn;
 834	__be32 dir;
 835
 836	if (unlikely(args->offset == 0))
 837		return NULL;
 838
 839	/*
 840	 *	Descend on a tree
 841	 */
 842
 843	fn = root;
 844
 845	for (;;) {
 846		struct fib6_node *next;
 847
 848		dir = addr_bit_set(args->addr, fn->fn_bit);
 849
 850		next = dir ? fn->right : fn->left;
 
 851
 852		if (next) {
 853			fn = next;
 854			continue;
 855		}
 856
 857		break;
 858	}
 859
 860	while(fn) {
 861		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
 
 
 
 862			struct rt6key *key;
 863
 864			key = (struct rt6key *) ((u8 *) fn->leaf +
 865						 args->offset);
 
 
 866
 867			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
 868#ifdef CONFIG_IPV6_SUBTREES
 869				if (fn->subtree)
 870					fn = fib6_lookup_1(fn->subtree, args + 1);
 
 
 
 
 
 
 871#endif
 872				if (!fn || fn->fn_flags & RTN_RTINFO)
 873					return fn;
 874			}
 875		}
 876
 877		if (fn->fn_flags & RTN_ROOT)
 878			break;
 879
 880		fn = fn->parent;
 881	}
 882
 883	return NULL;
 884}
 885
 886struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
 887			       const struct in6_addr *saddr)
 
 
 
 888{
 889	struct fib6_node *fn;
 890	struct lookup_args args[] = {
 891		{
 892			.offset = offsetof(struct rt6_info, rt6i_dst),
 893			.addr = daddr,
 894		},
 895#ifdef CONFIG_IPV6_SUBTREES
 896		{
 897			.offset = offsetof(struct rt6_info, rt6i_src),
 898			.addr = saddr,
 899		},
 900#endif
 901		{
 902			.offset = 0,	/* sentinel */
 903		}
 904	};
 905
 906	fn = fib6_lookup_1(root, daddr ? args : args + 1);
 907
 908	if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
 909		fn = root;
 910
 911	return fn;
 912}
 913
 914/*
 915 *	Get node with specified destination prefix (and source prefix,
 916 *	if subtrees are used)
 
 
 
 
 
 
 917 */
 918
 919
 920static struct fib6_node * fib6_locate_1(struct fib6_node *root,
 921					const struct in6_addr *addr,
 922					int plen, int offset)
 
 923{
 924	struct fib6_node *fn;
 925
 926	for (fn = root; fn ; ) {
 927		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
 
 
 
 
 
 
 
 
 
 
 
 928
 929		/*
 930		 *	Prefix match
 931		 */
 932		if (plen < fn->fn_bit ||
 933		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
 934			return NULL;
 935
 936		if (plen == fn->fn_bit)
 937			return fn;
 938
 
 
 
 
 939		/*
 940		 *	We have more bits to go
 941		 */
 942		if (addr_bit_set(addr, fn->fn_bit))
 943			fn = fn->right;
 944		else
 945			fn = fn->left;
 946	}
 947	return NULL;
 
 
 
 
 948}
 949
 950struct fib6_node * fib6_locate(struct fib6_node *root,
 951			       const struct in6_addr *daddr, int dst_len,
 952			       const struct in6_addr *saddr, int src_len)
 
 953{
 954	struct fib6_node *fn;
 955
 956	fn = fib6_locate_1(root, daddr, dst_len,
 957			   offsetof(struct rt6_info, rt6i_dst));
 
 958
 959#ifdef CONFIG_IPV6_SUBTREES
 960	if (src_len) {
 961		WARN_ON(saddr == NULL);
 962		if (fn && fn->subtree)
 963			fn = fib6_locate_1(fn->subtree, saddr, src_len,
 964					   offsetof(struct rt6_info, rt6i_src));
 
 
 
 
 
 
 965	}
 966#endif
 967
 968	if (fn && fn->fn_flags&RTN_RTINFO)
 969		return fn;
 970
 971	return NULL;
 972}
 973
 974
 975/*
 976 *	Deletion
 977 *
 978 */
 979
 980static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
 981{
 982	if (fn->fn_flags&RTN_ROOT)
 983		return net->ipv6.ip6_null_entry;
 984
 985	while(fn) {
 986		if(fn->left)
 987			return fn->left->leaf;
 988
 989		if(fn->right)
 990			return fn->right->leaf;
 
 
 
 
 
 
 
 
 
 991
 992		fn = FIB6_SUBTREE(fn);
 993	}
 994	return NULL;
 995}
 996
 997/*
 998 *	Called to trim the tree of intermediate nodes when possible. "fn"
 999 *	is the node we want to try and remove.
 
1000 */
1001
1002static struct fib6_node *fib6_repair_tree(struct net *net,
1003					   struct fib6_node *fn)
 
1004{
1005	int children;
1006	int nstate;
1007	struct fib6_node *child, *pn;
1008	struct fib6_walker_t *w;
1009	int iter = 0;
1010
 
 
 
 
 
 
1011	for (;;) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1013		iter++;
1014
1015		WARN_ON(fn->fn_flags & RTN_RTINFO);
1016		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1017		WARN_ON(fn->leaf != NULL);
1018
1019		children = 0;
1020		child = NULL;
1021		if (fn->right) child = fn->right, children |= 1;
1022		if (fn->left) child = fn->left, children |= 2;
 
 
 
 
 
 
1023
1024		if (children == 3 || FIB6_SUBTREE(fn)
1025#ifdef CONFIG_IPV6_SUBTREES
1026		    /* Subtree root (i.e. fn) may have one child */
1027		    || (children && fn->fn_flags&RTN_ROOT)
1028#endif
1029		    ) {
1030			fn->leaf = fib6_find_prefix(net, fn);
1031#if RT6_DEBUG >= 2
1032			if (fn->leaf==NULL) {
1033				WARN_ON(!fn->leaf);
1034				fn->leaf = net->ipv6.ip6_null_entry;
1035			}
1036#endif
1037			atomic_inc(&fn->leaf->rt6i_ref);
1038			return fn->parent;
 
1039		}
1040
1041		pn = fn->parent;
1042#ifdef CONFIG_IPV6_SUBTREES
1043		if (FIB6_SUBTREE(pn) == fn) {
1044			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1045			FIB6_SUBTREE(pn) = NULL;
1046			nstate = FWS_L;
1047		} else {
1048			WARN_ON(fn->fn_flags & RTN_ROOT);
1049#endif
1050			if (pn->right == fn) pn->right = child;
1051			else if (pn->left == fn) pn->left = child;
 
 
1052#if RT6_DEBUG >= 2
1053			else
1054				WARN_ON(1);
1055#endif
1056			if (child)
1057				child->parent = pn;
1058			nstate = FWS_R;
1059#ifdef CONFIG_IPV6_SUBTREES
1060		}
1061#endif
1062
1063		read_lock(&fib6_walker_lock);
1064		FOR_WALKERS(w) {
1065			if (child == NULL) {
1066				if (w->root == fn) {
1067					w->root = w->node = NULL;
1068					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1069				} else if (w->node == fn) {
1070					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1071					w->node = pn;
1072					w->state = nstate;
1073				}
1074			} else {
1075				if (w->root == fn) {
1076					w->root = child;
1077					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1078				}
1079				if (w->node == fn) {
1080					w->node = child;
1081					if (children&2) {
1082						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1083						w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1084					} else {
1085						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1086						w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1087					}
1088				}
1089			}
1090		}
1091		read_unlock(&fib6_walker_lock);
1092
1093		node_free(fn);
1094		if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1095			return pn;
1096
1097		rt6_release(pn->leaf);
1098		pn->leaf = NULL;
1099		fn = pn;
1100	}
1101}
1102
1103static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1104			   struct nl_info *info)
1105{
1106	struct fib6_walker_t *w;
1107	struct rt6_info *rt = *rtp;
 
 
1108	struct net *net = info->nl_net;
 
1109
1110	RT6_TRACE("fib6_del_route\n");
1111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112	/* Unlink it */
1113	*rtp = rt->dst.rt6_next;
1114	rt->rt6i_node = NULL;
1115	net->ipv6.rt6_stats->fib_rt_entries--;
1116	net->ipv6.rt6_stats->fib_discarded_routes++;
1117
1118	/* Reset round-robin state, if necessary */
1119	if (fn->rr_ptr == rt)
1120		fn->rr_ptr = NULL;
1121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122	/* Adjust walkers */
1123	read_lock(&fib6_walker_lock);
1124	FOR_WALKERS(w) {
1125		if (w->state == FWS_C && w->leaf == rt) {
1126			RT6_TRACE("walker %p adjusted by delroute\n", w);
1127			w->leaf = rt->dst.rt6_next;
1128			if (w->leaf == NULL)
 
1129				w->state = FWS_U;
1130		}
1131	}
1132	read_unlock(&fib6_walker_lock);
1133
1134	rt->dst.rt6_next = NULL;
1135
1136	/* If it was last route, expunge its radix tree node */
1137	if (fn->leaf == NULL) {
1138		fn->fn_flags &= ~RTN_RTINFO;
1139		net->ipv6.rt6_stats->fib_route_nodes--;
1140		fn = fib6_repair_tree(net, fn);
 
 
 
1141	}
1142
1143	if (atomic_read(&rt->rt6i_ref) != 1) {
1144		/* This route is used as dummy address holder in some split
1145		 * nodes. It is not leaked, but it still holds other resources,
1146		 * which must be released in time. So, scan ascendant nodes
1147		 * and replace dummy references to this route with references
1148		 * to still alive ones.
1149		 */
1150		while (fn) {
1151			if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1152				fn->leaf = fib6_find_prefix(net, fn);
1153				atomic_inc(&fn->leaf->rt6i_ref);
1154				rt6_release(rt);
1155			}
1156			fn = fn->parent;
1157		}
1158		/* No more references are possible at this point. */
1159		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1160	}
 
 
1161
1162	inet6_rt_notify(RTM_DELROUTE, rt, info);
1163	rt6_release(rt);
1164}
1165
1166int fib6_del(struct rt6_info *rt, struct nl_info *info)
 
1167{
1168	struct net *net = info->nl_net;
1169	struct fib6_node *fn = rt->rt6i_node;
1170	struct rt6_info **rtp;
 
 
1171
1172#if RT6_DEBUG >= 2
1173	if (rt->dst.obsolete>0) {
1174		WARN_ON(fn != NULL);
1175		return -ENOENT;
1176	}
1177#endif
1178	if (fn == NULL || rt == net->ipv6.ip6_null_entry)
 
 
1179		return -ENOENT;
1180
1181	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1182
1183	if (!(rt->rt6i_flags&RTF_CACHE)) {
1184		struct fib6_node *pn = fn;
1185#ifdef CONFIG_IPV6_SUBTREES
1186		/* clones of this route might be in another subtree */
1187		if (rt->rt6i_src.plen) {
1188			while (!(pn->fn_flags&RTN_ROOT))
1189				pn = pn->parent;
1190			pn = pn->parent;
1191		}
1192#endif
1193		fib6_prune_clones(info->nl_net, pn, rt);
1194	}
1195
1196	/*
1197	 *	Walk the leaf entries looking for ourself
1198	 */
1199
1200	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1201		if (*rtp == rt) {
1202			fib6_del_route(fn, rtp, info);
 
 
 
 
1203			return 0;
1204		}
 
1205	}
1206	return -ENOENT;
1207}
1208
1209/*
1210 *	Tree traversal function.
1211 *
1212 *	Certainly, it is not interrupt safe.
1213 *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1214 *	It means, that we can modify tree during walking
1215 *	and use this function for garbage collection, clone pruning,
1216 *	cleaning tree when a device goes down etc. etc.
1217 *
1218 *	It guarantees that every node will be traversed,
1219 *	and that it will be traversed only once.
1220 *
1221 *	Callback function w->func may return:
1222 *	0 -> continue walking.
1223 *	positive value -> walking is suspended (used by tree dumps,
1224 *	and probably by gc, if it will be split to several slices)
1225 *	negative value -> terminate walking.
1226 *
1227 *	The function itself returns:
1228 *	0   -> walk is complete.
1229 *	>0  -> walk is incomplete (i.e. suspended)
1230 *	<0  -> walk is terminated by an error.
 
 
1231 */
1232
1233static int fib6_walk_continue(struct fib6_walker_t *w)
1234{
1235	struct fib6_node *fn, *pn;
 
 
 
1236
1237	for (;;) {
1238		fn = w->node;
1239		if (fn == NULL)
1240			return 0;
1241
1242		if (w->prune && fn != w->root &&
1243		    fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1244			w->state = FWS_C;
1245			w->leaf = fn->leaf;
1246		}
1247		switch (w->state) {
1248#ifdef CONFIG_IPV6_SUBTREES
1249		case FWS_S:
1250			if (FIB6_SUBTREE(fn)) {
1251				w->node = FIB6_SUBTREE(fn);
1252				continue;
1253			}
1254			w->state = FWS_L;
 
1255#endif
1256		case FWS_L:
1257			if (fn->left) {
1258				w->node = fn->left;
 
1259				w->state = FWS_INIT;
1260				continue;
1261			}
1262			w->state = FWS_R;
 
1263		case FWS_R:
1264			if (fn->right) {
1265				w->node = fn->right;
 
1266				w->state = FWS_INIT;
1267				continue;
1268			}
1269			w->state = FWS_C;
1270			w->leaf = fn->leaf;
 
1271		case FWS_C:
1272			if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1273				int err;
1274
1275				if (w->count < w->skip) {
1276					w->count++;
1277					continue;
1278				}
1279
1280				err = w->func(w);
1281				if (err)
1282					return err;
1283
1284				w->count++;
1285				continue;
1286			}
 
1287			w->state = FWS_U;
 
1288		case FWS_U:
1289			if (fn == w->root)
1290				return 0;
1291			pn = fn->parent;
 
 
1292			w->node = pn;
1293#ifdef CONFIG_IPV6_SUBTREES
1294			if (FIB6_SUBTREE(pn) == fn) {
1295				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1296				w->state = FWS_L;
1297				continue;
1298			}
1299#endif
1300			if (pn->left == fn) {
1301				w->state = FWS_R;
1302				continue;
1303			}
1304			if (pn->right == fn) {
1305				w->state = FWS_C;
1306				w->leaf = w->node->leaf;
1307				continue;
1308			}
1309#if RT6_DEBUG >= 2
1310			WARN_ON(1);
1311#endif
1312		}
1313	}
1314}
1315
1316static int fib6_walk(struct fib6_walker_t *w)
1317{
1318	int res;
1319
1320	w->state = FWS_INIT;
1321	w->node = w->root;
1322
1323	fib6_walker_link(w);
1324	res = fib6_walk_continue(w);
1325	if (res <= 0)
1326		fib6_walker_unlink(w);
1327	return res;
1328}
1329
1330static int fib6_clean_node(struct fib6_walker_t *w)
1331{
1332	int res;
1333	struct rt6_info *rt;
1334	struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1335	struct nl_info info = {
1336		.nl_net = c->net,
 
1337	};
1338
1339	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
 
 
 
 
 
 
 
 
 
 
1340		res = c->func(rt, c->arg);
1341		if (res < 0) {
1342			w->leaf = rt;
1343			res = fib6_del(rt, &info);
1344			if (res) {
1345#if RT6_DEBUG >= 2
1346				printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
 
 
 
1347#endif
1348				continue;
1349			}
1350			return 0;
 
 
 
 
 
 
1351		}
1352		WARN_ON(res != 0);
1353	}
1354	w->leaf = rt;
1355	return 0;
1356}
1357
1358/*
1359 *	Convenient frontend to tree walker.
1360 *
1361 *	func is called on each route.
1362 *		It may return -1 -> delete this route.
 
1363 *		              0  -> continue walking
1364 *
1365 *	prune==1 -> only immediate children of node (certainly,
1366 *	ignoring pure split nodes) will be scanned.
1367 */
1368
1369static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1370			    int (*func)(struct rt6_info *, void *arg),
1371			    int prune, void *arg)
1372{
1373	struct fib6_cleaner_t c;
1374
1375	c.w.root = root;
1376	c.w.func = fib6_clean_node;
1377	c.w.prune = prune;
1378	c.w.count = 0;
1379	c.w.skip = 0;
 
1380	c.func = func;
 
1381	c.arg = arg;
1382	c.net = net;
 
1383
1384	fib6_walk(&c.w);
1385}
1386
1387void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1388		    int prune, void *arg)
 
1389{
1390	struct fib6_table *table;
1391	struct hlist_node *node;
1392	struct hlist_head *head;
1393	unsigned int h;
1394
1395	rcu_read_lock();
1396	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1397		head = &net->ipv6.fib_table_hash[h];
1398		hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1399			write_lock_bh(&table->tb6_lock);
1400			fib6_clean_tree(net, &table->tb6_root,
1401					func, prune, arg);
1402			write_unlock_bh(&table->tb6_lock);
1403		}
1404	}
1405	rcu_read_unlock();
1406}
1407
1408static int fib6_prune_clone(struct rt6_info *rt, void *arg)
 
1409{
1410	if (rt->rt6i_flags & RTF_CACHE) {
1411		RT6_TRACE("pruning clone %p\n", rt);
1412		return -1;
1413	}
1414
1415	return 0;
 
 
 
 
1416}
1417
1418static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1419			      struct rt6_info *rt)
1420{
1421	fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
 
 
1422}
1423
1424/*
1425 *	Garbage collection
1426 */
1427
1428static struct fib6_gc_args
1429{
1430	int			timeout;
1431	int			more;
1432} gc_args;
1433
1434static int fib6_age(struct rt6_info *rt, void *arg)
1435{
 
1436	unsigned long now = jiffies;
1437
1438	/*
1439	 *	check addrconf expiration here.
1440	 *	Routes are expired even if they are in use.
1441	 *
1442	 *	Also age clones. Note, that clones are aged out
1443	 *	only if they are not in use now.
1444	 */
1445
1446	if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1447		if (time_after(now, rt->rt6i_expires)) {
1448			RT6_TRACE("expiring %p\n", rt);
1449			return -1;
1450		}
1451		gc_args.more++;
1452	} else if (rt->rt6i_flags & RTF_CACHE) {
1453		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1454		    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1455			RT6_TRACE("aging clone %p\n", rt);
1456			return -1;
1457		} else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1458			   (!(dst_get_neighbour_raw(&rt->dst)->flags & NTF_ROUTER))) {
1459			RT6_TRACE("purging route %p via non-router but gateway\n",
1460				  rt);
1461			return -1;
1462		}
1463		gc_args.more++;
1464	}
1465
 
 
 
 
 
 
1466	return 0;
1467}
1468
1469static DEFINE_SPINLOCK(fib6_gc_lock);
1470
1471void fib6_run_gc(unsigned long expires, struct net *net)
1472{
1473	if (expires != ~0UL) {
1474		spin_lock_bh(&fib6_gc_lock);
1475		gc_args.timeout = expires ? (int)expires :
1476			net->ipv6.sysctl.ip6_rt_gc_interval;
1477	} else {
1478		if (!spin_trylock_bh(&fib6_gc_lock)) {
1479			mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1480			return;
1481		}
1482		gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1483	}
1484
1485	gc_args.more = icmp6_dst_gc();
1486
1487	fib6_clean_all(net, fib6_age, 0, NULL);
 
 
 
 
 
 
 
 
 
 
1488
1489	if (gc_args.more)
1490		mod_timer(&net->ipv6.ip6_fib_timer,
1491			  round_jiffies(jiffies
1492					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1493	else
1494		del_timer(&net->ipv6.ip6_fib_timer);
1495	spin_unlock_bh(&fib6_gc_lock);
1496}
1497
1498static void fib6_gc_timer_cb(unsigned long arg)
1499{
1500	fib6_run_gc(0, (struct net *)arg);
 
 
1501}
1502
1503static int __net_init fib6_net_init(struct net *net)
1504{
1505	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
 
1506
1507	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
 
 
 
 
 
 
 
 
 
 
 
1508
1509	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1510	if (!net->ipv6.rt6_stats)
1511		goto out_timer;
1512
1513	/* Avoid false sharing : Use at least a full cache line */
1514	size = max_t(size_t, size, L1_CACHE_BYTES);
1515
1516	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1517	if (!net->ipv6.fib_table_hash)
1518		goto out_rt6_stats;
1519
1520	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1521					  GFP_KERNEL);
1522	if (!net->ipv6.fib6_main_tbl)
1523		goto out_fib_table_hash;
1524
1525	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1526	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
 
1527	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1528		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
 
1529
1530#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1531	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1532					   GFP_KERNEL);
1533	if (!net->ipv6.fib6_local_tbl)
1534		goto out_fib6_main_tbl;
1535	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1536	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
 
1537	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1538		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
 
1539#endif
1540	fib6_tables_init(net);
1541
1542	return 0;
1543
1544#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1545out_fib6_main_tbl:
1546	kfree(net->ipv6.fib6_main_tbl);
1547#endif
1548out_fib_table_hash:
1549	kfree(net->ipv6.fib_table_hash);
1550out_rt6_stats:
1551	kfree(net->ipv6.rt6_stats);
1552out_timer:
 
1553	return -ENOMEM;
1554 }
1555
1556static void fib6_net_exit(struct net *net)
1557{
1558	rt6_ifdown(net, NULL);
 
1559	del_timer_sync(&net->ipv6.ip6_fib_timer);
1560
1561#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1562	kfree(net->ipv6.fib6_local_tbl);
1563#endif
1564	kfree(net->ipv6.fib6_main_tbl);
 
 
 
 
 
 
 
1565	kfree(net->ipv6.fib_table_hash);
1566	kfree(net->ipv6.rt6_stats);
 
1567}
1568
1569static struct pernet_operations fib6_net_ops = {
1570	.init = fib6_net_init,
1571	.exit = fib6_net_exit,
1572};
1573
1574int __init fib6_init(void)
1575{
1576	int ret = -ENOMEM;
1577
1578	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1579					   sizeof(struct fib6_node),
1580					   0, SLAB_HWCACHE_ALIGN,
1581					   NULL);
1582	if (!fib6_node_kmem)
1583		goto out;
1584
1585	ret = register_pernet_subsys(&fib6_net_ops);
1586	if (ret)
1587		goto out_kmem_cache_create;
1588
1589	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1590			      NULL);
1591	if (ret)
1592		goto out_unregister_subsys;
 
 
1593out:
1594	return ret;
1595
1596out_unregister_subsys:
1597	unregister_pernet_subsys(&fib6_net_ops);
1598out_kmem_cache_create:
1599	kmem_cache_destroy(fib6_node_kmem);
1600	goto out;
1601}
1602
1603void fib6_gc_cleanup(void)
1604{
1605	unregister_pernet_subsys(&fib6_net_ops);
1606	kmem_cache_destroy(fib6_node_kmem);
1607}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *	Linux INET6 implementation
   4 *	Forwarding Information Database
   5 *
   6 *	Authors:
   7 *	Pedro Roque		<roque@di.fc.ul.pt>
   8 *
   9 *	Changes:
  10 *	Yuji SEKIYA @USAGI:	Support default route on router node;
  11 *				remove ip6_null_entry from the top of
  12 *				routing table.
  13 *	Ville Nuorvala:		Fixed routing subtrees.
  14 */
  15
  16#define pr_fmt(fmt) "IPv6: " fmt
  17
  18#include <linux/bpf.h>
 
 
 
 
  19#include <linux/errno.h>
  20#include <linux/types.h>
  21#include <linux/net.h>
  22#include <linux/route.h>
  23#include <linux/netdevice.h>
  24#include <linux/in6.h>
  25#include <linux/init.h>
  26#include <linux/list.h>
  27#include <linux/slab.h>
  28
  29#include <net/ip.h>
 
 
 
  30#include <net/ipv6.h>
  31#include <net/ndisc.h>
  32#include <net/addrconf.h>
  33#include <net/lwtunnel.h>
  34#include <net/fib_notifier.h>
  35
  36#include <net/ip_fib.h>
  37#include <net/ip6_fib.h>
  38#include <net/ip6_route.h>
  39
  40static struct kmem_cache *fib6_node_kmem __read_mostly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  41
  42struct fib6_cleaner {
  43	struct fib6_walker w;
 
  44	struct net *net;
  45	int (*func)(struct fib6_info *, void *arg);
  46	int sernum;
  47	void *arg;
  48	bool skip_notify;
  49};
  50
 
 
  51#ifdef CONFIG_IPV6_SUBTREES
  52#define FWS_INIT FWS_S
  53#else
  54#define FWS_INIT FWS_L
  55#endif
  56
  57static struct fib6_info *fib6_find_prefix(struct net *net,
  58					 struct fib6_table *table,
  59					 struct fib6_node *fn);
  60static struct fib6_node *fib6_repair_tree(struct net *net,
  61					  struct fib6_table *table,
  62					  struct fib6_node *fn);
  63static int fib6_walk(struct net *net, struct fib6_walker *w);
  64static int fib6_walk_continue(struct fib6_walker *w);
  65
  66/*
  67 *	A routing update causes an increase of the serial number on the
  68 *	affected subtree. This allows for cached routes to be asynchronously
  69 *	tested when modifications are made to the destination cache as a
  70 *	result of redirects, path MTU changes, etc.
  71 */
  72
  73static void fib6_gc_timer_cb(struct timer_list *t);
 
 
  74
  75#define FOR_WALKERS(net, w) \
  76	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
  77
  78static void fib6_walker_link(struct net *net, struct fib6_walker *w)
  79{
  80	write_lock_bh(&net->ipv6.fib6_walker_lock);
  81	list_add(&w->lh, &net->ipv6.fib6_walkers);
  82	write_unlock_bh(&net->ipv6.fib6_walker_lock);
  83}
  84
  85static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
  86{
  87	write_lock_bh(&net->ipv6.fib6_walker_lock);
  88	list_del(&w->lh);
  89	write_unlock_bh(&net->ipv6.fib6_walker_lock);
  90}
  91
  92static int fib6_new_sernum(struct net *net)
  93{
  94	int new, old = atomic_read(&net->ipv6.fib6_sernum);
  95
  96	do {
  97		new = old < INT_MAX ? old + 1 : 1;
  98	} while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new));
  99
 100	return new;
 101}
 102
 103enum {
 104	FIB6_NO_SERNUM_CHANGE = 0,
 105};
 106
 107void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
 108{
 109	struct fib6_node *fn;
 110
 111	fn = rcu_dereference_protected(f6i->fib6_node,
 112			lockdep_is_held(&f6i->fib6_table->tb6_lock));
 113	if (fn)
 114		WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
 115}
 116
 117/*
 118 *	Auxiliary address test functions for the radix tree.
 119 *
 120 *	These assume a 32bit processor (although it will work on
 121 *	64bit processors)
 122 */
 123
 124/*
 125 *	test bit
 126 */
 127#if defined(__LITTLE_ENDIAN)
 128# define BITOP_BE32_SWIZZLE	(0x1F & ~7)
 129#else
 130# define BITOP_BE32_SWIZZLE	0
 131#endif
 132
 133static __be32 addr_bit_set(const void *token, int fn_bit)
 134{
 135	const __be32 *addr = token;
 136	/*
 137	 * Here,
 138	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
 139	 * is optimized version of
 140	 *	htonl(1 << ((~fn_bit)&0x1F))
 141	 * See include/asm-generic/bitops/le.h.
 142	 */
 143	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
 144	       addr[fn_bit >> 5];
 145}
 146
 147struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
 148{
 149	struct fib6_info *f6i;
 150	size_t sz = sizeof(*f6i);
 151
 152	if (with_fib6_nh)
 153		sz += sizeof(struct fib6_nh);
 154
 155	f6i = kzalloc(sz, gfp_flags);
 156	if (!f6i)
 157		return NULL;
 158
 159	/* fib6_siblings is a union with nh_list, so this initializes both */
 160	INIT_LIST_HEAD(&f6i->fib6_siblings);
 161	refcount_set(&f6i->fib6_ref, 1);
 162
 163	return f6i;
 164}
 165
 166void fib6_info_destroy_rcu(struct rcu_head *head)
 167{
 168	struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
 169
 170	WARN_ON(f6i->fib6_node);
 171
 172	if (f6i->nh)
 173		nexthop_put(f6i->nh);
 174	else
 175		fib6_nh_release(f6i->fib6_nh);
 176
 177	ip_fib_metrics_put(f6i->fib6_metrics);
 178	kfree(f6i);
 179}
 180EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
 181
 182static struct fib6_node *node_alloc(struct net *net)
 183{
 184	struct fib6_node *fn;
 185
 186	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
 187	if (fn)
 188		net->ipv6.rt6_stats->fib_nodes++;
 189
 190	return fn;
 191}
 192
 193static void node_free_immediate(struct net *net, struct fib6_node *fn)
 194{
 195	kmem_cache_free(fib6_node_kmem, fn);
 196	net->ipv6.rt6_stats->fib_nodes--;
 197}
 198
 199static void node_free_rcu(struct rcu_head *head)
 200{
 201	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
 202
 203	kmem_cache_free(fib6_node_kmem, fn);
 204}
 205
 206static void node_free(struct net *net, struct fib6_node *fn)
 207{
 208	call_rcu(&fn->rcu, node_free_rcu);
 209	net->ipv6.rt6_stats->fib_nodes--;
 210}
 211
 212static void fib6_free_table(struct fib6_table *table)
 213{
 214	inetpeer_invalidate_tree(&table->tb6_peers);
 215	kfree(table);
 216}
 217
 218static void fib6_link_table(struct net *net, struct fib6_table *tb)
 219{
 220	unsigned int h;
 221
 222	/*
 223	 * Initialize table lock at a single place to give lockdep a key,
 224	 * tables aren't visible prior to being linked to the list.
 225	 */
 226	spin_lock_init(&tb->tb6_lock);
 
 227	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
 228
 229	/*
 230	 * No protection necessary, this is the only list mutatation
 231	 * operation, tables never disappear once they exist.
 232	 */
 233	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
 234}
 235
 236#ifdef CONFIG_IPV6_MULTIPLE_TABLES
 237
 238static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
 239{
 240	struct fib6_table *table;
 241
 242	table = kzalloc(sizeof(*table), GFP_ATOMIC);
 243	if (table) {
 244		table->tb6_id = id;
 245		rcu_assign_pointer(table->tb6_root.leaf,
 246				   net->ipv6.fib6_null_entry);
 247		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
 248		inet_peer_base_init(&table->tb6_peers);
 249	}
 250
 251	return table;
 252}
 253
 254struct fib6_table *fib6_new_table(struct net *net, u32 id)
 255{
 256	struct fib6_table *tb;
 257
 258	if (id == 0)
 259		id = RT6_TABLE_MAIN;
 260	tb = fib6_get_table(net, id);
 261	if (tb)
 262		return tb;
 263
 264	tb = fib6_alloc_table(net, id);
 265	if (tb)
 266		fib6_link_table(net, tb);
 267
 268	return tb;
 269}
 270EXPORT_SYMBOL_GPL(fib6_new_table);
 271
 272struct fib6_table *fib6_get_table(struct net *net, u32 id)
 273{
 274	struct fib6_table *tb;
 275	struct hlist_head *head;
 
 276	unsigned int h;
 277
 278	if (id == 0)
 279		id = RT6_TABLE_MAIN;
 280	h = id & (FIB6_TABLE_HASHSZ - 1);
 281	rcu_read_lock();
 282	head = &net->ipv6.fib_table_hash[h];
 283	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
 284		if (tb->tb6_id == id) {
 285			rcu_read_unlock();
 286			return tb;
 287		}
 288	}
 289	rcu_read_unlock();
 290
 291	return NULL;
 292}
 293EXPORT_SYMBOL_GPL(fib6_get_table);
 294
 295static void __net_init fib6_tables_init(struct net *net)
 296{
 297	fib6_link_table(net, net->ipv6.fib6_main_tbl);
 298	fib6_link_table(net, net->ipv6.fib6_local_tbl);
 299}
 300#else
 301
 302struct fib6_table *fib6_new_table(struct net *net, u32 id)
 303{
 304	return fib6_get_table(net, id);
 305}
 306
 307struct fib6_table *fib6_get_table(struct net *net, u32 id)
 308{
 309	  return net->ipv6.fib6_main_tbl;
 310}
 311
 312struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
 313				   const struct sk_buff *skb,
 314				   int flags, pol_lookup_t lookup)
 315{
 316	struct rt6_info *rt;
 317
 318	rt = pol_lookup_func(lookup,
 319			net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
 320	if (rt->dst.error == -EAGAIN) {
 321		ip6_rt_put_flags(rt, flags);
 322		rt = net->ipv6.ip6_null_entry;
 323		if (!(flags & RT6_LOOKUP_F_DST_NOREF))
 324			dst_hold(&rt->dst);
 325	}
 326
 327	return &rt->dst;
 328}
 329
 330/* called with rcu lock held; no reference taken on fib6_info */
 331int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
 332		struct fib6_result *res, int flags)
 333{
 334	return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
 335				 res, flags);
 336}
 337
 338static void __net_init fib6_tables_init(struct net *net)
 339{
 340	fib6_link_table(net, net->ipv6.fib6_main_tbl);
 341}
 342
 343#endif
 344
 345unsigned int fib6_tables_seq_read(struct net *net)
 346{
 347	unsigned int h, fib_seq = 0;
 348
 349	rcu_read_lock();
 350	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
 351		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
 352		struct fib6_table *tb;
 353
 354		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
 355			fib_seq += tb->fib_seq;
 356	}
 357	rcu_read_unlock();
 358
 359	return fib_seq;
 360}
 361
 362static int call_fib6_entry_notifier(struct notifier_block *nb,
 363				    enum fib_event_type event_type,
 364				    struct fib6_info *rt,
 365				    struct netlink_ext_ack *extack)
 366{
 367	struct fib6_entry_notifier_info info = {
 368		.info.extack = extack,
 369		.rt = rt,
 370	};
 371
 372	return call_fib6_notifier(nb, event_type, &info.info);
 373}
 374
 375static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
 376					      enum fib_event_type event_type,
 377					      struct fib6_info *rt,
 378					      unsigned int nsiblings,
 379					      struct netlink_ext_ack *extack)
 380{
 381	struct fib6_entry_notifier_info info = {
 382		.info.extack = extack,
 383		.rt = rt,
 384		.nsiblings = nsiblings,
 385	};
 386
 387	return call_fib6_notifier(nb, event_type, &info.info);
 388}
 389
 390int call_fib6_entry_notifiers(struct net *net,
 391			      enum fib_event_type event_type,
 392			      struct fib6_info *rt,
 393			      struct netlink_ext_ack *extack)
 394{
 395	struct fib6_entry_notifier_info info = {
 396		.info.extack = extack,
 397		.rt = rt,
 398	};
 399
 400	rt->fib6_table->fib_seq++;
 401	return call_fib6_notifiers(net, event_type, &info.info);
 402}
 403
 404int call_fib6_multipath_entry_notifiers(struct net *net,
 405					enum fib_event_type event_type,
 406					struct fib6_info *rt,
 407					unsigned int nsiblings,
 408					struct netlink_ext_ack *extack)
 409{
 410	struct fib6_entry_notifier_info info = {
 411		.info.extack = extack,
 412		.rt = rt,
 413		.nsiblings = nsiblings,
 414	};
 415
 416	rt->fib6_table->fib_seq++;
 417	return call_fib6_notifiers(net, event_type, &info.info);
 418}
 419
 420int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
 421{
 422	struct fib6_entry_notifier_info info = {
 423		.rt = rt,
 424		.nsiblings = rt->fib6_nsiblings,
 425	};
 426
 427	rt->fib6_table->fib_seq++;
 428	return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
 429}
 430
 431struct fib6_dump_arg {
 432	struct net *net;
 433	struct notifier_block *nb;
 434	struct netlink_ext_ack *extack;
 435};
 436
 437static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
 438{
 439	enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
 440	int err;
 441
 442	if (!rt || rt == arg->net->ipv6.fib6_null_entry)
 443		return 0;
 444
 445	if (rt->fib6_nsiblings)
 446		err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
 447							 rt,
 448							 rt->fib6_nsiblings,
 449							 arg->extack);
 450	else
 451		err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
 452					       arg->extack);
 453
 454	return err;
 455}
 456
 457static int fib6_node_dump(struct fib6_walker *w)
 458{
 459	int err;
 460
 461	err = fib6_rt_dump(w->leaf, w->args);
 462	w->leaf = NULL;
 463	return err;
 464}
 465
 466static int fib6_table_dump(struct net *net, struct fib6_table *tb,
 467			   struct fib6_walker *w)
 468{
 469	int err;
 470
 471	w->root = &tb->tb6_root;
 472	spin_lock_bh(&tb->tb6_lock);
 473	err = fib6_walk(net, w);
 474	spin_unlock_bh(&tb->tb6_lock);
 475	return err;
 476}
 477
 478/* Called with rcu_read_lock() */
 479int fib6_tables_dump(struct net *net, struct notifier_block *nb,
 480		     struct netlink_ext_ack *extack)
 481{
 482	struct fib6_dump_arg arg;
 483	struct fib6_walker *w;
 484	unsigned int h;
 485	int err = 0;
 486
 487	w = kzalloc(sizeof(*w), GFP_ATOMIC);
 488	if (!w)
 489		return -ENOMEM;
 490
 491	w->func = fib6_node_dump;
 492	arg.net = net;
 493	arg.nb = nb;
 494	arg.extack = extack;
 495	w->args = &arg;
 496
 497	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
 498		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
 499		struct fib6_table *tb;
 500
 501		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
 502			err = fib6_table_dump(net, tb, w);
 503			if (err)
 504				goto out;
 505		}
 506	}
 507
 508out:
 509	kfree(w);
 510
 511	/* The tree traversal function should never return a positive value. */
 512	return err > 0 ? -EINVAL : err;
 513}
 514
 515static int fib6_dump_node(struct fib6_walker *w)
 516{
 517	int res;
 518	struct fib6_info *rt;
 519
 520	for_each_fib6_walker_rt(w) {
 521		res = rt6_dump_route(rt, w->args, w->skip_in_node);
 522		if (res >= 0) {
 523			/* Frame is full, suspend walking */
 524			w->leaf = rt;
 525
 526			/* We'll restart from this node, so if some routes were
 527			 * already dumped, skip them next time.
 528			 */
 529			w->skip_in_node += res;
 530
 531			return 1;
 532		}
 533		w->skip_in_node = 0;
 534
 535		/* Multipath routes are dumped in one route with the
 536		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
 537		 * last sibling of this route (no need to dump the
 538		 * sibling routes again)
 539		 */
 540		if (rt->fib6_nsiblings)
 541			rt = list_last_entry(&rt->fib6_siblings,
 542					     struct fib6_info,
 543					     fib6_siblings);
 544	}
 545	w->leaf = NULL;
 546	return 0;
 547}
 548
 549static void fib6_dump_end(struct netlink_callback *cb)
 550{
 551	struct net *net = sock_net(cb->skb->sk);
 552	struct fib6_walker *w = (void *)cb->args[2];
 553
 554	if (w) {
 555		if (cb->args[4]) {
 556			cb->args[4] = 0;
 557			fib6_walker_unlink(net, w);
 558		}
 559		cb->args[2] = 0;
 560		kfree(w);
 561	}
 562	cb->done = (void *)cb->args[3];
 563	cb->args[1] = 3;
 564}
 565
 566static int fib6_dump_done(struct netlink_callback *cb)
 567{
 568	fib6_dump_end(cb);
 569	return cb->done ? cb->done(cb) : 0;
 570}
 571
 572static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
 573			   struct netlink_callback *cb)
 574{
 575	struct net *net = sock_net(skb->sk);
 576	struct fib6_walker *w;
 577	int res;
 578
 579	w = (void *)cb->args[2];
 580	w->root = &table->tb6_root;
 581
 582	if (cb->args[4] == 0) {
 583		w->count = 0;
 584		w->skip = 0;
 585		w->skip_in_node = 0;
 586
 587		spin_lock_bh(&table->tb6_lock);
 588		res = fib6_walk(net, w);
 589		spin_unlock_bh(&table->tb6_lock);
 590		if (res > 0) {
 591			cb->args[4] = 1;
 592			cb->args[5] = READ_ONCE(w->root->fn_sernum);
 593		}
 594	} else {
 595		int sernum = READ_ONCE(w->root->fn_sernum);
 596		if (cb->args[5] != sernum) {
 597			/* Begin at the root if the tree changed */
 598			cb->args[5] = sernum;
 599			w->state = FWS_INIT;
 600			w->node = w->root;
 601			w->skip = w->count;
 602			w->skip_in_node = 0;
 603		} else
 604			w->skip = 0;
 605
 606		spin_lock_bh(&table->tb6_lock);
 607		res = fib6_walk_continue(w);
 608		spin_unlock_bh(&table->tb6_lock);
 609		if (res <= 0) {
 610			fib6_walker_unlink(net, w);
 611			cb->args[4] = 0;
 612		}
 613	}
 614
 615	return res;
 616}
 617
 618static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
 619{
 620	struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true,
 621					 .filter.dump_routes = true };
 622	const struct nlmsghdr *nlh = cb->nlh;
 623	struct net *net = sock_net(skb->sk);
 624	unsigned int h, s_h;
 625	unsigned int e = 0, s_e;
 626	struct fib6_walker *w;
 
 627	struct fib6_table *tb;
 
 628	struct hlist_head *head;
 629	int res = 0;
 630
 631	if (cb->strict_check) {
 632		int err;
 633
 634		err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
 635		if (err < 0)
 636			return err;
 637	} else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
 638		struct rtmsg *rtm = nlmsg_data(nlh);
 639
 640		if (rtm->rtm_flags & RTM_F_PREFIX)
 641			arg.filter.flags = RTM_F_PREFIX;
 642	}
 643
 644	w = (void *)cb->args[2];
 645	if (!w) {
 646		/* New dump:
 647		 *
 648		 * 1. hook callback destructor.
 649		 */
 650		cb->args[3] = (long)cb->done;
 651		cb->done = fib6_dump_done;
 652
 653		/*
 654		 * 2. allocate and initialize walker.
 655		 */
 656		w = kzalloc(sizeof(*w), GFP_ATOMIC);
 657		if (!w)
 658			return -ENOMEM;
 659		w->func = fib6_dump_node;
 660		cb->args[2] = (long)w;
 661	}
 662
 663	arg.skb = skb;
 664	arg.cb = cb;
 665	arg.net = net;
 666	w->args = &arg;
 667
 668	if (arg.filter.table_id) {
 669		tb = fib6_get_table(net, arg.filter.table_id);
 670		if (!tb) {
 671			if (rtnl_msg_family(cb->nlh) != PF_INET6)
 672				goto out;
 673
 674			NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
 675			return -ENOENT;
 676		}
 677
 678		if (!cb->args[0]) {
 679			res = fib6_dump_table(tb, skb, cb);
 680			if (!res)
 681				cb->args[0] = 1;
 682		}
 683		goto out;
 684	}
 685
 686	s_h = cb->args[0];
 687	s_e = cb->args[1];
 688
 689	rcu_read_lock();
 690	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
 691		e = 0;
 692		head = &net->ipv6.fib_table_hash[h];
 693		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
 694			if (e < s_e)
 695				goto next;
 696			res = fib6_dump_table(tb, skb, cb);
 697			if (res != 0)
 698				goto out_unlock;
 699next:
 700			e++;
 701		}
 702	}
 703out_unlock:
 704	rcu_read_unlock();
 705	cb->args[1] = e;
 706	cb->args[0] = h;
 707out:
 708	res = res < 0 ? res : skb->len;
 709	if (res <= 0)
 710		fib6_dump_end(cb);
 711	return res;
 712}
 713
 714void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
 715{
 716	if (!f6i)
 717		return;
 718
 719	if (f6i->fib6_metrics == &dst_default_metrics) {
 720		struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
 721
 722		if (!p)
 723			return;
 724
 725		refcount_set(&p->refcnt, 1);
 726		f6i->fib6_metrics = p;
 727	}
 728
 729	f6i->fib6_metrics->metrics[metric - 1] = val;
 730}
 731
 732/*
 733 *	Routing Table
 734 *
 735 *	return the appropriate node for a routing tree "add" operation
 736 *	by either creating and inserting or by returning an existing
 737 *	node.
 738 */
 739
 740static struct fib6_node *fib6_add_1(struct net *net,
 741				    struct fib6_table *table,
 742				    struct fib6_node *root,
 743				    struct in6_addr *addr, int plen,
 744				    int offset, int allow_create,
 745				    int replace_required,
 746				    struct netlink_ext_ack *extack)
 747{
 748	struct fib6_node *fn, *in, *ln;
 749	struct fib6_node *pn = NULL;
 750	struct rt6key *key;
 751	int	bit;
 752	__be32	dir = 0;
 
 753
 754	RT6_TRACE("fib6_add_1\n");
 755
 756	/* insert node in tree */
 757
 758	fn = root;
 759
 760	do {
 761		struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
 762					    lockdep_is_held(&table->tb6_lock));
 763		key = (struct rt6key *)((u8 *)leaf + offset);
 764
 765		/*
 766		 *	Prefix match
 767		 */
 768		if (plen < fn->fn_bit ||
 769		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
 770			if (!allow_create) {
 771				if (replace_required) {
 772					NL_SET_ERR_MSG(extack,
 773						       "Can not replace route - no match found");
 774					pr_warn("Can't replace route, no match found\n");
 775					return ERR_PTR(-ENOENT);
 776				}
 777				pr_warn("NLM_F_CREATE should be set when creating new route\n");
 778			}
 779			goto insert_above;
 780		}
 781
 782		/*
 783		 *	Exact match ?
 784		 */
 785
 786		if (plen == fn->fn_bit) {
 787			/* clean up an intermediate node */
 788			if (!(fn->fn_flags & RTN_RTINFO)) {
 789				RCU_INIT_POINTER(fn->leaf, NULL);
 790				fib6_info_release(leaf);
 791			/* remove null_entry in the root node */
 792			} else if (fn->fn_flags & RTN_TL_ROOT &&
 793				   rcu_access_pointer(fn->leaf) ==
 794				   net->ipv6.fib6_null_entry) {
 795				RCU_INIT_POINTER(fn->leaf, NULL);
 796			}
 797
 
 
 798			return fn;
 799		}
 800
 801		/*
 802		 *	We have more bits to go
 803		 */
 804
 805		/* Try to walk down on tree. */
 
 806		dir = addr_bit_set(addr, fn->fn_bit);
 807		pn = fn;
 808		fn = dir ?
 809		     rcu_dereference_protected(fn->right,
 810					lockdep_is_held(&table->tb6_lock)) :
 811		     rcu_dereference_protected(fn->left,
 812					lockdep_is_held(&table->tb6_lock));
 813	} while (fn);
 814
 815	if (!allow_create) {
 816		/* We should not create new node because
 817		 * NLM_F_REPLACE was specified without NLM_F_CREATE
 818		 * I assume it is safe to require NLM_F_CREATE when
 819		 * REPLACE flag is used! Later we may want to remove the
 820		 * check for replace_required, because according
 821		 * to netlink specification, NLM_F_CREATE
 822		 * MUST be specified if new route is created.
 823		 * That would keep IPv6 consistent with IPv4
 824		 */
 825		if (replace_required) {
 826			NL_SET_ERR_MSG(extack,
 827				       "Can not replace route - no match found");
 828			pr_warn("Can't replace route, no match found\n");
 829			return ERR_PTR(-ENOENT);
 830		}
 831		pr_warn("NLM_F_CREATE should be set when creating new route\n");
 832	}
 833	/*
 834	 *	We walked to the bottom of tree.
 835	 *	Create new leaf node without children.
 836	 */
 837
 838	ln = node_alloc(net);
 839
 840	if (!ln)
 841		return ERR_PTR(-ENOMEM);
 842	ln->fn_bit = plen;
 843	RCU_INIT_POINTER(ln->parent, pn);
 
 
 844
 845	if (dir)
 846		rcu_assign_pointer(pn->right, ln);
 847	else
 848		rcu_assign_pointer(pn->left, ln);
 849
 850	return ln;
 851
 852
 853insert_above:
 854	/*
 855	 * split since we don't have a common prefix anymore or
 856	 * we have a less significant route.
 857	 * we've to insert an intermediate node on the list
 858	 * this new node will point to the one we need to create
 859	 * and the current
 860	 */
 861
 862	pn = rcu_dereference_protected(fn->parent,
 863				       lockdep_is_held(&table->tb6_lock));
 864
 865	/* find 1st bit in difference between the 2 addrs.
 866
 867	   See comment in __ipv6_addr_diff: bit may be an invalid value,
 868	   but if it is >= plen, the value is ignored in any case.
 869	 */
 870
 871	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
 872
 873	/*
 874	 *		(intermediate)[in]
 875	 *	          /	   \
 876	 *	(new leaf node)[ln] (old node)[fn]
 877	 */
 878	if (plen > bit) {
 879		in = node_alloc(net);
 880		ln = node_alloc(net);
 881
 882		if (!in || !ln) {
 883			if (in)
 884				node_free_immediate(net, in);
 885			if (ln)
 886				node_free_immediate(net, ln);
 887			return ERR_PTR(-ENOMEM);
 888		}
 889
 890		/*
 891		 * new intermediate node.
 892		 * RTN_RTINFO will
 893		 * be off since that an address that chooses one of
 894		 * the branches would not match less specific routes
 895		 * in the other branch
 896		 */
 897
 898		in->fn_bit = bit;
 899
 900		RCU_INIT_POINTER(in->parent, pn);
 901		in->leaf = fn->leaf;
 902		fib6_info_hold(rcu_dereference_protected(in->leaf,
 903				lockdep_is_held(&table->tb6_lock)));
 
 904
 905		/* update parent pointer */
 906		if (dir)
 907			rcu_assign_pointer(pn->right, in);
 908		else
 909			rcu_assign_pointer(pn->left, in);
 910
 911		ln->fn_bit = plen;
 912
 913		RCU_INIT_POINTER(ln->parent, in);
 914		rcu_assign_pointer(fn->parent, in);
 
 
 915
 916		if (addr_bit_set(addr, bit)) {
 917			rcu_assign_pointer(in->right, ln);
 918			rcu_assign_pointer(in->left, fn);
 919		} else {
 920			rcu_assign_pointer(in->left, ln);
 921			rcu_assign_pointer(in->right, fn);
 922		}
 923	} else { /* plen <= bit */
 924
 925		/*
 926		 *		(new leaf node)[ln]
 927		 *	          /	   \
 928		 *	     (old node)[fn] NULL
 929		 */
 930
 931		ln = node_alloc(net);
 932
 933		if (!ln)
 934			return ERR_PTR(-ENOMEM);
 935
 936		ln->fn_bit = plen;
 937
 938		RCU_INIT_POINTER(ln->parent, pn);
 939
 940		if (addr_bit_set(&key->addr, plen))
 941			RCU_INIT_POINTER(ln->right, fn);
 942		else
 943			RCU_INIT_POINTER(ln->left, fn);
 944
 945		rcu_assign_pointer(fn->parent, ln);
 946
 947		if (dir)
 948			rcu_assign_pointer(pn->right, ln);
 949		else
 950			rcu_assign_pointer(pn->left, ln);
 951	}
 952	return ln;
 953}
 954
 955static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
 956				  const struct fib6_info *match,
 957				  const struct fib6_table *table)
 958{
 959	int cpu;
 960
 961	if (!fib6_nh->rt6i_pcpu)
 962		return;
 963
 964	/* release the reference to this fib entry from
 965	 * all of its cached pcpu routes
 966	 */
 967	for_each_possible_cpu(cpu) {
 968		struct rt6_info **ppcpu_rt;
 969		struct rt6_info *pcpu_rt;
 970
 971		ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
 972		pcpu_rt = *ppcpu_rt;
 973
 974		/* only dropping the 'from' reference if the cached route
 975		 * is using 'match'. The cached pcpu_rt->from only changes
 976		 * from a fib6_info to NULL (ip6_dst_destroy); it can never
 977		 * change from one fib6_info reference to another
 978		 */
 979		if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
 980			struct fib6_info *from;
 981
 982			from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
 983			fib6_info_release(from);
 984		}
 985	}
 986}
 987
 988struct fib6_nh_pcpu_arg {
 989	struct fib6_info	*from;
 990	const struct fib6_table *table;
 991};
 992
 993static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
 994{
 995	struct fib6_nh_pcpu_arg *arg = _arg;
 996
 997	__fib6_drop_pcpu_from(nh, arg->from, arg->table);
 998	return 0;
 999}
1000
1001static void fib6_drop_pcpu_from(struct fib6_info *f6i,
1002				const struct fib6_table *table)
1003{
1004	/* Make sure rt6_make_pcpu_route() wont add other percpu routes
1005	 * while we are cleaning them here.
1006	 */
1007	f6i->fib6_destroying = 1;
1008	mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1009
1010	if (f6i->nh) {
1011		struct fib6_nh_pcpu_arg arg = {
1012			.from = f6i,
1013			.table = table
1014		};
1015
1016		nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1017					 &arg);
1018	} else {
1019		struct fib6_nh *fib6_nh;
1020
1021		fib6_nh = f6i->fib6_nh;
1022		__fib6_drop_pcpu_from(fib6_nh, f6i, table);
1023	}
1024}
1025
1026static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1027			  struct net *net)
1028{
1029	struct fib6_table *table = rt->fib6_table;
1030
1031	/* Flush all cached dst in exception table */
1032	rt6_flush_exceptions(rt);
1033	fib6_drop_pcpu_from(rt, table);
1034
1035	if (rt->nh && !list_empty(&rt->nh_list))
1036		list_del_init(&rt->nh_list);
1037
1038	if (refcount_read(&rt->fib6_ref) != 1) {
1039		/* This route is used as dummy address holder in some split
1040		 * nodes. It is not leaked, but it still holds other resources,
1041		 * which must be released in time. So, scan ascendant nodes
1042		 * and replace dummy references to this route with references
1043		 * to still alive ones.
1044		 */
1045		while (fn) {
1046			struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1047					    lockdep_is_held(&table->tb6_lock));
1048			struct fib6_info *new_leaf;
1049			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1050				new_leaf = fib6_find_prefix(net, table, fn);
1051				fib6_info_hold(new_leaf);
1052
1053				rcu_assign_pointer(fn->leaf, new_leaf);
1054				fib6_info_release(rt);
1055			}
1056			fn = rcu_dereference_protected(fn->parent,
1057				    lockdep_is_held(&table->tb6_lock));
1058		}
1059	}
 
1060}
1061
1062/*
1063 *	Insert routing information in a node.
1064 */
1065
1066static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1067			    struct nl_info *info,
1068			    struct netlink_ext_ack *extack)
1069{
1070	struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1071				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1072	struct fib6_info *iter = NULL;
1073	struct fib6_info __rcu **ins;
1074	struct fib6_info __rcu **fallback_ins = NULL;
1075	int replace = (info->nlh &&
1076		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1077	int add = (!info->nlh ||
1078		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
1079	int found = 0;
1080	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1081	bool notify_sibling_rt = false;
1082	u16 nlflags = NLM_F_EXCL;
1083	int err;
1084
1085	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1086		nlflags |= NLM_F_APPEND;
1087
1088	ins = &fn->leaf;
1089
1090	for (iter = leaf; iter;
1091	     iter = rcu_dereference_protected(iter->fib6_next,
1092				lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1093		/*
1094		 *	Search for duplicates
1095		 */
1096
1097		if (iter->fib6_metric == rt->fib6_metric) {
1098			/*
1099			 *	Same priority level
1100			 */
1101			if (info->nlh &&
1102			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
1103				return -EEXIST;
1104
1105			nlflags &= ~NLM_F_EXCL;
1106			if (replace) {
1107				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1108					found++;
1109					break;
 
 
 
 
 
1110				}
1111				fallback_ins = fallback_ins ?: ins;
1112				goto next_iter;
1113			}
1114
1115			if (rt6_duplicate_nexthop(iter, rt)) {
1116				if (rt->fib6_nsiblings)
1117					rt->fib6_nsiblings = 0;
1118				if (!(iter->fib6_flags & RTF_EXPIRES))
1119					return -EEXIST;
1120				if (!(rt->fib6_flags & RTF_EXPIRES))
1121					fib6_clean_expires(iter);
1122				else
1123					fib6_set_expires(iter, rt->expires);
1124
1125				if (rt->fib6_pmtu)
1126					fib6_metric_set(iter, RTAX_MTU,
1127							rt->fib6_pmtu);
1128				return -EEXIST;
1129			}
1130			/* If we have the same destination and the same metric,
1131			 * but not the same gateway, then the route we try to
1132			 * add is sibling to this route, increment our counter
1133			 * of siblings, and later we will add our route to the
1134			 * list.
1135			 * Only static routes (which don't have flag
1136			 * RTF_EXPIRES) are used for ECMPv6.
1137			 *
1138			 * To avoid long list, we only had siblings if the
1139			 * route have a gateway.
1140			 */
1141			if (rt_can_ecmp &&
1142			    rt6_qualify_for_ecmp(iter))
1143				rt->fib6_nsiblings++;
1144		}
1145
1146		if (iter->fib6_metric > rt->fib6_metric)
1147			break;
1148
1149next_iter:
1150		ins = &iter->fib6_next;
1151	}
1152
1153	if (fallback_ins && !found) {
1154		/* No matching route with same ecmp-able-ness found, replace
1155		 * first matching route
1156		 */
1157		ins = fallback_ins;
1158		iter = rcu_dereference_protected(*ins,
1159				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1160		found++;
1161	}
1162
1163	/* Reset round-robin state, if necessary */
1164	if (ins == &fn->leaf)
1165		fn->rr_ptr = NULL;
1166
1167	/* Link this route to others same route. */
1168	if (rt->fib6_nsiblings) {
1169		unsigned int fib6_nsiblings;
1170		struct fib6_info *sibling, *temp_sibling;
1171
1172		/* Find the first route that have the same metric */
1173		sibling = leaf;
1174		notify_sibling_rt = true;
1175		while (sibling) {
1176			if (sibling->fib6_metric == rt->fib6_metric &&
1177			    rt6_qualify_for_ecmp(sibling)) {
1178				list_add_tail(&rt->fib6_siblings,
1179					      &sibling->fib6_siblings);
1180				break;
1181			}
1182			sibling = rcu_dereference_protected(sibling->fib6_next,
1183				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1184			notify_sibling_rt = false;
1185		}
1186		/* For each sibling in the list, increment the counter of
1187		 * siblings. BUG() if counters does not match, list of siblings
1188		 * is broken!
1189		 */
1190		fib6_nsiblings = 0;
1191		list_for_each_entry_safe(sibling, temp_sibling,
1192					 &rt->fib6_siblings, fib6_siblings) {
1193			sibling->fib6_nsiblings++;
1194			BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1195			fib6_nsiblings++;
1196		}
1197		BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1198		rt6_multipath_rebalance(temp_sibling);
1199	}
1200
1201	/*
1202	 *	insert node
1203	 */
1204	if (!replace) {
1205		if (!add)
1206			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1207
1208add:
1209		nlflags |= NLM_F_CREATE;
1210
1211		/* The route should only be notified if it is the first
1212		 * route in the node or if it is added as a sibling
1213		 * route to the first route in the node.
1214		 */
1215		if (!info->skip_notify_kernel &&
1216		    (notify_sibling_rt || ins == &fn->leaf)) {
1217			enum fib_event_type fib_event;
1218
1219			if (notify_sibling_rt)
1220				fib_event = FIB_EVENT_ENTRY_APPEND;
1221			else
1222				fib_event = FIB_EVENT_ENTRY_REPLACE;
1223			err = call_fib6_entry_notifiers(info->nl_net,
1224							fib_event, rt,
1225							extack);
1226			if (err) {
1227				struct fib6_info *sibling, *next_sibling;
1228
1229				/* If the route has siblings, then it first
1230				 * needs to be unlinked from them.
1231				 */
1232				if (!rt->fib6_nsiblings)
1233					return err;
1234
1235				list_for_each_entry_safe(sibling, next_sibling,
1236							 &rt->fib6_siblings,
1237							 fib6_siblings)
1238					sibling->fib6_nsiblings--;
1239				rt->fib6_nsiblings = 0;
1240				list_del_init(&rt->fib6_siblings);
1241				rt6_multipath_rebalance(next_sibling);
1242				return err;
1243			}
1244		}
1245
1246		rcu_assign_pointer(rt->fib6_next, iter);
1247		fib6_info_hold(rt);
1248		rcu_assign_pointer(rt->fib6_node, fn);
1249		rcu_assign_pointer(*ins, rt);
1250		if (!info->skip_notify)
1251			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1252		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1253
1254		if (!(fn->fn_flags & RTN_RTINFO)) {
1255			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1256			fn->fn_flags |= RTN_RTINFO;
1257		}
1258
1259	} else {
1260		int nsiblings;
1261
1262		if (!found) {
1263			if (add)
1264				goto add;
1265			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1266			return -ENOENT;
1267		}
1268
1269		if (!info->skip_notify_kernel && ins == &fn->leaf) {
1270			err = call_fib6_entry_notifiers(info->nl_net,
1271							FIB_EVENT_ENTRY_REPLACE,
1272							rt, extack);
1273			if (err)
1274				return err;
1275		}
1276
1277		fib6_info_hold(rt);
1278		rcu_assign_pointer(rt->fib6_node, fn);
1279		rt->fib6_next = iter->fib6_next;
1280		rcu_assign_pointer(*ins, rt);
1281		if (!info->skip_notify)
1282			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1283		if (!(fn->fn_flags & RTN_RTINFO)) {
1284			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1285			fn->fn_flags |= RTN_RTINFO;
1286		}
1287		nsiblings = iter->fib6_nsiblings;
1288		iter->fib6_node = NULL;
1289		fib6_purge_rt(iter, fn, info->nl_net);
1290		if (rcu_access_pointer(fn->rr_ptr) == iter)
1291			fn->rr_ptr = NULL;
1292		fib6_info_release(iter);
1293
1294		if (nsiblings) {
1295			/* Replacing an ECMP route, remove all siblings */
1296			ins = &rt->fib6_next;
1297			iter = rcu_dereference_protected(*ins,
1298				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1299			while (iter) {
1300				if (iter->fib6_metric > rt->fib6_metric)
1301					break;
1302				if (rt6_qualify_for_ecmp(iter)) {
1303					*ins = iter->fib6_next;
1304					iter->fib6_node = NULL;
1305					fib6_purge_rt(iter, fn, info->nl_net);
1306					if (rcu_access_pointer(fn->rr_ptr) == iter)
1307						fn->rr_ptr = NULL;
1308					fib6_info_release(iter);
1309					nsiblings--;
1310					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1311				} else {
1312					ins = &iter->fib6_next;
1313				}
1314				iter = rcu_dereference_protected(*ins,
1315					lockdep_is_held(&rt->fib6_table->tb6_lock));
1316			}
1317			WARN_ON(nsiblings != 0);
1318		}
1319	}
1320
1321	return 0;
1322}
1323
1324static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1325{
1326	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1327	    (rt->fib6_flags & RTF_EXPIRES))
1328		mod_timer(&net->ipv6.ip6_fib_timer,
1329			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1330}
1331
1332void fib6_force_start_gc(struct net *net)
1333{
1334	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1335		mod_timer(&net->ipv6.ip6_fib_timer,
1336			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1337}
1338
1339static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1340					   int sernum)
1341{
1342	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1343				lockdep_is_held(&rt->fib6_table->tb6_lock));
1344
1345	/* paired with smp_rmb() in fib6_get_cookie_safe() */
1346	smp_wmb();
1347	while (fn) {
1348		WRITE_ONCE(fn->fn_sernum, sernum);
1349		fn = rcu_dereference_protected(fn->parent,
1350				lockdep_is_held(&rt->fib6_table->tb6_lock));
1351	}
1352}
1353
1354void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1355{
1356	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1357}
1358
1359/* allow ipv4 to update sernum via ipv6_stub */
1360void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1361{
1362	spin_lock_bh(&f6i->fib6_table->tb6_lock);
1363	fib6_update_sernum_upto_root(net, f6i);
1364	spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1365}
1366
1367/*
1368 *	Add routing information to the routing tree.
1369 *	<destination addr>/<source addr>
1370 *	with source addr info in sub-trees
1371 *	Need to own table->tb6_lock
1372 */
1373
1374int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1375	     struct nl_info *info, struct netlink_ext_ack *extack)
1376{
1377	struct fib6_table *table = rt->fib6_table;
1378	struct fib6_node *fn, *pn = NULL;
1379	int err = -ENOMEM;
1380	int allow_create = 1;
1381	int replace_required = 0;
1382
1383	if (info->nlh) {
1384		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1385			allow_create = 0;
1386		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1387			replace_required = 1;
1388	}
1389	if (!allow_create && !replace_required)
1390		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1391
1392	fn = fib6_add_1(info->nl_net, table, root,
1393			&rt->fib6_dst.addr, rt->fib6_dst.plen,
1394			offsetof(struct fib6_info, fib6_dst), allow_create,
1395			replace_required, extack);
1396	if (IS_ERR(fn)) {
1397		err = PTR_ERR(fn);
1398		fn = NULL;
1399		goto out;
1400	}
1401
1402	pn = fn;
1403
1404#ifdef CONFIG_IPV6_SUBTREES
1405	if (rt->fib6_src.plen) {
1406		struct fib6_node *sn;
1407
1408		if (!rcu_access_pointer(fn->subtree)) {
1409			struct fib6_node *sfn;
1410
1411			/*
1412			 * Create subtree.
1413			 *
1414			 *		fn[main tree]
1415			 *		|
1416			 *		sfn[subtree root]
1417			 *		   \
1418			 *		    sn[new leaf node]
1419			 */
1420
1421			/* Create subtree root node */
1422			sfn = node_alloc(info->nl_net);
1423			if (!sfn)
1424				goto failure;
1425
1426			fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1427			rcu_assign_pointer(sfn->leaf,
1428					   info->nl_net->ipv6.fib6_null_entry);
1429			sfn->fn_flags = RTN_ROOT;
 
1430
1431			/* Now add the first leaf node to new subtree */
1432
1433			sn = fib6_add_1(info->nl_net, table, sfn,
1434					&rt->fib6_src.addr, rt->fib6_src.plen,
1435					offsetof(struct fib6_info, fib6_src),
1436					allow_create, replace_required, extack);
1437
1438			if (IS_ERR(sn)) {
1439				/* If it is failed, discard just allocated
1440				   root, and then (in failure) stale node
1441				   in main tree.
1442				 */
1443				node_free_immediate(info->nl_net, sfn);
1444				err = PTR_ERR(sn);
1445				goto failure;
1446			}
1447
1448			/* Now link new subtree to main tree */
1449			rcu_assign_pointer(sfn->parent, fn);
1450			rcu_assign_pointer(fn->subtree, sfn);
1451		} else {
1452			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1453					&rt->fib6_src.addr, rt->fib6_src.plen,
1454					offsetof(struct fib6_info, fib6_src),
1455					allow_create, replace_required, extack);
1456
1457			if (IS_ERR(sn)) {
1458				err = PTR_ERR(sn);
1459				goto failure;
1460			}
1461		}
1462
1463		if (!rcu_access_pointer(fn->leaf)) {
1464			if (fn->fn_flags & RTN_TL_ROOT) {
1465				/* put back null_entry for root node */
1466				rcu_assign_pointer(fn->leaf,
1467					    info->nl_net->ipv6.fib6_null_entry);
1468			} else {
1469				fib6_info_hold(rt);
1470				rcu_assign_pointer(fn->leaf, rt);
1471			}
1472		}
1473		fn = sn;
1474	}
1475#endif
1476
1477	err = fib6_add_rt2node(fn, rt, info, extack);
1478	if (!err) {
1479		if (rt->nh)
1480			list_add(&rt->nh_list, &rt->nh->f6i_list);
1481		__fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1482		fib6_start_gc(info->nl_net, rt);
 
 
1483	}
1484
1485out:
1486	if (err) {
1487#ifdef CONFIG_IPV6_SUBTREES
1488		/*
1489		 * If fib6_add_1 has cleared the old leaf pointer in the
1490		 * super-tree leaf node we have to find a new one for it.
1491		 */
1492		if (pn != fn) {
1493			struct fib6_info *pn_leaf =
1494				rcu_dereference_protected(pn->leaf,
1495				    lockdep_is_held(&table->tb6_lock));
1496			if (pn_leaf == rt) {
1497				pn_leaf = NULL;
1498				RCU_INIT_POINTER(pn->leaf, NULL);
1499				fib6_info_release(rt);
 
 
1500			}
1501			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1502				pn_leaf = fib6_find_prefix(info->nl_net, table,
1503							   pn);
1504#if RT6_DEBUG >= 2
1505				if (!pn_leaf) {
1506					WARN_ON(!pn_leaf);
1507					pn_leaf =
1508					    info->nl_net->ipv6.fib6_null_entry;
1509				}
1510#endif
1511				fib6_info_hold(pn_leaf);
1512				rcu_assign_pointer(pn->leaf, pn_leaf);
1513			}
1514		}
1515#endif
1516		goto failure;
1517	} else if (fib6_requires_src(rt)) {
1518		fib6_routes_require_src_inc(info->nl_net);
1519	}
1520	return err;
1521
1522failure:
1523	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1524	 * 1. fn is an intermediate node and we failed to add the new
1525	 * route to it in both subtree creation failure and fib6_add_rt2node()
1526	 * failure case.
1527	 * 2. fn is the root node in the table and we fail to add the first
1528	 * default route to it.
1529	 */
1530	if (fn &&
1531	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1532	     (fn->fn_flags & RTN_TL_ROOT &&
1533	      !rcu_access_pointer(fn->leaf))))
1534		fib6_repair_tree(info->nl_net, table, fn);
1535	return err;
 
1536}
1537
1538/*
1539 *	Routing tree lookup
1540 *
1541 */
1542
1543struct lookup_args {
1544	int			offset;		/* key offset on fib6_info */
1545	const struct in6_addr	*addr;		/* search key			*/
1546};
1547
1548static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1549					    struct lookup_args *args)
1550{
1551	struct fib6_node *fn;
1552	__be32 dir;
1553
1554	if (unlikely(args->offset == 0))
1555		return NULL;
1556
1557	/*
1558	 *	Descend on a tree
1559	 */
1560
1561	fn = root;
1562
1563	for (;;) {
1564		struct fib6_node *next;
1565
1566		dir = addr_bit_set(args->addr, fn->fn_bit);
1567
1568		next = dir ? rcu_dereference(fn->right) :
1569			     rcu_dereference(fn->left);
1570
1571		if (next) {
1572			fn = next;
1573			continue;
1574		}
 
1575		break;
1576	}
1577
1578	while (fn) {
1579		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1580
1581		if (subtree || fn->fn_flags & RTN_RTINFO) {
1582			struct fib6_info *leaf = rcu_dereference(fn->leaf);
1583			struct rt6key *key;
1584
1585			if (!leaf)
1586				goto backtrack;
1587
1588			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1589
1590			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1591#ifdef CONFIG_IPV6_SUBTREES
1592				if (subtree) {
1593					struct fib6_node *sfn;
1594					sfn = fib6_node_lookup_1(subtree,
1595								 args + 1);
1596					if (!sfn)
1597						goto backtrack;
1598					fn = sfn;
1599				}
1600#endif
1601				if (fn->fn_flags & RTN_RTINFO)
1602					return fn;
1603			}
1604		}
1605backtrack:
1606		if (fn->fn_flags & RTN_ROOT)
1607			break;
1608
1609		fn = rcu_dereference(fn->parent);
1610	}
1611
1612	return NULL;
1613}
1614
1615/* called with rcu_read_lock() held
1616 */
1617struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1618				   const struct in6_addr *daddr,
1619				   const struct in6_addr *saddr)
1620{
1621	struct fib6_node *fn;
1622	struct lookup_args args[] = {
1623		{
1624			.offset = offsetof(struct fib6_info, fib6_dst),
1625			.addr = daddr,
1626		},
1627#ifdef CONFIG_IPV6_SUBTREES
1628		{
1629			.offset = offsetof(struct fib6_info, fib6_src),
1630			.addr = saddr,
1631		},
1632#endif
1633		{
1634			.offset = 0,	/* sentinel */
1635		}
1636	};
1637
1638	fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1639	if (!fn || fn->fn_flags & RTN_TL_ROOT)
 
1640		fn = root;
1641
1642	return fn;
1643}
1644
1645/*
1646 *	Get node with specified destination prefix (and source prefix,
1647 *	if subtrees are used)
1648 *	exact_match == true means we try to find fn with exact match of
1649 *	the passed in prefix addr
1650 *	exact_match == false means we try to find fn with longest prefix
1651 *	match of the passed in prefix addr. This is useful for finding fn
1652 *	for cached route as it will be stored in the exception table under
1653 *	the node with longest prefix length.
1654 */
1655
1656
1657static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1658				       const struct in6_addr *addr,
1659				       int plen, int offset,
1660				       bool exact_match)
1661{
1662	struct fib6_node *fn, *prev = NULL;
1663
1664	for (fn = root; fn ; ) {
1665		struct fib6_info *leaf = rcu_dereference(fn->leaf);
1666		struct rt6key *key;
1667
1668		/* This node is being deleted */
1669		if (!leaf) {
1670			if (plen <= fn->fn_bit)
1671				goto out;
1672			else
1673				goto next;
1674		}
1675
1676		key = (struct rt6key *)((u8 *)leaf + offset);
1677
1678		/*
1679		 *	Prefix match
1680		 */
1681		if (plen < fn->fn_bit ||
1682		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1683			goto out;
1684
1685		if (plen == fn->fn_bit)
1686			return fn;
1687
1688		if (fn->fn_flags & RTN_RTINFO)
1689			prev = fn;
1690
1691next:
1692		/*
1693		 *	We have more bits to go
1694		 */
1695		if (addr_bit_set(addr, fn->fn_bit))
1696			fn = rcu_dereference(fn->right);
1697		else
1698			fn = rcu_dereference(fn->left);
1699	}
1700out:
1701	if (exact_match)
1702		return NULL;
1703	else
1704		return prev;
1705}
1706
1707struct fib6_node *fib6_locate(struct fib6_node *root,
1708			      const struct in6_addr *daddr, int dst_len,
1709			      const struct in6_addr *saddr, int src_len,
1710			      bool exact_match)
1711{
1712	struct fib6_node *fn;
1713
1714	fn = fib6_locate_1(root, daddr, dst_len,
1715			   offsetof(struct fib6_info, fib6_dst),
1716			   exact_match);
1717
1718#ifdef CONFIG_IPV6_SUBTREES
1719	if (src_len) {
1720		WARN_ON(saddr == NULL);
1721		if (fn) {
1722			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1723
1724			if (subtree) {
1725				fn = fib6_locate_1(subtree, saddr, src_len,
1726					   offsetof(struct fib6_info, fib6_src),
1727					   exact_match);
1728			}
1729		}
1730	}
1731#endif
1732
1733	if (fn && fn->fn_flags & RTN_RTINFO)
1734		return fn;
1735
1736	return NULL;
1737}
1738
1739
1740/*
1741 *	Deletion
1742 *
1743 */
1744
1745static struct fib6_info *fib6_find_prefix(struct net *net,
1746					 struct fib6_table *table,
1747					 struct fib6_node *fn)
1748{
1749	struct fib6_node *child_left, *child_right;
1750
1751	if (fn->fn_flags & RTN_ROOT)
1752		return net->ipv6.fib6_null_entry;
1753
1754	while (fn) {
1755		child_left = rcu_dereference_protected(fn->left,
1756				    lockdep_is_held(&table->tb6_lock));
1757		child_right = rcu_dereference_protected(fn->right,
1758				    lockdep_is_held(&table->tb6_lock));
1759		if (child_left)
1760			return rcu_dereference_protected(child_left->leaf,
1761					lockdep_is_held(&table->tb6_lock));
1762		if (child_right)
1763			return rcu_dereference_protected(child_right->leaf,
1764					lockdep_is_held(&table->tb6_lock));
1765
1766		fn = FIB6_SUBTREE(fn);
1767	}
1768	return NULL;
1769}
1770
1771/*
1772 *	Called to trim the tree of intermediate nodes when possible. "fn"
1773 *	is the node we want to try and remove.
1774 *	Need to own table->tb6_lock
1775 */
1776
1777static struct fib6_node *fib6_repair_tree(struct net *net,
1778					  struct fib6_table *table,
1779					  struct fib6_node *fn)
1780{
1781	int children;
1782	int nstate;
1783	struct fib6_node *child;
1784	struct fib6_walker *w;
1785	int iter = 0;
1786
1787	/* Set fn->leaf to null_entry for root node. */
1788	if (fn->fn_flags & RTN_TL_ROOT) {
1789		rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1790		return fn;
1791	}
1792
1793	for (;;) {
1794		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1795					    lockdep_is_held(&table->tb6_lock));
1796		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1797					    lockdep_is_held(&table->tb6_lock));
1798		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1799					    lockdep_is_held(&table->tb6_lock));
1800		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1801					    lockdep_is_held(&table->tb6_lock));
1802		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1803					    lockdep_is_held(&table->tb6_lock));
1804		struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1805					    lockdep_is_held(&table->tb6_lock));
1806		struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1807					    lockdep_is_held(&table->tb6_lock));
1808		struct fib6_info *new_fn_leaf;
1809
1810		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1811		iter++;
1812
1813		WARN_ON(fn->fn_flags & RTN_RTINFO);
1814		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1815		WARN_ON(fn_leaf);
1816
1817		children = 0;
1818		child = NULL;
1819		if (fn_r) {
1820			child = fn_r;
1821			children |= 1;
1822		}
1823		if (fn_l) {
1824			child = fn_l;
1825			children |= 2;
1826		}
1827
1828		if (children == 3 || FIB6_SUBTREE(fn)
1829#ifdef CONFIG_IPV6_SUBTREES
1830		    /* Subtree root (i.e. fn) may have one child */
1831		    || (children && fn->fn_flags & RTN_ROOT)
1832#endif
1833		    ) {
1834			new_fn_leaf = fib6_find_prefix(net, table, fn);
1835#if RT6_DEBUG >= 2
1836			if (!new_fn_leaf) {
1837				WARN_ON(!new_fn_leaf);
1838				new_fn_leaf = net->ipv6.fib6_null_entry;
1839			}
1840#endif
1841			fib6_info_hold(new_fn_leaf);
1842			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1843			return pn;
1844		}
1845
 
1846#ifdef CONFIG_IPV6_SUBTREES
1847		if (FIB6_SUBTREE(pn) == fn) {
1848			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1849			RCU_INIT_POINTER(pn->subtree, NULL);
1850			nstate = FWS_L;
1851		} else {
1852			WARN_ON(fn->fn_flags & RTN_ROOT);
1853#endif
1854			if (pn_r == fn)
1855				rcu_assign_pointer(pn->right, child);
1856			else if (pn_l == fn)
1857				rcu_assign_pointer(pn->left, child);
1858#if RT6_DEBUG >= 2
1859			else
1860				WARN_ON(1);
1861#endif
1862			if (child)
1863				rcu_assign_pointer(child->parent, pn);
1864			nstate = FWS_R;
1865#ifdef CONFIG_IPV6_SUBTREES
1866		}
1867#endif
1868
1869		read_lock(&net->ipv6.fib6_walker_lock);
1870		FOR_WALKERS(net, w) {
1871			if (!child) {
1872				if (w->node == fn) {
 
 
 
1873					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1874					w->node = pn;
1875					w->state = nstate;
1876				}
1877			} else {
 
 
 
 
1878				if (w->node == fn) {
1879					w->node = child;
1880					if (children&2) {
1881						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1882						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1883					} else {
1884						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1885						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1886					}
1887				}
1888			}
1889		}
1890		read_unlock(&net->ipv6.fib6_walker_lock);
1891
1892		node_free(net, fn);
1893		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1894			return pn;
1895
1896		RCU_INIT_POINTER(pn->leaf, NULL);
1897		fib6_info_release(pn_leaf);
1898		fn = pn;
1899	}
1900}
1901
1902static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1903			   struct fib6_info __rcu **rtp, struct nl_info *info)
1904{
1905	struct fib6_info *leaf, *replace_rt = NULL;
1906	struct fib6_walker *w;
1907	struct fib6_info *rt = rcu_dereference_protected(*rtp,
1908				    lockdep_is_held(&table->tb6_lock));
1909	struct net *net = info->nl_net;
1910	bool notify_del = false;
1911
1912	RT6_TRACE("fib6_del_route\n");
1913
1914	/* If the deleted route is the first in the node and it is not part of
1915	 * a multipath route, then we need to replace it with the next route
1916	 * in the node, if exists.
1917	 */
1918	leaf = rcu_dereference_protected(fn->leaf,
1919					 lockdep_is_held(&table->tb6_lock));
1920	if (leaf == rt && !rt->fib6_nsiblings) {
1921		if (rcu_access_pointer(rt->fib6_next))
1922			replace_rt = rcu_dereference_protected(rt->fib6_next,
1923					    lockdep_is_held(&table->tb6_lock));
1924		else
1925			notify_del = true;
1926	}
1927
1928	/* Unlink it */
1929	*rtp = rt->fib6_next;
1930	rt->fib6_node = NULL;
1931	net->ipv6.rt6_stats->fib_rt_entries--;
1932	net->ipv6.rt6_stats->fib_discarded_routes++;
1933
1934	/* Reset round-robin state, if necessary */
1935	if (rcu_access_pointer(fn->rr_ptr) == rt)
1936		fn->rr_ptr = NULL;
1937
1938	/* Remove this entry from other siblings */
1939	if (rt->fib6_nsiblings) {
1940		struct fib6_info *sibling, *next_sibling;
1941
1942		/* The route is deleted from a multipath route. If this
1943		 * multipath route is the first route in the node, then we need
1944		 * to emit a delete notification. Otherwise, we need to skip
1945		 * the notification.
1946		 */
1947		if (rt->fib6_metric == leaf->fib6_metric &&
1948		    rt6_qualify_for_ecmp(leaf))
1949			notify_del = true;
1950		list_for_each_entry_safe(sibling, next_sibling,
1951					 &rt->fib6_siblings, fib6_siblings)
1952			sibling->fib6_nsiblings--;
1953		rt->fib6_nsiblings = 0;
1954		list_del_init(&rt->fib6_siblings);
1955		rt6_multipath_rebalance(next_sibling);
1956	}
1957
1958	/* Adjust walkers */
1959	read_lock(&net->ipv6.fib6_walker_lock);
1960	FOR_WALKERS(net, w) {
1961		if (w->state == FWS_C && w->leaf == rt) {
1962			RT6_TRACE("walker %p adjusted by delroute\n", w);
1963			w->leaf = rcu_dereference_protected(rt->fib6_next,
1964					    lockdep_is_held(&table->tb6_lock));
1965			if (!w->leaf)
1966				w->state = FWS_U;
1967		}
1968	}
1969	read_unlock(&net->ipv6.fib6_walker_lock);
1970
1971	/* If it was last route, call fib6_repair_tree() to:
1972	 * 1. For root node, put back null_entry as how the table was created.
1973	 * 2. For other nodes, expunge its radix tree node.
1974	 */
1975	if (!rcu_access_pointer(fn->leaf)) {
1976		if (!(fn->fn_flags & RTN_TL_ROOT)) {
1977			fn->fn_flags &= ~RTN_RTINFO;
1978			net->ipv6.rt6_stats->fib_route_nodes--;
1979		}
1980		fn = fib6_repair_tree(net, table, fn);
1981	}
1982
1983	fib6_purge_rt(rt, fn, net);
1984
1985	if (!info->skip_notify_kernel) {
1986		if (notify_del)
1987			call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1988						  rt, NULL);
1989		else if (replace_rt)
1990			call_fib6_entry_notifiers_replace(net, replace_rt);
 
 
 
 
 
 
 
 
 
1991	}
1992	if (!info->skip_notify)
1993		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1994
1995	fib6_info_release(rt);
 
1996}
1997
1998/* Need to own table->tb6_lock */
1999int fib6_del(struct fib6_info *rt, struct nl_info *info)
2000{
2001	struct net *net = info->nl_net;
2002	struct fib6_info __rcu **rtp;
2003	struct fib6_info __rcu **rtp_next;
2004	struct fib6_table *table;
2005	struct fib6_node *fn;
2006
2007	if (rt == net->ipv6.fib6_null_entry)
 
 
2008		return -ENOENT;
2009
2010	table = rt->fib6_table;
2011	fn = rcu_dereference_protected(rt->fib6_node,
2012				       lockdep_is_held(&table->tb6_lock));
2013	if (!fn)
2014		return -ENOENT;
2015
2016	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2017
 
 
 
 
 
 
 
 
 
 
 
 
 
2018	/*
2019	 *	Walk the leaf entries looking for ourself
2020	 */
2021
2022	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2023		struct fib6_info *cur = rcu_dereference_protected(*rtp,
2024					lockdep_is_held(&table->tb6_lock));
2025		if (rt == cur) {
2026			if (fib6_requires_src(cur))
2027				fib6_routes_require_src_dec(info->nl_net);
2028			fib6_del_route(table, fn, rtp, info);
2029			return 0;
2030		}
2031		rtp_next = &cur->fib6_next;
2032	}
2033	return -ENOENT;
2034}
2035
2036/*
2037 *	Tree traversal function.
2038 *
2039 *	Certainly, it is not interrupt safe.
2040 *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2041 *	It means, that we can modify tree during walking
2042 *	and use this function for garbage collection, clone pruning,
2043 *	cleaning tree when a device goes down etc. etc.
2044 *
2045 *	It guarantees that every node will be traversed,
2046 *	and that it will be traversed only once.
2047 *
2048 *	Callback function w->func may return:
2049 *	0 -> continue walking.
2050 *	positive value -> walking is suspended (used by tree dumps,
2051 *	and probably by gc, if it will be split to several slices)
2052 *	negative value -> terminate walking.
2053 *
2054 *	The function itself returns:
2055 *	0   -> walk is complete.
2056 *	>0  -> walk is incomplete (i.e. suspended)
2057 *	<0  -> walk is terminated by an error.
2058 *
2059 *	This function is called with tb6_lock held.
2060 */
2061
2062static int fib6_walk_continue(struct fib6_walker *w)
2063{
2064	struct fib6_node *fn, *pn, *left, *right;
2065
2066	/* w->root should always be table->tb6_root */
2067	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2068
2069	for (;;) {
2070		fn = w->node;
2071		if (!fn)
2072			return 0;
2073
 
 
 
 
 
2074		switch (w->state) {
2075#ifdef CONFIG_IPV6_SUBTREES
2076		case FWS_S:
2077			if (FIB6_SUBTREE(fn)) {
2078				w->node = FIB6_SUBTREE(fn);
2079				continue;
2080			}
2081			w->state = FWS_L;
2082			fallthrough;
2083#endif
2084		case FWS_L:
2085			left = rcu_dereference_protected(fn->left, 1);
2086			if (left) {
2087				w->node = left;
2088				w->state = FWS_INIT;
2089				continue;
2090			}
2091			w->state = FWS_R;
2092			fallthrough;
2093		case FWS_R:
2094			right = rcu_dereference_protected(fn->right, 1);
2095			if (right) {
2096				w->node = right;
2097				w->state = FWS_INIT;
2098				continue;
2099			}
2100			w->state = FWS_C;
2101			w->leaf = rcu_dereference_protected(fn->leaf, 1);
2102			fallthrough;
2103		case FWS_C:
2104			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2105				int err;
2106
2107				if (w->skip) {
2108					w->skip--;
2109					goto skip;
2110				}
2111
2112				err = w->func(w);
2113				if (err)
2114					return err;
2115
2116				w->count++;
2117				continue;
2118			}
2119skip:
2120			w->state = FWS_U;
2121			fallthrough;
2122		case FWS_U:
2123			if (fn == w->root)
2124				return 0;
2125			pn = rcu_dereference_protected(fn->parent, 1);
2126			left = rcu_dereference_protected(pn->left, 1);
2127			right = rcu_dereference_protected(pn->right, 1);
2128			w->node = pn;
2129#ifdef CONFIG_IPV6_SUBTREES
2130			if (FIB6_SUBTREE(pn) == fn) {
2131				WARN_ON(!(fn->fn_flags & RTN_ROOT));
2132				w->state = FWS_L;
2133				continue;
2134			}
2135#endif
2136			if (left == fn) {
2137				w->state = FWS_R;
2138				continue;
2139			}
2140			if (right == fn) {
2141				w->state = FWS_C;
2142				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2143				continue;
2144			}
2145#if RT6_DEBUG >= 2
2146			WARN_ON(1);
2147#endif
2148		}
2149	}
2150}
2151
2152static int fib6_walk(struct net *net, struct fib6_walker *w)
2153{
2154	int res;
2155
2156	w->state = FWS_INIT;
2157	w->node = w->root;
2158
2159	fib6_walker_link(net, w);
2160	res = fib6_walk_continue(w);
2161	if (res <= 0)
2162		fib6_walker_unlink(net, w);
2163	return res;
2164}
2165
2166static int fib6_clean_node(struct fib6_walker *w)
2167{
2168	int res;
2169	struct fib6_info *rt;
2170	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2171	struct nl_info info = {
2172		.nl_net = c->net,
2173		.skip_notify = c->skip_notify,
2174	};
2175
2176	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2177	    READ_ONCE(w->node->fn_sernum) != c->sernum)
2178		WRITE_ONCE(w->node->fn_sernum, c->sernum);
2179
2180	if (!c->func) {
2181		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2182		w->leaf = NULL;
2183		return 0;
2184	}
2185
2186	for_each_fib6_walker_rt(w) {
2187		res = c->func(rt, c->arg);
2188		if (res == -1) {
2189			w->leaf = rt;
2190			res = fib6_del(rt, &info);
2191			if (res) {
2192#if RT6_DEBUG >= 2
2193				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2194					 __func__, rt,
2195					 rcu_access_pointer(rt->fib6_node),
2196					 res);
2197#endif
2198				continue;
2199			}
2200			return 0;
2201		} else if (res == -2) {
2202			if (WARN_ON(!rt->fib6_nsiblings))
2203				continue;
2204			rt = list_last_entry(&rt->fib6_siblings,
2205					     struct fib6_info, fib6_siblings);
2206			continue;
2207		}
2208		WARN_ON(res != 0);
2209	}
2210	w->leaf = rt;
2211	return 0;
2212}
2213
2214/*
2215 *	Convenient frontend to tree walker.
2216 *
2217 *	func is called on each route.
2218 *		It may return -2 -> skip multipath route.
2219 *			      -1 -> delete this route.
2220 *		              0  -> continue walking
 
 
 
2221 */
2222
2223static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2224			    int (*func)(struct fib6_info *, void *arg),
2225			    int sernum, void *arg, bool skip_notify)
2226{
2227	struct fib6_cleaner c;
2228
2229	c.w.root = root;
2230	c.w.func = fib6_clean_node;
 
2231	c.w.count = 0;
2232	c.w.skip = 0;
2233	c.w.skip_in_node = 0;
2234	c.func = func;
2235	c.sernum = sernum;
2236	c.arg = arg;
2237	c.net = net;
2238	c.skip_notify = skip_notify;
2239
2240	fib6_walk(net, &c.w);
2241}
2242
2243static void __fib6_clean_all(struct net *net,
2244			     int (*func)(struct fib6_info *, void *),
2245			     int sernum, void *arg, bool skip_notify)
2246{
2247	struct fib6_table *table;
 
2248	struct hlist_head *head;
2249	unsigned int h;
2250
2251	rcu_read_lock();
2252	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2253		head = &net->ipv6.fib_table_hash[h];
2254		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2255			spin_lock_bh(&table->tb6_lock);
2256			fib6_clean_tree(net, &table->tb6_root,
2257					func, sernum, arg, skip_notify);
2258			spin_unlock_bh(&table->tb6_lock);
2259		}
2260	}
2261	rcu_read_unlock();
2262}
2263
2264void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2265		    void *arg)
2266{
2267	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2268}
 
 
2269
2270void fib6_clean_all_skip_notify(struct net *net,
2271				int (*func)(struct fib6_info *, void *),
2272				void *arg)
2273{
2274	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2275}
2276
2277static void fib6_flush_trees(struct net *net)
 
2278{
2279	int new_sernum = fib6_new_sernum(net);
2280
2281	__fib6_clean_all(net, NULL, new_sernum, NULL, false);
2282}
2283
2284/*
2285 *	Garbage collection
2286 */
2287
2288static int fib6_age(struct fib6_info *rt, void *arg)
 
 
 
 
 
 
2289{
2290	struct fib6_gc_args *gc_args = arg;
2291	unsigned long now = jiffies;
2292
2293	/*
2294	 *	check addrconf expiration here.
2295	 *	Routes are expired even if they are in use.
 
 
 
2296	 */
2297
2298	if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2299		if (time_after(now, rt->expires)) {
2300			RT6_TRACE("expiring %p\n", rt);
2301			return -1;
2302		}
2303		gc_args->more++;
 
 
 
 
 
 
 
 
 
 
 
 
2304	}
2305
2306	/*	Also age clones in the exception table.
2307	 *	Note, that clones are aged out
2308	 *	only if they are not in use now.
2309	 */
2310	rt6_age_exceptions(rt, gc_args, now);
2311
2312	return 0;
2313}
2314
2315void fib6_run_gc(unsigned long expires, struct net *net, bool force)
 
 
2316{
2317	struct fib6_gc_args gc_args;
2318	unsigned long now;
 
 
 
 
 
 
 
 
 
2319
2320	if (force) {
2321		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2322	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2323		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2324		return;
2325	}
2326	gc_args.timeout = expires ? (int)expires :
2327			  net->ipv6.sysctl.ip6_rt_gc_interval;
2328	gc_args.more = 0;
2329
2330	fib6_clean_all(net, fib6_age, &gc_args);
2331	now = jiffies;
2332	net->ipv6.ip6_rt_last_gc = now;
2333
2334	if (gc_args.more)
2335		mod_timer(&net->ipv6.ip6_fib_timer,
2336			  round_jiffies(now
2337					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2338	else
2339		del_timer(&net->ipv6.ip6_fib_timer);
2340	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2341}
2342
2343static void fib6_gc_timer_cb(struct timer_list *t)
2344{
2345	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2346
2347	fib6_run_gc(0, arg, true);
2348}
2349
2350static int __net_init fib6_net_init(struct net *net)
2351{
2352	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2353	int err;
2354
2355	err = fib6_notifier_init(net);
2356	if (err)
2357		return err;
2358
2359	/* Default to 3-tuple */
2360	net->ipv6.sysctl.multipath_hash_fields =
2361		FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK;
2362
2363	spin_lock_init(&net->ipv6.fib6_gc_lock);
2364	rwlock_init(&net->ipv6.fib6_walker_lock);
2365	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2366	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2367
2368	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2369	if (!net->ipv6.rt6_stats)
2370		goto out_notifier;
2371
2372	/* Avoid false sharing : Use at least a full cache line */
2373	size = max_t(size_t, size, L1_CACHE_BYTES);
2374
2375	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2376	if (!net->ipv6.fib_table_hash)
2377		goto out_rt6_stats;
2378
2379	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2380					  GFP_KERNEL);
2381	if (!net->ipv6.fib6_main_tbl)
2382		goto out_fib_table_hash;
2383
2384	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2385	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2386			   net->ipv6.fib6_null_entry);
2387	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2388		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2389	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2390
2391#ifdef CONFIG_IPV6_MULTIPLE_TABLES
2392	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2393					   GFP_KERNEL);
2394	if (!net->ipv6.fib6_local_tbl)
2395		goto out_fib6_main_tbl;
2396	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2397	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2398			   net->ipv6.fib6_null_entry);
2399	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2400		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2401	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2402#endif
2403	fib6_tables_init(net);
2404
2405	return 0;
2406
2407#ifdef CONFIG_IPV6_MULTIPLE_TABLES
2408out_fib6_main_tbl:
2409	kfree(net->ipv6.fib6_main_tbl);
2410#endif
2411out_fib_table_hash:
2412	kfree(net->ipv6.fib_table_hash);
2413out_rt6_stats:
2414	kfree(net->ipv6.rt6_stats);
2415out_notifier:
2416	fib6_notifier_exit(net);
2417	return -ENOMEM;
2418}
2419
2420static void fib6_net_exit(struct net *net)
2421{
2422	unsigned int i;
2423
2424	del_timer_sync(&net->ipv6.ip6_fib_timer);
2425
2426	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2427		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2428		struct hlist_node *tmp;
2429		struct fib6_table *tb;
2430
2431		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2432			hlist_del(&tb->tb6_hlist);
2433			fib6_free_table(tb);
2434		}
2435	}
2436
2437	kfree(net->ipv6.fib_table_hash);
2438	kfree(net->ipv6.rt6_stats);
2439	fib6_notifier_exit(net);
2440}
2441
2442static struct pernet_operations fib6_net_ops = {
2443	.init = fib6_net_init,
2444	.exit = fib6_net_exit,
2445};
2446
2447int __init fib6_init(void)
2448{
2449	int ret = -ENOMEM;
2450
2451	fib6_node_kmem = kmem_cache_create("fib6_nodes",
2452					   sizeof(struct fib6_node), 0,
2453					   SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT,
2454					   NULL);
2455	if (!fib6_node_kmem)
2456		goto out;
2457
2458	ret = register_pernet_subsys(&fib6_net_ops);
2459	if (ret)
2460		goto out_kmem_cache_create;
2461
2462	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2463				   inet6_dump_fib, 0);
2464	if (ret)
2465		goto out_unregister_subsys;
2466
2467	__fib6_flush_trees = fib6_flush_trees;
2468out:
2469	return ret;
2470
2471out_unregister_subsys:
2472	unregister_pernet_subsys(&fib6_net_ops);
2473out_kmem_cache_create:
2474	kmem_cache_destroy(fib6_node_kmem);
2475	goto out;
2476}
2477
2478void fib6_gc_cleanup(void)
2479{
2480	unregister_pernet_subsys(&fib6_net_ops);
2481	kmem_cache_destroy(fib6_node_kmem);
2482}
2483
2484#ifdef CONFIG_PROC_FS
2485static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2486{
2487	struct fib6_info *rt = v;
2488	struct ipv6_route_iter *iter = seq->private;
2489	struct fib6_nh *fib6_nh = rt->fib6_nh;
2490	unsigned int flags = rt->fib6_flags;
2491	const struct net_device *dev;
2492
2493	if (rt->nh)
2494		fib6_nh = nexthop_fib6_nh_bh(rt->nh);
2495
2496	seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2497
2498#ifdef CONFIG_IPV6_SUBTREES
2499	seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2500#else
2501	seq_puts(seq, "00000000000000000000000000000000 00 ");
2502#endif
2503	if (fib6_nh->fib_nh_gw_family) {
2504		flags |= RTF_GATEWAY;
2505		seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2506	} else {
2507		seq_puts(seq, "00000000000000000000000000000000");
2508	}
2509
2510	dev = fib6_nh->fib_nh_dev;
2511	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2512		   rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2513		   flags, dev ? dev->name : "");
2514	iter->w.leaf = NULL;
2515	return 0;
2516}
2517
2518static int ipv6_route_yield(struct fib6_walker *w)
2519{
2520	struct ipv6_route_iter *iter = w->args;
2521
2522	if (!iter->skip)
2523		return 1;
2524
2525	do {
2526		iter->w.leaf = rcu_dereference_protected(
2527				iter->w.leaf->fib6_next,
2528				lockdep_is_held(&iter->tbl->tb6_lock));
2529		iter->skip--;
2530		if (!iter->skip && iter->w.leaf)
2531			return 1;
2532	} while (iter->w.leaf);
2533
2534	return 0;
2535}
2536
2537static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2538				      struct net *net)
2539{
2540	memset(&iter->w, 0, sizeof(iter->w));
2541	iter->w.func = ipv6_route_yield;
2542	iter->w.root = &iter->tbl->tb6_root;
2543	iter->w.state = FWS_INIT;
2544	iter->w.node = iter->w.root;
2545	iter->w.args = iter;
2546	iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2547	INIT_LIST_HEAD(&iter->w.lh);
2548	fib6_walker_link(net, &iter->w);
2549}
2550
2551static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2552						    struct net *net)
2553{
2554	unsigned int h;
2555	struct hlist_node *node;
2556
2557	if (tbl) {
2558		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2559		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2560	} else {
2561		h = 0;
2562		node = NULL;
2563	}
2564
2565	while (!node && h < FIB6_TABLE_HASHSZ) {
2566		node = rcu_dereference_bh(
2567			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2568	}
2569	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2570}
2571
2572static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2573{
2574	int sernum = READ_ONCE(iter->w.root->fn_sernum);
2575
2576	if (iter->sernum != sernum) {
2577		iter->sernum = sernum;
2578		iter->w.state = FWS_INIT;
2579		iter->w.node = iter->w.root;
2580		WARN_ON(iter->w.skip);
2581		iter->w.skip = iter->w.count;
2582	}
2583}
2584
2585static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2586{
2587	int r;
2588	struct fib6_info *n;
2589	struct net *net = seq_file_net(seq);
2590	struct ipv6_route_iter *iter = seq->private;
2591
2592	++(*pos);
2593	if (!v)
2594		goto iter_table;
2595
2596	n = rcu_dereference_bh(((struct fib6_info *)v)->fib6_next);
2597	if (n)
2598		return n;
2599
2600iter_table:
2601	ipv6_route_check_sernum(iter);
2602	spin_lock_bh(&iter->tbl->tb6_lock);
2603	r = fib6_walk_continue(&iter->w);
2604	spin_unlock_bh(&iter->tbl->tb6_lock);
2605	if (r > 0) {
2606		return iter->w.leaf;
2607	} else if (r < 0) {
2608		fib6_walker_unlink(net, &iter->w);
2609		return NULL;
2610	}
2611	fib6_walker_unlink(net, &iter->w);
2612
2613	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2614	if (!iter->tbl)
2615		return NULL;
2616
2617	ipv6_route_seq_setup_walk(iter, net);
2618	goto iter_table;
2619}
2620
2621static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2622	__acquires(RCU_BH)
2623{
2624	struct net *net = seq_file_net(seq);
2625	struct ipv6_route_iter *iter = seq->private;
2626
2627	rcu_read_lock_bh();
2628	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2629	iter->skip = *pos;
2630
2631	if (iter->tbl) {
2632		loff_t p = 0;
2633
2634		ipv6_route_seq_setup_walk(iter, net);
2635		return ipv6_route_seq_next(seq, NULL, &p);
2636	} else {
2637		return NULL;
2638	}
2639}
2640
2641static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2642{
2643	struct fib6_walker *w = &iter->w;
2644	return w->node && !(w->state == FWS_U && w->node == w->root);
2645}
2646
2647static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2648	__releases(RCU_BH)
2649{
2650	struct net *net = seq_file_net(seq);
2651	struct ipv6_route_iter *iter = seq->private;
2652
2653	if (ipv6_route_iter_active(iter))
2654		fib6_walker_unlink(net, &iter->w);
2655
2656	rcu_read_unlock_bh();
2657}
2658
2659#if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
2660static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2661				    struct bpf_iter_meta *meta,
2662				    void *v)
2663{
2664	struct bpf_iter__ipv6_route ctx;
2665
2666	ctx.meta = meta;
2667	ctx.rt = v;
2668	return bpf_iter_run_prog(prog, &ctx);
2669}
2670
2671static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2672{
2673	struct ipv6_route_iter *iter = seq->private;
2674	struct bpf_iter_meta meta;
2675	struct bpf_prog *prog;
2676	int ret;
2677
2678	meta.seq = seq;
2679	prog = bpf_iter_get_info(&meta, false);
2680	if (!prog)
2681		return ipv6_route_native_seq_show(seq, v);
2682
2683	ret = ipv6_route_prog_seq_show(prog, &meta, v);
2684	iter->w.leaf = NULL;
2685
2686	return ret;
2687}
2688
2689static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2690{
2691	struct bpf_iter_meta meta;
2692	struct bpf_prog *prog;
2693
2694	if (!v) {
2695		meta.seq = seq;
2696		prog = bpf_iter_get_info(&meta, true);
2697		if (prog)
2698			(void)ipv6_route_prog_seq_show(prog, &meta, v);
2699	}
2700
2701	ipv6_route_native_seq_stop(seq, v);
2702}
2703#else
2704static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2705{
2706	return ipv6_route_native_seq_show(seq, v);
2707}
2708
2709static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2710{
2711	ipv6_route_native_seq_stop(seq, v);
2712}
2713#endif
2714
2715const struct seq_operations ipv6_route_seq_ops = {
2716	.start	= ipv6_route_seq_start,
2717	.next	= ipv6_route_seq_next,
2718	.stop	= ipv6_route_seq_stop,
2719	.show	= ipv6_route_seq_show
2720};
2721#endif /* CONFIG_PROC_FS */