Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *	Linux INET6 implementation
   3 *	Forwarding Information Database
   4 *
   5 *	Authors:
   6 *	Pedro Roque		<roque@di.fc.ul.pt>
   7 *
   8 *	This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
 
  12 */
  13
  14/*
  15 * 	Changes:
  16 * 	Yuji SEKIYA @USAGI:	Support default route on router node;
  17 * 				remove ip6_null_entry from the top of
  18 * 				routing table.
  19 * 	Ville Nuorvala:		Fixed routing subtrees.
  20 */
  21#include <linux/errno.h>
  22#include <linux/types.h>
  23#include <linux/net.h>
  24#include <linux/route.h>
  25#include <linux/netdevice.h>
  26#include <linux/in6.h>
  27#include <linux/init.h>
  28#include <linux/list.h>
  29#include <linux/slab.h>
  30
  31#ifdef 	CONFIG_PROC_FS
  32#include <linux/proc_fs.h>
  33#endif
  34
  35#include <net/ipv6.h>
  36#include <net/ndisc.h>
  37#include <net/addrconf.h>
 
 
  38
  39#include <net/ip6_fib.h>
  40#include <net/ip6_route.h>
  41
  42#define RT6_DEBUG 2
  43
  44#if RT6_DEBUG >= 3
  45#define RT6_TRACE(x...) printk(KERN_DEBUG x)
  46#else
  47#define RT6_TRACE(x...) do { ; } while (0)
  48#endif
  49
  50static struct kmem_cache * fib6_node_kmem __read_mostly;
  51
  52enum fib_walk_state_t
  53{
  54#ifdef CONFIG_IPV6_SUBTREES
  55	FWS_S,
  56#endif
  57	FWS_L,
  58	FWS_R,
  59	FWS_C,
  60	FWS_U
  61};
  62
  63struct fib6_cleaner_t
  64{
  65	struct fib6_walker_t w;
  66	struct net *net;
  67	int (*func)(struct rt6_info *, void *arg);
 
  68	void *arg;
 
  69};
  70
  71static DEFINE_RWLOCK(fib6_walker_lock);
  72
  73#ifdef CONFIG_IPV6_SUBTREES
  74#define FWS_INIT FWS_S
  75#else
  76#define FWS_INIT FWS_L
  77#endif
  78
  79static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
  80			      struct rt6_info *rt);
  81static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
  82static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
  83static int fib6_walk(struct fib6_walker_t *w);
  84static int fib6_walk_continue(struct fib6_walker_t *w);
 
 
  85
  86/*
  87 *	A routing update causes an increase of the serial number on the
  88 *	affected subtree. This allows for cached routes to be asynchronously
  89 *	tested when modifications are made to the destination cache as a
  90 *	result of redirects, path MTU changes, etc.
  91 */
  92
  93static __u32 rt_sernum;
  94
  95static void fib6_gc_timer_cb(unsigned long arg);
  96
  97static LIST_HEAD(fib6_walkers);
  98#define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
  99
 100static inline void fib6_walker_link(struct fib6_walker_t *w)
 101{
 102	write_lock_bh(&fib6_walker_lock);
 103	list_add(&w->lh, &fib6_walkers);
 104	write_unlock_bh(&fib6_walker_lock);
 105}
 106
 107static inline void fib6_walker_unlink(struct fib6_walker_t *w)
 108{
 109	write_lock_bh(&fib6_walker_lock);
 110	list_del(&w->lh);
 111	write_unlock_bh(&fib6_walker_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 112}
 113static __inline__ u32 fib6_new_sernum(void)
 
 
 
 
 
 114{
 115	u32 n = ++rt_sernum;
 116	if ((__s32)n <= 0)
 117		rt_sernum = n = 1;
 118	return n;
 
 
 119}
 120
 121/*
 122 *	Auxiliary address test functions for the radix tree.
 123 *
 124 *	These assume a 32bit processor (although it will work on
 125 *	64bit processors)
 126 */
 127
 128/*
 129 *	test bit
 130 */
 131#if defined(__LITTLE_ENDIAN)
 132# define BITOP_BE32_SWIZZLE	(0x1F & ~7)
 133#else
 134# define BITOP_BE32_SWIZZLE	0
 135#endif
 136
 137static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
 138{
 139	const __be32 *addr = token;
 140	/*
 141	 * Here,
 142	 * 	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
 143	 * is optimized version of
 144	 *	htonl(1 << ((~fn_bit)&0x1F))
 145	 * See include/asm-generic/bitops/le.h.
 146	 */
 147	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
 148	       addr[fn_bit >> 5];
 149}
 150
 151static __inline__ struct fib6_node * node_alloc(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152{
 153	struct fib6_node *fn;
 154
 155	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
 
 
 156
 157	return fn;
 158}
 159
 160static __inline__ void node_free(struct fib6_node * fn)
 161{
 162	kmem_cache_free(fib6_node_kmem, fn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 163}
 164
 165static __inline__ void rt6_release(struct rt6_info *rt)
 166{
 167	if (atomic_dec_and_test(&rt->rt6i_ref))
 168		dst_free(&rt->dst);
 169}
 170
 171static void fib6_link_table(struct net *net, struct fib6_table *tb)
 172{
 173	unsigned int h;
 174
 175	/*
 176	 * Initialize table lock at a single place to give lockdep a key,
 177	 * tables aren't visible prior to being linked to the list.
 178	 */
 179	rwlock_init(&tb->tb6_lock);
 180
 181	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
 182
 183	/*
 184	 * No protection necessary, this is the only list mutatation
 185	 * operation, tables never disappear once they exist.
 186	 */
 187	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
 188}
 189
 190#ifdef CONFIG_IPV6_MULTIPLE_TABLES
 191
 192static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
 193{
 194	struct fib6_table *table;
 195
 196	table = kzalloc(sizeof(*table), GFP_ATOMIC);
 197	if (table != NULL) {
 198		table->tb6_id = id;
 199		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
 
 200		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
 
 201	}
 202
 203	return table;
 204}
 205
 206struct fib6_table *fib6_new_table(struct net *net, u32 id)
 207{
 208	struct fib6_table *tb;
 209
 210	if (id == 0)
 211		id = RT6_TABLE_MAIN;
 212	tb = fib6_get_table(net, id);
 213	if (tb)
 214		return tb;
 215
 216	tb = fib6_alloc_table(net, id);
 217	if (tb != NULL)
 218		fib6_link_table(net, tb);
 219
 220	return tb;
 221}
 
 222
 223struct fib6_table *fib6_get_table(struct net *net, u32 id)
 224{
 225	struct fib6_table *tb;
 226	struct hlist_head *head;
 227	struct hlist_node *node;
 228	unsigned int h;
 229
 230	if (id == 0)
 231		id = RT6_TABLE_MAIN;
 232	h = id & (FIB6_TABLE_HASHSZ - 1);
 233	rcu_read_lock();
 234	head = &net->ipv6.fib_table_hash[h];
 235	hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
 236		if (tb->tb6_id == id) {
 237			rcu_read_unlock();
 238			return tb;
 239		}
 240	}
 241	rcu_read_unlock();
 242
 243	return NULL;
 244}
 
 245
 246static void __net_init fib6_tables_init(struct net *net)
 247{
 248	fib6_link_table(net, net->ipv6.fib6_main_tbl);
 249	fib6_link_table(net, net->ipv6.fib6_local_tbl);
 250}
 251#else
 252
 253struct fib6_table *fib6_new_table(struct net *net, u32 id)
 254{
 255	return fib6_get_table(net, id);
 256}
 257
 258struct fib6_table *fib6_get_table(struct net *net, u32 id)
 259{
 260	  return net->ipv6.fib6_main_tbl;
 261}
 262
 263struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
 
 264				   int flags, pol_lookup_t lookup)
 265{
 266	return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267}
 268
 269static void __net_init fib6_tables_init(struct net *net)
 270{
 271	fib6_link_table(net, net->ipv6.fib6_main_tbl);
 272}
 273
 274#endif
 275
 276static int fib6_dump_node(struct fib6_walker_t *w)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277{
 278	int res;
 279	struct rt6_info *rt;
 280
 281	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
 282		res = rt6_dump_route(rt, w->args);
 283		if (res < 0) {
 284			/* Frame is full, suspend walking */
 285			w->leaf = rt;
 
 
 
 
 
 
 286			return 1;
 287		}
 288		WARN_ON(res == 0);
 
 
 
 
 
 
 
 
 
 
 289	}
 290	w->leaf = NULL;
 291	return 0;
 292}
 293
 294static void fib6_dump_end(struct netlink_callback *cb)
 295{
 296	struct fib6_walker_t *w = (void*)cb->args[2];
 
 297
 298	if (w) {
 299		if (cb->args[4]) {
 300			cb->args[4] = 0;
 301			fib6_walker_unlink(w);
 302		}
 303		cb->args[2] = 0;
 304		kfree(w);
 305	}
 306	cb->done = (void*)cb->args[3];
 307	cb->args[1] = 3;
 308}
 309
 310static int fib6_dump_done(struct netlink_callback *cb)
 311{
 312	fib6_dump_end(cb);
 313	return cb->done ? cb->done(cb) : 0;
 314}
 315
 316static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
 317			   struct netlink_callback *cb)
 318{
 319	struct fib6_walker_t *w;
 
 320	int res;
 321
 322	w = (void *)cb->args[2];
 323	w->root = &table->tb6_root;
 324
 325	if (cb->args[4] == 0) {
 326		w->count = 0;
 327		w->skip = 0;
 
 328
 329		read_lock_bh(&table->tb6_lock);
 330		res = fib6_walk(w);
 331		read_unlock_bh(&table->tb6_lock);
 332		if (res > 0) {
 333			cb->args[4] = 1;
 334			cb->args[5] = w->root->fn_sernum;
 335		}
 336	} else {
 337		if (cb->args[5] != w->root->fn_sernum) {
 338			/* Begin at the root if the tree changed */
 339			cb->args[5] = w->root->fn_sernum;
 340			w->state = FWS_INIT;
 341			w->node = w->root;
 342			w->skip = w->count;
 
 343		} else
 344			w->skip = 0;
 345
 346		read_lock_bh(&table->tb6_lock);
 347		res = fib6_walk_continue(w);
 348		read_unlock_bh(&table->tb6_lock);
 349		if (res <= 0) {
 350			fib6_walker_unlink(w);
 351			cb->args[4] = 0;
 352		}
 353	}
 354
 355	return res;
 356}
 357
 358static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
 359{
 
 
 
 360	struct net *net = sock_net(skb->sk);
 361	unsigned int h, s_h;
 362	unsigned int e = 0, s_e;
 363	struct rt6_rtnl_dump_arg arg;
 364	struct fib6_walker_t *w;
 365	struct fib6_table *tb;
 366	struct hlist_node *node;
 367	struct hlist_head *head;
 368	int res = 0;
 369
 370	s_h = cb->args[0];
 371	s_e = cb->args[1];
 
 
 
 
 
 
 
 
 
 
 372
 373	w = (void *)cb->args[2];
 374	if (w == NULL) {
 375		/* New dump:
 376		 *
 377		 * 1. hook callback destructor.
 378		 */
 379		cb->args[3] = (long)cb->done;
 380		cb->done = fib6_dump_done;
 381
 382		/*
 383		 * 2. allocate and initialize walker.
 384		 */
 385		w = kzalloc(sizeof(*w), GFP_ATOMIC);
 386		if (w == NULL)
 387			return -ENOMEM;
 388		w->func = fib6_dump_node;
 389		cb->args[2] = (long)w;
 390	}
 391
 392	arg.skb = skb;
 393	arg.cb = cb;
 394	arg.net = net;
 395	w->args = &arg;
 396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397	rcu_read_lock();
 398	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
 399		e = 0;
 400		head = &net->ipv6.fib_table_hash[h];
 401		hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
 402			if (e < s_e)
 403				goto next;
 404			res = fib6_dump_table(tb, skb, cb);
 405			if (res != 0)
 406				goto out;
 407next:
 408			e++;
 409		}
 410	}
 411out:
 412	rcu_read_unlock();
 413	cb->args[1] = e;
 414	cb->args[0] = h;
 415
 416	res = res < 0 ? res : skb->len;
 417	if (res <= 0)
 418		fib6_dump_end(cb);
 419	return res;
 420}
 421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 422/*
 423 *	Routing Table
 424 *
 425 *	return the appropriate node for a routing tree "add" operation
 426 *	by either creating and inserting or by returning an existing
 427 *	node.
 428 */
 429
 430static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
 431				     int addrlen, int plen,
 432				     int offset)
 
 
 
 
 433{
 434	struct fib6_node *fn, *in, *ln;
 435	struct fib6_node *pn = NULL;
 436	struct rt6key *key;
 437	int	bit;
 438	__be32	dir = 0;
 439	__u32	sernum = fib6_new_sernum();
 440
 441	RT6_TRACE("fib6_add_1\n");
 442
 443	/* insert node in tree */
 444
 445	fn = root;
 446
 447	do {
 448		key = (struct rt6key *)((u8 *)fn->leaf + offset);
 
 
 449
 450		/*
 451		 *	Prefix match
 452		 */
 453		if (plen < fn->fn_bit ||
 454		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
 
 
 
 
 
 
 
 
 
 455			goto insert_above;
 
 456
 457		/*
 458		 *	Exact match ?
 459		 */
 460
 461		if (plen == fn->fn_bit) {
 462			/* clean up an intermediate node */
 463			if ((fn->fn_flags & RTN_RTINFO) == 0) {
 464				rt6_release(fn->leaf);
 465				fn->leaf = NULL;
 
 
 
 
 
 466			}
 467
 468			fn->fn_sernum = sernum;
 469
 470			return fn;
 471		}
 472
 473		/*
 474		 *	We have more bits to go
 475		 */
 476
 477		/* Try to walk down on tree. */
 478		fn->fn_sernum = sernum;
 479		dir = addr_bit_set(addr, fn->fn_bit);
 480		pn = fn;
 481		fn = dir ? fn->right: fn->left;
 
 
 
 
 482	} while (fn);
 483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484	/*
 485	 *	We walked to the bottom of tree.
 486	 *	Create new leaf node without children.
 487	 */
 488
 489	ln = node_alloc();
 490
 491	if (ln == NULL)
 492		return NULL;
 493	ln->fn_bit = plen;
 494
 495	ln->parent = pn;
 496	ln->fn_sernum = sernum;
 497
 498	if (dir)
 499		pn->right = ln;
 500	else
 501		pn->left  = ln;
 502
 503	return ln;
 504
 505
 506insert_above:
 507	/*
 508	 * split since we don't have a common prefix anymore or
 509	 * we have a less significant route.
 510	 * we've to insert an intermediate node on the list
 511	 * this new node will point to the one we need to create
 512	 * and the current
 513	 */
 514
 515	pn = fn->parent;
 
 516
 517	/* find 1st bit in difference between the 2 addrs.
 518
 519	   See comment in __ipv6_addr_diff: bit may be an invalid value,
 520	   but if it is >= plen, the value is ignored in any case.
 521	 */
 522
 523	bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
 524
 525	/*
 526	 *		(intermediate)[in]
 527	 *	          /	   \
 528	 *	(new leaf node)[ln] (old node)[fn]
 529	 */
 530	if (plen > bit) {
 531		in = node_alloc();
 532		ln = node_alloc();
 533
 534		if (in == NULL || ln == NULL) {
 535			if (in)
 536				node_free(in);
 537			if (ln)
 538				node_free(ln);
 539			return NULL;
 540		}
 541
 542		/*
 543		 * new intermediate node.
 544		 * RTN_RTINFO will
 545		 * be off since that an address that chooses one of
 546		 * the branches would not match less specific routes
 547		 * in the other branch
 548		 */
 549
 550		in->fn_bit = bit;
 551
 552		in->parent = pn;
 553		in->leaf = fn->leaf;
 554		atomic_inc(&in->leaf->rt6i_ref);
 555
 556		in->fn_sernum = sernum;
 557
 558		/* update parent pointer */
 559		if (dir)
 560			pn->right = in;
 561		else
 562			pn->left  = in;
 563
 564		ln->fn_bit = plen;
 565
 566		ln->parent = in;
 567		fn->parent = in;
 568
 569		ln->fn_sernum = sernum;
 570
 571		if (addr_bit_set(addr, bit)) {
 572			in->right = ln;
 573			in->left  = fn;
 574		} else {
 575			in->left  = ln;
 576			in->right = fn;
 577		}
 578	} else { /* plen <= bit */
 579
 580		/*
 581		 *		(new leaf node)[ln]
 582		 *	          /	   \
 583		 *	     (old node)[fn] NULL
 584		 */
 585
 586		ln = node_alloc();
 587
 588		if (ln == NULL)
 589			return NULL;
 590
 591		ln->fn_bit = plen;
 592
 593		ln->parent = pn;
 594
 595		ln->fn_sernum = sernum;
 
 
 
 
 
 596
 597		if (dir)
 598			pn->right = ln;
 599		else
 600			pn->left  = ln;
 
 
 
 601
 602		if (addr_bit_set(&key->addr, plen))
 603			ln->right = fn;
 604		else
 605			ln->left  = fn;
 
 606
 607		fn->parent = ln;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 608	}
 609	return ln;
 610}
 611
 612/*
 613 *	Insert routing information in a node.
 614 */
 615
 616static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
 617			    struct nl_info *info)
 618{
 619	struct rt6_info *iter = NULL;
 620	struct rt6_info **ins;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621
 622	ins = &fn->leaf;
 623
 624	for (iter = fn->leaf; iter; iter=iter->dst.rt6_next) {
 
 
 625		/*
 626		 *	Search for duplicates
 627		 */
 628
 629		if (iter->rt6i_metric == rt->rt6i_metric) {
 630			/*
 631			 *	Same priority level
 632			 */
 
 
 
 633
 634			if (iter->rt6i_dev == rt->rt6i_dev &&
 635			    iter->rt6i_idev == rt->rt6i_idev &&
 636			    ipv6_addr_equal(&iter->rt6i_gateway,
 637					    &rt->rt6i_gateway)) {
 638				if (!(iter->rt6i_flags&RTF_EXPIRES))
 639					return -EEXIST;
 640				iter->rt6i_expires = rt->rt6i_expires;
 641				if (!(rt->rt6i_flags&RTF_EXPIRES)) {
 642					iter->rt6i_flags &= ~RTF_EXPIRES;
 643					iter->rt6i_expires = 0;
 644				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645				return -EEXIST;
 646			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 647		}
 648
 649		if (iter->rt6i_metric > rt->rt6i_metric)
 650			break;
 651
 652		ins = &iter->dst.rt6_next;
 
 
 
 
 
 
 
 
 
 653	}
 654
 655	/* Reset round-robin state, if necessary */
 656	if (ins == &fn->leaf)
 657		fn->rr_ptr = NULL;
 658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659	/*
 660	 *	insert node
 661	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662
 663	rt->dst.rt6_next = iter;
 664	*ins = rt;
 665	rt->rt6i_node = fn;
 666	atomic_inc(&rt->rt6i_ref);
 667	inet6_rt_notify(RTM_NEWROUTE, rt, info);
 668	info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
 669
 670	if ((fn->fn_flags & RTN_RTINFO) == 0) {
 671		info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
 672		fn->fn_flags |= RTN_RTINFO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 673	}
 674
 675	return 0;
 676}
 677
 678static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
 679{
 680	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
 681	    (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
 682		mod_timer(&net->ipv6.ip6_fib_timer,
 683			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
 684}
 685
 686void fib6_force_start_gc(struct net *net)
 687{
 688	if (!timer_pending(&net->ipv6.ip6_fib_timer))
 689		mod_timer(&net->ipv6.ip6_fib_timer,
 690			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
 691}
 692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 693/*
 694 *	Add routing information to the routing tree.
 695 *	<destination addr>/<source addr>
 696 *	with source addr info in sub-trees
 
 697 */
 698
 699int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
 
 700{
 
 701	struct fib6_node *fn, *pn = NULL;
 702	int err = -ENOMEM;
 703
 704	fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
 705			rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
 706
 707	if (fn == NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 708		goto out;
 
 709
 710	pn = fn;
 711
 712#ifdef CONFIG_IPV6_SUBTREES
 713	if (rt->rt6i_src.plen) {
 714		struct fib6_node *sn;
 715
 716		if (fn->subtree == NULL) {
 717			struct fib6_node *sfn;
 718
 719			/*
 720			 * Create subtree.
 721			 *
 722			 *		fn[main tree]
 723			 *		|
 724			 *		sfn[subtree root]
 725			 *		   \
 726			 *		    sn[new leaf node]
 727			 */
 728
 729			/* Create subtree root node */
 730			sfn = node_alloc();
 731			if (sfn == NULL)
 732				goto st_failure;
 733
 734			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
 735			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
 
 736			sfn->fn_flags = RTN_ROOT;
 737			sfn->fn_sernum = fib6_new_sernum();
 738
 739			/* Now add the first leaf node to new subtree */
 740
 741			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
 742					sizeof(struct in6_addr), rt->rt6i_src.plen,
 743					offsetof(struct rt6_info, rt6i_src));
 
 744
 745			if (sn == NULL) {
 746				/* If it is failed, discard just allocated
 747				   root, and then (in st_failure) stale node
 748				   in main tree.
 749				 */
 750				node_free(sfn);
 751				goto st_failure;
 
 752			}
 753
 754			/* Now link new subtree to main tree */
 755			sfn->parent = fn;
 756			fn->subtree = sfn;
 757		} else {
 758			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
 759					sizeof(struct in6_addr), rt->rt6i_src.plen,
 760					offsetof(struct rt6_info, rt6i_src));
 761
 762			if (sn == NULL)
 763				goto st_failure;
 
 
 
 764		}
 765
 766		if (fn->leaf == NULL) {
 767			fn->leaf = rt;
 768			atomic_inc(&rt->rt6i_ref);
 
 
 
 
 
 
 769		}
 770		fn = sn;
 771	}
 772#endif
 773
 774	err = fib6_add_rt2node(fn, rt, info);
 775
 776	if (err == 0) {
 
 
 777		fib6_start_gc(info->nl_net, rt);
 778		if (!(rt->rt6i_flags&RTF_CACHE))
 779			fib6_prune_clones(info->nl_net, pn, rt);
 780	}
 781
 782out:
 783	if (err) {
 784#ifdef CONFIG_IPV6_SUBTREES
 785		/*
 786		 * If fib6_add_1 has cleared the old leaf pointer in the
 787		 * super-tree leaf node we have to find a new one for it.
 788		 */
 789		if (pn != fn && pn->leaf == rt) {
 790			pn->leaf = NULL;
 791			atomic_dec(&rt->rt6i_ref);
 792		}
 793		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
 794			pn->leaf = fib6_find_prefix(info->nl_net, pn);
 795#if RT6_DEBUG >= 2
 796			if (!pn->leaf) {
 797				WARN_ON(pn->leaf == NULL);
 798				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
 799			}
 
 
 
 
 
 
 
 
 
 800#endif
 801			atomic_inc(&pn->leaf->rt6i_ref);
 
 
 802		}
 803#endif
 804		dst_free(&rt->dst);
 805	}
 806	return err;
 807
 808#ifdef CONFIG_IPV6_SUBTREES
 809	/* Subtree creation failed, probably main tree node
 810	   is orphan. If it is, shoot it.
 
 
 
 
 811	 */
 812st_failure:
 813	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
 814		fib6_repair_tree(info->nl_net, fn);
 815	dst_free(&rt->dst);
 
 816	return err;
 817#endif
 818}
 819
 820/*
 821 *	Routing tree lookup
 822 *
 823 */
 824
 825struct lookup_args {
 826	int		offset;		/* key offset on rt6_info	*/
 827	const struct in6_addr	*addr;		/* search key			*/
 828};
 829
 830static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
 831					struct lookup_args *args)
 832{
 833	struct fib6_node *fn;
 834	__be32 dir;
 835
 836	if (unlikely(args->offset == 0))
 837		return NULL;
 838
 839	/*
 840	 *	Descend on a tree
 841	 */
 842
 843	fn = root;
 844
 845	for (;;) {
 846		struct fib6_node *next;
 847
 848		dir = addr_bit_set(args->addr, fn->fn_bit);
 849
 850		next = dir ? fn->right : fn->left;
 
 851
 852		if (next) {
 853			fn = next;
 854			continue;
 855		}
 856
 857		break;
 858	}
 859
 860	while(fn) {
 861		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
 
 
 
 862			struct rt6key *key;
 863
 864			key = (struct rt6key *) ((u8 *) fn->leaf +
 865						 args->offset);
 
 
 866
 867			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
 868#ifdef CONFIG_IPV6_SUBTREES
 869				if (fn->subtree)
 870					fn = fib6_lookup_1(fn->subtree, args + 1);
 
 
 
 
 
 
 871#endif
 872				if (!fn || fn->fn_flags & RTN_RTINFO)
 873					return fn;
 874			}
 875		}
 876
 877		if (fn->fn_flags & RTN_ROOT)
 878			break;
 879
 880		fn = fn->parent;
 881	}
 882
 883	return NULL;
 884}
 885
 886struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
 887			       const struct in6_addr *saddr)
 
 
 
 888{
 889	struct fib6_node *fn;
 890	struct lookup_args args[] = {
 891		{
 892			.offset = offsetof(struct rt6_info, rt6i_dst),
 893			.addr = daddr,
 894		},
 895#ifdef CONFIG_IPV6_SUBTREES
 896		{
 897			.offset = offsetof(struct rt6_info, rt6i_src),
 898			.addr = saddr,
 899		},
 900#endif
 901		{
 902			.offset = 0,	/* sentinel */
 903		}
 904	};
 905
 906	fn = fib6_lookup_1(root, daddr ? args : args + 1);
 907
 908	if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
 909		fn = root;
 910
 911	return fn;
 912}
 913
 914/*
 915 *	Get node with specified destination prefix (and source prefix,
 916 *	if subtrees are used)
 
 
 
 
 
 
 917 */
 918
 919
 920static struct fib6_node * fib6_locate_1(struct fib6_node *root,
 921					const struct in6_addr *addr,
 922					int plen, int offset)
 
 923{
 924	struct fib6_node *fn;
 925
 926	for (fn = root; fn ; ) {
 927		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
 
 
 
 
 
 
 
 
 
 
 
 928
 929		/*
 930		 *	Prefix match
 931		 */
 932		if (plen < fn->fn_bit ||
 933		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
 934			return NULL;
 935
 936		if (plen == fn->fn_bit)
 937			return fn;
 938
 
 
 
 
 939		/*
 940		 *	We have more bits to go
 941		 */
 942		if (addr_bit_set(addr, fn->fn_bit))
 943			fn = fn->right;
 944		else
 945			fn = fn->left;
 946	}
 947	return NULL;
 
 
 
 
 948}
 949
 950struct fib6_node * fib6_locate(struct fib6_node *root,
 951			       const struct in6_addr *daddr, int dst_len,
 952			       const struct in6_addr *saddr, int src_len)
 
 953{
 954	struct fib6_node *fn;
 955
 956	fn = fib6_locate_1(root, daddr, dst_len,
 957			   offsetof(struct rt6_info, rt6i_dst));
 
 958
 959#ifdef CONFIG_IPV6_SUBTREES
 960	if (src_len) {
 961		WARN_ON(saddr == NULL);
 962		if (fn && fn->subtree)
 963			fn = fib6_locate_1(fn->subtree, saddr, src_len,
 964					   offsetof(struct rt6_info, rt6i_src));
 
 
 
 
 
 
 965	}
 966#endif
 967
 968	if (fn && fn->fn_flags&RTN_RTINFO)
 969		return fn;
 970
 971	return NULL;
 972}
 973
 974
 975/*
 976 *	Deletion
 977 *
 978 */
 979
 980static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
 981{
 982	if (fn->fn_flags&RTN_ROOT)
 983		return net->ipv6.ip6_null_entry;
 984
 985	while(fn) {
 986		if(fn->left)
 987			return fn->left->leaf;
 988
 989		if(fn->right)
 990			return fn->right->leaf;
 
 
 
 
 
 
 
 
 
 991
 992		fn = FIB6_SUBTREE(fn);
 993	}
 994	return NULL;
 995}
 996
 997/*
 998 *	Called to trim the tree of intermediate nodes when possible. "fn"
 999 *	is the node we want to try and remove.
 
1000 */
1001
1002static struct fib6_node *fib6_repair_tree(struct net *net,
1003					   struct fib6_node *fn)
 
1004{
1005	int children;
1006	int nstate;
1007	struct fib6_node *child, *pn;
1008	struct fib6_walker_t *w;
1009	int iter = 0;
1010
 
 
 
 
 
 
1011	for (;;) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1013		iter++;
1014
1015		WARN_ON(fn->fn_flags & RTN_RTINFO);
1016		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1017		WARN_ON(fn->leaf != NULL);
1018
1019		children = 0;
1020		child = NULL;
1021		if (fn->right) child = fn->right, children |= 1;
1022		if (fn->left) child = fn->left, children |= 2;
 
 
1023
1024		if (children == 3 || FIB6_SUBTREE(fn)
1025#ifdef CONFIG_IPV6_SUBTREES
1026		    /* Subtree root (i.e. fn) may have one child */
1027		    || (children && fn->fn_flags&RTN_ROOT)
1028#endif
1029		    ) {
1030			fn->leaf = fib6_find_prefix(net, fn);
1031#if RT6_DEBUG >= 2
1032			if (fn->leaf==NULL) {
1033				WARN_ON(!fn->leaf);
1034				fn->leaf = net->ipv6.ip6_null_entry;
1035			}
1036#endif
1037			atomic_inc(&fn->leaf->rt6i_ref);
1038			return fn->parent;
 
1039		}
1040
1041		pn = fn->parent;
1042#ifdef CONFIG_IPV6_SUBTREES
1043		if (FIB6_SUBTREE(pn) == fn) {
1044			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1045			FIB6_SUBTREE(pn) = NULL;
1046			nstate = FWS_L;
1047		} else {
1048			WARN_ON(fn->fn_flags & RTN_ROOT);
1049#endif
1050			if (pn->right == fn) pn->right = child;
1051			else if (pn->left == fn) pn->left = child;
 
 
1052#if RT6_DEBUG >= 2
1053			else
1054				WARN_ON(1);
1055#endif
1056			if (child)
1057				child->parent = pn;
1058			nstate = FWS_R;
1059#ifdef CONFIG_IPV6_SUBTREES
1060		}
1061#endif
1062
1063		read_lock(&fib6_walker_lock);
1064		FOR_WALKERS(w) {
1065			if (child == NULL) {
1066				if (w->root == fn) {
1067					w->root = w->node = NULL;
1068					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1069				} else if (w->node == fn) {
1070					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1071					w->node = pn;
1072					w->state = nstate;
1073				}
1074			} else {
1075				if (w->root == fn) {
1076					w->root = child;
1077					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1078				}
1079				if (w->node == fn) {
1080					w->node = child;
1081					if (children&2) {
1082						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1083						w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1084					} else {
1085						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1086						w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1087					}
1088				}
1089			}
1090		}
1091		read_unlock(&fib6_walker_lock);
1092
1093		node_free(fn);
1094		if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1095			return pn;
1096
1097		rt6_release(pn->leaf);
1098		pn->leaf = NULL;
1099		fn = pn;
1100	}
1101}
1102
1103static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1104			   struct nl_info *info)
1105{
1106	struct fib6_walker_t *w;
1107	struct rt6_info *rt = *rtp;
 
1108	struct net *net = info->nl_net;
1109
1110	RT6_TRACE("fib6_del_route\n");
1111
1112	/* Unlink it */
1113	*rtp = rt->dst.rt6_next;
1114	rt->rt6i_node = NULL;
1115	net->ipv6.rt6_stats->fib_rt_entries--;
1116	net->ipv6.rt6_stats->fib_discarded_routes++;
1117
 
 
 
1118	/* Reset round-robin state, if necessary */
1119	if (fn->rr_ptr == rt)
1120		fn->rr_ptr = NULL;
1121
 
 
 
 
 
 
 
 
 
 
 
 
1122	/* Adjust walkers */
1123	read_lock(&fib6_walker_lock);
1124	FOR_WALKERS(w) {
1125		if (w->state == FWS_C && w->leaf == rt) {
1126			RT6_TRACE("walker %p adjusted by delroute\n", w);
1127			w->leaf = rt->dst.rt6_next;
1128			if (w->leaf == NULL)
 
1129				w->state = FWS_U;
1130		}
1131	}
1132	read_unlock(&fib6_walker_lock);
1133
1134	rt->dst.rt6_next = NULL;
1135
1136	/* If it was last route, expunge its radix tree node */
1137	if (fn->leaf == NULL) {
1138		fn->fn_flags &= ~RTN_RTINFO;
1139		net->ipv6.rt6_stats->fib_route_nodes--;
1140		fn = fib6_repair_tree(net, fn);
1141	}
1142
1143	if (atomic_read(&rt->rt6i_ref) != 1) {
1144		/* This route is used as dummy address holder in some split
1145		 * nodes. It is not leaked, but it still holds other resources,
1146		 * which must be released in time. So, scan ascendant nodes
1147		 * and replace dummy references to this route with references
1148		 * to still alive ones.
1149		 */
1150		while (fn) {
1151			if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1152				fn->leaf = fib6_find_prefix(net, fn);
1153				atomic_inc(&fn->leaf->rt6i_ref);
1154				rt6_release(rt);
1155			}
1156			fn = fn->parent;
1157		}
1158		/* No more references are possible at this point. */
1159		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1160	}
1161
1162	inet6_rt_notify(RTM_DELROUTE, rt, info);
1163	rt6_release(rt);
 
 
 
 
 
 
1164}
1165
1166int fib6_del(struct rt6_info *rt, struct nl_info *info)
 
1167{
 
 
 
1168	struct net *net = info->nl_net;
1169	struct fib6_node *fn = rt->rt6i_node;
1170	struct rt6_info **rtp;
1171
1172#if RT6_DEBUG >= 2
1173	if (rt->dst.obsolete>0) {
1174		WARN_ON(fn != NULL);
1175		return -ENOENT;
1176	}
1177#endif
1178	if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1179		return -ENOENT;
1180
1181	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1182
1183	if (!(rt->rt6i_flags&RTF_CACHE)) {
1184		struct fib6_node *pn = fn;
1185#ifdef CONFIG_IPV6_SUBTREES
1186		/* clones of this route might be in another subtree */
1187		if (rt->rt6i_src.plen) {
1188			while (!(pn->fn_flags&RTN_ROOT))
1189				pn = pn->parent;
1190			pn = pn->parent;
1191		}
1192#endif
1193		fib6_prune_clones(info->nl_net, pn, rt);
1194	}
1195
1196	/*
1197	 *	Walk the leaf entries looking for ourself
1198	 */
1199
1200	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1201		if (*rtp == rt) {
1202			fib6_del_route(fn, rtp, info);
 
 
1203			return 0;
1204		}
 
1205	}
1206	return -ENOENT;
1207}
1208
1209/*
1210 *	Tree traversal function.
1211 *
1212 *	Certainly, it is not interrupt safe.
1213 *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1214 *	It means, that we can modify tree during walking
1215 *	and use this function for garbage collection, clone pruning,
1216 *	cleaning tree when a device goes down etc. etc.
1217 *
1218 *	It guarantees that every node will be traversed,
1219 *	and that it will be traversed only once.
1220 *
1221 *	Callback function w->func may return:
1222 *	0 -> continue walking.
1223 *	positive value -> walking is suspended (used by tree dumps,
1224 *	and probably by gc, if it will be split to several slices)
1225 *	negative value -> terminate walking.
1226 *
1227 *	The function itself returns:
1228 *	0   -> walk is complete.
1229 *	>0  -> walk is incomplete (i.e. suspended)
1230 *	<0  -> walk is terminated by an error.
 
 
1231 */
1232
1233static int fib6_walk_continue(struct fib6_walker_t *w)
1234{
1235	struct fib6_node *fn, *pn;
 
 
 
1236
1237	for (;;) {
1238		fn = w->node;
1239		if (fn == NULL)
1240			return 0;
1241
1242		if (w->prune && fn != w->root &&
1243		    fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1244			w->state = FWS_C;
1245			w->leaf = fn->leaf;
1246		}
1247		switch (w->state) {
1248#ifdef CONFIG_IPV6_SUBTREES
1249		case FWS_S:
1250			if (FIB6_SUBTREE(fn)) {
1251				w->node = FIB6_SUBTREE(fn);
1252				continue;
1253			}
1254			w->state = FWS_L;
1255#endif
 
1256		case FWS_L:
1257			if (fn->left) {
1258				w->node = fn->left;
 
1259				w->state = FWS_INIT;
1260				continue;
1261			}
1262			w->state = FWS_R;
 
1263		case FWS_R:
1264			if (fn->right) {
1265				w->node = fn->right;
 
1266				w->state = FWS_INIT;
1267				continue;
1268			}
1269			w->state = FWS_C;
1270			w->leaf = fn->leaf;
 
1271		case FWS_C:
1272			if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1273				int err;
1274
1275				if (w->count < w->skip) {
1276					w->count++;
1277					continue;
1278				}
1279
1280				err = w->func(w);
1281				if (err)
1282					return err;
1283
1284				w->count++;
1285				continue;
1286			}
 
1287			w->state = FWS_U;
 
1288		case FWS_U:
1289			if (fn == w->root)
1290				return 0;
1291			pn = fn->parent;
 
 
1292			w->node = pn;
1293#ifdef CONFIG_IPV6_SUBTREES
1294			if (FIB6_SUBTREE(pn) == fn) {
1295				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1296				w->state = FWS_L;
1297				continue;
1298			}
1299#endif
1300			if (pn->left == fn) {
1301				w->state = FWS_R;
1302				continue;
1303			}
1304			if (pn->right == fn) {
1305				w->state = FWS_C;
1306				w->leaf = w->node->leaf;
1307				continue;
1308			}
1309#if RT6_DEBUG >= 2
1310			WARN_ON(1);
1311#endif
1312		}
1313	}
1314}
1315
1316static int fib6_walk(struct fib6_walker_t *w)
1317{
1318	int res;
1319
1320	w->state = FWS_INIT;
1321	w->node = w->root;
1322
1323	fib6_walker_link(w);
1324	res = fib6_walk_continue(w);
1325	if (res <= 0)
1326		fib6_walker_unlink(w);
1327	return res;
1328}
1329
1330static int fib6_clean_node(struct fib6_walker_t *w)
1331{
1332	int res;
1333	struct rt6_info *rt;
1334	struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1335	struct nl_info info = {
1336		.nl_net = c->net,
 
1337	};
1338
1339	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
 
 
 
 
 
 
 
 
 
 
1340		res = c->func(rt, c->arg);
1341		if (res < 0) {
1342			w->leaf = rt;
1343			res = fib6_del(rt, &info);
1344			if (res) {
1345#if RT6_DEBUG >= 2
1346				printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
 
 
 
1347#endif
1348				continue;
1349			}
1350			return 0;
 
 
 
 
 
 
1351		}
1352		WARN_ON(res != 0);
1353	}
1354	w->leaf = rt;
1355	return 0;
1356}
1357
1358/*
1359 *	Convenient frontend to tree walker.
1360 *
1361 *	func is called on each route.
1362 *		It may return -1 -> delete this route.
 
1363 *		              0  -> continue walking
1364 *
1365 *	prune==1 -> only immediate children of node (certainly,
1366 *	ignoring pure split nodes) will be scanned.
1367 */
1368
1369static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1370			    int (*func)(struct rt6_info *, void *arg),
1371			    int prune, void *arg)
1372{
1373	struct fib6_cleaner_t c;
1374
1375	c.w.root = root;
1376	c.w.func = fib6_clean_node;
1377	c.w.prune = prune;
1378	c.w.count = 0;
1379	c.w.skip = 0;
 
1380	c.func = func;
 
1381	c.arg = arg;
1382	c.net = net;
 
1383
1384	fib6_walk(&c.w);
1385}
1386
1387void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1388		    int prune, void *arg)
 
1389{
1390	struct fib6_table *table;
1391	struct hlist_node *node;
1392	struct hlist_head *head;
1393	unsigned int h;
1394
1395	rcu_read_lock();
1396	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1397		head = &net->ipv6.fib_table_hash[h];
1398		hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1399			write_lock_bh(&table->tb6_lock);
1400			fib6_clean_tree(net, &table->tb6_root,
1401					func, prune, arg);
1402			write_unlock_bh(&table->tb6_lock);
1403		}
1404	}
1405	rcu_read_unlock();
1406}
1407
1408static int fib6_prune_clone(struct rt6_info *rt, void *arg)
 
1409{
1410	if (rt->rt6i_flags & RTF_CACHE) {
1411		RT6_TRACE("pruning clone %p\n", rt);
1412		return -1;
1413	}
1414
1415	return 0;
 
 
 
 
1416}
1417
1418static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1419			      struct rt6_info *rt)
1420{
1421	fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
 
 
1422}
1423
1424/*
1425 *	Garbage collection
1426 */
1427
1428static struct fib6_gc_args
1429{
1430	int			timeout;
1431	int			more;
1432} gc_args;
1433
1434static int fib6_age(struct rt6_info *rt, void *arg)
1435{
 
1436	unsigned long now = jiffies;
1437
1438	/*
1439	 *	check addrconf expiration here.
1440	 *	Routes are expired even if they are in use.
1441	 *
1442	 *	Also age clones. Note, that clones are aged out
1443	 *	only if they are not in use now.
1444	 */
1445
1446	if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1447		if (time_after(now, rt->rt6i_expires)) {
1448			RT6_TRACE("expiring %p\n", rt);
1449			return -1;
1450		}
1451		gc_args.more++;
1452	} else if (rt->rt6i_flags & RTF_CACHE) {
1453		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1454		    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1455			RT6_TRACE("aging clone %p\n", rt);
1456			return -1;
1457		} else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1458			   (!(dst_get_neighbour_raw(&rt->dst)->flags & NTF_ROUTER))) {
1459			RT6_TRACE("purging route %p via non-router but gateway\n",
1460				  rt);
1461			return -1;
1462		}
1463		gc_args.more++;
1464	}
1465
 
 
 
 
 
 
1466	return 0;
1467}
1468
1469static DEFINE_SPINLOCK(fib6_gc_lock);
1470
1471void fib6_run_gc(unsigned long expires, struct net *net)
1472{
1473	if (expires != ~0UL) {
1474		spin_lock_bh(&fib6_gc_lock);
1475		gc_args.timeout = expires ? (int)expires :
1476			net->ipv6.sysctl.ip6_rt_gc_interval;
1477	} else {
1478		if (!spin_trylock_bh(&fib6_gc_lock)) {
1479			mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1480			return;
1481		}
1482		gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1483	}
1484
1485	gc_args.more = icmp6_dst_gc();
1486
1487	fib6_clean_all(net, fib6_age, 0, NULL);
 
 
 
 
 
 
 
 
 
 
1488
1489	if (gc_args.more)
1490		mod_timer(&net->ipv6.ip6_fib_timer,
1491			  round_jiffies(jiffies
1492					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1493	else
1494		del_timer(&net->ipv6.ip6_fib_timer);
1495	spin_unlock_bh(&fib6_gc_lock);
1496}
1497
1498static void fib6_gc_timer_cb(unsigned long arg)
1499{
1500	fib6_run_gc(0, (struct net *)arg);
 
 
1501}
1502
1503static int __net_init fib6_net_init(struct net *net)
1504{
1505	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
 
1506
1507	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
 
 
 
 
 
 
 
1508
1509	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1510	if (!net->ipv6.rt6_stats)
1511		goto out_timer;
1512
1513	/* Avoid false sharing : Use at least a full cache line */
1514	size = max_t(size_t, size, L1_CACHE_BYTES);
1515
1516	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1517	if (!net->ipv6.fib_table_hash)
1518		goto out_rt6_stats;
1519
1520	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1521					  GFP_KERNEL);
1522	if (!net->ipv6.fib6_main_tbl)
1523		goto out_fib_table_hash;
1524
1525	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1526	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
 
1527	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1528		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
 
1529
1530#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1531	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1532					   GFP_KERNEL);
1533	if (!net->ipv6.fib6_local_tbl)
1534		goto out_fib6_main_tbl;
1535	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1536	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
 
1537	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1538		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
 
1539#endif
1540	fib6_tables_init(net);
1541
1542	return 0;
1543
1544#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1545out_fib6_main_tbl:
1546	kfree(net->ipv6.fib6_main_tbl);
1547#endif
1548out_fib_table_hash:
1549	kfree(net->ipv6.fib_table_hash);
1550out_rt6_stats:
1551	kfree(net->ipv6.rt6_stats);
1552out_timer:
 
1553	return -ENOMEM;
1554 }
1555
1556static void fib6_net_exit(struct net *net)
1557{
1558	rt6_ifdown(net, NULL);
 
1559	del_timer_sync(&net->ipv6.ip6_fib_timer);
1560
1561#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1562	kfree(net->ipv6.fib6_local_tbl);
1563#endif
1564	kfree(net->ipv6.fib6_main_tbl);
 
 
 
 
 
 
 
1565	kfree(net->ipv6.fib_table_hash);
1566	kfree(net->ipv6.rt6_stats);
 
1567}
1568
1569static struct pernet_operations fib6_net_ops = {
1570	.init = fib6_net_init,
1571	.exit = fib6_net_exit,
1572};
1573
1574int __init fib6_init(void)
1575{
1576	int ret = -ENOMEM;
1577
1578	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1579					   sizeof(struct fib6_node),
1580					   0, SLAB_HWCACHE_ALIGN,
1581					   NULL);
1582	if (!fib6_node_kmem)
1583		goto out;
1584
1585	ret = register_pernet_subsys(&fib6_net_ops);
1586	if (ret)
1587		goto out_kmem_cache_create;
1588
1589	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1590			      NULL);
1591	if (ret)
1592		goto out_unregister_subsys;
 
 
1593out:
1594	return ret;
1595
1596out_unregister_subsys:
1597	unregister_pernet_subsys(&fib6_net_ops);
1598out_kmem_cache_create:
1599	kmem_cache_destroy(fib6_node_kmem);
1600	goto out;
1601}
1602
1603void fib6_gc_cleanup(void)
1604{
1605	unregister_pernet_subsys(&fib6_net_ops);
1606	kmem_cache_destroy(fib6_node_kmem);
1607}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *	Linux INET6 implementation
   4 *	Forwarding Information Database
   5 *
   6 *	Authors:
   7 *	Pedro Roque		<roque@di.fc.ul.pt>
   8 *
   9 *	Changes:
  10 *	Yuji SEKIYA @USAGI:	Support default route on router node;
  11 *				remove ip6_null_entry from the top of
  12 *				routing table.
  13 *	Ville Nuorvala:		Fixed routing subtrees.
  14 */
  15
  16#define pr_fmt(fmt) "IPv6: " fmt
  17
 
 
 
 
 
  18#include <linux/errno.h>
  19#include <linux/types.h>
  20#include <linux/net.h>
  21#include <linux/route.h>
  22#include <linux/netdevice.h>
  23#include <linux/in6.h>
  24#include <linux/init.h>
  25#include <linux/list.h>
  26#include <linux/slab.h>
  27
  28#include <net/ip.h>
 
 
 
  29#include <net/ipv6.h>
  30#include <net/ndisc.h>
  31#include <net/addrconf.h>
  32#include <net/lwtunnel.h>
  33#include <net/fib_notifier.h>
  34
  35#include <net/ip6_fib.h>
  36#include <net/ip6_route.h>
  37
  38static struct kmem_cache *fib6_node_kmem __read_mostly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39
  40struct fib6_cleaner {
  41	struct fib6_walker w;
 
  42	struct net *net;
  43	int (*func)(struct fib6_info *, void *arg);
  44	int sernum;
  45	void *arg;
  46	bool skip_notify;
  47};
  48
 
 
  49#ifdef CONFIG_IPV6_SUBTREES
  50#define FWS_INIT FWS_S
  51#else
  52#define FWS_INIT FWS_L
  53#endif
  54
  55static struct fib6_info *fib6_find_prefix(struct net *net,
  56					 struct fib6_table *table,
  57					 struct fib6_node *fn);
  58static struct fib6_node *fib6_repair_tree(struct net *net,
  59					  struct fib6_table *table,
  60					  struct fib6_node *fn);
  61static int fib6_walk(struct net *net, struct fib6_walker *w);
  62static int fib6_walk_continue(struct fib6_walker *w);
  63
  64/*
  65 *	A routing update causes an increase of the serial number on the
  66 *	affected subtree. This allows for cached routes to be asynchronously
  67 *	tested when modifications are made to the destination cache as a
  68 *	result of redirects, path MTU changes, etc.
  69 */
  70
  71static void fib6_gc_timer_cb(struct timer_list *t);
 
 
  72
  73#define FOR_WALKERS(net, w) \
  74	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
  75
  76static void fib6_walker_link(struct net *net, struct fib6_walker *w)
  77{
  78	write_lock_bh(&net->ipv6.fib6_walker_lock);
  79	list_add(&w->lh, &net->ipv6.fib6_walkers);
  80	write_unlock_bh(&net->ipv6.fib6_walker_lock);
  81}
  82
  83static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
  84{
  85	write_lock_bh(&net->ipv6.fib6_walker_lock);
  86	list_del(&w->lh);
  87	write_unlock_bh(&net->ipv6.fib6_walker_lock);
  88}
  89
  90static int fib6_new_sernum(struct net *net)
  91{
  92	int new, old;
  93
  94	do {
  95		old = atomic_read(&net->ipv6.fib6_sernum);
  96		new = old < INT_MAX ? old + 1 : 1;
  97	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
  98				old, new) != old);
  99	return new;
 100}
 101
 102enum {
 103	FIB6_NO_SERNUM_CHANGE = 0,
 104};
 105
 106void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
 107{
 108	struct fib6_node *fn;
 109
 110	fn = rcu_dereference_protected(f6i->fib6_node,
 111			lockdep_is_held(&f6i->fib6_table->tb6_lock));
 112	if (fn)
 113		fn->fn_sernum = fib6_new_sernum(net);
 114}
 115
 116/*
 117 *	Auxiliary address test functions for the radix tree.
 118 *
 119 *	These assume a 32bit processor (although it will work on
 120 *	64bit processors)
 121 */
 122
 123/*
 124 *	test bit
 125 */
 126#if defined(__LITTLE_ENDIAN)
 127# define BITOP_BE32_SWIZZLE	(0x1F & ~7)
 128#else
 129# define BITOP_BE32_SWIZZLE	0
 130#endif
 131
 132static __be32 addr_bit_set(const void *token, int fn_bit)
 133{
 134	const __be32 *addr = token;
 135	/*
 136	 * Here,
 137	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
 138	 * is optimized version of
 139	 *	htonl(1 << ((~fn_bit)&0x1F))
 140	 * See include/asm-generic/bitops/le.h.
 141	 */
 142	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
 143	       addr[fn_bit >> 5];
 144}
 145
 146struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
 147{
 148	struct fib6_info *f6i;
 149	size_t sz = sizeof(*f6i);
 150
 151	if (with_fib6_nh)
 152		sz += sizeof(struct fib6_nh);
 153
 154	f6i = kzalloc(sz, gfp_flags);
 155	if (!f6i)
 156		return NULL;
 157
 158	/* fib6_siblings is a union with nh_list, so this initializes both */
 159	INIT_LIST_HEAD(&f6i->fib6_siblings);
 160	refcount_set(&f6i->fib6_ref, 1);
 161
 162	return f6i;
 163}
 164
 165void fib6_info_destroy_rcu(struct rcu_head *head)
 166{
 167	struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
 168
 169	WARN_ON(f6i->fib6_node);
 170
 171	if (f6i->nh)
 172		nexthop_put(f6i->nh);
 173	else
 174		fib6_nh_release(f6i->fib6_nh);
 175
 176	ip_fib_metrics_put(f6i->fib6_metrics);
 177	kfree(f6i);
 178}
 179EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
 180
 181static struct fib6_node *node_alloc(struct net *net)
 182{
 183	struct fib6_node *fn;
 184
 185	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
 186	if (fn)
 187		net->ipv6.rt6_stats->fib_nodes++;
 188
 189	return fn;
 190}
 191
 192static void node_free_immediate(struct net *net, struct fib6_node *fn)
 193{
 194	kmem_cache_free(fib6_node_kmem, fn);
 195	net->ipv6.rt6_stats->fib_nodes--;
 196}
 197
 198static void node_free_rcu(struct rcu_head *head)
 199{
 200	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
 201
 202	kmem_cache_free(fib6_node_kmem, fn);
 203}
 204
 205static void node_free(struct net *net, struct fib6_node *fn)
 206{
 207	call_rcu(&fn->rcu, node_free_rcu);
 208	net->ipv6.rt6_stats->fib_nodes--;
 209}
 210
 211static void fib6_free_table(struct fib6_table *table)
 212{
 213	inetpeer_invalidate_tree(&table->tb6_peers);
 214	kfree(table);
 215}
 216
 217static void fib6_link_table(struct net *net, struct fib6_table *tb)
 218{
 219	unsigned int h;
 220
 221	/*
 222	 * Initialize table lock at a single place to give lockdep a key,
 223	 * tables aren't visible prior to being linked to the list.
 224	 */
 225	spin_lock_init(&tb->tb6_lock);
 
 226	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
 227
 228	/*
 229	 * No protection necessary, this is the only list mutatation
 230	 * operation, tables never disappear once they exist.
 231	 */
 232	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
 233}
 234
 235#ifdef CONFIG_IPV6_MULTIPLE_TABLES
 236
 237static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
 238{
 239	struct fib6_table *table;
 240
 241	table = kzalloc(sizeof(*table), GFP_ATOMIC);
 242	if (table) {
 243		table->tb6_id = id;
 244		rcu_assign_pointer(table->tb6_root.leaf,
 245				   net->ipv6.fib6_null_entry);
 246		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
 247		inet_peer_base_init(&table->tb6_peers);
 248	}
 249
 250	return table;
 251}
 252
 253struct fib6_table *fib6_new_table(struct net *net, u32 id)
 254{
 255	struct fib6_table *tb;
 256
 257	if (id == 0)
 258		id = RT6_TABLE_MAIN;
 259	tb = fib6_get_table(net, id);
 260	if (tb)
 261		return tb;
 262
 263	tb = fib6_alloc_table(net, id);
 264	if (tb)
 265		fib6_link_table(net, tb);
 266
 267	return tb;
 268}
 269EXPORT_SYMBOL_GPL(fib6_new_table);
 270
 271struct fib6_table *fib6_get_table(struct net *net, u32 id)
 272{
 273	struct fib6_table *tb;
 274	struct hlist_head *head;
 
 275	unsigned int h;
 276
 277	if (id == 0)
 278		id = RT6_TABLE_MAIN;
 279	h = id & (FIB6_TABLE_HASHSZ - 1);
 280	rcu_read_lock();
 281	head = &net->ipv6.fib_table_hash[h];
 282	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
 283		if (tb->tb6_id == id) {
 284			rcu_read_unlock();
 285			return tb;
 286		}
 287	}
 288	rcu_read_unlock();
 289
 290	return NULL;
 291}
 292EXPORT_SYMBOL_GPL(fib6_get_table);
 293
 294static void __net_init fib6_tables_init(struct net *net)
 295{
 296	fib6_link_table(net, net->ipv6.fib6_main_tbl);
 297	fib6_link_table(net, net->ipv6.fib6_local_tbl);
 298}
 299#else
 300
 301struct fib6_table *fib6_new_table(struct net *net, u32 id)
 302{
 303	return fib6_get_table(net, id);
 304}
 305
 306struct fib6_table *fib6_get_table(struct net *net, u32 id)
 307{
 308	  return net->ipv6.fib6_main_tbl;
 309}
 310
 311struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
 312				   const struct sk_buff *skb,
 313				   int flags, pol_lookup_t lookup)
 314{
 315	struct rt6_info *rt;
 316
 317	rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
 318	if (rt->dst.error == -EAGAIN) {
 319		ip6_rt_put_flags(rt, flags);
 320		rt = net->ipv6.ip6_null_entry;
 321		if (!(flags & RT6_LOOKUP_F_DST_NOREF))
 322			dst_hold(&rt->dst);
 323	}
 324
 325	return &rt->dst;
 326}
 327
 328/* called with rcu lock held; no reference taken on fib6_info */
 329int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
 330		struct fib6_result *res, int flags)
 331{
 332	return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
 333				 res, flags);
 334}
 335
 336static void __net_init fib6_tables_init(struct net *net)
 337{
 338	fib6_link_table(net, net->ipv6.fib6_main_tbl);
 339}
 340
 341#endif
 342
 343unsigned int fib6_tables_seq_read(struct net *net)
 344{
 345	unsigned int h, fib_seq = 0;
 346
 347	rcu_read_lock();
 348	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
 349		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
 350		struct fib6_table *tb;
 351
 352		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
 353			fib_seq += tb->fib_seq;
 354	}
 355	rcu_read_unlock();
 356
 357	return fib_seq;
 358}
 359
 360static int call_fib6_entry_notifier(struct notifier_block *nb, struct net *net,
 361				    enum fib_event_type event_type,
 362				    struct fib6_info *rt)
 363{
 364	struct fib6_entry_notifier_info info = {
 365		.rt = rt,
 366	};
 367
 368	return call_fib6_notifier(nb, net, event_type, &info.info);
 369}
 370
 371int call_fib6_entry_notifiers(struct net *net,
 372			      enum fib_event_type event_type,
 373			      struct fib6_info *rt,
 374			      struct netlink_ext_ack *extack)
 375{
 376	struct fib6_entry_notifier_info info = {
 377		.info.extack = extack,
 378		.rt = rt,
 379	};
 380
 381	rt->fib6_table->fib_seq++;
 382	return call_fib6_notifiers(net, event_type, &info.info);
 383}
 384
 385int call_fib6_multipath_entry_notifiers(struct net *net,
 386					enum fib_event_type event_type,
 387					struct fib6_info *rt,
 388					unsigned int nsiblings,
 389					struct netlink_ext_ack *extack)
 390{
 391	struct fib6_entry_notifier_info info = {
 392		.info.extack = extack,
 393		.rt = rt,
 394		.nsiblings = nsiblings,
 395	};
 396
 397	rt->fib6_table->fib_seq++;
 398	return call_fib6_notifiers(net, event_type, &info.info);
 399}
 400
 401struct fib6_dump_arg {
 402	struct net *net;
 403	struct notifier_block *nb;
 404};
 405
 406static void fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
 407{
 408	if (rt == arg->net->ipv6.fib6_null_entry)
 409		return;
 410	call_fib6_entry_notifier(arg->nb, arg->net, FIB_EVENT_ENTRY_ADD, rt);
 411}
 412
 413static int fib6_node_dump(struct fib6_walker *w)
 414{
 415	struct fib6_info *rt;
 416
 417	for_each_fib6_walker_rt(w)
 418		fib6_rt_dump(rt, w->args);
 419	w->leaf = NULL;
 420	return 0;
 421}
 422
 423static void fib6_table_dump(struct net *net, struct fib6_table *tb,
 424			    struct fib6_walker *w)
 425{
 426	w->root = &tb->tb6_root;
 427	spin_lock_bh(&tb->tb6_lock);
 428	fib6_walk(net, w);
 429	spin_unlock_bh(&tb->tb6_lock);
 430}
 431
 432/* Called with rcu_read_lock() */
 433int fib6_tables_dump(struct net *net, struct notifier_block *nb)
 434{
 435	struct fib6_dump_arg arg;
 436	struct fib6_walker *w;
 437	unsigned int h;
 438
 439	w = kzalloc(sizeof(*w), GFP_ATOMIC);
 440	if (!w)
 441		return -ENOMEM;
 442
 443	w->func = fib6_node_dump;
 444	arg.net = net;
 445	arg.nb = nb;
 446	w->args = &arg;
 447
 448	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
 449		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
 450		struct fib6_table *tb;
 451
 452		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
 453			fib6_table_dump(net, tb, w);
 454	}
 455
 456	kfree(w);
 457
 458	return 0;
 459}
 460
 461static int fib6_dump_node(struct fib6_walker *w)
 462{
 463	int res;
 464	struct fib6_info *rt;
 465
 466	for_each_fib6_walker_rt(w) {
 467		res = rt6_dump_route(rt, w->args, w->skip_in_node);
 468		if (res >= 0) {
 469			/* Frame is full, suspend walking */
 470			w->leaf = rt;
 471
 472			/* We'll restart from this node, so if some routes were
 473			 * already dumped, skip them next time.
 474			 */
 475			w->skip_in_node += res;
 476
 477			return 1;
 478		}
 479		w->skip_in_node = 0;
 480
 481		/* Multipath routes are dumped in one route with the
 482		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
 483		 * last sibling of this route (no need to dump the
 484		 * sibling routes again)
 485		 */
 486		if (rt->fib6_nsiblings)
 487			rt = list_last_entry(&rt->fib6_siblings,
 488					     struct fib6_info,
 489					     fib6_siblings);
 490	}
 491	w->leaf = NULL;
 492	return 0;
 493}
 494
 495static void fib6_dump_end(struct netlink_callback *cb)
 496{
 497	struct net *net = sock_net(cb->skb->sk);
 498	struct fib6_walker *w = (void *)cb->args[2];
 499
 500	if (w) {
 501		if (cb->args[4]) {
 502			cb->args[4] = 0;
 503			fib6_walker_unlink(net, w);
 504		}
 505		cb->args[2] = 0;
 506		kfree(w);
 507	}
 508	cb->done = (void *)cb->args[3];
 509	cb->args[1] = 3;
 510}
 511
 512static int fib6_dump_done(struct netlink_callback *cb)
 513{
 514	fib6_dump_end(cb);
 515	return cb->done ? cb->done(cb) : 0;
 516}
 517
 518static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
 519			   struct netlink_callback *cb)
 520{
 521	struct net *net = sock_net(skb->sk);
 522	struct fib6_walker *w;
 523	int res;
 524
 525	w = (void *)cb->args[2];
 526	w->root = &table->tb6_root;
 527
 528	if (cb->args[4] == 0) {
 529		w->count = 0;
 530		w->skip = 0;
 531		w->skip_in_node = 0;
 532
 533		spin_lock_bh(&table->tb6_lock);
 534		res = fib6_walk(net, w);
 535		spin_unlock_bh(&table->tb6_lock);
 536		if (res > 0) {
 537			cb->args[4] = 1;
 538			cb->args[5] = w->root->fn_sernum;
 539		}
 540	} else {
 541		if (cb->args[5] != w->root->fn_sernum) {
 542			/* Begin at the root if the tree changed */
 543			cb->args[5] = w->root->fn_sernum;
 544			w->state = FWS_INIT;
 545			w->node = w->root;
 546			w->skip = w->count;
 547			w->skip_in_node = 0;
 548		} else
 549			w->skip = 0;
 550
 551		spin_lock_bh(&table->tb6_lock);
 552		res = fib6_walk_continue(w);
 553		spin_unlock_bh(&table->tb6_lock);
 554		if (res <= 0) {
 555			fib6_walker_unlink(net, w);
 556			cb->args[4] = 0;
 557		}
 558	}
 559
 560	return res;
 561}
 562
 563static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
 564{
 565	struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true,
 566					 .filter.dump_routes = true };
 567	const struct nlmsghdr *nlh = cb->nlh;
 568	struct net *net = sock_net(skb->sk);
 569	unsigned int h, s_h;
 570	unsigned int e = 0, s_e;
 571	struct fib6_walker *w;
 
 572	struct fib6_table *tb;
 
 573	struct hlist_head *head;
 574	int res = 0;
 575
 576	if (cb->strict_check) {
 577		int err;
 578
 579		err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
 580		if (err < 0)
 581			return err;
 582	} else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
 583		struct rtmsg *rtm = nlmsg_data(nlh);
 584
 585		if (rtm->rtm_flags & RTM_F_PREFIX)
 586			arg.filter.flags = RTM_F_PREFIX;
 587	}
 588
 589	w = (void *)cb->args[2];
 590	if (!w) {
 591		/* New dump:
 592		 *
 593		 * 1. hook callback destructor.
 594		 */
 595		cb->args[3] = (long)cb->done;
 596		cb->done = fib6_dump_done;
 597
 598		/*
 599		 * 2. allocate and initialize walker.
 600		 */
 601		w = kzalloc(sizeof(*w), GFP_ATOMIC);
 602		if (!w)
 603			return -ENOMEM;
 604		w->func = fib6_dump_node;
 605		cb->args[2] = (long)w;
 606	}
 607
 608	arg.skb = skb;
 609	arg.cb = cb;
 610	arg.net = net;
 611	w->args = &arg;
 612
 613	if (arg.filter.table_id) {
 614		tb = fib6_get_table(net, arg.filter.table_id);
 615		if (!tb) {
 616			if (arg.filter.dump_all_families)
 617				goto out;
 618
 619			NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
 620			return -ENOENT;
 621		}
 622
 623		if (!cb->args[0]) {
 624			res = fib6_dump_table(tb, skb, cb);
 625			if (!res)
 626				cb->args[0] = 1;
 627		}
 628		goto out;
 629	}
 630
 631	s_h = cb->args[0];
 632	s_e = cb->args[1];
 633
 634	rcu_read_lock();
 635	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
 636		e = 0;
 637		head = &net->ipv6.fib_table_hash[h];
 638		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
 639			if (e < s_e)
 640				goto next;
 641			res = fib6_dump_table(tb, skb, cb);
 642			if (res != 0)
 643				goto out_unlock;
 644next:
 645			e++;
 646		}
 647	}
 648out_unlock:
 649	rcu_read_unlock();
 650	cb->args[1] = e;
 651	cb->args[0] = h;
 652out:
 653	res = res < 0 ? res : skb->len;
 654	if (res <= 0)
 655		fib6_dump_end(cb);
 656	return res;
 657}
 658
 659void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
 660{
 661	if (!f6i)
 662		return;
 663
 664	if (f6i->fib6_metrics == &dst_default_metrics) {
 665		struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
 666
 667		if (!p)
 668			return;
 669
 670		refcount_set(&p->refcnt, 1);
 671		f6i->fib6_metrics = p;
 672	}
 673
 674	f6i->fib6_metrics->metrics[metric - 1] = val;
 675}
 676
 677/*
 678 *	Routing Table
 679 *
 680 *	return the appropriate node for a routing tree "add" operation
 681 *	by either creating and inserting or by returning an existing
 682 *	node.
 683 */
 684
 685static struct fib6_node *fib6_add_1(struct net *net,
 686				    struct fib6_table *table,
 687				    struct fib6_node *root,
 688				    struct in6_addr *addr, int plen,
 689				    int offset, int allow_create,
 690				    int replace_required,
 691				    struct netlink_ext_ack *extack)
 692{
 693	struct fib6_node *fn, *in, *ln;
 694	struct fib6_node *pn = NULL;
 695	struct rt6key *key;
 696	int	bit;
 697	__be32	dir = 0;
 
 698
 699	RT6_TRACE("fib6_add_1\n");
 700
 701	/* insert node in tree */
 702
 703	fn = root;
 704
 705	do {
 706		struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
 707					    lockdep_is_held(&table->tb6_lock));
 708		key = (struct rt6key *)((u8 *)leaf + offset);
 709
 710		/*
 711		 *	Prefix match
 712		 */
 713		if (plen < fn->fn_bit ||
 714		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
 715			if (!allow_create) {
 716				if (replace_required) {
 717					NL_SET_ERR_MSG(extack,
 718						       "Can not replace route - no match found");
 719					pr_warn("Can't replace route, no match found\n");
 720					return ERR_PTR(-ENOENT);
 721				}
 722				pr_warn("NLM_F_CREATE should be set when creating new route\n");
 723			}
 724			goto insert_above;
 725		}
 726
 727		/*
 728		 *	Exact match ?
 729		 */
 730
 731		if (plen == fn->fn_bit) {
 732			/* clean up an intermediate node */
 733			if (!(fn->fn_flags & RTN_RTINFO)) {
 734				RCU_INIT_POINTER(fn->leaf, NULL);
 735				fib6_info_release(leaf);
 736			/* remove null_entry in the root node */
 737			} else if (fn->fn_flags & RTN_TL_ROOT &&
 738				   rcu_access_pointer(fn->leaf) ==
 739				   net->ipv6.fib6_null_entry) {
 740				RCU_INIT_POINTER(fn->leaf, NULL);
 741			}
 742
 
 
 743			return fn;
 744		}
 745
 746		/*
 747		 *	We have more bits to go
 748		 */
 749
 750		/* Try to walk down on tree. */
 
 751		dir = addr_bit_set(addr, fn->fn_bit);
 752		pn = fn;
 753		fn = dir ?
 754		     rcu_dereference_protected(fn->right,
 755					lockdep_is_held(&table->tb6_lock)) :
 756		     rcu_dereference_protected(fn->left,
 757					lockdep_is_held(&table->tb6_lock));
 758	} while (fn);
 759
 760	if (!allow_create) {
 761		/* We should not create new node because
 762		 * NLM_F_REPLACE was specified without NLM_F_CREATE
 763		 * I assume it is safe to require NLM_F_CREATE when
 764		 * REPLACE flag is used! Later we may want to remove the
 765		 * check for replace_required, because according
 766		 * to netlink specification, NLM_F_CREATE
 767		 * MUST be specified if new route is created.
 768		 * That would keep IPv6 consistent with IPv4
 769		 */
 770		if (replace_required) {
 771			NL_SET_ERR_MSG(extack,
 772				       "Can not replace route - no match found");
 773			pr_warn("Can't replace route, no match found\n");
 774			return ERR_PTR(-ENOENT);
 775		}
 776		pr_warn("NLM_F_CREATE should be set when creating new route\n");
 777	}
 778	/*
 779	 *	We walked to the bottom of tree.
 780	 *	Create new leaf node without children.
 781	 */
 782
 783	ln = node_alloc(net);
 784
 785	if (!ln)
 786		return ERR_PTR(-ENOMEM);
 787	ln->fn_bit = plen;
 788	RCU_INIT_POINTER(ln->parent, pn);
 
 
 789
 790	if (dir)
 791		rcu_assign_pointer(pn->right, ln);
 792	else
 793		rcu_assign_pointer(pn->left, ln);
 794
 795	return ln;
 796
 797
 798insert_above:
 799	/*
 800	 * split since we don't have a common prefix anymore or
 801	 * we have a less significant route.
 802	 * we've to insert an intermediate node on the list
 803	 * this new node will point to the one we need to create
 804	 * and the current
 805	 */
 806
 807	pn = rcu_dereference_protected(fn->parent,
 808				       lockdep_is_held(&table->tb6_lock));
 809
 810	/* find 1st bit in difference between the 2 addrs.
 811
 812	   See comment in __ipv6_addr_diff: bit may be an invalid value,
 813	   but if it is >= plen, the value is ignored in any case.
 814	 */
 815
 816	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
 817
 818	/*
 819	 *		(intermediate)[in]
 820	 *	          /	   \
 821	 *	(new leaf node)[ln] (old node)[fn]
 822	 */
 823	if (plen > bit) {
 824		in = node_alloc(net);
 825		ln = node_alloc(net);
 826
 827		if (!in || !ln) {
 828			if (in)
 829				node_free_immediate(net, in);
 830			if (ln)
 831				node_free_immediate(net, ln);
 832			return ERR_PTR(-ENOMEM);
 833		}
 834
 835		/*
 836		 * new intermediate node.
 837		 * RTN_RTINFO will
 838		 * be off since that an address that chooses one of
 839		 * the branches would not match less specific routes
 840		 * in the other branch
 841		 */
 842
 843		in->fn_bit = bit;
 844
 845		RCU_INIT_POINTER(in->parent, pn);
 846		in->leaf = fn->leaf;
 847		fib6_info_hold(rcu_dereference_protected(in->leaf,
 848				lockdep_is_held(&table->tb6_lock)));
 
 849
 850		/* update parent pointer */
 851		if (dir)
 852			rcu_assign_pointer(pn->right, in);
 853		else
 854			rcu_assign_pointer(pn->left, in);
 855
 856		ln->fn_bit = plen;
 857
 858		RCU_INIT_POINTER(ln->parent, in);
 859		rcu_assign_pointer(fn->parent, in);
 
 
 860
 861		if (addr_bit_set(addr, bit)) {
 862			rcu_assign_pointer(in->right, ln);
 863			rcu_assign_pointer(in->left, fn);
 864		} else {
 865			rcu_assign_pointer(in->left, ln);
 866			rcu_assign_pointer(in->right, fn);
 867		}
 868	} else { /* plen <= bit */
 869
 870		/*
 871		 *		(new leaf node)[ln]
 872		 *	          /	   \
 873		 *	     (old node)[fn] NULL
 874		 */
 875
 876		ln = node_alloc(net);
 877
 878		if (!ln)
 879			return ERR_PTR(-ENOMEM);
 880
 881		ln->fn_bit = plen;
 882
 883		RCU_INIT_POINTER(ln->parent, pn);
 884
 885		if (addr_bit_set(&key->addr, plen))
 886			RCU_INIT_POINTER(ln->right, fn);
 887		else
 888			RCU_INIT_POINTER(ln->left, fn);
 889
 890		rcu_assign_pointer(fn->parent, ln);
 891
 892		if (dir)
 893			rcu_assign_pointer(pn->right, ln);
 894		else
 895			rcu_assign_pointer(pn->left, ln);
 896	}
 897	return ln;
 898}
 899
 900static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
 901				  const struct fib6_info *match,
 902				  const struct fib6_table *table)
 903{
 904	int cpu;
 905
 906	if (!fib6_nh->rt6i_pcpu)
 907		return;
 908
 909	/* release the reference to this fib entry from
 910	 * all of its cached pcpu routes
 911	 */
 912	for_each_possible_cpu(cpu) {
 913		struct rt6_info **ppcpu_rt;
 914		struct rt6_info *pcpu_rt;
 915
 916		ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
 917		pcpu_rt = *ppcpu_rt;
 918
 919		/* only dropping the 'from' reference if the cached route
 920		 * is using 'match'. The cached pcpu_rt->from only changes
 921		 * from a fib6_info to NULL (ip6_dst_destroy); it can never
 922		 * change from one fib6_info reference to another
 923		 */
 924		if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
 925			struct fib6_info *from;
 926
 927			from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
 928			fib6_info_release(from);
 929		}
 930	}
 931}
 932
 933struct fib6_nh_pcpu_arg {
 934	struct fib6_info	*from;
 935	const struct fib6_table *table;
 936};
 937
 938static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
 939{
 940	struct fib6_nh_pcpu_arg *arg = _arg;
 941
 942	__fib6_drop_pcpu_from(nh, arg->from, arg->table);
 943	return 0;
 944}
 945
 946static void fib6_drop_pcpu_from(struct fib6_info *f6i,
 947				const struct fib6_table *table)
 948{
 949	/* Make sure rt6_make_pcpu_route() wont add other percpu routes
 950	 * while we are cleaning them here.
 951	 */
 952	f6i->fib6_destroying = 1;
 953	mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
 954
 955	if (f6i->nh) {
 956		struct fib6_nh_pcpu_arg arg = {
 957			.from = f6i,
 958			.table = table
 959		};
 960
 961		nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
 962					 &arg);
 963	} else {
 964		struct fib6_nh *fib6_nh;
 965
 966		fib6_nh = f6i->fib6_nh;
 967		__fib6_drop_pcpu_from(fib6_nh, f6i, table);
 968	}
 969}
 970
 971static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
 972			  struct net *net)
 973{
 974	struct fib6_table *table = rt->fib6_table;
 975
 976	fib6_drop_pcpu_from(rt, table);
 977
 978	if (rt->nh && !list_empty(&rt->nh_list))
 979		list_del_init(&rt->nh_list);
 980
 981	if (refcount_read(&rt->fib6_ref) != 1) {
 982		/* This route is used as dummy address holder in some split
 983		 * nodes. It is not leaked, but it still holds other resources,
 984		 * which must be released in time. So, scan ascendant nodes
 985		 * and replace dummy references to this route with references
 986		 * to still alive ones.
 987		 */
 988		while (fn) {
 989			struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
 990					    lockdep_is_held(&table->tb6_lock));
 991			struct fib6_info *new_leaf;
 992			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
 993				new_leaf = fib6_find_prefix(net, table, fn);
 994				fib6_info_hold(new_leaf);
 995
 996				rcu_assign_pointer(fn->leaf, new_leaf);
 997				fib6_info_release(rt);
 998			}
 999			fn = rcu_dereference_protected(fn->parent,
1000				    lockdep_is_held(&table->tb6_lock));
1001		}
1002	}
 
1003}
1004
1005/*
1006 *	Insert routing information in a node.
1007 */
1008
1009static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1010			    struct nl_info *info,
1011			    struct netlink_ext_ack *extack)
1012{
1013	struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1014				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1015	struct fib6_info *iter = NULL;
1016	struct fib6_info __rcu **ins;
1017	struct fib6_info __rcu **fallback_ins = NULL;
1018	int replace = (info->nlh &&
1019		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1020	int add = (!info->nlh ||
1021		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
1022	int found = 0;
1023	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1024	u16 nlflags = NLM_F_EXCL;
1025	int err;
1026
1027	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1028		nlflags |= NLM_F_APPEND;
1029
1030	ins = &fn->leaf;
1031
1032	for (iter = leaf; iter;
1033	     iter = rcu_dereference_protected(iter->fib6_next,
1034				lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1035		/*
1036		 *	Search for duplicates
1037		 */
1038
1039		if (iter->fib6_metric == rt->fib6_metric) {
1040			/*
1041			 *	Same priority level
1042			 */
1043			if (info->nlh &&
1044			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
1045				return -EEXIST;
1046
1047			nlflags &= ~NLM_F_EXCL;
1048			if (replace) {
1049				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1050					found++;
1051					break;
 
 
 
 
 
1052				}
1053				if (rt_can_ecmp)
1054					fallback_ins = fallback_ins ?: ins;
1055				goto next_iter;
1056			}
1057
1058			if (rt6_duplicate_nexthop(iter, rt)) {
1059				if (rt->fib6_nsiblings)
1060					rt->fib6_nsiblings = 0;
1061				if (!(iter->fib6_flags & RTF_EXPIRES))
1062					return -EEXIST;
1063				if (!(rt->fib6_flags & RTF_EXPIRES))
1064					fib6_clean_expires(iter);
1065				else
1066					fib6_set_expires(iter, rt->expires);
1067
1068				if (rt->fib6_pmtu)
1069					fib6_metric_set(iter, RTAX_MTU,
1070							rt->fib6_pmtu);
1071				return -EEXIST;
1072			}
1073			/* If we have the same destination and the same metric,
1074			 * but not the same gateway, then the route we try to
1075			 * add is sibling to this route, increment our counter
1076			 * of siblings, and later we will add our route to the
1077			 * list.
1078			 * Only static routes (which don't have flag
1079			 * RTF_EXPIRES) are used for ECMPv6.
1080			 *
1081			 * To avoid long list, we only had siblings if the
1082			 * route have a gateway.
1083			 */
1084			if (rt_can_ecmp &&
1085			    rt6_qualify_for_ecmp(iter))
1086				rt->fib6_nsiblings++;
1087		}
1088
1089		if (iter->fib6_metric > rt->fib6_metric)
1090			break;
1091
1092next_iter:
1093		ins = &iter->fib6_next;
1094	}
1095
1096	if (fallback_ins && !found) {
1097		/* No ECMP-able route found, replace first non-ECMP one */
1098		ins = fallback_ins;
1099		iter = rcu_dereference_protected(*ins,
1100				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1101		found++;
1102	}
1103
1104	/* Reset round-robin state, if necessary */
1105	if (ins == &fn->leaf)
1106		fn->rr_ptr = NULL;
1107
1108	/* Link this route to others same route. */
1109	if (rt->fib6_nsiblings) {
1110		unsigned int fib6_nsiblings;
1111		struct fib6_info *sibling, *temp_sibling;
1112
1113		/* Find the first route that have the same metric */
1114		sibling = leaf;
1115		while (sibling) {
1116			if (sibling->fib6_metric == rt->fib6_metric &&
1117			    rt6_qualify_for_ecmp(sibling)) {
1118				list_add_tail(&rt->fib6_siblings,
1119					      &sibling->fib6_siblings);
1120				break;
1121			}
1122			sibling = rcu_dereference_protected(sibling->fib6_next,
1123				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1124		}
1125		/* For each sibling in the list, increment the counter of
1126		 * siblings. BUG() if counters does not match, list of siblings
1127		 * is broken!
1128		 */
1129		fib6_nsiblings = 0;
1130		list_for_each_entry_safe(sibling, temp_sibling,
1131					 &rt->fib6_siblings, fib6_siblings) {
1132			sibling->fib6_nsiblings++;
1133			BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1134			fib6_nsiblings++;
1135		}
1136		BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1137		rt6_multipath_rebalance(temp_sibling);
1138	}
1139
1140	/*
1141	 *	insert node
1142	 */
1143	if (!replace) {
1144		if (!add)
1145			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1146
1147add:
1148		nlflags |= NLM_F_CREATE;
1149
1150		if (!info->skip_notify_kernel) {
1151			err = call_fib6_entry_notifiers(info->nl_net,
1152							FIB_EVENT_ENTRY_ADD,
1153							rt, extack);
1154			if (err) {
1155				struct fib6_info *sibling, *next_sibling;
1156
1157				/* If the route has siblings, then it first
1158				 * needs to be unlinked from them.
1159				 */
1160				if (!rt->fib6_nsiblings)
1161					return err;
1162
1163				list_for_each_entry_safe(sibling, next_sibling,
1164							 &rt->fib6_siblings,
1165							 fib6_siblings)
1166					sibling->fib6_nsiblings--;
1167				rt->fib6_nsiblings = 0;
1168				list_del_init(&rt->fib6_siblings);
1169				rt6_multipath_rebalance(next_sibling);
1170				return err;
1171			}
1172		}
1173
1174		rcu_assign_pointer(rt->fib6_next, iter);
1175		fib6_info_hold(rt);
1176		rcu_assign_pointer(rt->fib6_node, fn);
1177		rcu_assign_pointer(*ins, rt);
1178		if (!info->skip_notify)
1179			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1180		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1181
1182		if (!(fn->fn_flags & RTN_RTINFO)) {
1183			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1184			fn->fn_flags |= RTN_RTINFO;
1185		}
1186
1187	} else {
1188		int nsiblings;
1189
1190		if (!found) {
1191			if (add)
1192				goto add;
1193			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1194			return -ENOENT;
1195		}
1196
1197		if (!info->skip_notify_kernel) {
1198			err = call_fib6_entry_notifiers(info->nl_net,
1199							FIB_EVENT_ENTRY_REPLACE,
1200							rt, extack);
1201			if (err)
1202				return err;
1203		}
1204
1205		fib6_info_hold(rt);
1206		rcu_assign_pointer(rt->fib6_node, fn);
1207		rt->fib6_next = iter->fib6_next;
1208		rcu_assign_pointer(*ins, rt);
1209		if (!info->skip_notify)
1210			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1211		if (!(fn->fn_flags & RTN_RTINFO)) {
1212			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1213			fn->fn_flags |= RTN_RTINFO;
1214		}
1215		nsiblings = iter->fib6_nsiblings;
1216		iter->fib6_node = NULL;
1217		fib6_purge_rt(iter, fn, info->nl_net);
1218		if (rcu_access_pointer(fn->rr_ptr) == iter)
1219			fn->rr_ptr = NULL;
1220		fib6_info_release(iter);
1221
1222		if (nsiblings) {
1223			/* Replacing an ECMP route, remove all siblings */
1224			ins = &rt->fib6_next;
1225			iter = rcu_dereference_protected(*ins,
1226				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1227			while (iter) {
1228				if (iter->fib6_metric > rt->fib6_metric)
1229					break;
1230				if (rt6_qualify_for_ecmp(iter)) {
1231					*ins = iter->fib6_next;
1232					iter->fib6_node = NULL;
1233					fib6_purge_rt(iter, fn, info->nl_net);
1234					if (rcu_access_pointer(fn->rr_ptr) == iter)
1235						fn->rr_ptr = NULL;
1236					fib6_info_release(iter);
1237					nsiblings--;
1238					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1239				} else {
1240					ins = &iter->fib6_next;
1241				}
1242				iter = rcu_dereference_protected(*ins,
1243					lockdep_is_held(&rt->fib6_table->tb6_lock));
1244			}
1245			WARN_ON(nsiblings != 0);
1246		}
1247	}
1248
1249	return 0;
1250}
1251
1252static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1253{
1254	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1255	    (rt->fib6_flags & RTF_EXPIRES))
1256		mod_timer(&net->ipv6.ip6_fib_timer,
1257			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1258}
1259
1260void fib6_force_start_gc(struct net *net)
1261{
1262	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1263		mod_timer(&net->ipv6.ip6_fib_timer,
1264			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1265}
1266
1267static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1268					   int sernum)
1269{
1270	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1271				lockdep_is_held(&rt->fib6_table->tb6_lock));
1272
1273	/* paired with smp_rmb() in rt6_get_cookie_safe() */
1274	smp_wmb();
1275	while (fn) {
1276		fn->fn_sernum = sernum;
1277		fn = rcu_dereference_protected(fn->parent,
1278				lockdep_is_held(&rt->fib6_table->tb6_lock));
1279	}
1280}
1281
1282void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1283{
1284	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1285}
1286
1287/* allow ipv4 to update sernum via ipv6_stub */
1288void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1289{
1290	spin_lock_bh(&f6i->fib6_table->tb6_lock);
1291	fib6_update_sernum_upto_root(net, f6i);
1292	spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1293}
1294
1295/*
1296 *	Add routing information to the routing tree.
1297 *	<destination addr>/<source addr>
1298 *	with source addr info in sub-trees
1299 *	Need to own table->tb6_lock
1300 */
1301
1302int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1303	     struct nl_info *info, struct netlink_ext_ack *extack)
1304{
1305	struct fib6_table *table = rt->fib6_table;
1306	struct fib6_node *fn, *pn = NULL;
1307	int err = -ENOMEM;
1308	int allow_create = 1;
1309	int replace_required = 0;
1310	int sernum = fib6_new_sernum(info->nl_net);
1311
1312	if (info->nlh) {
1313		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1314			allow_create = 0;
1315		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1316			replace_required = 1;
1317	}
1318	if (!allow_create && !replace_required)
1319		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1320
1321	fn = fib6_add_1(info->nl_net, table, root,
1322			&rt->fib6_dst.addr, rt->fib6_dst.plen,
1323			offsetof(struct fib6_info, fib6_dst), allow_create,
1324			replace_required, extack);
1325	if (IS_ERR(fn)) {
1326		err = PTR_ERR(fn);
1327		fn = NULL;
1328		goto out;
1329	}
1330
1331	pn = fn;
1332
1333#ifdef CONFIG_IPV6_SUBTREES
1334	if (rt->fib6_src.plen) {
1335		struct fib6_node *sn;
1336
1337		if (!rcu_access_pointer(fn->subtree)) {
1338			struct fib6_node *sfn;
1339
1340			/*
1341			 * Create subtree.
1342			 *
1343			 *		fn[main tree]
1344			 *		|
1345			 *		sfn[subtree root]
1346			 *		   \
1347			 *		    sn[new leaf node]
1348			 */
1349
1350			/* Create subtree root node */
1351			sfn = node_alloc(info->nl_net);
1352			if (!sfn)
1353				goto failure;
1354
1355			fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1356			rcu_assign_pointer(sfn->leaf,
1357					   info->nl_net->ipv6.fib6_null_entry);
1358			sfn->fn_flags = RTN_ROOT;
 
1359
1360			/* Now add the first leaf node to new subtree */
1361
1362			sn = fib6_add_1(info->nl_net, table, sfn,
1363					&rt->fib6_src.addr, rt->fib6_src.plen,
1364					offsetof(struct fib6_info, fib6_src),
1365					allow_create, replace_required, extack);
1366
1367			if (IS_ERR(sn)) {
1368				/* If it is failed, discard just allocated
1369				   root, and then (in failure) stale node
1370				   in main tree.
1371				 */
1372				node_free_immediate(info->nl_net, sfn);
1373				err = PTR_ERR(sn);
1374				goto failure;
1375			}
1376
1377			/* Now link new subtree to main tree */
1378			rcu_assign_pointer(sfn->parent, fn);
1379			rcu_assign_pointer(fn->subtree, sfn);
1380		} else {
1381			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1382					&rt->fib6_src.addr, rt->fib6_src.plen,
1383					offsetof(struct fib6_info, fib6_src),
1384					allow_create, replace_required, extack);
1385
1386			if (IS_ERR(sn)) {
1387				err = PTR_ERR(sn);
1388				goto failure;
1389			}
1390		}
1391
1392		if (!rcu_access_pointer(fn->leaf)) {
1393			if (fn->fn_flags & RTN_TL_ROOT) {
1394				/* put back null_entry for root node */
1395				rcu_assign_pointer(fn->leaf,
1396					    info->nl_net->ipv6.fib6_null_entry);
1397			} else {
1398				fib6_info_hold(rt);
1399				rcu_assign_pointer(fn->leaf, rt);
1400			}
1401		}
1402		fn = sn;
1403	}
1404#endif
1405
1406	err = fib6_add_rt2node(fn, rt, info, extack);
1407	if (!err) {
1408		if (rt->nh)
1409			list_add(&rt->nh_list, &rt->nh->f6i_list);
1410		__fib6_update_sernum_upto_root(rt, sernum);
1411		fib6_start_gc(info->nl_net, rt);
 
 
1412	}
1413
1414out:
1415	if (err) {
1416#ifdef CONFIG_IPV6_SUBTREES
1417		/*
1418		 * If fib6_add_1 has cleared the old leaf pointer in the
1419		 * super-tree leaf node we have to find a new one for it.
1420		 */
1421		if (pn != fn) {
1422			struct fib6_info *pn_leaf =
1423				rcu_dereference_protected(pn->leaf,
1424				    lockdep_is_held(&table->tb6_lock));
1425			if (pn_leaf == rt) {
1426				pn_leaf = NULL;
1427				RCU_INIT_POINTER(pn->leaf, NULL);
1428				fib6_info_release(rt);
 
 
1429			}
1430			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1431				pn_leaf = fib6_find_prefix(info->nl_net, table,
1432							   pn);
1433#if RT6_DEBUG >= 2
1434				if (!pn_leaf) {
1435					WARN_ON(!pn_leaf);
1436					pn_leaf =
1437					    info->nl_net->ipv6.fib6_null_entry;
1438				}
1439#endif
1440				fib6_info_hold(pn_leaf);
1441				rcu_assign_pointer(pn->leaf, pn_leaf);
1442			}
1443		}
1444#endif
1445		goto failure;
1446	}
1447	return err;
1448
1449failure:
1450	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1451	 * 1. fn is an intermediate node and we failed to add the new
1452	 * route to it in both subtree creation failure and fib6_add_rt2node()
1453	 * failure case.
1454	 * 2. fn is the root node in the table and we fail to add the first
1455	 * default route to it.
1456	 */
1457	if (fn &&
1458	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1459	     (fn->fn_flags & RTN_TL_ROOT &&
1460	      !rcu_access_pointer(fn->leaf))))
1461		fib6_repair_tree(info->nl_net, table, fn);
1462	return err;
 
1463}
1464
1465/*
1466 *	Routing tree lookup
1467 *
1468 */
1469
1470struct lookup_args {
1471	int			offset;		/* key offset on fib6_info */
1472	const struct in6_addr	*addr;		/* search key			*/
1473};
1474
1475static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1476					    struct lookup_args *args)
1477{
1478	struct fib6_node *fn;
1479	__be32 dir;
1480
1481	if (unlikely(args->offset == 0))
1482		return NULL;
1483
1484	/*
1485	 *	Descend on a tree
1486	 */
1487
1488	fn = root;
1489
1490	for (;;) {
1491		struct fib6_node *next;
1492
1493		dir = addr_bit_set(args->addr, fn->fn_bit);
1494
1495		next = dir ? rcu_dereference(fn->right) :
1496			     rcu_dereference(fn->left);
1497
1498		if (next) {
1499			fn = next;
1500			continue;
1501		}
 
1502		break;
1503	}
1504
1505	while (fn) {
1506		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1507
1508		if (subtree || fn->fn_flags & RTN_RTINFO) {
1509			struct fib6_info *leaf = rcu_dereference(fn->leaf);
1510			struct rt6key *key;
1511
1512			if (!leaf)
1513				goto backtrack;
1514
1515			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1516
1517			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1518#ifdef CONFIG_IPV6_SUBTREES
1519				if (subtree) {
1520					struct fib6_node *sfn;
1521					sfn = fib6_node_lookup_1(subtree,
1522								 args + 1);
1523					if (!sfn)
1524						goto backtrack;
1525					fn = sfn;
1526				}
1527#endif
1528				if (fn->fn_flags & RTN_RTINFO)
1529					return fn;
1530			}
1531		}
1532backtrack:
1533		if (fn->fn_flags & RTN_ROOT)
1534			break;
1535
1536		fn = rcu_dereference(fn->parent);
1537	}
1538
1539	return NULL;
1540}
1541
1542/* called with rcu_read_lock() held
1543 */
1544struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1545				   const struct in6_addr *daddr,
1546				   const struct in6_addr *saddr)
1547{
1548	struct fib6_node *fn;
1549	struct lookup_args args[] = {
1550		{
1551			.offset = offsetof(struct fib6_info, fib6_dst),
1552			.addr = daddr,
1553		},
1554#ifdef CONFIG_IPV6_SUBTREES
1555		{
1556			.offset = offsetof(struct fib6_info, fib6_src),
1557			.addr = saddr,
1558		},
1559#endif
1560		{
1561			.offset = 0,	/* sentinel */
1562		}
1563	};
1564
1565	fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1566	if (!fn || fn->fn_flags & RTN_TL_ROOT)
 
1567		fn = root;
1568
1569	return fn;
1570}
1571
1572/*
1573 *	Get node with specified destination prefix (and source prefix,
1574 *	if subtrees are used)
1575 *	exact_match == true means we try to find fn with exact match of
1576 *	the passed in prefix addr
1577 *	exact_match == false means we try to find fn with longest prefix
1578 *	match of the passed in prefix addr. This is useful for finding fn
1579 *	for cached route as it will be stored in the exception table under
1580 *	the node with longest prefix length.
1581 */
1582
1583
1584static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1585				       const struct in6_addr *addr,
1586				       int plen, int offset,
1587				       bool exact_match)
1588{
1589	struct fib6_node *fn, *prev = NULL;
1590
1591	for (fn = root; fn ; ) {
1592		struct fib6_info *leaf = rcu_dereference(fn->leaf);
1593		struct rt6key *key;
1594
1595		/* This node is being deleted */
1596		if (!leaf) {
1597			if (plen <= fn->fn_bit)
1598				goto out;
1599			else
1600				goto next;
1601		}
1602
1603		key = (struct rt6key *)((u8 *)leaf + offset);
1604
1605		/*
1606		 *	Prefix match
1607		 */
1608		if (plen < fn->fn_bit ||
1609		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1610			goto out;
1611
1612		if (plen == fn->fn_bit)
1613			return fn;
1614
1615		if (fn->fn_flags & RTN_RTINFO)
1616			prev = fn;
1617
1618next:
1619		/*
1620		 *	We have more bits to go
1621		 */
1622		if (addr_bit_set(addr, fn->fn_bit))
1623			fn = rcu_dereference(fn->right);
1624		else
1625			fn = rcu_dereference(fn->left);
1626	}
1627out:
1628	if (exact_match)
1629		return NULL;
1630	else
1631		return prev;
1632}
1633
1634struct fib6_node *fib6_locate(struct fib6_node *root,
1635			      const struct in6_addr *daddr, int dst_len,
1636			      const struct in6_addr *saddr, int src_len,
1637			      bool exact_match)
1638{
1639	struct fib6_node *fn;
1640
1641	fn = fib6_locate_1(root, daddr, dst_len,
1642			   offsetof(struct fib6_info, fib6_dst),
1643			   exact_match);
1644
1645#ifdef CONFIG_IPV6_SUBTREES
1646	if (src_len) {
1647		WARN_ON(saddr == NULL);
1648		if (fn) {
1649			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1650
1651			if (subtree) {
1652				fn = fib6_locate_1(subtree, saddr, src_len,
1653					   offsetof(struct fib6_info, fib6_src),
1654					   exact_match);
1655			}
1656		}
1657	}
1658#endif
1659
1660	if (fn && fn->fn_flags & RTN_RTINFO)
1661		return fn;
1662
1663	return NULL;
1664}
1665
1666
1667/*
1668 *	Deletion
1669 *
1670 */
1671
1672static struct fib6_info *fib6_find_prefix(struct net *net,
1673					 struct fib6_table *table,
1674					 struct fib6_node *fn)
1675{
1676	struct fib6_node *child_left, *child_right;
1677
1678	if (fn->fn_flags & RTN_ROOT)
1679		return net->ipv6.fib6_null_entry;
1680
1681	while (fn) {
1682		child_left = rcu_dereference_protected(fn->left,
1683				    lockdep_is_held(&table->tb6_lock));
1684		child_right = rcu_dereference_protected(fn->right,
1685				    lockdep_is_held(&table->tb6_lock));
1686		if (child_left)
1687			return rcu_dereference_protected(child_left->leaf,
1688					lockdep_is_held(&table->tb6_lock));
1689		if (child_right)
1690			return rcu_dereference_protected(child_right->leaf,
1691					lockdep_is_held(&table->tb6_lock));
1692
1693		fn = FIB6_SUBTREE(fn);
1694	}
1695	return NULL;
1696}
1697
1698/*
1699 *	Called to trim the tree of intermediate nodes when possible. "fn"
1700 *	is the node we want to try and remove.
1701 *	Need to own table->tb6_lock
1702 */
1703
1704static struct fib6_node *fib6_repair_tree(struct net *net,
1705					  struct fib6_table *table,
1706					  struct fib6_node *fn)
1707{
1708	int children;
1709	int nstate;
1710	struct fib6_node *child;
1711	struct fib6_walker *w;
1712	int iter = 0;
1713
1714	/* Set fn->leaf to null_entry for root node. */
1715	if (fn->fn_flags & RTN_TL_ROOT) {
1716		rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1717		return fn;
1718	}
1719
1720	for (;;) {
1721		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1722					    lockdep_is_held(&table->tb6_lock));
1723		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1724					    lockdep_is_held(&table->tb6_lock));
1725		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1726					    lockdep_is_held(&table->tb6_lock));
1727		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1728					    lockdep_is_held(&table->tb6_lock));
1729		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1730					    lockdep_is_held(&table->tb6_lock));
1731		struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1732					    lockdep_is_held(&table->tb6_lock));
1733		struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1734					    lockdep_is_held(&table->tb6_lock));
1735		struct fib6_info *new_fn_leaf;
1736
1737		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1738		iter++;
1739
1740		WARN_ON(fn->fn_flags & RTN_RTINFO);
1741		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1742		WARN_ON(fn_leaf);
1743
1744		children = 0;
1745		child = NULL;
1746		if (fn_r)
1747			child = fn_r, children |= 1;
1748		if (fn_l)
1749			child = fn_l, children |= 2;
1750
1751		if (children == 3 || FIB6_SUBTREE(fn)
1752#ifdef CONFIG_IPV6_SUBTREES
1753		    /* Subtree root (i.e. fn) may have one child */
1754		    || (children && fn->fn_flags & RTN_ROOT)
1755#endif
1756		    ) {
1757			new_fn_leaf = fib6_find_prefix(net, table, fn);
1758#if RT6_DEBUG >= 2
1759			if (!new_fn_leaf) {
1760				WARN_ON(!new_fn_leaf);
1761				new_fn_leaf = net->ipv6.fib6_null_entry;
1762			}
1763#endif
1764			fib6_info_hold(new_fn_leaf);
1765			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1766			return pn;
1767		}
1768
 
1769#ifdef CONFIG_IPV6_SUBTREES
1770		if (FIB6_SUBTREE(pn) == fn) {
1771			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1772			RCU_INIT_POINTER(pn->subtree, NULL);
1773			nstate = FWS_L;
1774		} else {
1775			WARN_ON(fn->fn_flags & RTN_ROOT);
1776#endif
1777			if (pn_r == fn)
1778				rcu_assign_pointer(pn->right, child);
1779			else if (pn_l == fn)
1780				rcu_assign_pointer(pn->left, child);
1781#if RT6_DEBUG >= 2
1782			else
1783				WARN_ON(1);
1784#endif
1785			if (child)
1786				rcu_assign_pointer(child->parent, pn);
1787			nstate = FWS_R;
1788#ifdef CONFIG_IPV6_SUBTREES
1789		}
1790#endif
1791
1792		read_lock(&net->ipv6.fib6_walker_lock);
1793		FOR_WALKERS(net, w) {
1794			if (!child) {
1795				if (w->node == fn) {
 
 
 
1796					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1797					w->node = pn;
1798					w->state = nstate;
1799				}
1800			} else {
 
 
 
 
1801				if (w->node == fn) {
1802					w->node = child;
1803					if (children&2) {
1804						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1805						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1806					} else {
1807						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1808						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1809					}
1810				}
1811			}
1812		}
1813		read_unlock(&net->ipv6.fib6_walker_lock);
1814
1815		node_free(net, fn);
1816		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1817			return pn;
1818
1819		RCU_INIT_POINTER(pn->leaf, NULL);
1820		fib6_info_release(pn_leaf);
1821		fn = pn;
1822	}
1823}
1824
1825static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1826			   struct fib6_info __rcu **rtp, struct nl_info *info)
1827{
1828	struct fib6_walker *w;
1829	struct fib6_info *rt = rcu_dereference_protected(*rtp,
1830				    lockdep_is_held(&table->tb6_lock));
1831	struct net *net = info->nl_net;
1832
1833	RT6_TRACE("fib6_del_route\n");
1834
1835	/* Unlink it */
1836	*rtp = rt->fib6_next;
1837	rt->fib6_node = NULL;
1838	net->ipv6.rt6_stats->fib_rt_entries--;
1839	net->ipv6.rt6_stats->fib_discarded_routes++;
1840
1841	/* Flush all cached dst in exception table */
1842	rt6_flush_exceptions(rt);
1843
1844	/* Reset round-robin state, if necessary */
1845	if (rcu_access_pointer(fn->rr_ptr) == rt)
1846		fn->rr_ptr = NULL;
1847
1848	/* Remove this entry from other siblings */
1849	if (rt->fib6_nsiblings) {
1850		struct fib6_info *sibling, *next_sibling;
1851
1852		list_for_each_entry_safe(sibling, next_sibling,
1853					 &rt->fib6_siblings, fib6_siblings)
1854			sibling->fib6_nsiblings--;
1855		rt->fib6_nsiblings = 0;
1856		list_del_init(&rt->fib6_siblings);
1857		rt6_multipath_rebalance(next_sibling);
1858	}
1859
1860	/* Adjust walkers */
1861	read_lock(&net->ipv6.fib6_walker_lock);
1862	FOR_WALKERS(net, w) {
1863		if (w->state == FWS_C && w->leaf == rt) {
1864			RT6_TRACE("walker %p adjusted by delroute\n", w);
1865			w->leaf = rcu_dereference_protected(rt->fib6_next,
1866					    lockdep_is_held(&table->tb6_lock));
1867			if (!w->leaf)
1868				w->state = FWS_U;
1869		}
1870	}
1871	read_unlock(&net->ipv6.fib6_walker_lock);
 
 
1872
1873	/* If it was last route, call fib6_repair_tree() to:
1874	 * 1. For root node, put back null_entry as how the table was created.
1875	 * 2. For other nodes, expunge its radix tree node.
1876	 */
1877	if (!rcu_access_pointer(fn->leaf)) {
1878		if (!(fn->fn_flags & RTN_TL_ROOT)) {
1879			fn->fn_flags &= ~RTN_RTINFO;
1880			net->ipv6.rt6_stats->fib_route_nodes--;
 
 
 
 
 
 
 
 
 
 
 
 
 
1881		}
1882		fn = fib6_repair_tree(net, table, fn);
 
1883	}
1884
1885	fib6_purge_rt(rt, fn, net);
1886
1887	if (!info->skip_notify_kernel)
1888		call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt, NULL);
1889	if (!info->skip_notify)
1890		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1891
1892	fib6_info_release(rt);
1893}
1894
1895/* Need to own table->tb6_lock */
1896int fib6_del(struct fib6_info *rt, struct nl_info *info)
1897{
1898	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1899				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1900	struct fib6_table *table = rt->fib6_table;
1901	struct net *net = info->nl_net;
1902	struct fib6_info __rcu **rtp;
1903	struct fib6_info __rcu **rtp_next;
1904
1905	if (!fn || rt == net->ipv6.fib6_null_entry)
 
 
 
 
 
 
1906		return -ENOENT;
1907
1908	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1909
 
 
 
 
 
 
 
 
 
 
 
 
 
1910	/*
1911	 *	Walk the leaf entries looking for ourself
1912	 */
1913
1914	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
1915		struct fib6_info *cur = rcu_dereference_protected(*rtp,
1916					lockdep_is_held(&table->tb6_lock));
1917		if (rt == cur) {
1918			fib6_del_route(table, fn, rtp, info);
1919			return 0;
1920		}
1921		rtp_next = &cur->fib6_next;
1922	}
1923	return -ENOENT;
1924}
1925
1926/*
1927 *	Tree traversal function.
1928 *
1929 *	Certainly, it is not interrupt safe.
1930 *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1931 *	It means, that we can modify tree during walking
1932 *	and use this function for garbage collection, clone pruning,
1933 *	cleaning tree when a device goes down etc. etc.
1934 *
1935 *	It guarantees that every node will be traversed,
1936 *	and that it will be traversed only once.
1937 *
1938 *	Callback function w->func may return:
1939 *	0 -> continue walking.
1940 *	positive value -> walking is suspended (used by tree dumps,
1941 *	and probably by gc, if it will be split to several slices)
1942 *	negative value -> terminate walking.
1943 *
1944 *	The function itself returns:
1945 *	0   -> walk is complete.
1946 *	>0  -> walk is incomplete (i.e. suspended)
1947 *	<0  -> walk is terminated by an error.
1948 *
1949 *	This function is called with tb6_lock held.
1950 */
1951
1952static int fib6_walk_continue(struct fib6_walker *w)
1953{
1954	struct fib6_node *fn, *pn, *left, *right;
1955
1956	/* w->root should always be table->tb6_root */
1957	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
1958
1959	for (;;) {
1960		fn = w->node;
1961		if (!fn)
1962			return 0;
1963
 
 
 
 
 
1964		switch (w->state) {
1965#ifdef CONFIG_IPV6_SUBTREES
1966		case FWS_S:
1967			if (FIB6_SUBTREE(fn)) {
1968				w->node = FIB6_SUBTREE(fn);
1969				continue;
1970			}
1971			w->state = FWS_L;
1972#endif
1973			/* fall through */
1974		case FWS_L:
1975			left = rcu_dereference_protected(fn->left, 1);
1976			if (left) {
1977				w->node = left;
1978				w->state = FWS_INIT;
1979				continue;
1980			}
1981			w->state = FWS_R;
1982			/* fall through */
1983		case FWS_R:
1984			right = rcu_dereference_protected(fn->right, 1);
1985			if (right) {
1986				w->node = right;
1987				w->state = FWS_INIT;
1988				continue;
1989			}
1990			w->state = FWS_C;
1991			w->leaf = rcu_dereference_protected(fn->leaf, 1);
1992			/* fall through */
1993		case FWS_C:
1994			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1995				int err;
1996
1997				if (w->skip) {
1998					w->skip--;
1999					goto skip;
2000				}
2001
2002				err = w->func(w);
2003				if (err)
2004					return err;
2005
2006				w->count++;
2007				continue;
2008			}
2009skip:
2010			w->state = FWS_U;
2011			/* fall through */
2012		case FWS_U:
2013			if (fn == w->root)
2014				return 0;
2015			pn = rcu_dereference_protected(fn->parent, 1);
2016			left = rcu_dereference_protected(pn->left, 1);
2017			right = rcu_dereference_protected(pn->right, 1);
2018			w->node = pn;
2019#ifdef CONFIG_IPV6_SUBTREES
2020			if (FIB6_SUBTREE(pn) == fn) {
2021				WARN_ON(!(fn->fn_flags & RTN_ROOT));
2022				w->state = FWS_L;
2023				continue;
2024			}
2025#endif
2026			if (left == fn) {
2027				w->state = FWS_R;
2028				continue;
2029			}
2030			if (right == fn) {
2031				w->state = FWS_C;
2032				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2033				continue;
2034			}
2035#if RT6_DEBUG >= 2
2036			WARN_ON(1);
2037#endif
2038		}
2039	}
2040}
2041
2042static int fib6_walk(struct net *net, struct fib6_walker *w)
2043{
2044	int res;
2045
2046	w->state = FWS_INIT;
2047	w->node = w->root;
2048
2049	fib6_walker_link(net, w);
2050	res = fib6_walk_continue(w);
2051	if (res <= 0)
2052		fib6_walker_unlink(net, w);
2053	return res;
2054}
2055
2056static int fib6_clean_node(struct fib6_walker *w)
2057{
2058	int res;
2059	struct fib6_info *rt;
2060	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2061	struct nl_info info = {
2062		.nl_net = c->net,
2063		.skip_notify = c->skip_notify,
2064	};
2065
2066	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2067	    w->node->fn_sernum != c->sernum)
2068		w->node->fn_sernum = c->sernum;
2069
2070	if (!c->func) {
2071		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2072		w->leaf = NULL;
2073		return 0;
2074	}
2075
2076	for_each_fib6_walker_rt(w) {
2077		res = c->func(rt, c->arg);
2078		if (res == -1) {
2079			w->leaf = rt;
2080			res = fib6_del(rt, &info);
2081			if (res) {
2082#if RT6_DEBUG >= 2
2083				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2084					 __func__, rt,
2085					 rcu_access_pointer(rt->fib6_node),
2086					 res);
2087#endif
2088				continue;
2089			}
2090			return 0;
2091		} else if (res == -2) {
2092			if (WARN_ON(!rt->fib6_nsiblings))
2093				continue;
2094			rt = list_last_entry(&rt->fib6_siblings,
2095					     struct fib6_info, fib6_siblings);
2096			continue;
2097		}
2098		WARN_ON(res != 0);
2099	}
2100	w->leaf = rt;
2101	return 0;
2102}
2103
2104/*
2105 *	Convenient frontend to tree walker.
2106 *
2107 *	func is called on each route.
2108 *		It may return -2 -> skip multipath route.
2109 *			      -1 -> delete this route.
2110 *		              0  -> continue walking
 
 
 
2111 */
2112
2113static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2114			    int (*func)(struct fib6_info *, void *arg),
2115			    int sernum, void *arg, bool skip_notify)
2116{
2117	struct fib6_cleaner c;
2118
2119	c.w.root = root;
2120	c.w.func = fib6_clean_node;
 
2121	c.w.count = 0;
2122	c.w.skip = 0;
2123	c.w.skip_in_node = 0;
2124	c.func = func;
2125	c.sernum = sernum;
2126	c.arg = arg;
2127	c.net = net;
2128	c.skip_notify = skip_notify;
2129
2130	fib6_walk(net, &c.w);
2131}
2132
2133static void __fib6_clean_all(struct net *net,
2134			     int (*func)(struct fib6_info *, void *),
2135			     int sernum, void *arg, bool skip_notify)
2136{
2137	struct fib6_table *table;
 
2138	struct hlist_head *head;
2139	unsigned int h;
2140
2141	rcu_read_lock();
2142	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2143		head = &net->ipv6.fib_table_hash[h];
2144		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2145			spin_lock_bh(&table->tb6_lock);
2146			fib6_clean_tree(net, &table->tb6_root,
2147					func, sernum, arg, skip_notify);
2148			spin_unlock_bh(&table->tb6_lock);
2149		}
2150	}
2151	rcu_read_unlock();
2152}
2153
2154void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2155		    void *arg)
2156{
2157	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2158}
 
 
2159
2160void fib6_clean_all_skip_notify(struct net *net,
2161				int (*func)(struct fib6_info *, void *),
2162				void *arg)
2163{
2164	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2165}
2166
2167static void fib6_flush_trees(struct net *net)
 
2168{
2169	int new_sernum = fib6_new_sernum(net);
2170
2171	__fib6_clean_all(net, NULL, new_sernum, NULL, false);
2172}
2173
2174/*
2175 *	Garbage collection
2176 */
2177
2178static int fib6_age(struct fib6_info *rt, void *arg)
 
 
 
 
 
 
2179{
2180	struct fib6_gc_args *gc_args = arg;
2181	unsigned long now = jiffies;
2182
2183	/*
2184	 *	check addrconf expiration here.
2185	 *	Routes are expired even if they are in use.
 
 
 
2186	 */
2187
2188	if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2189		if (time_after(now, rt->expires)) {
2190			RT6_TRACE("expiring %p\n", rt);
2191			return -1;
2192		}
2193		gc_args->more++;
 
 
 
 
 
 
 
 
 
 
 
 
2194	}
2195
2196	/*	Also age clones in the exception table.
2197	 *	Note, that clones are aged out
2198	 *	only if they are not in use now.
2199	 */
2200	rt6_age_exceptions(rt, gc_args, now);
2201
2202	return 0;
2203}
2204
2205void fib6_run_gc(unsigned long expires, struct net *net, bool force)
 
 
2206{
2207	struct fib6_gc_args gc_args;
2208	unsigned long now;
 
 
 
 
 
 
 
 
 
2209
2210	if (force) {
2211		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2212	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2213		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2214		return;
2215	}
2216	gc_args.timeout = expires ? (int)expires :
2217			  net->ipv6.sysctl.ip6_rt_gc_interval;
2218	gc_args.more = 0;
2219
2220	fib6_clean_all(net, fib6_age, &gc_args);
2221	now = jiffies;
2222	net->ipv6.ip6_rt_last_gc = now;
2223
2224	if (gc_args.more)
2225		mod_timer(&net->ipv6.ip6_fib_timer,
2226			  round_jiffies(now
2227					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2228	else
2229		del_timer(&net->ipv6.ip6_fib_timer);
2230	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2231}
2232
2233static void fib6_gc_timer_cb(struct timer_list *t)
2234{
2235	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2236
2237	fib6_run_gc(0, arg, true);
2238}
2239
2240static int __net_init fib6_net_init(struct net *net)
2241{
2242	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2243	int err;
2244
2245	err = fib6_notifier_init(net);
2246	if (err)
2247		return err;
2248
2249	spin_lock_init(&net->ipv6.fib6_gc_lock);
2250	rwlock_init(&net->ipv6.fib6_walker_lock);
2251	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2252	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2253
2254	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2255	if (!net->ipv6.rt6_stats)
2256		goto out_timer;
2257
2258	/* Avoid false sharing : Use at least a full cache line */
2259	size = max_t(size_t, size, L1_CACHE_BYTES);
2260
2261	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2262	if (!net->ipv6.fib_table_hash)
2263		goto out_rt6_stats;
2264
2265	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2266					  GFP_KERNEL);
2267	if (!net->ipv6.fib6_main_tbl)
2268		goto out_fib_table_hash;
2269
2270	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2271	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2272			   net->ipv6.fib6_null_entry);
2273	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2274		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2275	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2276
2277#ifdef CONFIG_IPV6_MULTIPLE_TABLES
2278	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2279					   GFP_KERNEL);
2280	if (!net->ipv6.fib6_local_tbl)
2281		goto out_fib6_main_tbl;
2282	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2283	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2284			   net->ipv6.fib6_null_entry);
2285	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2286		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2287	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2288#endif
2289	fib6_tables_init(net);
2290
2291	return 0;
2292
2293#ifdef CONFIG_IPV6_MULTIPLE_TABLES
2294out_fib6_main_tbl:
2295	kfree(net->ipv6.fib6_main_tbl);
2296#endif
2297out_fib_table_hash:
2298	kfree(net->ipv6.fib_table_hash);
2299out_rt6_stats:
2300	kfree(net->ipv6.rt6_stats);
2301out_timer:
2302	fib6_notifier_exit(net);
2303	return -ENOMEM;
2304}
2305
2306static void fib6_net_exit(struct net *net)
2307{
2308	unsigned int i;
2309
2310	del_timer_sync(&net->ipv6.ip6_fib_timer);
2311
2312	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2313		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2314		struct hlist_node *tmp;
2315		struct fib6_table *tb;
2316
2317		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2318			hlist_del(&tb->tb6_hlist);
2319			fib6_free_table(tb);
2320		}
2321	}
2322
2323	kfree(net->ipv6.fib_table_hash);
2324	kfree(net->ipv6.rt6_stats);
2325	fib6_notifier_exit(net);
2326}
2327
2328static struct pernet_operations fib6_net_ops = {
2329	.init = fib6_net_init,
2330	.exit = fib6_net_exit,
2331};
2332
2333int __init fib6_init(void)
2334{
2335	int ret = -ENOMEM;
2336
2337	fib6_node_kmem = kmem_cache_create("fib6_nodes",
2338					   sizeof(struct fib6_node),
2339					   0, SLAB_HWCACHE_ALIGN,
2340					   NULL);
2341	if (!fib6_node_kmem)
2342		goto out;
2343
2344	ret = register_pernet_subsys(&fib6_net_ops);
2345	if (ret)
2346		goto out_kmem_cache_create;
2347
2348	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2349				   inet6_dump_fib, 0);
2350	if (ret)
2351		goto out_unregister_subsys;
2352
2353	__fib6_flush_trees = fib6_flush_trees;
2354out:
2355	return ret;
2356
2357out_unregister_subsys:
2358	unregister_pernet_subsys(&fib6_net_ops);
2359out_kmem_cache_create:
2360	kmem_cache_destroy(fib6_node_kmem);
2361	goto out;
2362}
2363
2364void fib6_gc_cleanup(void)
2365{
2366	unregister_pernet_subsys(&fib6_net_ops);
2367	kmem_cache_destroy(fib6_node_kmem);
2368}
2369
2370#ifdef CONFIG_PROC_FS
2371static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2372{
2373	struct fib6_info *rt = v;
2374	struct ipv6_route_iter *iter = seq->private;
2375	struct fib6_nh *fib6_nh = rt->fib6_nh;
2376	unsigned int flags = rt->fib6_flags;
2377	const struct net_device *dev;
2378
2379	if (rt->nh)
2380		fib6_nh = nexthop_fib6_nh(rt->nh);
2381
2382	seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2383
2384#ifdef CONFIG_IPV6_SUBTREES
2385	seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2386#else
2387	seq_puts(seq, "00000000000000000000000000000000 00 ");
2388#endif
2389	if (fib6_nh->fib_nh_gw_family) {
2390		flags |= RTF_GATEWAY;
2391		seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2392	} else {
2393		seq_puts(seq, "00000000000000000000000000000000");
2394	}
2395
2396	dev = fib6_nh->fib_nh_dev;
2397	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2398		   rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2399		   flags, dev ? dev->name : "");
2400	iter->w.leaf = NULL;
2401	return 0;
2402}
2403
2404static int ipv6_route_yield(struct fib6_walker *w)
2405{
2406	struct ipv6_route_iter *iter = w->args;
2407
2408	if (!iter->skip)
2409		return 1;
2410
2411	do {
2412		iter->w.leaf = rcu_dereference_protected(
2413				iter->w.leaf->fib6_next,
2414				lockdep_is_held(&iter->tbl->tb6_lock));
2415		iter->skip--;
2416		if (!iter->skip && iter->w.leaf)
2417			return 1;
2418	} while (iter->w.leaf);
2419
2420	return 0;
2421}
2422
2423static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2424				      struct net *net)
2425{
2426	memset(&iter->w, 0, sizeof(iter->w));
2427	iter->w.func = ipv6_route_yield;
2428	iter->w.root = &iter->tbl->tb6_root;
2429	iter->w.state = FWS_INIT;
2430	iter->w.node = iter->w.root;
2431	iter->w.args = iter;
2432	iter->sernum = iter->w.root->fn_sernum;
2433	INIT_LIST_HEAD(&iter->w.lh);
2434	fib6_walker_link(net, &iter->w);
2435}
2436
2437static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2438						    struct net *net)
2439{
2440	unsigned int h;
2441	struct hlist_node *node;
2442
2443	if (tbl) {
2444		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2445		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2446	} else {
2447		h = 0;
2448		node = NULL;
2449	}
2450
2451	while (!node && h < FIB6_TABLE_HASHSZ) {
2452		node = rcu_dereference_bh(
2453			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2454	}
2455	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2456}
2457
2458static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2459{
2460	if (iter->sernum != iter->w.root->fn_sernum) {
2461		iter->sernum = iter->w.root->fn_sernum;
2462		iter->w.state = FWS_INIT;
2463		iter->w.node = iter->w.root;
2464		WARN_ON(iter->w.skip);
2465		iter->w.skip = iter->w.count;
2466	}
2467}
2468
2469static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2470{
2471	int r;
2472	struct fib6_info *n;
2473	struct net *net = seq_file_net(seq);
2474	struct ipv6_route_iter *iter = seq->private;
2475
2476	if (!v)
2477		goto iter_table;
2478
2479	n = rcu_dereference_bh(((struct fib6_info *)v)->fib6_next);
2480	if (n) {
2481		++*pos;
2482		return n;
2483	}
2484
2485iter_table:
2486	ipv6_route_check_sernum(iter);
2487	spin_lock_bh(&iter->tbl->tb6_lock);
2488	r = fib6_walk_continue(&iter->w);
2489	spin_unlock_bh(&iter->tbl->tb6_lock);
2490	if (r > 0) {
2491		if (v)
2492			++*pos;
2493		return iter->w.leaf;
2494	} else if (r < 0) {
2495		fib6_walker_unlink(net, &iter->w);
2496		return NULL;
2497	}
2498	fib6_walker_unlink(net, &iter->w);
2499
2500	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2501	if (!iter->tbl)
2502		return NULL;
2503
2504	ipv6_route_seq_setup_walk(iter, net);
2505	goto iter_table;
2506}
2507
2508static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2509	__acquires(RCU_BH)
2510{
2511	struct net *net = seq_file_net(seq);
2512	struct ipv6_route_iter *iter = seq->private;
2513
2514	rcu_read_lock_bh();
2515	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2516	iter->skip = *pos;
2517
2518	if (iter->tbl) {
2519		ipv6_route_seq_setup_walk(iter, net);
2520		return ipv6_route_seq_next(seq, NULL, pos);
2521	} else {
2522		return NULL;
2523	}
2524}
2525
2526static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2527{
2528	struct fib6_walker *w = &iter->w;
2529	return w->node && !(w->state == FWS_U && w->node == w->root);
2530}
2531
2532static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2533	__releases(RCU_BH)
2534{
2535	struct net *net = seq_file_net(seq);
2536	struct ipv6_route_iter *iter = seq->private;
2537
2538	if (ipv6_route_iter_active(iter))
2539		fib6_walker_unlink(net, &iter->w);
2540
2541	rcu_read_unlock_bh();
2542}
2543
2544const struct seq_operations ipv6_route_seq_ops = {
2545	.start	= ipv6_route_seq_start,
2546	.next	= ipv6_route_seq_next,
2547	.stop	= ipv6_route_seq_stop,
2548	.show	= ipv6_route_seq_show
2549};
2550#endif /* CONFIG_PROC_FS */