Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *	Linux INET6 implementation
   3 *	Forwarding Information Database
   4 *
   5 *	Authors:
   6 *	Pedro Roque		<roque@di.fc.ul.pt>
   7 *
   8 *	This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 */
  13
  14/*
  15 * 	Changes:
  16 * 	Yuji SEKIYA @USAGI:	Support default route on router node;
  17 * 				remove ip6_null_entry from the top of
  18 * 				routing table.
  19 * 	Ville Nuorvala:		Fixed routing subtrees.
  20 */
 
 
 
  21#include <linux/errno.h>
  22#include <linux/types.h>
  23#include <linux/net.h>
  24#include <linux/route.h>
  25#include <linux/netdevice.h>
  26#include <linux/in6.h>
  27#include <linux/init.h>
  28#include <linux/list.h>
  29#include <linux/slab.h>
  30
  31#ifdef 	CONFIG_PROC_FS
  32#include <linux/proc_fs.h>
  33#endif
  34
  35#include <net/ipv6.h>
  36#include <net/ndisc.h>
  37#include <net/addrconf.h>
  38
  39#include <net/ip6_fib.h>
  40#include <net/ip6_route.h>
  41
  42#define RT6_DEBUG 2
  43
  44#if RT6_DEBUG >= 3
  45#define RT6_TRACE(x...) printk(KERN_DEBUG x)
  46#else
  47#define RT6_TRACE(x...) do { ; } while (0)
  48#endif
  49
  50static struct kmem_cache * fib6_node_kmem __read_mostly;
  51
  52enum fib_walk_state_t
  53{
  54#ifdef CONFIG_IPV6_SUBTREES
  55	FWS_S,
  56#endif
  57	FWS_L,
  58	FWS_R,
  59	FWS_C,
  60	FWS_U
  61};
  62
  63struct fib6_cleaner_t
  64{
  65	struct fib6_walker_t w;
  66	struct net *net;
  67	int (*func)(struct rt6_info *, void *arg);
  68	void *arg;
  69};
  70
  71static DEFINE_RWLOCK(fib6_walker_lock);
  72
  73#ifdef CONFIG_IPV6_SUBTREES
  74#define FWS_INIT FWS_S
  75#else
  76#define FWS_INIT FWS_L
  77#endif
  78
  79static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
  80			      struct rt6_info *rt);
  81static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
  82static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
  83static int fib6_walk(struct fib6_walker_t *w);
  84static int fib6_walk_continue(struct fib6_walker_t *w);
  85
  86/*
  87 *	A routing update causes an increase of the serial number on the
  88 *	affected subtree. This allows for cached routes to be asynchronously
  89 *	tested when modifications are made to the destination cache as a
  90 *	result of redirects, path MTU changes, etc.
  91 */
  92
  93static __u32 rt_sernum;
  94
  95static void fib6_gc_timer_cb(unsigned long arg);
  96
  97static LIST_HEAD(fib6_walkers);
  98#define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
  99
 100static inline void fib6_walker_link(struct fib6_walker_t *w)
 101{
 102	write_lock_bh(&fib6_walker_lock);
 103	list_add(&w->lh, &fib6_walkers);
 104	write_unlock_bh(&fib6_walker_lock);
 105}
 106
 107static inline void fib6_walker_unlink(struct fib6_walker_t *w)
 108{
 109	write_lock_bh(&fib6_walker_lock);
 110	list_del(&w->lh);
 111	write_unlock_bh(&fib6_walker_lock);
 112}
 113static __inline__ u32 fib6_new_sernum(void)
 114{
 115	u32 n = ++rt_sernum;
 116	if ((__s32)n <= 0)
 117		rt_sernum = n = 1;
 118	return n;
 119}
 120
 121/*
 122 *	Auxiliary address test functions for the radix tree.
 123 *
 124 *	These assume a 32bit processor (although it will work on
 125 *	64bit processors)
 126 */
 127
 128/*
 129 *	test bit
 130 */
 131#if defined(__LITTLE_ENDIAN)
 132# define BITOP_BE32_SWIZZLE	(0x1F & ~7)
 133#else
 134# define BITOP_BE32_SWIZZLE	0
 135#endif
 136
 137static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
 138{
 139	const __be32 *addr = token;
 140	/*
 141	 * Here,
 142	 * 	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
 143	 * is optimized version of
 144	 *	htonl(1 << ((~fn_bit)&0x1F))
 145	 * See include/asm-generic/bitops/le.h.
 146	 */
 147	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
 148	       addr[fn_bit >> 5];
 149}
 150
 151static __inline__ struct fib6_node * node_alloc(void)
 152{
 153	struct fib6_node *fn;
 154
 155	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
 156
 157	return fn;
 158}
 159
 160static __inline__ void node_free(struct fib6_node * fn)
 161{
 162	kmem_cache_free(fib6_node_kmem, fn);
 163}
 164
 165static __inline__ void rt6_release(struct rt6_info *rt)
 166{
 167	if (atomic_dec_and_test(&rt->rt6i_ref))
 168		dst_free(&rt->dst);
 169}
 170
 171static void fib6_link_table(struct net *net, struct fib6_table *tb)
 172{
 173	unsigned int h;
 174
 175	/*
 176	 * Initialize table lock at a single place to give lockdep a key,
 177	 * tables aren't visible prior to being linked to the list.
 178	 */
 179	rwlock_init(&tb->tb6_lock);
 180
 181	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
 182
 183	/*
 184	 * No protection necessary, this is the only list mutatation
 185	 * operation, tables never disappear once they exist.
 186	 */
 187	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
 188}
 189
 190#ifdef CONFIG_IPV6_MULTIPLE_TABLES
 191
 192static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
 193{
 194	struct fib6_table *table;
 195
 196	table = kzalloc(sizeof(*table), GFP_ATOMIC);
 197	if (table != NULL) {
 198		table->tb6_id = id;
 199		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
 200		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
 201	}
 202
 203	return table;
 204}
 205
 206struct fib6_table *fib6_new_table(struct net *net, u32 id)
 207{
 208	struct fib6_table *tb;
 209
 210	if (id == 0)
 211		id = RT6_TABLE_MAIN;
 212	tb = fib6_get_table(net, id);
 213	if (tb)
 214		return tb;
 215
 216	tb = fib6_alloc_table(net, id);
 217	if (tb != NULL)
 218		fib6_link_table(net, tb);
 219
 220	return tb;
 221}
 222
 223struct fib6_table *fib6_get_table(struct net *net, u32 id)
 224{
 225	struct fib6_table *tb;
 226	struct hlist_head *head;
 227	struct hlist_node *node;
 228	unsigned int h;
 229
 230	if (id == 0)
 231		id = RT6_TABLE_MAIN;
 232	h = id & (FIB6_TABLE_HASHSZ - 1);
 233	rcu_read_lock();
 234	head = &net->ipv6.fib_table_hash[h];
 235	hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
 236		if (tb->tb6_id == id) {
 237			rcu_read_unlock();
 238			return tb;
 239		}
 240	}
 241	rcu_read_unlock();
 242
 243	return NULL;
 244}
 245
 246static void __net_init fib6_tables_init(struct net *net)
 247{
 248	fib6_link_table(net, net->ipv6.fib6_main_tbl);
 249	fib6_link_table(net, net->ipv6.fib6_local_tbl);
 250}
 251#else
 252
 253struct fib6_table *fib6_new_table(struct net *net, u32 id)
 254{
 255	return fib6_get_table(net, id);
 256}
 257
 258struct fib6_table *fib6_get_table(struct net *net, u32 id)
 259{
 260	  return net->ipv6.fib6_main_tbl;
 261}
 262
 263struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
 264				   int flags, pol_lookup_t lookup)
 265{
 266	return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
 267}
 268
 269static void __net_init fib6_tables_init(struct net *net)
 270{
 271	fib6_link_table(net, net->ipv6.fib6_main_tbl);
 272}
 273
 274#endif
 275
 276static int fib6_dump_node(struct fib6_walker_t *w)
 277{
 278	int res;
 279	struct rt6_info *rt;
 280
 281	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
 282		res = rt6_dump_route(rt, w->args);
 283		if (res < 0) {
 284			/* Frame is full, suspend walking */
 285			w->leaf = rt;
 286			return 1;
 287		}
 288		WARN_ON(res == 0);
 289	}
 290	w->leaf = NULL;
 291	return 0;
 292}
 293
 294static void fib6_dump_end(struct netlink_callback *cb)
 295{
 296	struct fib6_walker_t *w = (void*)cb->args[2];
 297
 298	if (w) {
 299		if (cb->args[4]) {
 300			cb->args[4] = 0;
 301			fib6_walker_unlink(w);
 302		}
 303		cb->args[2] = 0;
 304		kfree(w);
 305	}
 306	cb->done = (void*)cb->args[3];
 307	cb->args[1] = 3;
 308}
 309
 310static int fib6_dump_done(struct netlink_callback *cb)
 311{
 312	fib6_dump_end(cb);
 313	return cb->done ? cb->done(cb) : 0;
 314}
 315
 316static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
 317			   struct netlink_callback *cb)
 318{
 319	struct fib6_walker_t *w;
 320	int res;
 321
 322	w = (void *)cb->args[2];
 323	w->root = &table->tb6_root;
 324
 325	if (cb->args[4] == 0) {
 326		w->count = 0;
 327		w->skip = 0;
 328
 329		read_lock_bh(&table->tb6_lock);
 330		res = fib6_walk(w);
 331		read_unlock_bh(&table->tb6_lock);
 332		if (res > 0) {
 333			cb->args[4] = 1;
 334			cb->args[5] = w->root->fn_sernum;
 335		}
 336	} else {
 337		if (cb->args[5] != w->root->fn_sernum) {
 338			/* Begin at the root if the tree changed */
 339			cb->args[5] = w->root->fn_sernum;
 340			w->state = FWS_INIT;
 341			w->node = w->root;
 342			w->skip = w->count;
 343		} else
 344			w->skip = 0;
 345
 346		read_lock_bh(&table->tb6_lock);
 347		res = fib6_walk_continue(w);
 348		read_unlock_bh(&table->tb6_lock);
 349		if (res <= 0) {
 350			fib6_walker_unlink(w);
 351			cb->args[4] = 0;
 352		}
 353	}
 354
 355	return res;
 356}
 357
 358static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
 359{
 360	struct net *net = sock_net(skb->sk);
 361	unsigned int h, s_h;
 362	unsigned int e = 0, s_e;
 363	struct rt6_rtnl_dump_arg arg;
 364	struct fib6_walker_t *w;
 365	struct fib6_table *tb;
 366	struct hlist_node *node;
 367	struct hlist_head *head;
 368	int res = 0;
 369
 370	s_h = cb->args[0];
 371	s_e = cb->args[1];
 372
 373	w = (void *)cb->args[2];
 374	if (w == NULL) {
 375		/* New dump:
 376		 *
 377		 * 1. hook callback destructor.
 378		 */
 379		cb->args[3] = (long)cb->done;
 380		cb->done = fib6_dump_done;
 381
 382		/*
 383		 * 2. allocate and initialize walker.
 384		 */
 385		w = kzalloc(sizeof(*w), GFP_ATOMIC);
 386		if (w == NULL)
 387			return -ENOMEM;
 388		w->func = fib6_dump_node;
 389		cb->args[2] = (long)w;
 390	}
 391
 392	arg.skb = skb;
 393	arg.cb = cb;
 394	arg.net = net;
 395	w->args = &arg;
 396
 397	rcu_read_lock();
 398	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
 399		e = 0;
 400		head = &net->ipv6.fib_table_hash[h];
 401		hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
 402			if (e < s_e)
 403				goto next;
 404			res = fib6_dump_table(tb, skb, cb);
 405			if (res != 0)
 406				goto out;
 407next:
 408			e++;
 409		}
 410	}
 411out:
 412	rcu_read_unlock();
 413	cb->args[1] = e;
 414	cb->args[0] = h;
 415
 416	res = res < 0 ? res : skb->len;
 417	if (res <= 0)
 418		fib6_dump_end(cb);
 419	return res;
 420}
 421
 422/*
 423 *	Routing Table
 424 *
 425 *	return the appropriate node for a routing tree "add" operation
 426 *	by either creating and inserting or by returning an existing
 427 *	node.
 428 */
 429
 430static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
 431				     int addrlen, int plen,
 432				     int offset)
 
 433{
 434	struct fib6_node *fn, *in, *ln;
 435	struct fib6_node *pn = NULL;
 436	struct rt6key *key;
 437	int	bit;
 438	__be32	dir = 0;
 439	__u32	sernum = fib6_new_sernum();
 440
 441	RT6_TRACE("fib6_add_1\n");
 442
 443	/* insert node in tree */
 444
 445	fn = root;
 446
 447	do {
 448		key = (struct rt6key *)((u8 *)fn->leaf + offset);
 449
 450		/*
 451		 *	Prefix match
 452		 */
 453		if (plen < fn->fn_bit ||
 454		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
 
 
 
 
 
 
 
 455			goto insert_above;
 
 456
 457		/*
 458		 *	Exact match ?
 459		 */
 460
 461		if (plen == fn->fn_bit) {
 462			/* clean up an intermediate node */
 463			if ((fn->fn_flags & RTN_RTINFO) == 0) {
 464				rt6_release(fn->leaf);
 465				fn->leaf = NULL;
 466			}
 467
 468			fn->fn_sernum = sernum;
 469
 470			return fn;
 471		}
 472
 473		/*
 474		 *	We have more bits to go
 475		 */
 476
 477		/* Try to walk down on tree. */
 478		fn->fn_sernum = sernum;
 479		dir = addr_bit_set(addr, fn->fn_bit);
 480		pn = fn;
 481		fn = dir ? fn->right: fn->left;
 482	} while (fn);
 483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484	/*
 485	 *	We walked to the bottom of tree.
 486	 *	Create new leaf node without children.
 487	 */
 488
 489	ln = node_alloc();
 490
 491	if (ln == NULL)
 492		return NULL;
 493	ln->fn_bit = plen;
 494
 495	ln->parent = pn;
 496	ln->fn_sernum = sernum;
 497
 498	if (dir)
 499		pn->right = ln;
 500	else
 501		pn->left  = ln;
 502
 503	return ln;
 504
 505
 506insert_above:
 507	/*
 508	 * split since we don't have a common prefix anymore or
 509	 * we have a less significant route.
 510	 * we've to insert an intermediate node on the list
 511	 * this new node will point to the one we need to create
 512	 * and the current
 513	 */
 514
 515	pn = fn->parent;
 516
 517	/* find 1st bit in difference between the 2 addrs.
 518
 519	   See comment in __ipv6_addr_diff: bit may be an invalid value,
 520	   but if it is >= plen, the value is ignored in any case.
 521	 */
 522
 523	bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
 524
 525	/*
 526	 *		(intermediate)[in]
 527	 *	          /	   \
 528	 *	(new leaf node)[ln] (old node)[fn]
 529	 */
 530	if (plen > bit) {
 531		in = node_alloc();
 532		ln = node_alloc();
 533
 534		if (in == NULL || ln == NULL) {
 535			if (in)
 536				node_free(in);
 537			if (ln)
 538				node_free(ln);
 539			return NULL;
 540		}
 541
 542		/*
 543		 * new intermediate node.
 544		 * RTN_RTINFO will
 545		 * be off since that an address that chooses one of
 546		 * the branches would not match less specific routes
 547		 * in the other branch
 548		 */
 549
 550		in->fn_bit = bit;
 551
 552		in->parent = pn;
 553		in->leaf = fn->leaf;
 554		atomic_inc(&in->leaf->rt6i_ref);
 555
 556		in->fn_sernum = sernum;
 557
 558		/* update parent pointer */
 559		if (dir)
 560			pn->right = in;
 561		else
 562			pn->left  = in;
 563
 564		ln->fn_bit = plen;
 565
 566		ln->parent = in;
 567		fn->parent = in;
 568
 569		ln->fn_sernum = sernum;
 570
 571		if (addr_bit_set(addr, bit)) {
 572			in->right = ln;
 573			in->left  = fn;
 574		} else {
 575			in->left  = ln;
 576			in->right = fn;
 577		}
 578	} else { /* plen <= bit */
 579
 580		/*
 581		 *		(new leaf node)[ln]
 582		 *	          /	   \
 583		 *	     (old node)[fn] NULL
 584		 */
 585
 586		ln = node_alloc();
 587
 588		if (ln == NULL)
 589			return NULL;
 590
 591		ln->fn_bit = plen;
 592
 593		ln->parent = pn;
 594
 595		ln->fn_sernum = sernum;
 596
 597		if (dir)
 598			pn->right = ln;
 599		else
 600			pn->left  = ln;
 601
 602		if (addr_bit_set(&key->addr, plen))
 603			ln->right = fn;
 604		else
 605			ln->left  = fn;
 606
 607		fn->parent = ln;
 608	}
 609	return ln;
 610}
 611
 612/*
 613 *	Insert routing information in a node.
 614 */
 615
 616static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
 617			    struct nl_info *info)
 618{
 619	struct rt6_info *iter = NULL;
 620	struct rt6_info **ins;
 
 
 
 
 
 621
 622	ins = &fn->leaf;
 623
 624	for (iter = fn->leaf; iter; iter=iter->dst.rt6_next) {
 625		/*
 626		 *	Search for duplicates
 627		 */
 628
 629		if (iter->rt6i_metric == rt->rt6i_metric) {
 630			/*
 631			 *	Same priority level
 632			 */
 
 
 
 
 
 
 
 633
 634			if (iter->rt6i_dev == rt->rt6i_dev &&
 635			    iter->rt6i_idev == rt->rt6i_idev &&
 636			    ipv6_addr_equal(&iter->rt6i_gateway,
 637					    &rt->rt6i_gateway)) {
 638				if (!(iter->rt6i_flags&RTF_EXPIRES))
 639					return -EEXIST;
 640				iter->rt6i_expires = rt->rt6i_expires;
 641				if (!(rt->rt6i_flags&RTF_EXPIRES)) {
 642					iter->rt6i_flags &= ~RTF_EXPIRES;
 643					iter->rt6i_expires = 0;
 644				}
 645				return -EEXIST;
 646			}
 647		}
 648
 649		if (iter->rt6i_metric > rt->rt6i_metric)
 650			break;
 651
 652		ins = &iter->dst.rt6_next;
 653	}
 654
 655	/* Reset round-robin state, if necessary */
 656	if (ins == &fn->leaf)
 657		fn->rr_ptr = NULL;
 658
 659	/*
 660	 *	insert node
 661	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662
 663	rt->dst.rt6_next = iter;
 664	*ins = rt;
 665	rt->rt6i_node = fn;
 666	atomic_inc(&rt->rt6i_ref);
 667	inet6_rt_notify(RTM_NEWROUTE, rt, info);
 668	info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
 669
 670	if ((fn->fn_flags & RTN_RTINFO) == 0) {
 671		info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
 672		fn->fn_flags |= RTN_RTINFO;
 
 
 
 
 
 
 
 673	}
 674
 675	return 0;
 676}
 677
 678static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
 679{
 680	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
 681	    (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
 682		mod_timer(&net->ipv6.ip6_fib_timer,
 683			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
 684}
 685
 686void fib6_force_start_gc(struct net *net)
 687{
 688	if (!timer_pending(&net->ipv6.ip6_fib_timer))
 689		mod_timer(&net->ipv6.ip6_fib_timer,
 690			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
 691}
 692
 693/*
 694 *	Add routing information to the routing tree.
 695 *	<destination addr>/<source addr>
 696 *	with source addr info in sub-trees
 697 */
 698
 699int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
 700{
 701	struct fib6_node *fn, *pn = NULL;
 702	int err = -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 703
 704	fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
 705			rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
 
 
 
 
 
 
 706
 707	if (fn == NULL)
 708		goto out;
 709
 710	pn = fn;
 711
 712#ifdef CONFIG_IPV6_SUBTREES
 713	if (rt->rt6i_src.plen) {
 714		struct fib6_node *sn;
 715
 716		if (fn->subtree == NULL) {
 717			struct fib6_node *sfn;
 718
 719			/*
 720			 * Create subtree.
 721			 *
 722			 *		fn[main tree]
 723			 *		|
 724			 *		sfn[subtree root]
 725			 *		   \
 726			 *		    sn[new leaf node]
 727			 */
 728
 729			/* Create subtree root node */
 730			sfn = node_alloc();
 731			if (sfn == NULL)
 732				goto st_failure;
 733
 734			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
 735			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
 736			sfn->fn_flags = RTN_ROOT;
 737			sfn->fn_sernum = fib6_new_sernum();
 738
 739			/* Now add the first leaf node to new subtree */
 740
 741			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
 742					sizeof(struct in6_addr), rt->rt6i_src.plen,
 743					offsetof(struct rt6_info, rt6i_src));
 
 744
 745			if (sn == NULL) {
 746				/* If it is failed, discard just allocated
 747				   root, and then (in st_failure) stale node
 748				   in main tree.
 749				 */
 750				node_free(sfn);
 751				goto st_failure;
 752			}
 753
 754			/* Now link new subtree to main tree */
 755			sfn->parent = fn;
 756			fn->subtree = sfn;
 757		} else {
 758			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
 759					sizeof(struct in6_addr), rt->rt6i_src.plen,
 760					offsetof(struct rt6_info, rt6i_src));
 
 761
 762			if (sn == NULL)
 
 
 
 
 763				goto st_failure;
 764		}
 765
 766		if (fn->leaf == NULL) {
 767			fn->leaf = rt;
 768			atomic_inc(&rt->rt6i_ref);
 769		}
 770		fn = sn;
 771	}
 772#endif
 773
 774	err = fib6_add_rt2node(fn, rt, info);
 775
 776	if (err == 0) {
 777		fib6_start_gc(info->nl_net, rt);
 778		if (!(rt->rt6i_flags&RTF_CACHE))
 779			fib6_prune_clones(info->nl_net, pn, rt);
 780	}
 781
 782out:
 783	if (err) {
 784#ifdef CONFIG_IPV6_SUBTREES
 785		/*
 786		 * If fib6_add_1 has cleared the old leaf pointer in the
 787		 * super-tree leaf node we have to find a new one for it.
 788		 */
 789		if (pn != fn && pn->leaf == rt) {
 790			pn->leaf = NULL;
 791			atomic_dec(&rt->rt6i_ref);
 792		}
 793		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
 794			pn->leaf = fib6_find_prefix(info->nl_net, pn);
 795#if RT6_DEBUG >= 2
 796			if (!pn->leaf) {
 797				WARN_ON(pn->leaf == NULL);
 798				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
 799			}
 800#endif
 801			atomic_inc(&pn->leaf->rt6i_ref);
 802		}
 803#endif
 804		dst_free(&rt->dst);
 805	}
 806	return err;
 807
 808#ifdef CONFIG_IPV6_SUBTREES
 809	/* Subtree creation failed, probably main tree node
 810	   is orphan. If it is, shoot it.
 811	 */
 812st_failure:
 813	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
 814		fib6_repair_tree(info->nl_net, fn);
 815	dst_free(&rt->dst);
 816	return err;
 817#endif
 818}
 819
 820/*
 821 *	Routing tree lookup
 822 *
 823 */
 824
 825struct lookup_args {
 826	int		offset;		/* key offset on rt6_info	*/
 827	const struct in6_addr	*addr;		/* search key			*/
 828};
 829
 830static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
 831					struct lookup_args *args)
 832{
 833	struct fib6_node *fn;
 834	__be32 dir;
 835
 836	if (unlikely(args->offset == 0))
 837		return NULL;
 838
 839	/*
 840	 *	Descend on a tree
 841	 */
 842
 843	fn = root;
 844
 845	for (;;) {
 846		struct fib6_node *next;
 847
 848		dir = addr_bit_set(args->addr, fn->fn_bit);
 849
 850		next = dir ? fn->right : fn->left;
 851
 852		if (next) {
 853			fn = next;
 854			continue;
 855		}
 856
 857		break;
 858	}
 859
 860	while(fn) {
 861		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
 862			struct rt6key *key;
 863
 864			key = (struct rt6key *) ((u8 *) fn->leaf +
 865						 args->offset);
 866
 867			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
 868#ifdef CONFIG_IPV6_SUBTREES
 869				if (fn->subtree)
 870					fn = fib6_lookup_1(fn->subtree, args + 1);
 871#endif
 872				if (!fn || fn->fn_flags & RTN_RTINFO)
 873					return fn;
 874			}
 875		}
 876
 877		if (fn->fn_flags & RTN_ROOT)
 878			break;
 879
 880		fn = fn->parent;
 881	}
 882
 883	return NULL;
 884}
 885
 886struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
 887			       const struct in6_addr *saddr)
 888{
 889	struct fib6_node *fn;
 890	struct lookup_args args[] = {
 891		{
 892			.offset = offsetof(struct rt6_info, rt6i_dst),
 893			.addr = daddr,
 894		},
 895#ifdef CONFIG_IPV6_SUBTREES
 896		{
 897			.offset = offsetof(struct rt6_info, rt6i_src),
 898			.addr = saddr,
 899		},
 900#endif
 901		{
 902			.offset = 0,	/* sentinel */
 903		}
 904	};
 905
 906	fn = fib6_lookup_1(root, daddr ? args : args + 1);
 907
 908	if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
 909		fn = root;
 910
 911	return fn;
 912}
 913
 914/*
 915 *	Get node with specified destination prefix (and source prefix,
 916 *	if subtrees are used)
 917 */
 918
 919
 920static struct fib6_node * fib6_locate_1(struct fib6_node *root,
 921					const struct in6_addr *addr,
 922					int plen, int offset)
 923{
 924	struct fib6_node *fn;
 925
 926	for (fn = root; fn ; ) {
 927		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
 928
 929		/*
 930		 *	Prefix match
 931		 */
 932		if (plen < fn->fn_bit ||
 933		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
 934			return NULL;
 935
 936		if (plen == fn->fn_bit)
 937			return fn;
 938
 939		/*
 940		 *	We have more bits to go
 941		 */
 942		if (addr_bit_set(addr, fn->fn_bit))
 943			fn = fn->right;
 944		else
 945			fn = fn->left;
 946	}
 947	return NULL;
 948}
 949
 950struct fib6_node * fib6_locate(struct fib6_node *root,
 951			       const struct in6_addr *daddr, int dst_len,
 952			       const struct in6_addr *saddr, int src_len)
 953{
 954	struct fib6_node *fn;
 955
 956	fn = fib6_locate_1(root, daddr, dst_len,
 957			   offsetof(struct rt6_info, rt6i_dst));
 958
 959#ifdef CONFIG_IPV6_SUBTREES
 960	if (src_len) {
 961		WARN_ON(saddr == NULL);
 962		if (fn && fn->subtree)
 963			fn = fib6_locate_1(fn->subtree, saddr, src_len,
 964					   offsetof(struct rt6_info, rt6i_src));
 965	}
 966#endif
 967
 968	if (fn && fn->fn_flags&RTN_RTINFO)
 969		return fn;
 970
 971	return NULL;
 972}
 973
 974
 975/*
 976 *	Deletion
 977 *
 978 */
 979
 980static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
 981{
 982	if (fn->fn_flags&RTN_ROOT)
 983		return net->ipv6.ip6_null_entry;
 984
 985	while(fn) {
 986		if(fn->left)
 987			return fn->left->leaf;
 988
 989		if(fn->right)
 990			return fn->right->leaf;
 991
 992		fn = FIB6_SUBTREE(fn);
 993	}
 994	return NULL;
 995}
 996
 997/*
 998 *	Called to trim the tree of intermediate nodes when possible. "fn"
 999 *	is the node we want to try and remove.
1000 */
1001
1002static struct fib6_node *fib6_repair_tree(struct net *net,
1003					   struct fib6_node *fn)
1004{
1005	int children;
1006	int nstate;
1007	struct fib6_node *child, *pn;
1008	struct fib6_walker_t *w;
1009	int iter = 0;
1010
1011	for (;;) {
1012		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1013		iter++;
1014
1015		WARN_ON(fn->fn_flags & RTN_RTINFO);
1016		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1017		WARN_ON(fn->leaf != NULL);
1018
1019		children = 0;
1020		child = NULL;
1021		if (fn->right) child = fn->right, children |= 1;
1022		if (fn->left) child = fn->left, children |= 2;
1023
1024		if (children == 3 || FIB6_SUBTREE(fn)
1025#ifdef CONFIG_IPV6_SUBTREES
1026		    /* Subtree root (i.e. fn) may have one child */
1027		    || (children && fn->fn_flags&RTN_ROOT)
1028#endif
1029		    ) {
1030			fn->leaf = fib6_find_prefix(net, fn);
1031#if RT6_DEBUG >= 2
1032			if (fn->leaf==NULL) {
1033				WARN_ON(!fn->leaf);
1034				fn->leaf = net->ipv6.ip6_null_entry;
1035			}
1036#endif
1037			atomic_inc(&fn->leaf->rt6i_ref);
1038			return fn->parent;
1039		}
1040
1041		pn = fn->parent;
1042#ifdef CONFIG_IPV6_SUBTREES
1043		if (FIB6_SUBTREE(pn) == fn) {
1044			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1045			FIB6_SUBTREE(pn) = NULL;
1046			nstate = FWS_L;
1047		} else {
1048			WARN_ON(fn->fn_flags & RTN_ROOT);
1049#endif
1050			if (pn->right == fn) pn->right = child;
1051			else if (pn->left == fn) pn->left = child;
1052#if RT6_DEBUG >= 2
1053			else
1054				WARN_ON(1);
1055#endif
1056			if (child)
1057				child->parent = pn;
1058			nstate = FWS_R;
1059#ifdef CONFIG_IPV6_SUBTREES
1060		}
1061#endif
1062
1063		read_lock(&fib6_walker_lock);
1064		FOR_WALKERS(w) {
1065			if (child == NULL) {
1066				if (w->root == fn) {
1067					w->root = w->node = NULL;
1068					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1069				} else if (w->node == fn) {
1070					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1071					w->node = pn;
1072					w->state = nstate;
1073				}
1074			} else {
1075				if (w->root == fn) {
1076					w->root = child;
1077					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1078				}
1079				if (w->node == fn) {
1080					w->node = child;
1081					if (children&2) {
1082						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1083						w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1084					} else {
1085						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1086						w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1087					}
1088				}
1089			}
1090		}
1091		read_unlock(&fib6_walker_lock);
1092
1093		node_free(fn);
1094		if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1095			return pn;
1096
1097		rt6_release(pn->leaf);
1098		pn->leaf = NULL;
1099		fn = pn;
1100	}
1101}
1102
1103static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1104			   struct nl_info *info)
1105{
1106	struct fib6_walker_t *w;
1107	struct rt6_info *rt = *rtp;
1108	struct net *net = info->nl_net;
1109
1110	RT6_TRACE("fib6_del_route\n");
1111
1112	/* Unlink it */
1113	*rtp = rt->dst.rt6_next;
1114	rt->rt6i_node = NULL;
1115	net->ipv6.rt6_stats->fib_rt_entries--;
1116	net->ipv6.rt6_stats->fib_discarded_routes++;
1117
1118	/* Reset round-robin state, if necessary */
1119	if (fn->rr_ptr == rt)
1120		fn->rr_ptr = NULL;
1121
1122	/* Adjust walkers */
1123	read_lock(&fib6_walker_lock);
1124	FOR_WALKERS(w) {
1125		if (w->state == FWS_C && w->leaf == rt) {
1126			RT6_TRACE("walker %p adjusted by delroute\n", w);
1127			w->leaf = rt->dst.rt6_next;
1128			if (w->leaf == NULL)
1129				w->state = FWS_U;
1130		}
1131	}
1132	read_unlock(&fib6_walker_lock);
1133
1134	rt->dst.rt6_next = NULL;
1135
1136	/* If it was last route, expunge its radix tree node */
1137	if (fn->leaf == NULL) {
1138		fn->fn_flags &= ~RTN_RTINFO;
1139		net->ipv6.rt6_stats->fib_route_nodes--;
1140		fn = fib6_repair_tree(net, fn);
1141	}
1142
1143	if (atomic_read(&rt->rt6i_ref) != 1) {
1144		/* This route is used as dummy address holder in some split
1145		 * nodes. It is not leaked, but it still holds other resources,
1146		 * which must be released in time. So, scan ascendant nodes
1147		 * and replace dummy references to this route with references
1148		 * to still alive ones.
1149		 */
1150		while (fn) {
1151			if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1152				fn->leaf = fib6_find_prefix(net, fn);
1153				atomic_inc(&fn->leaf->rt6i_ref);
1154				rt6_release(rt);
1155			}
1156			fn = fn->parent;
1157		}
1158		/* No more references are possible at this point. */
1159		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1160	}
1161
1162	inet6_rt_notify(RTM_DELROUTE, rt, info);
1163	rt6_release(rt);
1164}
1165
1166int fib6_del(struct rt6_info *rt, struct nl_info *info)
1167{
1168	struct net *net = info->nl_net;
1169	struct fib6_node *fn = rt->rt6i_node;
1170	struct rt6_info **rtp;
1171
1172#if RT6_DEBUG >= 2
1173	if (rt->dst.obsolete>0) {
1174		WARN_ON(fn != NULL);
1175		return -ENOENT;
1176	}
1177#endif
1178	if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1179		return -ENOENT;
1180
1181	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1182
1183	if (!(rt->rt6i_flags&RTF_CACHE)) {
1184		struct fib6_node *pn = fn;
1185#ifdef CONFIG_IPV6_SUBTREES
1186		/* clones of this route might be in another subtree */
1187		if (rt->rt6i_src.plen) {
1188			while (!(pn->fn_flags&RTN_ROOT))
1189				pn = pn->parent;
1190			pn = pn->parent;
1191		}
1192#endif
1193		fib6_prune_clones(info->nl_net, pn, rt);
1194	}
1195
1196	/*
1197	 *	Walk the leaf entries looking for ourself
1198	 */
1199
1200	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1201		if (*rtp == rt) {
1202			fib6_del_route(fn, rtp, info);
1203			return 0;
1204		}
1205	}
1206	return -ENOENT;
1207}
1208
1209/*
1210 *	Tree traversal function.
1211 *
1212 *	Certainly, it is not interrupt safe.
1213 *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1214 *	It means, that we can modify tree during walking
1215 *	and use this function for garbage collection, clone pruning,
1216 *	cleaning tree when a device goes down etc. etc.
1217 *
1218 *	It guarantees that every node will be traversed,
1219 *	and that it will be traversed only once.
1220 *
1221 *	Callback function w->func may return:
1222 *	0 -> continue walking.
1223 *	positive value -> walking is suspended (used by tree dumps,
1224 *	and probably by gc, if it will be split to several slices)
1225 *	negative value -> terminate walking.
1226 *
1227 *	The function itself returns:
1228 *	0   -> walk is complete.
1229 *	>0  -> walk is incomplete (i.e. suspended)
1230 *	<0  -> walk is terminated by an error.
1231 */
1232
1233static int fib6_walk_continue(struct fib6_walker_t *w)
1234{
1235	struct fib6_node *fn, *pn;
1236
1237	for (;;) {
1238		fn = w->node;
1239		if (fn == NULL)
1240			return 0;
1241
1242		if (w->prune && fn != w->root &&
1243		    fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1244			w->state = FWS_C;
1245			w->leaf = fn->leaf;
1246		}
1247		switch (w->state) {
1248#ifdef CONFIG_IPV6_SUBTREES
1249		case FWS_S:
1250			if (FIB6_SUBTREE(fn)) {
1251				w->node = FIB6_SUBTREE(fn);
1252				continue;
1253			}
1254			w->state = FWS_L;
1255#endif
1256		case FWS_L:
1257			if (fn->left) {
1258				w->node = fn->left;
1259				w->state = FWS_INIT;
1260				continue;
1261			}
1262			w->state = FWS_R;
1263		case FWS_R:
1264			if (fn->right) {
1265				w->node = fn->right;
1266				w->state = FWS_INIT;
1267				continue;
1268			}
1269			w->state = FWS_C;
1270			w->leaf = fn->leaf;
1271		case FWS_C:
1272			if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1273				int err;
1274
1275				if (w->count < w->skip) {
1276					w->count++;
1277					continue;
1278				}
1279
1280				err = w->func(w);
1281				if (err)
1282					return err;
1283
1284				w->count++;
1285				continue;
1286			}
1287			w->state = FWS_U;
1288		case FWS_U:
1289			if (fn == w->root)
1290				return 0;
1291			pn = fn->parent;
1292			w->node = pn;
1293#ifdef CONFIG_IPV6_SUBTREES
1294			if (FIB6_SUBTREE(pn) == fn) {
1295				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1296				w->state = FWS_L;
1297				continue;
1298			}
1299#endif
1300			if (pn->left == fn) {
1301				w->state = FWS_R;
1302				continue;
1303			}
1304			if (pn->right == fn) {
1305				w->state = FWS_C;
1306				w->leaf = w->node->leaf;
1307				continue;
1308			}
1309#if RT6_DEBUG >= 2
1310			WARN_ON(1);
1311#endif
1312		}
1313	}
1314}
1315
1316static int fib6_walk(struct fib6_walker_t *w)
1317{
1318	int res;
1319
1320	w->state = FWS_INIT;
1321	w->node = w->root;
1322
1323	fib6_walker_link(w);
1324	res = fib6_walk_continue(w);
1325	if (res <= 0)
1326		fib6_walker_unlink(w);
1327	return res;
1328}
1329
1330static int fib6_clean_node(struct fib6_walker_t *w)
1331{
1332	int res;
1333	struct rt6_info *rt;
1334	struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1335	struct nl_info info = {
1336		.nl_net = c->net,
1337	};
1338
1339	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1340		res = c->func(rt, c->arg);
1341		if (res < 0) {
1342			w->leaf = rt;
1343			res = fib6_del(rt, &info);
1344			if (res) {
1345#if RT6_DEBUG >= 2
1346				printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
 
1347#endif
1348				continue;
1349			}
1350			return 0;
1351		}
1352		WARN_ON(res != 0);
1353	}
1354	w->leaf = rt;
1355	return 0;
1356}
1357
1358/*
1359 *	Convenient frontend to tree walker.
1360 *
1361 *	func is called on each route.
1362 *		It may return -1 -> delete this route.
1363 *		              0  -> continue walking
1364 *
1365 *	prune==1 -> only immediate children of node (certainly,
1366 *	ignoring pure split nodes) will be scanned.
1367 */
1368
1369static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1370			    int (*func)(struct rt6_info *, void *arg),
1371			    int prune, void *arg)
1372{
1373	struct fib6_cleaner_t c;
1374
1375	c.w.root = root;
1376	c.w.func = fib6_clean_node;
1377	c.w.prune = prune;
1378	c.w.count = 0;
1379	c.w.skip = 0;
1380	c.func = func;
1381	c.arg = arg;
1382	c.net = net;
1383
1384	fib6_walk(&c.w);
1385}
1386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1387void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1388		    int prune, void *arg)
1389{
1390	struct fib6_table *table;
1391	struct hlist_node *node;
1392	struct hlist_head *head;
1393	unsigned int h;
1394
1395	rcu_read_lock();
1396	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1397		head = &net->ipv6.fib_table_hash[h];
1398		hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1399			write_lock_bh(&table->tb6_lock);
1400			fib6_clean_tree(net, &table->tb6_root,
1401					func, prune, arg);
1402			write_unlock_bh(&table->tb6_lock);
1403		}
1404	}
1405	rcu_read_unlock();
1406}
1407
1408static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1409{
1410	if (rt->rt6i_flags & RTF_CACHE) {
1411		RT6_TRACE("pruning clone %p\n", rt);
1412		return -1;
1413	}
1414
1415	return 0;
1416}
1417
1418static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1419			      struct rt6_info *rt)
1420{
1421	fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1422}
1423
1424/*
1425 *	Garbage collection
1426 */
1427
1428static struct fib6_gc_args
1429{
1430	int			timeout;
1431	int			more;
1432} gc_args;
1433
1434static int fib6_age(struct rt6_info *rt, void *arg)
1435{
1436	unsigned long now = jiffies;
1437
1438	/*
1439	 *	check addrconf expiration here.
1440	 *	Routes are expired even if they are in use.
1441	 *
1442	 *	Also age clones. Note, that clones are aged out
1443	 *	only if they are not in use now.
1444	 */
1445
1446	if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1447		if (time_after(now, rt->rt6i_expires)) {
1448			RT6_TRACE("expiring %p\n", rt);
1449			return -1;
1450		}
1451		gc_args.more++;
1452	} else if (rt->rt6i_flags & RTF_CACHE) {
1453		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1454		    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1455			RT6_TRACE("aging clone %p\n", rt);
1456			return -1;
1457		} else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1458			   (!(dst_get_neighbour_raw(&rt->dst)->flags & NTF_ROUTER))) {
1459			RT6_TRACE("purging route %p via non-router but gateway\n",
1460				  rt);
1461			return -1;
 
 
 
 
 
 
 
 
 
1462		}
1463		gc_args.more++;
1464	}
1465
1466	return 0;
1467}
1468
1469static DEFINE_SPINLOCK(fib6_gc_lock);
1470
1471void fib6_run_gc(unsigned long expires, struct net *net)
1472{
1473	if (expires != ~0UL) {
1474		spin_lock_bh(&fib6_gc_lock);
1475		gc_args.timeout = expires ? (int)expires :
1476			net->ipv6.sysctl.ip6_rt_gc_interval;
1477	} else {
1478		if (!spin_trylock_bh(&fib6_gc_lock)) {
1479			mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1480			return;
1481		}
1482		gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1483	}
1484
1485	gc_args.more = icmp6_dst_gc();
1486
1487	fib6_clean_all(net, fib6_age, 0, NULL);
1488
1489	if (gc_args.more)
1490		mod_timer(&net->ipv6.ip6_fib_timer,
1491			  round_jiffies(jiffies
1492					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1493	else
1494		del_timer(&net->ipv6.ip6_fib_timer);
1495	spin_unlock_bh(&fib6_gc_lock);
1496}
1497
1498static void fib6_gc_timer_cb(unsigned long arg)
1499{
1500	fib6_run_gc(0, (struct net *)arg);
1501}
1502
1503static int __net_init fib6_net_init(struct net *net)
1504{
1505	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1506
1507	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1508
1509	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1510	if (!net->ipv6.rt6_stats)
1511		goto out_timer;
1512
1513	/* Avoid false sharing : Use at least a full cache line */
1514	size = max_t(size_t, size, L1_CACHE_BYTES);
1515
1516	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1517	if (!net->ipv6.fib_table_hash)
1518		goto out_rt6_stats;
1519
1520	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1521					  GFP_KERNEL);
1522	if (!net->ipv6.fib6_main_tbl)
1523		goto out_fib_table_hash;
1524
1525	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1526	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1527	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1528		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1529
1530#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1531	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1532					   GFP_KERNEL);
1533	if (!net->ipv6.fib6_local_tbl)
1534		goto out_fib6_main_tbl;
1535	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1536	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1537	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1538		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1539#endif
1540	fib6_tables_init(net);
1541
1542	return 0;
1543
1544#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1545out_fib6_main_tbl:
1546	kfree(net->ipv6.fib6_main_tbl);
1547#endif
1548out_fib_table_hash:
1549	kfree(net->ipv6.fib_table_hash);
1550out_rt6_stats:
1551	kfree(net->ipv6.rt6_stats);
1552out_timer:
1553	return -ENOMEM;
1554 }
1555
1556static void fib6_net_exit(struct net *net)
1557{
1558	rt6_ifdown(net, NULL);
1559	del_timer_sync(&net->ipv6.ip6_fib_timer);
1560
1561#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1562	kfree(net->ipv6.fib6_local_tbl);
1563#endif
1564	kfree(net->ipv6.fib6_main_tbl);
1565	kfree(net->ipv6.fib_table_hash);
1566	kfree(net->ipv6.rt6_stats);
1567}
1568
1569static struct pernet_operations fib6_net_ops = {
1570	.init = fib6_net_init,
1571	.exit = fib6_net_exit,
1572};
1573
1574int __init fib6_init(void)
1575{
1576	int ret = -ENOMEM;
1577
1578	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1579					   sizeof(struct fib6_node),
1580					   0, SLAB_HWCACHE_ALIGN,
1581					   NULL);
1582	if (!fib6_node_kmem)
1583		goto out;
1584
1585	ret = register_pernet_subsys(&fib6_net_ops);
1586	if (ret)
1587		goto out_kmem_cache_create;
1588
1589	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1590			      NULL);
1591	if (ret)
1592		goto out_unregister_subsys;
1593out:
1594	return ret;
1595
1596out_unregister_subsys:
1597	unregister_pernet_subsys(&fib6_net_ops);
1598out_kmem_cache_create:
1599	kmem_cache_destroy(fib6_node_kmem);
1600	goto out;
1601}
1602
1603void fib6_gc_cleanup(void)
1604{
1605	unregister_pernet_subsys(&fib6_net_ops);
1606	kmem_cache_destroy(fib6_node_kmem);
1607}
v3.5.6
   1/*
   2 *	Linux INET6 implementation
   3 *	Forwarding Information Database
   4 *
   5 *	Authors:
   6 *	Pedro Roque		<roque@di.fc.ul.pt>
   7 *
   8 *	This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 */
  13
  14/*
  15 * 	Changes:
  16 * 	Yuji SEKIYA @USAGI:	Support default route on router node;
  17 * 				remove ip6_null_entry from the top of
  18 * 				routing table.
  19 * 	Ville Nuorvala:		Fixed routing subtrees.
  20 */
  21
  22#define pr_fmt(fmt) "IPv6: " fmt
  23
  24#include <linux/errno.h>
  25#include <linux/types.h>
  26#include <linux/net.h>
  27#include <linux/route.h>
  28#include <linux/netdevice.h>
  29#include <linux/in6.h>
  30#include <linux/init.h>
  31#include <linux/list.h>
  32#include <linux/slab.h>
  33
 
 
 
 
  34#include <net/ipv6.h>
  35#include <net/ndisc.h>
  36#include <net/addrconf.h>
  37
  38#include <net/ip6_fib.h>
  39#include <net/ip6_route.h>
  40
  41#define RT6_DEBUG 2
  42
  43#if RT6_DEBUG >= 3
  44#define RT6_TRACE(x...) pr_debug(x)
  45#else
  46#define RT6_TRACE(x...) do { ; } while (0)
  47#endif
  48
  49static struct kmem_cache * fib6_node_kmem __read_mostly;
  50
  51enum fib_walk_state_t
  52{
  53#ifdef CONFIG_IPV6_SUBTREES
  54	FWS_S,
  55#endif
  56	FWS_L,
  57	FWS_R,
  58	FWS_C,
  59	FWS_U
  60};
  61
  62struct fib6_cleaner_t
  63{
  64	struct fib6_walker_t w;
  65	struct net *net;
  66	int (*func)(struct rt6_info *, void *arg);
  67	void *arg;
  68};
  69
  70static DEFINE_RWLOCK(fib6_walker_lock);
  71
  72#ifdef CONFIG_IPV6_SUBTREES
  73#define FWS_INIT FWS_S
  74#else
  75#define FWS_INIT FWS_L
  76#endif
  77
  78static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
  79			      struct rt6_info *rt);
  80static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
  81static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
  82static int fib6_walk(struct fib6_walker_t *w);
  83static int fib6_walk_continue(struct fib6_walker_t *w);
  84
  85/*
  86 *	A routing update causes an increase of the serial number on the
  87 *	affected subtree. This allows for cached routes to be asynchronously
  88 *	tested when modifications are made to the destination cache as a
  89 *	result of redirects, path MTU changes, etc.
  90 */
  91
  92static __u32 rt_sernum;
  93
  94static void fib6_gc_timer_cb(unsigned long arg);
  95
  96static LIST_HEAD(fib6_walkers);
  97#define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
  98
  99static inline void fib6_walker_link(struct fib6_walker_t *w)
 100{
 101	write_lock_bh(&fib6_walker_lock);
 102	list_add(&w->lh, &fib6_walkers);
 103	write_unlock_bh(&fib6_walker_lock);
 104}
 105
 106static inline void fib6_walker_unlink(struct fib6_walker_t *w)
 107{
 108	write_lock_bh(&fib6_walker_lock);
 109	list_del(&w->lh);
 110	write_unlock_bh(&fib6_walker_lock);
 111}
 112static __inline__ u32 fib6_new_sernum(void)
 113{
 114	u32 n = ++rt_sernum;
 115	if ((__s32)n <= 0)
 116		rt_sernum = n = 1;
 117	return n;
 118}
 119
 120/*
 121 *	Auxiliary address test functions for the radix tree.
 122 *
 123 *	These assume a 32bit processor (although it will work on
 124 *	64bit processors)
 125 */
 126
 127/*
 128 *	test bit
 129 */
 130#if defined(__LITTLE_ENDIAN)
 131# define BITOP_BE32_SWIZZLE	(0x1F & ~7)
 132#else
 133# define BITOP_BE32_SWIZZLE	0
 134#endif
 135
 136static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
 137{
 138	const __be32 *addr = token;
 139	/*
 140	 * Here,
 141	 * 	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
 142	 * is optimized version of
 143	 *	htonl(1 << ((~fn_bit)&0x1F))
 144	 * See include/asm-generic/bitops/le.h.
 145	 */
 146	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
 147	       addr[fn_bit >> 5];
 148}
 149
 150static __inline__ struct fib6_node * node_alloc(void)
 151{
 152	struct fib6_node *fn;
 153
 154	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
 155
 156	return fn;
 157}
 158
 159static __inline__ void node_free(struct fib6_node * fn)
 160{
 161	kmem_cache_free(fib6_node_kmem, fn);
 162}
 163
 164static __inline__ void rt6_release(struct rt6_info *rt)
 165{
 166	if (atomic_dec_and_test(&rt->rt6i_ref))
 167		dst_free(&rt->dst);
 168}
 169
 170static void fib6_link_table(struct net *net, struct fib6_table *tb)
 171{
 172	unsigned int h;
 173
 174	/*
 175	 * Initialize table lock at a single place to give lockdep a key,
 176	 * tables aren't visible prior to being linked to the list.
 177	 */
 178	rwlock_init(&tb->tb6_lock);
 179
 180	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
 181
 182	/*
 183	 * No protection necessary, this is the only list mutatation
 184	 * operation, tables never disappear once they exist.
 185	 */
 186	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
 187}
 188
 189#ifdef CONFIG_IPV6_MULTIPLE_TABLES
 190
 191static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
 192{
 193	struct fib6_table *table;
 194
 195	table = kzalloc(sizeof(*table), GFP_ATOMIC);
 196	if (table) {
 197		table->tb6_id = id;
 198		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
 199		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
 200	}
 201
 202	return table;
 203}
 204
 205struct fib6_table *fib6_new_table(struct net *net, u32 id)
 206{
 207	struct fib6_table *tb;
 208
 209	if (id == 0)
 210		id = RT6_TABLE_MAIN;
 211	tb = fib6_get_table(net, id);
 212	if (tb)
 213		return tb;
 214
 215	tb = fib6_alloc_table(net, id);
 216	if (tb)
 217		fib6_link_table(net, tb);
 218
 219	return tb;
 220}
 221
 222struct fib6_table *fib6_get_table(struct net *net, u32 id)
 223{
 224	struct fib6_table *tb;
 225	struct hlist_head *head;
 226	struct hlist_node *node;
 227	unsigned int h;
 228
 229	if (id == 0)
 230		id = RT6_TABLE_MAIN;
 231	h = id & (FIB6_TABLE_HASHSZ - 1);
 232	rcu_read_lock();
 233	head = &net->ipv6.fib_table_hash[h];
 234	hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
 235		if (tb->tb6_id == id) {
 236			rcu_read_unlock();
 237			return tb;
 238		}
 239	}
 240	rcu_read_unlock();
 241
 242	return NULL;
 243}
 244
 245static void __net_init fib6_tables_init(struct net *net)
 246{
 247	fib6_link_table(net, net->ipv6.fib6_main_tbl);
 248	fib6_link_table(net, net->ipv6.fib6_local_tbl);
 249}
 250#else
 251
 252struct fib6_table *fib6_new_table(struct net *net, u32 id)
 253{
 254	return fib6_get_table(net, id);
 255}
 256
 257struct fib6_table *fib6_get_table(struct net *net, u32 id)
 258{
 259	  return net->ipv6.fib6_main_tbl;
 260}
 261
 262struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
 263				   int flags, pol_lookup_t lookup)
 264{
 265	return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
 266}
 267
 268static void __net_init fib6_tables_init(struct net *net)
 269{
 270	fib6_link_table(net, net->ipv6.fib6_main_tbl);
 271}
 272
 273#endif
 274
 275static int fib6_dump_node(struct fib6_walker_t *w)
 276{
 277	int res;
 278	struct rt6_info *rt;
 279
 280	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
 281		res = rt6_dump_route(rt, w->args);
 282		if (res < 0) {
 283			/* Frame is full, suspend walking */
 284			w->leaf = rt;
 285			return 1;
 286		}
 287		WARN_ON(res == 0);
 288	}
 289	w->leaf = NULL;
 290	return 0;
 291}
 292
 293static void fib6_dump_end(struct netlink_callback *cb)
 294{
 295	struct fib6_walker_t *w = (void*)cb->args[2];
 296
 297	if (w) {
 298		if (cb->args[4]) {
 299			cb->args[4] = 0;
 300			fib6_walker_unlink(w);
 301		}
 302		cb->args[2] = 0;
 303		kfree(w);
 304	}
 305	cb->done = (void*)cb->args[3];
 306	cb->args[1] = 3;
 307}
 308
 309static int fib6_dump_done(struct netlink_callback *cb)
 310{
 311	fib6_dump_end(cb);
 312	return cb->done ? cb->done(cb) : 0;
 313}
 314
 315static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
 316			   struct netlink_callback *cb)
 317{
 318	struct fib6_walker_t *w;
 319	int res;
 320
 321	w = (void *)cb->args[2];
 322	w->root = &table->tb6_root;
 323
 324	if (cb->args[4] == 0) {
 325		w->count = 0;
 326		w->skip = 0;
 327
 328		read_lock_bh(&table->tb6_lock);
 329		res = fib6_walk(w);
 330		read_unlock_bh(&table->tb6_lock);
 331		if (res > 0) {
 332			cb->args[4] = 1;
 333			cb->args[5] = w->root->fn_sernum;
 334		}
 335	} else {
 336		if (cb->args[5] != w->root->fn_sernum) {
 337			/* Begin at the root if the tree changed */
 338			cb->args[5] = w->root->fn_sernum;
 339			w->state = FWS_INIT;
 340			w->node = w->root;
 341			w->skip = w->count;
 342		} else
 343			w->skip = 0;
 344
 345		read_lock_bh(&table->tb6_lock);
 346		res = fib6_walk_continue(w);
 347		read_unlock_bh(&table->tb6_lock);
 348		if (res <= 0) {
 349			fib6_walker_unlink(w);
 350			cb->args[4] = 0;
 351		}
 352	}
 353
 354	return res;
 355}
 356
 357static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
 358{
 359	struct net *net = sock_net(skb->sk);
 360	unsigned int h, s_h;
 361	unsigned int e = 0, s_e;
 362	struct rt6_rtnl_dump_arg arg;
 363	struct fib6_walker_t *w;
 364	struct fib6_table *tb;
 365	struct hlist_node *node;
 366	struct hlist_head *head;
 367	int res = 0;
 368
 369	s_h = cb->args[0];
 370	s_e = cb->args[1];
 371
 372	w = (void *)cb->args[2];
 373	if (!w) {
 374		/* New dump:
 375		 *
 376		 * 1. hook callback destructor.
 377		 */
 378		cb->args[3] = (long)cb->done;
 379		cb->done = fib6_dump_done;
 380
 381		/*
 382		 * 2. allocate and initialize walker.
 383		 */
 384		w = kzalloc(sizeof(*w), GFP_ATOMIC);
 385		if (!w)
 386			return -ENOMEM;
 387		w->func = fib6_dump_node;
 388		cb->args[2] = (long)w;
 389	}
 390
 391	arg.skb = skb;
 392	arg.cb = cb;
 393	arg.net = net;
 394	w->args = &arg;
 395
 396	rcu_read_lock();
 397	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
 398		e = 0;
 399		head = &net->ipv6.fib_table_hash[h];
 400		hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
 401			if (e < s_e)
 402				goto next;
 403			res = fib6_dump_table(tb, skb, cb);
 404			if (res != 0)
 405				goto out;
 406next:
 407			e++;
 408		}
 409	}
 410out:
 411	rcu_read_unlock();
 412	cb->args[1] = e;
 413	cb->args[0] = h;
 414
 415	res = res < 0 ? res : skb->len;
 416	if (res <= 0)
 417		fib6_dump_end(cb);
 418	return res;
 419}
 420
 421/*
 422 *	Routing Table
 423 *
 424 *	return the appropriate node for a routing tree "add" operation
 425 *	by either creating and inserting or by returning an existing
 426 *	node.
 427 */
 428
 429static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
 430				     int addrlen, int plen,
 431				     int offset, int allow_create,
 432				     int replace_required)
 433{
 434	struct fib6_node *fn, *in, *ln;
 435	struct fib6_node *pn = NULL;
 436	struct rt6key *key;
 437	int	bit;
 438	__be32	dir = 0;
 439	__u32	sernum = fib6_new_sernum();
 440
 441	RT6_TRACE("fib6_add_1\n");
 442
 443	/* insert node in tree */
 444
 445	fn = root;
 446
 447	do {
 448		key = (struct rt6key *)((u8 *)fn->leaf + offset);
 449
 450		/*
 451		 *	Prefix match
 452		 */
 453		if (plen < fn->fn_bit ||
 454		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
 455			if (!allow_create) {
 456				if (replace_required) {
 457					pr_warn("Can't replace route, no match found\n");
 458					return ERR_PTR(-ENOENT);
 459				}
 460				pr_warn("NLM_F_CREATE should be set when creating new route\n");
 461			}
 462			goto insert_above;
 463		}
 464
 465		/*
 466		 *	Exact match ?
 467		 */
 468
 469		if (plen == fn->fn_bit) {
 470			/* clean up an intermediate node */
 471			if (!(fn->fn_flags & RTN_RTINFO)) {
 472				rt6_release(fn->leaf);
 473				fn->leaf = NULL;
 474			}
 475
 476			fn->fn_sernum = sernum;
 477
 478			return fn;
 479		}
 480
 481		/*
 482		 *	We have more bits to go
 483		 */
 484
 485		/* Try to walk down on tree. */
 486		fn->fn_sernum = sernum;
 487		dir = addr_bit_set(addr, fn->fn_bit);
 488		pn = fn;
 489		fn = dir ? fn->right: fn->left;
 490	} while (fn);
 491
 492	if (!allow_create) {
 493		/* We should not create new node because
 494		 * NLM_F_REPLACE was specified without NLM_F_CREATE
 495		 * I assume it is safe to require NLM_F_CREATE when
 496		 * REPLACE flag is used! Later we may want to remove the
 497		 * check for replace_required, because according
 498		 * to netlink specification, NLM_F_CREATE
 499		 * MUST be specified if new route is created.
 500		 * That would keep IPv6 consistent with IPv4
 501		 */
 502		if (replace_required) {
 503			pr_warn("Can't replace route, no match found\n");
 504			return ERR_PTR(-ENOENT);
 505		}
 506		pr_warn("NLM_F_CREATE should be set when creating new route\n");
 507	}
 508	/*
 509	 *	We walked to the bottom of tree.
 510	 *	Create new leaf node without children.
 511	 */
 512
 513	ln = node_alloc();
 514
 515	if (!ln)
 516		return NULL;
 517	ln->fn_bit = plen;
 518
 519	ln->parent = pn;
 520	ln->fn_sernum = sernum;
 521
 522	if (dir)
 523		pn->right = ln;
 524	else
 525		pn->left  = ln;
 526
 527	return ln;
 528
 529
 530insert_above:
 531	/*
 532	 * split since we don't have a common prefix anymore or
 533	 * we have a less significant route.
 534	 * we've to insert an intermediate node on the list
 535	 * this new node will point to the one we need to create
 536	 * and the current
 537	 */
 538
 539	pn = fn->parent;
 540
 541	/* find 1st bit in difference between the 2 addrs.
 542
 543	   See comment in __ipv6_addr_diff: bit may be an invalid value,
 544	   but if it is >= plen, the value is ignored in any case.
 545	 */
 546
 547	bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
 548
 549	/*
 550	 *		(intermediate)[in]
 551	 *	          /	   \
 552	 *	(new leaf node)[ln] (old node)[fn]
 553	 */
 554	if (plen > bit) {
 555		in = node_alloc();
 556		ln = node_alloc();
 557
 558		if (!in || !ln) {
 559			if (in)
 560				node_free(in);
 561			if (ln)
 562				node_free(ln);
 563			return NULL;
 564		}
 565
 566		/*
 567		 * new intermediate node.
 568		 * RTN_RTINFO will
 569		 * be off since that an address that chooses one of
 570		 * the branches would not match less specific routes
 571		 * in the other branch
 572		 */
 573
 574		in->fn_bit = bit;
 575
 576		in->parent = pn;
 577		in->leaf = fn->leaf;
 578		atomic_inc(&in->leaf->rt6i_ref);
 579
 580		in->fn_sernum = sernum;
 581
 582		/* update parent pointer */
 583		if (dir)
 584			pn->right = in;
 585		else
 586			pn->left  = in;
 587
 588		ln->fn_bit = plen;
 589
 590		ln->parent = in;
 591		fn->parent = in;
 592
 593		ln->fn_sernum = sernum;
 594
 595		if (addr_bit_set(addr, bit)) {
 596			in->right = ln;
 597			in->left  = fn;
 598		} else {
 599			in->left  = ln;
 600			in->right = fn;
 601		}
 602	} else { /* plen <= bit */
 603
 604		/*
 605		 *		(new leaf node)[ln]
 606		 *	          /	   \
 607		 *	     (old node)[fn] NULL
 608		 */
 609
 610		ln = node_alloc();
 611
 612		if (!ln)
 613			return NULL;
 614
 615		ln->fn_bit = plen;
 616
 617		ln->parent = pn;
 618
 619		ln->fn_sernum = sernum;
 620
 621		if (dir)
 622			pn->right = ln;
 623		else
 624			pn->left  = ln;
 625
 626		if (addr_bit_set(&key->addr, plen))
 627			ln->right = fn;
 628		else
 629			ln->left  = fn;
 630
 631		fn->parent = ln;
 632	}
 633	return ln;
 634}
 635
 636/*
 637 *	Insert routing information in a node.
 638 */
 639
 640static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
 641			    struct nl_info *info)
 642{
 643	struct rt6_info *iter = NULL;
 644	struct rt6_info **ins;
 645	int replace = (info->nlh &&
 646		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
 647	int add = (!info->nlh ||
 648		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
 649	int found = 0;
 650
 651	ins = &fn->leaf;
 652
 653	for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
 654		/*
 655		 *	Search for duplicates
 656		 */
 657
 658		if (iter->rt6i_metric == rt->rt6i_metric) {
 659			/*
 660			 *	Same priority level
 661			 */
 662			if (info->nlh &&
 663			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
 664				return -EEXIST;
 665			if (replace) {
 666				found++;
 667				break;
 668			}
 669
 670			if (iter->dst.dev == rt->dst.dev &&
 671			    iter->rt6i_idev == rt->rt6i_idev &&
 672			    ipv6_addr_equal(&iter->rt6i_gateway,
 673					    &rt->rt6i_gateway)) {
 674				if (!(iter->rt6i_flags & RTF_EXPIRES))
 675					return -EEXIST;
 676				if (!(rt->rt6i_flags & RTF_EXPIRES))
 677					rt6_clean_expires(iter);
 678				else
 679					rt6_set_expires(iter, rt->dst.expires);
 
 680				return -EEXIST;
 681			}
 682		}
 683
 684		if (iter->rt6i_metric > rt->rt6i_metric)
 685			break;
 686
 687		ins = &iter->dst.rt6_next;
 688	}
 689
 690	/* Reset round-robin state, if necessary */
 691	if (ins == &fn->leaf)
 692		fn->rr_ptr = NULL;
 693
 694	/*
 695	 *	insert node
 696	 */
 697	if (!replace) {
 698		if (!add)
 699			pr_warn("NLM_F_CREATE should be set when creating new route\n");
 700
 701add:
 702		rt->dst.rt6_next = iter;
 703		*ins = rt;
 704		rt->rt6i_node = fn;
 705		atomic_inc(&rt->rt6i_ref);
 706		inet6_rt_notify(RTM_NEWROUTE, rt, info);
 707		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
 708
 709		if (!(fn->fn_flags & RTN_RTINFO)) {
 710			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
 711			fn->fn_flags |= RTN_RTINFO;
 712		}
 713
 714	} else {
 715		if (!found) {
 716			if (add)
 717				goto add;
 718			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
 719			return -ENOENT;
 720		}
 721		*ins = rt;
 722		rt->rt6i_node = fn;
 723		rt->dst.rt6_next = iter->dst.rt6_next;
 724		atomic_inc(&rt->rt6i_ref);
 725		inet6_rt_notify(RTM_NEWROUTE, rt, info);
 726		rt6_release(iter);
 727		if (!(fn->fn_flags & RTN_RTINFO)) {
 728			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
 729			fn->fn_flags |= RTN_RTINFO;
 730		}
 731	}
 732
 733	return 0;
 734}
 735
 736static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
 737{
 738	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
 739	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
 740		mod_timer(&net->ipv6.ip6_fib_timer,
 741			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
 742}
 743
 744void fib6_force_start_gc(struct net *net)
 745{
 746	if (!timer_pending(&net->ipv6.ip6_fib_timer))
 747		mod_timer(&net->ipv6.ip6_fib_timer,
 748			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
 749}
 750
 751/*
 752 *	Add routing information to the routing tree.
 753 *	<destination addr>/<source addr>
 754 *	with source addr info in sub-trees
 755 */
 756
 757int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
 758{
 759	struct fib6_node *fn, *pn = NULL;
 760	int err = -ENOMEM;
 761	int allow_create = 1;
 762	int replace_required = 0;
 763
 764	if (info->nlh) {
 765		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
 766			allow_create = 0;
 767		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
 768			replace_required = 1;
 769	}
 770	if (!allow_create && !replace_required)
 771		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
 772
 773	fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
 774			rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst),
 775			allow_create, replace_required);
 776
 777	if (IS_ERR(fn)) {
 778		err = PTR_ERR(fn);
 779		fn = NULL;
 780	}
 781
 782	if (!fn)
 783		goto out;
 784
 785	pn = fn;
 786
 787#ifdef CONFIG_IPV6_SUBTREES
 788	if (rt->rt6i_src.plen) {
 789		struct fib6_node *sn;
 790
 791		if (!fn->subtree) {
 792			struct fib6_node *sfn;
 793
 794			/*
 795			 * Create subtree.
 796			 *
 797			 *		fn[main tree]
 798			 *		|
 799			 *		sfn[subtree root]
 800			 *		   \
 801			 *		    sn[new leaf node]
 802			 */
 803
 804			/* Create subtree root node */
 805			sfn = node_alloc();
 806			if (!sfn)
 807				goto st_failure;
 808
 809			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
 810			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
 811			sfn->fn_flags = RTN_ROOT;
 812			sfn->fn_sernum = fib6_new_sernum();
 813
 814			/* Now add the first leaf node to new subtree */
 815
 816			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
 817					sizeof(struct in6_addr), rt->rt6i_src.plen,
 818					offsetof(struct rt6_info, rt6i_src),
 819					allow_create, replace_required);
 820
 821			if (!sn) {
 822				/* If it is failed, discard just allocated
 823				   root, and then (in st_failure) stale node
 824				   in main tree.
 825				 */
 826				node_free(sfn);
 827				goto st_failure;
 828			}
 829
 830			/* Now link new subtree to main tree */
 831			sfn->parent = fn;
 832			fn->subtree = sfn;
 833		} else {
 834			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
 835					sizeof(struct in6_addr), rt->rt6i_src.plen,
 836					offsetof(struct rt6_info, rt6i_src),
 837					allow_create, replace_required);
 838
 839			if (IS_ERR(sn)) {
 840				err = PTR_ERR(sn);
 841				sn = NULL;
 842			}
 843			if (!sn)
 844				goto st_failure;
 845		}
 846
 847		if (!fn->leaf) {
 848			fn->leaf = rt;
 849			atomic_inc(&rt->rt6i_ref);
 850		}
 851		fn = sn;
 852	}
 853#endif
 854
 855	err = fib6_add_rt2node(fn, rt, info);
 856	if (!err) {
 
 857		fib6_start_gc(info->nl_net, rt);
 858		if (!(rt->rt6i_flags & RTF_CACHE))
 859			fib6_prune_clones(info->nl_net, pn, rt);
 860	}
 861
 862out:
 863	if (err) {
 864#ifdef CONFIG_IPV6_SUBTREES
 865		/*
 866		 * If fib6_add_1 has cleared the old leaf pointer in the
 867		 * super-tree leaf node we have to find a new one for it.
 868		 */
 869		if (pn != fn && pn->leaf == rt) {
 870			pn->leaf = NULL;
 871			atomic_dec(&rt->rt6i_ref);
 872		}
 873		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
 874			pn->leaf = fib6_find_prefix(info->nl_net, pn);
 875#if RT6_DEBUG >= 2
 876			if (!pn->leaf) {
 877				WARN_ON(pn->leaf == NULL);
 878				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
 879			}
 880#endif
 881			atomic_inc(&pn->leaf->rt6i_ref);
 882		}
 883#endif
 884		dst_free(&rt->dst);
 885	}
 886	return err;
 887
 888#ifdef CONFIG_IPV6_SUBTREES
 889	/* Subtree creation failed, probably main tree node
 890	   is orphan. If it is, shoot it.
 891	 */
 892st_failure:
 893	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
 894		fib6_repair_tree(info->nl_net, fn);
 895	dst_free(&rt->dst);
 896	return err;
 897#endif
 898}
 899
 900/*
 901 *	Routing tree lookup
 902 *
 903 */
 904
 905struct lookup_args {
 906	int			offset;		/* key offset on rt6_info	*/
 907	const struct in6_addr	*addr;		/* search key			*/
 908};
 909
 910static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
 911					struct lookup_args *args)
 912{
 913	struct fib6_node *fn;
 914	__be32 dir;
 915
 916	if (unlikely(args->offset == 0))
 917		return NULL;
 918
 919	/*
 920	 *	Descend on a tree
 921	 */
 922
 923	fn = root;
 924
 925	for (;;) {
 926		struct fib6_node *next;
 927
 928		dir = addr_bit_set(args->addr, fn->fn_bit);
 929
 930		next = dir ? fn->right : fn->left;
 931
 932		if (next) {
 933			fn = next;
 934			continue;
 935		}
 
 936		break;
 937	}
 938
 939	while (fn) {
 940		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
 941			struct rt6key *key;
 942
 943			key = (struct rt6key *) ((u8 *) fn->leaf +
 944						 args->offset);
 945
 946			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
 947#ifdef CONFIG_IPV6_SUBTREES
 948				if (fn->subtree)
 949					fn = fib6_lookup_1(fn->subtree, args + 1);
 950#endif
 951				if (!fn || fn->fn_flags & RTN_RTINFO)
 952					return fn;
 953			}
 954		}
 955
 956		if (fn->fn_flags & RTN_ROOT)
 957			break;
 958
 959		fn = fn->parent;
 960	}
 961
 962	return NULL;
 963}
 964
 965struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
 966			       const struct in6_addr *saddr)
 967{
 968	struct fib6_node *fn;
 969	struct lookup_args args[] = {
 970		{
 971			.offset = offsetof(struct rt6_info, rt6i_dst),
 972			.addr = daddr,
 973		},
 974#ifdef CONFIG_IPV6_SUBTREES
 975		{
 976			.offset = offsetof(struct rt6_info, rt6i_src),
 977			.addr = saddr,
 978		},
 979#endif
 980		{
 981			.offset = 0,	/* sentinel */
 982		}
 983	};
 984
 985	fn = fib6_lookup_1(root, daddr ? args : args + 1);
 986	if (!fn || fn->fn_flags & RTN_TL_ROOT)
 
 987		fn = root;
 988
 989	return fn;
 990}
 991
 992/*
 993 *	Get node with specified destination prefix (and source prefix,
 994 *	if subtrees are used)
 995 */
 996
 997
 998static struct fib6_node * fib6_locate_1(struct fib6_node *root,
 999					const struct in6_addr *addr,
1000					int plen, int offset)
1001{
1002	struct fib6_node *fn;
1003
1004	for (fn = root; fn ; ) {
1005		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1006
1007		/*
1008		 *	Prefix match
1009		 */
1010		if (plen < fn->fn_bit ||
1011		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1012			return NULL;
1013
1014		if (plen == fn->fn_bit)
1015			return fn;
1016
1017		/*
1018		 *	We have more bits to go
1019		 */
1020		if (addr_bit_set(addr, fn->fn_bit))
1021			fn = fn->right;
1022		else
1023			fn = fn->left;
1024	}
1025	return NULL;
1026}
1027
1028struct fib6_node * fib6_locate(struct fib6_node *root,
1029			       const struct in6_addr *daddr, int dst_len,
1030			       const struct in6_addr *saddr, int src_len)
1031{
1032	struct fib6_node *fn;
1033
1034	fn = fib6_locate_1(root, daddr, dst_len,
1035			   offsetof(struct rt6_info, rt6i_dst));
1036
1037#ifdef CONFIG_IPV6_SUBTREES
1038	if (src_len) {
1039		WARN_ON(saddr == NULL);
1040		if (fn && fn->subtree)
1041			fn = fib6_locate_1(fn->subtree, saddr, src_len,
1042					   offsetof(struct rt6_info, rt6i_src));
1043	}
1044#endif
1045
1046	if (fn && fn->fn_flags & RTN_RTINFO)
1047		return fn;
1048
1049	return NULL;
1050}
1051
1052
1053/*
1054 *	Deletion
1055 *
1056 */
1057
1058static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1059{
1060	if (fn->fn_flags & RTN_ROOT)
1061		return net->ipv6.ip6_null_entry;
1062
1063	while (fn) {
1064		if (fn->left)
1065			return fn->left->leaf;
1066		if (fn->right)
 
1067			return fn->right->leaf;
1068
1069		fn = FIB6_SUBTREE(fn);
1070	}
1071	return NULL;
1072}
1073
1074/*
1075 *	Called to trim the tree of intermediate nodes when possible. "fn"
1076 *	is the node we want to try and remove.
1077 */
1078
1079static struct fib6_node *fib6_repair_tree(struct net *net,
1080					   struct fib6_node *fn)
1081{
1082	int children;
1083	int nstate;
1084	struct fib6_node *child, *pn;
1085	struct fib6_walker_t *w;
1086	int iter = 0;
1087
1088	for (;;) {
1089		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1090		iter++;
1091
1092		WARN_ON(fn->fn_flags & RTN_RTINFO);
1093		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1094		WARN_ON(fn->leaf != NULL);
1095
1096		children = 0;
1097		child = NULL;
1098		if (fn->right) child = fn->right, children |= 1;
1099		if (fn->left) child = fn->left, children |= 2;
1100
1101		if (children == 3 || FIB6_SUBTREE(fn)
1102#ifdef CONFIG_IPV6_SUBTREES
1103		    /* Subtree root (i.e. fn) may have one child */
1104		    || (children && fn->fn_flags & RTN_ROOT)
1105#endif
1106		    ) {
1107			fn->leaf = fib6_find_prefix(net, fn);
1108#if RT6_DEBUG >= 2
1109			if (!fn->leaf) {
1110				WARN_ON(!fn->leaf);
1111				fn->leaf = net->ipv6.ip6_null_entry;
1112			}
1113#endif
1114			atomic_inc(&fn->leaf->rt6i_ref);
1115			return fn->parent;
1116		}
1117
1118		pn = fn->parent;
1119#ifdef CONFIG_IPV6_SUBTREES
1120		if (FIB6_SUBTREE(pn) == fn) {
1121			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1122			FIB6_SUBTREE(pn) = NULL;
1123			nstate = FWS_L;
1124		} else {
1125			WARN_ON(fn->fn_flags & RTN_ROOT);
1126#endif
1127			if (pn->right == fn) pn->right = child;
1128			else if (pn->left == fn) pn->left = child;
1129#if RT6_DEBUG >= 2
1130			else
1131				WARN_ON(1);
1132#endif
1133			if (child)
1134				child->parent = pn;
1135			nstate = FWS_R;
1136#ifdef CONFIG_IPV6_SUBTREES
1137		}
1138#endif
1139
1140		read_lock(&fib6_walker_lock);
1141		FOR_WALKERS(w) {
1142			if (!child) {
1143				if (w->root == fn) {
1144					w->root = w->node = NULL;
1145					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1146				} else if (w->node == fn) {
1147					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1148					w->node = pn;
1149					w->state = nstate;
1150				}
1151			} else {
1152				if (w->root == fn) {
1153					w->root = child;
1154					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1155				}
1156				if (w->node == fn) {
1157					w->node = child;
1158					if (children&2) {
1159						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1160						w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1161					} else {
1162						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1163						w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1164					}
1165				}
1166			}
1167		}
1168		read_unlock(&fib6_walker_lock);
1169
1170		node_free(fn);
1171		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1172			return pn;
1173
1174		rt6_release(pn->leaf);
1175		pn->leaf = NULL;
1176		fn = pn;
1177	}
1178}
1179
1180static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1181			   struct nl_info *info)
1182{
1183	struct fib6_walker_t *w;
1184	struct rt6_info *rt = *rtp;
1185	struct net *net = info->nl_net;
1186
1187	RT6_TRACE("fib6_del_route\n");
1188
1189	/* Unlink it */
1190	*rtp = rt->dst.rt6_next;
1191	rt->rt6i_node = NULL;
1192	net->ipv6.rt6_stats->fib_rt_entries--;
1193	net->ipv6.rt6_stats->fib_discarded_routes++;
1194
1195	/* Reset round-robin state, if necessary */
1196	if (fn->rr_ptr == rt)
1197		fn->rr_ptr = NULL;
1198
1199	/* Adjust walkers */
1200	read_lock(&fib6_walker_lock);
1201	FOR_WALKERS(w) {
1202		if (w->state == FWS_C && w->leaf == rt) {
1203			RT6_TRACE("walker %p adjusted by delroute\n", w);
1204			w->leaf = rt->dst.rt6_next;
1205			if (!w->leaf)
1206				w->state = FWS_U;
1207		}
1208	}
1209	read_unlock(&fib6_walker_lock);
1210
1211	rt->dst.rt6_next = NULL;
1212
1213	/* If it was last route, expunge its radix tree node */
1214	if (!fn->leaf) {
1215		fn->fn_flags &= ~RTN_RTINFO;
1216		net->ipv6.rt6_stats->fib_route_nodes--;
1217		fn = fib6_repair_tree(net, fn);
1218	}
1219
1220	if (atomic_read(&rt->rt6i_ref) != 1) {
1221		/* This route is used as dummy address holder in some split
1222		 * nodes. It is not leaked, but it still holds other resources,
1223		 * which must be released in time. So, scan ascendant nodes
1224		 * and replace dummy references to this route with references
1225		 * to still alive ones.
1226		 */
1227		while (fn) {
1228			if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
1229				fn->leaf = fib6_find_prefix(net, fn);
1230				atomic_inc(&fn->leaf->rt6i_ref);
1231				rt6_release(rt);
1232			}
1233			fn = fn->parent;
1234		}
1235		/* No more references are possible at this point. */
1236		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1237	}
1238
1239	inet6_rt_notify(RTM_DELROUTE, rt, info);
1240	rt6_release(rt);
1241}
1242
1243int fib6_del(struct rt6_info *rt, struct nl_info *info)
1244{
1245	struct net *net = info->nl_net;
1246	struct fib6_node *fn = rt->rt6i_node;
1247	struct rt6_info **rtp;
1248
1249#if RT6_DEBUG >= 2
1250	if (rt->dst.obsolete>0) {
1251		WARN_ON(fn != NULL);
1252		return -ENOENT;
1253	}
1254#endif
1255	if (!fn || rt == net->ipv6.ip6_null_entry)
1256		return -ENOENT;
1257
1258	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1259
1260	if (!(rt->rt6i_flags & RTF_CACHE)) {
1261		struct fib6_node *pn = fn;
1262#ifdef CONFIG_IPV6_SUBTREES
1263		/* clones of this route might be in another subtree */
1264		if (rt->rt6i_src.plen) {
1265			while (!(pn->fn_flags & RTN_ROOT))
1266				pn = pn->parent;
1267			pn = pn->parent;
1268		}
1269#endif
1270		fib6_prune_clones(info->nl_net, pn, rt);
1271	}
1272
1273	/*
1274	 *	Walk the leaf entries looking for ourself
1275	 */
1276
1277	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1278		if (*rtp == rt) {
1279			fib6_del_route(fn, rtp, info);
1280			return 0;
1281		}
1282	}
1283	return -ENOENT;
1284}
1285
1286/*
1287 *	Tree traversal function.
1288 *
1289 *	Certainly, it is not interrupt safe.
1290 *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1291 *	It means, that we can modify tree during walking
1292 *	and use this function for garbage collection, clone pruning,
1293 *	cleaning tree when a device goes down etc. etc.
1294 *
1295 *	It guarantees that every node will be traversed,
1296 *	and that it will be traversed only once.
1297 *
1298 *	Callback function w->func may return:
1299 *	0 -> continue walking.
1300 *	positive value -> walking is suspended (used by tree dumps,
1301 *	and probably by gc, if it will be split to several slices)
1302 *	negative value -> terminate walking.
1303 *
1304 *	The function itself returns:
1305 *	0   -> walk is complete.
1306 *	>0  -> walk is incomplete (i.e. suspended)
1307 *	<0  -> walk is terminated by an error.
1308 */
1309
1310static int fib6_walk_continue(struct fib6_walker_t *w)
1311{
1312	struct fib6_node *fn, *pn;
1313
1314	for (;;) {
1315		fn = w->node;
1316		if (!fn)
1317			return 0;
1318
1319		if (w->prune && fn != w->root &&
1320		    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1321			w->state = FWS_C;
1322			w->leaf = fn->leaf;
1323		}
1324		switch (w->state) {
1325#ifdef CONFIG_IPV6_SUBTREES
1326		case FWS_S:
1327			if (FIB6_SUBTREE(fn)) {
1328				w->node = FIB6_SUBTREE(fn);
1329				continue;
1330			}
1331			w->state = FWS_L;
1332#endif
1333		case FWS_L:
1334			if (fn->left) {
1335				w->node = fn->left;
1336				w->state = FWS_INIT;
1337				continue;
1338			}
1339			w->state = FWS_R;
1340		case FWS_R:
1341			if (fn->right) {
1342				w->node = fn->right;
1343				w->state = FWS_INIT;
1344				continue;
1345			}
1346			w->state = FWS_C;
1347			w->leaf = fn->leaf;
1348		case FWS_C:
1349			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1350				int err;
1351
1352				if (w->skip) {
1353					w->skip--;
1354					continue;
1355				}
1356
1357				err = w->func(w);
1358				if (err)
1359					return err;
1360
1361				w->count++;
1362				continue;
1363			}
1364			w->state = FWS_U;
1365		case FWS_U:
1366			if (fn == w->root)
1367				return 0;
1368			pn = fn->parent;
1369			w->node = pn;
1370#ifdef CONFIG_IPV6_SUBTREES
1371			if (FIB6_SUBTREE(pn) == fn) {
1372				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1373				w->state = FWS_L;
1374				continue;
1375			}
1376#endif
1377			if (pn->left == fn) {
1378				w->state = FWS_R;
1379				continue;
1380			}
1381			if (pn->right == fn) {
1382				w->state = FWS_C;
1383				w->leaf = w->node->leaf;
1384				continue;
1385			}
1386#if RT6_DEBUG >= 2
1387			WARN_ON(1);
1388#endif
1389		}
1390	}
1391}
1392
1393static int fib6_walk(struct fib6_walker_t *w)
1394{
1395	int res;
1396
1397	w->state = FWS_INIT;
1398	w->node = w->root;
1399
1400	fib6_walker_link(w);
1401	res = fib6_walk_continue(w);
1402	if (res <= 0)
1403		fib6_walker_unlink(w);
1404	return res;
1405}
1406
1407static int fib6_clean_node(struct fib6_walker_t *w)
1408{
1409	int res;
1410	struct rt6_info *rt;
1411	struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1412	struct nl_info info = {
1413		.nl_net = c->net,
1414	};
1415
1416	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1417		res = c->func(rt, c->arg);
1418		if (res < 0) {
1419			w->leaf = rt;
1420			res = fib6_del(rt, &info);
1421			if (res) {
1422#if RT6_DEBUG >= 2
1423				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1424					 __func__, rt, rt->rt6i_node, res);
1425#endif
1426				continue;
1427			}
1428			return 0;
1429		}
1430		WARN_ON(res != 0);
1431	}
1432	w->leaf = rt;
1433	return 0;
1434}
1435
1436/*
1437 *	Convenient frontend to tree walker.
1438 *
1439 *	func is called on each route.
1440 *		It may return -1 -> delete this route.
1441 *		              0  -> continue walking
1442 *
1443 *	prune==1 -> only immediate children of node (certainly,
1444 *	ignoring pure split nodes) will be scanned.
1445 */
1446
1447static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1448			    int (*func)(struct rt6_info *, void *arg),
1449			    int prune, void *arg)
1450{
1451	struct fib6_cleaner_t c;
1452
1453	c.w.root = root;
1454	c.w.func = fib6_clean_node;
1455	c.w.prune = prune;
1456	c.w.count = 0;
1457	c.w.skip = 0;
1458	c.func = func;
1459	c.arg = arg;
1460	c.net = net;
1461
1462	fib6_walk(&c.w);
1463}
1464
1465void fib6_clean_all_ro(struct net *net, int (*func)(struct rt6_info *, void *arg),
1466		    int prune, void *arg)
1467{
1468	struct fib6_table *table;
1469	struct hlist_node *node;
1470	struct hlist_head *head;
1471	unsigned int h;
1472
1473	rcu_read_lock();
1474	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1475		head = &net->ipv6.fib_table_hash[h];
1476		hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1477			read_lock_bh(&table->tb6_lock);
1478			fib6_clean_tree(net, &table->tb6_root,
1479					func, prune, arg);
1480			read_unlock_bh(&table->tb6_lock);
1481		}
1482	}
1483	rcu_read_unlock();
1484}
1485void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1486		    int prune, void *arg)
1487{
1488	struct fib6_table *table;
1489	struct hlist_node *node;
1490	struct hlist_head *head;
1491	unsigned int h;
1492
1493	rcu_read_lock();
1494	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1495		head = &net->ipv6.fib_table_hash[h];
1496		hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1497			write_lock_bh(&table->tb6_lock);
1498			fib6_clean_tree(net, &table->tb6_root,
1499					func, prune, arg);
1500			write_unlock_bh(&table->tb6_lock);
1501		}
1502	}
1503	rcu_read_unlock();
1504}
1505
1506static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1507{
1508	if (rt->rt6i_flags & RTF_CACHE) {
1509		RT6_TRACE("pruning clone %p\n", rt);
1510		return -1;
1511	}
1512
1513	return 0;
1514}
1515
1516static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1517			      struct rt6_info *rt)
1518{
1519	fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1520}
1521
1522/*
1523 *	Garbage collection
1524 */
1525
1526static struct fib6_gc_args
1527{
1528	int			timeout;
1529	int			more;
1530} gc_args;
1531
1532static int fib6_age(struct rt6_info *rt, void *arg)
1533{
1534	unsigned long now = jiffies;
1535
1536	/*
1537	 *	check addrconf expiration here.
1538	 *	Routes are expired even if they are in use.
1539	 *
1540	 *	Also age clones. Note, that clones are aged out
1541	 *	only if they are not in use now.
1542	 */
1543
1544	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1545		if (time_after(now, rt->dst.expires)) {
1546			RT6_TRACE("expiring %p\n", rt);
1547			return -1;
1548		}
1549		gc_args.more++;
1550	} else if (rt->rt6i_flags & RTF_CACHE) {
1551		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1552		    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1553			RT6_TRACE("aging clone %p\n", rt);
1554			return -1;
1555		} else if (rt->rt6i_flags & RTF_GATEWAY) {
1556			struct neighbour *neigh;
1557			__u8 neigh_flags = 0;
1558
1559			neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1560			if (neigh) {
1561				neigh_flags = neigh->flags;
1562				neigh_release(neigh);
1563			}
1564			if (!(neigh_flags & NTF_ROUTER)) {
1565				RT6_TRACE("purging route %p via non-router but gateway\n",
1566					  rt);
1567				return -1;
1568			}
1569		}
1570		gc_args.more++;
1571	}
1572
1573	return 0;
1574}
1575
1576static DEFINE_SPINLOCK(fib6_gc_lock);
1577
1578void fib6_run_gc(unsigned long expires, struct net *net)
1579{
1580	if (expires != ~0UL) {
1581		spin_lock_bh(&fib6_gc_lock);
1582		gc_args.timeout = expires ? (int)expires :
1583			net->ipv6.sysctl.ip6_rt_gc_interval;
1584	} else {
1585		if (!spin_trylock_bh(&fib6_gc_lock)) {
1586			mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1587			return;
1588		}
1589		gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1590	}
1591
1592	gc_args.more = icmp6_dst_gc();
1593
1594	fib6_clean_all(net, fib6_age, 0, NULL);
1595
1596	if (gc_args.more)
1597		mod_timer(&net->ipv6.ip6_fib_timer,
1598			  round_jiffies(jiffies
1599					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1600	else
1601		del_timer(&net->ipv6.ip6_fib_timer);
1602	spin_unlock_bh(&fib6_gc_lock);
1603}
1604
1605static void fib6_gc_timer_cb(unsigned long arg)
1606{
1607	fib6_run_gc(0, (struct net *)arg);
1608}
1609
1610static int __net_init fib6_net_init(struct net *net)
1611{
1612	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1613
1614	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1615
1616	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1617	if (!net->ipv6.rt6_stats)
1618		goto out_timer;
1619
1620	/* Avoid false sharing : Use at least a full cache line */
1621	size = max_t(size_t, size, L1_CACHE_BYTES);
1622
1623	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1624	if (!net->ipv6.fib_table_hash)
1625		goto out_rt6_stats;
1626
1627	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1628					  GFP_KERNEL);
1629	if (!net->ipv6.fib6_main_tbl)
1630		goto out_fib_table_hash;
1631
1632	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1633	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1634	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1635		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1636
1637#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1638	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1639					   GFP_KERNEL);
1640	if (!net->ipv6.fib6_local_tbl)
1641		goto out_fib6_main_tbl;
1642	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1643	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1644	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1645		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1646#endif
1647	fib6_tables_init(net);
1648
1649	return 0;
1650
1651#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1652out_fib6_main_tbl:
1653	kfree(net->ipv6.fib6_main_tbl);
1654#endif
1655out_fib_table_hash:
1656	kfree(net->ipv6.fib_table_hash);
1657out_rt6_stats:
1658	kfree(net->ipv6.rt6_stats);
1659out_timer:
1660	return -ENOMEM;
1661 }
1662
1663static void fib6_net_exit(struct net *net)
1664{
1665	rt6_ifdown(net, NULL);
1666	del_timer_sync(&net->ipv6.ip6_fib_timer);
1667
1668#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1669	kfree(net->ipv6.fib6_local_tbl);
1670#endif
1671	kfree(net->ipv6.fib6_main_tbl);
1672	kfree(net->ipv6.fib_table_hash);
1673	kfree(net->ipv6.rt6_stats);
1674}
1675
1676static struct pernet_operations fib6_net_ops = {
1677	.init = fib6_net_init,
1678	.exit = fib6_net_exit,
1679};
1680
1681int __init fib6_init(void)
1682{
1683	int ret = -ENOMEM;
1684
1685	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1686					   sizeof(struct fib6_node),
1687					   0, SLAB_HWCACHE_ALIGN,
1688					   NULL);
1689	if (!fib6_node_kmem)
1690		goto out;
1691
1692	ret = register_pernet_subsys(&fib6_net_ops);
1693	if (ret)
1694		goto out_kmem_cache_create;
1695
1696	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1697			      NULL);
1698	if (ret)
1699		goto out_unregister_subsys;
1700out:
1701	return ret;
1702
1703out_unregister_subsys:
1704	unregister_pernet_subsys(&fib6_net_ops);
1705out_kmem_cache_create:
1706	kmem_cache_destroy(fib6_node_kmem);
1707	goto out;
1708}
1709
1710void fib6_gc_cleanup(void)
1711{
1712	unregister_pernet_subsys(&fib6_net_ops);
1713	kmem_cache_destroy(fib6_node_kmem);
1714}