Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2015 Broadcom
  4 */
  5
  6/**
  7 * DOC: VC4 HVS module.
  8 *
  9 * The Hardware Video Scaler (HVS) is the piece of hardware that does
 10 * translation, scaling, colorspace conversion, and compositing of
 11 * pixels stored in framebuffers into a FIFO of pixels going out to
 12 * the Pixel Valve (CRTC).  It operates at the system clock rate (the
 13 * system audio clock gate, specifically), which is much higher than
 14 * the pixel clock rate.
 15 *
 16 * There is a single global HVS, with multiple output FIFOs that can
 17 * be consumed by the PVs.  This file just manages the resources for
 18 * the HVS, while the vc4_crtc.c code actually drives HVS setup for
 19 * each CRTC.
 20 */
 21
 22#include <linux/bitfield.h>
 23#include <linux/clk.h>
 24#include <linux/component.h>
 25#include <linux/platform_device.h>
 26
 27#include <drm/drm_atomic_helper.h>
 28#include <drm/drm_drv.h>
 29#include <drm/drm_vblank.h>
 30
 31#include <soc/bcm2835/raspberrypi-firmware.h>
 32
 33#include "vc4_drv.h"
 34#include "vc4_regs.h"
 35
 36static const struct debugfs_reg32 hvs_regs[] = {
 37	VC4_REG32(SCALER_DISPCTRL),
 38	VC4_REG32(SCALER_DISPSTAT),
 39	VC4_REG32(SCALER_DISPID),
 40	VC4_REG32(SCALER_DISPECTRL),
 41	VC4_REG32(SCALER_DISPPROF),
 42	VC4_REG32(SCALER_DISPDITHER),
 43	VC4_REG32(SCALER_DISPEOLN),
 44	VC4_REG32(SCALER_DISPLIST0),
 45	VC4_REG32(SCALER_DISPLIST1),
 46	VC4_REG32(SCALER_DISPLIST2),
 47	VC4_REG32(SCALER_DISPLSTAT),
 48	VC4_REG32(SCALER_DISPLACT0),
 49	VC4_REG32(SCALER_DISPLACT1),
 50	VC4_REG32(SCALER_DISPLACT2),
 51	VC4_REG32(SCALER_DISPCTRL0),
 52	VC4_REG32(SCALER_DISPBKGND0),
 53	VC4_REG32(SCALER_DISPSTAT0),
 54	VC4_REG32(SCALER_DISPBASE0),
 55	VC4_REG32(SCALER_DISPCTRL1),
 56	VC4_REG32(SCALER_DISPBKGND1),
 57	VC4_REG32(SCALER_DISPSTAT1),
 58	VC4_REG32(SCALER_DISPBASE1),
 59	VC4_REG32(SCALER_DISPCTRL2),
 60	VC4_REG32(SCALER_DISPBKGND2),
 61	VC4_REG32(SCALER_DISPSTAT2),
 62	VC4_REG32(SCALER_DISPBASE2),
 63	VC4_REG32(SCALER_DISPALPHA2),
 64	VC4_REG32(SCALER_OLEDOFFS),
 65	VC4_REG32(SCALER_OLEDCOEF0),
 66	VC4_REG32(SCALER_OLEDCOEF1),
 67	VC4_REG32(SCALER_OLEDCOEF2),
 68};
 69
 70void vc4_hvs_dump_state(struct vc4_hvs *hvs)
 71{
 72	struct drm_device *drm = &hvs->vc4->base;
 73	struct drm_printer p = drm_info_printer(&hvs->pdev->dev);
 74	int idx, i;
 75
 76	if (!drm_dev_enter(drm, &idx))
 77		return;
 78
 79	drm_print_regset32(&p, &hvs->regset);
 80
 81	DRM_INFO("HVS ctx:\n");
 82	for (i = 0; i < 64; i += 4) {
 83		DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
 84			 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
 85			 readl((u32 __iomem *)hvs->dlist + i + 0),
 86			 readl((u32 __iomem *)hvs->dlist + i + 1),
 87			 readl((u32 __iomem *)hvs->dlist + i + 2),
 88			 readl((u32 __iomem *)hvs->dlist + i + 3));
 89	}
 90
 91	drm_dev_exit(idx);
 92}
 93
 94static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
 95{
 96	struct drm_info_node *node = m->private;
 97	struct drm_device *dev = node->minor->dev;
 98	struct vc4_dev *vc4 = to_vc4_dev(dev);
 99	struct drm_printer p = drm_seq_file_printer(m);
100
101	drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
102
103	return 0;
104}
105
106static int vc4_hvs_debugfs_dlist(struct seq_file *m, void *data)
107{
108	struct drm_info_node *node = m->private;
109	struct drm_device *dev = node->minor->dev;
110	struct vc4_dev *vc4 = to_vc4_dev(dev);
111	struct vc4_hvs *hvs = vc4->hvs;
112	struct drm_printer p = drm_seq_file_printer(m);
113	unsigned int next_entry_start = 0;
114	unsigned int i, j;
115	u32 dlist_word, dispstat;
116
117	for (i = 0; i < SCALER_CHANNELS_COUNT; i++) {
118		dispstat = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(i)),
119					 SCALER_DISPSTATX_MODE);
120		if (dispstat == SCALER_DISPSTATX_MODE_DISABLED ||
121		    dispstat == SCALER_DISPSTATX_MODE_EOF) {
122			drm_printf(&p, "HVS chan %u disabled\n", i);
123			continue;
124		}
125
126		drm_printf(&p, "HVS chan %u:\n", i);
127
128		for (j = HVS_READ(SCALER_DISPLISTX(i)); j < 256; j++) {
129			dlist_word = readl((u32 __iomem *)vc4->hvs->dlist + j);
130			drm_printf(&p, "dlist: %02d: 0x%08x\n", j,
131				   dlist_word);
132			if (!next_entry_start ||
133			    next_entry_start == j) {
134				if (dlist_word & SCALER_CTL0_END)
135					break;
136				next_entry_start = j +
137					VC4_GET_FIELD(dlist_word,
138						      SCALER_CTL0_SIZE);
139			}
140		}
141	}
142
143	return 0;
144}
145
146/* The filter kernel is composed of dwords each containing 3 9-bit
147 * signed integers packed next to each other.
148 */
149#define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
150#define VC4_PPF_FILTER_WORD(c0, c1, c2)				\
151	((((c0) & 0x1ff) << 0) |				\
152	 (((c1) & 0x1ff) << 9) |				\
153	 (((c2) & 0x1ff) << 18))
154
155/* The whole filter kernel is arranged as the coefficients 0-16 going
156 * up, then a pad, then 17-31 going down and reversed within the
157 * dwords.  This means that a linear phase kernel (where it's
158 * symmetrical at the boundary between 15 and 16) has the last 5
159 * dwords matching the first 5, but reversed.
160 */
161#define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8,	\
162				c9, c10, c11, c12, c13, c14, c15)	\
163	{VC4_PPF_FILTER_WORD(c0, c1, c2),				\
164	 VC4_PPF_FILTER_WORD(c3, c4, c5),				\
165	 VC4_PPF_FILTER_WORD(c6, c7, c8),				\
166	 VC4_PPF_FILTER_WORD(c9, c10, c11),				\
167	 VC4_PPF_FILTER_WORD(c12, c13, c14),				\
168	 VC4_PPF_FILTER_WORD(c15, c15, 0)}
169
170#define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
171#define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
172
173/* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
174 * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
175 */
176static const u32 mitchell_netravali_1_3_1_3_kernel[] =
177	VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
178				50, 82, 119, 155, 187, 213, 227);
179
180static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
181					struct drm_mm_node *space,
182					const u32 *kernel)
183{
184	int ret, i;
185	u32 __iomem *dst_kernel;
186
187	/*
188	 * NOTE: We don't need a call to drm_dev_enter()/drm_dev_exit()
189	 * here since that function is only called from vc4_hvs_bind().
190	 */
191
192	ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
193	if (ret) {
194		DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
195			  ret);
196		return ret;
197	}
198
199	dst_kernel = hvs->dlist + space->start;
200
201	for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
202		if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
203			writel(kernel[i], &dst_kernel[i]);
204		else {
205			writel(kernel[VC4_KERNEL_DWORDS - i - 1],
206			       &dst_kernel[i]);
207		}
208	}
209
210	return 0;
211}
212
213static void vc4_hvs_lut_load(struct vc4_hvs *hvs,
214			     struct vc4_crtc *vc4_crtc)
215{
216	struct drm_device *drm = &hvs->vc4->base;
217	struct drm_crtc *crtc = &vc4_crtc->base;
218	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
219	int idx;
220	u32 i;
221
222	if (!drm_dev_enter(drm, &idx))
223		return;
224
225	/* The LUT memory is laid out with each HVS channel in order,
226	 * each of which takes 256 writes for R, 256 for G, then 256
227	 * for B.
228	 */
229	HVS_WRITE(SCALER_GAMADDR,
230		  SCALER_GAMADDR_AUTOINC |
231		  (vc4_state->assigned_channel * 3 * crtc->gamma_size));
232
233	for (i = 0; i < crtc->gamma_size; i++)
234		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
235	for (i = 0; i < crtc->gamma_size; i++)
236		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
237	for (i = 0; i < crtc->gamma_size; i++)
238		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
239
240	drm_dev_exit(idx);
241}
242
243static void vc4_hvs_update_gamma_lut(struct vc4_hvs *hvs,
244				     struct vc4_crtc *vc4_crtc)
245{
246	struct drm_crtc_state *crtc_state = vc4_crtc->base.state;
247	struct drm_color_lut *lut = crtc_state->gamma_lut->data;
248	u32 length = drm_color_lut_size(crtc_state->gamma_lut);
249	u32 i;
250
251	for (i = 0; i < length; i++) {
252		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
253		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
254		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
255	}
256
257	vc4_hvs_lut_load(hvs, vc4_crtc);
258}
259
260u8 vc4_hvs_get_fifo_frame_count(struct vc4_hvs *hvs, unsigned int fifo)
261{
262	struct drm_device *drm = &hvs->vc4->base;
263	u8 field = 0;
264	int idx;
265
266	if (!drm_dev_enter(drm, &idx))
267		return 0;
268
269	switch (fifo) {
270	case 0:
271		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
272				      SCALER_DISPSTAT1_FRCNT0);
273		break;
274	case 1:
275		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
276				      SCALER_DISPSTAT1_FRCNT1);
277		break;
278	case 2:
279		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2),
280				      SCALER_DISPSTAT2_FRCNT2);
281		break;
282	}
283
284	drm_dev_exit(idx);
285	return field;
286}
287
288int vc4_hvs_get_fifo_from_output(struct vc4_hvs *hvs, unsigned int output)
289{
290	struct vc4_dev *vc4 = hvs->vc4;
291	u32 reg;
292	int ret;
293
294	if (!vc4->is_vc5)
295		return output;
296
297	/*
298	 * NOTE: We should probably use drm_dev_enter()/drm_dev_exit()
299	 * here, but this function is only used during the DRM device
300	 * initialization, so we should be fine.
301	 */
302
303	switch (output) {
304	case 0:
305		return 0;
306
307	case 1:
308		return 1;
309
310	case 2:
311		reg = HVS_READ(SCALER_DISPECTRL);
312		ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
313		if (ret == 0)
314			return 2;
315
316		return 0;
317
318	case 3:
319		reg = HVS_READ(SCALER_DISPCTRL);
320		ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
321		if (ret == 3)
322			return -EPIPE;
323
324		return ret;
325
326	case 4:
327		reg = HVS_READ(SCALER_DISPEOLN);
328		ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
329		if (ret == 3)
330			return -EPIPE;
331
332		return ret;
333
334	case 5:
335		reg = HVS_READ(SCALER_DISPDITHER);
336		ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
337		if (ret == 3)
338			return -EPIPE;
339
340		return ret;
341
342	default:
343		return -EPIPE;
344	}
345}
346
347static int vc4_hvs_init_channel(struct vc4_hvs *hvs, struct drm_crtc *crtc,
348				struct drm_display_mode *mode, bool oneshot)
349{
350	struct vc4_dev *vc4 = hvs->vc4;
351	struct drm_device *drm = &vc4->base;
352	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
353	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
354	unsigned int chan = vc4_crtc_state->assigned_channel;
355	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
356	u32 dispbkgndx;
357	u32 dispctrl;
358	int idx;
359
360	if (!drm_dev_enter(drm, &idx))
361		return -ENODEV;
362
363	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
364	HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
365	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
366
367	/* Turn on the scaler, which will wait for vstart to start
368	 * compositing.
369	 * When feeding the transposer, we should operate in oneshot
370	 * mode.
371	 */
372	dispctrl = SCALER_DISPCTRLX_ENABLE;
373
374	if (!vc4->is_vc5)
375		dispctrl |= VC4_SET_FIELD(mode->hdisplay,
376					  SCALER_DISPCTRLX_WIDTH) |
377			    VC4_SET_FIELD(mode->vdisplay,
378					  SCALER_DISPCTRLX_HEIGHT) |
379			    (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
380	else
381		dispctrl |= VC4_SET_FIELD(mode->hdisplay,
382					  SCALER5_DISPCTRLX_WIDTH) |
383			    VC4_SET_FIELD(mode->vdisplay,
384					  SCALER5_DISPCTRLX_HEIGHT) |
385			    (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
386
387	HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
388
389	dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
390	dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
391	dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
392
393	HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
394		  SCALER_DISPBKGND_AUTOHS |
395		  ((!vc4->is_vc5) ? SCALER_DISPBKGND_GAMMA : 0) |
396		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
397
398	/* Reload the LUT, since the SRAMs would have been disabled if
399	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
400	 */
401	vc4_hvs_lut_load(hvs, vc4_crtc);
402
403	drm_dev_exit(idx);
404
405	return 0;
406}
407
408void vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan)
409{
410	struct drm_device *drm = &hvs->vc4->base;
411	int idx;
412
413	if (!drm_dev_enter(drm, &idx))
414		return;
415
416	if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE)
417		goto out;
418
419	HVS_WRITE(SCALER_DISPCTRLX(chan),
420		  HVS_READ(SCALER_DISPCTRLX(chan)) | SCALER_DISPCTRLX_RESET);
421	HVS_WRITE(SCALER_DISPCTRLX(chan),
422		  HVS_READ(SCALER_DISPCTRLX(chan)) & ~SCALER_DISPCTRLX_ENABLE);
423
424	/* Once we leave, the scaler should be disabled and its fifo empty. */
425	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
426
427	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
428				   SCALER_DISPSTATX_MODE) !=
429		     SCALER_DISPSTATX_MODE_DISABLED);
430
431	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
432		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
433		     SCALER_DISPSTATX_EMPTY);
434
435out:
436	drm_dev_exit(idx);
437}
438
439int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
440{
441	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
442	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
443	struct drm_device *dev = crtc->dev;
444	struct vc4_dev *vc4 = to_vc4_dev(dev);
445	struct drm_plane *plane;
446	unsigned long flags;
447	const struct drm_plane_state *plane_state;
448	u32 dlist_count = 0;
449	int ret;
450
451	/* The pixelvalve can only feed one encoder (and encoders are
452	 * 1:1 with connectors.)
453	 */
454	if (hweight32(crtc_state->connector_mask) > 1)
455		return -EINVAL;
456
457	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state)
458		dlist_count += vc4_plane_dlist_size(plane_state);
459
460	dlist_count++; /* Account for SCALER_CTL0_END. */
461
462	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
463	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
464				 dlist_count);
465	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
466	if (ret)
467		return ret;
468
469	return 0;
470}
471
472static void vc4_hvs_install_dlist(struct drm_crtc *crtc)
473{
474	struct drm_device *dev = crtc->dev;
475	struct vc4_dev *vc4 = to_vc4_dev(dev);
476	struct vc4_hvs *hvs = vc4->hvs;
477	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
478	int idx;
479
480	if (!drm_dev_enter(dev, &idx))
481		return;
482
483	HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
484		  vc4_state->mm.start);
485
486	drm_dev_exit(idx);
487}
488
489static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
490{
491	struct drm_device *dev = crtc->dev;
492	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
493	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
494	unsigned long flags;
495
496	if (crtc->state->event) {
497		crtc->state->event->pipe = drm_crtc_index(crtc);
498
499		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
500
501		spin_lock_irqsave(&dev->event_lock, flags);
502
503		if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) {
504			vc4_crtc->event = crtc->state->event;
505			crtc->state->event = NULL;
506		}
507
508		spin_unlock_irqrestore(&dev->event_lock, flags);
509	}
510
511	spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
512	vc4_crtc->current_dlist = vc4_state->mm.start;
513	spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
514}
515
516void vc4_hvs_atomic_begin(struct drm_crtc *crtc,
517			  struct drm_atomic_state *state)
518{
519	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
520	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
521	unsigned long flags;
522
523	spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
524	vc4_crtc->current_hvs_channel = vc4_state->assigned_channel;
525	spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
526}
527
528void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
529			   struct drm_atomic_state *state)
530{
531	struct drm_device *dev = crtc->dev;
532	struct vc4_dev *vc4 = to_vc4_dev(dev);
533	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
534	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
535	bool oneshot = vc4_crtc->feeds_txp;
536
537	vc4_hvs_install_dlist(crtc);
538	vc4_hvs_update_dlist(crtc);
539	vc4_hvs_init_channel(vc4->hvs, crtc, mode, oneshot);
540}
541
542void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
543			    struct drm_atomic_state *state)
544{
545	struct drm_device *dev = crtc->dev;
546	struct vc4_dev *vc4 = to_vc4_dev(dev);
547	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc);
548	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
549	unsigned int chan = vc4_state->assigned_channel;
550
551	vc4_hvs_stop_channel(vc4->hvs, chan);
552}
553
554void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
555			  struct drm_atomic_state *state)
556{
557	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
558									 crtc);
559	struct drm_device *dev = crtc->dev;
560	struct vc4_dev *vc4 = to_vc4_dev(dev);
561	struct vc4_hvs *hvs = vc4->hvs;
562	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
563	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
564	unsigned int channel = vc4_state->assigned_channel;
565	struct drm_plane *plane;
566	struct vc4_plane_state *vc4_plane_state;
567	bool debug_dump_regs = false;
568	bool enable_bg_fill = false;
569	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
570	u32 __iomem *dlist_next = dlist_start;
571	int idx;
572
573	if (!drm_dev_enter(dev, &idx)) {
574		vc4_crtc_send_vblank(crtc);
575		return;
576	}
577
578	if (debug_dump_regs) {
579		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
580		vc4_hvs_dump_state(hvs);
581	}
582
583	/* Copy all the active planes' dlist contents to the hardware dlist. */
584	drm_atomic_crtc_for_each_plane(plane, crtc) {
585		/* Is this the first active plane? */
586		if (dlist_next == dlist_start) {
587			/* We need to enable background fill when a plane
588			 * could be alpha blending from the background, i.e.
589			 * where no other plane is underneath. It suffices to
590			 * consider the first active plane here since we set
591			 * needs_bg_fill such that either the first plane
592			 * already needs it or all planes on top blend from
593			 * the first or a lower plane.
594			 */
595			vc4_plane_state = to_vc4_plane_state(plane->state);
596			enable_bg_fill = vc4_plane_state->needs_bg_fill;
597		}
598
599		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
600	}
601
602	writel(SCALER_CTL0_END, dlist_next);
603	dlist_next++;
604
605	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
606
607	if (enable_bg_fill)
608		/* This sets a black background color fill, as is the case
609		 * with other DRM drivers.
610		 */
611		HVS_WRITE(SCALER_DISPBKGNDX(channel),
612			  HVS_READ(SCALER_DISPBKGNDX(channel)) |
613			  SCALER_DISPBKGND_FILL);
614
615	/* Only update DISPLIST if the CRTC was already running and is not
616	 * being disabled.
617	 * vc4_crtc_enable() takes care of updating the dlist just after
618	 * re-enabling VBLANK interrupts and before enabling the engine.
619	 * If the CRTC is being disabled, there's no point in updating this
620	 * information.
621	 */
622	if (crtc->state->active && old_state->active) {
623		vc4_hvs_install_dlist(crtc);
624		vc4_hvs_update_dlist(crtc);
625	}
626
627	if (crtc->state->color_mgmt_changed) {
628		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(channel));
629
630		if (crtc->state->gamma_lut) {
631			vc4_hvs_update_gamma_lut(hvs, vc4_crtc);
632			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
633		} else {
634			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
635			 * in hardware, which is the same as a linear lut that
636			 * DRM expects us to use in absence of a user lut.
637			 */
638			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
639		}
640		HVS_WRITE(SCALER_DISPBKGNDX(channel), dispbkgndx);
641	}
642
643	if (debug_dump_regs) {
644		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
645		vc4_hvs_dump_state(hvs);
646	}
647
648	drm_dev_exit(idx);
649}
650
651void vc4_hvs_mask_underrun(struct vc4_hvs *hvs, int channel)
652{
653	struct drm_device *drm = &hvs->vc4->base;
654	u32 dispctrl;
655	int idx;
656
657	if (!drm_dev_enter(drm, &idx))
658		return;
659
660	dispctrl = HVS_READ(SCALER_DISPCTRL);
661	dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel);
662
663	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
664
665	drm_dev_exit(idx);
666}
667
668void vc4_hvs_unmask_underrun(struct vc4_hvs *hvs, int channel)
669{
670	struct drm_device *drm = &hvs->vc4->base;
671	u32 dispctrl;
672	int idx;
673
674	if (!drm_dev_enter(drm, &idx))
675		return;
676
677	dispctrl = HVS_READ(SCALER_DISPCTRL);
678	dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel);
679
680	HVS_WRITE(SCALER_DISPSTAT,
681		  SCALER_DISPSTAT_EUFLOW(channel));
682	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
683
684	drm_dev_exit(idx);
685}
686
687static void vc4_hvs_report_underrun(struct drm_device *dev)
688{
689	struct vc4_dev *vc4 = to_vc4_dev(dev);
690
691	atomic_inc(&vc4->underrun);
692	DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
693}
694
695static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
696{
697	struct drm_device *dev = data;
698	struct vc4_dev *vc4 = to_vc4_dev(dev);
699	struct vc4_hvs *hvs = vc4->hvs;
700	irqreturn_t irqret = IRQ_NONE;
701	int channel;
702	u32 control;
703	u32 status;
704
705	/*
706	 * NOTE: We don't need to protect the register access using
707	 * drm_dev_enter() there because the interrupt handler lifetime
708	 * is tied to the device itself, and not to the DRM device.
709	 *
710	 * So when the device will be gone, one of the first thing we
711	 * will be doing will be to unregister the interrupt handler,
712	 * and then unregister the DRM device. drm_dev_enter() would
713	 * thus always succeed if we are here.
714	 */
715
716	status = HVS_READ(SCALER_DISPSTAT);
717	control = HVS_READ(SCALER_DISPCTRL);
718
719	for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
720		/* Interrupt masking is not always honored, so check it here. */
721		if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
722		    control & SCALER_DISPCTRL_DSPEISLUR(channel)) {
723			vc4_hvs_mask_underrun(hvs, channel);
724			vc4_hvs_report_underrun(dev);
725
726			irqret = IRQ_HANDLED;
727		}
728	}
729
730	/* Clear every per-channel interrupt flag. */
731	HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
732				   SCALER_DISPSTAT_IRQMASK(1) |
733				   SCALER_DISPSTAT_IRQMASK(2));
734
735	return irqret;
736}
737
738int vc4_hvs_debugfs_init(struct drm_minor *minor)
739{
740	struct drm_device *drm = minor->dev;
741	struct vc4_dev *vc4 = to_vc4_dev(drm);
742	struct vc4_hvs *hvs = vc4->hvs;
743	int ret;
744
745	if (!vc4->hvs)
746		return -ENODEV;
747
748	if (!vc4->is_vc5)
749		debugfs_create_bool("hvs_load_tracker", S_IRUGO | S_IWUSR,
750				    minor->debugfs_root,
751				    &vc4->load_tracker_enabled);
752
753	ret = vc4_debugfs_add_file(minor, "hvs_dlists",
754				   vc4_hvs_debugfs_dlist, NULL);
755	if (ret)
756		return ret;
757
758	ret = vc4_debugfs_add_file(minor, "hvs_underrun",
759				   vc4_hvs_debugfs_underrun, NULL);
760	if (ret)
761		return ret;
762
763	ret = vc4_debugfs_add_regset32(minor, "hvs_regs",
764				       &hvs->regset);
765	if (ret)
766		return ret;
767
768	return 0;
769}
770
771static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
772{
773	struct platform_device *pdev = to_platform_device(dev);
774	struct drm_device *drm = dev_get_drvdata(master);
775	struct vc4_dev *vc4 = to_vc4_dev(drm);
776	struct vc4_hvs *hvs = NULL;
777	int ret;
778	u32 dispctrl;
779	u32 reg;
780
781	hvs = drmm_kzalloc(drm, sizeof(*hvs), GFP_KERNEL);
782	if (!hvs)
783		return -ENOMEM;
784	hvs->vc4 = vc4;
785	hvs->pdev = pdev;
786
787	hvs->regs = vc4_ioremap_regs(pdev, 0);
788	if (IS_ERR(hvs->regs))
789		return PTR_ERR(hvs->regs);
790
791	hvs->regset.base = hvs->regs;
792	hvs->regset.regs = hvs_regs;
793	hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
794
795	if (vc4->is_vc5) {
796		struct rpi_firmware *firmware;
797		struct device_node *node;
798		unsigned int max_rate;
799
800		node = rpi_firmware_find_node();
801		if (!node)
802			return -EINVAL;
803
804		firmware = rpi_firmware_get(node);
805		of_node_put(node);
806		if (!firmware)
807			return -EPROBE_DEFER;
808
809		hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
810		if (IS_ERR(hvs->core_clk)) {
811			dev_err(&pdev->dev, "Couldn't get core clock\n");
812			return PTR_ERR(hvs->core_clk);
813		}
814
815		max_rate = rpi_firmware_clk_get_max_rate(firmware,
816							 RPI_FIRMWARE_CORE_CLK_ID);
817		rpi_firmware_put(firmware);
818		if (max_rate >= 550000000)
819			hvs->vc5_hdmi_enable_hdmi_20 = true;
820
821		if (max_rate >= 600000000)
822			hvs->vc5_hdmi_enable_4096by2160 = true;
823
824		hvs->max_core_rate = max_rate;
825
826		ret = clk_prepare_enable(hvs->core_clk);
827		if (ret) {
828			dev_err(&pdev->dev, "Couldn't enable the core clock\n");
829			return ret;
830		}
831	}
832
833	if (!vc4->is_vc5)
834		hvs->dlist = hvs->regs + SCALER_DLIST_START;
835	else
836		hvs->dlist = hvs->regs + SCALER5_DLIST_START;
837
838	spin_lock_init(&hvs->mm_lock);
839
840	/* Set up the HVS display list memory manager.  We never
841	 * overwrite the setup from the bootloader (just 128b out of
842	 * our 16K), since we don't want to scramble the screen when
843	 * transitioning from the firmware's boot setup to runtime.
844	 */
845	drm_mm_init(&hvs->dlist_mm,
846		    HVS_BOOTLOADER_DLIST_END,
847		    (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
848
849	/* Set up the HVS LBM memory manager.  We could have some more
850	 * complicated data structure that allowed reuse of LBM areas
851	 * between planes when they don't overlap on the screen, but
852	 * for now we just allocate globally.
853	 */
854	if (!vc4->is_vc5)
855		/* 48k words of 2x12-bit pixels */
856		drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024);
857	else
858		/* 60k words of 4x12-bit pixels */
859		drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024);
860
861	/* Upload filter kernels.  We only have the one for now, so we
862	 * keep it around for the lifetime of the driver.
863	 */
864	ret = vc4_hvs_upload_linear_kernel(hvs,
865					   &hvs->mitchell_netravali_filter,
866					   mitchell_netravali_1_3_1_3_kernel);
867	if (ret)
868		return ret;
869
870	vc4->hvs = hvs;
871
872	reg = HVS_READ(SCALER_DISPECTRL);
873	reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK;
874	HVS_WRITE(SCALER_DISPECTRL,
875		  reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX));
876
877	reg = HVS_READ(SCALER_DISPCTRL);
878	reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
879	HVS_WRITE(SCALER_DISPCTRL,
880		  reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX));
881
882	reg = HVS_READ(SCALER_DISPEOLN);
883	reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK;
884	HVS_WRITE(SCALER_DISPEOLN,
885		  reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX));
886
887	reg = HVS_READ(SCALER_DISPDITHER);
888	reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK;
889	HVS_WRITE(SCALER_DISPDITHER,
890		  reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX));
891
892	dispctrl = HVS_READ(SCALER_DISPCTRL);
893
894	dispctrl |= SCALER_DISPCTRL_ENABLE;
895	dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
896		    SCALER_DISPCTRL_DISPEIRQ(1) |
897		    SCALER_DISPCTRL_DISPEIRQ(2);
898
899	dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
900		      SCALER_DISPCTRL_SLVWREIRQ |
901		      SCALER_DISPCTRL_SLVRDEIRQ |
902		      SCALER_DISPCTRL_DSPEIEOF(0) |
903		      SCALER_DISPCTRL_DSPEIEOF(1) |
904		      SCALER_DISPCTRL_DSPEIEOF(2) |
905		      SCALER_DISPCTRL_DSPEIEOLN(0) |
906		      SCALER_DISPCTRL_DSPEIEOLN(1) |
907		      SCALER_DISPCTRL_DSPEIEOLN(2) |
908		      SCALER_DISPCTRL_DSPEISLUR(0) |
909		      SCALER_DISPCTRL_DSPEISLUR(1) |
910		      SCALER_DISPCTRL_DSPEISLUR(2) |
911		      SCALER_DISPCTRL_SCLEIRQ);
912
913	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
914
915	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
916			       vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
917	if (ret)
918		return ret;
919
920	return 0;
921}
922
923static void vc4_hvs_unbind(struct device *dev, struct device *master,
924			   void *data)
925{
926	struct drm_device *drm = dev_get_drvdata(master);
927	struct vc4_dev *vc4 = to_vc4_dev(drm);
928	struct vc4_hvs *hvs = vc4->hvs;
929	struct drm_mm_node *node, *next;
930
931	if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
932		drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
933
934	drm_mm_for_each_node_safe(node, next, &vc4->hvs->dlist_mm)
935		drm_mm_remove_node(node);
936
937	drm_mm_takedown(&vc4->hvs->dlist_mm);
938
939	drm_mm_for_each_node_safe(node, next, &vc4->hvs->lbm_mm)
940		drm_mm_remove_node(node);
941	drm_mm_takedown(&vc4->hvs->lbm_mm);
942
943	clk_disable_unprepare(hvs->core_clk);
944
945	vc4->hvs = NULL;
946}
947
948static const struct component_ops vc4_hvs_ops = {
949	.bind   = vc4_hvs_bind,
950	.unbind = vc4_hvs_unbind,
951};
952
953static int vc4_hvs_dev_probe(struct platform_device *pdev)
954{
955	return component_add(&pdev->dev, &vc4_hvs_ops);
956}
957
958static int vc4_hvs_dev_remove(struct platform_device *pdev)
959{
960	component_del(&pdev->dev, &vc4_hvs_ops);
961	return 0;
962}
963
964static const struct of_device_id vc4_hvs_dt_match[] = {
965	{ .compatible = "brcm,bcm2711-hvs" },
966	{ .compatible = "brcm,bcm2835-hvs" },
967	{}
968};
969
970struct platform_driver vc4_hvs_driver = {
971	.probe = vc4_hvs_dev_probe,
972	.remove = vc4_hvs_dev_remove,
973	.driver = {
974		.name = "vc4_hvs",
975		.of_match_table = vc4_hvs_dt_match,
976	},
977};