Loading...
1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3/*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29#include <linux/sysrq.h>
30#include <linux/slab.h>
31#include "drmP.h"
32#include "drm.h"
33#include "i915_drm.h"
34#include "i915_drv.h"
35#include "i915_trace.h"
36#include "intel_drv.h"
37
38#define MAX_NOPID ((u32)~0)
39
40/**
41 * Interrupts that are always left unmasked.
42 *
43 * Since pipe events are edge-triggered from the PIPESTAT register to IIR,
44 * we leave them always unmasked in IMR and then control enabling them through
45 * PIPESTAT alone.
46 */
47#define I915_INTERRUPT_ENABLE_FIX \
48 (I915_ASLE_INTERRUPT | \
49 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | \
50 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | \
51 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | \
52 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT | \
53 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
54
55/** Interrupts that we mask and unmask at runtime. */
56#define I915_INTERRUPT_ENABLE_VAR (I915_USER_INTERRUPT | I915_BSD_USER_INTERRUPT)
57
58#define I915_PIPE_VBLANK_STATUS (PIPE_START_VBLANK_INTERRUPT_STATUS |\
59 PIPE_VBLANK_INTERRUPT_STATUS)
60
61#define I915_PIPE_VBLANK_ENABLE (PIPE_START_VBLANK_INTERRUPT_ENABLE |\
62 PIPE_VBLANK_INTERRUPT_ENABLE)
63
64#define DRM_I915_VBLANK_PIPE_ALL (DRM_I915_VBLANK_PIPE_A | \
65 DRM_I915_VBLANK_PIPE_B)
66
67/* For display hotplug interrupt */
68static void
69ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
70{
71 if ((dev_priv->irq_mask & mask) != 0) {
72 dev_priv->irq_mask &= ~mask;
73 I915_WRITE(DEIMR, dev_priv->irq_mask);
74 POSTING_READ(DEIMR);
75 }
76}
77
78static inline void
79ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
80{
81 if ((dev_priv->irq_mask & mask) != mask) {
82 dev_priv->irq_mask |= mask;
83 I915_WRITE(DEIMR, dev_priv->irq_mask);
84 POSTING_READ(DEIMR);
85 }
86}
87
88void
89i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
90{
91 if ((dev_priv->pipestat[pipe] & mask) != mask) {
92 u32 reg = PIPESTAT(pipe);
93
94 dev_priv->pipestat[pipe] |= mask;
95 /* Enable the interrupt, clear any pending status */
96 I915_WRITE(reg, dev_priv->pipestat[pipe] | (mask >> 16));
97 POSTING_READ(reg);
98 }
99}
100
101void
102i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
103{
104 if ((dev_priv->pipestat[pipe] & mask) != 0) {
105 u32 reg = PIPESTAT(pipe);
106
107 dev_priv->pipestat[pipe] &= ~mask;
108 I915_WRITE(reg, dev_priv->pipestat[pipe]);
109 POSTING_READ(reg);
110 }
111}
112
113/**
114 * intel_enable_asle - enable ASLE interrupt for OpRegion
115 */
116void intel_enable_asle(struct drm_device *dev)
117{
118 drm_i915_private_t *dev_priv = dev->dev_private;
119 unsigned long irqflags;
120
121 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
122
123 if (HAS_PCH_SPLIT(dev))
124 ironlake_enable_display_irq(dev_priv, DE_GSE);
125 else {
126 i915_enable_pipestat(dev_priv, 1,
127 PIPE_LEGACY_BLC_EVENT_ENABLE);
128 if (INTEL_INFO(dev)->gen >= 4)
129 i915_enable_pipestat(dev_priv, 0,
130 PIPE_LEGACY_BLC_EVENT_ENABLE);
131 }
132
133 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
134}
135
136/**
137 * i915_pipe_enabled - check if a pipe is enabled
138 * @dev: DRM device
139 * @pipe: pipe to check
140 *
141 * Reading certain registers when the pipe is disabled can hang the chip.
142 * Use this routine to make sure the PLL is running and the pipe is active
143 * before reading such registers if unsure.
144 */
145static int
146i915_pipe_enabled(struct drm_device *dev, int pipe)
147{
148 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
149 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
150}
151
152/* Called from drm generic code, passed a 'crtc', which
153 * we use as a pipe index
154 */
155static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
156{
157 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
158 unsigned long high_frame;
159 unsigned long low_frame;
160 u32 high1, high2, low;
161
162 if (!i915_pipe_enabled(dev, pipe)) {
163 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
164 "pipe %c\n", pipe_name(pipe));
165 return 0;
166 }
167
168 high_frame = PIPEFRAME(pipe);
169 low_frame = PIPEFRAMEPIXEL(pipe);
170
171 /*
172 * High & low register fields aren't synchronized, so make sure
173 * we get a low value that's stable across two reads of the high
174 * register.
175 */
176 do {
177 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
178 low = I915_READ(low_frame) & PIPE_FRAME_LOW_MASK;
179 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
180 } while (high1 != high2);
181
182 high1 >>= PIPE_FRAME_HIGH_SHIFT;
183 low >>= PIPE_FRAME_LOW_SHIFT;
184 return (high1 << 8) | low;
185}
186
187static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
188{
189 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
190 int reg = PIPE_FRMCOUNT_GM45(pipe);
191
192 if (!i915_pipe_enabled(dev, pipe)) {
193 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
194 "pipe %c\n", pipe_name(pipe));
195 return 0;
196 }
197
198 return I915_READ(reg);
199}
200
201static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
202 int *vpos, int *hpos)
203{
204 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
205 u32 vbl = 0, position = 0;
206 int vbl_start, vbl_end, htotal, vtotal;
207 bool in_vbl = true;
208 int ret = 0;
209
210 if (!i915_pipe_enabled(dev, pipe)) {
211 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
212 "pipe %c\n", pipe_name(pipe));
213 return 0;
214 }
215
216 /* Get vtotal. */
217 vtotal = 1 + ((I915_READ(VTOTAL(pipe)) >> 16) & 0x1fff);
218
219 if (INTEL_INFO(dev)->gen >= 4) {
220 /* No obvious pixelcount register. Only query vertical
221 * scanout position from Display scan line register.
222 */
223 position = I915_READ(PIPEDSL(pipe));
224
225 /* Decode into vertical scanout position. Don't have
226 * horizontal scanout position.
227 */
228 *vpos = position & 0x1fff;
229 *hpos = 0;
230 } else {
231 /* Have access to pixelcount since start of frame.
232 * We can split this into vertical and horizontal
233 * scanout position.
234 */
235 position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
236
237 htotal = 1 + ((I915_READ(HTOTAL(pipe)) >> 16) & 0x1fff);
238 *vpos = position / htotal;
239 *hpos = position - (*vpos * htotal);
240 }
241
242 /* Query vblank area. */
243 vbl = I915_READ(VBLANK(pipe));
244
245 /* Test position against vblank region. */
246 vbl_start = vbl & 0x1fff;
247 vbl_end = (vbl >> 16) & 0x1fff;
248
249 if ((*vpos < vbl_start) || (*vpos > vbl_end))
250 in_vbl = false;
251
252 /* Inside "upper part" of vblank area? Apply corrective offset: */
253 if (in_vbl && (*vpos >= vbl_start))
254 *vpos = *vpos - vtotal;
255
256 /* Readouts valid? */
257 if (vbl > 0)
258 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
259
260 /* In vblank? */
261 if (in_vbl)
262 ret |= DRM_SCANOUTPOS_INVBL;
263
264 return ret;
265}
266
267static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
268 int *max_error,
269 struct timeval *vblank_time,
270 unsigned flags)
271{
272 struct drm_i915_private *dev_priv = dev->dev_private;
273 struct drm_crtc *crtc;
274
275 if (pipe < 0 || pipe >= dev_priv->num_pipe) {
276 DRM_ERROR("Invalid crtc %d\n", pipe);
277 return -EINVAL;
278 }
279
280 /* Get drm_crtc to timestamp: */
281 crtc = intel_get_crtc_for_pipe(dev, pipe);
282 if (crtc == NULL) {
283 DRM_ERROR("Invalid crtc %d\n", pipe);
284 return -EINVAL;
285 }
286
287 if (!crtc->enabled) {
288 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
289 return -EBUSY;
290 }
291
292 /* Helper routine in DRM core does all the work: */
293 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
294 vblank_time, flags,
295 crtc);
296}
297
298/*
299 * Handle hotplug events outside the interrupt handler proper.
300 */
301static void i915_hotplug_work_func(struct work_struct *work)
302{
303 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
304 hotplug_work);
305 struct drm_device *dev = dev_priv->dev;
306 struct drm_mode_config *mode_config = &dev->mode_config;
307 struct intel_encoder *encoder;
308
309 mutex_lock(&mode_config->mutex);
310 DRM_DEBUG_KMS("running encoder hotplug functions\n");
311
312 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
313 if (encoder->hot_plug)
314 encoder->hot_plug(encoder);
315
316 mutex_unlock(&mode_config->mutex);
317
318 /* Just fire off a uevent and let userspace tell us what to do */
319 drm_helper_hpd_irq_event(dev);
320}
321
322static void i915_handle_rps_change(struct drm_device *dev)
323{
324 drm_i915_private_t *dev_priv = dev->dev_private;
325 u32 busy_up, busy_down, max_avg, min_avg;
326 u8 new_delay = dev_priv->cur_delay;
327
328 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
329 busy_up = I915_READ(RCPREVBSYTUPAVG);
330 busy_down = I915_READ(RCPREVBSYTDNAVG);
331 max_avg = I915_READ(RCBMAXAVG);
332 min_avg = I915_READ(RCBMINAVG);
333
334 /* Handle RCS change request from hw */
335 if (busy_up > max_avg) {
336 if (dev_priv->cur_delay != dev_priv->max_delay)
337 new_delay = dev_priv->cur_delay - 1;
338 if (new_delay < dev_priv->max_delay)
339 new_delay = dev_priv->max_delay;
340 } else if (busy_down < min_avg) {
341 if (dev_priv->cur_delay != dev_priv->min_delay)
342 new_delay = dev_priv->cur_delay + 1;
343 if (new_delay > dev_priv->min_delay)
344 new_delay = dev_priv->min_delay;
345 }
346
347 if (ironlake_set_drps(dev, new_delay))
348 dev_priv->cur_delay = new_delay;
349
350 return;
351}
352
353static void notify_ring(struct drm_device *dev,
354 struct intel_ring_buffer *ring)
355{
356 struct drm_i915_private *dev_priv = dev->dev_private;
357 u32 seqno;
358
359 if (ring->obj == NULL)
360 return;
361
362 seqno = ring->get_seqno(ring);
363 trace_i915_gem_request_complete(ring, seqno);
364
365 ring->irq_seqno = seqno;
366 wake_up_all(&ring->irq_queue);
367 if (i915_enable_hangcheck) {
368 dev_priv->hangcheck_count = 0;
369 mod_timer(&dev_priv->hangcheck_timer,
370 jiffies +
371 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
372 }
373}
374
375static void gen6_pm_rps_work(struct work_struct *work)
376{
377 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
378 rps_work);
379 u8 new_delay = dev_priv->cur_delay;
380 u32 pm_iir, pm_imr;
381
382 spin_lock_irq(&dev_priv->rps_lock);
383 pm_iir = dev_priv->pm_iir;
384 dev_priv->pm_iir = 0;
385 pm_imr = I915_READ(GEN6_PMIMR);
386 spin_unlock_irq(&dev_priv->rps_lock);
387
388 if (!pm_iir)
389 return;
390
391 mutex_lock(&dev_priv->dev->struct_mutex);
392 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
393 if (dev_priv->cur_delay != dev_priv->max_delay)
394 new_delay = dev_priv->cur_delay + 1;
395 if (new_delay > dev_priv->max_delay)
396 new_delay = dev_priv->max_delay;
397 } else if (pm_iir & (GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT)) {
398 gen6_gt_force_wake_get(dev_priv);
399 if (dev_priv->cur_delay != dev_priv->min_delay)
400 new_delay = dev_priv->cur_delay - 1;
401 if (new_delay < dev_priv->min_delay) {
402 new_delay = dev_priv->min_delay;
403 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
404 I915_READ(GEN6_RP_INTERRUPT_LIMITS) |
405 ((new_delay << 16) & 0x3f0000));
406 } else {
407 /* Make sure we continue to get down interrupts
408 * until we hit the minimum frequency */
409 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
410 I915_READ(GEN6_RP_INTERRUPT_LIMITS) & ~0x3f0000);
411 }
412 gen6_gt_force_wake_put(dev_priv);
413 }
414
415 gen6_set_rps(dev_priv->dev, new_delay);
416 dev_priv->cur_delay = new_delay;
417
418 /*
419 * rps_lock not held here because clearing is non-destructive. There is
420 * an *extremely* unlikely race with gen6_rps_enable() that is prevented
421 * by holding struct_mutex for the duration of the write.
422 */
423 I915_WRITE(GEN6_PMIMR, pm_imr & ~pm_iir);
424 mutex_unlock(&dev_priv->dev->struct_mutex);
425}
426
427static void pch_irq_handler(struct drm_device *dev)
428{
429 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
430 u32 pch_iir;
431 int pipe;
432
433 pch_iir = I915_READ(SDEIIR);
434
435 if (pch_iir & SDE_AUDIO_POWER_MASK)
436 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
437 (pch_iir & SDE_AUDIO_POWER_MASK) >>
438 SDE_AUDIO_POWER_SHIFT);
439
440 if (pch_iir & SDE_GMBUS)
441 DRM_DEBUG_DRIVER("PCH GMBUS interrupt\n");
442
443 if (pch_iir & SDE_AUDIO_HDCP_MASK)
444 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
445
446 if (pch_iir & SDE_AUDIO_TRANS_MASK)
447 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
448
449 if (pch_iir & SDE_POISON)
450 DRM_ERROR("PCH poison interrupt\n");
451
452 if (pch_iir & SDE_FDI_MASK)
453 for_each_pipe(pipe)
454 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
455 pipe_name(pipe),
456 I915_READ(FDI_RX_IIR(pipe)));
457
458 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
459 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
460
461 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
462 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
463
464 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
465 DRM_DEBUG_DRIVER("PCH transcoder B underrun interrupt\n");
466 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
467 DRM_DEBUG_DRIVER("PCH transcoder A underrun interrupt\n");
468}
469
470static irqreturn_t ivybridge_irq_handler(DRM_IRQ_ARGS)
471{
472 struct drm_device *dev = (struct drm_device *) arg;
473 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
474 int ret = IRQ_NONE;
475 u32 de_iir, gt_iir, de_ier, pch_iir, pm_iir;
476 struct drm_i915_master_private *master_priv;
477
478 atomic_inc(&dev_priv->irq_received);
479
480 /* disable master interrupt before clearing iir */
481 de_ier = I915_READ(DEIER);
482 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
483 POSTING_READ(DEIER);
484
485 de_iir = I915_READ(DEIIR);
486 gt_iir = I915_READ(GTIIR);
487 pch_iir = I915_READ(SDEIIR);
488 pm_iir = I915_READ(GEN6_PMIIR);
489
490 if (de_iir == 0 && gt_iir == 0 && pch_iir == 0 && pm_iir == 0)
491 goto done;
492
493 ret = IRQ_HANDLED;
494
495 if (dev->primary->master) {
496 master_priv = dev->primary->master->driver_priv;
497 if (master_priv->sarea_priv)
498 master_priv->sarea_priv->last_dispatch =
499 READ_BREADCRUMB(dev_priv);
500 }
501
502 if (gt_iir & (GT_USER_INTERRUPT | GT_PIPE_NOTIFY))
503 notify_ring(dev, &dev_priv->ring[RCS]);
504 if (gt_iir & GT_GEN6_BSD_USER_INTERRUPT)
505 notify_ring(dev, &dev_priv->ring[VCS]);
506 if (gt_iir & GT_BLT_USER_INTERRUPT)
507 notify_ring(dev, &dev_priv->ring[BCS]);
508
509 if (de_iir & DE_GSE_IVB)
510 intel_opregion_gse_intr(dev);
511
512 if (de_iir & DE_PLANEA_FLIP_DONE_IVB) {
513 intel_prepare_page_flip(dev, 0);
514 intel_finish_page_flip_plane(dev, 0);
515 }
516
517 if (de_iir & DE_PLANEB_FLIP_DONE_IVB) {
518 intel_prepare_page_flip(dev, 1);
519 intel_finish_page_flip_plane(dev, 1);
520 }
521
522 if (de_iir & DE_PIPEA_VBLANK_IVB)
523 drm_handle_vblank(dev, 0);
524
525 if (de_iir & DE_PIPEB_VBLANK_IVB)
526 drm_handle_vblank(dev, 1);
527
528 /* check event from PCH */
529 if (de_iir & DE_PCH_EVENT_IVB) {
530 if (pch_iir & SDE_HOTPLUG_MASK_CPT)
531 queue_work(dev_priv->wq, &dev_priv->hotplug_work);
532 pch_irq_handler(dev);
533 }
534
535 if (pm_iir & GEN6_PM_DEFERRED_EVENTS) {
536 unsigned long flags;
537 spin_lock_irqsave(&dev_priv->rps_lock, flags);
538 WARN(dev_priv->pm_iir & pm_iir, "Missed a PM interrupt\n");
539 I915_WRITE(GEN6_PMIMR, pm_iir);
540 dev_priv->pm_iir |= pm_iir;
541 spin_unlock_irqrestore(&dev_priv->rps_lock, flags);
542 queue_work(dev_priv->wq, &dev_priv->rps_work);
543 }
544
545 /* should clear PCH hotplug event before clear CPU irq */
546 I915_WRITE(SDEIIR, pch_iir);
547 I915_WRITE(GTIIR, gt_iir);
548 I915_WRITE(DEIIR, de_iir);
549 I915_WRITE(GEN6_PMIIR, pm_iir);
550
551done:
552 I915_WRITE(DEIER, de_ier);
553 POSTING_READ(DEIER);
554
555 return ret;
556}
557
558static irqreturn_t ironlake_irq_handler(DRM_IRQ_ARGS)
559{
560 struct drm_device *dev = (struct drm_device *) arg;
561 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
562 int ret = IRQ_NONE;
563 u32 de_iir, gt_iir, de_ier, pch_iir, pm_iir;
564 u32 hotplug_mask;
565 struct drm_i915_master_private *master_priv;
566 u32 bsd_usr_interrupt = GT_BSD_USER_INTERRUPT;
567
568 atomic_inc(&dev_priv->irq_received);
569
570 if (IS_GEN6(dev))
571 bsd_usr_interrupt = GT_GEN6_BSD_USER_INTERRUPT;
572
573 /* disable master interrupt before clearing iir */
574 de_ier = I915_READ(DEIER);
575 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
576 POSTING_READ(DEIER);
577
578 de_iir = I915_READ(DEIIR);
579 gt_iir = I915_READ(GTIIR);
580 pch_iir = I915_READ(SDEIIR);
581 pm_iir = I915_READ(GEN6_PMIIR);
582
583 if (de_iir == 0 && gt_iir == 0 && pch_iir == 0 &&
584 (!IS_GEN6(dev) || pm_iir == 0))
585 goto done;
586
587 if (HAS_PCH_CPT(dev))
588 hotplug_mask = SDE_HOTPLUG_MASK_CPT;
589 else
590 hotplug_mask = SDE_HOTPLUG_MASK;
591
592 ret = IRQ_HANDLED;
593
594 if (dev->primary->master) {
595 master_priv = dev->primary->master->driver_priv;
596 if (master_priv->sarea_priv)
597 master_priv->sarea_priv->last_dispatch =
598 READ_BREADCRUMB(dev_priv);
599 }
600
601 if (gt_iir & (GT_USER_INTERRUPT | GT_PIPE_NOTIFY))
602 notify_ring(dev, &dev_priv->ring[RCS]);
603 if (gt_iir & bsd_usr_interrupt)
604 notify_ring(dev, &dev_priv->ring[VCS]);
605 if (gt_iir & GT_BLT_USER_INTERRUPT)
606 notify_ring(dev, &dev_priv->ring[BCS]);
607
608 if (de_iir & DE_GSE)
609 intel_opregion_gse_intr(dev);
610
611 if (de_iir & DE_PLANEA_FLIP_DONE) {
612 intel_prepare_page_flip(dev, 0);
613 intel_finish_page_flip_plane(dev, 0);
614 }
615
616 if (de_iir & DE_PLANEB_FLIP_DONE) {
617 intel_prepare_page_flip(dev, 1);
618 intel_finish_page_flip_plane(dev, 1);
619 }
620
621 if (de_iir & DE_PIPEA_VBLANK)
622 drm_handle_vblank(dev, 0);
623
624 if (de_iir & DE_PIPEB_VBLANK)
625 drm_handle_vblank(dev, 1);
626
627 /* check event from PCH */
628 if (de_iir & DE_PCH_EVENT) {
629 if (pch_iir & hotplug_mask)
630 queue_work(dev_priv->wq, &dev_priv->hotplug_work);
631 pch_irq_handler(dev);
632 }
633
634 if (de_iir & DE_PCU_EVENT) {
635 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
636 i915_handle_rps_change(dev);
637 }
638
639 if (IS_GEN6(dev) && pm_iir & GEN6_PM_DEFERRED_EVENTS) {
640 /*
641 * IIR bits should never already be set because IMR should
642 * prevent an interrupt from being shown in IIR. The warning
643 * displays a case where we've unsafely cleared
644 * dev_priv->pm_iir. Although missing an interrupt of the same
645 * type is not a problem, it displays a problem in the logic.
646 *
647 * The mask bit in IMR is cleared by rps_work.
648 */
649 unsigned long flags;
650 spin_lock_irqsave(&dev_priv->rps_lock, flags);
651 WARN(dev_priv->pm_iir & pm_iir, "Missed a PM interrupt\n");
652 I915_WRITE(GEN6_PMIMR, pm_iir);
653 dev_priv->pm_iir |= pm_iir;
654 spin_unlock_irqrestore(&dev_priv->rps_lock, flags);
655 queue_work(dev_priv->wq, &dev_priv->rps_work);
656 }
657
658 /* should clear PCH hotplug event before clear CPU irq */
659 I915_WRITE(SDEIIR, pch_iir);
660 I915_WRITE(GTIIR, gt_iir);
661 I915_WRITE(DEIIR, de_iir);
662 I915_WRITE(GEN6_PMIIR, pm_iir);
663
664done:
665 I915_WRITE(DEIER, de_ier);
666 POSTING_READ(DEIER);
667
668 return ret;
669}
670
671/**
672 * i915_error_work_func - do process context error handling work
673 * @work: work struct
674 *
675 * Fire an error uevent so userspace can see that a hang or error
676 * was detected.
677 */
678static void i915_error_work_func(struct work_struct *work)
679{
680 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
681 error_work);
682 struct drm_device *dev = dev_priv->dev;
683 char *error_event[] = { "ERROR=1", NULL };
684 char *reset_event[] = { "RESET=1", NULL };
685 char *reset_done_event[] = { "ERROR=0", NULL };
686
687 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
688
689 if (atomic_read(&dev_priv->mm.wedged)) {
690 DRM_DEBUG_DRIVER("resetting chip\n");
691 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, reset_event);
692 if (!i915_reset(dev, GRDOM_RENDER)) {
693 atomic_set(&dev_priv->mm.wedged, 0);
694 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, reset_done_event);
695 }
696 complete_all(&dev_priv->error_completion);
697 }
698}
699
700#ifdef CONFIG_DEBUG_FS
701static struct drm_i915_error_object *
702i915_error_object_create(struct drm_i915_private *dev_priv,
703 struct drm_i915_gem_object *src)
704{
705 struct drm_i915_error_object *dst;
706 int page, page_count;
707 u32 reloc_offset;
708
709 if (src == NULL || src->pages == NULL)
710 return NULL;
711
712 page_count = src->base.size / PAGE_SIZE;
713
714 dst = kmalloc(sizeof(*dst) + page_count * sizeof (u32 *), GFP_ATOMIC);
715 if (dst == NULL)
716 return NULL;
717
718 reloc_offset = src->gtt_offset;
719 for (page = 0; page < page_count; page++) {
720 unsigned long flags;
721 void __iomem *s;
722 void *d;
723
724 d = kmalloc(PAGE_SIZE, GFP_ATOMIC);
725 if (d == NULL)
726 goto unwind;
727
728 local_irq_save(flags);
729 s = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
730 reloc_offset);
731 memcpy_fromio(d, s, PAGE_SIZE);
732 io_mapping_unmap_atomic(s);
733 local_irq_restore(flags);
734
735 dst->pages[page] = d;
736
737 reloc_offset += PAGE_SIZE;
738 }
739 dst->page_count = page_count;
740 dst->gtt_offset = src->gtt_offset;
741
742 return dst;
743
744unwind:
745 while (page--)
746 kfree(dst->pages[page]);
747 kfree(dst);
748 return NULL;
749}
750
751static void
752i915_error_object_free(struct drm_i915_error_object *obj)
753{
754 int page;
755
756 if (obj == NULL)
757 return;
758
759 for (page = 0; page < obj->page_count; page++)
760 kfree(obj->pages[page]);
761
762 kfree(obj);
763}
764
765static void
766i915_error_state_free(struct drm_device *dev,
767 struct drm_i915_error_state *error)
768{
769 int i;
770
771 for (i = 0; i < ARRAY_SIZE(error->batchbuffer); i++)
772 i915_error_object_free(error->batchbuffer[i]);
773
774 for (i = 0; i < ARRAY_SIZE(error->ringbuffer); i++)
775 i915_error_object_free(error->ringbuffer[i]);
776
777 kfree(error->active_bo);
778 kfree(error->overlay);
779 kfree(error);
780}
781
782static u32 capture_bo_list(struct drm_i915_error_buffer *err,
783 int count,
784 struct list_head *head)
785{
786 struct drm_i915_gem_object *obj;
787 int i = 0;
788
789 list_for_each_entry(obj, head, mm_list) {
790 err->size = obj->base.size;
791 err->name = obj->base.name;
792 err->seqno = obj->last_rendering_seqno;
793 err->gtt_offset = obj->gtt_offset;
794 err->read_domains = obj->base.read_domains;
795 err->write_domain = obj->base.write_domain;
796 err->fence_reg = obj->fence_reg;
797 err->pinned = 0;
798 if (obj->pin_count > 0)
799 err->pinned = 1;
800 if (obj->user_pin_count > 0)
801 err->pinned = -1;
802 err->tiling = obj->tiling_mode;
803 err->dirty = obj->dirty;
804 err->purgeable = obj->madv != I915_MADV_WILLNEED;
805 err->ring = obj->ring ? obj->ring->id : 0;
806 err->cache_level = obj->cache_level;
807
808 if (++i == count)
809 break;
810
811 err++;
812 }
813
814 return i;
815}
816
817static void i915_gem_record_fences(struct drm_device *dev,
818 struct drm_i915_error_state *error)
819{
820 struct drm_i915_private *dev_priv = dev->dev_private;
821 int i;
822
823 /* Fences */
824 switch (INTEL_INFO(dev)->gen) {
825 case 6:
826 for (i = 0; i < 16; i++)
827 error->fence[i] = I915_READ64(FENCE_REG_SANDYBRIDGE_0 + (i * 8));
828 break;
829 case 5:
830 case 4:
831 for (i = 0; i < 16; i++)
832 error->fence[i] = I915_READ64(FENCE_REG_965_0 + (i * 8));
833 break;
834 case 3:
835 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
836 for (i = 0; i < 8; i++)
837 error->fence[i+8] = I915_READ(FENCE_REG_945_8 + (i * 4));
838 case 2:
839 for (i = 0; i < 8; i++)
840 error->fence[i] = I915_READ(FENCE_REG_830_0 + (i * 4));
841 break;
842
843 }
844}
845
846static struct drm_i915_error_object *
847i915_error_first_batchbuffer(struct drm_i915_private *dev_priv,
848 struct intel_ring_buffer *ring)
849{
850 struct drm_i915_gem_object *obj;
851 u32 seqno;
852
853 if (!ring->get_seqno)
854 return NULL;
855
856 seqno = ring->get_seqno(ring);
857 list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list) {
858 if (obj->ring != ring)
859 continue;
860
861 if (i915_seqno_passed(seqno, obj->last_rendering_seqno))
862 continue;
863
864 if ((obj->base.read_domains & I915_GEM_DOMAIN_COMMAND) == 0)
865 continue;
866
867 /* We need to copy these to an anonymous buffer as the simplest
868 * method to avoid being overwritten by userspace.
869 */
870 return i915_error_object_create(dev_priv, obj);
871 }
872
873 return NULL;
874}
875
876/**
877 * i915_capture_error_state - capture an error record for later analysis
878 * @dev: drm device
879 *
880 * Should be called when an error is detected (either a hang or an error
881 * interrupt) to capture error state from the time of the error. Fills
882 * out a structure which becomes available in debugfs for user level tools
883 * to pick up.
884 */
885static void i915_capture_error_state(struct drm_device *dev)
886{
887 struct drm_i915_private *dev_priv = dev->dev_private;
888 struct drm_i915_gem_object *obj;
889 struct drm_i915_error_state *error;
890 unsigned long flags;
891 int i, pipe;
892
893 spin_lock_irqsave(&dev_priv->error_lock, flags);
894 error = dev_priv->first_error;
895 spin_unlock_irqrestore(&dev_priv->error_lock, flags);
896 if (error)
897 return;
898
899 /* Account for pipe specific data like PIPE*STAT */
900 error = kmalloc(sizeof(*error), GFP_ATOMIC);
901 if (!error) {
902 DRM_DEBUG_DRIVER("out of memory, not capturing error state\n");
903 return;
904 }
905
906 DRM_INFO("capturing error event; look for more information in /debug/dri/%d/i915_error_state\n",
907 dev->primary->index);
908
909 error->seqno = dev_priv->ring[RCS].get_seqno(&dev_priv->ring[RCS]);
910 error->eir = I915_READ(EIR);
911 error->pgtbl_er = I915_READ(PGTBL_ER);
912 for_each_pipe(pipe)
913 error->pipestat[pipe] = I915_READ(PIPESTAT(pipe));
914 error->instpm = I915_READ(INSTPM);
915 error->error = 0;
916 if (INTEL_INFO(dev)->gen >= 6) {
917 error->error = I915_READ(ERROR_GEN6);
918
919 error->bcs_acthd = I915_READ(BCS_ACTHD);
920 error->bcs_ipehr = I915_READ(BCS_IPEHR);
921 error->bcs_ipeir = I915_READ(BCS_IPEIR);
922 error->bcs_instdone = I915_READ(BCS_INSTDONE);
923 error->bcs_seqno = 0;
924 if (dev_priv->ring[BCS].get_seqno)
925 error->bcs_seqno = dev_priv->ring[BCS].get_seqno(&dev_priv->ring[BCS]);
926
927 error->vcs_acthd = I915_READ(VCS_ACTHD);
928 error->vcs_ipehr = I915_READ(VCS_IPEHR);
929 error->vcs_ipeir = I915_READ(VCS_IPEIR);
930 error->vcs_instdone = I915_READ(VCS_INSTDONE);
931 error->vcs_seqno = 0;
932 if (dev_priv->ring[VCS].get_seqno)
933 error->vcs_seqno = dev_priv->ring[VCS].get_seqno(&dev_priv->ring[VCS]);
934 }
935 if (INTEL_INFO(dev)->gen >= 4) {
936 error->ipeir = I915_READ(IPEIR_I965);
937 error->ipehr = I915_READ(IPEHR_I965);
938 error->instdone = I915_READ(INSTDONE_I965);
939 error->instps = I915_READ(INSTPS);
940 error->instdone1 = I915_READ(INSTDONE1);
941 error->acthd = I915_READ(ACTHD_I965);
942 error->bbaddr = I915_READ64(BB_ADDR);
943 } else {
944 error->ipeir = I915_READ(IPEIR);
945 error->ipehr = I915_READ(IPEHR);
946 error->instdone = I915_READ(INSTDONE);
947 error->acthd = I915_READ(ACTHD);
948 error->bbaddr = 0;
949 }
950 i915_gem_record_fences(dev, error);
951
952 /* Record the active batch and ring buffers */
953 for (i = 0; i < I915_NUM_RINGS; i++) {
954 error->batchbuffer[i] =
955 i915_error_first_batchbuffer(dev_priv,
956 &dev_priv->ring[i]);
957
958 error->ringbuffer[i] =
959 i915_error_object_create(dev_priv,
960 dev_priv->ring[i].obj);
961 }
962
963 /* Record buffers on the active and pinned lists. */
964 error->active_bo = NULL;
965 error->pinned_bo = NULL;
966
967 i = 0;
968 list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list)
969 i++;
970 error->active_bo_count = i;
971 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
972 i++;
973 error->pinned_bo_count = i - error->active_bo_count;
974
975 error->active_bo = NULL;
976 error->pinned_bo = NULL;
977 if (i) {
978 error->active_bo = kmalloc(sizeof(*error->active_bo)*i,
979 GFP_ATOMIC);
980 if (error->active_bo)
981 error->pinned_bo =
982 error->active_bo + error->active_bo_count;
983 }
984
985 if (error->active_bo)
986 error->active_bo_count =
987 capture_bo_list(error->active_bo,
988 error->active_bo_count,
989 &dev_priv->mm.active_list);
990
991 if (error->pinned_bo)
992 error->pinned_bo_count =
993 capture_bo_list(error->pinned_bo,
994 error->pinned_bo_count,
995 &dev_priv->mm.pinned_list);
996
997 do_gettimeofday(&error->time);
998
999 error->overlay = intel_overlay_capture_error_state(dev);
1000 error->display = intel_display_capture_error_state(dev);
1001
1002 spin_lock_irqsave(&dev_priv->error_lock, flags);
1003 if (dev_priv->first_error == NULL) {
1004 dev_priv->first_error = error;
1005 error = NULL;
1006 }
1007 spin_unlock_irqrestore(&dev_priv->error_lock, flags);
1008
1009 if (error)
1010 i915_error_state_free(dev, error);
1011}
1012
1013void i915_destroy_error_state(struct drm_device *dev)
1014{
1015 struct drm_i915_private *dev_priv = dev->dev_private;
1016 struct drm_i915_error_state *error;
1017
1018 spin_lock(&dev_priv->error_lock);
1019 error = dev_priv->first_error;
1020 dev_priv->first_error = NULL;
1021 spin_unlock(&dev_priv->error_lock);
1022
1023 if (error)
1024 i915_error_state_free(dev, error);
1025}
1026#else
1027#define i915_capture_error_state(x)
1028#endif
1029
1030static void i915_report_and_clear_eir(struct drm_device *dev)
1031{
1032 struct drm_i915_private *dev_priv = dev->dev_private;
1033 u32 eir = I915_READ(EIR);
1034 int pipe;
1035
1036 if (!eir)
1037 return;
1038
1039 printk(KERN_ERR "render error detected, EIR: 0x%08x\n",
1040 eir);
1041
1042 if (IS_G4X(dev)) {
1043 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1044 u32 ipeir = I915_READ(IPEIR_I965);
1045
1046 printk(KERN_ERR " IPEIR: 0x%08x\n",
1047 I915_READ(IPEIR_I965));
1048 printk(KERN_ERR " IPEHR: 0x%08x\n",
1049 I915_READ(IPEHR_I965));
1050 printk(KERN_ERR " INSTDONE: 0x%08x\n",
1051 I915_READ(INSTDONE_I965));
1052 printk(KERN_ERR " INSTPS: 0x%08x\n",
1053 I915_READ(INSTPS));
1054 printk(KERN_ERR " INSTDONE1: 0x%08x\n",
1055 I915_READ(INSTDONE1));
1056 printk(KERN_ERR " ACTHD: 0x%08x\n",
1057 I915_READ(ACTHD_I965));
1058 I915_WRITE(IPEIR_I965, ipeir);
1059 POSTING_READ(IPEIR_I965);
1060 }
1061 if (eir & GM45_ERROR_PAGE_TABLE) {
1062 u32 pgtbl_err = I915_READ(PGTBL_ER);
1063 printk(KERN_ERR "page table error\n");
1064 printk(KERN_ERR " PGTBL_ER: 0x%08x\n",
1065 pgtbl_err);
1066 I915_WRITE(PGTBL_ER, pgtbl_err);
1067 POSTING_READ(PGTBL_ER);
1068 }
1069 }
1070
1071 if (!IS_GEN2(dev)) {
1072 if (eir & I915_ERROR_PAGE_TABLE) {
1073 u32 pgtbl_err = I915_READ(PGTBL_ER);
1074 printk(KERN_ERR "page table error\n");
1075 printk(KERN_ERR " PGTBL_ER: 0x%08x\n",
1076 pgtbl_err);
1077 I915_WRITE(PGTBL_ER, pgtbl_err);
1078 POSTING_READ(PGTBL_ER);
1079 }
1080 }
1081
1082 if (eir & I915_ERROR_MEMORY_REFRESH) {
1083 printk(KERN_ERR "memory refresh error:\n");
1084 for_each_pipe(pipe)
1085 printk(KERN_ERR "pipe %c stat: 0x%08x\n",
1086 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1087 /* pipestat has already been acked */
1088 }
1089 if (eir & I915_ERROR_INSTRUCTION) {
1090 printk(KERN_ERR "instruction error\n");
1091 printk(KERN_ERR " INSTPM: 0x%08x\n",
1092 I915_READ(INSTPM));
1093 if (INTEL_INFO(dev)->gen < 4) {
1094 u32 ipeir = I915_READ(IPEIR);
1095
1096 printk(KERN_ERR " IPEIR: 0x%08x\n",
1097 I915_READ(IPEIR));
1098 printk(KERN_ERR " IPEHR: 0x%08x\n",
1099 I915_READ(IPEHR));
1100 printk(KERN_ERR " INSTDONE: 0x%08x\n",
1101 I915_READ(INSTDONE));
1102 printk(KERN_ERR " ACTHD: 0x%08x\n",
1103 I915_READ(ACTHD));
1104 I915_WRITE(IPEIR, ipeir);
1105 POSTING_READ(IPEIR);
1106 } else {
1107 u32 ipeir = I915_READ(IPEIR_I965);
1108
1109 printk(KERN_ERR " IPEIR: 0x%08x\n",
1110 I915_READ(IPEIR_I965));
1111 printk(KERN_ERR " IPEHR: 0x%08x\n",
1112 I915_READ(IPEHR_I965));
1113 printk(KERN_ERR " INSTDONE: 0x%08x\n",
1114 I915_READ(INSTDONE_I965));
1115 printk(KERN_ERR " INSTPS: 0x%08x\n",
1116 I915_READ(INSTPS));
1117 printk(KERN_ERR " INSTDONE1: 0x%08x\n",
1118 I915_READ(INSTDONE1));
1119 printk(KERN_ERR " ACTHD: 0x%08x\n",
1120 I915_READ(ACTHD_I965));
1121 I915_WRITE(IPEIR_I965, ipeir);
1122 POSTING_READ(IPEIR_I965);
1123 }
1124 }
1125
1126 I915_WRITE(EIR, eir);
1127 POSTING_READ(EIR);
1128 eir = I915_READ(EIR);
1129 if (eir) {
1130 /*
1131 * some errors might have become stuck,
1132 * mask them.
1133 */
1134 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1135 I915_WRITE(EMR, I915_READ(EMR) | eir);
1136 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1137 }
1138}
1139
1140/**
1141 * i915_handle_error - handle an error interrupt
1142 * @dev: drm device
1143 *
1144 * Do some basic checking of regsiter state at error interrupt time and
1145 * dump it to the syslog. Also call i915_capture_error_state() to make
1146 * sure we get a record and make it available in debugfs. Fire a uevent
1147 * so userspace knows something bad happened (should trigger collection
1148 * of a ring dump etc.).
1149 */
1150void i915_handle_error(struct drm_device *dev, bool wedged)
1151{
1152 struct drm_i915_private *dev_priv = dev->dev_private;
1153
1154 i915_capture_error_state(dev);
1155 i915_report_and_clear_eir(dev);
1156
1157 if (wedged) {
1158 INIT_COMPLETION(dev_priv->error_completion);
1159 atomic_set(&dev_priv->mm.wedged, 1);
1160
1161 /*
1162 * Wakeup waiting processes so they don't hang
1163 */
1164 wake_up_all(&dev_priv->ring[RCS].irq_queue);
1165 if (HAS_BSD(dev))
1166 wake_up_all(&dev_priv->ring[VCS].irq_queue);
1167 if (HAS_BLT(dev))
1168 wake_up_all(&dev_priv->ring[BCS].irq_queue);
1169 }
1170
1171 queue_work(dev_priv->wq, &dev_priv->error_work);
1172}
1173
1174static void i915_pageflip_stall_check(struct drm_device *dev, int pipe)
1175{
1176 drm_i915_private_t *dev_priv = dev->dev_private;
1177 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1178 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1179 struct drm_i915_gem_object *obj;
1180 struct intel_unpin_work *work;
1181 unsigned long flags;
1182 bool stall_detected;
1183
1184 /* Ignore early vblank irqs */
1185 if (intel_crtc == NULL)
1186 return;
1187
1188 spin_lock_irqsave(&dev->event_lock, flags);
1189 work = intel_crtc->unpin_work;
1190
1191 if (work == NULL || work->pending || !work->enable_stall_check) {
1192 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
1193 spin_unlock_irqrestore(&dev->event_lock, flags);
1194 return;
1195 }
1196
1197 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1198 obj = work->pending_flip_obj;
1199 if (INTEL_INFO(dev)->gen >= 4) {
1200 int dspsurf = DSPSURF(intel_crtc->plane);
1201 stall_detected = I915_READ(dspsurf) == obj->gtt_offset;
1202 } else {
1203 int dspaddr = DSPADDR(intel_crtc->plane);
1204 stall_detected = I915_READ(dspaddr) == (obj->gtt_offset +
1205 crtc->y * crtc->fb->pitch +
1206 crtc->x * crtc->fb->bits_per_pixel/8);
1207 }
1208
1209 spin_unlock_irqrestore(&dev->event_lock, flags);
1210
1211 if (stall_detected) {
1212 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1213 intel_prepare_page_flip(dev, intel_crtc->plane);
1214 }
1215}
1216
1217static irqreturn_t i915_driver_irq_handler(DRM_IRQ_ARGS)
1218{
1219 struct drm_device *dev = (struct drm_device *) arg;
1220 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1221 struct drm_i915_master_private *master_priv;
1222 u32 iir, new_iir;
1223 u32 pipe_stats[I915_MAX_PIPES];
1224 u32 vblank_status;
1225 int vblank = 0;
1226 unsigned long irqflags;
1227 int irq_received;
1228 int ret = IRQ_NONE, pipe;
1229 bool blc_event = false;
1230
1231 atomic_inc(&dev_priv->irq_received);
1232
1233 iir = I915_READ(IIR);
1234
1235 if (INTEL_INFO(dev)->gen >= 4)
1236 vblank_status = PIPE_START_VBLANK_INTERRUPT_STATUS;
1237 else
1238 vblank_status = PIPE_VBLANK_INTERRUPT_STATUS;
1239
1240 for (;;) {
1241 irq_received = iir != 0;
1242
1243 /* Can't rely on pipestat interrupt bit in iir as it might
1244 * have been cleared after the pipestat interrupt was received.
1245 * It doesn't set the bit in iir again, but it still produces
1246 * interrupts (for non-MSI).
1247 */
1248 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1249 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
1250 i915_handle_error(dev, false);
1251
1252 for_each_pipe(pipe) {
1253 int reg = PIPESTAT(pipe);
1254 pipe_stats[pipe] = I915_READ(reg);
1255
1256 /*
1257 * Clear the PIPE*STAT regs before the IIR
1258 */
1259 if (pipe_stats[pipe] & 0x8000ffff) {
1260 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1261 DRM_DEBUG_DRIVER("pipe %c underrun\n",
1262 pipe_name(pipe));
1263 I915_WRITE(reg, pipe_stats[pipe]);
1264 irq_received = 1;
1265 }
1266 }
1267 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1268
1269 if (!irq_received)
1270 break;
1271
1272 ret = IRQ_HANDLED;
1273
1274 /* Consume port. Then clear IIR or we'll miss events */
1275 if ((I915_HAS_HOTPLUG(dev)) &&
1276 (iir & I915_DISPLAY_PORT_INTERRUPT)) {
1277 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1278
1279 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1280 hotplug_status);
1281 if (hotplug_status & dev_priv->hotplug_supported_mask)
1282 queue_work(dev_priv->wq,
1283 &dev_priv->hotplug_work);
1284
1285 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1286 I915_READ(PORT_HOTPLUG_STAT);
1287 }
1288
1289 I915_WRITE(IIR, iir);
1290 new_iir = I915_READ(IIR); /* Flush posted writes */
1291
1292 if (dev->primary->master) {
1293 master_priv = dev->primary->master->driver_priv;
1294 if (master_priv->sarea_priv)
1295 master_priv->sarea_priv->last_dispatch =
1296 READ_BREADCRUMB(dev_priv);
1297 }
1298
1299 if (iir & I915_USER_INTERRUPT)
1300 notify_ring(dev, &dev_priv->ring[RCS]);
1301 if (iir & I915_BSD_USER_INTERRUPT)
1302 notify_ring(dev, &dev_priv->ring[VCS]);
1303
1304 if (iir & I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT) {
1305 intel_prepare_page_flip(dev, 0);
1306 if (dev_priv->flip_pending_is_done)
1307 intel_finish_page_flip_plane(dev, 0);
1308 }
1309
1310 if (iir & I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT) {
1311 intel_prepare_page_flip(dev, 1);
1312 if (dev_priv->flip_pending_is_done)
1313 intel_finish_page_flip_plane(dev, 1);
1314 }
1315
1316 for_each_pipe(pipe) {
1317 if (pipe_stats[pipe] & vblank_status &&
1318 drm_handle_vblank(dev, pipe)) {
1319 vblank++;
1320 if (!dev_priv->flip_pending_is_done) {
1321 i915_pageflip_stall_check(dev, pipe);
1322 intel_finish_page_flip(dev, pipe);
1323 }
1324 }
1325
1326 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1327 blc_event = true;
1328 }
1329
1330
1331 if (blc_event || (iir & I915_ASLE_INTERRUPT))
1332 intel_opregion_asle_intr(dev);
1333
1334 /* With MSI, interrupts are only generated when iir
1335 * transitions from zero to nonzero. If another bit got
1336 * set while we were handling the existing iir bits, then
1337 * we would never get another interrupt.
1338 *
1339 * This is fine on non-MSI as well, as if we hit this path
1340 * we avoid exiting the interrupt handler only to generate
1341 * another one.
1342 *
1343 * Note that for MSI this could cause a stray interrupt report
1344 * if an interrupt landed in the time between writing IIR and
1345 * the posting read. This should be rare enough to never
1346 * trigger the 99% of 100,000 interrupts test for disabling
1347 * stray interrupts.
1348 */
1349 iir = new_iir;
1350 }
1351
1352 return ret;
1353}
1354
1355static int i915_emit_irq(struct drm_device * dev)
1356{
1357 drm_i915_private_t *dev_priv = dev->dev_private;
1358 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1359
1360 i915_kernel_lost_context(dev);
1361
1362 DRM_DEBUG_DRIVER("\n");
1363
1364 dev_priv->counter++;
1365 if (dev_priv->counter > 0x7FFFFFFFUL)
1366 dev_priv->counter = 1;
1367 if (master_priv->sarea_priv)
1368 master_priv->sarea_priv->last_enqueue = dev_priv->counter;
1369
1370 if (BEGIN_LP_RING(4) == 0) {
1371 OUT_RING(MI_STORE_DWORD_INDEX);
1372 OUT_RING(I915_BREADCRUMB_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1373 OUT_RING(dev_priv->counter);
1374 OUT_RING(MI_USER_INTERRUPT);
1375 ADVANCE_LP_RING();
1376 }
1377
1378 return dev_priv->counter;
1379}
1380
1381static int i915_wait_irq(struct drm_device * dev, int irq_nr)
1382{
1383 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1384 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1385 int ret = 0;
1386 struct intel_ring_buffer *ring = LP_RING(dev_priv);
1387
1388 DRM_DEBUG_DRIVER("irq_nr=%d breadcrumb=%d\n", irq_nr,
1389 READ_BREADCRUMB(dev_priv));
1390
1391 if (READ_BREADCRUMB(dev_priv) >= irq_nr) {
1392 if (master_priv->sarea_priv)
1393 master_priv->sarea_priv->last_dispatch = READ_BREADCRUMB(dev_priv);
1394 return 0;
1395 }
1396
1397 if (master_priv->sarea_priv)
1398 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1399
1400 if (ring->irq_get(ring)) {
1401 DRM_WAIT_ON(ret, ring->irq_queue, 3 * DRM_HZ,
1402 READ_BREADCRUMB(dev_priv) >= irq_nr);
1403 ring->irq_put(ring);
1404 } else if (wait_for(READ_BREADCRUMB(dev_priv) >= irq_nr, 3000))
1405 ret = -EBUSY;
1406
1407 if (ret == -EBUSY) {
1408 DRM_ERROR("EBUSY -- rec: %d emitted: %d\n",
1409 READ_BREADCRUMB(dev_priv), (int)dev_priv->counter);
1410 }
1411
1412 return ret;
1413}
1414
1415/* Needs the lock as it touches the ring.
1416 */
1417int i915_irq_emit(struct drm_device *dev, void *data,
1418 struct drm_file *file_priv)
1419{
1420 drm_i915_private_t *dev_priv = dev->dev_private;
1421 drm_i915_irq_emit_t *emit = data;
1422 int result;
1423
1424 if (!dev_priv || !LP_RING(dev_priv)->virtual_start) {
1425 DRM_ERROR("called with no initialization\n");
1426 return -EINVAL;
1427 }
1428
1429 RING_LOCK_TEST_WITH_RETURN(dev, file_priv);
1430
1431 mutex_lock(&dev->struct_mutex);
1432 result = i915_emit_irq(dev);
1433 mutex_unlock(&dev->struct_mutex);
1434
1435 if (DRM_COPY_TO_USER(emit->irq_seq, &result, sizeof(int))) {
1436 DRM_ERROR("copy_to_user\n");
1437 return -EFAULT;
1438 }
1439
1440 return 0;
1441}
1442
1443/* Doesn't need the hardware lock.
1444 */
1445int i915_irq_wait(struct drm_device *dev, void *data,
1446 struct drm_file *file_priv)
1447{
1448 drm_i915_private_t *dev_priv = dev->dev_private;
1449 drm_i915_irq_wait_t *irqwait = data;
1450
1451 if (!dev_priv) {
1452 DRM_ERROR("called with no initialization\n");
1453 return -EINVAL;
1454 }
1455
1456 return i915_wait_irq(dev, irqwait->irq_seq);
1457}
1458
1459/* Called from drm generic code, passed 'crtc' which
1460 * we use as a pipe index
1461 */
1462static int i915_enable_vblank(struct drm_device *dev, int pipe)
1463{
1464 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1465 unsigned long irqflags;
1466
1467 if (!i915_pipe_enabled(dev, pipe))
1468 return -EINVAL;
1469
1470 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1471 if (INTEL_INFO(dev)->gen >= 4)
1472 i915_enable_pipestat(dev_priv, pipe,
1473 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1474 else
1475 i915_enable_pipestat(dev_priv, pipe,
1476 PIPE_VBLANK_INTERRUPT_ENABLE);
1477
1478 /* maintain vblank delivery even in deep C-states */
1479 if (dev_priv->info->gen == 3)
1480 I915_WRITE(INSTPM, INSTPM_AGPBUSY_DIS << 16);
1481 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1482
1483 return 0;
1484}
1485
1486static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1487{
1488 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1489 unsigned long irqflags;
1490
1491 if (!i915_pipe_enabled(dev, pipe))
1492 return -EINVAL;
1493
1494 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1495 ironlake_enable_display_irq(dev_priv, (pipe == 0) ?
1496 DE_PIPEA_VBLANK: DE_PIPEB_VBLANK);
1497 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1498
1499 return 0;
1500}
1501
1502static int ivybridge_enable_vblank(struct drm_device *dev, int pipe)
1503{
1504 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1505 unsigned long irqflags;
1506
1507 if (!i915_pipe_enabled(dev, pipe))
1508 return -EINVAL;
1509
1510 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1511 ironlake_enable_display_irq(dev_priv, (pipe == 0) ?
1512 DE_PIPEA_VBLANK_IVB : DE_PIPEB_VBLANK_IVB);
1513 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1514
1515 return 0;
1516}
1517
1518/* Called from drm generic code, passed 'crtc' which
1519 * we use as a pipe index
1520 */
1521static void i915_disable_vblank(struct drm_device *dev, int pipe)
1522{
1523 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1524 unsigned long irqflags;
1525
1526 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1527 if (dev_priv->info->gen == 3)
1528 I915_WRITE(INSTPM,
1529 INSTPM_AGPBUSY_DIS << 16 | INSTPM_AGPBUSY_DIS);
1530
1531 i915_disable_pipestat(dev_priv, pipe,
1532 PIPE_VBLANK_INTERRUPT_ENABLE |
1533 PIPE_START_VBLANK_INTERRUPT_ENABLE);
1534 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1535}
1536
1537static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
1538{
1539 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1540 unsigned long irqflags;
1541
1542 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1543 ironlake_disable_display_irq(dev_priv, (pipe == 0) ?
1544 DE_PIPEA_VBLANK: DE_PIPEB_VBLANK);
1545 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1546}
1547
1548static void ivybridge_disable_vblank(struct drm_device *dev, int pipe)
1549{
1550 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1551 unsigned long irqflags;
1552
1553 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1554 ironlake_disable_display_irq(dev_priv, (pipe == 0) ?
1555 DE_PIPEA_VBLANK_IVB : DE_PIPEB_VBLANK_IVB);
1556 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1557}
1558
1559/* Set the vblank monitor pipe
1560 */
1561int i915_vblank_pipe_set(struct drm_device *dev, void *data,
1562 struct drm_file *file_priv)
1563{
1564 drm_i915_private_t *dev_priv = dev->dev_private;
1565
1566 if (!dev_priv) {
1567 DRM_ERROR("called with no initialization\n");
1568 return -EINVAL;
1569 }
1570
1571 return 0;
1572}
1573
1574int i915_vblank_pipe_get(struct drm_device *dev, void *data,
1575 struct drm_file *file_priv)
1576{
1577 drm_i915_private_t *dev_priv = dev->dev_private;
1578 drm_i915_vblank_pipe_t *pipe = data;
1579
1580 if (!dev_priv) {
1581 DRM_ERROR("called with no initialization\n");
1582 return -EINVAL;
1583 }
1584
1585 pipe->pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B;
1586
1587 return 0;
1588}
1589
1590/**
1591 * Schedule buffer swap at given vertical blank.
1592 */
1593int i915_vblank_swap(struct drm_device *dev, void *data,
1594 struct drm_file *file_priv)
1595{
1596 /* The delayed swap mechanism was fundamentally racy, and has been
1597 * removed. The model was that the client requested a delayed flip/swap
1598 * from the kernel, then waited for vblank before continuing to perform
1599 * rendering. The problem was that the kernel might wake the client
1600 * up before it dispatched the vblank swap (since the lock has to be
1601 * held while touching the ringbuffer), in which case the client would
1602 * clear and start the next frame before the swap occurred, and
1603 * flicker would occur in addition to likely missing the vblank.
1604 *
1605 * In the absence of this ioctl, userland falls back to a correct path
1606 * of waiting for a vblank, then dispatching the swap on its own.
1607 * Context switching to userland and back is plenty fast enough for
1608 * meeting the requirements of vblank swapping.
1609 */
1610 return -EINVAL;
1611}
1612
1613static u32
1614ring_last_seqno(struct intel_ring_buffer *ring)
1615{
1616 return list_entry(ring->request_list.prev,
1617 struct drm_i915_gem_request, list)->seqno;
1618}
1619
1620static bool i915_hangcheck_ring_idle(struct intel_ring_buffer *ring, bool *err)
1621{
1622 if (list_empty(&ring->request_list) ||
1623 i915_seqno_passed(ring->get_seqno(ring), ring_last_seqno(ring))) {
1624 /* Issue a wake-up to catch stuck h/w. */
1625 if (ring->waiting_seqno && waitqueue_active(&ring->irq_queue)) {
1626 DRM_ERROR("Hangcheck timer elapsed... %s idle [waiting on %d, at %d], missed IRQ?\n",
1627 ring->name,
1628 ring->waiting_seqno,
1629 ring->get_seqno(ring));
1630 wake_up_all(&ring->irq_queue);
1631 *err = true;
1632 }
1633 return true;
1634 }
1635 return false;
1636}
1637
1638static bool kick_ring(struct intel_ring_buffer *ring)
1639{
1640 struct drm_device *dev = ring->dev;
1641 struct drm_i915_private *dev_priv = dev->dev_private;
1642 u32 tmp = I915_READ_CTL(ring);
1643 if (tmp & RING_WAIT) {
1644 DRM_ERROR("Kicking stuck wait on %s\n",
1645 ring->name);
1646 I915_WRITE_CTL(ring, tmp);
1647 return true;
1648 }
1649 if (IS_GEN6(dev) &&
1650 (tmp & RING_WAIT_SEMAPHORE)) {
1651 DRM_ERROR("Kicking stuck semaphore on %s\n",
1652 ring->name);
1653 I915_WRITE_CTL(ring, tmp);
1654 return true;
1655 }
1656 return false;
1657}
1658
1659/**
1660 * This is called when the chip hasn't reported back with completed
1661 * batchbuffers in a long time. The first time this is called we simply record
1662 * ACTHD. If ACTHD hasn't changed by the time the hangcheck timer elapses
1663 * again, we assume the chip is wedged and try to fix it.
1664 */
1665void i915_hangcheck_elapsed(unsigned long data)
1666{
1667 struct drm_device *dev = (struct drm_device *)data;
1668 drm_i915_private_t *dev_priv = dev->dev_private;
1669 uint32_t acthd, instdone, instdone1;
1670 bool err = false;
1671
1672 if (!i915_enable_hangcheck)
1673 return;
1674
1675 /* If all work is done then ACTHD clearly hasn't advanced. */
1676 if (i915_hangcheck_ring_idle(&dev_priv->ring[RCS], &err) &&
1677 i915_hangcheck_ring_idle(&dev_priv->ring[VCS], &err) &&
1678 i915_hangcheck_ring_idle(&dev_priv->ring[BCS], &err)) {
1679 dev_priv->hangcheck_count = 0;
1680 if (err)
1681 goto repeat;
1682 return;
1683 }
1684
1685 if (INTEL_INFO(dev)->gen < 4) {
1686 acthd = I915_READ(ACTHD);
1687 instdone = I915_READ(INSTDONE);
1688 instdone1 = 0;
1689 } else {
1690 acthd = I915_READ(ACTHD_I965);
1691 instdone = I915_READ(INSTDONE_I965);
1692 instdone1 = I915_READ(INSTDONE1);
1693 }
1694
1695 if (dev_priv->last_acthd == acthd &&
1696 dev_priv->last_instdone == instdone &&
1697 dev_priv->last_instdone1 == instdone1) {
1698 if (dev_priv->hangcheck_count++ > 1) {
1699 DRM_ERROR("Hangcheck timer elapsed... GPU hung\n");
1700
1701 if (!IS_GEN2(dev)) {
1702 /* Is the chip hanging on a WAIT_FOR_EVENT?
1703 * If so we can simply poke the RB_WAIT bit
1704 * and break the hang. This should work on
1705 * all but the second generation chipsets.
1706 */
1707
1708 if (kick_ring(&dev_priv->ring[RCS]))
1709 goto repeat;
1710
1711 if (HAS_BSD(dev) &&
1712 kick_ring(&dev_priv->ring[VCS]))
1713 goto repeat;
1714
1715 if (HAS_BLT(dev) &&
1716 kick_ring(&dev_priv->ring[BCS]))
1717 goto repeat;
1718 }
1719
1720 i915_handle_error(dev, true);
1721 return;
1722 }
1723 } else {
1724 dev_priv->hangcheck_count = 0;
1725
1726 dev_priv->last_acthd = acthd;
1727 dev_priv->last_instdone = instdone;
1728 dev_priv->last_instdone1 = instdone1;
1729 }
1730
1731repeat:
1732 /* Reset timer case chip hangs without another request being added */
1733 mod_timer(&dev_priv->hangcheck_timer,
1734 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1735}
1736
1737/* drm_dma.h hooks
1738*/
1739static void ironlake_irq_preinstall(struct drm_device *dev)
1740{
1741 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1742
1743 atomic_set(&dev_priv->irq_received, 0);
1744
1745 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
1746 INIT_WORK(&dev_priv->error_work, i915_error_work_func);
1747 if (IS_GEN6(dev) || IS_IVYBRIDGE(dev))
1748 INIT_WORK(&dev_priv->rps_work, gen6_pm_rps_work);
1749
1750 I915_WRITE(HWSTAM, 0xeffe);
1751 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1752 /* Workaround stalls observed on Sandy Bridge GPUs by
1753 * making the blitter command streamer generate a
1754 * write to the Hardware Status Page for
1755 * MI_USER_INTERRUPT. This appears to serialize the
1756 * previous seqno write out before the interrupt
1757 * happens.
1758 */
1759 I915_WRITE(GEN6_BLITTER_HWSTAM, ~GEN6_BLITTER_USER_INTERRUPT);
1760 I915_WRITE(GEN6_BSD_HWSTAM, ~GEN6_BSD_USER_INTERRUPT);
1761 }
1762
1763 /* XXX hotplug from PCH */
1764
1765 I915_WRITE(DEIMR, 0xffffffff);
1766 I915_WRITE(DEIER, 0x0);
1767 POSTING_READ(DEIER);
1768
1769 /* and GT */
1770 I915_WRITE(GTIMR, 0xffffffff);
1771 I915_WRITE(GTIER, 0x0);
1772 POSTING_READ(GTIER);
1773
1774 /* south display irq */
1775 I915_WRITE(SDEIMR, 0xffffffff);
1776 I915_WRITE(SDEIER, 0x0);
1777 POSTING_READ(SDEIER);
1778}
1779
1780static int ironlake_irq_postinstall(struct drm_device *dev)
1781{
1782 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1783 /* enable kind of interrupts always enabled */
1784 u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
1785 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE;
1786 u32 render_irqs;
1787 u32 hotplug_mask;
1788
1789 DRM_INIT_WAITQUEUE(&dev_priv->ring[RCS].irq_queue);
1790 if (HAS_BSD(dev))
1791 DRM_INIT_WAITQUEUE(&dev_priv->ring[VCS].irq_queue);
1792 if (HAS_BLT(dev))
1793 DRM_INIT_WAITQUEUE(&dev_priv->ring[BCS].irq_queue);
1794
1795 dev_priv->vblank_pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B;
1796 dev_priv->irq_mask = ~display_mask;
1797
1798 /* should always can generate irq */
1799 I915_WRITE(DEIIR, I915_READ(DEIIR));
1800 I915_WRITE(DEIMR, dev_priv->irq_mask);
1801 I915_WRITE(DEIER, display_mask | DE_PIPEA_VBLANK | DE_PIPEB_VBLANK);
1802 POSTING_READ(DEIER);
1803
1804 dev_priv->gt_irq_mask = ~0;
1805
1806 I915_WRITE(GTIIR, I915_READ(GTIIR));
1807 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1808
1809 if (IS_GEN6(dev))
1810 render_irqs =
1811 GT_USER_INTERRUPT |
1812 GT_GEN6_BSD_USER_INTERRUPT |
1813 GT_BLT_USER_INTERRUPT;
1814 else
1815 render_irqs =
1816 GT_USER_INTERRUPT |
1817 GT_PIPE_NOTIFY |
1818 GT_BSD_USER_INTERRUPT;
1819 I915_WRITE(GTIER, render_irqs);
1820 POSTING_READ(GTIER);
1821
1822 if (HAS_PCH_CPT(dev)) {
1823 hotplug_mask = (SDE_CRT_HOTPLUG_CPT |
1824 SDE_PORTB_HOTPLUG_CPT |
1825 SDE_PORTC_HOTPLUG_CPT |
1826 SDE_PORTD_HOTPLUG_CPT);
1827 } else {
1828 hotplug_mask = (SDE_CRT_HOTPLUG |
1829 SDE_PORTB_HOTPLUG |
1830 SDE_PORTC_HOTPLUG |
1831 SDE_PORTD_HOTPLUG |
1832 SDE_AUX_MASK);
1833 }
1834
1835 dev_priv->pch_irq_mask = ~hotplug_mask;
1836
1837 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
1838 I915_WRITE(SDEIMR, dev_priv->pch_irq_mask);
1839 I915_WRITE(SDEIER, hotplug_mask);
1840 POSTING_READ(SDEIER);
1841
1842 if (IS_IRONLAKE_M(dev)) {
1843 /* Clear & enable PCU event interrupts */
1844 I915_WRITE(DEIIR, DE_PCU_EVENT);
1845 I915_WRITE(DEIER, I915_READ(DEIER) | DE_PCU_EVENT);
1846 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
1847 }
1848
1849 return 0;
1850}
1851
1852static int ivybridge_irq_postinstall(struct drm_device *dev)
1853{
1854 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1855 /* enable kind of interrupts always enabled */
1856 u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
1857 DE_PCH_EVENT_IVB | DE_PLANEA_FLIP_DONE_IVB |
1858 DE_PLANEB_FLIP_DONE_IVB;
1859 u32 render_irqs;
1860 u32 hotplug_mask;
1861
1862 DRM_INIT_WAITQUEUE(&dev_priv->ring[RCS].irq_queue);
1863 if (HAS_BSD(dev))
1864 DRM_INIT_WAITQUEUE(&dev_priv->ring[VCS].irq_queue);
1865 if (HAS_BLT(dev))
1866 DRM_INIT_WAITQUEUE(&dev_priv->ring[BCS].irq_queue);
1867
1868 dev_priv->vblank_pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B;
1869 dev_priv->irq_mask = ~display_mask;
1870
1871 /* should always can generate irq */
1872 I915_WRITE(DEIIR, I915_READ(DEIIR));
1873 I915_WRITE(DEIMR, dev_priv->irq_mask);
1874 I915_WRITE(DEIER, display_mask | DE_PIPEA_VBLANK_IVB |
1875 DE_PIPEB_VBLANK_IVB);
1876 POSTING_READ(DEIER);
1877
1878 dev_priv->gt_irq_mask = ~0;
1879
1880 I915_WRITE(GTIIR, I915_READ(GTIIR));
1881 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1882
1883 render_irqs = GT_USER_INTERRUPT | GT_GEN6_BSD_USER_INTERRUPT |
1884 GT_BLT_USER_INTERRUPT;
1885 I915_WRITE(GTIER, render_irqs);
1886 POSTING_READ(GTIER);
1887
1888 hotplug_mask = (SDE_CRT_HOTPLUG_CPT |
1889 SDE_PORTB_HOTPLUG_CPT |
1890 SDE_PORTC_HOTPLUG_CPT |
1891 SDE_PORTD_HOTPLUG_CPT);
1892 dev_priv->pch_irq_mask = ~hotplug_mask;
1893
1894 I915_WRITE(SDEIIR, I915_READ(SDEIIR));
1895 I915_WRITE(SDEIMR, dev_priv->pch_irq_mask);
1896 I915_WRITE(SDEIER, hotplug_mask);
1897 POSTING_READ(SDEIER);
1898
1899 return 0;
1900}
1901
1902static void i915_driver_irq_preinstall(struct drm_device * dev)
1903{
1904 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1905 int pipe;
1906
1907 atomic_set(&dev_priv->irq_received, 0);
1908
1909 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
1910 INIT_WORK(&dev_priv->error_work, i915_error_work_func);
1911
1912 if (I915_HAS_HOTPLUG(dev)) {
1913 I915_WRITE(PORT_HOTPLUG_EN, 0);
1914 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
1915 }
1916
1917 I915_WRITE(HWSTAM, 0xeffe);
1918 for_each_pipe(pipe)
1919 I915_WRITE(PIPESTAT(pipe), 0);
1920 I915_WRITE(IMR, 0xffffffff);
1921 I915_WRITE(IER, 0x0);
1922 POSTING_READ(IER);
1923}
1924
1925/*
1926 * Must be called after intel_modeset_init or hotplug interrupts won't be
1927 * enabled correctly.
1928 */
1929static int i915_driver_irq_postinstall(struct drm_device *dev)
1930{
1931 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1932 u32 enable_mask = I915_INTERRUPT_ENABLE_FIX | I915_INTERRUPT_ENABLE_VAR;
1933 u32 error_mask;
1934
1935 dev_priv->vblank_pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B;
1936
1937 /* Unmask the interrupts that we always want on. */
1938 dev_priv->irq_mask = ~I915_INTERRUPT_ENABLE_FIX;
1939
1940 dev_priv->pipestat[0] = 0;
1941 dev_priv->pipestat[1] = 0;
1942
1943 if (I915_HAS_HOTPLUG(dev)) {
1944 /* Enable in IER... */
1945 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
1946 /* and unmask in IMR */
1947 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
1948 }
1949
1950 /*
1951 * Enable some error detection, note the instruction error mask
1952 * bit is reserved, so we leave it masked.
1953 */
1954 if (IS_G4X(dev)) {
1955 error_mask = ~(GM45_ERROR_PAGE_TABLE |
1956 GM45_ERROR_MEM_PRIV |
1957 GM45_ERROR_CP_PRIV |
1958 I915_ERROR_MEMORY_REFRESH);
1959 } else {
1960 error_mask = ~(I915_ERROR_PAGE_TABLE |
1961 I915_ERROR_MEMORY_REFRESH);
1962 }
1963 I915_WRITE(EMR, error_mask);
1964
1965 I915_WRITE(IMR, dev_priv->irq_mask);
1966 I915_WRITE(IER, enable_mask);
1967 POSTING_READ(IER);
1968
1969 if (I915_HAS_HOTPLUG(dev)) {
1970 u32 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
1971
1972 /* Note HDMI and DP share bits */
1973 if (dev_priv->hotplug_supported_mask & HDMIB_HOTPLUG_INT_STATUS)
1974 hotplug_en |= HDMIB_HOTPLUG_INT_EN;
1975 if (dev_priv->hotplug_supported_mask & HDMIC_HOTPLUG_INT_STATUS)
1976 hotplug_en |= HDMIC_HOTPLUG_INT_EN;
1977 if (dev_priv->hotplug_supported_mask & HDMID_HOTPLUG_INT_STATUS)
1978 hotplug_en |= HDMID_HOTPLUG_INT_EN;
1979 if (dev_priv->hotplug_supported_mask & SDVOC_HOTPLUG_INT_STATUS)
1980 hotplug_en |= SDVOC_HOTPLUG_INT_EN;
1981 if (dev_priv->hotplug_supported_mask & SDVOB_HOTPLUG_INT_STATUS)
1982 hotplug_en |= SDVOB_HOTPLUG_INT_EN;
1983 if (dev_priv->hotplug_supported_mask & CRT_HOTPLUG_INT_STATUS) {
1984 hotplug_en |= CRT_HOTPLUG_INT_EN;
1985
1986 /* Programming the CRT detection parameters tends
1987 to generate a spurious hotplug event about three
1988 seconds later. So just do it once.
1989 */
1990 if (IS_G4X(dev))
1991 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
1992 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
1993 }
1994
1995 /* Ignore TV since it's buggy */
1996
1997 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
1998 }
1999
2000 intel_opregion_enable_asle(dev);
2001
2002 return 0;
2003}
2004
2005static void ironlake_irq_uninstall(struct drm_device *dev)
2006{
2007 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2008
2009 if (!dev_priv)
2010 return;
2011
2012 dev_priv->vblank_pipe = 0;
2013
2014 I915_WRITE(HWSTAM, 0xffffffff);
2015
2016 I915_WRITE(DEIMR, 0xffffffff);
2017 I915_WRITE(DEIER, 0x0);
2018 I915_WRITE(DEIIR, I915_READ(DEIIR));
2019
2020 I915_WRITE(GTIMR, 0xffffffff);
2021 I915_WRITE(GTIER, 0x0);
2022 I915_WRITE(GTIIR, I915_READ(GTIIR));
2023}
2024
2025static void i915_driver_irq_uninstall(struct drm_device * dev)
2026{
2027 drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2028 int pipe;
2029
2030 if (!dev_priv)
2031 return;
2032
2033 dev_priv->vblank_pipe = 0;
2034
2035 if (I915_HAS_HOTPLUG(dev)) {
2036 I915_WRITE(PORT_HOTPLUG_EN, 0);
2037 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2038 }
2039
2040 I915_WRITE(HWSTAM, 0xffffffff);
2041 for_each_pipe(pipe)
2042 I915_WRITE(PIPESTAT(pipe), 0);
2043 I915_WRITE(IMR, 0xffffffff);
2044 I915_WRITE(IER, 0x0);
2045
2046 for_each_pipe(pipe)
2047 I915_WRITE(PIPESTAT(pipe),
2048 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
2049 I915_WRITE(IIR, I915_READ(IIR));
2050}
2051
2052void intel_irq_init(struct drm_device *dev)
2053{
2054 dev->driver->get_vblank_counter = i915_get_vblank_counter;
2055 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
2056 if (IS_G4X(dev) || IS_GEN5(dev) || IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
2057 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
2058 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
2059 }
2060
2061 if (drm_core_check_feature(dev, DRIVER_MODESET))
2062 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
2063 else
2064 dev->driver->get_vblank_timestamp = NULL;
2065 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
2066
2067 if (IS_IVYBRIDGE(dev)) {
2068 /* Share pre & uninstall handlers with ILK/SNB */
2069 dev->driver->irq_handler = ivybridge_irq_handler;
2070 dev->driver->irq_preinstall = ironlake_irq_preinstall;
2071 dev->driver->irq_postinstall = ivybridge_irq_postinstall;
2072 dev->driver->irq_uninstall = ironlake_irq_uninstall;
2073 dev->driver->enable_vblank = ivybridge_enable_vblank;
2074 dev->driver->disable_vblank = ivybridge_disable_vblank;
2075 } else if (HAS_PCH_SPLIT(dev)) {
2076 dev->driver->irq_handler = ironlake_irq_handler;
2077 dev->driver->irq_preinstall = ironlake_irq_preinstall;
2078 dev->driver->irq_postinstall = ironlake_irq_postinstall;
2079 dev->driver->irq_uninstall = ironlake_irq_uninstall;
2080 dev->driver->enable_vblank = ironlake_enable_vblank;
2081 dev->driver->disable_vblank = ironlake_disable_vblank;
2082 } else {
2083 dev->driver->irq_preinstall = i915_driver_irq_preinstall;
2084 dev->driver->irq_postinstall = i915_driver_irq_postinstall;
2085 dev->driver->irq_uninstall = i915_driver_irq_uninstall;
2086 dev->driver->irq_handler = i915_driver_irq_handler;
2087 dev->driver->enable_vblank = i915_enable_vblank;
2088 dev->driver->disable_vblank = i915_disable_vblank;
2089 }
2090}
1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3/*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31#include <linux/slab.h>
32#include <linux/sysrq.h>
33
34#include <drm/drm_drv.h>
35
36#include "display/icl_dsi_regs.h"
37#include "display/intel_de.h"
38#include "display/intel_display_trace.h"
39#include "display/intel_display_types.h"
40#include "display/intel_fifo_underrun.h"
41#include "display/intel_hotplug.h"
42#include "display/intel_lpe_audio.h"
43#include "display/intel_psr.h"
44
45#include "gt/intel_breadcrumbs.h"
46#include "gt/intel_gt.h"
47#include "gt/intel_gt_irq.h"
48#include "gt/intel_gt_pm_irq.h"
49#include "gt/intel_gt_regs.h"
50#include "gt/intel_rps.h"
51
52#include "i915_driver.h"
53#include "i915_drv.h"
54#include "i915_irq.h"
55#include "intel_pm.h"
56
57/**
58 * DOC: interrupt handling
59 *
60 * These functions provide the basic support for enabling and disabling the
61 * interrupt handling support. There's a lot more functionality in i915_irq.c
62 * and related files, but that will be described in separate chapters.
63 */
64
65/*
66 * Interrupt statistic for PMU. Increments the counter only if the
67 * interrupt originated from the GPU so interrupts from a device which
68 * shares the interrupt line are not accounted.
69 */
70static inline void pmu_irq_stats(struct drm_i915_private *i915,
71 irqreturn_t res)
72{
73 if (unlikely(res != IRQ_HANDLED))
74 return;
75
76 /*
77 * A clever compiler translates that into INC. A not so clever one
78 * should at least prevent store tearing.
79 */
80 WRITE_ONCE(i915->pmu.irq_count, i915->pmu.irq_count + 1);
81}
82
83typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
84typedef u32 (*hotplug_enables_func)(struct drm_i915_private *i915,
85 enum hpd_pin pin);
86
87static const u32 hpd_ilk[HPD_NUM_PINS] = {
88 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
89};
90
91static const u32 hpd_ivb[HPD_NUM_PINS] = {
92 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
93};
94
95static const u32 hpd_bdw[HPD_NUM_PINS] = {
96 [HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
97};
98
99static const u32 hpd_ibx[HPD_NUM_PINS] = {
100 [HPD_CRT] = SDE_CRT_HOTPLUG,
101 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
102 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
103 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
104 [HPD_PORT_D] = SDE_PORTD_HOTPLUG,
105};
106
107static const u32 hpd_cpt[HPD_NUM_PINS] = {
108 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
109 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
110 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
111 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
112 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
113};
114
115static const u32 hpd_spt[HPD_NUM_PINS] = {
116 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
117 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
118 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
119 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
120 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
121};
122
123static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
124 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
125 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
126 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
127 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
128 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
129 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
130};
131
132static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
133 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
134 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
135 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
136 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
137 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
138 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
139};
140
141static const u32 hpd_status_i915[HPD_NUM_PINS] = {
142 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
143 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
144 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
145 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
146 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
147 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
148};
149
150static const u32 hpd_bxt[HPD_NUM_PINS] = {
151 [HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
152 [HPD_PORT_B] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_B),
153 [HPD_PORT_C] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_C),
154};
155
156static const u32 hpd_gen11[HPD_NUM_PINS] = {
157 [HPD_PORT_TC1] = GEN11_TC_HOTPLUG(HPD_PORT_TC1) | GEN11_TBT_HOTPLUG(HPD_PORT_TC1),
158 [HPD_PORT_TC2] = GEN11_TC_HOTPLUG(HPD_PORT_TC2) | GEN11_TBT_HOTPLUG(HPD_PORT_TC2),
159 [HPD_PORT_TC3] = GEN11_TC_HOTPLUG(HPD_PORT_TC3) | GEN11_TBT_HOTPLUG(HPD_PORT_TC3),
160 [HPD_PORT_TC4] = GEN11_TC_HOTPLUG(HPD_PORT_TC4) | GEN11_TBT_HOTPLUG(HPD_PORT_TC4),
161 [HPD_PORT_TC5] = GEN11_TC_HOTPLUG(HPD_PORT_TC5) | GEN11_TBT_HOTPLUG(HPD_PORT_TC5),
162 [HPD_PORT_TC6] = GEN11_TC_HOTPLUG(HPD_PORT_TC6) | GEN11_TBT_HOTPLUG(HPD_PORT_TC6),
163};
164
165static const u32 hpd_icp[HPD_NUM_PINS] = {
166 [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
167 [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
168 [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
169 [HPD_PORT_TC1] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC1),
170 [HPD_PORT_TC2] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC2),
171 [HPD_PORT_TC3] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC3),
172 [HPD_PORT_TC4] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC4),
173 [HPD_PORT_TC5] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC5),
174 [HPD_PORT_TC6] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC6),
175};
176
177static const u32 hpd_sde_dg1[HPD_NUM_PINS] = {
178 [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
179 [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
180 [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
181 [HPD_PORT_D] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_D),
182 [HPD_PORT_TC1] = SDE_TC_HOTPLUG_DG2(HPD_PORT_TC1),
183};
184
185static void intel_hpd_init_pins(struct drm_i915_private *dev_priv)
186{
187 struct intel_hotplug *hpd = &dev_priv->display.hotplug;
188
189 if (HAS_GMCH(dev_priv)) {
190 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
191 IS_CHERRYVIEW(dev_priv))
192 hpd->hpd = hpd_status_g4x;
193 else
194 hpd->hpd = hpd_status_i915;
195 return;
196 }
197
198 if (DISPLAY_VER(dev_priv) >= 11)
199 hpd->hpd = hpd_gen11;
200 else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
201 hpd->hpd = hpd_bxt;
202 else if (DISPLAY_VER(dev_priv) >= 8)
203 hpd->hpd = hpd_bdw;
204 else if (DISPLAY_VER(dev_priv) >= 7)
205 hpd->hpd = hpd_ivb;
206 else
207 hpd->hpd = hpd_ilk;
208
209 if ((INTEL_PCH_TYPE(dev_priv) < PCH_DG1) &&
210 (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv)))
211 return;
212
213 if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
214 hpd->pch_hpd = hpd_sde_dg1;
215 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
216 hpd->pch_hpd = hpd_icp;
217 else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv))
218 hpd->pch_hpd = hpd_spt;
219 else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv))
220 hpd->pch_hpd = hpd_cpt;
221 else if (HAS_PCH_IBX(dev_priv))
222 hpd->pch_hpd = hpd_ibx;
223 else
224 MISSING_CASE(INTEL_PCH_TYPE(dev_priv));
225}
226
227static void
228intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
229{
230 struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe);
231
232 drm_crtc_handle_vblank(&crtc->base);
233}
234
235void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
236 i915_reg_t iir, i915_reg_t ier)
237{
238 intel_uncore_write(uncore, imr, 0xffffffff);
239 intel_uncore_posting_read(uncore, imr);
240
241 intel_uncore_write(uncore, ier, 0);
242
243 /* IIR can theoretically queue up two events. Be paranoid. */
244 intel_uncore_write(uncore, iir, 0xffffffff);
245 intel_uncore_posting_read(uncore, iir);
246 intel_uncore_write(uncore, iir, 0xffffffff);
247 intel_uncore_posting_read(uncore, iir);
248}
249
250static void gen2_irq_reset(struct intel_uncore *uncore)
251{
252 intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
253 intel_uncore_posting_read16(uncore, GEN2_IMR);
254
255 intel_uncore_write16(uncore, GEN2_IER, 0);
256
257 /* IIR can theoretically queue up two events. Be paranoid. */
258 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
259 intel_uncore_posting_read16(uncore, GEN2_IIR);
260 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
261 intel_uncore_posting_read16(uncore, GEN2_IIR);
262}
263
264/*
265 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
266 */
267static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
268{
269 u32 val = intel_uncore_read(uncore, reg);
270
271 if (val == 0)
272 return;
273
274 drm_WARN(&uncore->i915->drm, 1,
275 "Interrupt register 0x%x is not zero: 0x%08x\n",
276 i915_mmio_reg_offset(reg), val);
277 intel_uncore_write(uncore, reg, 0xffffffff);
278 intel_uncore_posting_read(uncore, reg);
279 intel_uncore_write(uncore, reg, 0xffffffff);
280 intel_uncore_posting_read(uncore, reg);
281}
282
283static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
284{
285 u16 val = intel_uncore_read16(uncore, GEN2_IIR);
286
287 if (val == 0)
288 return;
289
290 drm_WARN(&uncore->i915->drm, 1,
291 "Interrupt register 0x%x is not zero: 0x%08x\n",
292 i915_mmio_reg_offset(GEN2_IIR), val);
293 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
294 intel_uncore_posting_read16(uncore, GEN2_IIR);
295 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
296 intel_uncore_posting_read16(uncore, GEN2_IIR);
297}
298
299void gen3_irq_init(struct intel_uncore *uncore,
300 i915_reg_t imr, u32 imr_val,
301 i915_reg_t ier, u32 ier_val,
302 i915_reg_t iir)
303{
304 gen3_assert_iir_is_zero(uncore, iir);
305
306 intel_uncore_write(uncore, ier, ier_val);
307 intel_uncore_write(uncore, imr, imr_val);
308 intel_uncore_posting_read(uncore, imr);
309}
310
311static void gen2_irq_init(struct intel_uncore *uncore,
312 u32 imr_val, u32 ier_val)
313{
314 gen2_assert_iir_is_zero(uncore);
315
316 intel_uncore_write16(uncore, GEN2_IER, ier_val);
317 intel_uncore_write16(uncore, GEN2_IMR, imr_val);
318 intel_uncore_posting_read16(uncore, GEN2_IMR);
319}
320
321/* For display hotplug interrupt */
322static inline void
323i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
324 u32 mask,
325 u32 bits)
326{
327 lockdep_assert_held(&dev_priv->irq_lock);
328 drm_WARN_ON(&dev_priv->drm, bits & ~mask);
329
330 intel_uncore_rmw(&dev_priv->uncore, PORT_HOTPLUG_EN, mask, bits);
331}
332
333/**
334 * i915_hotplug_interrupt_update - update hotplug interrupt enable
335 * @dev_priv: driver private
336 * @mask: bits to update
337 * @bits: bits to enable
338 * NOTE: the HPD enable bits are modified both inside and outside
339 * of an interrupt context. To avoid that read-modify-write cycles
340 * interfer, these bits are protected by a spinlock. Since this
341 * function is usually not called from a context where the lock is
342 * held already, this function acquires the lock itself. A non-locking
343 * version is also available.
344 */
345void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
346 u32 mask,
347 u32 bits)
348{
349 spin_lock_irq(&dev_priv->irq_lock);
350 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
351 spin_unlock_irq(&dev_priv->irq_lock);
352}
353
354/**
355 * ilk_update_display_irq - update DEIMR
356 * @dev_priv: driver private
357 * @interrupt_mask: mask of interrupt bits to update
358 * @enabled_irq_mask: mask of interrupt bits to enable
359 */
360static void ilk_update_display_irq(struct drm_i915_private *dev_priv,
361 u32 interrupt_mask, u32 enabled_irq_mask)
362{
363 u32 new_val;
364
365 lockdep_assert_held(&dev_priv->irq_lock);
366 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
367
368 new_val = dev_priv->irq_mask;
369 new_val &= ~interrupt_mask;
370 new_val |= (~enabled_irq_mask & interrupt_mask);
371
372 if (new_val != dev_priv->irq_mask &&
373 !drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) {
374 dev_priv->irq_mask = new_val;
375 intel_uncore_write(&dev_priv->uncore, DEIMR, dev_priv->irq_mask);
376 intel_uncore_posting_read(&dev_priv->uncore, DEIMR);
377 }
378}
379
380void ilk_enable_display_irq(struct drm_i915_private *i915, u32 bits)
381{
382 ilk_update_display_irq(i915, bits, bits);
383}
384
385void ilk_disable_display_irq(struct drm_i915_private *i915, u32 bits)
386{
387 ilk_update_display_irq(i915, bits, 0);
388}
389
390/**
391 * bdw_update_port_irq - update DE port interrupt
392 * @dev_priv: driver private
393 * @interrupt_mask: mask of interrupt bits to update
394 * @enabled_irq_mask: mask of interrupt bits to enable
395 */
396static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
397 u32 interrupt_mask,
398 u32 enabled_irq_mask)
399{
400 u32 new_val;
401 u32 old_val;
402
403 lockdep_assert_held(&dev_priv->irq_lock);
404
405 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
406
407 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
408 return;
409
410 old_val = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PORT_IMR);
411
412 new_val = old_val;
413 new_val &= ~interrupt_mask;
414 new_val |= (~enabled_irq_mask & interrupt_mask);
415
416 if (new_val != old_val) {
417 intel_uncore_write(&dev_priv->uncore, GEN8_DE_PORT_IMR, new_val);
418 intel_uncore_posting_read(&dev_priv->uncore, GEN8_DE_PORT_IMR);
419 }
420}
421
422/**
423 * bdw_update_pipe_irq - update DE pipe interrupt
424 * @dev_priv: driver private
425 * @pipe: pipe whose interrupt to update
426 * @interrupt_mask: mask of interrupt bits to update
427 * @enabled_irq_mask: mask of interrupt bits to enable
428 */
429static void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
430 enum pipe pipe, u32 interrupt_mask,
431 u32 enabled_irq_mask)
432{
433 u32 new_val;
434
435 lockdep_assert_held(&dev_priv->irq_lock);
436
437 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
438
439 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
440 return;
441
442 new_val = dev_priv->de_irq_mask[pipe];
443 new_val &= ~interrupt_mask;
444 new_val |= (~enabled_irq_mask & interrupt_mask);
445
446 if (new_val != dev_priv->de_irq_mask[pipe]) {
447 dev_priv->de_irq_mask[pipe] = new_val;
448 intel_uncore_write(&dev_priv->uncore, GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
449 intel_uncore_posting_read(&dev_priv->uncore, GEN8_DE_PIPE_IMR(pipe));
450 }
451}
452
453void bdw_enable_pipe_irq(struct drm_i915_private *i915,
454 enum pipe pipe, u32 bits)
455{
456 bdw_update_pipe_irq(i915, pipe, bits, bits);
457}
458
459void bdw_disable_pipe_irq(struct drm_i915_private *i915,
460 enum pipe pipe, u32 bits)
461{
462 bdw_update_pipe_irq(i915, pipe, bits, 0);
463}
464
465/**
466 * ibx_display_interrupt_update - update SDEIMR
467 * @dev_priv: driver private
468 * @interrupt_mask: mask of interrupt bits to update
469 * @enabled_irq_mask: mask of interrupt bits to enable
470 */
471static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
472 u32 interrupt_mask,
473 u32 enabled_irq_mask)
474{
475 u32 sdeimr = intel_uncore_read(&dev_priv->uncore, SDEIMR);
476 sdeimr &= ~interrupt_mask;
477 sdeimr |= (~enabled_irq_mask & interrupt_mask);
478
479 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
480
481 lockdep_assert_held(&dev_priv->irq_lock);
482
483 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
484 return;
485
486 intel_uncore_write(&dev_priv->uncore, SDEIMR, sdeimr);
487 intel_uncore_posting_read(&dev_priv->uncore, SDEIMR);
488}
489
490void ibx_enable_display_interrupt(struct drm_i915_private *i915, u32 bits)
491{
492 ibx_display_interrupt_update(i915, bits, bits);
493}
494
495void ibx_disable_display_interrupt(struct drm_i915_private *i915, u32 bits)
496{
497 ibx_display_interrupt_update(i915, bits, 0);
498}
499
500u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
501 enum pipe pipe)
502{
503 u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
504 u32 enable_mask = status_mask << 16;
505
506 lockdep_assert_held(&dev_priv->irq_lock);
507
508 if (DISPLAY_VER(dev_priv) < 5)
509 goto out;
510
511 /*
512 * On pipe A we don't support the PSR interrupt yet,
513 * on pipe B and C the same bit MBZ.
514 */
515 if (drm_WARN_ON_ONCE(&dev_priv->drm,
516 status_mask & PIPE_A_PSR_STATUS_VLV))
517 return 0;
518 /*
519 * On pipe B and C we don't support the PSR interrupt yet, on pipe
520 * A the same bit is for perf counters which we don't use either.
521 */
522 if (drm_WARN_ON_ONCE(&dev_priv->drm,
523 status_mask & PIPE_B_PSR_STATUS_VLV))
524 return 0;
525
526 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
527 SPRITE0_FLIP_DONE_INT_EN_VLV |
528 SPRITE1_FLIP_DONE_INT_EN_VLV);
529 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
530 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
531 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
532 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
533
534out:
535 drm_WARN_ONCE(&dev_priv->drm,
536 enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
537 status_mask & ~PIPESTAT_INT_STATUS_MASK,
538 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
539 pipe_name(pipe), enable_mask, status_mask);
540
541 return enable_mask;
542}
543
544void i915_enable_pipestat(struct drm_i915_private *dev_priv,
545 enum pipe pipe, u32 status_mask)
546{
547 i915_reg_t reg = PIPESTAT(pipe);
548 u32 enable_mask;
549
550 drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
551 "pipe %c: status_mask=0x%x\n",
552 pipe_name(pipe), status_mask);
553
554 lockdep_assert_held(&dev_priv->irq_lock);
555 drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
556
557 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
558 return;
559
560 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
561 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
562
563 intel_uncore_write(&dev_priv->uncore, reg, enable_mask | status_mask);
564 intel_uncore_posting_read(&dev_priv->uncore, reg);
565}
566
567void i915_disable_pipestat(struct drm_i915_private *dev_priv,
568 enum pipe pipe, u32 status_mask)
569{
570 i915_reg_t reg = PIPESTAT(pipe);
571 u32 enable_mask;
572
573 drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
574 "pipe %c: status_mask=0x%x\n",
575 pipe_name(pipe), status_mask);
576
577 lockdep_assert_held(&dev_priv->irq_lock);
578 drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
579
580 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
581 return;
582
583 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
584 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
585
586 intel_uncore_write(&dev_priv->uncore, reg, enable_mask | status_mask);
587 intel_uncore_posting_read(&dev_priv->uncore, reg);
588}
589
590static bool i915_has_asle(struct drm_i915_private *dev_priv)
591{
592 if (!dev_priv->display.opregion.asle)
593 return false;
594
595 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
596}
597
598/**
599 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
600 * @dev_priv: i915 device private
601 */
602static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
603{
604 if (!i915_has_asle(dev_priv))
605 return;
606
607 spin_lock_irq(&dev_priv->irq_lock);
608
609 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
610 if (DISPLAY_VER(dev_priv) >= 4)
611 i915_enable_pipestat(dev_priv, PIPE_A,
612 PIPE_LEGACY_BLC_EVENT_STATUS);
613
614 spin_unlock_irq(&dev_priv->irq_lock);
615}
616
617/*
618 * This timing diagram depicts the video signal in and
619 * around the vertical blanking period.
620 *
621 * Assumptions about the fictitious mode used in this example:
622 * vblank_start >= 3
623 * vsync_start = vblank_start + 1
624 * vsync_end = vblank_start + 2
625 * vtotal = vblank_start + 3
626 *
627 * start of vblank:
628 * latch double buffered registers
629 * increment frame counter (ctg+)
630 * generate start of vblank interrupt (gen4+)
631 * |
632 * | frame start:
633 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
634 * | may be shifted forward 1-3 extra lines via PIPECONF
635 * | |
636 * | | start of vsync:
637 * | | generate vsync interrupt
638 * | | |
639 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
640 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
641 * ----va---> <-----------------vb--------------------> <--------va-------------
642 * | | <----vs-----> |
643 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
644 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
645 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
646 * | | |
647 * last visible pixel first visible pixel
648 * | increment frame counter (gen3/4)
649 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
650 *
651 * x = horizontal active
652 * _ = horizontal blanking
653 * hs = horizontal sync
654 * va = vertical active
655 * vb = vertical blanking
656 * vs = vertical sync
657 * vbs = vblank_start (number)
658 *
659 * Summary:
660 * - most events happen at the start of horizontal sync
661 * - frame start happens at the start of horizontal blank, 1-4 lines
662 * (depending on PIPECONF settings) after the start of vblank
663 * - gen3/4 pixel and frame counter are synchronized with the start
664 * of horizontal active on the first line of vertical active
665 */
666
667/* Called from drm generic code, passed a 'crtc', which
668 * we use as a pipe index
669 */
670u32 i915_get_vblank_counter(struct drm_crtc *crtc)
671{
672 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
673 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
674 const struct drm_display_mode *mode = &vblank->hwmode;
675 enum pipe pipe = to_intel_crtc(crtc)->pipe;
676 i915_reg_t high_frame, low_frame;
677 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
678 unsigned long irqflags;
679
680 /*
681 * On i965gm TV output the frame counter only works up to
682 * the point when we enable the TV encoder. After that the
683 * frame counter ceases to work and reads zero. We need a
684 * vblank wait before enabling the TV encoder and so we
685 * have to enable vblank interrupts while the frame counter
686 * is still in a working state. However the core vblank code
687 * does not like us returning non-zero frame counter values
688 * when we've told it that we don't have a working frame
689 * counter. Thus we must stop non-zero values leaking out.
690 */
691 if (!vblank->max_vblank_count)
692 return 0;
693
694 htotal = mode->crtc_htotal;
695 hsync_start = mode->crtc_hsync_start;
696 vbl_start = mode->crtc_vblank_start;
697 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
698 vbl_start = DIV_ROUND_UP(vbl_start, 2);
699
700 /* Convert to pixel count */
701 vbl_start *= htotal;
702
703 /* Start of vblank event occurs at start of hsync */
704 vbl_start -= htotal - hsync_start;
705
706 high_frame = PIPEFRAME(pipe);
707 low_frame = PIPEFRAMEPIXEL(pipe);
708
709 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
710
711 /*
712 * High & low register fields aren't synchronized, so make sure
713 * we get a low value that's stable across two reads of the high
714 * register.
715 */
716 do {
717 high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
718 low = intel_de_read_fw(dev_priv, low_frame);
719 high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
720 } while (high1 != high2);
721
722 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
723
724 high1 >>= PIPE_FRAME_HIGH_SHIFT;
725 pixel = low & PIPE_PIXEL_MASK;
726 low >>= PIPE_FRAME_LOW_SHIFT;
727
728 /*
729 * The frame counter increments at beginning of active.
730 * Cook up a vblank counter by also checking the pixel
731 * counter against vblank start.
732 */
733 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
734}
735
736u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
737{
738 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
739 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
740 enum pipe pipe = to_intel_crtc(crtc)->pipe;
741
742 if (!vblank->max_vblank_count)
743 return 0;
744
745 return intel_uncore_read(&dev_priv->uncore, PIPE_FRMCOUNT_G4X(pipe));
746}
747
748static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc)
749{
750 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
751 struct drm_vblank_crtc *vblank =
752 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
753 const struct drm_display_mode *mode = &vblank->hwmode;
754 u32 htotal = mode->crtc_htotal;
755 u32 clock = mode->crtc_clock;
756 u32 scan_prev_time, scan_curr_time, scan_post_time;
757
758 /*
759 * To avoid the race condition where we might cross into the
760 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
761 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
762 * during the same frame.
763 */
764 do {
765 /*
766 * This field provides read back of the display
767 * pipe frame time stamp. The time stamp value
768 * is sampled at every start of vertical blank.
769 */
770 scan_prev_time = intel_de_read_fw(dev_priv,
771 PIPE_FRMTMSTMP(crtc->pipe));
772
773 /*
774 * The TIMESTAMP_CTR register has the current
775 * time stamp value.
776 */
777 scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
778
779 scan_post_time = intel_de_read_fw(dev_priv,
780 PIPE_FRMTMSTMP(crtc->pipe));
781 } while (scan_post_time != scan_prev_time);
782
783 return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
784 clock), 1000 * htotal);
785}
786
787/*
788 * On certain encoders on certain platforms, pipe
789 * scanline register will not work to get the scanline,
790 * since the timings are driven from the PORT or issues
791 * with scanline register updates.
792 * This function will use Framestamp and current
793 * timestamp registers to calculate the scanline.
794 */
795static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
796{
797 struct drm_vblank_crtc *vblank =
798 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
799 const struct drm_display_mode *mode = &vblank->hwmode;
800 u32 vblank_start = mode->crtc_vblank_start;
801 u32 vtotal = mode->crtc_vtotal;
802 u32 scanline;
803
804 scanline = intel_crtc_scanlines_since_frame_timestamp(crtc);
805 scanline = min(scanline, vtotal - 1);
806 scanline = (scanline + vblank_start) % vtotal;
807
808 return scanline;
809}
810
811/*
812 * intel_de_read_fw(), only for fast reads of display block, no need for
813 * forcewake etc.
814 */
815static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
816{
817 struct drm_device *dev = crtc->base.dev;
818 struct drm_i915_private *dev_priv = to_i915(dev);
819 const struct drm_display_mode *mode;
820 struct drm_vblank_crtc *vblank;
821 enum pipe pipe = crtc->pipe;
822 int position, vtotal;
823
824 if (!crtc->active)
825 return 0;
826
827 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
828 mode = &vblank->hwmode;
829
830 if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
831 return __intel_get_crtc_scanline_from_timestamp(crtc);
832
833 vtotal = mode->crtc_vtotal;
834 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
835 vtotal /= 2;
836
837 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & PIPEDSL_LINE_MASK;
838
839 /*
840 * On HSW, the DSL reg (0x70000) appears to return 0 if we
841 * read it just before the start of vblank. So try it again
842 * so we don't accidentally end up spanning a vblank frame
843 * increment, causing the pipe_update_end() code to squak at us.
844 *
845 * The nature of this problem means we can't simply check the ISR
846 * bit and return the vblank start value; nor can we use the scanline
847 * debug register in the transcoder as it appears to have the same
848 * problem. We may need to extend this to include other platforms,
849 * but so far testing only shows the problem on HSW.
850 */
851 if (HAS_DDI(dev_priv) && !position) {
852 int i, temp;
853
854 for (i = 0; i < 100; i++) {
855 udelay(1);
856 temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & PIPEDSL_LINE_MASK;
857 if (temp != position) {
858 position = temp;
859 break;
860 }
861 }
862 }
863
864 /*
865 * See update_scanline_offset() for the details on the
866 * scanline_offset adjustment.
867 */
868 return (position + crtc->scanline_offset) % vtotal;
869}
870
871static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
872 bool in_vblank_irq,
873 int *vpos, int *hpos,
874 ktime_t *stime, ktime_t *etime,
875 const struct drm_display_mode *mode)
876{
877 struct drm_device *dev = _crtc->dev;
878 struct drm_i915_private *dev_priv = to_i915(dev);
879 struct intel_crtc *crtc = to_intel_crtc(_crtc);
880 enum pipe pipe = crtc->pipe;
881 int position;
882 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
883 unsigned long irqflags;
884 bool use_scanline_counter = DISPLAY_VER(dev_priv) >= 5 ||
885 IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) == 2 ||
886 crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
887
888 if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
889 drm_dbg(&dev_priv->drm,
890 "trying to get scanoutpos for disabled "
891 "pipe %c\n", pipe_name(pipe));
892 return false;
893 }
894
895 htotal = mode->crtc_htotal;
896 hsync_start = mode->crtc_hsync_start;
897 vtotal = mode->crtc_vtotal;
898 vbl_start = mode->crtc_vblank_start;
899 vbl_end = mode->crtc_vblank_end;
900
901 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
902 vbl_start = DIV_ROUND_UP(vbl_start, 2);
903 vbl_end /= 2;
904 vtotal /= 2;
905 }
906
907 /*
908 * Lock uncore.lock, as we will do multiple timing critical raw
909 * register reads, potentially with preemption disabled, so the
910 * following code must not block on uncore.lock.
911 */
912 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
913
914 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
915
916 /* Get optional system timestamp before query. */
917 if (stime)
918 *stime = ktime_get();
919
920 if (crtc->mode_flags & I915_MODE_FLAG_VRR) {
921 int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc);
922
923 position = __intel_get_crtc_scanline(crtc);
924
925 /*
926 * Already exiting vblank? If so, shift our position
927 * so it looks like we're already apporaching the full
928 * vblank end. This should make the generated timestamp
929 * more or less match when the active portion will start.
930 */
931 if (position >= vbl_start && scanlines < position)
932 position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1);
933 } else if (use_scanline_counter) {
934 /* No obvious pixelcount register. Only query vertical
935 * scanout position from Display scan line register.
936 */
937 position = __intel_get_crtc_scanline(crtc);
938 } else {
939 /* Have access to pixelcount since start of frame.
940 * We can split this into vertical and horizontal
941 * scanout position.
942 */
943 position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
944
945 /* convert to pixel counts */
946 vbl_start *= htotal;
947 vbl_end *= htotal;
948 vtotal *= htotal;
949
950 /*
951 * In interlaced modes, the pixel counter counts all pixels,
952 * so one field will have htotal more pixels. In order to avoid
953 * the reported position from jumping backwards when the pixel
954 * counter is beyond the length of the shorter field, just
955 * clamp the position the length of the shorter field. This
956 * matches how the scanline counter based position works since
957 * the scanline counter doesn't count the two half lines.
958 */
959 if (position >= vtotal)
960 position = vtotal - 1;
961
962 /*
963 * Start of vblank interrupt is triggered at start of hsync,
964 * just prior to the first active line of vblank. However we
965 * consider lines to start at the leading edge of horizontal
966 * active. So, should we get here before we've crossed into
967 * the horizontal active of the first line in vblank, we would
968 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
969 * always add htotal-hsync_start to the current pixel position.
970 */
971 position = (position + htotal - hsync_start) % vtotal;
972 }
973
974 /* Get optional system timestamp after query. */
975 if (etime)
976 *etime = ktime_get();
977
978 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
979
980 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
981
982 /*
983 * While in vblank, position will be negative
984 * counting up towards 0 at vbl_end. And outside
985 * vblank, position will be positive counting
986 * up since vbl_end.
987 */
988 if (position >= vbl_start)
989 position -= vbl_end;
990 else
991 position += vtotal - vbl_end;
992
993 if (use_scanline_counter) {
994 *vpos = position;
995 *hpos = 0;
996 } else {
997 *vpos = position / htotal;
998 *hpos = position - (*vpos * htotal);
999 }
1000
1001 return true;
1002}
1003
1004bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
1005 ktime_t *vblank_time, bool in_vblank_irq)
1006{
1007 return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
1008 crtc, max_error, vblank_time, in_vblank_irq,
1009 i915_get_crtc_scanoutpos);
1010}
1011
1012int intel_get_crtc_scanline(struct intel_crtc *crtc)
1013{
1014 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1015 unsigned long irqflags;
1016 int position;
1017
1018 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1019 position = __intel_get_crtc_scanline(crtc);
1020 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1021
1022 return position;
1023}
1024
1025/**
1026 * ivb_parity_work - Workqueue called when a parity error interrupt
1027 * occurred.
1028 * @work: workqueue struct
1029 *
1030 * Doesn't actually do anything except notify userspace. As a consequence of
1031 * this event, userspace should try to remap the bad rows since statistically
1032 * it is likely the same row is more likely to go bad again.
1033 */
1034static void ivb_parity_work(struct work_struct *work)
1035{
1036 struct drm_i915_private *dev_priv =
1037 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1038 struct intel_gt *gt = to_gt(dev_priv);
1039 u32 error_status, row, bank, subbank;
1040 char *parity_event[6];
1041 u32 misccpctl;
1042 u8 slice = 0;
1043
1044 /* We must turn off DOP level clock gating to access the L3 registers.
1045 * In order to prevent a get/put style interface, acquire struct mutex
1046 * any time we access those registers.
1047 */
1048 mutex_lock(&dev_priv->drm.struct_mutex);
1049
1050 /* If we've screwed up tracking, just let the interrupt fire again */
1051 if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
1052 goto out;
1053
1054 misccpctl = intel_uncore_rmw(&dev_priv->uncore, GEN7_MISCCPCTL,
1055 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
1056 intel_uncore_posting_read(&dev_priv->uncore, GEN7_MISCCPCTL);
1057
1058 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1059 i915_reg_t reg;
1060
1061 slice--;
1062 if (drm_WARN_ON_ONCE(&dev_priv->drm,
1063 slice >= NUM_L3_SLICES(dev_priv)))
1064 break;
1065
1066 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1067
1068 reg = GEN7_L3CDERRST1(slice);
1069
1070 error_status = intel_uncore_read(&dev_priv->uncore, reg);
1071 row = GEN7_PARITY_ERROR_ROW(error_status);
1072 bank = GEN7_PARITY_ERROR_BANK(error_status);
1073 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1074
1075 intel_uncore_write(&dev_priv->uncore, reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1076 intel_uncore_posting_read(&dev_priv->uncore, reg);
1077
1078 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1079 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1080 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1081 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1082 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1083 parity_event[5] = NULL;
1084
1085 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1086 KOBJ_CHANGE, parity_event);
1087
1088 drm_dbg(&dev_priv->drm,
1089 "Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1090 slice, row, bank, subbank);
1091
1092 kfree(parity_event[4]);
1093 kfree(parity_event[3]);
1094 kfree(parity_event[2]);
1095 kfree(parity_event[1]);
1096 }
1097
1098 intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
1099
1100out:
1101 drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
1102 spin_lock_irq(gt->irq_lock);
1103 gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1104 spin_unlock_irq(gt->irq_lock);
1105
1106 mutex_unlock(&dev_priv->drm.struct_mutex);
1107}
1108
1109static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1110{
1111 switch (pin) {
1112 case HPD_PORT_TC1:
1113 case HPD_PORT_TC2:
1114 case HPD_PORT_TC3:
1115 case HPD_PORT_TC4:
1116 case HPD_PORT_TC5:
1117 case HPD_PORT_TC6:
1118 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(pin);
1119 default:
1120 return false;
1121 }
1122}
1123
1124static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1125{
1126 switch (pin) {
1127 case HPD_PORT_A:
1128 return val & PORTA_HOTPLUG_LONG_DETECT;
1129 case HPD_PORT_B:
1130 return val & PORTB_HOTPLUG_LONG_DETECT;
1131 case HPD_PORT_C:
1132 return val & PORTC_HOTPLUG_LONG_DETECT;
1133 default:
1134 return false;
1135 }
1136}
1137
1138static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1139{
1140 switch (pin) {
1141 case HPD_PORT_A:
1142 case HPD_PORT_B:
1143 case HPD_PORT_C:
1144 case HPD_PORT_D:
1145 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(pin);
1146 default:
1147 return false;
1148 }
1149}
1150
1151static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1152{
1153 switch (pin) {
1154 case HPD_PORT_TC1:
1155 case HPD_PORT_TC2:
1156 case HPD_PORT_TC3:
1157 case HPD_PORT_TC4:
1158 case HPD_PORT_TC5:
1159 case HPD_PORT_TC6:
1160 return val & ICP_TC_HPD_LONG_DETECT(pin);
1161 default:
1162 return false;
1163 }
1164}
1165
1166static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1167{
1168 switch (pin) {
1169 case HPD_PORT_E:
1170 return val & PORTE_HOTPLUG_LONG_DETECT;
1171 default:
1172 return false;
1173 }
1174}
1175
1176static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1177{
1178 switch (pin) {
1179 case HPD_PORT_A:
1180 return val & PORTA_HOTPLUG_LONG_DETECT;
1181 case HPD_PORT_B:
1182 return val & PORTB_HOTPLUG_LONG_DETECT;
1183 case HPD_PORT_C:
1184 return val & PORTC_HOTPLUG_LONG_DETECT;
1185 case HPD_PORT_D:
1186 return val & PORTD_HOTPLUG_LONG_DETECT;
1187 default:
1188 return false;
1189 }
1190}
1191
1192static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1193{
1194 switch (pin) {
1195 case HPD_PORT_A:
1196 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1197 default:
1198 return false;
1199 }
1200}
1201
1202static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1203{
1204 switch (pin) {
1205 case HPD_PORT_B:
1206 return val & PORTB_HOTPLUG_LONG_DETECT;
1207 case HPD_PORT_C:
1208 return val & PORTC_HOTPLUG_LONG_DETECT;
1209 case HPD_PORT_D:
1210 return val & PORTD_HOTPLUG_LONG_DETECT;
1211 default:
1212 return false;
1213 }
1214}
1215
1216static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1217{
1218 switch (pin) {
1219 case HPD_PORT_B:
1220 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1221 case HPD_PORT_C:
1222 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1223 case HPD_PORT_D:
1224 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1225 default:
1226 return false;
1227 }
1228}
1229
1230/*
1231 * Get a bit mask of pins that have triggered, and which ones may be long.
1232 * This can be called multiple times with the same masks to accumulate
1233 * hotplug detection results from several registers.
1234 *
1235 * Note that the caller is expected to zero out the masks initially.
1236 */
1237static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1238 u32 *pin_mask, u32 *long_mask,
1239 u32 hotplug_trigger, u32 dig_hotplug_reg,
1240 const u32 hpd[HPD_NUM_PINS],
1241 bool long_pulse_detect(enum hpd_pin pin, u32 val))
1242{
1243 enum hpd_pin pin;
1244
1245 BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1246
1247 for_each_hpd_pin(pin) {
1248 if ((hpd[pin] & hotplug_trigger) == 0)
1249 continue;
1250
1251 *pin_mask |= BIT(pin);
1252
1253 if (long_pulse_detect(pin, dig_hotplug_reg))
1254 *long_mask |= BIT(pin);
1255 }
1256
1257 drm_dbg(&dev_priv->drm,
1258 "hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1259 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1260
1261}
1262
1263static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
1264 const u32 hpd[HPD_NUM_PINS])
1265{
1266 struct intel_encoder *encoder;
1267 u32 enabled_irqs = 0;
1268
1269 for_each_intel_encoder(&dev_priv->drm, encoder)
1270 if (dev_priv->display.hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
1271 enabled_irqs |= hpd[encoder->hpd_pin];
1272
1273 return enabled_irqs;
1274}
1275
1276static u32 intel_hpd_hotplug_irqs(struct drm_i915_private *dev_priv,
1277 const u32 hpd[HPD_NUM_PINS])
1278{
1279 struct intel_encoder *encoder;
1280 u32 hotplug_irqs = 0;
1281
1282 for_each_intel_encoder(&dev_priv->drm, encoder)
1283 hotplug_irqs |= hpd[encoder->hpd_pin];
1284
1285 return hotplug_irqs;
1286}
1287
1288static u32 intel_hpd_hotplug_enables(struct drm_i915_private *i915,
1289 hotplug_enables_func hotplug_enables)
1290{
1291 struct intel_encoder *encoder;
1292 u32 hotplug = 0;
1293
1294 for_each_intel_encoder(&i915->drm, encoder)
1295 hotplug |= hotplug_enables(i915, encoder->hpd_pin);
1296
1297 return hotplug;
1298}
1299
1300static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1301{
1302 wake_up_all(&dev_priv->display.gmbus.wait_queue);
1303}
1304
1305static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1306{
1307 wake_up_all(&dev_priv->display.gmbus.wait_queue);
1308}
1309
1310#if defined(CONFIG_DEBUG_FS)
1311static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1312 enum pipe pipe,
1313 u32 crc0, u32 crc1,
1314 u32 crc2, u32 crc3,
1315 u32 crc4)
1316{
1317 struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe);
1318 struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1319 u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1320
1321 trace_intel_pipe_crc(crtc, crcs);
1322
1323 spin_lock(&pipe_crc->lock);
1324 /*
1325 * For some not yet identified reason, the first CRC is
1326 * bonkers. So let's just wait for the next vblank and read
1327 * out the buggy result.
1328 *
1329 * On GEN8+ sometimes the second CRC is bonkers as well, so
1330 * don't trust that one either.
1331 */
1332 if (pipe_crc->skipped <= 0 ||
1333 (DISPLAY_VER(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1334 pipe_crc->skipped++;
1335 spin_unlock(&pipe_crc->lock);
1336 return;
1337 }
1338 spin_unlock(&pipe_crc->lock);
1339
1340 drm_crtc_add_crc_entry(&crtc->base, true,
1341 drm_crtc_accurate_vblank_count(&crtc->base),
1342 crcs);
1343}
1344#else
1345static inline void
1346display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1347 enum pipe pipe,
1348 u32 crc0, u32 crc1,
1349 u32 crc2, u32 crc3,
1350 u32 crc4) {}
1351#endif
1352
1353static void flip_done_handler(struct drm_i915_private *i915,
1354 enum pipe pipe)
1355{
1356 struct intel_crtc *crtc = intel_crtc_for_pipe(i915, pipe);
1357 struct drm_crtc_state *crtc_state = crtc->base.state;
1358 struct drm_pending_vblank_event *e = crtc_state->event;
1359 struct drm_device *dev = &i915->drm;
1360 unsigned long irqflags;
1361
1362 spin_lock_irqsave(&dev->event_lock, irqflags);
1363
1364 crtc_state->event = NULL;
1365
1366 drm_crtc_send_vblank_event(&crtc->base, e);
1367
1368 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1369}
1370
1371static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1372 enum pipe pipe)
1373{
1374 display_pipe_crc_irq_handler(dev_priv, pipe,
1375 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_1_IVB(pipe)),
1376 0, 0, 0, 0);
1377}
1378
1379static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1380 enum pipe pipe)
1381{
1382 display_pipe_crc_irq_handler(dev_priv, pipe,
1383 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_1_IVB(pipe)),
1384 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_2_IVB(pipe)),
1385 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_3_IVB(pipe)),
1386 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_4_IVB(pipe)),
1387 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_5_IVB(pipe)));
1388}
1389
1390static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1391 enum pipe pipe)
1392{
1393 u32 res1, res2;
1394
1395 if (DISPLAY_VER(dev_priv) >= 3)
1396 res1 = intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RES1_I915(pipe));
1397 else
1398 res1 = 0;
1399
1400 if (DISPLAY_VER(dev_priv) >= 5 || IS_G4X(dev_priv))
1401 res2 = intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RES2_G4X(pipe));
1402 else
1403 res2 = 0;
1404
1405 display_pipe_crc_irq_handler(dev_priv, pipe,
1406 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RED(pipe)),
1407 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_GREEN(pipe)),
1408 intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_BLUE(pipe)),
1409 res1, res2);
1410}
1411
1412static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1413{
1414 enum pipe pipe;
1415
1416 for_each_pipe(dev_priv, pipe) {
1417 intel_uncore_write(&dev_priv->uncore, PIPESTAT(pipe),
1418 PIPESTAT_INT_STATUS_MASK |
1419 PIPE_FIFO_UNDERRUN_STATUS);
1420
1421 dev_priv->pipestat_irq_mask[pipe] = 0;
1422 }
1423}
1424
1425static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1426 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1427{
1428 enum pipe pipe;
1429
1430 spin_lock(&dev_priv->irq_lock);
1431
1432 if (!dev_priv->display_irqs_enabled) {
1433 spin_unlock(&dev_priv->irq_lock);
1434 return;
1435 }
1436
1437 for_each_pipe(dev_priv, pipe) {
1438 i915_reg_t reg;
1439 u32 status_mask, enable_mask, iir_bit = 0;
1440
1441 /*
1442 * PIPESTAT bits get signalled even when the interrupt is
1443 * disabled with the mask bits, and some of the status bits do
1444 * not generate interrupts at all (like the underrun bit). Hence
1445 * we need to be careful that we only handle what we want to
1446 * handle.
1447 */
1448
1449 /* fifo underruns are filterered in the underrun handler. */
1450 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1451
1452 switch (pipe) {
1453 default:
1454 case PIPE_A:
1455 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1456 break;
1457 case PIPE_B:
1458 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1459 break;
1460 case PIPE_C:
1461 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1462 break;
1463 }
1464 if (iir & iir_bit)
1465 status_mask |= dev_priv->pipestat_irq_mask[pipe];
1466
1467 if (!status_mask)
1468 continue;
1469
1470 reg = PIPESTAT(pipe);
1471 pipe_stats[pipe] = intel_uncore_read(&dev_priv->uncore, reg) & status_mask;
1472 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1473
1474 /*
1475 * Clear the PIPE*STAT regs before the IIR
1476 *
1477 * Toggle the enable bits to make sure we get an
1478 * edge in the ISR pipe event bit if we don't clear
1479 * all the enabled status bits. Otherwise the edge
1480 * triggered IIR on i965/g4x wouldn't notice that
1481 * an interrupt is still pending.
1482 */
1483 if (pipe_stats[pipe]) {
1484 intel_uncore_write(&dev_priv->uncore, reg, pipe_stats[pipe]);
1485 intel_uncore_write(&dev_priv->uncore, reg, enable_mask);
1486 }
1487 }
1488 spin_unlock(&dev_priv->irq_lock);
1489}
1490
1491static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1492 u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1493{
1494 enum pipe pipe;
1495
1496 for_each_pipe(dev_priv, pipe) {
1497 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1498 intel_handle_vblank(dev_priv, pipe);
1499
1500 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1501 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1502
1503 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1504 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1505 }
1506}
1507
1508static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1509 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1510{
1511 bool blc_event = false;
1512 enum pipe pipe;
1513
1514 for_each_pipe(dev_priv, pipe) {
1515 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1516 intel_handle_vblank(dev_priv, pipe);
1517
1518 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1519 blc_event = true;
1520
1521 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1522 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1523
1524 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1525 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1526 }
1527
1528 if (blc_event || (iir & I915_ASLE_INTERRUPT))
1529 intel_opregion_asle_intr(dev_priv);
1530}
1531
1532static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1533 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1534{
1535 bool blc_event = false;
1536 enum pipe pipe;
1537
1538 for_each_pipe(dev_priv, pipe) {
1539 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1540 intel_handle_vblank(dev_priv, pipe);
1541
1542 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1543 blc_event = true;
1544
1545 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1546 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1547
1548 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1549 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1550 }
1551
1552 if (blc_event || (iir & I915_ASLE_INTERRUPT))
1553 intel_opregion_asle_intr(dev_priv);
1554
1555 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1556 gmbus_irq_handler(dev_priv);
1557}
1558
1559static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1560 u32 pipe_stats[I915_MAX_PIPES])
1561{
1562 enum pipe pipe;
1563
1564 for_each_pipe(dev_priv, pipe) {
1565 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1566 intel_handle_vblank(dev_priv, pipe);
1567
1568 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1569 flip_done_handler(dev_priv, pipe);
1570
1571 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1572 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1573
1574 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1575 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1576 }
1577
1578 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1579 gmbus_irq_handler(dev_priv);
1580}
1581
1582static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1583{
1584 u32 hotplug_status = 0, hotplug_status_mask;
1585 int i;
1586
1587 if (IS_G4X(dev_priv) ||
1588 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1589 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1590 DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1591 else
1592 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1593
1594 /*
1595 * We absolutely have to clear all the pending interrupt
1596 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1597 * interrupt bit won't have an edge, and the i965/g4x
1598 * edge triggered IIR will not notice that an interrupt
1599 * is still pending. We can't use PORT_HOTPLUG_EN to
1600 * guarantee the edge as the act of toggling the enable
1601 * bits can itself generate a new hotplug interrupt :(
1602 */
1603 for (i = 0; i < 10; i++) {
1604 u32 tmp = intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT) & hotplug_status_mask;
1605
1606 if (tmp == 0)
1607 return hotplug_status;
1608
1609 hotplug_status |= tmp;
1610 intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, hotplug_status);
1611 }
1612
1613 drm_WARN_ONCE(&dev_priv->drm, 1,
1614 "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1615 intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
1616
1617 return hotplug_status;
1618}
1619
1620static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1621 u32 hotplug_status)
1622{
1623 u32 pin_mask = 0, long_mask = 0;
1624 u32 hotplug_trigger;
1625
1626 if (IS_G4X(dev_priv) ||
1627 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1628 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1629 else
1630 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1631
1632 if (hotplug_trigger) {
1633 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1634 hotplug_trigger, hotplug_trigger,
1635 dev_priv->display.hotplug.hpd,
1636 i9xx_port_hotplug_long_detect);
1637
1638 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1639 }
1640
1641 if ((IS_G4X(dev_priv) ||
1642 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1643 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1644 dp_aux_irq_handler(dev_priv);
1645}
1646
1647static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1648{
1649 struct drm_i915_private *dev_priv = arg;
1650 irqreturn_t ret = IRQ_NONE;
1651
1652 if (!intel_irqs_enabled(dev_priv))
1653 return IRQ_NONE;
1654
1655 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1656 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1657
1658 do {
1659 u32 iir, gt_iir, pm_iir;
1660 u32 pipe_stats[I915_MAX_PIPES] = {};
1661 u32 hotplug_status = 0;
1662 u32 ier = 0;
1663
1664 gt_iir = intel_uncore_read(&dev_priv->uncore, GTIIR);
1665 pm_iir = intel_uncore_read(&dev_priv->uncore, GEN6_PMIIR);
1666 iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
1667
1668 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1669 break;
1670
1671 ret = IRQ_HANDLED;
1672
1673 /*
1674 * Theory on interrupt generation, based on empirical evidence:
1675 *
1676 * x = ((VLV_IIR & VLV_IER) ||
1677 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1678 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1679 *
1680 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1681 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1682 * guarantee the CPU interrupt will be raised again even if we
1683 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1684 * bits this time around.
1685 */
1686 intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
1687 ier = intel_uncore_rmw(&dev_priv->uncore, VLV_IER, ~0, 0);
1688
1689 if (gt_iir)
1690 intel_uncore_write(&dev_priv->uncore, GTIIR, gt_iir);
1691 if (pm_iir)
1692 intel_uncore_write(&dev_priv->uncore, GEN6_PMIIR, pm_iir);
1693
1694 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1695 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1696
1697 /* Call regardless, as some status bits might not be
1698 * signalled in iir */
1699 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1700
1701 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1702 I915_LPE_PIPE_B_INTERRUPT))
1703 intel_lpe_audio_irq_handler(dev_priv);
1704
1705 /*
1706 * VLV_IIR is single buffered, and reflects the level
1707 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1708 */
1709 if (iir)
1710 intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
1711
1712 intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
1713 intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1714
1715 if (gt_iir)
1716 gen6_gt_irq_handler(to_gt(dev_priv), gt_iir);
1717 if (pm_iir)
1718 gen6_rps_irq_handler(&to_gt(dev_priv)->rps, pm_iir);
1719
1720 if (hotplug_status)
1721 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1722
1723 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1724 } while (0);
1725
1726 pmu_irq_stats(dev_priv, ret);
1727
1728 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1729
1730 return ret;
1731}
1732
1733static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1734{
1735 struct drm_i915_private *dev_priv = arg;
1736 irqreturn_t ret = IRQ_NONE;
1737
1738 if (!intel_irqs_enabled(dev_priv))
1739 return IRQ_NONE;
1740
1741 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1742 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1743
1744 do {
1745 u32 master_ctl, iir;
1746 u32 pipe_stats[I915_MAX_PIPES] = {};
1747 u32 hotplug_status = 0;
1748 u32 ier = 0;
1749
1750 master_ctl = intel_uncore_read(&dev_priv->uncore, GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1751 iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
1752
1753 if (master_ctl == 0 && iir == 0)
1754 break;
1755
1756 ret = IRQ_HANDLED;
1757
1758 /*
1759 * Theory on interrupt generation, based on empirical evidence:
1760 *
1761 * x = ((VLV_IIR & VLV_IER) ||
1762 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1763 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1764 *
1765 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1766 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1767 * guarantee the CPU interrupt will be raised again even if we
1768 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1769 * bits this time around.
1770 */
1771 intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0);
1772 ier = intel_uncore_rmw(&dev_priv->uncore, VLV_IER, ~0, 0);
1773
1774 gen8_gt_irq_handler(to_gt(dev_priv), master_ctl);
1775
1776 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1777 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1778
1779 /* Call regardless, as some status bits might not be
1780 * signalled in iir */
1781 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1782
1783 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1784 I915_LPE_PIPE_B_INTERRUPT |
1785 I915_LPE_PIPE_C_INTERRUPT))
1786 intel_lpe_audio_irq_handler(dev_priv);
1787
1788 /*
1789 * VLV_IIR is single buffered, and reflects the level
1790 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1791 */
1792 if (iir)
1793 intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
1794
1795 intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
1796 intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1797
1798 if (hotplug_status)
1799 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1800
1801 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1802 } while (0);
1803
1804 pmu_irq_stats(dev_priv, ret);
1805
1806 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1807
1808 return ret;
1809}
1810
1811static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1812 u32 hotplug_trigger)
1813{
1814 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1815
1816 /*
1817 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1818 * unless we touch the hotplug register, even if hotplug_trigger is
1819 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1820 * errors.
1821 */
1822 dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
1823 if (!hotplug_trigger) {
1824 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1825 PORTD_HOTPLUG_STATUS_MASK |
1826 PORTC_HOTPLUG_STATUS_MASK |
1827 PORTB_HOTPLUG_STATUS_MASK;
1828 dig_hotplug_reg &= ~mask;
1829 }
1830
1831 intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg);
1832 if (!hotplug_trigger)
1833 return;
1834
1835 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1836 hotplug_trigger, dig_hotplug_reg,
1837 dev_priv->display.hotplug.pch_hpd,
1838 pch_port_hotplug_long_detect);
1839
1840 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1841}
1842
1843static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1844{
1845 enum pipe pipe;
1846 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1847
1848 ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1849
1850 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1851 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1852 SDE_AUDIO_POWER_SHIFT);
1853 drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1854 port_name(port));
1855 }
1856
1857 if (pch_iir & SDE_AUX_MASK)
1858 dp_aux_irq_handler(dev_priv);
1859
1860 if (pch_iir & SDE_GMBUS)
1861 gmbus_irq_handler(dev_priv);
1862
1863 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1864 drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
1865
1866 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1867 drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
1868
1869 if (pch_iir & SDE_POISON)
1870 drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1871
1872 if (pch_iir & SDE_FDI_MASK) {
1873 for_each_pipe(dev_priv, pipe)
1874 drm_dbg(&dev_priv->drm, " pipe %c FDI IIR: 0x%08x\n",
1875 pipe_name(pipe),
1876 intel_uncore_read(&dev_priv->uncore, FDI_RX_IIR(pipe)));
1877 }
1878
1879 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1880 drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1881
1882 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1883 drm_dbg(&dev_priv->drm,
1884 "PCH transcoder CRC error interrupt\n");
1885
1886 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1887 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1888
1889 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1890 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1891}
1892
1893static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1894{
1895 u32 err_int = intel_uncore_read(&dev_priv->uncore, GEN7_ERR_INT);
1896 enum pipe pipe;
1897
1898 if (err_int & ERR_INT_POISON)
1899 drm_err(&dev_priv->drm, "Poison interrupt\n");
1900
1901 for_each_pipe(dev_priv, pipe) {
1902 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1903 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1904
1905 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1906 if (IS_IVYBRIDGE(dev_priv))
1907 ivb_pipe_crc_irq_handler(dev_priv, pipe);
1908 else
1909 hsw_pipe_crc_irq_handler(dev_priv, pipe);
1910 }
1911 }
1912
1913 intel_uncore_write(&dev_priv->uncore, GEN7_ERR_INT, err_int);
1914}
1915
1916static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1917{
1918 u32 serr_int = intel_uncore_read(&dev_priv->uncore, SERR_INT);
1919 enum pipe pipe;
1920
1921 if (serr_int & SERR_INT_POISON)
1922 drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1923
1924 for_each_pipe(dev_priv, pipe)
1925 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1926 intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1927
1928 intel_uncore_write(&dev_priv->uncore, SERR_INT, serr_int);
1929}
1930
1931static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1932{
1933 enum pipe pipe;
1934 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1935
1936 ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1937
1938 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1939 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1940 SDE_AUDIO_POWER_SHIFT_CPT);
1941 drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1942 port_name(port));
1943 }
1944
1945 if (pch_iir & SDE_AUX_MASK_CPT)
1946 dp_aux_irq_handler(dev_priv);
1947
1948 if (pch_iir & SDE_GMBUS_CPT)
1949 gmbus_irq_handler(dev_priv);
1950
1951 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1952 drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1953
1954 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1955 drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1956
1957 if (pch_iir & SDE_FDI_MASK_CPT) {
1958 for_each_pipe(dev_priv, pipe)
1959 drm_dbg(&dev_priv->drm, " pipe %c FDI IIR: 0x%08x\n",
1960 pipe_name(pipe),
1961 intel_uncore_read(&dev_priv->uncore, FDI_RX_IIR(pipe)));
1962 }
1963
1964 if (pch_iir & SDE_ERROR_CPT)
1965 cpt_serr_int_handler(dev_priv);
1966}
1967
1968static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1969{
1970 u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_HOTPLUG_MASK_ICP;
1971 u32 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_MASK_ICP;
1972 u32 pin_mask = 0, long_mask = 0;
1973
1974 if (ddi_hotplug_trigger) {
1975 u32 dig_hotplug_reg;
1976
1977 /* Locking due to DSI native GPIO sequences */
1978 spin_lock(&dev_priv->irq_lock);
1979 dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, SHOTPLUG_CTL_DDI, 0, 0);
1980 spin_unlock(&dev_priv->irq_lock);
1981
1982 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1983 ddi_hotplug_trigger, dig_hotplug_reg,
1984 dev_priv->display.hotplug.pch_hpd,
1985 icp_ddi_port_hotplug_long_detect);
1986 }
1987
1988 if (tc_hotplug_trigger) {
1989 u32 dig_hotplug_reg;
1990
1991 dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, SHOTPLUG_CTL_TC, 0, 0);
1992
1993 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1994 tc_hotplug_trigger, dig_hotplug_reg,
1995 dev_priv->display.hotplug.pch_hpd,
1996 icp_tc_port_hotplug_long_detect);
1997 }
1998
1999 if (pin_mask)
2000 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2001
2002 if (pch_iir & SDE_GMBUS_ICP)
2003 gmbus_irq_handler(dev_priv);
2004}
2005
2006static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2007{
2008 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2009 ~SDE_PORTE_HOTPLUG_SPT;
2010 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2011 u32 pin_mask = 0, long_mask = 0;
2012
2013 if (hotplug_trigger) {
2014 u32 dig_hotplug_reg;
2015
2016 dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG, 0, 0);
2017
2018 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2019 hotplug_trigger, dig_hotplug_reg,
2020 dev_priv->display.hotplug.pch_hpd,
2021 spt_port_hotplug_long_detect);
2022 }
2023
2024 if (hotplug2_trigger) {
2025 u32 dig_hotplug_reg;
2026
2027 dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG2, 0, 0);
2028
2029 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2030 hotplug2_trigger, dig_hotplug_reg,
2031 dev_priv->display.hotplug.pch_hpd,
2032 spt_port_hotplug2_long_detect);
2033 }
2034
2035 if (pin_mask)
2036 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2037
2038 if (pch_iir & SDE_GMBUS_CPT)
2039 gmbus_irq_handler(dev_priv);
2040}
2041
2042static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2043 u32 hotplug_trigger)
2044{
2045 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2046
2047 dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL, 0, 0);
2048
2049 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2050 hotplug_trigger, dig_hotplug_reg,
2051 dev_priv->display.hotplug.hpd,
2052 ilk_port_hotplug_long_detect);
2053
2054 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2055}
2056
2057static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2058 u32 de_iir)
2059{
2060 enum pipe pipe;
2061 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2062
2063 if (hotplug_trigger)
2064 ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2065
2066 if (de_iir & DE_AUX_CHANNEL_A)
2067 dp_aux_irq_handler(dev_priv);
2068
2069 if (de_iir & DE_GSE)
2070 intel_opregion_asle_intr(dev_priv);
2071
2072 if (de_iir & DE_POISON)
2073 drm_err(&dev_priv->drm, "Poison interrupt\n");
2074
2075 for_each_pipe(dev_priv, pipe) {
2076 if (de_iir & DE_PIPE_VBLANK(pipe))
2077 intel_handle_vblank(dev_priv, pipe);
2078
2079 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2080 flip_done_handler(dev_priv, pipe);
2081
2082 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2083 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2084
2085 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2086 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2087 }
2088
2089 /* check event from PCH */
2090 if (de_iir & DE_PCH_EVENT) {
2091 u32 pch_iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2092
2093 if (HAS_PCH_CPT(dev_priv))
2094 cpt_irq_handler(dev_priv, pch_iir);
2095 else
2096 ibx_irq_handler(dev_priv, pch_iir);
2097
2098 /* should clear PCH hotplug event before clear CPU irq */
2099 intel_uncore_write(&dev_priv->uncore, SDEIIR, pch_iir);
2100 }
2101
2102 if (DISPLAY_VER(dev_priv) == 5 && de_iir & DE_PCU_EVENT)
2103 gen5_rps_irq_handler(&to_gt(dev_priv)->rps);
2104}
2105
2106static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2107 u32 de_iir)
2108{
2109 enum pipe pipe;
2110 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2111
2112 if (hotplug_trigger)
2113 ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2114
2115 if (de_iir & DE_ERR_INT_IVB)
2116 ivb_err_int_handler(dev_priv);
2117
2118 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2119 dp_aux_irq_handler(dev_priv);
2120
2121 if (de_iir & DE_GSE_IVB)
2122 intel_opregion_asle_intr(dev_priv);
2123
2124 for_each_pipe(dev_priv, pipe) {
2125 if (de_iir & DE_PIPE_VBLANK_IVB(pipe))
2126 intel_handle_vblank(dev_priv, pipe);
2127
2128 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2129 flip_done_handler(dev_priv, pipe);
2130 }
2131
2132 /* check event from PCH */
2133 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2134 u32 pch_iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2135
2136 cpt_irq_handler(dev_priv, pch_iir);
2137
2138 /* clear PCH hotplug event before clear CPU irq */
2139 intel_uncore_write(&dev_priv->uncore, SDEIIR, pch_iir);
2140 }
2141}
2142
2143/*
2144 * To handle irqs with the minimum potential races with fresh interrupts, we:
2145 * 1 - Disable Master Interrupt Control.
2146 * 2 - Find the source(s) of the interrupt.
2147 * 3 - Clear the Interrupt Identity bits (IIR).
2148 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2149 * 5 - Re-enable Master Interrupt Control.
2150 */
2151static irqreturn_t ilk_irq_handler(int irq, void *arg)
2152{
2153 struct drm_i915_private *i915 = arg;
2154 void __iomem * const regs = i915->uncore.regs;
2155 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2156 irqreturn_t ret = IRQ_NONE;
2157
2158 if (unlikely(!intel_irqs_enabled(i915)))
2159 return IRQ_NONE;
2160
2161 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2162 disable_rpm_wakeref_asserts(&i915->runtime_pm);
2163
2164 /* disable master interrupt before clearing iir */
2165 de_ier = raw_reg_read(regs, DEIER);
2166 raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2167
2168 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2169 * interrupts will will be stored on its back queue, and then we'll be
2170 * able to process them after we restore SDEIER (as soon as we restore
2171 * it, we'll get an interrupt if SDEIIR still has something to process
2172 * due to its back queue). */
2173 if (!HAS_PCH_NOP(i915)) {
2174 sde_ier = raw_reg_read(regs, SDEIER);
2175 raw_reg_write(regs, SDEIER, 0);
2176 }
2177
2178 /* Find, clear, then process each source of interrupt */
2179
2180 gt_iir = raw_reg_read(regs, GTIIR);
2181 if (gt_iir) {
2182 raw_reg_write(regs, GTIIR, gt_iir);
2183 if (GRAPHICS_VER(i915) >= 6)
2184 gen6_gt_irq_handler(to_gt(i915), gt_iir);
2185 else
2186 gen5_gt_irq_handler(to_gt(i915), gt_iir);
2187 ret = IRQ_HANDLED;
2188 }
2189
2190 de_iir = raw_reg_read(regs, DEIIR);
2191 if (de_iir) {
2192 raw_reg_write(regs, DEIIR, de_iir);
2193 if (DISPLAY_VER(i915) >= 7)
2194 ivb_display_irq_handler(i915, de_iir);
2195 else
2196 ilk_display_irq_handler(i915, de_iir);
2197 ret = IRQ_HANDLED;
2198 }
2199
2200 if (GRAPHICS_VER(i915) >= 6) {
2201 u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
2202 if (pm_iir) {
2203 raw_reg_write(regs, GEN6_PMIIR, pm_iir);
2204 gen6_rps_irq_handler(&to_gt(i915)->rps, pm_iir);
2205 ret = IRQ_HANDLED;
2206 }
2207 }
2208
2209 raw_reg_write(regs, DEIER, de_ier);
2210 if (sde_ier)
2211 raw_reg_write(regs, SDEIER, sde_ier);
2212
2213 pmu_irq_stats(i915, ret);
2214
2215 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2216 enable_rpm_wakeref_asserts(&i915->runtime_pm);
2217
2218 return ret;
2219}
2220
2221static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2222 u32 hotplug_trigger)
2223{
2224 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2225
2226 dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG, 0, 0);
2227
2228 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2229 hotplug_trigger, dig_hotplug_reg,
2230 dev_priv->display.hotplug.hpd,
2231 bxt_port_hotplug_long_detect);
2232
2233 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2234}
2235
2236static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2237{
2238 u32 pin_mask = 0, long_mask = 0;
2239 u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2240 u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2241
2242 if (trigger_tc) {
2243 u32 dig_hotplug_reg;
2244
2245 dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL, 0, 0);
2246
2247 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2248 trigger_tc, dig_hotplug_reg,
2249 dev_priv->display.hotplug.hpd,
2250 gen11_port_hotplug_long_detect);
2251 }
2252
2253 if (trigger_tbt) {
2254 u32 dig_hotplug_reg;
2255
2256 dig_hotplug_reg = intel_uncore_rmw(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL, 0, 0);
2257
2258 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2259 trigger_tbt, dig_hotplug_reg,
2260 dev_priv->display.hotplug.hpd,
2261 gen11_port_hotplug_long_detect);
2262 }
2263
2264 if (pin_mask)
2265 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2266 else
2267 drm_err(&dev_priv->drm,
2268 "Unexpected DE HPD interrupt 0x%08x\n", iir);
2269}
2270
2271static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2272{
2273 u32 mask;
2274
2275 if (DISPLAY_VER(dev_priv) >= 13)
2276 return TGL_DE_PORT_AUX_DDIA |
2277 TGL_DE_PORT_AUX_DDIB |
2278 TGL_DE_PORT_AUX_DDIC |
2279 XELPD_DE_PORT_AUX_DDID |
2280 XELPD_DE_PORT_AUX_DDIE |
2281 TGL_DE_PORT_AUX_USBC1 |
2282 TGL_DE_PORT_AUX_USBC2 |
2283 TGL_DE_PORT_AUX_USBC3 |
2284 TGL_DE_PORT_AUX_USBC4;
2285 else if (DISPLAY_VER(dev_priv) >= 12)
2286 return TGL_DE_PORT_AUX_DDIA |
2287 TGL_DE_PORT_AUX_DDIB |
2288 TGL_DE_PORT_AUX_DDIC |
2289 TGL_DE_PORT_AUX_USBC1 |
2290 TGL_DE_PORT_AUX_USBC2 |
2291 TGL_DE_PORT_AUX_USBC3 |
2292 TGL_DE_PORT_AUX_USBC4 |
2293 TGL_DE_PORT_AUX_USBC5 |
2294 TGL_DE_PORT_AUX_USBC6;
2295
2296
2297 mask = GEN8_AUX_CHANNEL_A;
2298 if (DISPLAY_VER(dev_priv) >= 9)
2299 mask |= GEN9_AUX_CHANNEL_B |
2300 GEN9_AUX_CHANNEL_C |
2301 GEN9_AUX_CHANNEL_D;
2302
2303 if (DISPLAY_VER(dev_priv) == 11) {
2304 mask |= ICL_AUX_CHANNEL_F;
2305 mask |= ICL_AUX_CHANNEL_E;
2306 }
2307
2308 return mask;
2309}
2310
2311static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2312{
2313 if (DISPLAY_VER(dev_priv) >= 13 || HAS_D12_PLANE_MINIMIZATION(dev_priv))
2314 return RKL_DE_PIPE_IRQ_FAULT_ERRORS;
2315 else if (DISPLAY_VER(dev_priv) >= 11)
2316 return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2317 else if (DISPLAY_VER(dev_priv) >= 9)
2318 return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2319 else
2320 return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2321}
2322
2323static void
2324gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2325{
2326 bool found = false;
2327
2328 if (iir & GEN8_DE_MISC_GSE) {
2329 intel_opregion_asle_intr(dev_priv);
2330 found = true;
2331 }
2332
2333 if (iir & GEN8_DE_EDP_PSR) {
2334 struct intel_encoder *encoder;
2335 u32 psr_iir;
2336 i915_reg_t iir_reg;
2337
2338 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2339 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2340
2341 if (DISPLAY_VER(dev_priv) >= 12)
2342 iir_reg = TRANS_PSR_IIR(intel_dp->psr.transcoder);
2343 else
2344 iir_reg = EDP_PSR_IIR;
2345
2346 psr_iir = intel_uncore_rmw(&dev_priv->uncore, iir_reg, 0, 0);
2347
2348 if (psr_iir)
2349 found = true;
2350
2351 intel_psr_irq_handler(intel_dp, psr_iir);
2352
2353 /* prior GEN12 only have one EDP PSR */
2354 if (DISPLAY_VER(dev_priv) < 12)
2355 break;
2356 }
2357 }
2358
2359 if (!found)
2360 drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2361}
2362
2363static void gen11_dsi_te_interrupt_handler(struct drm_i915_private *dev_priv,
2364 u32 te_trigger)
2365{
2366 enum pipe pipe = INVALID_PIPE;
2367 enum transcoder dsi_trans;
2368 enum port port;
2369 u32 val, tmp;
2370
2371 /*
2372 * Incase of dual link, TE comes from DSI_1
2373 * this is to check if dual link is enabled
2374 */
2375 val = intel_uncore_read(&dev_priv->uncore, TRANS_DDI_FUNC_CTL2(TRANSCODER_DSI_0));
2376 val &= PORT_SYNC_MODE_ENABLE;
2377
2378 /*
2379 * if dual link is enabled, then read DSI_0
2380 * transcoder registers
2381 */
2382 port = ((te_trigger & DSI1_TE && val) || (te_trigger & DSI0_TE)) ?
2383 PORT_A : PORT_B;
2384 dsi_trans = (port == PORT_A) ? TRANSCODER_DSI_0 : TRANSCODER_DSI_1;
2385
2386 /* Check if DSI configured in command mode */
2387 val = intel_uncore_read(&dev_priv->uncore, DSI_TRANS_FUNC_CONF(dsi_trans));
2388 val = val & OP_MODE_MASK;
2389
2390 if (val != CMD_MODE_NO_GATE && val != CMD_MODE_TE_GATE) {
2391 drm_err(&dev_priv->drm, "DSI trancoder not configured in command mode\n");
2392 return;
2393 }
2394
2395 /* Get PIPE for handling VBLANK event */
2396 val = intel_uncore_read(&dev_priv->uncore, TRANS_DDI_FUNC_CTL(dsi_trans));
2397 switch (val & TRANS_DDI_EDP_INPUT_MASK) {
2398 case TRANS_DDI_EDP_INPUT_A_ON:
2399 pipe = PIPE_A;
2400 break;
2401 case TRANS_DDI_EDP_INPUT_B_ONOFF:
2402 pipe = PIPE_B;
2403 break;
2404 case TRANS_DDI_EDP_INPUT_C_ONOFF:
2405 pipe = PIPE_C;
2406 break;
2407 default:
2408 drm_err(&dev_priv->drm, "Invalid PIPE\n");
2409 return;
2410 }
2411
2412 intel_handle_vblank(dev_priv, pipe);
2413
2414 /* clear TE in dsi IIR */
2415 port = (te_trigger & DSI1_TE) ? PORT_B : PORT_A;
2416 tmp = intel_uncore_rmw(&dev_priv->uncore, DSI_INTR_IDENT_REG(port), 0, 0);
2417}
2418
2419static u32 gen8_de_pipe_flip_done_mask(struct drm_i915_private *i915)
2420{
2421 if (DISPLAY_VER(i915) >= 9)
2422 return GEN9_PIPE_PLANE1_FLIP_DONE;
2423 else
2424 return GEN8_PIPE_PRIMARY_FLIP_DONE;
2425}
2426
2427u32 gen8_de_pipe_underrun_mask(struct drm_i915_private *dev_priv)
2428{
2429 u32 mask = GEN8_PIPE_FIFO_UNDERRUN;
2430
2431 if (DISPLAY_VER(dev_priv) >= 13)
2432 mask |= XELPD_PIPE_SOFT_UNDERRUN |
2433 XELPD_PIPE_HARD_UNDERRUN;
2434
2435 return mask;
2436}
2437
2438static irqreturn_t
2439gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2440{
2441 irqreturn_t ret = IRQ_NONE;
2442 u32 iir;
2443 enum pipe pipe;
2444
2445 drm_WARN_ON_ONCE(&dev_priv->drm, !HAS_DISPLAY(dev_priv));
2446
2447 if (master_ctl & GEN8_DE_MISC_IRQ) {
2448 iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_MISC_IIR);
2449 if (iir) {
2450 intel_uncore_write(&dev_priv->uncore, GEN8_DE_MISC_IIR, iir);
2451 ret = IRQ_HANDLED;
2452 gen8_de_misc_irq_handler(dev_priv, iir);
2453 } else {
2454 drm_err(&dev_priv->drm,
2455 "The master control interrupt lied (DE MISC)!\n");
2456 }
2457 }
2458
2459 if (DISPLAY_VER(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2460 iir = intel_uncore_read(&dev_priv->uncore, GEN11_DE_HPD_IIR);
2461 if (iir) {
2462 intel_uncore_write(&dev_priv->uncore, GEN11_DE_HPD_IIR, iir);
2463 ret = IRQ_HANDLED;
2464 gen11_hpd_irq_handler(dev_priv, iir);
2465 } else {
2466 drm_err(&dev_priv->drm,
2467 "The master control interrupt lied, (DE HPD)!\n");
2468 }
2469 }
2470
2471 if (master_ctl & GEN8_DE_PORT_IRQ) {
2472 iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PORT_IIR);
2473 if (iir) {
2474 bool found = false;
2475
2476 intel_uncore_write(&dev_priv->uncore, GEN8_DE_PORT_IIR, iir);
2477 ret = IRQ_HANDLED;
2478
2479 if (iir & gen8_de_port_aux_mask(dev_priv)) {
2480 dp_aux_irq_handler(dev_priv);
2481 found = true;
2482 }
2483
2484 if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
2485 u32 hotplug_trigger = iir & BXT_DE_PORT_HOTPLUG_MASK;
2486
2487 if (hotplug_trigger) {
2488 bxt_hpd_irq_handler(dev_priv, hotplug_trigger);
2489 found = true;
2490 }
2491 } else if (IS_BROADWELL(dev_priv)) {
2492 u32 hotplug_trigger = iir & BDW_DE_PORT_HOTPLUG_MASK;
2493
2494 if (hotplug_trigger) {
2495 ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2496 found = true;
2497 }
2498 }
2499
2500 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
2501 (iir & BXT_DE_PORT_GMBUS)) {
2502 gmbus_irq_handler(dev_priv);
2503 found = true;
2504 }
2505
2506 if (DISPLAY_VER(dev_priv) >= 11) {
2507 u32 te_trigger = iir & (DSI0_TE | DSI1_TE);
2508
2509 if (te_trigger) {
2510 gen11_dsi_te_interrupt_handler(dev_priv, te_trigger);
2511 found = true;
2512 }
2513 }
2514
2515 if (!found)
2516 drm_err(&dev_priv->drm,
2517 "Unexpected DE Port interrupt\n");
2518 }
2519 else
2520 drm_err(&dev_priv->drm,
2521 "The master control interrupt lied (DE PORT)!\n");
2522 }
2523
2524 for_each_pipe(dev_priv, pipe) {
2525 u32 fault_errors;
2526
2527 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2528 continue;
2529
2530 iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PIPE_IIR(pipe));
2531 if (!iir) {
2532 drm_err(&dev_priv->drm,
2533 "The master control interrupt lied (DE PIPE)!\n");
2534 continue;
2535 }
2536
2537 ret = IRQ_HANDLED;
2538 intel_uncore_write(&dev_priv->uncore, GEN8_DE_PIPE_IIR(pipe), iir);
2539
2540 if (iir & GEN8_PIPE_VBLANK)
2541 intel_handle_vblank(dev_priv, pipe);
2542
2543 if (iir & gen8_de_pipe_flip_done_mask(dev_priv))
2544 flip_done_handler(dev_priv, pipe);
2545
2546 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2547 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2548
2549 if (iir & gen8_de_pipe_underrun_mask(dev_priv))
2550 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2551
2552 fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2553 if (fault_errors)
2554 drm_err(&dev_priv->drm,
2555 "Fault errors on pipe %c: 0x%08x\n",
2556 pipe_name(pipe),
2557 fault_errors);
2558 }
2559
2560 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2561 master_ctl & GEN8_DE_PCH_IRQ) {
2562 /*
2563 * FIXME(BDW): Assume for now that the new interrupt handling
2564 * scheme also closed the SDE interrupt handling race we've seen
2565 * on older pch-split platforms. But this needs testing.
2566 */
2567 iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2568 if (iir) {
2569 intel_uncore_write(&dev_priv->uncore, SDEIIR, iir);
2570 ret = IRQ_HANDLED;
2571
2572 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2573 icp_irq_handler(dev_priv, iir);
2574 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2575 spt_irq_handler(dev_priv, iir);
2576 else
2577 cpt_irq_handler(dev_priv, iir);
2578 } else {
2579 /*
2580 * Like on previous PCH there seems to be something
2581 * fishy going on with forwarding PCH interrupts.
2582 */
2583 drm_dbg(&dev_priv->drm,
2584 "The master control interrupt lied (SDE)!\n");
2585 }
2586 }
2587
2588 return ret;
2589}
2590
2591static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2592{
2593 raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2594
2595 /*
2596 * Now with master disabled, get a sample of level indications
2597 * for this interrupt. Indications will be cleared on related acks.
2598 * New indications can and will light up during processing,
2599 * and will generate new interrupt after enabling master.
2600 */
2601 return raw_reg_read(regs, GEN8_MASTER_IRQ);
2602}
2603
2604static inline void gen8_master_intr_enable(void __iomem * const regs)
2605{
2606 raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2607}
2608
2609static irqreturn_t gen8_irq_handler(int irq, void *arg)
2610{
2611 struct drm_i915_private *dev_priv = arg;
2612 void __iomem * const regs = dev_priv->uncore.regs;
2613 u32 master_ctl;
2614
2615 if (!intel_irqs_enabled(dev_priv))
2616 return IRQ_NONE;
2617
2618 master_ctl = gen8_master_intr_disable(regs);
2619 if (!master_ctl) {
2620 gen8_master_intr_enable(regs);
2621 return IRQ_NONE;
2622 }
2623
2624 /* Find, queue (onto bottom-halves), then clear each source */
2625 gen8_gt_irq_handler(to_gt(dev_priv), master_ctl);
2626
2627 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2628 if (master_ctl & ~GEN8_GT_IRQS) {
2629 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2630 gen8_de_irq_handler(dev_priv, master_ctl);
2631 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2632 }
2633
2634 gen8_master_intr_enable(regs);
2635
2636 pmu_irq_stats(dev_priv, IRQ_HANDLED);
2637
2638 return IRQ_HANDLED;
2639}
2640
2641static u32
2642gen11_gu_misc_irq_ack(struct drm_i915_private *i915, const u32 master_ctl)
2643{
2644 void __iomem * const regs = i915->uncore.regs;
2645 u32 iir;
2646
2647 if (!(master_ctl & GEN11_GU_MISC_IRQ))
2648 return 0;
2649
2650 iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2651 if (likely(iir))
2652 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2653
2654 return iir;
2655}
2656
2657static void
2658gen11_gu_misc_irq_handler(struct drm_i915_private *i915, const u32 iir)
2659{
2660 if (iir & GEN11_GU_MISC_GSE)
2661 intel_opregion_asle_intr(i915);
2662}
2663
2664static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2665{
2666 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2667
2668 /*
2669 * Now with master disabled, get a sample of level indications
2670 * for this interrupt. Indications will be cleared on related acks.
2671 * New indications can and will light up during processing,
2672 * and will generate new interrupt after enabling master.
2673 */
2674 return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2675}
2676
2677static inline void gen11_master_intr_enable(void __iomem * const regs)
2678{
2679 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2680}
2681
2682static void
2683gen11_display_irq_handler(struct drm_i915_private *i915)
2684{
2685 void __iomem * const regs = i915->uncore.regs;
2686 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2687
2688 disable_rpm_wakeref_asserts(&i915->runtime_pm);
2689 /*
2690 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2691 * for the display related bits.
2692 */
2693 raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2694 gen8_de_irq_handler(i915, disp_ctl);
2695 raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2696 GEN11_DISPLAY_IRQ_ENABLE);
2697
2698 enable_rpm_wakeref_asserts(&i915->runtime_pm);
2699}
2700
2701static irqreturn_t gen11_irq_handler(int irq, void *arg)
2702{
2703 struct drm_i915_private *i915 = arg;
2704 void __iomem * const regs = i915->uncore.regs;
2705 struct intel_gt *gt = to_gt(i915);
2706 u32 master_ctl;
2707 u32 gu_misc_iir;
2708
2709 if (!intel_irqs_enabled(i915))
2710 return IRQ_NONE;
2711
2712 master_ctl = gen11_master_intr_disable(regs);
2713 if (!master_ctl) {
2714 gen11_master_intr_enable(regs);
2715 return IRQ_NONE;
2716 }
2717
2718 /* Find, queue (onto bottom-halves), then clear each source */
2719 gen11_gt_irq_handler(gt, master_ctl);
2720
2721 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2722 if (master_ctl & GEN11_DISPLAY_IRQ)
2723 gen11_display_irq_handler(i915);
2724
2725 gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
2726
2727 gen11_master_intr_enable(regs);
2728
2729 gen11_gu_misc_irq_handler(i915, gu_misc_iir);
2730
2731 pmu_irq_stats(i915, IRQ_HANDLED);
2732
2733 return IRQ_HANDLED;
2734}
2735
2736static inline u32 dg1_master_intr_disable(void __iomem * const regs)
2737{
2738 u32 val;
2739
2740 /* First disable interrupts */
2741 raw_reg_write(regs, DG1_MSTR_TILE_INTR, 0);
2742
2743 /* Get the indication levels and ack the master unit */
2744 val = raw_reg_read(regs, DG1_MSTR_TILE_INTR);
2745 if (unlikely(!val))
2746 return 0;
2747
2748 raw_reg_write(regs, DG1_MSTR_TILE_INTR, val);
2749
2750 return val;
2751}
2752
2753static inline void dg1_master_intr_enable(void __iomem * const regs)
2754{
2755 raw_reg_write(regs, DG1_MSTR_TILE_INTR, DG1_MSTR_IRQ);
2756}
2757
2758static irqreturn_t dg1_irq_handler(int irq, void *arg)
2759{
2760 struct drm_i915_private * const i915 = arg;
2761 struct intel_gt *gt = to_gt(i915);
2762 void __iomem * const regs = gt->uncore->regs;
2763 u32 master_tile_ctl, master_ctl;
2764 u32 gu_misc_iir;
2765
2766 if (!intel_irqs_enabled(i915))
2767 return IRQ_NONE;
2768
2769 master_tile_ctl = dg1_master_intr_disable(regs);
2770 if (!master_tile_ctl) {
2771 dg1_master_intr_enable(regs);
2772 return IRQ_NONE;
2773 }
2774
2775 /* FIXME: we only support tile 0 for now. */
2776 if (master_tile_ctl & DG1_MSTR_TILE(0)) {
2777 master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2778 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, master_ctl);
2779 } else {
2780 drm_err(&i915->drm, "Tile not supported: 0x%08x\n",
2781 master_tile_ctl);
2782 dg1_master_intr_enable(regs);
2783 return IRQ_NONE;
2784 }
2785
2786 gen11_gt_irq_handler(gt, master_ctl);
2787
2788 if (master_ctl & GEN11_DISPLAY_IRQ)
2789 gen11_display_irq_handler(i915);
2790
2791 gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
2792
2793 dg1_master_intr_enable(regs);
2794
2795 gen11_gu_misc_irq_handler(i915, gu_misc_iir);
2796
2797 pmu_irq_stats(i915, IRQ_HANDLED);
2798
2799 return IRQ_HANDLED;
2800}
2801
2802/* Called from drm generic code, passed 'crtc' which
2803 * we use as a pipe index
2804 */
2805int i8xx_enable_vblank(struct drm_crtc *crtc)
2806{
2807 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2808 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2809 unsigned long irqflags;
2810
2811 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2812 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2813 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2814
2815 return 0;
2816}
2817
2818int i915gm_enable_vblank(struct drm_crtc *crtc)
2819{
2820 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2821
2822 /*
2823 * Vblank interrupts fail to wake the device up from C2+.
2824 * Disabling render clock gating during C-states avoids
2825 * the problem. There is a small power cost so we do this
2826 * only when vblank interrupts are actually enabled.
2827 */
2828 if (dev_priv->vblank_enabled++ == 0)
2829 intel_uncore_write(&dev_priv->uncore, SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2830
2831 return i8xx_enable_vblank(crtc);
2832}
2833
2834int i965_enable_vblank(struct drm_crtc *crtc)
2835{
2836 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2837 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2838 unsigned long irqflags;
2839
2840 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2841 i915_enable_pipestat(dev_priv, pipe,
2842 PIPE_START_VBLANK_INTERRUPT_STATUS);
2843 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2844
2845 return 0;
2846}
2847
2848int ilk_enable_vblank(struct drm_crtc *crtc)
2849{
2850 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2851 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2852 unsigned long irqflags;
2853 u32 bit = DISPLAY_VER(dev_priv) >= 7 ?
2854 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2855
2856 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2857 ilk_enable_display_irq(dev_priv, bit);
2858 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2859
2860 /* Even though there is no DMC, frame counter can get stuck when
2861 * PSR is active as no frames are generated.
2862 */
2863 if (HAS_PSR(dev_priv))
2864 drm_crtc_vblank_restore(crtc);
2865
2866 return 0;
2867}
2868
2869static bool gen11_dsi_configure_te(struct intel_crtc *intel_crtc,
2870 bool enable)
2871{
2872 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
2873 enum port port;
2874
2875 if (!(intel_crtc->mode_flags &
2876 (I915_MODE_FLAG_DSI_USE_TE1 | I915_MODE_FLAG_DSI_USE_TE0)))
2877 return false;
2878
2879 /* for dual link cases we consider TE from slave */
2880 if (intel_crtc->mode_flags & I915_MODE_FLAG_DSI_USE_TE1)
2881 port = PORT_B;
2882 else
2883 port = PORT_A;
2884
2885 intel_uncore_rmw(&dev_priv->uncore, DSI_INTR_MASK_REG(port), DSI_TE_EVENT,
2886 enable ? 0 : DSI_TE_EVENT);
2887
2888 intel_uncore_rmw(&dev_priv->uncore, DSI_INTR_IDENT_REG(port), 0, 0);
2889
2890 return true;
2891}
2892
2893int bdw_enable_vblank(struct drm_crtc *_crtc)
2894{
2895 struct intel_crtc *crtc = to_intel_crtc(_crtc);
2896 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2897 enum pipe pipe = crtc->pipe;
2898 unsigned long irqflags;
2899
2900 if (gen11_dsi_configure_te(crtc, true))
2901 return 0;
2902
2903 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2904 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2905 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2906
2907 /* Even if there is no DMC, frame counter can get stuck when
2908 * PSR is active as no frames are generated, so check only for PSR.
2909 */
2910 if (HAS_PSR(dev_priv))
2911 drm_crtc_vblank_restore(&crtc->base);
2912
2913 return 0;
2914}
2915
2916/* Called from drm generic code, passed 'crtc' which
2917 * we use as a pipe index
2918 */
2919void i8xx_disable_vblank(struct drm_crtc *crtc)
2920{
2921 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2922 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2923 unsigned long irqflags;
2924
2925 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2926 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2927 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2928}
2929
2930void i915gm_disable_vblank(struct drm_crtc *crtc)
2931{
2932 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2933
2934 i8xx_disable_vblank(crtc);
2935
2936 if (--dev_priv->vblank_enabled == 0)
2937 intel_uncore_write(&dev_priv->uncore, SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2938}
2939
2940void i965_disable_vblank(struct drm_crtc *crtc)
2941{
2942 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2943 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2944 unsigned long irqflags;
2945
2946 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2947 i915_disable_pipestat(dev_priv, pipe,
2948 PIPE_START_VBLANK_INTERRUPT_STATUS);
2949 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2950}
2951
2952void ilk_disable_vblank(struct drm_crtc *crtc)
2953{
2954 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2955 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2956 unsigned long irqflags;
2957 u32 bit = DISPLAY_VER(dev_priv) >= 7 ?
2958 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2959
2960 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2961 ilk_disable_display_irq(dev_priv, bit);
2962 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2963}
2964
2965void bdw_disable_vblank(struct drm_crtc *_crtc)
2966{
2967 struct intel_crtc *crtc = to_intel_crtc(_crtc);
2968 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2969 enum pipe pipe = crtc->pipe;
2970 unsigned long irqflags;
2971
2972 if (gen11_dsi_configure_te(crtc, false))
2973 return;
2974
2975 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2976 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2977 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2978}
2979
2980static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2981{
2982 struct intel_uncore *uncore = &dev_priv->uncore;
2983
2984 if (HAS_PCH_NOP(dev_priv))
2985 return;
2986
2987 GEN3_IRQ_RESET(uncore, SDE);
2988
2989 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2990 intel_uncore_write(&dev_priv->uncore, SERR_INT, 0xffffffff);
2991}
2992
2993static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2994{
2995 struct intel_uncore *uncore = &dev_priv->uncore;
2996
2997 if (IS_CHERRYVIEW(dev_priv))
2998 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2999 else
3000 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_VLV);
3001
3002 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3003 intel_uncore_rmw(uncore, PORT_HOTPLUG_STAT, 0, 0);
3004
3005 i9xx_pipestat_irq_reset(dev_priv);
3006
3007 GEN3_IRQ_RESET(uncore, VLV_);
3008 dev_priv->irq_mask = ~0u;
3009}
3010
3011static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3012{
3013 struct intel_uncore *uncore = &dev_priv->uncore;
3014
3015 u32 pipestat_mask;
3016 u32 enable_mask;
3017 enum pipe pipe;
3018
3019 pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3020
3021 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3022 for_each_pipe(dev_priv, pipe)
3023 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3024
3025 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3026 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3027 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3028 I915_LPE_PIPE_A_INTERRUPT |
3029 I915_LPE_PIPE_B_INTERRUPT;
3030
3031 if (IS_CHERRYVIEW(dev_priv))
3032 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3033 I915_LPE_PIPE_C_INTERRUPT;
3034
3035 drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
3036
3037 dev_priv->irq_mask = ~enable_mask;
3038
3039 GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
3040}
3041
3042/* drm_dma.h hooks
3043*/
3044static void ilk_irq_reset(struct drm_i915_private *dev_priv)
3045{
3046 struct intel_uncore *uncore = &dev_priv->uncore;
3047
3048 GEN3_IRQ_RESET(uncore, DE);
3049 dev_priv->irq_mask = ~0u;
3050
3051 if (GRAPHICS_VER(dev_priv) == 7)
3052 intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
3053
3054 if (IS_HASWELL(dev_priv)) {
3055 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3056 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3057 }
3058
3059 gen5_gt_irq_reset(to_gt(dev_priv));
3060
3061 ibx_irq_reset(dev_priv);
3062}
3063
3064static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
3065{
3066 intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
3067 intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
3068
3069 gen5_gt_irq_reset(to_gt(dev_priv));
3070
3071 spin_lock_irq(&dev_priv->irq_lock);
3072 if (dev_priv->display_irqs_enabled)
3073 vlv_display_irq_reset(dev_priv);
3074 spin_unlock_irq(&dev_priv->irq_lock);
3075}
3076
3077static void gen8_display_irq_reset(struct drm_i915_private *dev_priv)
3078{
3079 struct intel_uncore *uncore = &dev_priv->uncore;
3080 enum pipe pipe;
3081
3082 if (!HAS_DISPLAY(dev_priv))
3083 return;
3084
3085 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3086 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3087
3088 for_each_pipe(dev_priv, pipe)
3089 if (intel_display_power_is_enabled(dev_priv,
3090 POWER_DOMAIN_PIPE(pipe)))
3091 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3092
3093 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3094 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3095}
3096
3097static void gen8_irq_reset(struct drm_i915_private *dev_priv)
3098{
3099 struct intel_uncore *uncore = &dev_priv->uncore;
3100
3101 gen8_master_intr_disable(uncore->regs);
3102
3103 gen8_gt_irq_reset(to_gt(dev_priv));
3104 gen8_display_irq_reset(dev_priv);
3105 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3106
3107 if (HAS_PCH_SPLIT(dev_priv))
3108 ibx_irq_reset(dev_priv);
3109
3110}
3111
3112static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
3113{
3114 struct intel_uncore *uncore = &dev_priv->uncore;
3115 enum pipe pipe;
3116 u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3117 BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3118
3119 if (!HAS_DISPLAY(dev_priv))
3120 return;
3121
3122 intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
3123
3124 if (DISPLAY_VER(dev_priv) >= 12) {
3125 enum transcoder trans;
3126
3127 for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3128 enum intel_display_power_domain domain;
3129
3130 domain = POWER_DOMAIN_TRANSCODER(trans);
3131 if (!intel_display_power_is_enabled(dev_priv, domain))
3132 continue;
3133
3134 intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
3135 intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
3136 }
3137 } else {
3138 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3139 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3140 }
3141
3142 for_each_pipe(dev_priv, pipe)
3143 if (intel_display_power_is_enabled(dev_priv,
3144 POWER_DOMAIN_PIPE(pipe)))
3145 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3146
3147 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3148 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3149 GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3150
3151 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3152 GEN3_IRQ_RESET(uncore, SDE);
3153}
3154
3155static void gen11_irq_reset(struct drm_i915_private *dev_priv)
3156{
3157 struct intel_gt *gt = to_gt(dev_priv);
3158 struct intel_uncore *uncore = gt->uncore;
3159
3160 gen11_master_intr_disable(dev_priv->uncore.regs);
3161
3162 gen11_gt_irq_reset(gt);
3163 gen11_display_irq_reset(dev_priv);
3164
3165 GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3166 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3167}
3168
3169static void dg1_irq_reset(struct drm_i915_private *dev_priv)
3170{
3171 struct intel_gt *gt = to_gt(dev_priv);
3172 struct intel_uncore *uncore = gt->uncore;
3173
3174 dg1_master_intr_disable(dev_priv->uncore.regs);
3175
3176 gen11_gt_irq_reset(gt);
3177 gen11_display_irq_reset(dev_priv);
3178
3179 GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3180 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3181}
3182
3183void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3184 u8 pipe_mask)
3185{
3186 struct intel_uncore *uncore = &dev_priv->uncore;
3187 u32 extra_ier = GEN8_PIPE_VBLANK |
3188 gen8_de_pipe_underrun_mask(dev_priv) |
3189 gen8_de_pipe_flip_done_mask(dev_priv);
3190 enum pipe pipe;
3191
3192 spin_lock_irq(&dev_priv->irq_lock);
3193
3194 if (!intel_irqs_enabled(dev_priv)) {
3195 spin_unlock_irq(&dev_priv->irq_lock);
3196 return;
3197 }
3198
3199 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3200 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3201 dev_priv->de_irq_mask[pipe],
3202 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3203
3204 spin_unlock_irq(&dev_priv->irq_lock);
3205}
3206
3207void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3208 u8 pipe_mask)
3209{
3210 struct intel_uncore *uncore = &dev_priv->uncore;
3211 enum pipe pipe;
3212
3213 spin_lock_irq(&dev_priv->irq_lock);
3214
3215 if (!intel_irqs_enabled(dev_priv)) {
3216 spin_unlock_irq(&dev_priv->irq_lock);
3217 return;
3218 }
3219
3220 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3221 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3222
3223 spin_unlock_irq(&dev_priv->irq_lock);
3224
3225 /* make sure we're done processing display irqs */
3226 intel_synchronize_irq(dev_priv);
3227}
3228
3229static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3230{
3231 struct intel_uncore *uncore = &dev_priv->uncore;
3232
3233 intel_uncore_write(uncore, GEN8_MASTER_IRQ, 0);
3234 intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
3235
3236 gen8_gt_irq_reset(to_gt(dev_priv));
3237
3238 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3239
3240 spin_lock_irq(&dev_priv->irq_lock);
3241 if (dev_priv->display_irqs_enabled)
3242 vlv_display_irq_reset(dev_priv);
3243 spin_unlock_irq(&dev_priv->irq_lock);
3244}
3245
3246static u32 ibx_hotplug_enables(struct drm_i915_private *i915,
3247 enum hpd_pin pin)
3248{
3249 switch (pin) {
3250 case HPD_PORT_A:
3251 /*
3252 * When CPU and PCH are on the same package, port A
3253 * HPD must be enabled in both north and south.
3254 */
3255 return HAS_PCH_LPT_LP(i915) ?
3256 PORTA_HOTPLUG_ENABLE : 0;
3257 case HPD_PORT_B:
3258 return PORTB_HOTPLUG_ENABLE |
3259 PORTB_PULSE_DURATION_2ms;
3260 case HPD_PORT_C:
3261 return PORTC_HOTPLUG_ENABLE |
3262 PORTC_PULSE_DURATION_2ms;
3263 case HPD_PORT_D:
3264 return PORTD_HOTPLUG_ENABLE |
3265 PORTD_PULSE_DURATION_2ms;
3266 default:
3267 return 0;
3268 }
3269}
3270
3271static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3272{
3273 /*
3274 * Enable digital hotplug on the PCH, and configure the DP short pulse
3275 * duration to 2ms (which is the minimum in the Display Port spec).
3276 * The pulse duration bits are reserved on LPT+.
3277 */
3278 intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG,
3279 PORTA_HOTPLUG_ENABLE |
3280 PORTB_HOTPLUG_ENABLE |
3281 PORTC_HOTPLUG_ENABLE |
3282 PORTD_HOTPLUG_ENABLE |
3283 PORTB_PULSE_DURATION_MASK |
3284 PORTC_PULSE_DURATION_MASK |
3285 PORTD_PULSE_DURATION_MASK,
3286 intel_hpd_hotplug_enables(dev_priv, ibx_hotplug_enables));
3287}
3288
3289static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3290{
3291 u32 hotplug_irqs, enabled_irqs;
3292
3293 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->display.hotplug.pch_hpd);
3294 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->display.hotplug.pch_hpd);
3295
3296 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3297
3298 ibx_hpd_detection_setup(dev_priv);
3299}
3300
3301static u32 icp_ddi_hotplug_enables(struct drm_i915_private *i915,
3302 enum hpd_pin pin)
3303{
3304 switch (pin) {
3305 case HPD_PORT_A:
3306 case HPD_PORT_B:
3307 case HPD_PORT_C:
3308 case HPD_PORT_D:
3309 return SHOTPLUG_CTL_DDI_HPD_ENABLE(pin);
3310 default:
3311 return 0;
3312 }
3313}
3314
3315static u32 icp_tc_hotplug_enables(struct drm_i915_private *i915,
3316 enum hpd_pin pin)
3317{
3318 switch (pin) {
3319 case HPD_PORT_TC1:
3320 case HPD_PORT_TC2:
3321 case HPD_PORT_TC3:
3322 case HPD_PORT_TC4:
3323 case HPD_PORT_TC5:
3324 case HPD_PORT_TC6:
3325 return ICP_TC_HPD_ENABLE(pin);
3326 default:
3327 return 0;
3328 }
3329}
3330
3331static void icp_ddi_hpd_detection_setup(struct drm_i915_private *dev_priv)
3332{
3333 intel_uncore_rmw(&dev_priv->uncore, SHOTPLUG_CTL_DDI,
3334 SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_A) |
3335 SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_B) |
3336 SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_C) |
3337 SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_D),
3338 intel_hpd_hotplug_enables(dev_priv, icp_ddi_hotplug_enables));
3339}
3340
3341static void icp_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3342{
3343 intel_uncore_rmw(&dev_priv->uncore, SHOTPLUG_CTL_TC,
3344 ICP_TC_HPD_ENABLE(HPD_PORT_TC1) |
3345 ICP_TC_HPD_ENABLE(HPD_PORT_TC2) |
3346 ICP_TC_HPD_ENABLE(HPD_PORT_TC3) |
3347 ICP_TC_HPD_ENABLE(HPD_PORT_TC4) |
3348 ICP_TC_HPD_ENABLE(HPD_PORT_TC5) |
3349 ICP_TC_HPD_ENABLE(HPD_PORT_TC6),
3350 intel_hpd_hotplug_enables(dev_priv, icp_tc_hotplug_enables));
3351}
3352
3353static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3354{
3355 u32 hotplug_irqs, enabled_irqs;
3356
3357 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->display.hotplug.pch_hpd);
3358 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->display.hotplug.pch_hpd);
3359
3360 if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP)
3361 intel_uncore_write(&dev_priv->uncore, SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3362
3363 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3364
3365 icp_ddi_hpd_detection_setup(dev_priv);
3366 icp_tc_hpd_detection_setup(dev_priv);
3367}
3368
3369static u32 gen11_hotplug_enables(struct drm_i915_private *i915,
3370 enum hpd_pin pin)
3371{
3372 switch (pin) {
3373 case HPD_PORT_TC1:
3374 case HPD_PORT_TC2:
3375 case HPD_PORT_TC3:
3376 case HPD_PORT_TC4:
3377 case HPD_PORT_TC5:
3378 case HPD_PORT_TC6:
3379 return GEN11_HOTPLUG_CTL_ENABLE(pin);
3380 default:
3381 return 0;
3382 }
3383}
3384
3385static void dg1_hpd_invert(struct drm_i915_private *i915)
3386{
3387 u32 val = (INVERT_DDIA_HPD |
3388 INVERT_DDIB_HPD |
3389 INVERT_DDIC_HPD |
3390 INVERT_DDID_HPD);
3391 intel_uncore_rmw(&i915->uncore, SOUTH_CHICKEN1, 0, val);
3392}
3393
3394static void dg1_hpd_irq_setup(struct drm_i915_private *dev_priv)
3395{
3396 dg1_hpd_invert(dev_priv);
3397 icp_hpd_irq_setup(dev_priv);
3398}
3399
3400static void gen11_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3401{
3402 intel_uncore_rmw(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL,
3403 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3404 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3405 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3406 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3407 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3408 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6),
3409 intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables));
3410}
3411
3412static void gen11_tbt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3413{
3414 intel_uncore_rmw(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL,
3415 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3416 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3417 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3418 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3419 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3420 GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6),
3421 intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables));
3422}
3423
3424static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3425{
3426 u32 hotplug_irqs, enabled_irqs;
3427
3428 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->display.hotplug.hpd);
3429 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->display.hotplug.hpd);
3430
3431 intel_uncore_rmw(&dev_priv->uncore, GEN11_DE_HPD_IMR, hotplug_irqs,
3432 ~enabled_irqs & hotplug_irqs);
3433 intel_uncore_posting_read(&dev_priv->uncore, GEN11_DE_HPD_IMR);
3434
3435 gen11_tc_hpd_detection_setup(dev_priv);
3436 gen11_tbt_hpd_detection_setup(dev_priv);
3437
3438 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3439 icp_hpd_irq_setup(dev_priv);
3440}
3441
3442static u32 spt_hotplug_enables(struct drm_i915_private *i915,
3443 enum hpd_pin pin)
3444{
3445 switch (pin) {
3446 case HPD_PORT_A:
3447 return PORTA_HOTPLUG_ENABLE;
3448 case HPD_PORT_B:
3449 return PORTB_HOTPLUG_ENABLE;
3450 case HPD_PORT_C:
3451 return PORTC_HOTPLUG_ENABLE;
3452 case HPD_PORT_D:
3453 return PORTD_HOTPLUG_ENABLE;
3454 default:
3455 return 0;
3456 }
3457}
3458
3459static u32 spt_hotplug2_enables(struct drm_i915_private *i915,
3460 enum hpd_pin pin)
3461{
3462 switch (pin) {
3463 case HPD_PORT_E:
3464 return PORTE_HOTPLUG_ENABLE;
3465 default:
3466 return 0;
3467 }
3468}
3469
3470static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3471{
3472 /* Display WA #1179 WaHardHangonHotPlug: cnp */
3473 if (HAS_PCH_CNP(dev_priv)) {
3474 intel_uncore_rmw(&dev_priv->uncore, SOUTH_CHICKEN1, CHASSIS_CLK_REQ_DURATION_MASK,
3475 CHASSIS_CLK_REQ_DURATION(0xf));
3476 }
3477
3478 /* Enable digital hotplug on the PCH */
3479 intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG,
3480 PORTA_HOTPLUG_ENABLE |
3481 PORTB_HOTPLUG_ENABLE |
3482 PORTC_HOTPLUG_ENABLE |
3483 PORTD_HOTPLUG_ENABLE,
3484 intel_hpd_hotplug_enables(dev_priv, spt_hotplug_enables));
3485
3486 intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG2, PORTE_HOTPLUG_ENABLE,
3487 intel_hpd_hotplug_enables(dev_priv, spt_hotplug2_enables));
3488}
3489
3490static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3491{
3492 u32 hotplug_irqs, enabled_irqs;
3493
3494 if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3495 intel_uncore_write(&dev_priv->uncore, SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3496
3497 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->display.hotplug.pch_hpd);
3498 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->display.hotplug.pch_hpd);
3499
3500 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3501
3502 spt_hpd_detection_setup(dev_priv);
3503}
3504
3505static u32 ilk_hotplug_enables(struct drm_i915_private *i915,
3506 enum hpd_pin pin)
3507{
3508 switch (pin) {
3509 case HPD_PORT_A:
3510 return DIGITAL_PORTA_HOTPLUG_ENABLE |
3511 DIGITAL_PORTA_PULSE_DURATION_2ms;
3512 default:
3513 return 0;
3514 }
3515}
3516
3517static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3518{
3519 /*
3520 * Enable digital hotplug on the CPU, and configure the DP short pulse
3521 * duration to 2ms (which is the minimum in the Display Port spec)
3522 * The pulse duration bits are reserved on HSW+.
3523 */
3524 intel_uncore_rmw(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL,
3525 DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_MASK,
3526 intel_hpd_hotplug_enables(dev_priv, ilk_hotplug_enables));
3527}
3528
3529static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3530{
3531 u32 hotplug_irqs, enabled_irqs;
3532
3533 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->display.hotplug.hpd);
3534 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->display.hotplug.hpd);
3535
3536 if (DISPLAY_VER(dev_priv) >= 8)
3537 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3538 else
3539 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3540
3541 ilk_hpd_detection_setup(dev_priv);
3542
3543 ibx_hpd_irq_setup(dev_priv);
3544}
3545
3546static u32 bxt_hotplug_enables(struct drm_i915_private *i915,
3547 enum hpd_pin pin)
3548{
3549 u32 hotplug;
3550
3551 switch (pin) {
3552 case HPD_PORT_A:
3553 hotplug = PORTA_HOTPLUG_ENABLE;
3554 if (intel_bios_is_port_hpd_inverted(i915, PORT_A))
3555 hotplug |= BXT_DDIA_HPD_INVERT;
3556 return hotplug;
3557 case HPD_PORT_B:
3558 hotplug = PORTB_HOTPLUG_ENABLE;
3559 if (intel_bios_is_port_hpd_inverted(i915, PORT_B))
3560 hotplug |= BXT_DDIB_HPD_INVERT;
3561 return hotplug;
3562 case HPD_PORT_C:
3563 hotplug = PORTC_HOTPLUG_ENABLE;
3564 if (intel_bios_is_port_hpd_inverted(i915, PORT_C))
3565 hotplug |= BXT_DDIC_HPD_INVERT;
3566 return hotplug;
3567 default:
3568 return 0;
3569 }
3570}
3571
3572static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3573{
3574 intel_uncore_rmw(&dev_priv->uncore, PCH_PORT_HOTPLUG,
3575 PORTA_HOTPLUG_ENABLE |
3576 PORTB_HOTPLUG_ENABLE |
3577 PORTC_HOTPLUG_ENABLE |
3578 BXT_DDI_HPD_INVERT_MASK,
3579 intel_hpd_hotplug_enables(dev_priv, bxt_hotplug_enables));
3580}
3581
3582static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3583{
3584 u32 hotplug_irqs, enabled_irqs;
3585
3586 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->display.hotplug.hpd);
3587 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->display.hotplug.hpd);
3588
3589 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3590
3591 bxt_hpd_detection_setup(dev_priv);
3592}
3593
3594/*
3595 * SDEIER is also touched by the interrupt handler to work around missed PCH
3596 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3597 * instead we unconditionally enable all PCH interrupt sources here, but then
3598 * only unmask them as needed with SDEIMR.
3599 *
3600 * Note that we currently do this after installing the interrupt handler,
3601 * but before we enable the master interrupt. That should be sufficient
3602 * to avoid races with the irq handler, assuming we have MSI. Shared legacy
3603 * interrupts could still race.
3604 */
3605static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3606{
3607 struct intel_uncore *uncore = &dev_priv->uncore;
3608 u32 mask;
3609
3610 if (HAS_PCH_NOP(dev_priv))
3611 return;
3612
3613 if (HAS_PCH_IBX(dev_priv))
3614 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3615 else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3616 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3617 else
3618 mask = SDE_GMBUS_CPT;
3619
3620 GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3621}
3622
3623static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3624{
3625 struct intel_uncore *uncore = &dev_priv->uncore;
3626 u32 display_mask, extra_mask;
3627
3628 if (GRAPHICS_VER(dev_priv) >= 7) {
3629 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3630 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3631 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3632 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3633 DE_PLANE_FLIP_DONE_IVB(PLANE_C) |
3634 DE_PLANE_FLIP_DONE_IVB(PLANE_B) |
3635 DE_PLANE_FLIP_DONE_IVB(PLANE_A) |
3636 DE_DP_A_HOTPLUG_IVB);
3637 } else {
3638 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3639 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3640 DE_PIPEA_CRC_DONE | DE_POISON);
3641 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK |
3642 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3643 DE_PLANE_FLIP_DONE(PLANE_A) |
3644 DE_PLANE_FLIP_DONE(PLANE_B) |
3645 DE_DP_A_HOTPLUG);
3646 }
3647
3648 if (IS_HASWELL(dev_priv)) {
3649 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3650 display_mask |= DE_EDP_PSR_INT_HSW;
3651 }
3652
3653 if (IS_IRONLAKE_M(dev_priv))
3654 extra_mask |= DE_PCU_EVENT;
3655
3656 dev_priv->irq_mask = ~display_mask;
3657
3658 ibx_irq_postinstall(dev_priv);
3659
3660 gen5_gt_irq_postinstall(to_gt(dev_priv));
3661
3662 GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3663 display_mask | extra_mask);
3664}
3665
3666void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3667{
3668 lockdep_assert_held(&dev_priv->irq_lock);
3669
3670 if (dev_priv->display_irqs_enabled)
3671 return;
3672
3673 dev_priv->display_irqs_enabled = true;
3674
3675 if (intel_irqs_enabled(dev_priv)) {
3676 vlv_display_irq_reset(dev_priv);
3677 vlv_display_irq_postinstall(dev_priv);
3678 }
3679}
3680
3681void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3682{
3683 lockdep_assert_held(&dev_priv->irq_lock);
3684
3685 if (!dev_priv->display_irqs_enabled)
3686 return;
3687
3688 dev_priv->display_irqs_enabled = false;
3689
3690 if (intel_irqs_enabled(dev_priv))
3691 vlv_display_irq_reset(dev_priv);
3692}
3693
3694
3695static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3696{
3697 gen5_gt_irq_postinstall(to_gt(dev_priv));
3698
3699 spin_lock_irq(&dev_priv->irq_lock);
3700 if (dev_priv->display_irqs_enabled)
3701 vlv_display_irq_postinstall(dev_priv);
3702 spin_unlock_irq(&dev_priv->irq_lock);
3703
3704 intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3705 intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
3706}
3707
3708static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3709{
3710 struct intel_uncore *uncore = &dev_priv->uncore;
3711
3712 u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3713 GEN8_PIPE_CDCLK_CRC_DONE;
3714 u32 de_pipe_enables;
3715 u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3716 u32 de_port_enables;
3717 u32 de_misc_masked = GEN8_DE_EDP_PSR;
3718 u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3719 BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3720 enum pipe pipe;
3721
3722 if (!HAS_DISPLAY(dev_priv))
3723 return;
3724
3725 if (DISPLAY_VER(dev_priv) <= 10)
3726 de_misc_masked |= GEN8_DE_MISC_GSE;
3727
3728 if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
3729 de_port_masked |= BXT_DE_PORT_GMBUS;
3730
3731 if (DISPLAY_VER(dev_priv) >= 11) {
3732 enum port port;
3733
3734 if (intel_bios_is_dsi_present(dev_priv, &port))
3735 de_port_masked |= DSI0_TE | DSI1_TE;
3736 }
3737
3738 de_pipe_enables = de_pipe_masked |
3739 GEN8_PIPE_VBLANK |
3740 gen8_de_pipe_underrun_mask(dev_priv) |
3741 gen8_de_pipe_flip_done_mask(dev_priv);
3742
3743 de_port_enables = de_port_masked;
3744 if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
3745 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3746 else if (IS_BROADWELL(dev_priv))
3747 de_port_enables |= BDW_DE_PORT_HOTPLUG_MASK;
3748
3749 if (DISPLAY_VER(dev_priv) >= 12) {
3750 enum transcoder trans;
3751
3752 for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3753 enum intel_display_power_domain domain;
3754
3755 domain = POWER_DOMAIN_TRANSCODER(trans);
3756 if (!intel_display_power_is_enabled(dev_priv, domain))
3757 continue;
3758
3759 gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3760 }
3761 } else {
3762 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3763 }
3764
3765 for_each_pipe(dev_priv, pipe) {
3766 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3767
3768 if (intel_display_power_is_enabled(dev_priv,
3769 POWER_DOMAIN_PIPE(pipe)))
3770 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3771 dev_priv->de_irq_mask[pipe],
3772 de_pipe_enables);
3773 }
3774
3775 GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3776 GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3777
3778 if (DISPLAY_VER(dev_priv) >= 11) {
3779 u32 de_hpd_masked = 0;
3780 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3781 GEN11_DE_TBT_HOTPLUG_MASK;
3782
3783 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3784 de_hpd_enables);
3785 }
3786}
3787
3788static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3789{
3790 struct intel_uncore *uncore = &dev_priv->uncore;
3791 u32 mask = SDE_GMBUS_ICP;
3792
3793 GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3794}
3795
3796static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3797{
3798 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3799 icp_irq_postinstall(dev_priv);
3800 else if (HAS_PCH_SPLIT(dev_priv))
3801 ibx_irq_postinstall(dev_priv);
3802
3803 gen8_gt_irq_postinstall(to_gt(dev_priv));
3804 gen8_de_irq_postinstall(dev_priv);
3805
3806 gen8_master_intr_enable(dev_priv->uncore.regs);
3807}
3808
3809static void gen11_de_irq_postinstall(struct drm_i915_private *dev_priv)
3810{
3811 if (!HAS_DISPLAY(dev_priv))
3812 return;
3813
3814 gen8_de_irq_postinstall(dev_priv);
3815
3816 intel_uncore_write(&dev_priv->uncore, GEN11_DISPLAY_INT_CTL,
3817 GEN11_DISPLAY_IRQ_ENABLE);
3818}
3819
3820static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3821{
3822 struct intel_gt *gt = to_gt(dev_priv);
3823 struct intel_uncore *uncore = gt->uncore;
3824 u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3825
3826 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3827 icp_irq_postinstall(dev_priv);
3828
3829 gen11_gt_irq_postinstall(gt);
3830 gen11_de_irq_postinstall(dev_priv);
3831
3832 GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3833
3834 gen11_master_intr_enable(uncore->regs);
3835 intel_uncore_posting_read(&dev_priv->uncore, GEN11_GFX_MSTR_IRQ);
3836}
3837
3838static void dg1_irq_postinstall(struct drm_i915_private *dev_priv)
3839{
3840 struct intel_gt *gt = to_gt(dev_priv);
3841 struct intel_uncore *uncore = gt->uncore;
3842 u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3843
3844 gen11_gt_irq_postinstall(gt);
3845
3846 GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3847
3848 if (HAS_DISPLAY(dev_priv)) {
3849 icp_irq_postinstall(dev_priv);
3850 gen8_de_irq_postinstall(dev_priv);
3851 intel_uncore_write(&dev_priv->uncore, GEN11_DISPLAY_INT_CTL,
3852 GEN11_DISPLAY_IRQ_ENABLE);
3853 }
3854
3855 dg1_master_intr_enable(uncore->regs);
3856 intel_uncore_posting_read(uncore, DG1_MSTR_TILE_INTR);
3857}
3858
3859static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3860{
3861 gen8_gt_irq_postinstall(to_gt(dev_priv));
3862
3863 spin_lock_irq(&dev_priv->irq_lock);
3864 if (dev_priv->display_irqs_enabled)
3865 vlv_display_irq_postinstall(dev_priv);
3866 spin_unlock_irq(&dev_priv->irq_lock);
3867
3868 intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3869 intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
3870}
3871
3872static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3873{
3874 struct intel_uncore *uncore = &dev_priv->uncore;
3875
3876 i9xx_pipestat_irq_reset(dev_priv);
3877
3878 gen2_irq_reset(uncore);
3879 dev_priv->irq_mask = ~0u;
3880}
3881
3882static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3883{
3884 struct intel_uncore *uncore = &dev_priv->uncore;
3885 u16 enable_mask;
3886
3887 intel_uncore_write16(uncore,
3888 EMR,
3889 ~(I915_ERROR_PAGE_TABLE |
3890 I915_ERROR_MEMORY_REFRESH));
3891
3892 /* Unmask the interrupts that we always want on. */
3893 dev_priv->irq_mask =
3894 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3895 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3896 I915_MASTER_ERROR_INTERRUPT);
3897
3898 enable_mask =
3899 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3900 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3901 I915_MASTER_ERROR_INTERRUPT |
3902 I915_USER_INTERRUPT;
3903
3904 gen2_irq_init(uncore, dev_priv->irq_mask, enable_mask);
3905
3906 /* Interrupt setup is already guaranteed to be single-threaded, this is
3907 * just to make the assert_spin_locked check happy. */
3908 spin_lock_irq(&dev_priv->irq_lock);
3909 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3910 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3911 spin_unlock_irq(&dev_priv->irq_lock);
3912}
3913
3914static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3915 u16 *eir, u16 *eir_stuck)
3916{
3917 struct intel_uncore *uncore = &i915->uncore;
3918 u16 emr;
3919
3920 *eir = intel_uncore_read16(uncore, EIR);
3921
3922 if (*eir)
3923 intel_uncore_write16(uncore, EIR, *eir);
3924
3925 *eir_stuck = intel_uncore_read16(uncore, EIR);
3926 if (*eir_stuck == 0)
3927 return;
3928
3929 /*
3930 * Toggle all EMR bits to make sure we get an edge
3931 * in the ISR master error bit if we don't clear
3932 * all the EIR bits. Otherwise the edge triggered
3933 * IIR on i965/g4x wouldn't notice that an interrupt
3934 * is still pending. Also some EIR bits can't be
3935 * cleared except by handling the underlying error
3936 * (or by a GPU reset) so we mask any bit that
3937 * remains set.
3938 */
3939 emr = intel_uncore_read16(uncore, EMR);
3940 intel_uncore_write16(uncore, EMR, 0xffff);
3941 intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3942}
3943
3944static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3945 u16 eir, u16 eir_stuck)
3946{
3947 drm_dbg(&dev_priv->drm, "Master Error: EIR 0x%04x\n", eir);
3948
3949 if (eir_stuck)
3950 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3951 eir_stuck);
3952}
3953
3954static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3955 u32 *eir, u32 *eir_stuck)
3956{
3957 u32 emr;
3958
3959 *eir = intel_uncore_rmw(&dev_priv->uncore, EIR, 0, 0);
3960
3961 *eir_stuck = intel_uncore_read(&dev_priv->uncore, EIR);
3962 if (*eir_stuck == 0)
3963 return;
3964
3965 /*
3966 * Toggle all EMR bits to make sure we get an edge
3967 * in the ISR master error bit if we don't clear
3968 * all the EIR bits. Otherwise the edge triggered
3969 * IIR on i965/g4x wouldn't notice that an interrupt
3970 * is still pending. Also some EIR bits can't be
3971 * cleared except by handling the underlying error
3972 * (or by a GPU reset) so we mask any bit that
3973 * remains set.
3974 */
3975 emr = intel_uncore_rmw(&dev_priv->uncore, EMR, ~0, 0xffffffff);
3976 intel_uncore_write(&dev_priv->uncore, EMR, emr | *eir_stuck);
3977}
3978
3979static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3980 u32 eir, u32 eir_stuck)
3981{
3982 drm_dbg(&dev_priv->drm, "Master Error, EIR 0x%08x\n", eir);
3983
3984 if (eir_stuck)
3985 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3986 eir_stuck);
3987}
3988
3989static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3990{
3991 struct drm_i915_private *dev_priv = arg;
3992 irqreturn_t ret = IRQ_NONE;
3993
3994 if (!intel_irqs_enabled(dev_priv))
3995 return IRQ_NONE;
3996
3997 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3998 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3999
4000 do {
4001 u32 pipe_stats[I915_MAX_PIPES] = {};
4002 u16 eir = 0, eir_stuck = 0;
4003 u16 iir;
4004
4005 iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
4006 if (iir == 0)
4007 break;
4008
4009 ret = IRQ_HANDLED;
4010
4011 /* Call regardless, as some status bits might not be
4012 * signalled in iir */
4013 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4014
4015 if (iir & I915_MASTER_ERROR_INTERRUPT)
4016 i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4017
4018 intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
4019
4020 if (iir & I915_USER_INTERRUPT)
4021 intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0], iir);
4022
4023 if (iir & I915_MASTER_ERROR_INTERRUPT)
4024 i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4025
4026 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4027 } while (0);
4028
4029 pmu_irq_stats(dev_priv, ret);
4030
4031 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4032
4033 return ret;
4034}
4035
4036static void i915_irq_reset(struct drm_i915_private *dev_priv)
4037{
4038 struct intel_uncore *uncore = &dev_priv->uncore;
4039
4040 if (I915_HAS_HOTPLUG(dev_priv)) {
4041 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4042 intel_uncore_rmw(&dev_priv->uncore, PORT_HOTPLUG_STAT, 0, 0);
4043 }
4044
4045 i9xx_pipestat_irq_reset(dev_priv);
4046
4047 GEN3_IRQ_RESET(uncore, GEN2_);
4048 dev_priv->irq_mask = ~0u;
4049}
4050
4051static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
4052{
4053 struct intel_uncore *uncore = &dev_priv->uncore;
4054 u32 enable_mask;
4055
4056 intel_uncore_write(uncore, EMR, ~(I915_ERROR_PAGE_TABLE |
4057 I915_ERROR_MEMORY_REFRESH));
4058
4059 /* Unmask the interrupts that we always want on. */
4060 dev_priv->irq_mask =
4061 ~(I915_ASLE_INTERRUPT |
4062 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4063 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4064 I915_MASTER_ERROR_INTERRUPT);
4065
4066 enable_mask =
4067 I915_ASLE_INTERRUPT |
4068 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4069 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4070 I915_MASTER_ERROR_INTERRUPT |
4071 I915_USER_INTERRUPT;
4072
4073 if (I915_HAS_HOTPLUG(dev_priv)) {
4074 /* Enable in IER... */
4075 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4076 /* and unmask in IMR */
4077 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4078 }
4079
4080 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4081
4082 /* Interrupt setup is already guaranteed to be single-threaded, this is
4083 * just to make the assert_spin_locked check happy. */
4084 spin_lock_irq(&dev_priv->irq_lock);
4085 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4086 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4087 spin_unlock_irq(&dev_priv->irq_lock);
4088
4089 i915_enable_asle_pipestat(dev_priv);
4090}
4091
4092static irqreturn_t i915_irq_handler(int irq, void *arg)
4093{
4094 struct drm_i915_private *dev_priv = arg;
4095 irqreturn_t ret = IRQ_NONE;
4096
4097 if (!intel_irqs_enabled(dev_priv))
4098 return IRQ_NONE;
4099
4100 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4101 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4102
4103 do {
4104 u32 pipe_stats[I915_MAX_PIPES] = {};
4105 u32 eir = 0, eir_stuck = 0;
4106 u32 hotplug_status = 0;
4107 u32 iir;
4108
4109 iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
4110 if (iir == 0)
4111 break;
4112
4113 ret = IRQ_HANDLED;
4114
4115 if (I915_HAS_HOTPLUG(dev_priv) &&
4116 iir & I915_DISPLAY_PORT_INTERRUPT)
4117 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4118
4119 /* Call regardless, as some status bits might not be
4120 * signalled in iir */
4121 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4122
4123 if (iir & I915_MASTER_ERROR_INTERRUPT)
4124 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4125
4126 intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
4127
4128 if (iir & I915_USER_INTERRUPT)
4129 intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0], iir);
4130
4131 if (iir & I915_MASTER_ERROR_INTERRUPT)
4132 i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4133
4134 if (hotplug_status)
4135 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4136
4137 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4138 } while (0);
4139
4140 pmu_irq_stats(dev_priv, ret);
4141
4142 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4143
4144 return ret;
4145}
4146
4147static void i965_irq_reset(struct drm_i915_private *dev_priv)
4148{
4149 struct intel_uncore *uncore = &dev_priv->uncore;
4150
4151 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4152 intel_uncore_rmw(uncore, PORT_HOTPLUG_STAT, 0, 0);
4153
4154 i9xx_pipestat_irq_reset(dev_priv);
4155
4156 GEN3_IRQ_RESET(uncore, GEN2_);
4157 dev_priv->irq_mask = ~0u;
4158}
4159
4160static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
4161{
4162 struct intel_uncore *uncore = &dev_priv->uncore;
4163 u32 enable_mask;
4164 u32 error_mask;
4165
4166 /*
4167 * Enable some error detection, note the instruction error mask
4168 * bit is reserved, so we leave it masked.
4169 */
4170 if (IS_G4X(dev_priv)) {
4171 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4172 GM45_ERROR_MEM_PRIV |
4173 GM45_ERROR_CP_PRIV |
4174 I915_ERROR_MEMORY_REFRESH);
4175 } else {
4176 error_mask = ~(I915_ERROR_PAGE_TABLE |
4177 I915_ERROR_MEMORY_REFRESH);
4178 }
4179 intel_uncore_write(uncore, EMR, error_mask);
4180
4181 /* Unmask the interrupts that we always want on. */
4182 dev_priv->irq_mask =
4183 ~(I915_ASLE_INTERRUPT |
4184 I915_DISPLAY_PORT_INTERRUPT |
4185 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4186 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4187 I915_MASTER_ERROR_INTERRUPT);
4188
4189 enable_mask =
4190 I915_ASLE_INTERRUPT |
4191 I915_DISPLAY_PORT_INTERRUPT |
4192 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4193 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4194 I915_MASTER_ERROR_INTERRUPT |
4195 I915_USER_INTERRUPT;
4196
4197 if (IS_G4X(dev_priv))
4198 enable_mask |= I915_BSD_USER_INTERRUPT;
4199
4200 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4201
4202 /* Interrupt setup is already guaranteed to be single-threaded, this is
4203 * just to make the assert_spin_locked check happy. */
4204 spin_lock_irq(&dev_priv->irq_lock);
4205 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4206 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4207 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4208 spin_unlock_irq(&dev_priv->irq_lock);
4209
4210 i915_enable_asle_pipestat(dev_priv);
4211}
4212
4213static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4214{
4215 u32 hotplug_en;
4216
4217 lockdep_assert_held(&dev_priv->irq_lock);
4218
4219 /* Note HDMI and DP share hotplug bits */
4220 /* enable bits are the same for all generations */
4221 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4222 /* Programming the CRT detection parameters tends
4223 to generate a spurious hotplug event about three
4224 seconds later. So just do it once.
4225 */
4226 if (IS_G4X(dev_priv))
4227 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4228 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4229
4230 /* Ignore TV since it's buggy */
4231 i915_hotplug_interrupt_update_locked(dev_priv,
4232 HOTPLUG_INT_EN_MASK |
4233 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4234 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4235 hotplug_en);
4236}
4237
4238static irqreturn_t i965_irq_handler(int irq, void *arg)
4239{
4240 struct drm_i915_private *dev_priv = arg;
4241 irqreturn_t ret = IRQ_NONE;
4242
4243 if (!intel_irqs_enabled(dev_priv))
4244 return IRQ_NONE;
4245
4246 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4247 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4248
4249 do {
4250 u32 pipe_stats[I915_MAX_PIPES] = {};
4251 u32 eir = 0, eir_stuck = 0;
4252 u32 hotplug_status = 0;
4253 u32 iir;
4254
4255 iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
4256 if (iir == 0)
4257 break;
4258
4259 ret = IRQ_HANDLED;
4260
4261 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4262 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4263
4264 /* Call regardless, as some status bits might not be
4265 * signalled in iir */
4266 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4267
4268 if (iir & I915_MASTER_ERROR_INTERRUPT)
4269 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4270
4271 intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
4272
4273 if (iir & I915_USER_INTERRUPT)
4274 intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0],
4275 iir);
4276
4277 if (iir & I915_BSD_USER_INTERRUPT)
4278 intel_engine_cs_irq(to_gt(dev_priv)->engine[VCS0],
4279 iir >> 25);
4280
4281 if (iir & I915_MASTER_ERROR_INTERRUPT)
4282 i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4283
4284 if (hotplug_status)
4285 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4286
4287 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4288 } while (0);
4289
4290 pmu_irq_stats(dev_priv, IRQ_HANDLED);
4291
4292 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4293
4294 return ret;
4295}
4296
4297struct intel_hotplug_funcs {
4298 void (*hpd_irq_setup)(struct drm_i915_private *i915);
4299};
4300
4301#define HPD_FUNCS(platform) \
4302static const struct intel_hotplug_funcs platform##_hpd_funcs = { \
4303 .hpd_irq_setup = platform##_hpd_irq_setup, \
4304}
4305
4306HPD_FUNCS(i915);
4307HPD_FUNCS(dg1);
4308HPD_FUNCS(gen11);
4309HPD_FUNCS(bxt);
4310HPD_FUNCS(icp);
4311HPD_FUNCS(spt);
4312HPD_FUNCS(ilk);
4313#undef HPD_FUNCS
4314
4315void intel_hpd_irq_setup(struct drm_i915_private *i915)
4316{
4317 if (i915->display_irqs_enabled && i915->display.funcs.hotplug)
4318 i915->display.funcs.hotplug->hpd_irq_setup(i915);
4319}
4320
4321/**
4322 * intel_irq_init - initializes irq support
4323 * @dev_priv: i915 device instance
4324 *
4325 * This function initializes all the irq support including work items, timers
4326 * and all the vtables. It does not setup the interrupt itself though.
4327 */
4328void intel_irq_init(struct drm_i915_private *dev_priv)
4329{
4330 int i;
4331
4332 INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
4333 for (i = 0; i < MAX_L3_SLICES; ++i)
4334 dev_priv->l3_parity.remap_info[i] = NULL;
4335
4336 /* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4337 if (HAS_GT_UC(dev_priv) && GRAPHICS_VER(dev_priv) < 11)
4338 to_gt(dev_priv)->pm_guc_events = GUC_INTR_GUC2HOST << 16;
4339
4340 if (!HAS_DISPLAY(dev_priv))
4341 return;
4342
4343 intel_hpd_init_pins(dev_priv);
4344
4345 intel_hpd_init_early(dev_priv);
4346
4347 dev_priv->drm.vblank_disable_immediate = true;
4348
4349 /* Most platforms treat the display irq block as an always-on
4350 * power domain. vlv/chv can disable it at runtime and need
4351 * special care to avoid writing any of the display block registers
4352 * outside of the power domain. We defer setting up the display irqs
4353 * in this case to the runtime pm.
4354 */
4355 dev_priv->display_irqs_enabled = true;
4356 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4357 dev_priv->display_irqs_enabled = false;
4358
4359 if (HAS_GMCH(dev_priv)) {
4360 if (I915_HAS_HOTPLUG(dev_priv))
4361 dev_priv->display.funcs.hotplug = &i915_hpd_funcs;
4362 } else {
4363 if (HAS_PCH_DG2(dev_priv))
4364 dev_priv->display.funcs.hotplug = &icp_hpd_funcs;
4365 else if (HAS_PCH_DG1(dev_priv))
4366 dev_priv->display.funcs.hotplug = &dg1_hpd_funcs;
4367 else if (DISPLAY_VER(dev_priv) >= 11)
4368 dev_priv->display.funcs.hotplug = &gen11_hpd_funcs;
4369 else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
4370 dev_priv->display.funcs.hotplug = &bxt_hpd_funcs;
4371 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
4372 dev_priv->display.funcs.hotplug = &icp_hpd_funcs;
4373 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4374 dev_priv->display.funcs.hotplug = &spt_hpd_funcs;
4375 else
4376 dev_priv->display.funcs.hotplug = &ilk_hpd_funcs;
4377 }
4378}
4379
4380/**
4381 * intel_irq_fini - deinitializes IRQ support
4382 * @i915: i915 device instance
4383 *
4384 * This function deinitializes all the IRQ support.
4385 */
4386void intel_irq_fini(struct drm_i915_private *i915)
4387{
4388 int i;
4389
4390 for (i = 0; i < MAX_L3_SLICES; ++i)
4391 kfree(i915->l3_parity.remap_info[i]);
4392}
4393
4394static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4395{
4396 if (HAS_GMCH(dev_priv)) {
4397 if (IS_CHERRYVIEW(dev_priv))
4398 return cherryview_irq_handler;
4399 else if (IS_VALLEYVIEW(dev_priv))
4400 return valleyview_irq_handler;
4401 else if (GRAPHICS_VER(dev_priv) == 4)
4402 return i965_irq_handler;
4403 else if (GRAPHICS_VER(dev_priv) == 3)
4404 return i915_irq_handler;
4405 else
4406 return i8xx_irq_handler;
4407 } else {
4408 if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10))
4409 return dg1_irq_handler;
4410 else if (GRAPHICS_VER(dev_priv) >= 11)
4411 return gen11_irq_handler;
4412 else if (GRAPHICS_VER(dev_priv) >= 8)
4413 return gen8_irq_handler;
4414 else
4415 return ilk_irq_handler;
4416 }
4417}
4418
4419static void intel_irq_reset(struct drm_i915_private *dev_priv)
4420{
4421 if (HAS_GMCH(dev_priv)) {
4422 if (IS_CHERRYVIEW(dev_priv))
4423 cherryview_irq_reset(dev_priv);
4424 else if (IS_VALLEYVIEW(dev_priv))
4425 valleyview_irq_reset(dev_priv);
4426 else if (GRAPHICS_VER(dev_priv) == 4)
4427 i965_irq_reset(dev_priv);
4428 else if (GRAPHICS_VER(dev_priv) == 3)
4429 i915_irq_reset(dev_priv);
4430 else
4431 i8xx_irq_reset(dev_priv);
4432 } else {
4433 if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10))
4434 dg1_irq_reset(dev_priv);
4435 else if (GRAPHICS_VER(dev_priv) >= 11)
4436 gen11_irq_reset(dev_priv);
4437 else if (GRAPHICS_VER(dev_priv) >= 8)
4438 gen8_irq_reset(dev_priv);
4439 else
4440 ilk_irq_reset(dev_priv);
4441 }
4442}
4443
4444static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4445{
4446 if (HAS_GMCH(dev_priv)) {
4447 if (IS_CHERRYVIEW(dev_priv))
4448 cherryview_irq_postinstall(dev_priv);
4449 else if (IS_VALLEYVIEW(dev_priv))
4450 valleyview_irq_postinstall(dev_priv);
4451 else if (GRAPHICS_VER(dev_priv) == 4)
4452 i965_irq_postinstall(dev_priv);
4453 else if (GRAPHICS_VER(dev_priv) == 3)
4454 i915_irq_postinstall(dev_priv);
4455 else
4456 i8xx_irq_postinstall(dev_priv);
4457 } else {
4458 if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10))
4459 dg1_irq_postinstall(dev_priv);
4460 else if (GRAPHICS_VER(dev_priv) >= 11)
4461 gen11_irq_postinstall(dev_priv);
4462 else if (GRAPHICS_VER(dev_priv) >= 8)
4463 gen8_irq_postinstall(dev_priv);
4464 else
4465 ilk_irq_postinstall(dev_priv);
4466 }
4467}
4468
4469/**
4470 * intel_irq_install - enables the hardware interrupt
4471 * @dev_priv: i915 device instance
4472 *
4473 * This function enables the hardware interrupt handling, but leaves the hotplug
4474 * handling still disabled. It is called after intel_irq_init().
4475 *
4476 * In the driver load and resume code we need working interrupts in a few places
4477 * but don't want to deal with the hassle of concurrent probe and hotplug
4478 * workers. Hence the split into this two-stage approach.
4479 */
4480int intel_irq_install(struct drm_i915_private *dev_priv)
4481{
4482 int irq = to_pci_dev(dev_priv->drm.dev)->irq;
4483 int ret;
4484
4485 /*
4486 * We enable some interrupt sources in our postinstall hooks, so mark
4487 * interrupts as enabled _before_ actually enabling them to avoid
4488 * special cases in our ordering checks.
4489 */
4490 dev_priv->runtime_pm.irqs_enabled = true;
4491
4492 dev_priv->irq_enabled = true;
4493
4494 intel_irq_reset(dev_priv);
4495
4496 ret = request_irq(irq, intel_irq_handler(dev_priv),
4497 IRQF_SHARED, DRIVER_NAME, dev_priv);
4498 if (ret < 0) {
4499 dev_priv->irq_enabled = false;
4500 return ret;
4501 }
4502
4503 intel_irq_postinstall(dev_priv);
4504
4505 return ret;
4506}
4507
4508/**
4509 * intel_irq_uninstall - finilizes all irq handling
4510 * @dev_priv: i915 device instance
4511 *
4512 * This stops interrupt and hotplug handling and unregisters and frees all
4513 * resources acquired in the init functions.
4514 */
4515void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4516{
4517 int irq = to_pci_dev(dev_priv->drm.dev)->irq;
4518
4519 /*
4520 * FIXME we can get called twice during driver probe
4521 * error handling as well as during driver remove due to
4522 * intel_modeset_driver_remove() calling us out of sequence.
4523 * Would be nice if it didn't do that...
4524 */
4525 if (!dev_priv->irq_enabled)
4526 return;
4527
4528 dev_priv->irq_enabled = false;
4529
4530 intel_irq_reset(dev_priv);
4531
4532 free_irq(irq, dev_priv);
4533
4534 intel_hpd_cancel_work(dev_priv);
4535 dev_priv->runtime_pm.irqs_enabled = false;
4536}
4537
4538/**
4539 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4540 * @dev_priv: i915 device instance
4541 *
4542 * This function is used to disable interrupts at runtime, both in the runtime
4543 * pm and the system suspend/resume code.
4544 */
4545void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4546{
4547 intel_irq_reset(dev_priv);
4548 dev_priv->runtime_pm.irqs_enabled = false;
4549 intel_synchronize_irq(dev_priv);
4550}
4551
4552/**
4553 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4554 * @dev_priv: i915 device instance
4555 *
4556 * This function is used to enable interrupts at runtime, both in the runtime
4557 * pm and the system suspend/resume code.
4558 */
4559void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4560{
4561 dev_priv->runtime_pm.irqs_enabled = true;
4562 intel_irq_reset(dev_priv);
4563 intel_irq_postinstall(dev_priv);
4564}
4565
4566bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4567{
4568 return dev_priv->runtime_pm.irqs_enabled;
4569}
4570
4571void intel_synchronize_irq(struct drm_i915_private *i915)
4572{
4573 synchronize_irq(to_pci_dev(i915->drm.dev)->irq);
4574}
4575
4576void intel_synchronize_hardirq(struct drm_i915_private *i915)
4577{
4578 synchronize_hardirq(to_pci_dev(i915->drm.dev)->irq);
4579}