Linux Audio

Check our new training course

Loading...
v3.1
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#include <linux/sysrq.h>
 
 
  30#include <linux/slab.h>
  31#include "drmP.h"
  32#include "drm.h"
  33#include "i915_drm.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
  34#include "i915_drv.h"
 
  35#include "i915_trace.h"
  36#include "intel_drv.h"
  37
  38#define MAX_NOPID ((u32)~0)
  39
  40/**
  41 * Interrupts that are always left unmasked.
  42 *
  43 * Since pipe events are edge-triggered from the PIPESTAT register to IIR,
  44 * we leave them always unmasked in IMR and then control enabling them through
  45 * PIPESTAT alone.
  46 */
  47#define I915_INTERRUPT_ENABLE_FIX			\
  48	(I915_ASLE_INTERRUPT |				\
  49	 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |		\
  50	 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |		\
  51	 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |	\
  52	 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |	\
  53	 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  54
  55/** Interrupts that we mask and unmask at runtime. */
  56#define I915_INTERRUPT_ENABLE_VAR (I915_USER_INTERRUPT | I915_BSD_USER_INTERRUPT)
  57
  58#define I915_PIPE_VBLANK_STATUS	(PIPE_START_VBLANK_INTERRUPT_STATUS |\
  59				 PIPE_VBLANK_INTERRUPT_STATUS)
  60
  61#define I915_PIPE_VBLANK_ENABLE	(PIPE_START_VBLANK_INTERRUPT_ENABLE |\
  62				 PIPE_VBLANK_INTERRUPT_ENABLE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63
  64#define DRM_I915_VBLANK_PIPE_ALL	(DRM_I915_VBLANK_PIPE_A | \
  65					 DRM_I915_VBLANK_PIPE_B)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66
  67/* For display hotplug interrupt */
  68static void
  69ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
  70{
  71	if ((dev_priv->irq_mask & mask) != 0) {
  72		dev_priv->irq_mask &= ~mask;
  73		I915_WRITE(DEIMR, dev_priv->irq_mask);
  74		POSTING_READ(DEIMR);
  75	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76}
  77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  78static inline void
  79ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80{
  81	if ((dev_priv->irq_mask & mask) != mask) {
  82		dev_priv->irq_mask |= mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
  83		I915_WRITE(DEIMR, dev_priv->irq_mask);
  84		POSTING_READ(DEIMR);
  85	}
  86}
  87
  88void
  89i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
 
 
 
 
 
 
 
  90{
  91	if ((dev_priv->pipestat[pipe] & mask) != mask) {
  92		u32 reg = PIPESTAT(pipe);
  93
  94		dev_priv->pipestat[pipe] |= mask;
  95		/* Enable the interrupt, clear any pending status */
  96		I915_WRITE(reg, dev_priv->pipestat[pipe] | (mask >> 16));
  97		POSTING_READ(reg);
 
 
 
 
 
 
 
 
 
 
 
 
  98	}
  99}
 100
 101void
 102i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
 
 
 
 
 
 
 
 
 
 103{
 104	if ((dev_priv->pipestat[pipe] & mask) != 0) {
 105		u32 reg = PIPESTAT(pipe);
 106
 107		dev_priv->pipestat[pipe] &= ~mask;
 108		I915_WRITE(reg, dev_priv->pipestat[pipe]);
 109		POSTING_READ(reg);
 
 
 
 
 
 
 
 
 
 
 
 
 110	}
 111}
 112
 113/**
 114 * intel_enable_asle - enable ASLE interrupt for OpRegion
 
 
 
 115 */
 116void intel_enable_asle(struct drm_device *dev)
 
 
 117{
 118	drm_i915_private_t *dev_priv = dev->dev_private;
 119	unsigned long irqflags;
 
 120
 121	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
 122
 123	if (HAS_PCH_SPLIT(dev))
 124		ironlake_enable_display_irq(dev_priv, DE_GSE);
 125	else {
 126		i915_enable_pipestat(dev_priv, 1,
 127				     PIPE_LEGACY_BLC_EVENT_ENABLE);
 128		if (INTEL_INFO(dev)->gen >= 4)
 129			i915_enable_pipestat(dev_priv, 0,
 130					     PIPE_LEGACY_BLC_EVENT_ENABLE);
 131	}
 132
 133	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134}
 135
 136/**
 137 * i915_pipe_enabled - check if a pipe is enabled
 138 * @dev: DRM device
 139 * @pipe: pipe to check
 140 *
 141 * Reading certain registers when the pipe is disabled can hang the chip.
 142 * Use this routine to make sure the PLL is running and the pipe is active
 143 * before reading such registers if unsure.
 144 */
 145static int
 146i915_pipe_enabled(struct drm_device *dev, int pipe)
 147{
 148	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 149	return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
 
 
 
 
 
 
 
 
 
 150}
 151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152/* Called from drm generic code, passed a 'crtc', which
 153 * we use as a pipe index
 154 */
 155static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
 156{
 157	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 158	unsigned long high_frame;
 159	unsigned long low_frame;
 160	u32 high1, high2, low;
 161
 162	if (!i915_pipe_enabled(dev, pipe)) {
 163		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
 164				"pipe %c\n", pipe_name(pipe));
 
 
 
 
 
 
 
 
 
 
 
 
 165		return 0;
 166	}
 
 
 
 
 
 
 
 
 
 
 
 167
 168	high_frame = PIPEFRAME(pipe);
 169	low_frame = PIPEFRAMEPIXEL(pipe);
 170
 
 
 171	/*
 172	 * High & low register fields aren't synchronized, so make sure
 173	 * we get a low value that's stable across two reads of the high
 174	 * register.
 175	 */
 176	do {
 177		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 178		low   = I915_READ(low_frame)  & PIPE_FRAME_LOW_MASK;
 179		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 180	} while (high1 != high2);
 181
 
 
 182	high1 >>= PIPE_FRAME_HIGH_SHIFT;
 
 183	low >>= PIPE_FRAME_LOW_SHIFT;
 184	return (high1 << 8) | low;
 
 
 
 
 
 
 185}
 186
 187static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
 188{
 189	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 190	int reg = PIPE_FRMCOUNT_GM45(pipe);
 191
 192	if (!i915_pipe_enabled(dev, pipe)) {
 193		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
 194				 "pipe %c\n", pipe_name(pipe));
 195		return 0;
 196	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197
 198	return I915_READ(reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199}
 200
 201static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
 202			     int *vpos, int *hpos)
 
 
 
 203{
 204	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 205	u32 vbl = 0, position = 0;
 206	int vbl_start, vbl_end, htotal, vtotal;
 207	bool in_vbl = true;
 208	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 209
 210	if (!i915_pipe_enabled(dev, pipe)) {
 211		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
 212				 "pipe %c\n", pipe_name(pipe));
 213		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 214	}
 215
 216	/* Get vtotal. */
 217	vtotal = 1 + ((I915_READ(VTOTAL(pipe)) >> 16) & 0x1fff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218
 219	if (INTEL_INFO(dev)->gen >= 4) {
 
 
 
 
 
 
 220		/* No obvious pixelcount register. Only query vertical
 221		 * scanout position from Display scan line register.
 222		 */
 223		position = I915_READ(PIPEDSL(pipe));
 224
 225		/* Decode into vertical scanout position. Don't have
 226		 * horizontal scanout position.
 227		 */
 228		*vpos = position & 0x1fff;
 229		*hpos = 0;
 230	} else {
 231		/* Have access to pixelcount since start of frame.
 232		 * We can split this into vertical and horizontal
 233		 * scanout position.
 234		 */
 235		position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 236
 237		htotal = 1 + ((I915_READ(HTOTAL(pipe)) >> 16) & 0x1fff);
 
 
 
 238		*vpos = position / htotal;
 239		*hpos = position - (*vpos * htotal);
 240	}
 241
 242	/* Query vblank area. */
 243	vbl = I915_READ(VBLANK(pipe));
 244
 245	/* Test position against vblank region. */
 246	vbl_start = vbl & 0x1fff;
 247	vbl_end = (vbl >> 16) & 0x1fff;
 248
 249	if ((*vpos < vbl_start) || (*vpos > vbl_end))
 250		in_vbl = false;
 251
 252	/* Inside "upper part" of vblank area? Apply corrective offset: */
 253	if (in_vbl && (*vpos >= vbl_start))
 254		*vpos = *vpos - vtotal;
 255
 256	/* Readouts valid? */
 257	if (vbl > 0)
 258		ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
 259
 260	/* In vblank? */
 261	if (in_vbl)
 262		ret |= DRM_SCANOUTPOS_INVBL;
 263
 264	return ret;
 
 
 
 
 
 
 
 
 
 
 265}
 266
 267static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
 268			      int *max_error,
 269			      struct timeval *vblank_time,
 270			      unsigned flags)
 
 
 
 
 
 
 271{
 272	struct drm_i915_private *dev_priv = dev->dev_private;
 273	struct drm_crtc *crtc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 274
 275	if (pipe < 0 || pipe >= dev_priv->num_pipe) {
 276		DRM_ERROR("Invalid crtc %d\n", pipe);
 277		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278	}
 
 279
 280	/* Get drm_crtc to timestamp: */
 281	crtc = intel_get_crtc_for_pipe(dev, pipe);
 282	if (crtc == NULL) {
 283		DRM_ERROR("Invalid crtc %d\n", pipe);
 284		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 285	}
 
 286
 287	if (!crtc->enabled) {
 288		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
 289		return -EBUSY;
 
 
 
 
 
 
 
 
 290	}
 
 291
 292	/* Helper routine in DRM core does all the work: */
 293	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
 294						     vblank_time, flags,
 295						     crtc);
 
 
 
 
 
 
 
 
 296}
 297
 298/*
 299 * Handle hotplug events outside the interrupt handler proper.
 
 
 
 
 300 */
 301static void i915_hotplug_work_func(struct work_struct *work)
 
 
 
 
 302{
 303	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
 304						    hotplug_work);
 305	struct drm_device *dev = dev_priv->dev;
 306	struct drm_mode_config *mode_config = &dev->mode_config;
 307	struct intel_encoder *encoder;
 
 
 308
 309	mutex_lock(&mode_config->mutex);
 310	DRM_DEBUG_KMS("running encoder hotplug functions\n");
 311
 312	list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
 313		if (encoder->hot_plug)
 314			encoder->hot_plug(encoder);
 315
 316	mutex_unlock(&mode_config->mutex);
 
 
 317
 318	/* Just fire off a uevent and let userspace tell us what to do */
 319	drm_helper_hpd_irq_event(dev);
 320}
 321
 322static void i915_handle_rps_change(struct drm_device *dev)
 323{
 324	drm_i915_private_t *dev_priv = dev->dev_private;
 325	u32 busy_up, busy_down, max_avg, min_avg;
 326	u8 new_delay = dev_priv->cur_delay;
 327
 328	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
 329	busy_up = I915_READ(RCPREVBSYTUPAVG);
 330	busy_down = I915_READ(RCPREVBSYTDNAVG);
 331	max_avg = I915_READ(RCBMAXAVG);
 332	min_avg = I915_READ(RCBMINAVG);
 333
 334	/* Handle RCS change request from hw */
 335	if (busy_up > max_avg) {
 336		if (dev_priv->cur_delay != dev_priv->max_delay)
 337			new_delay = dev_priv->cur_delay - 1;
 338		if (new_delay < dev_priv->max_delay)
 339			new_delay = dev_priv->max_delay;
 340	} else if (busy_down < min_avg) {
 341		if (dev_priv->cur_delay != dev_priv->min_delay)
 342			new_delay = dev_priv->cur_delay + 1;
 343		if (new_delay > dev_priv->min_delay)
 344			new_delay = dev_priv->min_delay;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 345	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 346
 347	if (ironlake_set_drps(dev, new_delay))
 348		dev_priv->cur_delay = new_delay;
 
 
 
 
 
 349
 350	return;
 
 
 
 
 
 
 
 
 351}
 352
 353static void notify_ring(struct drm_device *dev,
 354			struct intel_ring_buffer *ring)
 355{
 356	struct drm_i915_private *dev_priv = dev->dev_private;
 357	u32 seqno;
 358
 359	if (ring->obj == NULL)
 360		return;
 
 
 361
 362	seqno = ring->get_seqno(ring);
 363	trace_i915_gem_request_complete(ring, seqno);
 
 
 
 
 
 
 
 
 
 
 
 
 
 364
 365	ring->irq_seqno = seqno;
 366	wake_up_all(&ring->irq_queue);
 367	if (i915_enable_hangcheck) {
 368		dev_priv->hangcheck_count = 0;
 369		mod_timer(&dev_priv->hangcheck_timer,
 370			  jiffies +
 371			  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
 372	}
 373}
 374
 375static void gen6_pm_rps_work(struct work_struct *work)
 
 376{
 377	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
 378						    rps_work);
 379	u8 new_delay = dev_priv->cur_delay;
 380	u32 pm_iir, pm_imr;
 381
 382	spin_lock_irq(&dev_priv->rps_lock);
 383	pm_iir = dev_priv->pm_iir;
 384	dev_priv->pm_iir = 0;
 385	pm_imr = I915_READ(GEN6_PMIMR);
 386	spin_unlock_irq(&dev_priv->rps_lock);
 387
 388	if (!pm_iir)
 
 389		return;
 
 390
 391	mutex_lock(&dev_priv->dev->struct_mutex);
 392	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
 393		if (dev_priv->cur_delay != dev_priv->max_delay)
 394			new_delay = dev_priv->cur_delay + 1;
 395		if (new_delay > dev_priv->max_delay)
 396			new_delay = dev_priv->max_delay;
 397	} else if (pm_iir & (GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT)) {
 398		gen6_gt_force_wake_get(dev_priv);
 399		if (dev_priv->cur_delay != dev_priv->min_delay)
 400			new_delay = dev_priv->cur_delay - 1;
 401		if (new_delay < dev_priv->min_delay) {
 402			new_delay = dev_priv->min_delay;
 403			I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
 404				   I915_READ(GEN6_RP_INTERRUPT_LIMITS) |
 405				   ((new_delay << 16) & 0x3f0000));
 406		} else {
 407			/* Make sure we continue to get down interrupts
 408			 * until we hit the minimum frequency */
 409			I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
 410				   I915_READ(GEN6_RP_INTERRUPT_LIMITS) & ~0x3f0000);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411		}
 412		gen6_gt_force_wake_put(dev_priv);
 413	}
 
 
 414
 415	gen6_set_rps(dev_priv->dev, new_delay);
 416	dev_priv->cur_delay = new_delay;
 
 
 417
 418	/*
 419	 * rps_lock not held here because clearing is non-destructive. There is
 420	 * an *extremely* unlikely race with gen6_rps_enable() that is prevented
 421	 * by holding struct_mutex for the duration of the write.
 422	 */
 423	I915_WRITE(GEN6_PMIMR, pm_imr & ~pm_iir);
 424	mutex_unlock(&dev_priv->dev->struct_mutex);
 
 
 
 425}
 426
 427static void pch_irq_handler(struct drm_device *dev)
 
 428{
 429	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 430	u32 pch_iir;
 431	int pipe;
 432
 433	pch_iir = I915_READ(SDEIIR);
 
 
 434
 435	if (pch_iir & SDE_AUDIO_POWER_MASK)
 436		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
 437				 (pch_iir & SDE_AUDIO_POWER_MASK) >>
 438				 SDE_AUDIO_POWER_SHIFT);
 439
 440	if (pch_iir & SDE_GMBUS)
 441		DRM_DEBUG_DRIVER("PCH GMBUS interrupt\n");
 442
 443	if (pch_iir & SDE_AUDIO_HDCP_MASK)
 444		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
 
 445
 446	if (pch_iir & SDE_AUDIO_TRANS_MASK)
 447		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
 
 448
 449	if (pch_iir & SDE_POISON)
 450		DRM_ERROR("PCH poison interrupt\n");
 
 
 
 451
 452	if (pch_iir & SDE_FDI_MASK)
 453		for_each_pipe(pipe)
 454			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
 455					 pipe_name(pipe),
 456					 I915_READ(FDI_RX_IIR(pipe)));
 457
 458	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
 459		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
 460
 461	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
 462		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
 463
 464	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
 465		DRM_DEBUG_DRIVER("PCH transcoder B underrun interrupt\n");
 466	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
 467		DRM_DEBUG_DRIVER("PCH transcoder A underrun interrupt\n");
 
 
 
 
 
 468}
 469
 470static irqreturn_t ivybridge_irq_handler(DRM_IRQ_ARGS)
 
 471{
 472	struct drm_device *dev = (struct drm_device *) arg;
 473	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 474	int ret = IRQ_NONE;
 475	u32 de_iir, gt_iir, de_ier, pch_iir, pm_iir;
 476	struct drm_i915_master_private *master_priv;
 477
 478	atomic_inc(&dev_priv->irq_received);
 479
 480	/* disable master interrupt before clearing iir  */
 481	de_ier = I915_READ(DEIER);
 482	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
 483	POSTING_READ(DEIER);
 484
 485	de_iir = I915_READ(DEIIR);
 486	gt_iir = I915_READ(GTIIR);
 487	pch_iir = I915_READ(SDEIIR);
 488	pm_iir = I915_READ(GEN6_PMIIR);
 489
 490	if (de_iir == 0 && gt_iir == 0 && pch_iir == 0 && pm_iir == 0)
 491		goto done;
 492
 493	ret = IRQ_HANDLED;
 494
 495	if (dev->primary->master) {
 496		master_priv = dev->primary->master->driver_priv;
 497		if (master_priv->sarea_priv)
 498			master_priv->sarea_priv->last_dispatch =
 499				READ_BREADCRUMB(dev_priv);
 500	}
 501
 502	if (gt_iir & (GT_USER_INTERRUPT | GT_PIPE_NOTIFY))
 503		notify_ring(dev, &dev_priv->ring[RCS]);
 504	if (gt_iir & GT_GEN6_BSD_USER_INTERRUPT)
 505		notify_ring(dev, &dev_priv->ring[VCS]);
 506	if (gt_iir & GT_BLT_USER_INTERRUPT)
 507		notify_ring(dev, &dev_priv->ring[BCS]);
 508
 509	if (de_iir & DE_GSE_IVB)
 510		intel_opregion_gse_intr(dev);
 511
 512	if (de_iir & DE_PLANEA_FLIP_DONE_IVB) {
 513		intel_prepare_page_flip(dev, 0);
 514		intel_finish_page_flip_plane(dev, 0);
 515	}
 516
 517	if (de_iir & DE_PLANEB_FLIP_DONE_IVB) {
 518		intel_prepare_page_flip(dev, 1);
 519		intel_finish_page_flip_plane(dev, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520	}
 521
 522	if (de_iir & DE_PIPEA_VBLANK_IVB)
 523		drm_handle_vblank(dev, 0);
 
 524
 525	if (de_iir & DE_PIPEB_VBLANK_IVB)
 526		drm_handle_vblank(dev, 1);
 527
 528	/* check event from PCH */
 529	if (de_iir & DE_PCH_EVENT_IVB) {
 530		if (pch_iir & SDE_HOTPLUG_MASK_CPT)
 531			queue_work(dev_priv->wq, &dev_priv->hotplug_work);
 532		pch_irq_handler(dev);
 533	}
 534
 535	if (pm_iir & GEN6_PM_DEFERRED_EVENTS) {
 536		unsigned long flags;
 537		spin_lock_irqsave(&dev_priv->rps_lock, flags);
 538		WARN(dev_priv->pm_iir & pm_iir, "Missed a PM interrupt\n");
 539		I915_WRITE(GEN6_PMIMR, pm_iir);
 540		dev_priv->pm_iir |= pm_iir;
 541		spin_unlock_irqrestore(&dev_priv->rps_lock, flags);
 542		queue_work(dev_priv->wq, &dev_priv->rps_work);
 543	}
 544
 545	/* should clear PCH hotplug event before clear CPU irq */
 546	I915_WRITE(SDEIIR, pch_iir);
 547	I915_WRITE(GTIIR, gt_iir);
 548	I915_WRITE(DEIIR, de_iir);
 549	I915_WRITE(GEN6_PMIIR, pm_iir);
 550
 551done:
 552	I915_WRITE(DEIER, de_ier);
 553	POSTING_READ(DEIER);
 554
 555	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556}
 557
 558static irqreturn_t ironlake_irq_handler(DRM_IRQ_ARGS)
 559{
 560	struct drm_device *dev = (struct drm_device *) arg;
 561	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 562	int ret = IRQ_NONE;
 563	u32 de_iir, gt_iir, de_ier, pch_iir, pm_iir;
 564	u32 hotplug_mask;
 565	struct drm_i915_master_private *master_priv;
 566	u32 bsd_usr_interrupt = GT_BSD_USER_INTERRUPT;
 567
 568	atomic_inc(&dev_priv->irq_received);
 
 569
 570	if (IS_GEN6(dev))
 571		bsd_usr_interrupt = GT_GEN6_BSD_USER_INTERRUPT;
 572
 573	/* disable master interrupt before clearing iir  */
 574	de_ier = I915_READ(DEIER);
 575	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
 576	POSTING_READ(DEIER);
 577
 578	de_iir = I915_READ(DEIIR);
 579	gt_iir = I915_READ(GTIIR);
 580	pch_iir = I915_READ(SDEIIR);
 581	pm_iir = I915_READ(GEN6_PMIIR);
 582
 583	if (de_iir == 0 && gt_iir == 0 && pch_iir == 0 &&
 584	    (!IS_GEN6(dev) || pm_iir == 0))
 585		goto done;
 586
 587	if (HAS_PCH_CPT(dev))
 588		hotplug_mask = SDE_HOTPLUG_MASK_CPT;
 589	else
 590		hotplug_mask = SDE_HOTPLUG_MASK;
 591
 592	ret = IRQ_HANDLED;
 593
 594	if (dev->primary->master) {
 595		master_priv = dev->primary->master->driver_priv;
 596		if (master_priv->sarea_priv)
 597			master_priv->sarea_priv->last_dispatch =
 598				READ_BREADCRUMB(dev_priv);
 599	}
 600
 601	if (gt_iir & (GT_USER_INTERRUPT | GT_PIPE_NOTIFY))
 602		notify_ring(dev, &dev_priv->ring[RCS]);
 603	if (gt_iir & bsd_usr_interrupt)
 604		notify_ring(dev, &dev_priv->ring[VCS]);
 605	if (gt_iir & GT_BLT_USER_INTERRUPT)
 606		notify_ring(dev, &dev_priv->ring[BCS]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607
 608	if (de_iir & DE_GSE)
 609		intel_opregion_gse_intr(dev);
 
 
 
 
 610
 611	if (de_iir & DE_PLANEA_FLIP_DONE) {
 612		intel_prepare_page_flip(dev, 0);
 613		intel_finish_page_flip_plane(dev, 0);
 614	}
 615
 616	if (de_iir & DE_PLANEB_FLIP_DONE) {
 617		intel_prepare_page_flip(dev, 1);
 618		intel_finish_page_flip_plane(dev, 1);
 619	}
 620
 621	if (de_iir & DE_PIPEA_VBLANK)
 622		drm_handle_vblank(dev, 0);
 623
 624	if (de_iir & DE_PIPEB_VBLANK)
 625		drm_handle_vblank(dev, 1);
 626
 627	/* check event from PCH */
 628	if (de_iir & DE_PCH_EVENT) {
 629		if (pch_iir & hotplug_mask)
 630			queue_work(dev_priv->wq, &dev_priv->hotplug_work);
 631		pch_irq_handler(dev);
 632	}
 633
 634	if (de_iir & DE_PCU_EVENT) {
 635		I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
 636		i915_handle_rps_change(dev);
 637	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 638
 639	if (IS_GEN6(dev) && pm_iir & GEN6_PM_DEFERRED_EVENTS) {
 640		/*
 641		 * IIR bits should never already be set because IMR should
 642		 * prevent an interrupt from being shown in IIR. The warning
 643		 * displays a case where we've unsafely cleared
 644		 * dev_priv->pm_iir. Although missing an interrupt of the same
 645		 * type is not a problem, it displays a problem in the logic.
 646		 *
 647		 * The mask bit in IMR is cleared by rps_work.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648		 */
 649		unsigned long flags;
 650		spin_lock_irqsave(&dev_priv->rps_lock, flags);
 651		WARN(dev_priv->pm_iir & pm_iir, "Missed a PM interrupt\n");
 652		I915_WRITE(GEN6_PMIMR, pm_iir);
 653		dev_priv->pm_iir |= pm_iir;
 654		spin_unlock_irqrestore(&dev_priv->rps_lock, flags);
 655		queue_work(dev_priv->wq, &dev_priv->rps_work);
 656	}
 657
 658	/* should clear PCH hotplug event before clear CPU irq */
 659	I915_WRITE(SDEIIR, pch_iir);
 660	I915_WRITE(GTIIR, gt_iir);
 661	I915_WRITE(DEIIR, de_iir);
 662	I915_WRITE(GEN6_PMIIR, pm_iir);
 663
 664done:
 665	I915_WRITE(DEIER, de_ier);
 666	POSTING_READ(DEIER);
 667
 668	return ret;
 669}
 670
 671/**
 672 * i915_error_work_func - do process context error handling work
 673 * @work: work struct
 674 *
 675 * Fire an error uevent so userspace can see that a hang or error
 676 * was detected.
 677 */
 678static void i915_error_work_func(struct work_struct *work)
 679{
 680	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
 681						    error_work);
 682	struct drm_device *dev = dev_priv->dev;
 683	char *error_event[] = { "ERROR=1", NULL };
 684	char *reset_event[] = { "RESET=1", NULL };
 685	char *reset_done_event[] = { "ERROR=0", NULL };
 686
 687	kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
 688
 689	if (atomic_read(&dev_priv->mm.wedged)) {
 690		DRM_DEBUG_DRIVER("resetting chip\n");
 691		kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, reset_event);
 692		if (!i915_reset(dev, GRDOM_RENDER)) {
 693			atomic_set(&dev_priv->mm.wedged, 0);
 694			kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, reset_done_event);
 695		}
 696		complete_all(&dev_priv->error_completion);
 697	}
 
 
 
 
 
 
 
 
 
 
 
 698}
 699
 700#ifdef CONFIG_DEBUG_FS
 701static struct drm_i915_error_object *
 702i915_error_object_create(struct drm_i915_private *dev_priv,
 703			 struct drm_i915_gem_object *src)
 704{
 705	struct drm_i915_error_object *dst;
 706	int page, page_count;
 707	u32 reloc_offset;
 708
 709	if (src == NULL || src->pages == NULL)
 710		return NULL;
 711
 712	page_count = src->base.size / PAGE_SIZE;
 
 
 
 
 
 713
 714	dst = kmalloc(sizeof(*dst) + page_count * sizeof (u32 *), GFP_ATOMIC);
 715	if (dst == NULL)
 716		return NULL;
 717
 718	reloc_offset = src->gtt_offset;
 719	for (page = 0; page < page_count; page++) {
 720		unsigned long flags;
 721		void __iomem *s;
 722		void *d;
 723
 724		d = kmalloc(PAGE_SIZE, GFP_ATOMIC);
 725		if (d == NULL)
 726			goto unwind;
 727
 728		local_irq_save(flags);
 729		s = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
 730					     reloc_offset);
 731		memcpy_fromio(d, s, PAGE_SIZE);
 732		io_mapping_unmap_atomic(s);
 733		local_irq_restore(flags);
 734
 735		dst->pages[page] = d;
 
 736
 737		reloc_offset += PAGE_SIZE;
 
 
 
 
 738	}
 739	dst->page_count = page_count;
 740	dst->gtt_offset = src->gtt_offset;
 741
 742	return dst;
 
 
 
 
 
 
 
 
 743
 744unwind:
 745	while (page--)
 746		kfree(dst->pages[page]);
 747	kfree(dst);
 748	return NULL;
 749}
 750
 751static void
 752i915_error_object_free(struct drm_i915_error_object *obj)
 753{
 754	int page;
 
 755
 756	if (obj == NULL)
 757		return;
 758
 759	for (page = 0; page < obj->page_count; page++)
 760		kfree(obj->pages[page]);
 
 761
 762	kfree(obj);
 
 
 
 
 
 
 
 
 763}
 764
 765static void
 766i915_error_state_free(struct drm_device *dev,
 767		      struct drm_i915_error_state *error)
 768{
 769	int i;
 
 
 
 
 770
 771	for (i = 0; i < ARRAY_SIZE(error->batchbuffer); i++)
 772		i915_error_object_free(error->batchbuffer[i]);
 
 773
 774	for (i = 0; i < ARRAY_SIZE(error->ringbuffer); i++)
 775		i915_error_object_free(error->ringbuffer[i]);
 776
 777	kfree(error->active_bo);
 778	kfree(error->overlay);
 779	kfree(error);
 780}
 781
 782static u32 capture_bo_list(struct drm_i915_error_buffer *err,
 783			   int count,
 784			   struct list_head *head)
 785{
 786	struct drm_i915_gem_object *obj;
 787	int i = 0;
 788
 789	list_for_each_entry(obj, head, mm_list) {
 790		err->size = obj->base.size;
 791		err->name = obj->base.name;
 792		err->seqno = obj->last_rendering_seqno;
 793		err->gtt_offset = obj->gtt_offset;
 794		err->read_domains = obj->base.read_domains;
 795		err->write_domain = obj->base.write_domain;
 796		err->fence_reg = obj->fence_reg;
 797		err->pinned = 0;
 798		if (obj->pin_count > 0)
 799			err->pinned = 1;
 800		if (obj->user_pin_count > 0)
 801			err->pinned = -1;
 802		err->tiling = obj->tiling_mode;
 803		err->dirty = obj->dirty;
 804		err->purgeable = obj->madv != I915_MADV_WILLNEED;
 805		err->ring = obj->ring ? obj->ring->id : 0;
 806		err->cache_level = obj->cache_level;
 807
 808		if (++i == count)
 809			break;
 
 
 
 
 
 
 810
 811		err++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 812	}
 813
 814	return i;
 
 815}
 816
 817static void i915_gem_record_fences(struct drm_device *dev,
 818				   struct drm_i915_error_state *error)
 819{
 820	struct drm_i915_private *dev_priv = dev->dev_private;
 821	int i;
 
 822
 823	/* Fences */
 824	switch (INTEL_INFO(dev)->gen) {
 825	case 6:
 826		for (i = 0; i < 16; i++)
 827			error->fence[i] = I915_READ64(FENCE_REG_SANDYBRIDGE_0 + (i * 8));
 828		break;
 829	case 5:
 830	case 4:
 831		for (i = 0; i < 16; i++)
 832			error->fence[i] = I915_READ64(FENCE_REG_965_0 + (i * 8));
 833		break;
 834	case 3:
 835		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
 836			for (i = 0; i < 8; i++)
 837				error->fence[i+8] = I915_READ(FENCE_REG_945_8 + (i * 4));
 838	case 2:
 839		for (i = 0; i < 8; i++)
 840			error->fence[i] = I915_READ(FENCE_REG_830_0 + (i * 4));
 841		break;
 842
 
 
 
 843	}
 844}
 845
 846static struct drm_i915_error_object *
 847i915_error_first_batchbuffer(struct drm_i915_private *dev_priv,
 848			     struct intel_ring_buffer *ring)
 849{
 850	struct drm_i915_gem_object *obj;
 851	u32 seqno;
 852
 853	if (!ring->get_seqno)
 854		return NULL;
 855
 856	seqno = ring->get_seqno(ring);
 857	list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list) {
 858		if (obj->ring != ring)
 859			continue;
 860
 861		if (i915_seqno_passed(seqno, obj->last_rendering_seqno))
 862			continue;
 863
 864		if ((obj->base.read_domains & I915_GEM_DOMAIN_COMMAND) == 0)
 865			continue;
 
 
 
 866
 867		/* We need to copy these to an anonymous buffer as the simplest
 868		 * method to avoid being overwritten by userspace.
 869		 */
 870		return i915_error_object_create(dev_priv, obj);
 
 
 
 
 
 
 871	}
 872
 873	return NULL;
 
 
 
 
 874}
 875
 876/**
 877 * i915_capture_error_state - capture an error record for later analysis
 878 * @dev: drm device
 879 *
 880 * Should be called when an error is detected (either a hang or an error
 881 * interrupt) to capture error state from the time of the error.  Fills
 882 * out a structure which becomes available in debugfs for user level tools
 883 * to pick up.
 884 */
 885static void i915_capture_error_state(struct drm_device *dev)
 886{
 887	struct drm_i915_private *dev_priv = dev->dev_private;
 888	struct drm_i915_gem_object *obj;
 889	struct drm_i915_error_state *error;
 890	unsigned long flags;
 891	int i, pipe;
 892
 893	spin_lock_irqsave(&dev_priv->error_lock, flags);
 894	error = dev_priv->first_error;
 895	spin_unlock_irqrestore(&dev_priv->error_lock, flags);
 896	if (error)
 897		return;
 898
 899	/* Account for pipe specific data like PIPE*STAT */
 900	error = kmalloc(sizeof(*error), GFP_ATOMIC);
 901	if (!error) {
 902		DRM_DEBUG_DRIVER("out of memory, not capturing error state\n");
 903		return;
 904	}
 905
 906	DRM_INFO("capturing error event; look for more information in /debug/dri/%d/i915_error_state\n",
 907		 dev->primary->index);
 908
 909	error->seqno = dev_priv->ring[RCS].get_seqno(&dev_priv->ring[RCS]);
 910	error->eir = I915_READ(EIR);
 911	error->pgtbl_er = I915_READ(PGTBL_ER);
 912	for_each_pipe(pipe)
 913		error->pipestat[pipe] = I915_READ(PIPESTAT(pipe));
 914	error->instpm = I915_READ(INSTPM);
 915	error->error = 0;
 916	if (INTEL_INFO(dev)->gen >= 6) {
 917		error->error = I915_READ(ERROR_GEN6);
 918
 919		error->bcs_acthd = I915_READ(BCS_ACTHD);
 920		error->bcs_ipehr = I915_READ(BCS_IPEHR);
 921		error->bcs_ipeir = I915_READ(BCS_IPEIR);
 922		error->bcs_instdone = I915_READ(BCS_INSTDONE);
 923		error->bcs_seqno = 0;
 924		if (dev_priv->ring[BCS].get_seqno)
 925			error->bcs_seqno = dev_priv->ring[BCS].get_seqno(&dev_priv->ring[BCS]);
 926
 927		error->vcs_acthd = I915_READ(VCS_ACTHD);
 928		error->vcs_ipehr = I915_READ(VCS_IPEHR);
 929		error->vcs_ipeir = I915_READ(VCS_IPEIR);
 930		error->vcs_instdone = I915_READ(VCS_INSTDONE);
 931		error->vcs_seqno = 0;
 932		if (dev_priv->ring[VCS].get_seqno)
 933			error->vcs_seqno = dev_priv->ring[VCS].get_seqno(&dev_priv->ring[VCS]);
 934	}
 935	if (INTEL_INFO(dev)->gen >= 4) {
 936		error->ipeir = I915_READ(IPEIR_I965);
 937		error->ipehr = I915_READ(IPEHR_I965);
 938		error->instdone = I915_READ(INSTDONE_I965);
 939		error->instps = I915_READ(INSTPS);
 940		error->instdone1 = I915_READ(INSTDONE1);
 941		error->acthd = I915_READ(ACTHD_I965);
 942		error->bbaddr = I915_READ64(BB_ADDR);
 943	} else {
 944		error->ipeir = I915_READ(IPEIR);
 945		error->ipehr = I915_READ(IPEHR);
 946		error->instdone = I915_READ(INSTDONE);
 947		error->acthd = I915_READ(ACTHD);
 948		error->bbaddr = 0;
 949	}
 950	i915_gem_record_fences(dev, error);
 951
 952	/* Record the active batch and ring buffers */
 953	for (i = 0; i < I915_NUM_RINGS; i++) {
 954		error->batchbuffer[i] =
 955			i915_error_first_batchbuffer(dev_priv,
 956						     &dev_priv->ring[i]);
 957
 958		error->ringbuffer[i] =
 959			i915_error_object_create(dev_priv,
 960						 dev_priv->ring[i].obj);
 961	}
 962
 963	/* Record buffers on the active and pinned lists. */
 964	error->active_bo = NULL;
 965	error->pinned_bo = NULL;
 966
 967	i = 0;
 968	list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list)
 969		i++;
 970	error->active_bo_count = i;
 971	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
 972		i++;
 973	error->pinned_bo_count = i - error->active_bo_count;
 974
 975	error->active_bo = NULL;
 976	error->pinned_bo = NULL;
 977	if (i) {
 978		error->active_bo = kmalloc(sizeof(*error->active_bo)*i,
 979					   GFP_ATOMIC);
 980		if (error->active_bo)
 981			error->pinned_bo =
 982				error->active_bo + error->active_bo_count;
 983	}
 984
 985	if (error->active_bo)
 986		error->active_bo_count =
 987			capture_bo_list(error->active_bo,
 988					error->active_bo_count,
 989					&dev_priv->mm.active_list);
 990
 991	if (error->pinned_bo)
 992		error->pinned_bo_count =
 993			capture_bo_list(error->pinned_bo,
 994					error->pinned_bo_count,
 995					&dev_priv->mm.pinned_list);
 996
 997	do_gettimeofday(&error->time);
 998
 999	error->overlay = intel_overlay_capture_error_state(dev);
1000	error->display = intel_display_capture_error_state(dev);
1001
1002	spin_lock_irqsave(&dev_priv->error_lock, flags);
1003	if (dev_priv->first_error == NULL) {
1004		dev_priv->first_error = error;
1005		error = NULL;
1006	}
1007	spin_unlock_irqrestore(&dev_priv->error_lock, flags);
1008
1009	if (error)
1010		i915_error_state_free(dev, error);
1011}
1012
1013void i915_destroy_error_state(struct drm_device *dev)
1014{
1015	struct drm_i915_private *dev_priv = dev->dev_private;
1016	struct drm_i915_error_state *error;
1017
1018	spin_lock(&dev_priv->error_lock);
1019	error = dev_priv->first_error;
1020	dev_priv->first_error = NULL;
1021	spin_unlock(&dev_priv->error_lock);
1022
1023	if (error)
1024		i915_error_state_free(dev, error);
 
 
 
 
 
 
 
 
 
 
 
 
1025}
1026#else
1027#define i915_capture_error_state(x)
1028#endif
1029
1030static void i915_report_and_clear_eir(struct drm_device *dev)
 
1031{
1032	struct drm_i915_private *dev_priv = dev->dev_private;
1033	u32 eir = I915_READ(EIR);
1034	int pipe;
1035
1036	if (!eir)
1037		return;
1038
1039	printk(KERN_ERR "render error detected, EIR: 0x%08x\n",
1040	       eir);
1041
1042	if (IS_G4X(dev)) {
1043		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1044			u32 ipeir = I915_READ(IPEIR_I965);
1045
1046			printk(KERN_ERR "  IPEIR: 0x%08x\n",
1047			       I915_READ(IPEIR_I965));
1048			printk(KERN_ERR "  IPEHR: 0x%08x\n",
1049			       I915_READ(IPEHR_I965));
1050			printk(KERN_ERR "  INSTDONE: 0x%08x\n",
1051			       I915_READ(INSTDONE_I965));
1052			printk(KERN_ERR "  INSTPS: 0x%08x\n",
1053			       I915_READ(INSTPS));
1054			printk(KERN_ERR "  INSTDONE1: 0x%08x\n",
1055			       I915_READ(INSTDONE1));
1056			printk(KERN_ERR "  ACTHD: 0x%08x\n",
1057			       I915_READ(ACTHD_I965));
1058			I915_WRITE(IPEIR_I965, ipeir);
1059			POSTING_READ(IPEIR_I965);
1060		}
1061		if (eir & GM45_ERROR_PAGE_TABLE) {
1062			u32 pgtbl_err = I915_READ(PGTBL_ER);
1063			printk(KERN_ERR "page table error\n");
1064			printk(KERN_ERR "  PGTBL_ER: 0x%08x\n",
1065			       pgtbl_err);
1066			I915_WRITE(PGTBL_ER, pgtbl_err);
1067			POSTING_READ(PGTBL_ER);
1068		}
 
 
 
1069	}
1070
1071	if (!IS_GEN2(dev)) {
1072		if (eir & I915_ERROR_PAGE_TABLE) {
1073			u32 pgtbl_err = I915_READ(PGTBL_ER);
1074			printk(KERN_ERR "page table error\n");
1075			printk(KERN_ERR "  PGTBL_ER: 0x%08x\n",
1076			       pgtbl_err);
1077			I915_WRITE(PGTBL_ER, pgtbl_err);
1078			POSTING_READ(PGTBL_ER);
1079		}
 
 
1080	}
1081
1082	if (eir & I915_ERROR_MEMORY_REFRESH) {
1083		printk(KERN_ERR "memory refresh error:\n");
1084		for_each_pipe(pipe)
1085			printk(KERN_ERR "pipe %c stat: 0x%08x\n",
1086			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1087		/* pipestat has already been acked */
1088	}
1089	if (eir & I915_ERROR_INSTRUCTION) {
1090		printk(KERN_ERR "instruction error\n");
1091		printk(KERN_ERR "  INSTPM: 0x%08x\n",
1092		       I915_READ(INSTPM));
1093		if (INTEL_INFO(dev)->gen < 4) {
1094			u32 ipeir = I915_READ(IPEIR);
1095
1096			printk(KERN_ERR "  IPEIR: 0x%08x\n",
1097			       I915_READ(IPEIR));
1098			printk(KERN_ERR "  IPEHR: 0x%08x\n",
1099			       I915_READ(IPEHR));
1100			printk(KERN_ERR "  INSTDONE: 0x%08x\n",
1101			       I915_READ(INSTDONE));
1102			printk(KERN_ERR "  ACTHD: 0x%08x\n",
1103			       I915_READ(ACTHD));
1104			I915_WRITE(IPEIR, ipeir);
1105			POSTING_READ(IPEIR);
1106		} else {
1107			u32 ipeir = I915_READ(IPEIR_I965);
1108
1109			printk(KERN_ERR "  IPEIR: 0x%08x\n",
1110			       I915_READ(IPEIR_I965));
1111			printk(KERN_ERR "  IPEHR: 0x%08x\n",
1112			       I915_READ(IPEHR_I965));
1113			printk(KERN_ERR "  INSTDONE: 0x%08x\n",
1114			       I915_READ(INSTDONE_I965));
1115			printk(KERN_ERR "  INSTPS: 0x%08x\n",
1116			       I915_READ(INSTPS));
1117			printk(KERN_ERR "  INSTDONE1: 0x%08x\n",
1118			       I915_READ(INSTDONE1));
1119			printk(KERN_ERR "  ACTHD: 0x%08x\n",
1120			       I915_READ(ACTHD_I965));
1121			I915_WRITE(IPEIR_I965, ipeir);
1122			POSTING_READ(IPEIR_I965);
1123		}
 
 
1124	}
1125
1126	I915_WRITE(EIR, eir);
1127	POSTING_READ(EIR);
1128	eir = I915_READ(EIR);
1129	if (eir) {
1130		/*
1131		 * some errors might have become stuck,
1132		 * mask them.
1133		 */
1134		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1135		I915_WRITE(EMR, I915_READ(EMR) | eir);
1136		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
 
 
 
 
 
 
 
 
1137	}
1138}
1139
1140/**
1141 * i915_handle_error - handle an error interrupt
1142 * @dev: drm device
1143 *
1144 * Do some basic checking of regsiter state at error interrupt time and
1145 * dump it to the syslog.  Also call i915_capture_error_state() to make
1146 * sure we get a record and make it available in debugfs.  Fire a uevent
1147 * so userspace knows something bad happened (should trigger collection
1148 * of a ring dump etc.).
1149 */
1150void i915_handle_error(struct drm_device *dev, bool wedged)
1151{
1152	struct drm_i915_private *dev_priv = dev->dev_private;
1153
1154	i915_capture_error_state(dev);
1155	i915_report_and_clear_eir(dev);
1156
1157	if (wedged) {
1158		INIT_COMPLETION(dev_priv->error_completion);
1159		atomic_set(&dev_priv->mm.wedged, 1);
1160
1161		/*
1162		 * Wakeup waiting processes so they don't hang
1163		 */
1164		wake_up_all(&dev_priv->ring[RCS].irq_queue);
1165		if (HAS_BSD(dev))
1166			wake_up_all(&dev_priv->ring[VCS].irq_queue);
1167		if (HAS_BLT(dev))
1168			wake_up_all(&dev_priv->ring[BCS].irq_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1169	}
1170
1171	queue_work(dev_priv->wq, &dev_priv->error_work);
 
 
 
 
 
 
 
1172}
1173
1174static void i915_pageflip_stall_check(struct drm_device *dev, int pipe)
 
1175{
1176	drm_i915_private_t *dev_priv = dev->dev_private;
1177	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1178	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1179	struct drm_i915_gem_object *obj;
1180	struct intel_unpin_work *work;
1181	unsigned long flags;
1182	bool stall_detected;
1183
1184	/* Ignore early vblank irqs */
1185	if (intel_crtc == NULL)
1186		return;
1187
1188	spin_lock_irqsave(&dev->event_lock, flags);
1189	work = intel_crtc->unpin_work;
 
 
1190
1191	if (work == NULL || work->pending || !work->enable_stall_check) {
1192		/* Either the pending flip IRQ arrived, or we're too early. Don't check */
1193		spin_unlock_irqrestore(&dev->event_lock, flags);
1194		return;
1195	}
1196
1197	/* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1198	obj = work->pending_flip_obj;
1199	if (INTEL_INFO(dev)->gen >= 4) {
1200		int dspsurf = DSPSURF(intel_crtc->plane);
1201		stall_detected = I915_READ(dspsurf) == obj->gtt_offset;
1202	} else {
1203		int dspaddr = DSPADDR(intel_crtc->plane);
1204		stall_detected = I915_READ(dspaddr) == (obj->gtt_offset +
1205							crtc->y * crtc->fb->pitch +
1206							crtc->x * crtc->fb->bits_per_pixel/8);
 
 
 
 
 
 
 
 
 
 
 
 
1207	}
1208
1209	spin_unlock_irqrestore(&dev->event_lock, flags);
 
1210
1211	if (stall_detected) {
1212		DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1213		intel_prepare_page_flip(dev, intel_crtc->plane);
 
 
 
 
1214	}
 
 
 
 
 
 
1215}
1216
1217static irqreturn_t i915_driver_irq_handler(DRM_IRQ_ARGS)
1218{
1219	struct drm_device *dev = (struct drm_device *) arg;
1220	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1221	struct drm_i915_master_private *master_priv;
1222	u32 iir, new_iir;
1223	u32 pipe_stats[I915_MAX_PIPES];
1224	u32 vblank_status;
1225	int vblank = 0;
1226	unsigned long irqflags;
1227	int irq_received;
1228	int ret = IRQ_NONE, pipe;
1229	bool blc_event = false;
1230
1231	atomic_inc(&dev_priv->irq_received);
 
 
 
 
 
 
 
 
 
1232
1233	iir = I915_READ(IIR);
1234
1235	if (INTEL_INFO(dev)->gen >= 4)
1236		vblank_status = PIPE_START_VBLANK_INTERRUPT_STATUS;
1237	else
1238		vblank_status = PIPE_VBLANK_INTERRUPT_STATUS;
 
1239
1240	for (;;) {
1241		irq_received = iir != 0;
1242
1243		/* Can't rely on pipestat interrupt bit in iir as it might
1244		 * have been cleared after the pipestat interrupt was received.
1245		 * It doesn't set the bit in iir again, but it still produces
1246		 * interrupts (for non-MSI).
1247		 */
1248		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1249		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
1250			i915_handle_error(dev, false);
1251
1252		for_each_pipe(pipe) {
1253			int reg = PIPESTAT(pipe);
1254			pipe_stats[pipe] = I915_READ(reg);
1255
1256			/*
1257			 * Clear the PIPE*STAT regs before the IIR
1258			 */
1259			if (pipe_stats[pipe] & 0x8000ffff) {
1260				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1261					DRM_DEBUG_DRIVER("pipe %c underrun\n",
1262							 pipe_name(pipe));
1263				I915_WRITE(reg, pipe_stats[pipe]);
1264				irq_received = 1;
1265			}
1266		}
1267		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1268
1269		if (!irq_received)
1270			break;
 
 
 
 
 
 
 
 
 
1271
1272		ret = IRQ_HANDLED;
 
 
 
1273
1274		/* Consume port.  Then clear IIR or we'll miss events */
1275		if ((I915_HAS_HOTPLUG(dev)) &&
1276		    (iir & I915_DISPLAY_PORT_INTERRUPT)) {
1277			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1278
1279			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1280				  hotplug_status);
1281			if (hotplug_status & dev_priv->hotplug_supported_mask)
1282				queue_work(dev_priv->wq,
1283					   &dev_priv->hotplug_work);
1284
1285			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1286			I915_READ(PORT_HOTPLUG_STAT);
1287		}
1288
1289		I915_WRITE(IIR, iir);
1290		new_iir = I915_READ(IIR); /* Flush posted writes */
 
 
1291
1292		if (dev->primary->master) {
1293			master_priv = dev->primary->master->driver_priv;
1294			if (master_priv->sarea_priv)
1295				master_priv->sarea_priv->last_dispatch =
1296					READ_BREADCRUMB(dev_priv);
1297		}
1298
1299		if (iir & I915_USER_INTERRUPT)
1300			notify_ring(dev, &dev_priv->ring[RCS]);
1301		if (iir & I915_BSD_USER_INTERRUPT)
1302			notify_ring(dev, &dev_priv->ring[VCS]);
1303
1304		if (iir & I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT) {
1305			intel_prepare_page_flip(dev, 0);
1306			if (dev_priv->flip_pending_is_done)
1307				intel_finish_page_flip_plane(dev, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1308		}
 
1309
1310		if (iir & I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT) {
1311			intel_prepare_page_flip(dev, 1);
1312			if (dev_priv->flip_pending_is_done)
1313				intel_finish_page_flip_plane(dev, 1);
 
 
 
 
 
1314		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1315
1316		for_each_pipe(pipe) {
1317			if (pipe_stats[pipe] & vblank_status &&
1318			    drm_handle_vblank(dev, pipe)) {
1319				vblank++;
1320				if (!dev_priv->flip_pending_is_done) {
1321					i915_pageflip_stall_check(dev, pipe);
1322					intel_finish_page_flip(dev, pipe);
1323				}
 
 
 
 
 
 
 
 
 
 
 
1324			}
1325
1326			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1327				blc_event = true;
 
1328		}
 
 
 
 
1329
 
 
1330
1331		if (blc_event || (iir & I915_ASLE_INTERRUPT))
1332			intel_opregion_asle_intr(dev);
1333
1334		/* With MSI, interrupts are only generated when iir
1335		 * transitions from zero to nonzero.  If another bit got
1336		 * set while we were handling the existing iir bits, then
1337		 * we would never get another interrupt.
1338		 *
1339		 * This is fine on non-MSI as well, as if we hit this path
1340		 * we avoid exiting the interrupt handler only to generate
1341		 * another one.
1342		 *
1343		 * Note that for MSI this could cause a stray interrupt report
1344		 * if an interrupt landed in the time between writing IIR and
1345		 * the posting read.  This should be rare enough to never
1346		 * trigger the 99% of 100,000 interrupts test for disabling
1347		 * stray interrupts.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1348		 */
1349		iir = new_iir;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1350	}
1351
1352	return ret;
1353}
1354
1355static int i915_emit_irq(struct drm_device * dev)
1356{
1357	drm_i915_private_t *dev_priv = dev->dev_private;
1358	struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1359
1360	i915_kernel_lost_context(dev);
 
 
 
 
 
 
 
 
 
 
 
 
1361
1362	DRM_DEBUG_DRIVER("\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
1363
1364	dev_priv->counter++;
1365	if (dev_priv->counter > 0x7FFFFFFFUL)
1366		dev_priv->counter = 1;
1367	if (master_priv->sarea_priv)
1368		master_priv->sarea_priv->last_enqueue = dev_priv->counter;
1369
1370	if (BEGIN_LP_RING(4) == 0) {
1371		OUT_RING(MI_STORE_DWORD_INDEX);
1372		OUT_RING(I915_BREADCRUMB_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1373		OUT_RING(dev_priv->counter);
1374		OUT_RING(MI_USER_INTERRUPT);
1375		ADVANCE_LP_RING();
1376	}
1377
1378	return dev_priv->counter;
 
 
1379}
1380
1381static int i915_wait_irq(struct drm_device * dev, int irq_nr)
 
1382{
1383	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1384	struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1385	int ret = 0;
1386	struct intel_ring_buffer *ring = LP_RING(dev_priv);
1387
1388	DRM_DEBUG_DRIVER("irq_nr=%d breadcrumb=%d\n", irq_nr,
1389		  READ_BREADCRUMB(dev_priv));
1390
1391	if (READ_BREADCRUMB(dev_priv) >= irq_nr) {
1392		if (master_priv->sarea_priv)
1393			master_priv->sarea_priv->last_dispatch = READ_BREADCRUMB(dev_priv);
1394		return 0;
1395	}
1396
1397	if (master_priv->sarea_priv)
1398		master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
 
1399
1400	if (ring->irq_get(ring)) {
1401		DRM_WAIT_ON(ret, ring->irq_queue, 3 * DRM_HZ,
1402			    READ_BREADCRUMB(dev_priv) >= irq_nr);
1403		ring->irq_put(ring);
1404	} else if (wait_for(READ_BREADCRUMB(dev_priv) >= irq_nr, 3000))
1405		ret = -EBUSY;
1406
1407	if (ret == -EBUSY) {
1408		DRM_ERROR("EBUSY -- rec: %d emitted: %d\n",
1409			  READ_BREADCRUMB(dev_priv), (int)dev_priv->counter);
1410	}
1411
1412	return ret;
 
 
 
 
1413}
1414
1415/* Needs the lock as it touches the ring.
1416 */
1417int i915_irq_emit(struct drm_device *dev, void *data,
1418			 struct drm_file *file_priv)
1419{
1420	drm_i915_private_t *dev_priv = dev->dev_private;
1421	drm_i915_irq_emit_t *emit = data;
1422	int result;
1423
1424	if (!dev_priv || !LP_RING(dev_priv)->virtual_start) {
1425		DRM_ERROR("called with no initialization\n");
1426		return -EINVAL;
1427	}
 
 
 
 
1428
1429	RING_LOCK_TEST_WITH_RETURN(dev, file_priv);
 
 
 
1430
1431	mutex_lock(&dev->struct_mutex);
1432	result = i915_emit_irq(dev);
1433	mutex_unlock(&dev->struct_mutex);
 
 
1434
1435	if (DRM_COPY_TO_USER(emit->irq_seq, &result, sizeof(int))) {
1436		DRM_ERROR("copy_to_user\n");
1437		return -EFAULT;
1438	}
 
 
 
 
 
1439
1440	return 0;
1441}
1442
1443/* Doesn't need the hardware lock.
1444 */
1445int i915_irq_wait(struct drm_device *dev, void *data,
1446			 struct drm_file *file_priv)
1447{
1448	drm_i915_private_t *dev_priv = dev->dev_private;
1449	drm_i915_irq_wait_t *irqwait = data;
 
 
1450
1451	if (!dev_priv) {
1452		DRM_ERROR("called with no initialization\n");
1453		return -EINVAL;
 
 
 
 
1454	}
1455
1456	return i915_wait_irq(dev, irqwait->irq_seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1457}
1458
1459/* Called from drm generic code, passed 'crtc' which
1460 * we use as a pipe index
1461 */
1462static int i915_enable_vblank(struct drm_device *dev, int pipe)
1463{
1464	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1465	unsigned long irqflags;
1466
1467	if (!i915_pipe_enabled(dev, pipe))
1468		return -EINVAL;
1469
1470	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1471	if (INTEL_INFO(dev)->gen >= 4)
1472		i915_enable_pipestat(dev_priv, pipe,
1473				     PIPE_START_VBLANK_INTERRUPT_ENABLE);
1474	else
1475		i915_enable_pipestat(dev_priv, pipe,
1476				     PIPE_VBLANK_INTERRUPT_ENABLE);
1477
1478	/* maintain vblank delivery even in deep C-states */
1479	if (dev_priv->info->gen == 3)
1480		I915_WRITE(INSTPM, INSTPM_AGPBUSY_DIS << 16);
1481	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1482
1483	return 0;
1484}
1485
1486static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1487{
1488	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1489	unsigned long irqflags;
1490
1491	if (!i915_pipe_enabled(dev, pipe))
1492		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1493
1494	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1495	ironlake_enable_display_irq(dev_priv, (pipe == 0) ?
1496				    DE_PIPEA_VBLANK: DE_PIPEB_VBLANK);
1497	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1498
1499	return 0;
1500}
1501
1502static int ivybridge_enable_vblank(struct drm_device *dev, int pipe)
1503{
1504	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1505	unsigned long irqflags;
 
 
 
 
 
 
1506
1507	if (!i915_pipe_enabled(dev, pipe))
1508		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
1509
1510	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1511	ironlake_enable_display_irq(dev_priv, (pipe == 0) ?
1512				    DE_PIPEA_VBLANK_IVB : DE_PIPEB_VBLANK_IVB);
1513	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1514
 
 
 
 
 
 
1515	return 0;
1516}
1517
1518/* Called from drm generic code, passed 'crtc' which
1519 * we use as a pipe index
1520 */
1521static void i915_disable_vblank(struct drm_device *dev, int pipe)
1522{
1523	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1524	unsigned long irqflags;
1525
1526	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1527	if (dev_priv->info->gen == 3)
1528		I915_WRITE(INSTPM,
1529			   INSTPM_AGPBUSY_DIS << 16 | INSTPM_AGPBUSY_DIS);
 
 
 
 
 
 
 
 
 
 
1530
 
 
 
 
 
 
 
1531	i915_disable_pipestat(dev_priv, pipe,
1532			      PIPE_VBLANK_INTERRUPT_ENABLE |
1533			      PIPE_START_VBLANK_INTERRUPT_ENABLE);
1534	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1535}
1536
1537static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
1538{
1539	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1540	unsigned long irqflags;
 
 
1541
1542	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1543	ironlake_disable_display_irq(dev_priv, (pipe == 0) ?
1544				     DE_PIPEA_VBLANK: DE_PIPEB_VBLANK);
1545	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1546}
1547
1548static void ivybridge_disable_vblank(struct drm_device *dev, int pipe)
1549{
1550	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1551	unsigned long irqflags;
1552
1553	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1554	ironlake_disable_display_irq(dev_priv, (pipe == 0) ?
1555				     DE_PIPEA_VBLANK_IVB : DE_PIPEB_VBLANK_IVB);
1556	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1557}
1558
1559/* Set the vblank monitor pipe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1560 */
1561int i915_vblank_pipe_set(struct drm_device *dev, void *data,
1562			 struct drm_file *file_priv)
1563{
1564	drm_i915_private_t *dev_priv = dev->dev_private;
 
1565
1566	if (!dev_priv) {
1567		DRM_ERROR("called with no initialization\n");
1568		return -EINVAL;
1569	}
1570
1571	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1572}
1573
1574int i915_vblank_pipe_get(struct drm_device *dev, void *data,
1575			 struct drm_file *file_priv)
 
1576{
1577	drm_i915_private_t *dev_priv = dev->dev_private;
1578	drm_i915_vblank_pipe_t *pipe = data;
 
 
 
1579
1580	if (!dev_priv) {
1581		DRM_ERROR("called with no initialization\n");
1582		return -EINVAL;
1583	}
1584
1585	pipe->pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B;
1586
1587	return 0;
1588}
1589
1590/**
1591 * Schedule buffer swap at given vertical blank.
1592 */
1593int i915_vblank_swap(struct drm_device *dev, void *data,
1594		     struct drm_file *file_priv)
1595{
1596	/* The delayed swap mechanism was fundamentally racy, and has been
1597	 * removed.  The model was that the client requested a delayed flip/swap
1598	 * from the kernel, then waited for vblank before continuing to perform
1599	 * rendering.  The problem was that the kernel might wake the client
1600	 * up before it dispatched the vblank swap (since the lock has to be
1601	 * held while touching the ringbuffer), in which case the client would
1602	 * clear and start the next frame before the swap occurred, and
1603	 * flicker would occur in addition to likely missing the vblank.
1604	 *
1605	 * In the absence of this ioctl, userland falls back to a correct path
1606	 * of waiting for a vblank, then dispatching the swap on its own.
1607	 * Context switching to userland and back is plenty fast enough for
1608	 * meeting the requirements of vblank swapping.
1609	 */
1610	return -EINVAL;
1611}
1612
1613static u32
1614ring_last_seqno(struct intel_ring_buffer *ring)
1615{
1616	return list_entry(ring->request_list.prev,
1617			  struct drm_i915_gem_request, list)->seqno;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1618}
1619
1620static bool i915_hangcheck_ring_idle(struct intel_ring_buffer *ring, bool *err)
1621{
1622	if (list_empty(&ring->request_list) ||
1623	    i915_seqno_passed(ring->get_seqno(ring), ring_last_seqno(ring))) {
1624		/* Issue a wake-up to catch stuck h/w. */
1625		if (ring->waiting_seqno && waitqueue_active(&ring->irq_queue)) {
1626			DRM_ERROR("Hangcheck timer elapsed... %s idle [waiting on %d, at %d], missed IRQ?\n",
1627				  ring->name,
1628				  ring->waiting_seqno,
1629				  ring->get_seqno(ring));
1630			wake_up_all(&ring->irq_queue);
1631			*err = true;
 
 
 
 
 
 
 
 
 
1632		}
1633		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1634	}
1635	return false;
1636}
1637
1638static bool kick_ring(struct intel_ring_buffer *ring)
1639{
1640	struct drm_device *dev = ring->dev;
1641	struct drm_i915_private *dev_priv = dev->dev_private;
1642	u32 tmp = I915_READ_CTL(ring);
1643	if (tmp & RING_WAIT) {
1644		DRM_ERROR("Kicking stuck wait on %s\n",
1645			  ring->name);
1646		I915_WRITE_CTL(ring, tmp);
1647		return true;
1648	}
1649	if (IS_GEN6(dev) &&
1650	    (tmp & RING_WAIT_SEMAPHORE)) {
1651		DRM_ERROR("Kicking stuck semaphore on %s\n",
1652			  ring->name);
1653		I915_WRITE_CTL(ring, tmp);
1654		return true;
1655	}
1656	return false;
1657}
1658
1659/**
1660 * This is called when the chip hasn't reported back with completed
1661 * batchbuffers in a long time. The first time this is called we simply record
1662 * ACTHD. If ACTHD hasn't changed by the time the hangcheck timer elapses
1663 * again, we assume the chip is wedged and try to fix it.
1664 */
1665void i915_hangcheck_elapsed(unsigned long data)
1666{
1667	struct drm_device *dev = (struct drm_device *)data;
1668	drm_i915_private_t *dev_priv = dev->dev_private;
1669	uint32_t acthd, instdone, instdone1;
1670	bool err = false;
1671
1672	if (!i915_enable_hangcheck)
 
 
 
1673		return;
 
1674
1675	/* If all work is done then ACTHD clearly hasn't advanced. */
1676	if (i915_hangcheck_ring_idle(&dev_priv->ring[RCS], &err) &&
1677	    i915_hangcheck_ring_idle(&dev_priv->ring[VCS], &err) &&
1678	    i915_hangcheck_ring_idle(&dev_priv->ring[BCS], &err)) {
1679		dev_priv->hangcheck_count = 0;
1680		if (err)
1681			goto repeat;
 
 
 
 
 
 
 
 
 
 
 
1682		return;
1683	}
1684
1685	if (INTEL_INFO(dev)->gen < 4) {
1686		acthd = I915_READ(ACTHD);
1687		instdone = I915_READ(INSTDONE);
1688		instdone1 = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1689	} else {
1690		acthd = I915_READ(ACTHD_I965);
1691		instdone = I915_READ(INSTDONE_I965);
1692		instdone1 = I915_READ(INSTDONE1);
1693	}
1694
1695	if (dev_priv->last_acthd == acthd &&
1696	    dev_priv->last_instdone == instdone &&
1697	    dev_priv->last_instdone1 == instdone1) {
1698		if (dev_priv->hangcheck_count++ > 1) {
1699			DRM_ERROR("Hangcheck timer elapsed... GPU hung\n");
1700
1701			if (!IS_GEN2(dev)) {
1702				/* Is the chip hanging on a WAIT_FOR_EVENT?
1703				 * If so we can simply poke the RB_WAIT bit
1704				 * and break the hang. This should work on
1705				 * all but the second generation chipsets.
1706				 */
1707
1708				if (kick_ring(&dev_priv->ring[RCS]))
1709					goto repeat;
1710
1711				if (HAS_BSD(dev) &&
1712				    kick_ring(&dev_priv->ring[VCS]))
1713					goto repeat;
1714
1715				if (HAS_BLT(dev) &&
1716				    kick_ring(&dev_priv->ring[BCS]))
1717					goto repeat;
1718			}
1719
1720			i915_handle_error(dev, true);
1721			return;
1722		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723	} else {
1724		dev_priv->hangcheck_count = 0;
 
 
 
 
 
 
1725
1726		dev_priv->last_acthd = acthd;
1727		dev_priv->last_instdone = instdone;
1728		dev_priv->last_instdone1 = instdone1;
1729	}
1730
1731repeat:
1732	/* Reset timer case chip hangs without another request being added */
1733	mod_timer(&dev_priv->hangcheck_timer,
1734		  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1735}
1736
1737/* drm_dma.h hooks
1738*/
1739static void ironlake_irq_preinstall(struct drm_device *dev)
1740{
1741	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1742
1743	atomic_set(&dev_priv->irq_received, 0);
 
1744
1745	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
1746	INIT_WORK(&dev_priv->error_work, i915_error_work_func);
1747	if (IS_GEN6(dev) || IS_IVYBRIDGE(dev))
1748		INIT_WORK(&dev_priv->rps_work, gen6_pm_rps_work);
1749
1750	I915_WRITE(HWSTAM, 0xeffe);
1751	if (IS_GEN6(dev) || IS_GEN7(dev)) {
1752		/* Workaround stalls observed on Sandy Bridge GPUs by
1753		 * making the blitter command streamer generate a
1754		 * write to the Hardware Status Page for
1755		 * MI_USER_INTERRUPT.  This appears to serialize the
1756		 * previous seqno write out before the interrupt
1757		 * happens.
1758		 */
1759		I915_WRITE(GEN6_BLITTER_HWSTAM, ~GEN6_BLITTER_USER_INTERRUPT);
1760		I915_WRITE(GEN6_BSD_HWSTAM, ~GEN6_BSD_USER_INTERRUPT);
1761	}
 
1762
1763	/* XXX hotplug from PCH */
 
 
1764
1765	I915_WRITE(DEIMR, 0xffffffff);
1766	I915_WRITE(DEIER, 0x0);
1767	POSTING_READ(DEIER);
1768
1769	/* and GT */
1770	I915_WRITE(GTIMR, 0xffffffff);
1771	I915_WRITE(GTIER, 0x0);
1772	POSTING_READ(GTIER);
1773
1774	/* south display irq */
1775	I915_WRITE(SDEIMR, 0xffffffff);
1776	I915_WRITE(SDEIER, 0x0);
1777	POSTING_READ(SDEIER);
1778}
1779
1780static int ironlake_irq_postinstall(struct drm_device *dev)
 
1781{
1782	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1783	/* enable kind of interrupts always enabled */
1784	u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
1785			   DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE;
1786	u32 render_irqs;
1787	u32 hotplug_mask;
1788
1789	DRM_INIT_WAITQUEUE(&dev_priv->ring[RCS].irq_queue);
1790	if (HAS_BSD(dev))
1791		DRM_INIT_WAITQUEUE(&dev_priv->ring[VCS].irq_queue);
1792	if (HAS_BLT(dev))
1793		DRM_INIT_WAITQUEUE(&dev_priv->ring[BCS].irq_queue);
1794
1795	dev_priv->vblank_pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B;
1796	dev_priv->irq_mask = ~display_mask;
 
 
1797
1798	/* should always can generate irq */
1799	I915_WRITE(DEIIR, I915_READ(DEIIR));
1800	I915_WRITE(DEIMR, dev_priv->irq_mask);
1801	I915_WRITE(DEIER, display_mask | DE_PIPEA_VBLANK | DE_PIPEB_VBLANK);
1802	POSTING_READ(DEIER);
1803
1804	dev_priv->gt_irq_mask = ~0;
1805
1806	I915_WRITE(GTIIR, I915_READ(GTIIR));
1807	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1808
1809	if (IS_GEN6(dev))
1810		render_irqs =
1811			GT_USER_INTERRUPT |
1812			GT_GEN6_BSD_USER_INTERRUPT |
1813			GT_BLT_USER_INTERRUPT;
1814	else
1815		render_irqs =
1816			GT_USER_INTERRUPT |
1817			GT_PIPE_NOTIFY |
1818			GT_BSD_USER_INTERRUPT;
1819	I915_WRITE(GTIER, render_irqs);
1820	POSTING_READ(GTIER);
1821
1822	if (HAS_PCH_CPT(dev)) {
1823		hotplug_mask = (SDE_CRT_HOTPLUG_CPT |
1824				SDE_PORTB_HOTPLUG_CPT |
1825				SDE_PORTC_HOTPLUG_CPT |
1826				SDE_PORTD_HOTPLUG_CPT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1827	} else {
1828		hotplug_mask = (SDE_CRT_HOTPLUG |
1829				SDE_PORTB_HOTPLUG |
1830				SDE_PORTC_HOTPLUG |
1831				SDE_PORTD_HOTPLUG |
1832				SDE_AUX_MASK);
1833	}
1834
1835	dev_priv->pch_irq_mask = ~hotplug_mask;
1836
1837	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
1838	I915_WRITE(SDEIMR, dev_priv->pch_irq_mask);
1839	I915_WRITE(SDEIER, hotplug_mask);
1840	POSTING_READ(SDEIER);
1841
1842	if (IS_IRONLAKE_M(dev)) {
1843		/* Clear & enable PCU event interrupts */
1844		I915_WRITE(DEIIR, DE_PCU_EVENT);
1845		I915_WRITE(DEIER, I915_READ(DEIER) | DE_PCU_EVENT);
1846		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
1847	}
1848
1849	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1850}
1851
1852static int ivybridge_irq_postinstall(struct drm_device *dev)
1853{
1854	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1855	/* enable kind of interrupts always enabled */
1856	u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
1857		DE_PCH_EVENT_IVB | DE_PLANEA_FLIP_DONE_IVB |
1858		DE_PLANEB_FLIP_DONE_IVB;
1859	u32 render_irqs;
1860	u32 hotplug_mask;
1861
1862	DRM_INIT_WAITQUEUE(&dev_priv->ring[RCS].irq_queue);
1863	if (HAS_BSD(dev))
1864		DRM_INIT_WAITQUEUE(&dev_priv->ring[VCS].irq_queue);
1865	if (HAS_BLT(dev))
1866		DRM_INIT_WAITQUEUE(&dev_priv->ring[BCS].irq_queue);
1867
1868	dev_priv->vblank_pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B;
1869	dev_priv->irq_mask = ~display_mask;
 
 
 
 
 
 
 
 
 
 
1870
1871	/* should always can generate irq */
1872	I915_WRITE(DEIIR, I915_READ(DEIIR));
1873	I915_WRITE(DEIMR, dev_priv->irq_mask);
1874	I915_WRITE(DEIER, display_mask | DE_PIPEA_VBLANK_IVB |
1875		   DE_PIPEB_VBLANK_IVB);
1876	POSTING_READ(DEIER);
1877
1878	dev_priv->gt_irq_mask = ~0;
1879
1880	I915_WRITE(GTIIR, I915_READ(GTIIR));
1881	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1882
1883	render_irqs = GT_USER_INTERRUPT | GT_GEN6_BSD_USER_INTERRUPT |
1884		GT_BLT_USER_INTERRUPT;
1885	I915_WRITE(GTIER, render_irqs);
1886	POSTING_READ(GTIER);
1887
1888	hotplug_mask = (SDE_CRT_HOTPLUG_CPT |
1889			SDE_PORTB_HOTPLUG_CPT |
1890			SDE_PORTC_HOTPLUG_CPT |
1891			SDE_PORTD_HOTPLUG_CPT);
1892	dev_priv->pch_irq_mask = ~hotplug_mask;
1893
1894	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
1895	I915_WRITE(SDEIMR, dev_priv->pch_irq_mask);
1896	I915_WRITE(SDEIER, hotplug_mask);
1897	POSTING_READ(SDEIER);
1898
1899	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1900}
1901
1902static void i915_driver_irq_preinstall(struct drm_device * dev)
1903{
1904	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1905	int pipe;
1906
1907	atomic_set(&dev_priv->irq_received, 0);
 
1908
1909	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
1910	INIT_WORK(&dev_priv->error_work, i915_error_work_func);
1911
1912	if (I915_HAS_HOTPLUG(dev)) {
1913		I915_WRITE(PORT_HOTPLUG_EN, 0);
1914		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
 
 
 
 
 
 
 
1915	}
 
 
 
 
 
 
 
 
 
 
1916
1917	I915_WRITE(HWSTAM, 0xeffe);
1918	for_each_pipe(pipe)
1919		I915_WRITE(PIPESTAT(pipe), 0);
1920	I915_WRITE(IMR, 0xffffffff);
1921	I915_WRITE(IER, 0x0);
1922	POSTING_READ(IER);
1923}
1924
1925/*
1926 * Must be called after intel_modeset_init or hotplug interrupts won't be
1927 * enabled correctly.
1928 */
1929static int i915_driver_irq_postinstall(struct drm_device *dev)
1930{
1931	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1932	u32 enable_mask = I915_INTERRUPT_ENABLE_FIX | I915_INTERRUPT_ENABLE_VAR;
1933	u32 error_mask;
 
 
 
 
 
 
 
 
1934
1935	dev_priv->vblank_pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B;
 
 
 
1936
1937	/* Unmask the interrupts that we always want on. */
1938	dev_priv->irq_mask = ~I915_INTERRUPT_ENABLE_FIX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1939
1940	dev_priv->pipestat[0] = 0;
1941	dev_priv->pipestat[1] = 0;
1942
1943	if (I915_HAS_HOTPLUG(dev)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1944		/* Enable in IER... */
1945		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
1946		/* and unmask in IMR */
1947		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
1948	}
1949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1950	/*
1951	 * Enable some error detection, note the instruction error mask
1952	 * bit is reserved, so we leave it masked.
1953	 */
1954	if (IS_G4X(dev)) {
1955		error_mask = ~(GM45_ERROR_PAGE_TABLE |
1956			       GM45_ERROR_MEM_PRIV |
1957			       GM45_ERROR_CP_PRIV |
1958			       I915_ERROR_MEMORY_REFRESH);
1959	} else {
1960		error_mask = ~(I915_ERROR_PAGE_TABLE |
1961			       I915_ERROR_MEMORY_REFRESH);
1962	}
1963	I915_WRITE(EMR, error_mask);
1964
1965	I915_WRITE(IMR, dev_priv->irq_mask);
1966	I915_WRITE(IER, enable_mask);
1967	POSTING_READ(IER);
1968
1969	if (I915_HAS_HOTPLUG(dev)) {
1970		u32 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
1971
1972		/* Note HDMI and DP share bits */
1973		if (dev_priv->hotplug_supported_mask & HDMIB_HOTPLUG_INT_STATUS)
1974			hotplug_en |= HDMIB_HOTPLUG_INT_EN;
1975		if (dev_priv->hotplug_supported_mask & HDMIC_HOTPLUG_INT_STATUS)
1976			hotplug_en |= HDMIC_HOTPLUG_INT_EN;
1977		if (dev_priv->hotplug_supported_mask & HDMID_HOTPLUG_INT_STATUS)
1978			hotplug_en |= HDMID_HOTPLUG_INT_EN;
1979		if (dev_priv->hotplug_supported_mask & SDVOC_HOTPLUG_INT_STATUS)
1980			hotplug_en |= SDVOC_HOTPLUG_INT_EN;
1981		if (dev_priv->hotplug_supported_mask & SDVOB_HOTPLUG_INT_STATUS)
1982			hotplug_en |= SDVOB_HOTPLUG_INT_EN;
1983		if (dev_priv->hotplug_supported_mask & CRT_HOTPLUG_INT_STATUS) {
1984			hotplug_en |= CRT_HOTPLUG_INT_EN;
1985
1986			/* Programming the CRT detection parameters tends
1987			   to generate a spurious hotplug event about three
1988			   seconds later.  So just do it once.
1989			*/
1990			if (IS_G4X(dev))
1991				hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
1992			hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
1993		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1994
1995		/* Ignore TV since it's buggy */
 
1996
1997		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
1998	}
1999
2000	intel_opregion_enable_asle(dev);
 
 
 
 
2001
2002	return 0;
2003}
 
2004
2005static void ironlake_irq_uninstall(struct drm_device *dev)
2006{
2007	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2008
2009	if (!dev_priv)
2010		return;
 
 
 
 
 
 
 
 
 
 
 
 
2011
2012	dev_priv->vblank_pipe = 0;
 
 
 
 
 
 
 
2013
2014	I915_WRITE(HWSTAM, 0xffffffff);
 
2015
2016	I915_WRITE(DEIMR, 0xffffffff);
2017	I915_WRITE(DEIER, 0x0);
2018	I915_WRITE(DEIIR, I915_READ(DEIIR));
2019
2020	I915_WRITE(GTIMR, 0xffffffff);
2021	I915_WRITE(GTIER, 0x0);
2022	I915_WRITE(GTIIR, I915_READ(GTIIR));
2023}
2024
2025static void i915_driver_irq_uninstall(struct drm_device * dev)
 
 
 
 
 
 
 
2026{
2027	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2028	int pipe;
2029
2030	if (!dev_priv)
2031		return;
2032
2033	dev_priv->vblank_pipe = 0;
2034
2035	if (I915_HAS_HOTPLUG(dev)) {
2036		I915_WRITE(PORT_HOTPLUG_EN, 0);
2037		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2038	}
 
2039
2040	I915_WRITE(HWSTAM, 0xffffffff);
2041	for_each_pipe(pipe)
2042		I915_WRITE(PIPESTAT(pipe), 0);
2043	I915_WRITE(IMR, 0xffffffff);
2044	I915_WRITE(IER, 0x0);
 
 
 
 
2045
2046	for_each_pipe(pipe)
2047		I915_WRITE(PIPESTAT(pipe),
2048			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
2049	I915_WRITE(IIR, I915_READ(IIR));
2050}
2051
2052void intel_irq_init(struct drm_device *dev)
2053{
2054	dev->driver->get_vblank_counter = i915_get_vblank_counter;
2055	dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
2056	if (IS_G4X(dev) || IS_GEN5(dev) || IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
2057		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
2058		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2059	}
 
2060
2061	if (drm_core_check_feature(dev, DRIVER_MODESET))
2062		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
2063	else
2064		dev->driver->get_vblank_timestamp = NULL;
2065	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2066
2067	if (IS_IVYBRIDGE(dev)) {
2068		/* Share pre & uninstall handlers with ILK/SNB */
2069		dev->driver->irq_handler = ivybridge_irq_handler;
2070		dev->driver->irq_preinstall = ironlake_irq_preinstall;
2071		dev->driver->irq_postinstall = ivybridge_irq_postinstall;
2072		dev->driver->irq_uninstall = ironlake_irq_uninstall;
2073		dev->driver->enable_vblank = ivybridge_enable_vblank;
2074		dev->driver->disable_vblank = ivybridge_disable_vblank;
2075	} else if (HAS_PCH_SPLIT(dev)) {
2076		dev->driver->irq_handler = ironlake_irq_handler;
2077		dev->driver->irq_preinstall = ironlake_irq_preinstall;
2078		dev->driver->irq_postinstall = ironlake_irq_postinstall;
2079		dev->driver->irq_uninstall = ironlake_irq_uninstall;
2080		dev->driver->enable_vblank = ironlake_enable_vblank;
2081		dev->driver->disable_vblank = ironlake_disable_vblank;
2082	} else {
2083		dev->driver->irq_preinstall = i915_driver_irq_preinstall;
2084		dev->driver->irq_postinstall = i915_driver_irq_postinstall;
2085		dev->driver->irq_uninstall = i915_driver_irq_uninstall;
2086		dev->driver->irq_handler = i915_driver_irq_handler;
2087		dev->driver->enable_vblank = i915_enable_vblank;
2088		dev->driver->disable_vblank = i915_disable_vblank;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2089	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2090}
v5.9
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/circ_buf.h>
  32#include <linux/slab.h>
  33#include <linux/sysrq.h>
  34
  35#include <drm/drm_drv.h>
  36#include <drm/drm_irq.h>
  37
  38#include "display/intel_display_types.h"
  39#include "display/intel_fifo_underrun.h"
  40#include "display/intel_hotplug.h"
  41#include "display/intel_lpe_audio.h"
  42#include "display/intel_psr.h"
  43
  44#include "gt/intel_gt.h"
  45#include "gt/intel_gt_irq.h"
  46#include "gt/intel_gt_pm_irq.h"
  47#include "gt/intel_rps.h"
  48
  49#include "i915_drv.h"
  50#include "i915_irq.h"
  51#include "i915_trace.h"
  52#include "intel_pm.h"
 
 
  53
  54/**
  55 * DOC: interrupt handling
  56 *
  57 * These functions provide the basic support for enabling and disabling the
  58 * interrupt handling support. There's a lot more functionality in i915_irq.c
  59 * and related files, but that will be described in separate chapters.
  60 */
 
 
 
 
 
 
 
 
 
 
  61
  62typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
 
  63
  64static const u32 hpd_ilk[HPD_NUM_PINS] = {
  65	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
  66};
  67
  68static const u32 hpd_ivb[HPD_NUM_PINS] = {
  69	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  70};
  71
  72static const u32 hpd_bdw[HPD_NUM_PINS] = {
  73	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  74};
  75
  76static const u32 hpd_ibx[HPD_NUM_PINS] = {
  77	[HPD_CRT] = SDE_CRT_HOTPLUG,
  78	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  79	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  80	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  81	[HPD_PORT_D] = SDE_PORTD_HOTPLUG,
  82};
  83
  84static const u32 hpd_cpt[HPD_NUM_PINS] = {
  85	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  86	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  87	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  88	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  89	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  90};
  91
  92static const u32 hpd_spt[HPD_NUM_PINS] = {
  93	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  94	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  95	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  96	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  97	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
  98};
  99
 100static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
 101	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
 102	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
 103	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
 104	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
 105	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
 106	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
 107};
 108
 109static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
 110	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 111	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
 112	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
 113	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 114	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 115	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
 116};
 117
 118static const u32 hpd_status_i915[HPD_NUM_PINS] = {
 119	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 120	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
 121	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
 122	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 123	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 124	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
 125};
 126
 127static const u32 hpd_bxt[HPD_NUM_PINS] = {
 128	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
 129	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
 130	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC,
 131};
 132
 133static const u32 hpd_gen11[HPD_NUM_PINS] = {
 134	[HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
 135	[HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
 136	[HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
 137	[HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
 138};
 139
 140static const u32 hpd_gen12[HPD_NUM_PINS] = {
 141	[HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
 142	[HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
 143	[HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
 144	[HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
 145	[HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG,
 146	[HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG,
 147};
 148
 149static const u32 hpd_icp[HPD_NUM_PINS] = {
 150	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
 151	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
 152	[HPD_PORT_C] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
 153	[HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
 154	[HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
 155	[HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
 156};
 157
 158static const u32 hpd_tgp[HPD_NUM_PINS] = {
 159	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
 160	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
 161	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(PORT_C),
 162	[HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
 163	[HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
 164	[HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
 165	[HPD_PORT_G] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
 166	[HPD_PORT_H] = SDE_TC_HOTPLUG_ICP(PORT_TC5),
 167	[HPD_PORT_I] = SDE_TC_HOTPLUG_ICP(PORT_TC6),
 168};
 169
 170static void intel_hpd_init_pins(struct drm_i915_private *dev_priv)
 171{
 172	struct i915_hotplug *hpd = &dev_priv->hotplug;
 173
 174	if (HAS_GMCH(dev_priv)) {
 175		if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
 176		    IS_CHERRYVIEW(dev_priv))
 177			hpd->hpd = hpd_status_g4x;
 178		else
 179			hpd->hpd = hpd_status_i915;
 180		return;
 181	}
 182
 183	if (INTEL_GEN(dev_priv) >= 12)
 184		hpd->hpd = hpd_gen12;
 185	else if (INTEL_GEN(dev_priv) >= 11)
 186		hpd->hpd = hpd_gen11;
 187	else if (IS_GEN9_LP(dev_priv))
 188		hpd->hpd = hpd_bxt;
 189	else if (INTEL_GEN(dev_priv) >= 8)
 190		hpd->hpd = hpd_bdw;
 191	else if (INTEL_GEN(dev_priv) >= 7)
 192		hpd->hpd = hpd_ivb;
 193	else
 194		hpd->hpd = hpd_ilk;
 195
 196	if (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv))
 197		return;
 198
 199	if (HAS_PCH_TGP(dev_priv) || HAS_PCH_JSP(dev_priv))
 200		hpd->pch_hpd = hpd_tgp;
 201	else if (HAS_PCH_ICP(dev_priv) || HAS_PCH_MCC(dev_priv))
 202		hpd->pch_hpd = hpd_icp;
 203	else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv))
 204		hpd->pch_hpd = hpd_spt;
 205	else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv))
 206		hpd->pch_hpd = hpd_cpt;
 207	else if (HAS_PCH_IBX(dev_priv))
 208		hpd->pch_hpd = hpd_ibx;
 209	else
 210		MISSING_CASE(INTEL_PCH_TYPE(dev_priv));
 211}
 212
 
 213static void
 214intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
 215{
 216	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
 217
 218	drm_crtc_handle_vblank(&crtc->base);
 219}
 220
 221void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
 222		    i915_reg_t iir, i915_reg_t ier)
 223{
 224	intel_uncore_write(uncore, imr, 0xffffffff);
 225	intel_uncore_posting_read(uncore, imr);
 226
 227	intel_uncore_write(uncore, ier, 0);
 228
 229	/* IIR can theoretically queue up two events. Be paranoid. */
 230	intel_uncore_write(uncore, iir, 0xffffffff);
 231	intel_uncore_posting_read(uncore, iir);
 232	intel_uncore_write(uncore, iir, 0xffffffff);
 233	intel_uncore_posting_read(uncore, iir);
 234}
 235
 236void gen2_irq_reset(struct intel_uncore *uncore)
 237{
 238	intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
 239	intel_uncore_posting_read16(uncore, GEN2_IMR);
 240
 241	intel_uncore_write16(uncore, GEN2_IER, 0);
 242
 243	/* IIR can theoretically queue up two events. Be paranoid. */
 244	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 245	intel_uncore_posting_read16(uncore, GEN2_IIR);
 246	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 247	intel_uncore_posting_read16(uncore, GEN2_IIR);
 248}
 249
 250/*
 251 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
 252 */
 253static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
 254{
 255	u32 val = intel_uncore_read(uncore, reg);
 256
 257	if (val == 0)
 258		return;
 259
 260	drm_WARN(&uncore->i915->drm, 1,
 261		 "Interrupt register 0x%x is not zero: 0x%08x\n",
 262		 i915_mmio_reg_offset(reg), val);
 263	intel_uncore_write(uncore, reg, 0xffffffff);
 264	intel_uncore_posting_read(uncore, reg);
 265	intel_uncore_write(uncore, reg, 0xffffffff);
 266	intel_uncore_posting_read(uncore, reg);
 267}
 268
 269static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
 270{
 271	u16 val = intel_uncore_read16(uncore, GEN2_IIR);
 272
 273	if (val == 0)
 274		return;
 275
 276	drm_WARN(&uncore->i915->drm, 1,
 277		 "Interrupt register 0x%x is not zero: 0x%08x\n",
 278		 i915_mmio_reg_offset(GEN2_IIR), val);
 279	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 280	intel_uncore_posting_read16(uncore, GEN2_IIR);
 281	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 282	intel_uncore_posting_read16(uncore, GEN2_IIR);
 283}
 284
 285void gen3_irq_init(struct intel_uncore *uncore,
 286		   i915_reg_t imr, u32 imr_val,
 287		   i915_reg_t ier, u32 ier_val,
 288		   i915_reg_t iir)
 289{
 290	gen3_assert_iir_is_zero(uncore, iir);
 291
 292	intel_uncore_write(uncore, ier, ier_val);
 293	intel_uncore_write(uncore, imr, imr_val);
 294	intel_uncore_posting_read(uncore, imr);
 295}
 296
 297void gen2_irq_init(struct intel_uncore *uncore,
 298		   u32 imr_val, u32 ier_val)
 299{
 300	gen2_assert_iir_is_zero(uncore);
 301
 302	intel_uncore_write16(uncore, GEN2_IER, ier_val);
 303	intel_uncore_write16(uncore, GEN2_IMR, imr_val);
 304	intel_uncore_posting_read16(uncore, GEN2_IMR);
 305}
 306
 307/* For display hotplug interrupt */
 308static inline void
 309i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
 310				     u32 mask,
 311				     u32 bits)
 312{
 313	u32 val;
 314
 315	lockdep_assert_held(&dev_priv->irq_lock);
 316	drm_WARN_ON(&dev_priv->drm, bits & ~mask);
 317
 318	val = I915_READ(PORT_HOTPLUG_EN);
 319	val &= ~mask;
 320	val |= bits;
 321	I915_WRITE(PORT_HOTPLUG_EN, val);
 322}
 323
 324/**
 325 * i915_hotplug_interrupt_update - update hotplug interrupt enable
 326 * @dev_priv: driver private
 327 * @mask: bits to update
 328 * @bits: bits to enable
 329 * NOTE: the HPD enable bits are modified both inside and outside
 330 * of an interrupt context. To avoid that read-modify-write cycles
 331 * interfer, these bits are protected by a spinlock. Since this
 332 * function is usually not called from a context where the lock is
 333 * held already, this function acquires the lock itself. A non-locking
 334 * version is also available.
 335 */
 336void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
 337				   u32 mask,
 338				   u32 bits)
 339{
 340	spin_lock_irq(&dev_priv->irq_lock);
 341	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
 342	spin_unlock_irq(&dev_priv->irq_lock);
 343}
 344
 345/**
 346 * ilk_update_display_irq - update DEIMR
 347 * @dev_priv: driver private
 348 * @interrupt_mask: mask of interrupt bits to update
 349 * @enabled_irq_mask: mask of interrupt bits to enable
 350 */
 351void ilk_update_display_irq(struct drm_i915_private *dev_priv,
 352			    u32 interrupt_mask,
 353			    u32 enabled_irq_mask)
 354{
 355	u32 new_val;
 356
 357	lockdep_assert_held(&dev_priv->irq_lock);
 358
 359	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
 360
 361	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
 362		return;
 363
 364	new_val = dev_priv->irq_mask;
 365	new_val &= ~interrupt_mask;
 366	new_val |= (~enabled_irq_mask & interrupt_mask);
 367
 368	if (new_val != dev_priv->irq_mask) {
 369		dev_priv->irq_mask = new_val;
 370		I915_WRITE(DEIMR, dev_priv->irq_mask);
 371		POSTING_READ(DEIMR);
 372	}
 373}
 374
 375/**
 376 * bdw_update_port_irq - update DE port interrupt
 377 * @dev_priv: driver private
 378 * @interrupt_mask: mask of interrupt bits to update
 379 * @enabled_irq_mask: mask of interrupt bits to enable
 380 */
 381static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
 382				u32 interrupt_mask,
 383				u32 enabled_irq_mask)
 384{
 385	u32 new_val;
 386	u32 old_val;
 387
 388	lockdep_assert_held(&dev_priv->irq_lock);
 389
 390	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
 391
 392	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
 393		return;
 394
 395	old_val = I915_READ(GEN8_DE_PORT_IMR);
 396
 397	new_val = old_val;
 398	new_val &= ~interrupt_mask;
 399	new_val |= (~enabled_irq_mask & interrupt_mask);
 400
 401	if (new_val != old_val) {
 402		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
 403		POSTING_READ(GEN8_DE_PORT_IMR);
 404	}
 405}
 406
 407/**
 408 * bdw_update_pipe_irq - update DE pipe interrupt
 409 * @dev_priv: driver private
 410 * @pipe: pipe whose interrupt to update
 411 * @interrupt_mask: mask of interrupt bits to update
 412 * @enabled_irq_mask: mask of interrupt bits to enable
 413 */
 414void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
 415			 enum pipe pipe,
 416			 u32 interrupt_mask,
 417			 u32 enabled_irq_mask)
 418{
 419	u32 new_val;
 
 420
 421	lockdep_assert_held(&dev_priv->irq_lock);
 422
 423	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
 424
 425	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
 426		return;
 427
 428	new_val = dev_priv->de_irq_mask[pipe];
 429	new_val &= ~interrupt_mask;
 430	new_val |= (~enabled_irq_mask & interrupt_mask);
 431
 432	if (new_val != dev_priv->de_irq_mask[pipe]) {
 433		dev_priv->de_irq_mask[pipe] = new_val;
 434		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
 435		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
 436	}
 437}
 438
 439/**
 440 * ibx_display_interrupt_update - update SDEIMR
 441 * @dev_priv: driver private
 442 * @interrupt_mask: mask of interrupt bits to update
 443 * @enabled_irq_mask: mask of interrupt bits to enable
 444 */
 445void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
 446				  u32 interrupt_mask,
 447				  u32 enabled_irq_mask)
 448{
 449	u32 sdeimr = I915_READ(SDEIMR);
 450	sdeimr &= ~interrupt_mask;
 451	sdeimr |= (~enabled_irq_mask & interrupt_mask);
 452
 453	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
 454
 455	lockdep_assert_held(&dev_priv->irq_lock);
 
 
 
 
 
 
 
 
 456
 457	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
 458		return;
 459
 460	I915_WRITE(SDEIMR, sdeimr);
 461	POSTING_READ(SDEIMR);
 462}
 463
 464u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
 465			      enum pipe pipe)
 466{
 467	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
 468	u32 enable_mask = status_mask << 16;
 469
 470	lockdep_assert_held(&dev_priv->irq_lock);
 471
 472	if (INTEL_GEN(dev_priv) < 5)
 473		goto out;
 474
 475	/*
 476	 * On pipe A we don't support the PSR interrupt yet,
 477	 * on pipe B and C the same bit MBZ.
 478	 */
 479	if (drm_WARN_ON_ONCE(&dev_priv->drm,
 480			     status_mask & PIPE_A_PSR_STATUS_VLV))
 481		return 0;
 482	/*
 483	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
 484	 * A the same bit is for perf counters which we don't use either.
 485	 */
 486	if (drm_WARN_ON_ONCE(&dev_priv->drm,
 487			     status_mask & PIPE_B_PSR_STATUS_VLV))
 488		return 0;
 489
 490	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
 491			 SPRITE0_FLIP_DONE_INT_EN_VLV |
 492			 SPRITE1_FLIP_DONE_INT_EN_VLV);
 493	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
 494		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
 495	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
 496		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
 497
 498out:
 499	drm_WARN_ONCE(&dev_priv->drm,
 500		      enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 501		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
 502		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 503		      pipe_name(pipe), enable_mask, status_mask);
 504
 505	return enable_mask;
 506}
 507
 508void i915_enable_pipestat(struct drm_i915_private *dev_priv,
 509			  enum pipe pipe, u32 status_mask)
 510{
 511	i915_reg_t reg = PIPESTAT(pipe);
 512	u32 enable_mask;
 513
 514	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
 515		      "pipe %c: status_mask=0x%x\n",
 516		      pipe_name(pipe), status_mask);
 517
 518	lockdep_assert_held(&dev_priv->irq_lock);
 519	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
 520
 521	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
 522		return;
 523
 524	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
 525	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 526
 527	I915_WRITE(reg, enable_mask | status_mask);
 528	POSTING_READ(reg);
 529}
 530
 531void i915_disable_pipestat(struct drm_i915_private *dev_priv,
 532			   enum pipe pipe, u32 status_mask)
 533{
 534	i915_reg_t reg = PIPESTAT(pipe);
 535	u32 enable_mask;
 536
 537	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
 538		      "pipe %c: status_mask=0x%x\n",
 539		      pipe_name(pipe), status_mask);
 540
 541	lockdep_assert_held(&dev_priv->irq_lock);
 542	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
 543
 544	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
 545		return;
 546
 547	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
 548	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 549
 550	I915_WRITE(reg, enable_mask | status_mask);
 551	POSTING_READ(reg);
 552}
 553
 554static bool i915_has_asle(struct drm_i915_private *dev_priv)
 555{
 556	if (!dev_priv->opregion.asle)
 557		return false;
 558
 559	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
 560}
 561
 562/**
 563 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
 564 * @dev_priv: i915 device private
 
 
 
 
 
 565 */
 566static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
 
 567{
 568	if (!i915_has_asle(dev_priv))
 569		return;
 570
 571	spin_lock_irq(&dev_priv->irq_lock);
 572
 573	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
 574	if (INTEL_GEN(dev_priv) >= 4)
 575		i915_enable_pipestat(dev_priv, PIPE_A,
 576				     PIPE_LEGACY_BLC_EVENT_STATUS);
 577
 578	spin_unlock_irq(&dev_priv->irq_lock);
 579}
 580
 581/*
 582 * This timing diagram depicts the video signal in and
 583 * around the vertical blanking period.
 584 *
 585 * Assumptions about the fictitious mode used in this example:
 586 *  vblank_start >= 3
 587 *  vsync_start = vblank_start + 1
 588 *  vsync_end = vblank_start + 2
 589 *  vtotal = vblank_start + 3
 590 *
 591 *           start of vblank:
 592 *           latch double buffered registers
 593 *           increment frame counter (ctg+)
 594 *           generate start of vblank interrupt (gen4+)
 595 *           |
 596 *           |          frame start:
 597 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
 598 *           |          may be shifted forward 1-3 extra lines via PIPECONF
 599 *           |          |
 600 *           |          |  start of vsync:
 601 *           |          |  generate vsync interrupt
 602 *           |          |  |
 603 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
 604 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
 605 * ----va---> <-----------------vb--------------------> <--------va-------------
 606 *       |          |       <----vs----->                     |
 607 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
 608 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
 609 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
 610 *       |          |                                         |
 611 *       last visible pixel                                   first visible pixel
 612 *                  |                                         increment frame counter (gen3/4)
 613 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
 614 *
 615 * x  = horizontal active
 616 * _  = horizontal blanking
 617 * hs = horizontal sync
 618 * va = vertical active
 619 * vb = vertical blanking
 620 * vs = vertical sync
 621 * vbs = vblank_start (number)
 622 *
 623 * Summary:
 624 * - most events happen at the start of horizontal sync
 625 * - frame start happens at the start of horizontal blank, 1-4 lines
 626 *   (depending on PIPECONF settings) after the start of vblank
 627 * - gen3/4 pixel and frame counter are synchronized with the start
 628 *   of horizontal active on the first line of vertical active
 629 */
 630
 631/* Called from drm generic code, passed a 'crtc', which
 632 * we use as a pipe index
 633 */
 634u32 i915_get_vblank_counter(struct drm_crtc *crtc)
 635{
 636	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 637	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
 638	const struct drm_display_mode *mode = &vblank->hwmode;
 639	enum pipe pipe = to_intel_crtc(crtc)->pipe;
 640	i915_reg_t high_frame, low_frame;
 641	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
 642	unsigned long irqflags;
 643
 644	/*
 645	 * On i965gm TV output the frame counter only works up to
 646	 * the point when we enable the TV encoder. After that the
 647	 * frame counter ceases to work and reads zero. We need a
 648	 * vblank wait before enabling the TV encoder and so we
 649	 * have to enable vblank interrupts while the frame counter
 650	 * is still in a working state. However the core vblank code
 651	 * does not like us returning non-zero frame counter values
 652	 * when we've told it that we don't have a working frame
 653	 * counter. Thus we must stop non-zero values leaking out.
 654	 */
 655	if (!vblank->max_vblank_count)
 656		return 0;
 657
 658	htotal = mode->crtc_htotal;
 659	hsync_start = mode->crtc_hsync_start;
 660	vbl_start = mode->crtc_vblank_start;
 661	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 662		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 663
 664	/* Convert to pixel count */
 665	vbl_start *= htotal;
 666
 667	/* Start of vblank event occurs at start of hsync */
 668	vbl_start -= htotal - hsync_start;
 669
 670	high_frame = PIPEFRAME(pipe);
 671	low_frame = PIPEFRAMEPIXEL(pipe);
 672
 673	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 674
 675	/*
 676	 * High & low register fields aren't synchronized, so make sure
 677	 * we get a low value that's stable across two reads of the high
 678	 * register.
 679	 */
 680	do {
 681		high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
 682		low   = intel_de_read_fw(dev_priv, low_frame);
 683		high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
 684	} while (high1 != high2);
 685
 686	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 687
 688	high1 >>= PIPE_FRAME_HIGH_SHIFT;
 689	pixel = low & PIPE_PIXEL_MASK;
 690	low >>= PIPE_FRAME_LOW_SHIFT;
 691
 692	/*
 693	 * The frame counter increments at beginning of active.
 694	 * Cook up a vblank counter by also checking the pixel
 695	 * counter against vblank start.
 696	 */
 697	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
 698}
 699
 700u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
 701{
 702	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 703	enum pipe pipe = to_intel_crtc(crtc)->pipe;
 704
 705	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
 706}
 707
 708/*
 709 * On certain encoders on certain platforms, pipe
 710 * scanline register will not work to get the scanline,
 711 * since the timings are driven from the PORT or issues
 712 * with scanline register updates.
 713 * This function will use Framestamp and current
 714 * timestamp registers to calculate the scanline.
 715 */
 716static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
 717{
 718	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 719	struct drm_vblank_crtc *vblank =
 720		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 721	const struct drm_display_mode *mode = &vblank->hwmode;
 722	u32 vblank_start = mode->crtc_vblank_start;
 723	u32 vtotal = mode->crtc_vtotal;
 724	u32 htotal = mode->crtc_htotal;
 725	u32 clock = mode->crtc_clock;
 726	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
 727
 728	/*
 729	 * To avoid the race condition where we might cross into the
 730	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
 731	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
 732	 * during the same frame.
 733	 */
 734	do {
 735		/*
 736		 * This field provides read back of the display
 737		 * pipe frame time stamp. The time stamp value
 738		 * is sampled at every start of vertical blank.
 739		 */
 740		scan_prev_time = intel_de_read_fw(dev_priv,
 741						  PIPE_FRMTMSTMP(crtc->pipe));
 742
 743		/*
 744		 * The TIMESTAMP_CTR register has the current
 745		 * time stamp value.
 746		 */
 747		scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
 748
 749		scan_post_time = intel_de_read_fw(dev_priv,
 750						  PIPE_FRMTMSTMP(crtc->pipe));
 751	} while (scan_post_time != scan_prev_time);
 752
 753	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
 754					clock), 1000 * htotal);
 755	scanline = min(scanline, vtotal - 1);
 756	scanline = (scanline + vblank_start) % vtotal;
 757
 758	return scanline;
 759}
 760
 761/*
 762 * intel_de_read_fw(), only for fast reads of display block, no need for
 763 * forcewake etc.
 764 */
 765static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
 766{
 767	struct drm_device *dev = crtc->base.dev;
 768	struct drm_i915_private *dev_priv = to_i915(dev);
 769	const struct drm_display_mode *mode;
 770	struct drm_vblank_crtc *vblank;
 771	enum pipe pipe = crtc->pipe;
 772	int position, vtotal;
 773
 774	if (!crtc->active)
 775		return -1;
 776
 777	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 778	mode = &vblank->hwmode;
 779
 780	if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
 781		return __intel_get_crtc_scanline_from_timestamp(crtc);
 782
 783	vtotal = mode->crtc_vtotal;
 784	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 785		vtotal /= 2;
 786
 787	if (IS_GEN(dev_priv, 2))
 788		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
 789	else
 790		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 791
 792	/*
 793	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
 794	 * read it just before the start of vblank.  So try it again
 795	 * so we don't accidentally end up spanning a vblank frame
 796	 * increment, causing the pipe_update_end() code to squak at us.
 797	 *
 798	 * The nature of this problem means we can't simply check the ISR
 799	 * bit and return the vblank start value; nor can we use the scanline
 800	 * debug register in the transcoder as it appears to have the same
 801	 * problem.  We may need to extend this to include other platforms,
 802	 * but so far testing only shows the problem on HSW.
 803	 */
 804	if (HAS_DDI(dev_priv) && !position) {
 805		int i, temp;
 806
 807		for (i = 0; i < 100; i++) {
 808			udelay(1);
 809			temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 810			if (temp != position) {
 811				position = temp;
 812				break;
 813			}
 814		}
 815	}
 816
 817	/*
 818	 * See update_scanline_offset() for the details on the
 819	 * scanline_offset adjustment.
 820	 */
 821	return (position + crtc->scanline_offset) % vtotal;
 822}
 823
 824static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
 825				     bool in_vblank_irq,
 826				     int *vpos, int *hpos,
 827				     ktime_t *stime, ktime_t *etime,
 828				     const struct drm_display_mode *mode)
 829{
 830	struct drm_device *dev = _crtc->dev;
 831	struct drm_i915_private *dev_priv = to_i915(dev);
 832	struct intel_crtc *crtc = to_intel_crtc(_crtc);
 833	enum pipe pipe = crtc->pipe;
 834	int position;
 835	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
 836	unsigned long irqflags;
 837	bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
 838		IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
 839		crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
 840
 841	if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
 842		drm_dbg(&dev_priv->drm,
 843			"trying to get scanoutpos for disabled "
 844			"pipe %c\n", pipe_name(pipe));
 845		return false;
 846	}
 847
 848	htotal = mode->crtc_htotal;
 849	hsync_start = mode->crtc_hsync_start;
 850	vtotal = mode->crtc_vtotal;
 851	vbl_start = mode->crtc_vblank_start;
 852	vbl_end = mode->crtc_vblank_end;
 853
 854	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 855		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 856		vbl_end /= 2;
 857		vtotal /= 2;
 858	}
 859
 860	/*
 861	 * Lock uncore.lock, as we will do multiple timing critical raw
 862	 * register reads, potentially with preemption disabled, so the
 863	 * following code must not block on uncore.lock.
 864	 */
 865	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 866
 867	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 868
 869	/* Get optional system timestamp before query. */
 870	if (stime)
 871		*stime = ktime_get();
 872
 873	if (use_scanline_counter) {
 874		/* No obvious pixelcount register. Only query vertical
 875		 * scanout position from Display scan line register.
 876		 */
 877		position = __intel_get_crtc_scanline(crtc);
 
 
 
 
 
 
 878	} else {
 879		/* Have access to pixelcount since start of frame.
 880		 * We can split this into vertical and horizontal
 881		 * scanout position.
 882		 */
 883		position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
 884
 885		/* convert to pixel counts */
 886		vbl_start *= htotal;
 887		vbl_end *= htotal;
 888		vtotal *= htotal;
 889
 890		/*
 891		 * In interlaced modes, the pixel counter counts all pixels,
 892		 * so one field will have htotal more pixels. In order to avoid
 893		 * the reported position from jumping backwards when the pixel
 894		 * counter is beyond the length of the shorter field, just
 895		 * clamp the position the length of the shorter field. This
 896		 * matches how the scanline counter based position works since
 897		 * the scanline counter doesn't count the two half lines.
 898		 */
 899		if (position >= vtotal)
 900			position = vtotal - 1;
 901
 902		/*
 903		 * Start of vblank interrupt is triggered at start of hsync,
 904		 * just prior to the first active line of vblank. However we
 905		 * consider lines to start at the leading edge of horizontal
 906		 * active. So, should we get here before we've crossed into
 907		 * the horizontal active of the first line in vblank, we would
 908		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
 909		 * always add htotal-hsync_start to the current pixel position.
 910		 */
 911		position = (position + htotal - hsync_start) % vtotal;
 912	}
 913
 914	/* Get optional system timestamp after query. */
 915	if (etime)
 916		*etime = ktime_get();
 917
 918	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 919
 920	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 921
 922	/*
 923	 * While in vblank, position will be negative
 924	 * counting up towards 0 at vbl_end. And outside
 925	 * vblank, position will be positive counting
 926	 * up since vbl_end.
 927	 */
 928	if (position >= vbl_start)
 929		position -= vbl_end;
 930	else
 931		position += vtotal - vbl_end;
 932
 933	if (use_scanline_counter) {
 934		*vpos = position;
 935		*hpos = 0;
 936	} else {
 937		*vpos = position / htotal;
 938		*hpos = position - (*vpos * htotal);
 939	}
 940
 941	return true;
 942}
 943
 944bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
 945				     ktime_t *vblank_time, bool in_vblank_irq)
 946{
 947	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
 948		crtc, max_error, vblank_time, in_vblank_irq,
 949		i915_get_crtc_scanoutpos);
 950}
 
 
 
 
 
 
 
 
 
 
 
 951
 952int intel_get_crtc_scanline(struct intel_crtc *crtc)
 953{
 954	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 955	unsigned long irqflags;
 956	int position;
 957
 958	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 959	position = __intel_get_crtc_scanline(crtc);
 960	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 961
 962	return position;
 963}
 964
 965/**
 966 * ivb_parity_work - Workqueue called when a parity error interrupt
 967 * occurred.
 968 * @work: workqueue struct
 969 *
 970 * Doesn't actually do anything except notify userspace. As a consequence of
 971 * this event, userspace should try to remap the bad rows since statistically
 972 * it is likely the same row is more likely to go bad again.
 973 */
 974static void ivb_parity_work(struct work_struct *work)
 975{
 976	struct drm_i915_private *dev_priv =
 977		container_of(work, typeof(*dev_priv), l3_parity.error_work);
 978	struct intel_gt *gt = &dev_priv->gt;
 979	u32 error_status, row, bank, subbank;
 980	char *parity_event[6];
 981	u32 misccpctl;
 982	u8 slice = 0;
 983
 984	/* We must turn off DOP level clock gating to access the L3 registers.
 985	 * In order to prevent a get/put style interface, acquire struct mutex
 986	 * any time we access those registers.
 987	 */
 988	mutex_lock(&dev_priv->drm.struct_mutex);
 989
 990	/* If we've screwed up tracking, just let the interrupt fire again */
 991	if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
 992		goto out;
 993
 994	misccpctl = I915_READ(GEN7_MISCCPCTL);
 995	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
 996	POSTING_READ(GEN7_MISCCPCTL);
 997
 998	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
 999		i915_reg_t reg;
1000
1001		slice--;
1002		if (drm_WARN_ON_ONCE(&dev_priv->drm,
1003				     slice >= NUM_L3_SLICES(dev_priv)))
1004			break;
1005
1006		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1007
1008		reg = GEN7_L3CDERRST1(slice);
1009
1010		error_status = I915_READ(reg);
1011		row = GEN7_PARITY_ERROR_ROW(error_status);
1012		bank = GEN7_PARITY_ERROR_BANK(error_status);
1013		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1014
1015		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1016		POSTING_READ(reg);
1017
1018		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1019		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1020		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1021		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1022		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1023		parity_event[5] = NULL;
1024
1025		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1026				   KOBJ_CHANGE, parity_event);
1027
1028		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1029			  slice, row, bank, subbank);
1030
1031		kfree(parity_event[4]);
1032		kfree(parity_event[3]);
1033		kfree(parity_event[2]);
1034		kfree(parity_event[1]);
1035	}
1036
1037	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1038
1039out:
1040	drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
1041	spin_lock_irq(&gt->irq_lock);
1042	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1043	spin_unlock_irq(&gt->irq_lock);
1044
1045	mutex_unlock(&dev_priv->drm.struct_mutex);
1046}
1047
1048static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1049{
1050	switch (pin) {
1051	case HPD_PORT_C:
1052		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1053	case HPD_PORT_D:
1054		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1055	case HPD_PORT_E:
1056		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1057	case HPD_PORT_F:
1058		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1059	default:
1060		return false;
1061	}
1062}
1063
1064static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1065{
1066	switch (pin) {
1067	case HPD_PORT_D:
1068		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1069	case HPD_PORT_E:
1070		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1071	case HPD_PORT_F:
1072		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1073	case HPD_PORT_G:
1074		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1075	case HPD_PORT_H:
1076		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1077	case HPD_PORT_I:
1078		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1079	default:
1080		return false;
1081	}
1082}
1083
1084static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1085{
1086	switch (pin) {
1087	case HPD_PORT_A:
1088		return val & PORTA_HOTPLUG_LONG_DETECT;
1089	case HPD_PORT_B:
1090		return val & PORTB_HOTPLUG_LONG_DETECT;
1091	case HPD_PORT_C:
1092		return val & PORTC_HOTPLUG_LONG_DETECT;
1093	default:
1094		return false;
1095	}
1096}
1097
1098static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1099{
1100	switch (pin) {
1101	case HPD_PORT_A:
1102		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_A);
1103	case HPD_PORT_B:
1104		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_B);
1105	case HPD_PORT_C:
1106		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_C);
1107	default:
1108		return false;
1109	}
1110}
1111
1112static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1113{
1114	switch (pin) {
1115	case HPD_PORT_C:
1116		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1117	case HPD_PORT_D:
1118		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1119	case HPD_PORT_E:
1120		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1121	case HPD_PORT_F:
1122		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1123	default:
1124		return false;
1125	}
1126}
1127
1128static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1129{
1130	switch (pin) {
1131	case HPD_PORT_D:
1132		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1133	case HPD_PORT_E:
1134		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1135	case HPD_PORT_F:
1136		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1137	case HPD_PORT_G:
1138		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1139	case HPD_PORT_H:
1140		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1141	case HPD_PORT_I:
1142		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1143	default:
1144		return false;
1145	}
1146}
1147
1148static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1149{
1150	switch (pin) {
1151	case HPD_PORT_E:
1152		return val & PORTE_HOTPLUG_LONG_DETECT;
1153	default:
1154		return false;
1155	}
1156}
1157
1158static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1159{
1160	switch (pin) {
1161	case HPD_PORT_A:
1162		return val & PORTA_HOTPLUG_LONG_DETECT;
1163	case HPD_PORT_B:
1164		return val & PORTB_HOTPLUG_LONG_DETECT;
1165	case HPD_PORT_C:
1166		return val & PORTC_HOTPLUG_LONG_DETECT;
1167	case HPD_PORT_D:
1168		return val & PORTD_HOTPLUG_LONG_DETECT;
1169	default:
1170		return false;
1171	}
1172}
1173
1174static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1175{
1176	switch (pin) {
1177	case HPD_PORT_A:
1178		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1179	default:
1180		return false;
1181	}
1182}
1183
1184static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1185{
1186	switch (pin) {
1187	case HPD_PORT_B:
1188		return val & PORTB_HOTPLUG_LONG_DETECT;
1189	case HPD_PORT_C:
1190		return val & PORTC_HOTPLUG_LONG_DETECT;
1191	case HPD_PORT_D:
1192		return val & PORTD_HOTPLUG_LONG_DETECT;
1193	default:
1194		return false;
1195	}
1196}
1197
1198static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1199{
1200	switch (pin) {
1201	case HPD_PORT_B:
1202		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1203	case HPD_PORT_C:
1204		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1205	case HPD_PORT_D:
1206		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1207	default:
1208		return false;
1209	}
1210}
1211
1212/*
1213 * Get a bit mask of pins that have triggered, and which ones may be long.
1214 * This can be called multiple times with the same masks to accumulate
1215 * hotplug detection results from several registers.
1216 *
1217 * Note that the caller is expected to zero out the masks initially.
1218 */
1219static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1220			       u32 *pin_mask, u32 *long_mask,
1221			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1222			       const u32 hpd[HPD_NUM_PINS],
1223			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1224{
1225	enum hpd_pin pin;
1226
1227	BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1228
1229	for_each_hpd_pin(pin) {
1230		if ((hpd[pin] & hotplug_trigger) == 0)
1231			continue;
1232
1233		*pin_mask |= BIT(pin);
 
1234
1235		if (long_pulse_detect(pin, dig_hotplug_reg))
1236			*long_mask |= BIT(pin);
1237	}
1238
1239	drm_dbg(&dev_priv->drm,
1240		"hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1241		hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1242
 
 
1243}
1244
1245static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1246{
1247	wake_up_all(&dev_priv->gmbus_wait_queue);
1248}
 
1249
1250static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1251{
1252	wake_up_all(&dev_priv->gmbus_wait_queue);
1253}
 
1254
1255#if defined(CONFIG_DEBUG_FS)
1256static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1257					 enum pipe pipe,
1258					 u32 crc0, u32 crc1,
1259					 u32 crc2, u32 crc3,
1260					 u32 crc4)
1261{
1262	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1263	struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1264	u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1265
1266	trace_intel_pipe_crc(crtc, crcs);
1267
1268	spin_lock(&pipe_crc->lock);
1269	/*
1270	 * For some not yet identified reason, the first CRC is
1271	 * bonkers. So let's just wait for the next vblank and read
1272	 * out the buggy result.
1273	 *
1274	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1275	 * don't trust that one either.
1276	 */
1277	if (pipe_crc->skipped <= 0 ||
1278	    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1279		pipe_crc->skipped++;
1280		spin_unlock(&pipe_crc->lock);
1281		return;
1282	}
1283	spin_unlock(&pipe_crc->lock);
1284
1285	drm_crtc_add_crc_entry(&crtc->base, true,
1286				drm_crtc_accurate_vblank_count(&crtc->base),
1287				crcs);
1288}
1289#else
1290static inline void
1291display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1292			     enum pipe pipe,
1293			     u32 crc0, u32 crc1,
1294			     u32 crc2, u32 crc3,
1295			     u32 crc4) {}
1296#endif
1297
1298
1299static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1300				     enum pipe pipe)
1301{
1302	display_pipe_crc_irq_handler(dev_priv, pipe,
1303				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1304				     0, 0, 0, 0);
1305}
1306
1307static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1308				     enum pipe pipe)
1309{
1310	display_pipe_crc_irq_handler(dev_priv, pipe,
1311				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1312				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1313				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1314				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1315				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1316}
1317
1318static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1319				      enum pipe pipe)
1320{
1321	u32 res1, res2;
 
1322
1323	if (INTEL_GEN(dev_priv) >= 3)
1324		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1325	else
1326		res1 = 0;
1327
1328	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1329		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1330	else
1331		res2 = 0;
1332
1333	display_pipe_crc_irq_handler(dev_priv, pipe,
1334				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1335				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1336				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1337				     res1, res2);
1338}
1339
1340static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1341{
1342	enum pipe pipe;
1343
1344	for_each_pipe(dev_priv, pipe) {
1345		I915_WRITE(PIPESTAT(pipe),
1346			   PIPESTAT_INT_STATUS_MASK |
1347			   PIPE_FIFO_UNDERRUN_STATUS);
1348
1349		dev_priv->pipestat_irq_mask[pipe] = 0;
 
1350	}
1351}
1352
1353static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1354				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1355{
1356	enum pipe pipe;
 
 
 
1357
1358	spin_lock(&dev_priv->irq_lock);
 
 
 
 
1359
1360	if (!dev_priv->display_irqs_enabled) {
1361		spin_unlock(&dev_priv->irq_lock);
1362		return;
1363	}
1364
1365	for_each_pipe(dev_priv, pipe) {
1366		i915_reg_t reg;
1367		u32 status_mask, enable_mask, iir_bit = 0;
1368
1369		/*
1370		 * PIPESTAT bits get signalled even when the interrupt is
1371		 * disabled with the mask bits, and some of the status bits do
1372		 * not generate interrupts at all (like the underrun bit). Hence
1373		 * we need to be careful that we only handle what we want to
1374		 * handle.
1375		 */
1376
1377		/* fifo underruns are filterered in the underrun handler. */
1378		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1379
1380		switch (pipe) {
1381		default:
1382		case PIPE_A:
1383			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1384			break;
1385		case PIPE_B:
1386			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1387			break;
1388		case PIPE_C:
1389			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1390			break;
1391		}
1392		if (iir & iir_bit)
1393			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1394
1395		if (!status_mask)
1396			continue;
1397
1398		reg = PIPESTAT(pipe);
1399		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1400		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1401
1402		/*
1403		 * Clear the PIPE*STAT regs before the IIR
1404		 *
1405		 * Toggle the enable bits to make sure we get an
1406		 * edge in the ISR pipe event bit if we don't clear
1407		 * all the enabled status bits. Otherwise the edge
1408		 * triggered IIR on i965/g4x wouldn't notice that
1409		 * an interrupt is still pending.
1410		 */
1411		if (pipe_stats[pipe]) {
1412			I915_WRITE(reg, pipe_stats[pipe]);
1413			I915_WRITE(reg, enable_mask);
1414		}
 
1415	}
1416	spin_unlock(&dev_priv->irq_lock);
1417}
1418
1419static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1420				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1421{
1422	enum pipe pipe;
1423
1424	for_each_pipe(dev_priv, pipe) {
1425		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1426			intel_handle_vblank(dev_priv, pipe);
1427
1428		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1429			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1430
1431		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1432			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1433	}
1434}
1435
1436static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1437				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1438{
1439	bool blc_event = false;
1440	enum pipe pipe;
 
1441
1442	for_each_pipe(dev_priv, pipe) {
1443		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1444			intel_handle_vblank(dev_priv, pipe);
1445
1446		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1447			blc_event = true;
 
 
1448
1449		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1450			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1451
1452		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1453			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1454	}
1455
1456	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1457		intel_opregion_asle_intr(dev_priv);
1458}
1459
1460static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1461				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1462{
1463	bool blc_event = false;
1464	enum pipe pipe;
1465
1466	for_each_pipe(dev_priv, pipe) {
1467		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1468			intel_handle_vblank(dev_priv, pipe);
 
 
1469
1470		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1471			blc_event = true;
1472
1473		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1474			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1475
1476		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1477			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1478	}
1479
1480	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1481		intel_opregion_asle_intr(dev_priv);
1482
1483	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1484		gmbus_irq_handler(dev_priv);
1485}
1486
1487static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1488					    u32 pipe_stats[I915_MAX_PIPES])
1489{
1490	enum pipe pipe;
 
 
 
 
1491
1492	for_each_pipe(dev_priv, pipe) {
1493		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1494			intel_handle_vblank(dev_priv, pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1495
1496		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1497			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1498
1499		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1500			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
 
1501	}
1502
1503	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1504		gmbus_irq_handler(dev_priv);
1505}
1506
1507static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1508{
1509	u32 hotplug_status = 0, hotplug_status_mask;
1510	int i;
1511
1512	if (IS_G4X(dev_priv) ||
1513	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1514		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1515			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1516	else
1517		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1518
1519	/*
1520	 * We absolutely have to clear all the pending interrupt
1521	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1522	 * interrupt bit won't have an edge, and the i965/g4x
1523	 * edge triggered IIR will not notice that an interrupt
1524	 * is still pending. We can't use PORT_HOTPLUG_EN to
1525	 * guarantee the edge as the act of toggling the enable
1526	 * bits can itself generate a new hotplug interrupt :(
1527	 */
1528	for (i = 0; i < 10; i++) {
1529		u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1530
1531		if (tmp == 0)
1532			return hotplug_status;
1533
1534		hotplug_status |= tmp;
1535		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1536	}
1537
1538	drm_WARN_ONCE(&dev_priv->drm, 1,
1539		      "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1540		      I915_READ(PORT_HOTPLUG_STAT));
1541
1542	return hotplug_status;
1543}
1544
1545static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1546				 u32 hotplug_status)
1547{
1548	u32 pin_mask = 0, long_mask = 0;
1549	u32 hotplug_trigger;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1550
1551	if (IS_G4X(dev_priv) ||
1552	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1553		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1554	else
1555		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1556
1557	if (hotplug_trigger) {
1558		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1559				   hotplug_trigger, hotplug_trigger,
1560				   dev_priv->hotplug.hpd,
1561				   i9xx_port_hotplug_long_detect);
1562
1563		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1564	}
1565
1566	if ((IS_G4X(dev_priv) ||
1567	     IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1568	    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1569		dp_aux_irq_handler(dev_priv);
1570}
1571
1572static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1573{
1574	struct drm_i915_private *dev_priv = arg;
1575	irqreturn_t ret = IRQ_NONE;
 
 
 
 
 
1576
1577	if (!intel_irqs_enabled(dev_priv))
1578		return IRQ_NONE;
1579
1580	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1581	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1582
1583	do {
1584		u32 iir, gt_iir, pm_iir;
1585		u32 pipe_stats[I915_MAX_PIPES] = {};
1586		u32 hotplug_status = 0;
1587		u32 ier = 0;
1588
1589		gt_iir = I915_READ(GTIIR);
1590		pm_iir = I915_READ(GEN6_PMIIR);
1591		iir = I915_READ(VLV_IIR);
 
 
 
 
1592
1593		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1594			break;
 
 
1595
1596		ret = IRQ_HANDLED;
1597
1598		/*
1599		 * Theory on interrupt generation, based on empirical evidence:
1600		 *
1601		 * x = ((VLV_IIR & VLV_IER) ||
1602		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1603		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1604		 *
1605		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1606		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1607		 * guarantee the CPU interrupt will be raised again even if we
1608		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1609		 * bits this time around.
1610		 */
1611		I915_WRITE(VLV_MASTER_IER, 0);
1612		ier = I915_READ(VLV_IER);
1613		I915_WRITE(VLV_IER, 0);
1614
1615		if (gt_iir)
1616			I915_WRITE(GTIIR, gt_iir);
1617		if (pm_iir)
1618			I915_WRITE(GEN6_PMIIR, pm_iir);
1619
1620		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1621			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1622
1623		/* Call regardless, as some status bits might not be
1624		 * signalled in iir */
1625		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1626
1627		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1628			   I915_LPE_PIPE_B_INTERRUPT))
1629			intel_lpe_audio_irq_handler(dev_priv);
1630
1631		/*
1632		 * VLV_IIR is single buffered, and reflects the level
1633		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1634		 */
1635		if (iir)
1636			I915_WRITE(VLV_IIR, iir);
1637
1638		I915_WRITE(VLV_IER, ier);
1639		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
 
 
1640
1641		if (gt_iir)
1642			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1643		if (pm_iir)
1644			gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1645
1646		if (hotplug_status)
1647			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1648
1649		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1650	} while (0);
1651
1652	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 
 
 
 
1653
1654	return ret;
1655}
1656
1657static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1658{
1659	struct drm_i915_private *dev_priv = arg;
1660	irqreturn_t ret = IRQ_NONE;
1661
1662	if (!intel_irqs_enabled(dev_priv))
1663		return IRQ_NONE;
1664
1665	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1666	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1667
1668	do {
1669		u32 master_ctl, iir;
1670		u32 pipe_stats[I915_MAX_PIPES] = {};
1671		u32 hotplug_status = 0;
1672		u32 ier = 0;
1673
1674		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1675		iir = I915_READ(VLV_IIR);
1676
1677		if (master_ctl == 0 && iir == 0)
1678			break;
1679
1680		ret = IRQ_HANDLED;
1681
 
1682		/*
1683		 * Theory on interrupt generation, based on empirical evidence:
 
 
 
 
1684		 *
1685		 * x = ((VLV_IIR & VLV_IER) ||
1686		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1687		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1688		 *
1689		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1690		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1691		 * guarantee the CPU interrupt will be raised again even if we
1692		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1693		 * bits this time around.
1694		 */
1695		I915_WRITE(GEN8_MASTER_IRQ, 0);
1696		ier = I915_READ(VLV_IER);
1697		I915_WRITE(VLV_IER, 0);
1698
1699		gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
1700
1701		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1702			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1703
1704		/* Call regardless, as some status bits might not be
1705		 * signalled in iir */
1706		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1707
1708		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1709			   I915_LPE_PIPE_B_INTERRUPT |
1710			   I915_LPE_PIPE_C_INTERRUPT))
1711			intel_lpe_audio_irq_handler(dev_priv);
1712
1713		/*
1714		 * VLV_IIR is single buffered, and reflects the level
1715		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1716		 */
1717		if (iir)
1718			I915_WRITE(VLV_IIR, iir);
1719
1720		I915_WRITE(VLV_IER, ier);
1721		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1722
1723		if (hotplug_status)
1724			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1725
1726		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1727	} while (0);
1728
1729	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 
 
 
 
1730
1731	return ret;
1732}
1733
1734static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1735				u32 hotplug_trigger)
 
 
 
 
 
 
1736{
1737	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1738
1739	/*
1740	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1741	 * unless we touch the hotplug register, even if hotplug_trigger is
1742	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1743	 * errors.
1744	 */
1745	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1746	if (!hotplug_trigger) {
1747		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1748			PORTD_HOTPLUG_STATUS_MASK |
1749			PORTC_HOTPLUG_STATUS_MASK |
1750			PORTB_HOTPLUG_STATUS_MASK;
1751		dig_hotplug_reg &= ~mask;
 
 
1752	}
1753
1754	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1755	if (!hotplug_trigger)
1756		return;
1757
1758	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1759			   hotplug_trigger, dig_hotplug_reg,
1760			   dev_priv->hotplug.pch_hpd,
1761			   pch_port_hotplug_long_detect);
1762
1763	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1764}
1765
1766static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
 
 
 
1767{
1768	enum pipe pipe;
1769	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
 
1770
1771	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
 
1772
1773	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1774		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1775			       SDE_AUDIO_POWER_SHIFT);
1776		drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1777			port_name(port));
1778	}
1779
1780	if (pch_iir & SDE_AUX_MASK)
1781		dp_aux_irq_handler(dev_priv);
 
1782
1783	if (pch_iir & SDE_GMBUS)
1784		gmbus_irq_handler(dev_priv);
 
 
 
1785
1786	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1787		drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
 
1788
1789	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1790		drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
 
 
 
 
1791
1792	if (pch_iir & SDE_POISON)
1793		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1794
1795	if (pch_iir & SDE_FDI_MASK) {
1796		for_each_pipe(dev_priv, pipe)
1797			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1798				pipe_name(pipe),
1799				I915_READ(FDI_RX_IIR(pipe)));
1800	}
 
 
1801
1802	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1803		drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1804
1805	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1806		drm_dbg(&dev_priv->drm,
1807			"PCH transcoder CRC error interrupt\n");
1808
1809	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1810		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1811
1812	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1813		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
 
 
 
1814}
1815
1816static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
 
1817{
1818	u32 err_int = I915_READ(GEN7_ERR_INT);
1819	enum pipe pipe;
1820
1821	if (err_int & ERR_INT_POISON)
1822		drm_err(&dev_priv->drm, "Poison interrupt\n");
1823
1824	for_each_pipe(dev_priv, pipe) {
1825		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1826			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1827
1828		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1829			if (IS_IVYBRIDGE(dev_priv))
1830				ivb_pipe_crc_irq_handler(dev_priv, pipe);
1831			else
1832				hsw_pipe_crc_irq_handler(dev_priv, pipe);
1833		}
1834	}
1835
1836	I915_WRITE(GEN7_ERR_INT, err_int);
1837}
1838
1839static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
 
 
1840{
1841	u32 serr_int = I915_READ(SERR_INT);
1842	enum pipe pipe;
1843
1844	if (serr_int & SERR_INT_POISON)
1845		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1846
1847	for_each_pipe(dev_priv, pipe)
1848		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1849			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1850
1851	I915_WRITE(SERR_INT, serr_int);
1852}
1853
1854static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1855{
1856	enum pipe pipe;
1857	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1858
1859	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1860
1861	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1862		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1863			       SDE_AUDIO_POWER_SHIFT_CPT);
1864		drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1865			port_name(port));
1866	}
1867
1868	if (pch_iir & SDE_AUX_MASK_CPT)
1869		dp_aux_irq_handler(dev_priv);
1870
1871	if (pch_iir & SDE_GMBUS_CPT)
1872		gmbus_irq_handler(dev_priv);
1873
1874	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1875		drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1876
1877	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1878		drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1879
1880	if (pch_iir & SDE_FDI_MASK_CPT) {
1881		for_each_pipe(dev_priv, pipe)
1882			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1883				pipe_name(pipe),
1884				I915_READ(FDI_RX_IIR(pipe)));
1885	}
1886
1887	if (pch_iir & SDE_ERROR_CPT)
1888		cpt_serr_int_handler(dev_priv);
1889}
1890
1891static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
 
1892{
1893	u32 ddi_hotplug_trigger, tc_hotplug_trigger;
1894	u32 pin_mask = 0, long_mask = 0;
1895	bool (*tc_port_hotplug_long_detect)(enum hpd_pin pin, u32 val);
1896
1897	if (HAS_PCH_TGP(dev_priv)) {
1898		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1899		tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
1900		tc_port_hotplug_long_detect = tgp_tc_port_hotplug_long_detect;
1901	} else if (HAS_PCH_JSP(dev_priv)) {
1902		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1903		tc_hotplug_trigger = 0;
1904	} else if (HAS_PCH_MCC(dev_priv)) {
1905		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1906		tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_ICP(PORT_TC1);
1907		tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
1908	} else {
1909		drm_WARN(&dev_priv->drm, !HAS_PCH_ICP(dev_priv),
1910			 "Unrecognized PCH type 0x%x\n",
1911			 INTEL_PCH_TYPE(dev_priv));
 
 
 
 
1912
1913		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1914		tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
1915		tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
1916	}
 
1917
1918	if (ddi_hotplug_trigger) {
1919		u32 dig_hotplug_reg;
 
 
 
 
 
 
 
 
 
 
 
 
1920
1921		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
1922		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
1923
1924		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1925				   ddi_hotplug_trigger, dig_hotplug_reg,
1926				   dev_priv->hotplug.pch_hpd,
1927				   icp_ddi_port_hotplug_long_detect);
1928	}
1929
1930	if (tc_hotplug_trigger) {
1931		u32 dig_hotplug_reg;
1932
1933		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
1934		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
1935
1936		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1937				   tc_hotplug_trigger, dig_hotplug_reg,
1938				   dev_priv->hotplug.pch_hpd,
1939				   tc_port_hotplug_long_detect);
1940	}
1941
1942	if (pin_mask)
1943		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1944
1945	if (pch_iir & SDE_GMBUS_ICP)
1946		gmbus_irq_handler(dev_priv);
1947}
1948
1949static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1950{
1951	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1952		~SDE_PORTE_HOTPLUG_SPT;
1953	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1954	u32 pin_mask = 0, long_mask = 0;
1955
1956	if (hotplug_trigger) {
1957		u32 dig_hotplug_reg;
1958
1959		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1960		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1961
1962		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1963				   hotplug_trigger, dig_hotplug_reg,
1964				   dev_priv->hotplug.pch_hpd,
1965				   spt_port_hotplug_long_detect);
 
 
 
 
 
 
 
 
 
 
 
1966	}
1967
1968	if (hotplug2_trigger) {
1969		u32 dig_hotplug_reg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1970
1971		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1972		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1973
1974		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1975				   hotplug2_trigger, dig_hotplug_reg,
1976				   dev_priv->hotplug.pch_hpd,
1977				   spt_port_hotplug2_long_detect);
1978	}
1979
1980	if (pin_mask)
1981		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1982
1983	if (pch_iir & SDE_GMBUS_CPT)
1984		gmbus_irq_handler(dev_priv);
1985}
 
 
 
1986
1987static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
1988				u32 hotplug_trigger)
1989{
1990	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1991
1992	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
1993	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
1994
1995	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1996			   hotplug_trigger, dig_hotplug_reg,
1997			   dev_priv->hotplug.hpd,
1998			   ilk_port_hotplug_long_detect);
1999
2000	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2001}
2002
2003static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2004				    u32 de_iir)
2005{
2006	enum pipe pipe;
2007	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2008
2009	if (hotplug_trigger)
2010		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2011
2012	if (de_iir & DE_AUX_CHANNEL_A)
2013		dp_aux_irq_handler(dev_priv);
2014
2015	if (de_iir & DE_GSE)
2016		intel_opregion_asle_intr(dev_priv);
2017
2018	if (de_iir & DE_POISON)
2019		drm_err(&dev_priv->drm, "Poison interrupt\n");
2020
2021	for_each_pipe(dev_priv, pipe) {
2022		if (de_iir & DE_PIPE_VBLANK(pipe))
2023			intel_handle_vblank(dev_priv, pipe);
2024
2025		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2026			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2027
2028		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2029			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2030	}
2031
2032	/* check event from PCH */
2033	if (de_iir & DE_PCH_EVENT) {
2034		u32 pch_iir = I915_READ(SDEIIR);
2035
2036		if (HAS_PCH_CPT(dev_priv))
2037			cpt_irq_handler(dev_priv, pch_iir);
2038		else
2039			ibx_irq_handler(dev_priv, pch_iir);
2040
2041		/* should clear PCH hotplug event before clear CPU irq */
2042		I915_WRITE(SDEIIR, pch_iir);
2043	}
2044
2045	if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2046		gen5_rps_irq_handler(&dev_priv->gt.rps);
2047}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2048
2049static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2050				    u32 de_iir)
2051{
2052	enum pipe pipe;
2053	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2054
2055	if (hotplug_trigger)
2056		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2057
2058	if (de_iir & DE_ERR_INT_IVB)
2059		ivb_err_int_handler(dev_priv);
2060
2061	if (de_iir & DE_EDP_PSR_INT_HSW) {
2062		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2063
2064		intel_psr_irq_handler(dev_priv, psr_iir);
2065		I915_WRITE(EDP_PSR_IIR, psr_iir);
2066	}
2067
2068	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2069		dp_aux_irq_handler(dev_priv);
2070
2071	if (de_iir & DE_GSE_IVB)
2072		intel_opregion_asle_intr(dev_priv);
2073
2074	for_each_pipe(dev_priv, pipe) {
2075		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2076			intel_handle_vblank(dev_priv, pipe);
2077	}
2078
2079	/* check event from PCH */
2080	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2081		u32 pch_iir = I915_READ(SDEIIR);
2082
2083		cpt_irq_handler(dev_priv, pch_iir);
2084
2085		/* clear PCH hotplug event before clear CPU irq */
2086		I915_WRITE(SDEIIR, pch_iir);
2087	}
2088}
2089
2090/*
2091 * To handle irqs with the minimum potential races with fresh interrupts, we:
2092 * 1 - Disable Master Interrupt Control.
2093 * 2 - Find the source(s) of the interrupt.
2094 * 3 - Clear the Interrupt Identity bits (IIR).
2095 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2096 * 5 - Re-enable Master Interrupt Control.
2097 */
2098static irqreturn_t ilk_irq_handler(int irq, void *arg)
2099{
2100	struct drm_i915_private *i915 = arg;
2101	void __iomem * const regs = i915->uncore.regs;
2102	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2103	irqreturn_t ret = IRQ_NONE;
 
 
 
 
 
 
2104
2105	if (unlikely(!intel_irqs_enabled(i915)))
2106		return IRQ_NONE;
2107
2108	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2109	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2110
2111	/* disable master interrupt before clearing iir  */
2112	de_ier = raw_reg_read(regs, DEIER);
2113	raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2114
2115	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2116	 * interrupts will will be stored on its back queue, and then we'll be
2117	 * able to process them after we restore SDEIER (as soon as we restore
2118	 * it, we'll get an interrupt if SDEIIR still has something to process
2119	 * due to its back queue). */
2120	if (!HAS_PCH_NOP(i915)) {
2121		sde_ier = raw_reg_read(regs, SDEIER);
2122		raw_reg_write(regs, SDEIER, 0);
2123	}
2124
2125	/* Find, clear, then process each source of interrupt */
2126
2127	gt_iir = raw_reg_read(regs, GTIIR);
2128	if (gt_iir) {
2129		raw_reg_write(regs, GTIIR, gt_iir);
2130		if (INTEL_GEN(i915) >= 6)
2131			gen6_gt_irq_handler(&i915->gt, gt_iir);
2132		else
2133			gen5_gt_irq_handler(&i915->gt, gt_iir);
2134		ret = IRQ_HANDLED;
2135	}
2136
2137	de_iir = raw_reg_read(regs, DEIIR);
2138	if (de_iir) {
2139		raw_reg_write(regs, DEIIR, de_iir);
2140		if (INTEL_GEN(i915) >= 7)
2141			ivb_display_irq_handler(i915, de_iir);
2142		else
2143			ilk_display_irq_handler(i915, de_iir);
2144		ret = IRQ_HANDLED;
2145	}
2146
2147	if (INTEL_GEN(i915) >= 6) {
2148		u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
2149		if (pm_iir) {
2150			raw_reg_write(regs, GEN6_PMIIR, pm_iir);
2151			gen6_rps_irq_handler(&i915->gt.rps, pm_iir);
2152			ret = IRQ_HANDLED;
2153		}
2154	}
2155
2156	raw_reg_write(regs, DEIER, de_ier);
2157	if (sde_ier)
2158		raw_reg_write(regs, SDEIER, sde_ier);
2159
2160	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2161	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2162
2163	return ret;
2164}
2165
2166static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2167				u32 hotplug_trigger)
2168{
2169	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
 
 
 
 
 
 
2170
2171	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2172	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
 
2173
2174	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2175			   hotplug_trigger, dig_hotplug_reg,
2176			   dev_priv->hotplug.hpd,
2177			   bxt_port_hotplug_long_detect);
2178
2179	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2180}
 
 
 
2181
2182static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2183{
2184	u32 pin_mask = 0, long_mask = 0;
2185	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2186	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2187	long_pulse_detect_func long_pulse_detect;
2188
2189	if (INTEL_GEN(dev_priv) >= 12)
2190		long_pulse_detect = gen12_port_hotplug_long_detect;
2191	else
2192		long_pulse_detect = gen11_port_hotplug_long_detect;
2193
2194	if (trigger_tc) {
2195		u32 dig_hotplug_reg;
2196
2197		dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2198		I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2199
2200		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2201				   trigger_tc, dig_hotplug_reg,
2202				   dev_priv->hotplug.hpd,
2203				   long_pulse_detect);
2204	}
2205
2206	if (trigger_tbt) {
2207		u32 dig_hotplug_reg;
2208
2209		dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2210		I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2211
2212		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2213				   trigger_tbt, dig_hotplug_reg,
2214				   dev_priv->hotplug.hpd,
2215				   long_pulse_detect);
2216	}
2217
2218	if (pin_mask)
2219		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2220	else
2221		drm_err(&dev_priv->drm,
2222			"Unexpected DE HPD interrupt 0x%08x\n", iir);
2223}
2224
2225static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2226{
2227	u32 mask;
 
 
 
 
 
 
 
 
 
 
2228
2229	if (INTEL_GEN(dev_priv) >= 12)
2230		return TGL_DE_PORT_AUX_DDIA |
2231			TGL_DE_PORT_AUX_DDIB |
2232			TGL_DE_PORT_AUX_DDIC |
2233			TGL_DE_PORT_AUX_USBC1 |
2234			TGL_DE_PORT_AUX_USBC2 |
2235			TGL_DE_PORT_AUX_USBC3 |
2236			TGL_DE_PORT_AUX_USBC4 |
2237			TGL_DE_PORT_AUX_USBC5 |
2238			TGL_DE_PORT_AUX_USBC6;
2239
 
2240
2241	mask = GEN8_AUX_CHANNEL_A;
2242	if (INTEL_GEN(dev_priv) >= 9)
2243		mask |= GEN9_AUX_CHANNEL_B |
2244			GEN9_AUX_CHANNEL_C |
2245			GEN9_AUX_CHANNEL_D;
2246
2247	if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2248		mask |= CNL_AUX_CHANNEL_F;
2249
2250	if (IS_GEN(dev_priv, 11))
2251		mask |= ICL_AUX_CHANNEL_E;
 
 
 
 
 
 
 
 
 
 
2252
2253	return mask;
2254}
 
 
 
 
 
 
 
 
 
 
2255
2256static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2257{
2258	if (IS_ROCKETLAKE(dev_priv))
2259		return RKL_DE_PIPE_IRQ_FAULT_ERRORS;
2260	else if (INTEL_GEN(dev_priv) >= 11)
2261		return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2262	else if (INTEL_GEN(dev_priv) >= 9)
2263		return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2264	else
2265		return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2266}
2267
2268static void
2269gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2270{
2271	bool found = false;
2272
2273	if (iir & GEN8_DE_MISC_GSE) {
2274		intel_opregion_asle_intr(dev_priv);
2275		found = true;
2276	}
 
 
 
 
 
 
2277
2278	if (iir & GEN8_DE_EDP_PSR) {
2279		u32 psr_iir;
2280		i915_reg_t iir_reg;
2281
2282		if (INTEL_GEN(dev_priv) >= 12)
2283			iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder);
2284		else
2285			iir_reg = EDP_PSR_IIR;
2286
2287		psr_iir = I915_READ(iir_reg);
2288		I915_WRITE(iir_reg, psr_iir);
 
 
 
 
2289
2290		if (psr_iir)
2291			found = true;
 
 
2292
2293		intel_psr_irq_handler(dev_priv, psr_iir);
2294	}
2295
2296	if (!found)
2297		drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2298}
2299
2300static irqreturn_t
2301gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2302{
2303	irqreturn_t ret = IRQ_NONE;
2304	u32 iir;
2305	enum pipe pipe;
2306
2307	if (master_ctl & GEN8_DE_MISC_IRQ) {
2308		iir = I915_READ(GEN8_DE_MISC_IIR);
2309		if (iir) {
2310			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2311			ret = IRQ_HANDLED;
2312			gen8_de_misc_irq_handler(dev_priv, iir);
2313		} else {
2314			drm_err(&dev_priv->drm,
2315				"The master control interrupt lied (DE MISC)!\n");
2316		}
2317	}
2318
2319	if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2320		iir = I915_READ(GEN11_DE_HPD_IIR);
2321		if (iir) {
2322			I915_WRITE(GEN11_DE_HPD_IIR, iir);
2323			ret = IRQ_HANDLED;
2324			gen11_hpd_irq_handler(dev_priv, iir);
2325		} else {
2326			drm_err(&dev_priv->drm,
2327				"The master control interrupt lied, (DE HPD)!\n");
2328		}
2329	}
2330
2331	if (master_ctl & GEN8_DE_PORT_IRQ) {
2332		iir = I915_READ(GEN8_DE_PORT_IIR);
2333		if (iir) {
2334			u32 tmp_mask;
2335			bool found = false;
2336
2337			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2338			ret = IRQ_HANDLED;
2339
2340			if (iir & gen8_de_port_aux_mask(dev_priv)) {
2341				dp_aux_irq_handler(dev_priv);
2342				found = true;
2343			}
2344
2345			if (IS_GEN9_LP(dev_priv)) {
2346				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2347				if (tmp_mask) {
2348					bxt_hpd_irq_handler(dev_priv, tmp_mask);
2349					found = true;
 
 
2350				}
2351			} else if (IS_BROADWELL(dev_priv)) {
2352				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2353				if (tmp_mask) {
2354					ilk_hpd_irq_handler(dev_priv, tmp_mask);
2355					found = true;
2356				}
2357			}
2358
2359			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2360				gmbus_irq_handler(dev_priv);
2361				found = true;
2362			}
2363
2364			if (!found)
2365				drm_err(&dev_priv->drm,
2366					"Unexpected DE Port interrupt\n");
2367		}
2368		else
2369			drm_err(&dev_priv->drm,
2370				"The master control interrupt lied (DE PORT)!\n");
2371	}
2372
2373	for_each_pipe(dev_priv, pipe) {
2374		u32 fault_errors;
2375
2376		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2377			continue;
2378
2379		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2380		if (!iir) {
2381			drm_err(&dev_priv->drm,
2382				"The master control interrupt lied (DE PIPE)!\n");
2383			continue;
2384		}
2385
2386		ret = IRQ_HANDLED;
2387		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2388
2389		if (iir & GEN8_PIPE_VBLANK)
2390			intel_handle_vblank(dev_priv, pipe);
2391
2392		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2393			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2394
2395		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2396			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2397
2398		fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2399		if (fault_errors)
2400			drm_err(&dev_priv->drm,
2401				"Fault errors on pipe %c: 0x%08x\n",
2402				pipe_name(pipe),
2403				fault_errors);
2404	}
2405
2406	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2407	    master_ctl & GEN8_DE_PCH_IRQ) {
2408		/*
2409		 * FIXME(BDW): Assume for now that the new interrupt handling
2410		 * scheme also closed the SDE interrupt handling race we've seen
2411		 * on older pch-split platforms. But this needs testing.
2412		 */
2413		iir = I915_READ(SDEIIR);
2414		if (iir) {
2415			I915_WRITE(SDEIIR, iir);
2416			ret = IRQ_HANDLED;
2417
2418			if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2419				icp_irq_handler(dev_priv, iir);
2420			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2421				spt_irq_handler(dev_priv, iir);
2422			else
2423				cpt_irq_handler(dev_priv, iir);
2424		} else {
2425			/*
2426			 * Like on previous PCH there seems to be something
2427			 * fishy going on with forwarding PCH interrupts.
2428			 */
2429			drm_dbg(&dev_priv->drm,
2430				"The master control interrupt lied (SDE)!\n");
2431		}
2432	}
2433
2434	return ret;
2435}
2436
2437static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2438{
2439	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
 
2440
2441	/*
2442	 * Now with master disabled, get a sample of level indications
2443	 * for this interrupt. Indications will be cleared on related acks.
2444	 * New indications can and will light up during processing,
2445	 * and will generate new interrupt after enabling master.
2446	 */
2447	return raw_reg_read(regs, GEN8_MASTER_IRQ);
2448}
2449
2450static inline void gen8_master_intr_enable(void __iomem * const regs)
2451{
2452	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2453}
2454
2455static irqreturn_t gen8_irq_handler(int irq, void *arg)
2456{
2457	struct drm_i915_private *dev_priv = arg;
2458	void __iomem * const regs = dev_priv->uncore.regs;
2459	u32 master_ctl;
2460
2461	if (!intel_irqs_enabled(dev_priv))
2462		return IRQ_NONE;
2463
2464	master_ctl = gen8_master_intr_disable(regs);
2465	if (!master_ctl) {
2466		gen8_master_intr_enable(regs);
2467		return IRQ_NONE;
2468	}
2469
2470	/* Find, queue (onto bottom-halves), then clear each source */
2471	gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
 
 
 
2472
2473	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2474	if (master_ctl & ~GEN8_GT_IRQS) {
2475		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2476		gen8_de_irq_handler(dev_priv, master_ctl);
2477		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
2478	}
2479
2480	gen8_master_intr_enable(regs);
2481
2482	return IRQ_HANDLED;
2483}
2484
2485static u32
2486gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2487{
2488	void __iomem * const regs = gt->uncore->regs;
2489	u32 iir;
 
 
 
 
 
2490
2491	if (!(master_ctl & GEN11_GU_MISC_IRQ))
 
 
2492		return 0;
 
2493
2494	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2495	if (likely(iir))
2496		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2497
2498	return iir;
2499}
 
 
 
 
 
 
 
 
 
2500
2501static void
2502gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2503{
2504	if (iir & GEN11_GU_MISC_GSE)
2505		intel_opregion_asle_intr(gt->i915);
2506}
2507
2508static inline u32 gen11_master_intr_disable(void __iomem * const regs)
 
 
 
2509{
2510	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
 
 
2511
2512	/*
2513	 * Now with master disabled, get a sample of level indications
2514	 * for this interrupt. Indications will be cleared on related acks.
2515	 * New indications can and will light up during processing,
2516	 * and will generate new interrupt after enabling master.
2517	 */
2518	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2519}
2520
2521static inline void gen11_master_intr_enable(void __iomem * const regs)
2522{
2523	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2524}
2525
2526static void
2527gen11_display_irq_handler(struct drm_i915_private *i915)
2528{
2529	void __iomem * const regs = i915->uncore.regs;
2530	const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2531
2532	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2533	/*
2534	 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2535	 * for the display related bits.
2536	 */
2537	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2538	gen8_de_irq_handler(i915, disp_ctl);
2539	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2540		      GEN11_DISPLAY_IRQ_ENABLE);
2541
2542	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2543}
2544
2545static __always_inline irqreturn_t
2546__gen11_irq_handler(struct drm_i915_private * const i915,
2547		    u32 (*intr_disable)(void __iomem * const regs),
2548		    void (*intr_enable)(void __iomem * const regs))
2549{
2550	void __iomem * const regs = i915->uncore.regs;
2551	struct intel_gt *gt = &i915->gt;
2552	u32 master_ctl;
2553	u32 gu_misc_iir;
2554
2555	if (!intel_irqs_enabled(i915))
2556		return IRQ_NONE;
2557
2558	master_ctl = intr_disable(regs);
2559	if (!master_ctl) {
2560		intr_enable(regs);
2561		return IRQ_NONE;
2562	}
2563
2564	/* Find, queue (onto bottom-halves), then clear each source */
2565	gen11_gt_irq_handler(gt, master_ctl);
2566
2567	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2568	if (master_ctl & GEN11_DISPLAY_IRQ)
2569		gen11_display_irq_handler(i915);
2570
2571	gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2572
2573	intr_enable(regs);
2574
2575	gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2576
2577	return IRQ_HANDLED;
2578}
2579
2580static irqreturn_t gen11_irq_handler(int irq, void *arg)
2581{
2582	return __gen11_irq_handler(arg,
2583				   gen11_master_intr_disable,
2584				   gen11_master_intr_enable);
2585}
2586
2587static u32 dg1_master_intr_disable_and_ack(void __iomem * const regs)
2588{
2589	u32 val;
2590
2591	/* First disable interrupts */
2592	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, 0);
2593
2594	/* Get the indication levels and ack the master unit */
2595	val = raw_reg_read(regs, DG1_MSTR_UNIT_INTR);
2596	if (unlikely(!val))
2597		return 0;
2598
2599	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, val);
2600
2601	/*
2602	 * Now with master disabled, get a sample of level indications
2603	 * for this interrupt and ack them right away - we keep GEN11_MASTER_IRQ
2604	 * out as this bit doesn't exist anymore for DG1
2605	 */
2606	val = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ) & ~GEN11_MASTER_IRQ;
2607	if (unlikely(!val))
2608		return 0;
2609
2610	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, val);
2611
2612	return val;
2613}
2614
2615static inline void dg1_master_intr_enable(void __iomem * const regs)
2616{
2617	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, DG1_MSTR_IRQ);
2618}
2619
2620static irqreturn_t dg1_irq_handler(int irq, void *arg)
2621{
2622	return __gen11_irq_handler(arg,
2623				   dg1_master_intr_disable_and_ack,
2624				   dg1_master_intr_enable);
2625}
2626
2627/* Called from drm generic code, passed 'crtc' which
2628 * we use as a pipe index
2629 */
2630int i8xx_enable_vblank(struct drm_crtc *crtc)
2631{
2632	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2633	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2634	unsigned long irqflags;
2635
 
 
 
2636	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2637	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
 
 
 
 
 
 
 
 
 
2638	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2639
2640	return 0;
2641}
2642
2643int i915gm_enable_vblank(struct drm_crtc *crtc)
2644{
2645	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 
2646
2647	/*
2648	 * Vblank interrupts fail to wake the device up from C2+.
2649	 * Disabling render clock gating during C-states avoids
2650	 * the problem. There is a small power cost so we do this
2651	 * only when vblank interrupts are actually enabled.
2652	 */
2653	if (dev_priv->vblank_enabled++ == 0)
2654		I915_WRITE(SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2655
2656	return i8xx_enable_vblank(crtc);
2657}
2658
2659int i965_enable_vblank(struct drm_crtc *crtc)
2660{
2661	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2662	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2663	unsigned long irqflags;
2664
2665	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2666	i915_enable_pipestat(dev_priv, pipe,
2667			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2668	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2669
2670	return 0;
2671}
2672
2673int ilk_enable_vblank(struct drm_crtc *crtc)
2674{
2675	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2676	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2677	unsigned long irqflags;
2678	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2679		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2680
2681	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2682	ilk_enable_display_irq(dev_priv, bit);
2683	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2684
2685	/* Even though there is no DMC, frame counter can get stuck when
2686	 * PSR is active as no frames are generated.
2687	 */
2688	if (HAS_PSR(dev_priv))
2689		drm_crtc_vblank_restore(crtc);
2690
2691	return 0;
2692}
2693
2694int bdw_enable_vblank(struct drm_crtc *crtc)
2695{
2696	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2697	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2698	unsigned long irqflags;
2699
2700	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2701	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
 
2702	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2703
2704	/* Even if there is no DMC, frame counter can get stuck when
2705	 * PSR is active as no frames are generated, so check only for PSR.
2706	 */
2707	if (HAS_PSR(dev_priv))
2708		drm_crtc_vblank_restore(crtc);
2709
2710	return 0;
2711}
2712
2713/* Called from drm generic code, passed 'crtc' which
2714 * we use as a pipe index
2715 */
2716void i8xx_disable_vblank(struct drm_crtc *crtc)
2717{
2718	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2719	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2720	unsigned long irqflags;
2721
2722	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2723	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2724	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2725}
2726
2727void i915gm_disable_vblank(struct drm_crtc *crtc)
2728{
2729	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2730
2731	i8xx_disable_vblank(crtc);
2732
2733	if (--dev_priv->vblank_enabled == 0)
2734		I915_WRITE(SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2735}
2736
2737void i965_disable_vblank(struct drm_crtc *crtc)
2738{
2739	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2740	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2741	unsigned long irqflags;
2742
2743	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2744	i915_disable_pipestat(dev_priv, pipe,
2745			      PIPE_START_VBLANK_INTERRUPT_STATUS);
 
2746	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2747}
2748
2749void ilk_disable_vblank(struct drm_crtc *crtc)
2750{
2751	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2752	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2753	unsigned long irqflags;
2754	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2755		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2756
2757	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2758	ilk_disable_display_irq(dev_priv, bit);
 
2759	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2760}
2761
2762void bdw_disable_vblank(struct drm_crtc *crtc)
2763{
2764	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2765	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2766	unsigned long irqflags;
2767
2768	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2769	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
 
2770	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2771}
2772
2773static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2774{
2775	struct intel_uncore *uncore = &dev_priv->uncore;
2776
2777	if (HAS_PCH_NOP(dev_priv))
2778		return;
2779
2780	GEN3_IRQ_RESET(uncore, SDE);
2781
2782	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2783		I915_WRITE(SERR_INT, 0xffffffff);
2784}
2785
2786/*
2787 * SDEIER is also touched by the interrupt handler to work around missed PCH
2788 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2789 * instead we unconditionally enable all PCH interrupt sources here, but then
2790 * only unmask them as needed with SDEIMR.
2791 *
2792 * This function needs to be called before interrupts are enabled.
2793 */
2794static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
 
2795{
2796	if (HAS_PCH_NOP(dev_priv))
2797		return;
2798
2799	drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0);
2800	I915_WRITE(SDEIER, 0xffffffff);
2801	POSTING_READ(SDEIER);
2802}
2803
2804static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2805{
2806	struct intel_uncore *uncore = &dev_priv->uncore;
2807
2808	if (IS_CHERRYVIEW(dev_priv))
2809		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2810	else
2811		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2812
2813	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2814	intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2815
2816	i9xx_pipestat_irq_reset(dev_priv);
2817
2818	GEN3_IRQ_RESET(uncore, VLV_);
2819	dev_priv->irq_mask = ~0u;
2820}
2821
2822static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2823{
2824	struct intel_uncore *uncore = &dev_priv->uncore;
2825
2826	u32 pipestat_mask;
2827	u32 enable_mask;
2828	enum pipe pipe;
2829
2830	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
2831
2832	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2833	for_each_pipe(dev_priv, pipe)
2834		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2835
2836	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2837		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2838		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2839		I915_LPE_PIPE_A_INTERRUPT |
2840		I915_LPE_PIPE_B_INTERRUPT;
2841
2842	if (IS_CHERRYVIEW(dev_priv))
2843		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2844			I915_LPE_PIPE_C_INTERRUPT;
2845
2846	drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
2847
2848	dev_priv->irq_mask = ~enable_mask;
2849
2850	GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
2851}
2852
2853/* drm_dma.h hooks
2854*/
2855static void ilk_irq_reset(struct drm_i915_private *dev_priv)
2856{
2857	struct intel_uncore *uncore = &dev_priv->uncore;
2858
2859	GEN3_IRQ_RESET(uncore, DE);
2860	if (IS_GEN(dev_priv, 7))
2861		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
2862
2863	if (IS_HASWELL(dev_priv)) {
2864		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2865		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2866	}
2867
2868	gen5_gt_irq_reset(&dev_priv->gt);
2869
2870	ibx_irq_reset(dev_priv);
2871}
2872
2873static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
 
 
 
 
2874{
2875	I915_WRITE(VLV_MASTER_IER, 0);
2876	POSTING_READ(VLV_MASTER_IER);
2877
2878	gen5_gt_irq_reset(&dev_priv->gt);
2879
2880	spin_lock_irq(&dev_priv->irq_lock);
2881	if (dev_priv->display_irqs_enabled)
2882		vlv_display_irq_reset(dev_priv);
2883	spin_unlock_irq(&dev_priv->irq_lock);
 
 
 
 
 
 
2884}
2885
2886static void gen8_irq_reset(struct drm_i915_private *dev_priv)
 
2887{
2888	struct intel_uncore *uncore = &dev_priv->uncore;
2889	enum pipe pipe;
2890
2891	gen8_master_intr_disable(dev_priv->uncore.regs);
2892
2893	gen8_gt_irq_reset(&dev_priv->gt);
2894
2895	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2896	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2897
2898	for_each_pipe(dev_priv, pipe)
2899		if (intel_display_power_is_enabled(dev_priv,
2900						   POWER_DOMAIN_PIPE(pipe)))
2901			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2902
2903	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2904	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2905	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2906
2907	if (HAS_PCH_SPLIT(dev_priv))
2908		ibx_irq_reset(dev_priv);
2909}
2910
2911static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
2912{
2913	struct intel_uncore *uncore = &dev_priv->uncore;
2914	enum pipe pipe;
2915	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
2916		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
2917
2918	intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
2919
2920	if (INTEL_GEN(dev_priv) >= 12) {
2921		enum transcoder trans;
2922
2923		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
2924			enum intel_display_power_domain domain;
2925
2926			domain = POWER_DOMAIN_TRANSCODER(trans);
2927			if (!intel_display_power_is_enabled(dev_priv, domain))
2928				continue;
2929
2930			intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
2931			intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
2932		}
2933	} else {
2934		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2935		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2936	}
2937
2938	for_each_pipe(dev_priv, pipe)
2939		if (intel_display_power_is_enabled(dev_priv,
2940						   POWER_DOMAIN_PIPE(pipe)))
2941			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2942
2943	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2944	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2945	GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
2946
2947	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2948		GEN3_IRQ_RESET(uncore, SDE);
2949
2950	/* Wa_14010685332:icl,jsl,ehl,tgl,rkl */
2951	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) {
2952		intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
2953				 SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2954		intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
2955				 SBCLK_RUN_REFCLK_DIS, 0);
2956	}
 
2957}
2958
2959static void gen11_irq_reset(struct drm_i915_private *dev_priv)
2960{
2961	struct intel_uncore *uncore = &dev_priv->uncore;
2962
2963	if (HAS_MASTER_UNIT_IRQ(dev_priv))
2964		dg1_master_intr_disable_and_ack(dev_priv->uncore.regs);
2965	else
2966		gen11_master_intr_disable(dev_priv->uncore.regs);
2967
2968	gen11_gt_irq_reset(&dev_priv->gt);
2969	gen11_display_irq_reset(dev_priv);
2970
2971	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
2972	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
 
 
 
 
 
2973}
2974
2975void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2976				     u8 pipe_mask)
 
 
 
 
 
2977{
2978	struct intel_uncore *uncore = &dev_priv->uncore;
2979
2980	u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2981	enum pipe pipe;
2982
2983	spin_lock_irq(&dev_priv->irq_lock);
2984
2985	if (!intel_irqs_enabled(dev_priv)) {
2986		spin_unlock_irq(&dev_priv->irq_lock);
2987		return;
2988	}
2989
2990	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2991		GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
2992				  dev_priv->de_irq_mask[pipe],
2993				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
2994
2995	spin_unlock_irq(&dev_priv->irq_lock);
2996}
2997
2998void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
2999				     u8 pipe_mask)
3000{
3001	struct intel_uncore *uncore = &dev_priv->uncore;
3002	enum pipe pipe;
3003
3004	spin_lock_irq(&dev_priv->irq_lock);
3005
3006	if (!intel_irqs_enabled(dev_priv)) {
3007		spin_unlock_irq(&dev_priv->irq_lock);
3008		return;
3009	}
3010
3011	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3012		GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3013
3014	spin_unlock_irq(&dev_priv->irq_lock);
3015
3016	/* make sure we're done processing display irqs */
3017	intel_synchronize_irq(dev_priv);
3018}
3019
3020static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3021{
3022	struct intel_uncore *uncore = &dev_priv->uncore;
3023
3024	I915_WRITE(GEN8_MASTER_IRQ, 0);
3025	POSTING_READ(GEN8_MASTER_IRQ);
3026
3027	gen8_gt_irq_reset(&dev_priv->gt);
3028
3029	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3030
3031	spin_lock_irq(&dev_priv->irq_lock);
3032	if (dev_priv->display_irqs_enabled)
3033		vlv_display_irq_reset(dev_priv);
3034	spin_unlock_irq(&dev_priv->irq_lock);
3035}
3036
3037static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3038				  const u32 hpd[HPD_NUM_PINS])
3039{
3040	struct intel_encoder *encoder;
3041	u32 enabled_irqs = 0;
3042
3043	for_each_intel_encoder(&dev_priv->drm, encoder)
3044		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3045			enabled_irqs |= hpd[encoder->hpd_pin];
3046
3047	return enabled_irqs;
3048}
3049
3050static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3051{
3052	u32 hotplug;
3053
3054	/*
3055	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3056	 * duration to 2ms (which is the minimum in the Display Port spec).
3057	 * The pulse duration bits are reserved on LPT+.
3058	 */
3059	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3060	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3061		     PORTC_PULSE_DURATION_MASK |
3062		     PORTD_PULSE_DURATION_MASK);
3063	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3064	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3065	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3066	/*
3067	 * When CPU and PCH are on the same package, port A
3068	 * HPD must be enabled in both north and south.
3069	 */
3070	if (HAS_PCH_LPT_LP(dev_priv))
3071		hotplug |= PORTA_HOTPLUG_ENABLE;
3072	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3073}
3074
3075static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3076{
3077	u32 hotplug_irqs, enabled_irqs;
3078
3079	if (HAS_PCH_IBX(dev_priv))
3080		hotplug_irqs = SDE_HOTPLUG_MASK;
3081	else
3082		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3083
3084	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3085
3086	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3087
3088	ibx_hpd_detection_setup(dev_priv);
3089}
3090
3091static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv,
3092				    u32 ddi_hotplug_enable_mask,
3093				    u32 tc_hotplug_enable_mask)
3094{
3095	u32 hotplug;
3096
3097	hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3098	hotplug |= ddi_hotplug_enable_mask;
3099	I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3100
3101	if (tc_hotplug_enable_mask) {
3102		hotplug = I915_READ(SHOTPLUG_CTL_TC);
3103		hotplug |= tc_hotplug_enable_mask;
3104		I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3105	}
3106}
3107
3108static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv,
3109			      u32 sde_ddi_mask, u32 sde_tc_mask,
3110			      u32 ddi_enable_mask, u32 tc_enable_mask)
3111{
3112	u32 hotplug_irqs, enabled_irqs;
3113
3114	hotplug_irqs = sde_ddi_mask | sde_tc_mask;
3115	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3116
3117	if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP)
3118		I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3119
3120	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3121
3122	icp_hpd_detection_setup(dev_priv, ddi_enable_mask, tc_enable_mask);
3123}
3124
3125/*
3126 * EHL doesn't need most of gen11_hpd_irq_setup, it's handling only the
3127 * equivalent of SDE.
3128 */
3129static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
3130{
3131	icp_hpd_irq_setup(dev_priv,
3132			  SDE_DDI_MASK_ICP, SDE_TC_HOTPLUG_ICP(PORT_TC1),
3133			  ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE(PORT_TC1));
3134}
3135
3136/*
3137 * JSP behaves exactly the same as MCC above except that port C is mapped to
3138 * the DDI-C pins instead of the TC1 pins.  This means we should follow TGP's
3139 * masks & tables rather than ICP's masks & tables.
3140 */
3141static void jsp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3142{
3143	icp_hpd_irq_setup(dev_priv,
3144			  SDE_DDI_MASK_TGP, 0,
3145			  TGP_DDI_HPD_ENABLE_MASK, 0);
3146}
3147
3148static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3149{
3150	u32 hotplug;
3151
3152	hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3153	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3154		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3155		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3156		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3157	I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3158
3159	hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3160	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3161		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3162		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3163		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3164	I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3165}
3166
3167static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3168{
3169	u32 hotplug_irqs, enabled_irqs;
3170	u32 val;
3171
3172	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3173	hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3174
3175	val = I915_READ(GEN11_DE_HPD_IMR);
3176	val &= ~hotplug_irqs;
3177	val |= ~enabled_irqs & hotplug_irqs;
3178	I915_WRITE(GEN11_DE_HPD_IMR, val);
3179	POSTING_READ(GEN11_DE_HPD_IMR);
3180
3181	gen11_hpd_detection_setup(dev_priv);
3182
3183	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3184		icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_TGP, SDE_TC_MASK_TGP,
3185				  TGP_DDI_HPD_ENABLE_MASK, TGP_TC_HPD_ENABLE_MASK);
3186	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3187		icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_ICP, SDE_TC_MASK_ICP,
3188				  ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE_MASK);
3189}
3190
3191static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3192{
3193	u32 val, hotplug;
3194
3195	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3196	if (HAS_PCH_CNP(dev_priv)) {
3197		val = I915_READ(SOUTH_CHICKEN1);
3198		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3199		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3200		I915_WRITE(SOUTH_CHICKEN1, val);
3201	}
3202
3203	/* Enable digital hotplug on the PCH */
3204	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3205	hotplug |= PORTA_HOTPLUG_ENABLE |
3206		   PORTB_HOTPLUG_ENABLE |
3207		   PORTC_HOTPLUG_ENABLE |
3208		   PORTD_HOTPLUG_ENABLE;
3209	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3210
3211	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3212	hotplug |= PORTE_HOTPLUG_ENABLE;
3213	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3214}
3215
3216static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3217{
3218	u32 hotplug_irqs, enabled_irqs;
3219
3220	if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3221		I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3222
3223	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3224	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3225
3226	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3227
3228	spt_hpd_detection_setup(dev_priv);
3229}
3230
3231static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3232{
3233	u32 hotplug;
3234
3235	/*
3236	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3237	 * duration to 2ms (which is the minimum in the Display Port spec)
3238	 * The pulse duration bits are reserved on HSW+.
3239	 */
3240	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3241	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3242	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3243		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3244	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3245}
3246
3247static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3248{
3249	u32 hotplug_irqs, enabled_irqs;
3250
3251	if (INTEL_GEN(dev_priv) >= 8) {
3252		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3253		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3254
3255		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3256	} else if (INTEL_GEN(dev_priv) >= 7) {
3257		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3258		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3259
3260		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3261	} else {
3262		hotplug_irqs = DE_DP_A_HOTPLUG;
3263		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3264
3265		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3266	}
3267
3268	ilk_hpd_detection_setup(dev_priv);
3269
3270	ibx_hpd_irq_setup(dev_priv);
3271}
3272
3273static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3274				      u32 enabled_irqs)
3275{
3276	u32 hotplug;
3277
3278	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3279	hotplug |= PORTA_HOTPLUG_ENABLE |
3280		   PORTB_HOTPLUG_ENABLE |
3281		   PORTC_HOTPLUG_ENABLE;
3282
3283	drm_dbg_kms(&dev_priv->drm,
3284		    "Invert bit setting: hp_ctl:%x hp_port:%x\n",
3285		    hotplug, enabled_irqs);
3286	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3287
3288	/*
3289	 * For BXT invert bit has to be set based on AOB design
3290	 * for HPD detection logic, update it based on VBT fields.
3291	 */
3292	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3293	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3294		hotplug |= BXT_DDIA_HPD_INVERT;
3295	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3296	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3297		hotplug |= BXT_DDIB_HPD_INVERT;
3298	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3299	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3300		hotplug |= BXT_DDIC_HPD_INVERT;
3301
3302	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3303}
3304
3305static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3306{
3307	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3308}
3309
3310static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3311{
3312	u32 hotplug_irqs, enabled_irqs;
3313
3314	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3315	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3316
3317	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3318
3319	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3320}
3321
3322static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3323{
3324	u32 mask;
3325
3326	if (HAS_PCH_NOP(dev_priv))
3327		return;
3328
3329	if (HAS_PCH_IBX(dev_priv))
3330		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3331	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3332		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3333	else
3334		mask = SDE_GMBUS_CPT;
3335
3336	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3337	I915_WRITE(SDEIMR, ~mask);
3338
3339	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3340	    HAS_PCH_LPT(dev_priv))
3341		ibx_hpd_detection_setup(dev_priv);
3342	else
3343		spt_hpd_detection_setup(dev_priv);
3344}
3345
3346static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3347{
3348	struct intel_uncore *uncore = &dev_priv->uncore;
3349	u32 display_mask, extra_mask;
3350
3351	if (INTEL_GEN(dev_priv) >= 7) {
3352		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3353				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3354		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3355			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3356			      DE_DP_A_HOTPLUG_IVB);
3357	} else {
3358		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3359				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3360				DE_PIPEA_CRC_DONE | DE_POISON);
3361		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3362			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3363			      DE_DP_A_HOTPLUG);
3364	}
3365
3366	if (IS_HASWELL(dev_priv)) {
3367		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3368		display_mask |= DE_EDP_PSR_INT_HSW;
3369	}
3370
3371	dev_priv->irq_mask = ~display_mask;
3372
3373	ibx_irq_pre_postinstall(dev_priv);
3374
3375	GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3376		      display_mask | extra_mask);
3377
3378	gen5_gt_irq_postinstall(&dev_priv->gt);
3379
3380	ilk_hpd_detection_setup(dev_priv);
3381
3382	ibx_irq_postinstall(dev_priv);
3383
3384	if (IS_IRONLAKE_M(dev_priv)) {
3385		/* Enable PCU event interrupts
3386		 *
3387		 * spinlocking not required here for correctness since interrupt
3388		 * setup is guaranteed to run in single-threaded context. But we
3389		 * need it to make the assert_spin_locked happy. */
3390		spin_lock_irq(&dev_priv->irq_lock);
3391		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3392		spin_unlock_irq(&dev_priv->irq_lock);
3393	}
3394}
3395
3396void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
 
 
3397{
3398	lockdep_assert_held(&dev_priv->irq_lock);
3399
3400	if (dev_priv->display_irqs_enabled)
3401		return;
3402
3403	dev_priv->display_irqs_enabled = true;
3404
3405	if (intel_irqs_enabled(dev_priv)) {
3406		vlv_display_irq_reset(dev_priv);
3407		vlv_display_irq_postinstall(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
3408	}
3409}
3410
3411void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3412{
3413	lockdep_assert_held(&dev_priv->irq_lock);
3414
3415	if (!dev_priv->display_irqs_enabled)
3416		return;
 
3417
3418	dev_priv->display_irqs_enabled = false;
 
 
 
3419
3420	if (intel_irqs_enabled(dev_priv))
3421		vlv_display_irq_reset(dev_priv);
 
 
3422}
3423
3424
3425static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3426{
3427	gen5_gt_irq_postinstall(&dev_priv->gt);
 
 
 
 
 
 
 
 
 
 
 
3428
3429	spin_lock_irq(&dev_priv->irq_lock);
3430	if (dev_priv->display_irqs_enabled)
3431		vlv_display_irq_postinstall(dev_priv);
3432	spin_unlock_irq(&dev_priv->irq_lock);
3433
3434	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3435	POSTING_READ(VLV_MASTER_IER);
3436}
3437
3438static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3439{
3440	struct intel_uncore *uncore = &dev_priv->uncore;
3441
3442	u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3443		GEN8_PIPE_CDCLK_CRC_DONE;
3444	u32 de_pipe_enables;
3445	u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3446	u32 de_port_enables;
3447	u32 de_misc_masked = GEN8_DE_EDP_PSR;
3448	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3449		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3450	enum pipe pipe;
3451
3452	if (INTEL_GEN(dev_priv) <= 10)
3453		de_misc_masked |= GEN8_DE_MISC_GSE;
3454
3455	if (IS_GEN9_LP(dev_priv))
3456		de_port_masked |= BXT_DE_PORT_GMBUS;
3457
3458	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3459					   GEN8_PIPE_FIFO_UNDERRUN;
3460
3461	de_port_enables = de_port_masked;
3462	if (IS_GEN9_LP(dev_priv))
3463		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3464	else if (IS_BROADWELL(dev_priv))
3465		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3466
3467	if (INTEL_GEN(dev_priv) >= 12) {
3468		enum transcoder trans;
3469
3470		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3471			enum intel_display_power_domain domain;
3472
3473			domain = POWER_DOMAIN_TRANSCODER(trans);
3474			if (!intel_display_power_is_enabled(dev_priv, domain))
3475				continue;
3476
3477			gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3478		}
3479	} else {
3480		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
 
 
 
 
3481	}
3482
3483	for_each_pipe(dev_priv, pipe) {
3484		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
 
 
 
 
3485
3486		if (intel_display_power_is_enabled(dev_priv,
3487				POWER_DOMAIN_PIPE(pipe)))
3488			GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3489					  dev_priv->de_irq_mask[pipe],
3490					  de_pipe_enables);
3491	}
3492
3493	GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3494	GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3495
3496	if (INTEL_GEN(dev_priv) >= 11) {
3497		u32 de_hpd_masked = 0;
3498		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3499				     GEN11_DE_TBT_HOTPLUG_MASK;
3500
3501		GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3502			      de_hpd_enables);
3503		gen11_hpd_detection_setup(dev_priv);
3504	} else if (IS_GEN9_LP(dev_priv)) {
3505		bxt_hpd_detection_setup(dev_priv);
3506	} else if (IS_BROADWELL(dev_priv)) {
3507		ilk_hpd_detection_setup(dev_priv);
3508	}
3509}
3510
3511static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3512{
3513	if (HAS_PCH_SPLIT(dev_priv))
3514		ibx_irq_pre_postinstall(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
3515
3516	gen8_gt_irq_postinstall(&dev_priv->gt);
3517	gen8_de_irq_postinstall(dev_priv);
3518
3519	if (HAS_PCH_SPLIT(dev_priv))
3520		ibx_irq_postinstall(dev_priv);
3521
3522	gen8_master_intr_enable(dev_priv->uncore.regs);
3523}
3524
3525static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3526{
3527	u32 mask = SDE_GMBUS_ICP;
3528
3529	drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0);
3530	I915_WRITE(SDEIER, 0xffffffff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3531	POSTING_READ(SDEIER);
3532
3533	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3534	I915_WRITE(SDEIMR, ~mask);
3535
3536	if (HAS_PCH_TGP(dev_priv))
3537		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3538					TGP_TC_HPD_ENABLE_MASK);
3539	else if (HAS_PCH_JSP(dev_priv))
3540		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3541	else if (HAS_PCH_MCC(dev_priv))
3542		icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3543					ICP_TC_HPD_ENABLE(PORT_TC1));
3544	else
3545		icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3546					ICP_TC_HPD_ENABLE_MASK);
3547}
3548
3549static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3550{
3551	struct intel_uncore *uncore = &dev_priv->uncore;
3552	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3553
3554	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3555		icp_irq_postinstall(dev_priv);
3556
3557	gen11_gt_irq_postinstall(&dev_priv->gt);
3558	gen8_de_irq_postinstall(dev_priv);
3559
3560	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3561
3562	I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3563
3564	if (HAS_MASTER_UNIT_IRQ(dev_priv)) {
3565		dg1_master_intr_enable(uncore->regs);
3566		POSTING_READ(DG1_MSTR_UNIT_INTR);
3567	} else {
3568		gen11_master_intr_enable(uncore->regs);
3569		POSTING_READ(GEN11_GFX_MSTR_IRQ);
3570	}
3571}
3572
3573static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3574{
3575	gen8_gt_irq_postinstall(&dev_priv->gt);
3576
3577	spin_lock_irq(&dev_priv->irq_lock);
3578	if (dev_priv->display_irqs_enabled)
3579		vlv_display_irq_postinstall(dev_priv);
3580	spin_unlock_irq(&dev_priv->irq_lock);
3581
3582	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3583	POSTING_READ(GEN8_MASTER_IRQ);
 
 
 
 
3584}
3585
3586static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
 
 
 
 
3587{
3588	struct intel_uncore *uncore = &dev_priv->uncore;
3589
3590	i9xx_pipestat_irq_reset(dev_priv);
3591
3592	GEN2_IRQ_RESET(uncore);
3593}
3594
3595static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3596{
3597	struct intel_uncore *uncore = &dev_priv->uncore;
3598	u16 enable_mask;
3599
3600	intel_uncore_write16(uncore,
3601			     EMR,
3602			     ~(I915_ERROR_PAGE_TABLE |
3603			       I915_ERROR_MEMORY_REFRESH));
3604
3605	/* Unmask the interrupts that we always want on. */
3606	dev_priv->irq_mask =
3607		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3608		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3609		  I915_MASTER_ERROR_INTERRUPT);
3610
3611	enable_mask =
3612		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3613		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3614		I915_MASTER_ERROR_INTERRUPT |
3615		I915_USER_INTERRUPT;
3616
3617	GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3618
3619	/* Interrupt setup is already guaranteed to be single-threaded, this is
3620	 * just to make the assert_spin_locked check happy. */
3621	spin_lock_irq(&dev_priv->irq_lock);
3622	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3623	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3624	spin_unlock_irq(&dev_priv->irq_lock);
3625}
3626
3627static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3628			       u16 *eir, u16 *eir_stuck)
3629{
3630	struct intel_uncore *uncore = &i915->uncore;
3631	u16 emr;
3632
3633	*eir = intel_uncore_read16(uncore, EIR);
3634
3635	if (*eir)
3636		intel_uncore_write16(uncore, EIR, *eir);
3637
3638	*eir_stuck = intel_uncore_read16(uncore, EIR);
3639	if (*eir_stuck == 0)
3640		return;
3641
3642	/*
3643	 * Toggle all EMR bits to make sure we get an edge
3644	 * in the ISR master error bit if we don't clear
3645	 * all the EIR bits. Otherwise the edge triggered
3646	 * IIR on i965/g4x wouldn't notice that an interrupt
3647	 * is still pending. Also some EIR bits can't be
3648	 * cleared except by handling the underlying error
3649	 * (or by a GPU reset) so we mask any bit that
3650	 * remains set.
3651	 */
3652	emr = intel_uncore_read16(uncore, EMR);
3653	intel_uncore_write16(uncore, EMR, 0xffff);
3654	intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3655}
3656
3657static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3658				   u16 eir, u16 eir_stuck)
3659{
3660	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3661
3662	if (eir_stuck)
3663		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3664			eir_stuck);
3665}
3666
3667static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3668			       u32 *eir, u32 *eir_stuck)
3669{
3670	u32 emr;
3671
3672	*eir = I915_READ(EIR);
3673
3674	I915_WRITE(EIR, *eir);
3675
3676	*eir_stuck = I915_READ(EIR);
3677	if (*eir_stuck == 0)
3678		return;
3679
3680	/*
3681	 * Toggle all EMR bits to make sure we get an edge
3682	 * in the ISR master error bit if we don't clear
3683	 * all the EIR bits. Otherwise the edge triggered
3684	 * IIR on i965/g4x wouldn't notice that an interrupt
3685	 * is still pending. Also some EIR bits can't be
3686	 * cleared except by handling the underlying error
3687	 * (or by a GPU reset) so we mask any bit that
3688	 * remains set.
3689	 */
3690	emr = I915_READ(EMR);
3691	I915_WRITE(EMR, 0xffffffff);
3692	I915_WRITE(EMR, emr | *eir_stuck);
3693}
3694
3695static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3696				   u32 eir, u32 eir_stuck)
3697{
3698	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3699
3700	if (eir_stuck)
3701		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3702			eir_stuck);
3703}
3704
3705static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3706{
3707	struct drm_i915_private *dev_priv = arg;
3708	irqreturn_t ret = IRQ_NONE;
3709
3710	if (!intel_irqs_enabled(dev_priv))
3711		return IRQ_NONE;
3712
3713	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3714	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3715
3716	do {
3717		u32 pipe_stats[I915_MAX_PIPES] = {};
3718		u16 eir = 0, eir_stuck = 0;
3719		u16 iir;
3720
3721		iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
3722		if (iir == 0)
3723			break;
3724
3725		ret = IRQ_HANDLED;
3726
3727		/* Call regardless, as some status bits might not be
3728		 * signalled in iir */
3729		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3730
3731		if (iir & I915_MASTER_ERROR_INTERRUPT)
3732			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3733
3734		intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
3735
3736		if (iir & I915_USER_INTERRUPT)
3737			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3738
3739		if (iir & I915_MASTER_ERROR_INTERRUPT)
3740			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
3741
3742		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3743	} while (0);
3744
3745	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3746
3747	return ret;
3748}
3749
3750static void i915_irq_reset(struct drm_i915_private *dev_priv)
3751{
3752	struct intel_uncore *uncore = &dev_priv->uncore;
3753
3754	if (I915_HAS_HOTPLUG(dev_priv)) {
3755		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3756		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3757	}
3758
3759	i9xx_pipestat_irq_reset(dev_priv);
3760
3761	GEN3_IRQ_RESET(uncore, GEN2_);
3762}
3763
3764static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
3765{
3766	struct intel_uncore *uncore = &dev_priv->uncore;
3767	u32 enable_mask;
3768
3769	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3770			  I915_ERROR_MEMORY_REFRESH));
3771
3772	/* Unmask the interrupts that we always want on. */
3773	dev_priv->irq_mask =
3774		~(I915_ASLE_INTERRUPT |
3775		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3776		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3777		  I915_MASTER_ERROR_INTERRUPT);
3778
3779	enable_mask =
3780		I915_ASLE_INTERRUPT |
3781		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3782		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3783		I915_MASTER_ERROR_INTERRUPT |
3784		I915_USER_INTERRUPT;
3785
3786	if (I915_HAS_HOTPLUG(dev_priv)) {
3787		/* Enable in IER... */
3788		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3789		/* and unmask in IMR */
3790		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3791	}
3792
3793	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3794
3795	/* Interrupt setup is already guaranteed to be single-threaded, this is
3796	 * just to make the assert_spin_locked check happy. */
3797	spin_lock_irq(&dev_priv->irq_lock);
3798	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3799	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3800	spin_unlock_irq(&dev_priv->irq_lock);
3801
3802	i915_enable_asle_pipestat(dev_priv);
3803}
3804
3805static irqreturn_t i915_irq_handler(int irq, void *arg)
3806{
3807	struct drm_i915_private *dev_priv = arg;
3808	irqreturn_t ret = IRQ_NONE;
3809
3810	if (!intel_irqs_enabled(dev_priv))
3811		return IRQ_NONE;
3812
3813	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3814	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3815
3816	do {
3817		u32 pipe_stats[I915_MAX_PIPES] = {};
3818		u32 eir = 0, eir_stuck = 0;
3819		u32 hotplug_status = 0;
3820		u32 iir;
3821
3822		iir = I915_READ(GEN2_IIR);
3823		if (iir == 0)
3824			break;
3825
3826		ret = IRQ_HANDLED;
3827
3828		if (I915_HAS_HOTPLUG(dev_priv) &&
3829		    iir & I915_DISPLAY_PORT_INTERRUPT)
3830			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3831
3832		/* Call regardless, as some status bits might not be
3833		 * signalled in iir */
3834		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3835
3836		if (iir & I915_MASTER_ERROR_INTERRUPT)
3837			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3838
3839		I915_WRITE(GEN2_IIR, iir);
3840
3841		if (iir & I915_USER_INTERRUPT)
3842			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3843
3844		if (iir & I915_MASTER_ERROR_INTERRUPT)
3845			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3846
3847		if (hotplug_status)
3848			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3849
3850		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3851	} while (0);
3852
3853	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3854
3855	return ret;
3856}
3857
3858static void i965_irq_reset(struct drm_i915_private *dev_priv)
3859{
3860	struct intel_uncore *uncore = &dev_priv->uncore;
3861
3862	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3863	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3864
3865	i9xx_pipestat_irq_reset(dev_priv);
3866
3867	GEN3_IRQ_RESET(uncore, GEN2_);
3868}
3869
3870static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
3871{
3872	struct intel_uncore *uncore = &dev_priv->uncore;
3873	u32 enable_mask;
3874	u32 error_mask;
3875
3876	/*
3877	 * Enable some error detection, note the instruction error mask
3878	 * bit is reserved, so we leave it masked.
3879	 */
3880	if (IS_G4X(dev_priv)) {
3881		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3882			       GM45_ERROR_MEM_PRIV |
3883			       GM45_ERROR_CP_PRIV |
3884			       I915_ERROR_MEMORY_REFRESH);
3885	} else {
3886		error_mask = ~(I915_ERROR_PAGE_TABLE |
3887			       I915_ERROR_MEMORY_REFRESH);
3888	}
3889	I915_WRITE(EMR, error_mask);
3890
3891	/* Unmask the interrupts that we always want on. */
3892	dev_priv->irq_mask =
3893		~(I915_ASLE_INTERRUPT |
3894		  I915_DISPLAY_PORT_INTERRUPT |
3895		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3896		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3897		  I915_MASTER_ERROR_INTERRUPT);
3898
3899	enable_mask =
3900		I915_ASLE_INTERRUPT |
3901		I915_DISPLAY_PORT_INTERRUPT |
3902		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3903		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3904		I915_MASTER_ERROR_INTERRUPT |
3905		I915_USER_INTERRUPT;
3906
3907	if (IS_G4X(dev_priv))
3908		enable_mask |= I915_BSD_USER_INTERRUPT;
3909
3910	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3911
3912	/* Interrupt setup is already guaranteed to be single-threaded, this is
3913	 * just to make the assert_spin_locked check happy. */
3914	spin_lock_irq(&dev_priv->irq_lock);
3915	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3916	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3917	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3918	spin_unlock_irq(&dev_priv->irq_lock);
3919
3920	i915_enable_asle_pipestat(dev_priv);
3921}
3922
3923static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3924{
3925	u32 hotplug_en;
3926
3927	lockdep_assert_held(&dev_priv->irq_lock);
3928
3929	/* Note HDMI and DP share hotplug bits */
3930	/* enable bits are the same for all generations */
3931	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3932	/* Programming the CRT detection parameters tends
3933	   to generate a spurious hotplug event about three
3934	   seconds later.  So just do it once.
3935	*/
3936	if (IS_G4X(dev_priv))
3937		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3938	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3939
3940	/* Ignore TV since it's buggy */
3941	i915_hotplug_interrupt_update_locked(dev_priv,
3942					     HOTPLUG_INT_EN_MASK |
3943					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3944					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3945					     hotplug_en);
3946}
3947
3948static irqreturn_t i965_irq_handler(int irq, void *arg)
3949{
3950	struct drm_i915_private *dev_priv = arg;
3951	irqreturn_t ret = IRQ_NONE;
3952
3953	if (!intel_irqs_enabled(dev_priv))
3954		return IRQ_NONE;
3955
3956	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3957	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3958
3959	do {
3960		u32 pipe_stats[I915_MAX_PIPES] = {};
3961		u32 eir = 0, eir_stuck = 0;
3962		u32 hotplug_status = 0;
3963		u32 iir;
3964
3965		iir = I915_READ(GEN2_IIR);
3966		if (iir == 0)
3967			break;
3968
3969		ret = IRQ_HANDLED;
 
 
3970
3971		if (iir & I915_DISPLAY_PORT_INTERRUPT)
3972			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3973
3974		/* Call regardless, as some status bits might not be
3975		 * signalled in iir */
3976		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3977
3978		if (iir & I915_MASTER_ERROR_INTERRUPT)
3979			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3980
3981		I915_WRITE(GEN2_IIR, iir);
3982
3983		if (iir & I915_USER_INTERRUPT)
3984			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3985
3986		if (iir & I915_BSD_USER_INTERRUPT)
3987			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[VCS0]);
3988
3989		if (iir & I915_MASTER_ERROR_INTERRUPT)
3990			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3991
3992		if (hotplug_status)
3993			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3994
3995		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3996	} while (0);
3997
3998	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 
3999
4000	return ret;
 
 
4001}
4002
4003/**
4004 * intel_irq_init - initializes irq support
4005 * @dev_priv: i915 device instance
4006 *
4007 * This function initializes all the irq support including work items, timers
4008 * and all the vtables. It does not setup the interrupt itself though.
4009 */
4010void intel_irq_init(struct drm_i915_private *dev_priv)
4011{
4012	struct drm_device *dev = &dev_priv->drm;
4013	int i;
4014
4015	intel_hpd_init_pins(dev_priv);
 
4016
4017	intel_hpd_init_work(dev_priv);
4018
4019	INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
4020	for (i = 0; i < MAX_L3_SLICES; ++i)
4021		dev_priv->l3_parity.remap_info[i] = NULL;
4022
4023	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4024	if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
4025		dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4026
4027	dev->vblank_disable_immediate = true;
4028
4029	/* Most platforms treat the display irq block as an always-on
4030	 * power domain. vlv/chv can disable it at runtime and need
4031	 * special care to avoid writing any of the display block registers
4032	 * outside of the power domain. We defer setting up the display irqs
4033	 * in this case to the runtime pm.
4034	 */
4035	dev_priv->display_irqs_enabled = true;
4036	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4037		dev_priv->display_irqs_enabled = false;
4038
4039	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4040	/* If we have MST support, we want to avoid doing short HPD IRQ storm
4041	 * detection, as short HPD storms will occur as a natural part of
4042	 * sideband messaging with MST.
4043	 * On older platforms however, IRQ storms can occur with both long and
4044	 * short pulses, as seen on some G4x systems.
4045	 */
4046	dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4047
4048	if (HAS_GMCH(dev_priv)) {
4049		if (I915_HAS_HOTPLUG(dev_priv))
4050			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4051	} else {
4052		if (HAS_PCH_JSP(dev_priv))
4053			dev_priv->display.hpd_irq_setup = jsp_hpd_irq_setup;
4054		else if (HAS_PCH_MCC(dev_priv))
4055			dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
4056		else if (INTEL_GEN(dev_priv) >= 11)
4057			dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4058		else if (IS_GEN9_LP(dev_priv))
4059			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4060		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4061			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4062		else
4063			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4064	}
4065}
4066
4067/**
4068 * intel_irq_fini - deinitializes IRQ support
4069 * @i915: i915 device instance
4070 *
4071 * This function deinitializes all the IRQ support.
4072 */
4073void intel_irq_fini(struct drm_i915_private *i915)
4074{
4075	int i;
4076
4077	for (i = 0; i < MAX_L3_SLICES; ++i)
4078		kfree(i915->l3_parity.remap_info[i]);
 
 
4079}
4080
4081static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4082{
4083	if (HAS_GMCH(dev_priv)) {
4084		if (IS_CHERRYVIEW(dev_priv))
4085			return cherryview_irq_handler;
4086		else if (IS_VALLEYVIEW(dev_priv))
4087			return valleyview_irq_handler;
4088		else if (IS_GEN(dev_priv, 4))
4089			return i965_irq_handler;
4090		else if (IS_GEN(dev_priv, 3))
4091			return i915_irq_handler;
4092		else
4093			return i8xx_irq_handler;
4094	} else {
4095		if (HAS_MASTER_UNIT_IRQ(dev_priv))
4096			return dg1_irq_handler;
4097		if (INTEL_GEN(dev_priv) >= 11)
4098			return gen11_irq_handler;
4099		else if (INTEL_GEN(dev_priv) >= 8)
4100			return gen8_irq_handler;
4101		else
4102			return ilk_irq_handler;
4103	}
4104}
4105
4106static void intel_irq_reset(struct drm_i915_private *dev_priv)
4107{
4108	if (HAS_GMCH(dev_priv)) {
4109		if (IS_CHERRYVIEW(dev_priv))
4110			cherryview_irq_reset(dev_priv);
4111		else if (IS_VALLEYVIEW(dev_priv))
4112			valleyview_irq_reset(dev_priv);
4113		else if (IS_GEN(dev_priv, 4))
4114			i965_irq_reset(dev_priv);
4115		else if (IS_GEN(dev_priv, 3))
4116			i915_irq_reset(dev_priv);
4117		else
4118			i8xx_irq_reset(dev_priv);
4119	} else {
4120		if (INTEL_GEN(dev_priv) >= 11)
4121			gen11_irq_reset(dev_priv);
4122		else if (INTEL_GEN(dev_priv) >= 8)
4123			gen8_irq_reset(dev_priv);
4124		else
4125			ilk_irq_reset(dev_priv);
4126	}
4127}
4128
4129static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4130{
4131	if (HAS_GMCH(dev_priv)) {
4132		if (IS_CHERRYVIEW(dev_priv))
4133			cherryview_irq_postinstall(dev_priv);
4134		else if (IS_VALLEYVIEW(dev_priv))
4135			valleyview_irq_postinstall(dev_priv);
4136		else if (IS_GEN(dev_priv, 4))
4137			i965_irq_postinstall(dev_priv);
4138		else if (IS_GEN(dev_priv, 3))
4139			i915_irq_postinstall(dev_priv);
4140		else
4141			i8xx_irq_postinstall(dev_priv);
 
 
4142	} else {
4143		if (INTEL_GEN(dev_priv) >= 11)
4144			gen11_irq_postinstall(dev_priv);
4145		else if (INTEL_GEN(dev_priv) >= 8)
4146			gen8_irq_postinstall(dev_priv);
4147		else
4148			ilk_irq_postinstall(dev_priv);
4149	}
4150}
4151
4152/**
4153 * intel_irq_install - enables the hardware interrupt
4154 * @dev_priv: i915 device instance
4155 *
4156 * This function enables the hardware interrupt handling, but leaves the hotplug
4157 * handling still disabled. It is called after intel_irq_init().
4158 *
4159 * In the driver load and resume code we need working interrupts in a few places
4160 * but don't want to deal with the hassle of concurrent probe and hotplug
4161 * workers. Hence the split into this two-stage approach.
4162 */
4163int intel_irq_install(struct drm_i915_private *dev_priv)
4164{
4165	int irq = dev_priv->drm.pdev->irq;
4166	int ret;
4167
4168	/*
4169	 * We enable some interrupt sources in our postinstall hooks, so mark
4170	 * interrupts as enabled _before_ actually enabling them to avoid
4171	 * special cases in our ordering checks.
4172	 */
4173	dev_priv->runtime_pm.irqs_enabled = true;
4174
4175	dev_priv->drm.irq_enabled = true;
4176
4177	intel_irq_reset(dev_priv);
4178
4179	ret = request_irq(irq, intel_irq_handler(dev_priv),
4180			  IRQF_SHARED, DRIVER_NAME, dev_priv);
4181	if (ret < 0) {
4182		dev_priv->drm.irq_enabled = false;
4183		return ret;
4184	}
4185
4186	intel_irq_postinstall(dev_priv);
4187
4188	return ret;
4189}
4190
4191/**
4192 * intel_irq_uninstall - finilizes all irq handling
4193 * @dev_priv: i915 device instance
4194 *
4195 * This stops interrupt and hotplug handling and unregisters and frees all
4196 * resources acquired in the init functions.
4197 */
4198void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4199{
4200	int irq = dev_priv->drm.pdev->irq;
4201
4202	/*
4203	 * FIXME we can get called twice during driver probe
4204	 * error handling as well as during driver remove due to
4205	 * intel_modeset_driver_remove() calling us out of sequence.
4206	 * Would be nice if it didn't do that...
4207	 */
4208	if (!dev_priv->drm.irq_enabled)
4209		return;
4210
4211	dev_priv->drm.irq_enabled = false;
4212
4213	intel_irq_reset(dev_priv);
4214
4215	free_irq(irq, dev_priv);
4216
4217	intel_hpd_cancel_work(dev_priv);
4218	dev_priv->runtime_pm.irqs_enabled = false;
4219}
4220
4221/**
4222 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4223 * @dev_priv: i915 device instance
4224 *
4225 * This function is used to disable interrupts at runtime, both in the runtime
4226 * pm and the system suspend/resume code.
4227 */
4228void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4229{
4230	intel_irq_reset(dev_priv);
4231	dev_priv->runtime_pm.irqs_enabled = false;
4232	intel_synchronize_irq(dev_priv);
4233}
4234
4235/**
4236 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4237 * @dev_priv: i915 device instance
4238 *
4239 * This function is used to enable interrupts at runtime, both in the runtime
4240 * pm and the system suspend/resume code.
4241 */
4242void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4243{
4244	dev_priv->runtime_pm.irqs_enabled = true;
4245	intel_irq_reset(dev_priv);
4246	intel_irq_postinstall(dev_priv);
4247}
4248
4249bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4250{
4251	/*
4252	 * We only use drm_irq_uninstall() at unload and VT switch, so
4253	 * this is the only thing we need to check.
4254	 */
4255	return dev_priv->runtime_pm.irqs_enabled;
4256}
4257
4258void intel_synchronize_irq(struct drm_i915_private *i915)
4259{
4260	synchronize_irq(i915->drm.pdev->irq);
4261}