Linux Audio

Check our new training course

Loading...
v3.1
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#include <linux/sysrq.h>
 
 
  30#include <linux/slab.h>
  31#include "drmP.h"
  32#include "drm.h"
  33#include "i915_drm.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34#include "i915_drv.h"
 
  35#include "i915_trace.h"
  36#include "intel_drv.h"
  37
  38#define MAX_NOPID ((u32)~0)
  39
  40/**
  41 * Interrupts that are always left unmasked.
  42 *
  43 * Since pipe events are edge-triggered from the PIPESTAT register to IIR,
  44 * we leave them always unmasked in IMR and then control enabling them through
  45 * PIPESTAT alone.
  46 */
  47#define I915_INTERRUPT_ENABLE_FIX			\
  48	(I915_ASLE_INTERRUPT |				\
  49	 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |		\
  50	 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |		\
  51	 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |	\
  52	 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |	\
  53	 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  54
  55/** Interrupts that we mask and unmask at runtime. */
  56#define I915_INTERRUPT_ENABLE_VAR (I915_USER_INTERRUPT | I915_BSD_USER_INTERRUPT)
 
  57
  58#define I915_PIPE_VBLANK_STATUS	(PIPE_START_VBLANK_INTERRUPT_STATUS |\
  59				 PIPE_VBLANK_INTERRUPT_STATUS)
 
 
 
 
  60
  61#define I915_PIPE_VBLANK_ENABLE	(PIPE_START_VBLANK_INTERRUPT_ENABLE |\
  62				 PIPE_VBLANK_INTERRUPT_ENABLE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63
  64#define DRM_I915_VBLANK_PIPE_ALL	(DRM_I915_VBLANK_PIPE_A | \
  65					 DRM_I915_VBLANK_PIPE_B)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66
  67/* For display hotplug interrupt */
  68static void
  69ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
  70{
  71	if ((dev_priv->irq_mask & mask) != 0) {
  72		dev_priv->irq_mask &= ~mask;
  73		I915_WRITE(DEIMR, dev_priv->irq_mask);
  74		POSTING_READ(DEIMR);
  75	}
  76}
  77
  78static inline void
  79ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
  80{
  81	if ((dev_priv->irq_mask & mask) != mask) {
  82		dev_priv->irq_mask |= mask;
  83		I915_WRITE(DEIMR, dev_priv->irq_mask);
  84		POSTING_READ(DEIMR);
  85	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86}
  87
  88void
  89i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
  90{
  91	if ((dev_priv->pipestat[pipe] & mask) != mask) {
  92		u32 reg = PIPESTAT(pipe);
  93
  94		dev_priv->pipestat[pipe] |= mask;
  95		/* Enable the interrupt, clear any pending status */
  96		I915_WRITE(reg, dev_priv->pipestat[pipe] | (mask >> 16));
  97		POSTING_READ(reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  98	}
  99}
 100
 101void
 102i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
 
 
 
 
 
 
 
 103{
 104	if ((dev_priv->pipestat[pipe] & mask) != 0) {
 105		u32 reg = PIPESTAT(pipe);
 
 
 106
 107		dev_priv->pipestat[pipe] &= ~mask;
 108		I915_WRITE(reg, dev_priv->pipestat[pipe]);
 109		POSTING_READ(reg);
 
 
 
 
 
 
 
 
 
 
 
 110	}
 111}
 112
 113/**
 114 * intel_enable_asle - enable ASLE interrupt for OpRegion
 
 
 
 
 115 */
 116void intel_enable_asle(struct drm_device *dev)
 
 
 
 117{
 118	drm_i915_private_t *dev_priv = dev->dev_private;
 119	unsigned long irqflags;
 120
 121	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
 
 
 
 
 
 122
 123	if (HAS_PCH_SPLIT(dev))
 124		ironlake_enable_display_irq(dev_priv, DE_GSE);
 125	else {
 126		i915_enable_pipestat(dev_priv, 1,
 127				     PIPE_LEGACY_BLC_EVENT_ENABLE);
 128		if (INTEL_INFO(dev)->gen >= 4)
 129			i915_enable_pipestat(dev_priv, 0,
 130					     PIPE_LEGACY_BLC_EVENT_ENABLE);
 131	}
 
 132
 133	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134}
 135
 136/**
 137 * i915_pipe_enabled - check if a pipe is enabled
 138 * @dev: DRM device
 139 * @pipe: pipe to check
 140 *
 141 * Reading certain registers when the pipe is disabled can hang the chip.
 142 * Use this routine to make sure the PLL is running and the pipe is active
 143 * before reading such registers if unsure.
 144 */
 145static int
 146i915_pipe_enabled(struct drm_device *dev, int pipe)
 147{
 148	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 149	return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
 
 
 
 
 
 
 
 
 
 150}
 151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152/* Called from drm generic code, passed a 'crtc', which
 153 * we use as a pipe index
 154 */
 155static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
 156{
 157	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 158	unsigned long high_frame;
 159	unsigned long low_frame;
 160	u32 high1, high2, low;
 161
 162	if (!i915_pipe_enabled(dev, pipe)) {
 163		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
 164				"pipe %c\n", pipe_name(pipe));
 
 
 
 
 
 
 
 
 
 
 
 
 165		return 0;
 166	}
 
 
 
 
 
 
 
 
 
 
 
 167
 168	high_frame = PIPEFRAME(pipe);
 169	low_frame = PIPEFRAMEPIXEL(pipe);
 170
 
 
 171	/*
 172	 * High & low register fields aren't synchronized, so make sure
 173	 * we get a low value that's stable across two reads of the high
 174	 * register.
 175	 */
 176	do {
 177		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 178		low   = I915_READ(low_frame)  & PIPE_FRAME_LOW_MASK;
 179		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 180	} while (high1 != high2);
 181
 
 
 182	high1 >>= PIPE_FRAME_HIGH_SHIFT;
 
 183	low >>= PIPE_FRAME_LOW_SHIFT;
 184	return (high1 << 8) | low;
 
 
 
 
 
 
 185}
 186
 187static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
 188{
 189	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 190	int reg = PIPE_FRMCOUNT_GM45(pipe);
 
 191
 192	if (!i915_pipe_enabled(dev, pipe)) {
 193		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
 194				 "pipe %c\n", pipe_name(pipe));
 195		return 0;
 196	}
 197
 198	return I915_READ(reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199}
 200
 201static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
 202			     int *vpos, int *hpos)
 
 
 
 203{
 204	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 205	u32 vbl = 0, position = 0;
 206	int vbl_start, vbl_end, htotal, vtotal;
 207	bool in_vbl = true;
 208	int ret = 0;
 
 209
 210	if (!i915_pipe_enabled(dev, pipe)) {
 211		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
 212				 "pipe %c\n", pipe_name(pipe));
 213		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 214	}
 215
 216	/* Get vtotal. */
 217	vtotal = 1 + ((I915_READ(VTOTAL(pipe)) >> 16) & 0x1fff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218
 219	if (INTEL_INFO(dev)->gen >= 4) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 220		/* No obvious pixelcount register. Only query vertical
 221		 * scanout position from Display scan line register.
 222		 */
 223		position = I915_READ(PIPEDSL(pipe));
 224
 225		/* Decode into vertical scanout position. Don't have
 226		 * horizontal scanout position.
 227		 */
 228		*vpos = position & 0x1fff;
 229		*hpos = 0;
 230	} else {
 231		/* Have access to pixelcount since start of frame.
 232		 * We can split this into vertical and horizontal
 233		 * scanout position.
 234		 */
 235		position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 236
 237		htotal = 1 + ((I915_READ(HTOTAL(pipe)) >> 16) & 0x1fff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238		*vpos = position / htotal;
 239		*hpos = position - (*vpos * htotal);
 240	}
 241
 242	/* Query vblank area. */
 243	vbl = I915_READ(VBLANK(pipe));
 244
 245	/* Test position against vblank region. */
 246	vbl_start = vbl & 0x1fff;
 247	vbl_end = (vbl >> 16) & 0x1fff;
 248
 249	if ((*vpos < vbl_start) || (*vpos > vbl_end))
 250		in_vbl = false;
 251
 252	/* Inside "upper part" of vblank area? Apply corrective offset: */
 253	if (in_vbl && (*vpos >= vbl_start))
 254		*vpos = *vpos - vtotal;
 255
 256	/* Readouts valid? */
 257	if (vbl > 0)
 258		ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
 259
 260	/* In vblank? */
 261	if (in_vbl)
 262		ret |= DRM_SCANOUTPOS_INVBL;
 263
 264	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 265}
 266
 267static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
 268			      int *max_error,
 269			      struct timeval *vblank_time,
 270			      unsigned flags)
 271{
 272	struct drm_i915_private *dev_priv = dev->dev_private;
 273	struct drm_crtc *crtc;
 
 
 
 
 
 
 
 
 
 
 274
 275	if (pipe < 0 || pipe >= dev_priv->num_pipe) {
 276		DRM_ERROR("Invalid crtc %d\n", pipe);
 277		return -EINVAL;
 
 
 
 
 
 
 
 
 278	}
 
 279
 280	/* Get drm_crtc to timestamp: */
 281	crtc = intel_get_crtc_for_pipe(dev, pipe);
 282	if (crtc == NULL) {
 283		DRM_ERROR("Invalid crtc %d\n", pipe);
 284		return -EINVAL;
 
 
 
 
 
 285	}
 
 286
 287	if (!crtc->enabled) {
 288		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
 289		return -EBUSY;
 
 
 
 
 
 
 
 
 
 290	}
 
 291
 292	/* Helper routine in DRM core does all the work: */
 293	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
 294						     vblank_time, flags,
 295						     crtc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296}
 297
 298/*
 299 * Handle hotplug events outside the interrupt handler proper.
 
 
 
 
 300 */
 301static void i915_hotplug_work_func(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 302{
 303	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
 304						    hotplug_work);
 305	struct drm_device *dev = dev_priv->dev;
 306	struct drm_mode_config *mode_config = &dev->mode_config;
 307	struct intel_encoder *encoder;
 
 308
 309	mutex_lock(&mode_config->mutex);
 310	DRM_DEBUG_KMS("running encoder hotplug functions\n");
 
 
 
 
 311
 312	list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
 313		if (encoder->hot_plug)
 314			encoder->hot_plug(encoder);
 
 
 315
 316	mutex_unlock(&mode_config->mutex);
 
 317
 318	/* Just fire off a uevent and let userspace tell us what to do */
 319	drm_helper_hpd_irq_event(dev);
 320}
 321
 322static void i915_handle_rps_change(struct drm_device *dev)
 
 323{
 324	drm_i915_private_t *dev_priv = dev->dev_private;
 325	u32 busy_up, busy_down, max_avg, min_avg;
 326	u8 new_delay = dev_priv->cur_delay;
 327
 328	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
 329	busy_up = I915_READ(RCPREVBSYTUPAVG);
 330	busy_down = I915_READ(RCPREVBSYTDNAVG);
 331	max_avg = I915_READ(RCBMAXAVG);
 332	min_avg = I915_READ(RCBMINAVG);
 333
 334	/* Handle RCS change request from hw */
 335	if (busy_up > max_avg) {
 336		if (dev_priv->cur_delay != dev_priv->max_delay)
 337			new_delay = dev_priv->cur_delay - 1;
 338		if (new_delay < dev_priv->max_delay)
 339			new_delay = dev_priv->max_delay;
 340	} else if (busy_down < min_avg) {
 341		if (dev_priv->cur_delay != dev_priv->min_delay)
 342			new_delay = dev_priv->cur_delay + 1;
 343		if (new_delay > dev_priv->min_delay)
 344			new_delay = dev_priv->min_delay;
 345	}
 346
 347	if (ironlake_set_drps(dev, new_delay))
 348		dev_priv->cur_delay = new_delay;
 
 
 349
 350	return;
 
 
 351}
 352
 353static void notify_ring(struct drm_device *dev,
 354			struct intel_ring_buffer *ring)
 
 
 
 
 355{
 356	struct drm_i915_private *dev_priv = dev->dev_private;
 357	u32 seqno;
 
 358
 359	if (ring->obj == NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 360		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 361
 362	seqno = ring->get_seqno(ring);
 363	trace_i915_gem_request_complete(ring, seqno);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 364
 365	ring->irq_seqno = seqno;
 366	wake_up_all(&ring->irq_queue);
 367	if (i915_enable_hangcheck) {
 368		dev_priv->hangcheck_count = 0;
 369		mod_timer(&dev_priv->hangcheck_timer,
 370			  jiffies +
 371			  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
 
 
 
 372	}
 373}
 374
 375static void gen6_pm_rps_work(struct work_struct *work)
 
 376{
 377	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
 378						    rps_work);
 379	u8 new_delay = dev_priv->cur_delay;
 380	u32 pm_iir, pm_imr;
 381
 382	spin_lock_irq(&dev_priv->rps_lock);
 383	pm_iir = dev_priv->pm_iir;
 384	dev_priv->pm_iir = 0;
 385	pm_imr = I915_READ(GEN6_PMIMR);
 386	spin_unlock_irq(&dev_priv->rps_lock);
 387
 388	if (!pm_iir)
 
 389		return;
 
 390
 391	mutex_lock(&dev_priv->dev->struct_mutex);
 392	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
 393		if (dev_priv->cur_delay != dev_priv->max_delay)
 394			new_delay = dev_priv->cur_delay + 1;
 395		if (new_delay > dev_priv->max_delay)
 396			new_delay = dev_priv->max_delay;
 397	} else if (pm_iir & (GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT)) {
 398		gen6_gt_force_wake_get(dev_priv);
 399		if (dev_priv->cur_delay != dev_priv->min_delay)
 400			new_delay = dev_priv->cur_delay - 1;
 401		if (new_delay < dev_priv->min_delay) {
 402			new_delay = dev_priv->min_delay;
 403			I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
 404				   I915_READ(GEN6_RP_INTERRUPT_LIMITS) |
 405				   ((new_delay << 16) & 0x3f0000));
 406		} else {
 407			/* Make sure we continue to get down interrupts
 408			 * until we hit the minimum frequency */
 409			I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
 410				   I915_READ(GEN6_RP_INTERRUPT_LIMITS) & ~0x3f0000);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411		}
 412		gen6_gt_force_wake_put(dev_priv);
 413	}
 
 
 414
 415	gen6_set_rps(dev_priv->dev, new_delay);
 416	dev_priv->cur_delay = new_delay;
 
 
 417
 418	/*
 419	 * rps_lock not held here because clearing is non-destructive. There is
 420	 * an *extremely* unlikely race with gen6_rps_enable() that is prevented
 421	 * by holding struct_mutex for the duration of the write.
 422	 */
 423	I915_WRITE(GEN6_PMIMR, pm_imr & ~pm_iir);
 424	mutex_unlock(&dev_priv->dev->struct_mutex);
 
 
 
 425}
 426
 427static void pch_irq_handler(struct drm_device *dev)
 
 428{
 429	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 430	u32 pch_iir;
 431	int pipe;
 432
 433	pch_iir = I915_READ(SDEIIR);
 
 
 434
 435	if (pch_iir & SDE_AUDIO_POWER_MASK)
 436		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
 437				 (pch_iir & SDE_AUDIO_POWER_MASK) >>
 438				 SDE_AUDIO_POWER_SHIFT);
 439
 440	if (pch_iir & SDE_GMBUS)
 441		DRM_DEBUG_DRIVER("PCH GMBUS interrupt\n");
 442
 443	if (pch_iir & SDE_AUDIO_HDCP_MASK)
 444		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
 
 445
 446	if (pch_iir & SDE_AUDIO_TRANS_MASK)
 447		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
 
 448
 449	if (pch_iir & SDE_POISON)
 450		DRM_ERROR("PCH poison interrupt\n");
 
 
 
 451
 452	if (pch_iir & SDE_FDI_MASK)
 453		for_each_pipe(pipe)
 454			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
 455					 pipe_name(pipe),
 456					 I915_READ(FDI_RX_IIR(pipe)));
 457
 458	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
 459		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
 460
 461	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
 462		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
 463
 464	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
 465		DRM_DEBUG_DRIVER("PCH transcoder B underrun interrupt\n");
 466	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
 467		DRM_DEBUG_DRIVER("PCH transcoder A underrun interrupt\n");
 
 
 
 
 
 468}
 469
 470static irqreturn_t ivybridge_irq_handler(DRM_IRQ_ARGS)
 
 471{
 472	struct drm_device *dev = (struct drm_device *) arg;
 473	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 474	int ret = IRQ_NONE;
 475	u32 de_iir, gt_iir, de_ier, pch_iir, pm_iir;
 476	struct drm_i915_master_private *master_priv;
 477
 478	atomic_inc(&dev_priv->irq_received);
 
 
 479
 480	/* disable master interrupt before clearing iir  */
 481	de_ier = I915_READ(DEIER);
 482	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
 483	POSTING_READ(DEIER);
 484
 485	de_iir = I915_READ(DEIIR);
 486	gt_iir = I915_READ(GTIIR);
 487	pch_iir = I915_READ(SDEIIR);
 488	pm_iir = I915_READ(GEN6_PMIIR);
 489
 490	if (de_iir == 0 && gt_iir == 0 && pch_iir == 0 && pm_iir == 0)
 491		goto done;
 492
 493	ret = IRQ_HANDLED;
 494
 495	if (dev->primary->master) {
 496		master_priv = dev->primary->master->driver_priv;
 497		if (master_priv->sarea_priv)
 498			master_priv->sarea_priv->last_dispatch =
 499				READ_BREADCRUMB(dev_priv);
 500	}
 501
 502	if (gt_iir & (GT_USER_INTERRUPT | GT_PIPE_NOTIFY))
 503		notify_ring(dev, &dev_priv->ring[RCS]);
 504	if (gt_iir & GT_GEN6_BSD_USER_INTERRUPT)
 505		notify_ring(dev, &dev_priv->ring[VCS]);
 506	if (gt_iir & GT_BLT_USER_INTERRUPT)
 507		notify_ring(dev, &dev_priv->ring[BCS]);
 508
 509	if (de_iir & DE_GSE_IVB)
 510		intel_opregion_gse_intr(dev);
 511
 512	if (de_iir & DE_PLANEA_FLIP_DONE_IVB) {
 513		intel_prepare_page_flip(dev, 0);
 514		intel_finish_page_flip_plane(dev, 0);
 515	}
 516
 517	if (de_iir & DE_PLANEB_FLIP_DONE_IVB) {
 518		intel_prepare_page_flip(dev, 1);
 519		intel_finish_page_flip_plane(dev, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520	}
 521
 522	if (de_iir & DE_PIPEA_VBLANK_IVB)
 523		drm_handle_vblank(dev, 0);
 
 524
 525	if (de_iir & DE_PIPEB_VBLANK_IVB)
 526		drm_handle_vblank(dev, 1);
 527
 528	/* check event from PCH */
 529	if (de_iir & DE_PCH_EVENT_IVB) {
 530		if (pch_iir & SDE_HOTPLUG_MASK_CPT)
 531			queue_work(dev_priv->wq, &dev_priv->hotplug_work);
 532		pch_irq_handler(dev);
 533	}
 534
 535	if (pm_iir & GEN6_PM_DEFERRED_EVENTS) {
 536		unsigned long flags;
 537		spin_lock_irqsave(&dev_priv->rps_lock, flags);
 538		WARN(dev_priv->pm_iir & pm_iir, "Missed a PM interrupt\n");
 539		I915_WRITE(GEN6_PMIMR, pm_iir);
 540		dev_priv->pm_iir |= pm_iir;
 541		spin_unlock_irqrestore(&dev_priv->rps_lock, flags);
 542		queue_work(dev_priv->wq, &dev_priv->rps_work);
 543	}
 544
 545	/* should clear PCH hotplug event before clear CPU irq */
 546	I915_WRITE(SDEIIR, pch_iir);
 547	I915_WRITE(GTIIR, gt_iir);
 548	I915_WRITE(DEIIR, de_iir);
 549	I915_WRITE(GEN6_PMIIR, pm_iir);
 550
 551done:
 552	I915_WRITE(DEIER, de_ier);
 553	POSTING_READ(DEIER);
 554
 555	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556}
 557
 558static irqreturn_t ironlake_irq_handler(DRM_IRQ_ARGS)
 559{
 560	struct drm_device *dev = (struct drm_device *) arg;
 561	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 562	int ret = IRQ_NONE;
 563	u32 de_iir, gt_iir, de_ier, pch_iir, pm_iir;
 564	u32 hotplug_mask;
 565	struct drm_i915_master_private *master_priv;
 566	u32 bsd_usr_interrupt = GT_BSD_USER_INTERRUPT;
 567
 568	atomic_inc(&dev_priv->irq_received);
 
 569
 570	if (IS_GEN6(dev))
 571		bsd_usr_interrupt = GT_GEN6_BSD_USER_INTERRUPT;
 572
 573	/* disable master interrupt before clearing iir  */
 574	de_ier = I915_READ(DEIER);
 575	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
 576	POSTING_READ(DEIER);
 577
 578	de_iir = I915_READ(DEIIR);
 579	gt_iir = I915_READ(GTIIR);
 580	pch_iir = I915_READ(SDEIIR);
 581	pm_iir = I915_READ(GEN6_PMIIR);
 582
 583	if (de_iir == 0 && gt_iir == 0 && pch_iir == 0 &&
 584	    (!IS_GEN6(dev) || pm_iir == 0))
 585		goto done;
 586
 587	if (HAS_PCH_CPT(dev))
 588		hotplug_mask = SDE_HOTPLUG_MASK_CPT;
 589	else
 590		hotplug_mask = SDE_HOTPLUG_MASK;
 591
 592	ret = IRQ_HANDLED;
 593
 594	if (dev->primary->master) {
 595		master_priv = dev->primary->master->driver_priv;
 596		if (master_priv->sarea_priv)
 597			master_priv->sarea_priv->last_dispatch =
 598				READ_BREADCRUMB(dev_priv);
 599	}
 600
 601	if (gt_iir & (GT_USER_INTERRUPT | GT_PIPE_NOTIFY))
 602		notify_ring(dev, &dev_priv->ring[RCS]);
 603	if (gt_iir & bsd_usr_interrupt)
 604		notify_ring(dev, &dev_priv->ring[VCS]);
 605	if (gt_iir & GT_BLT_USER_INTERRUPT)
 606		notify_ring(dev, &dev_priv->ring[BCS]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607
 608	if (de_iir & DE_GSE)
 609		intel_opregion_gse_intr(dev);
 
 
 
 
 610
 611	if (de_iir & DE_PLANEA_FLIP_DONE) {
 612		intel_prepare_page_flip(dev, 0);
 613		intel_finish_page_flip_plane(dev, 0);
 614	}
 615
 616	if (de_iir & DE_PLANEB_FLIP_DONE) {
 617		intel_prepare_page_flip(dev, 1);
 618		intel_finish_page_flip_plane(dev, 1);
 619	}
 620
 621	if (de_iir & DE_PIPEA_VBLANK)
 622		drm_handle_vblank(dev, 0);
 623
 624	if (de_iir & DE_PIPEB_VBLANK)
 625		drm_handle_vblank(dev, 1);
 626
 627	/* check event from PCH */
 628	if (de_iir & DE_PCH_EVENT) {
 629		if (pch_iir & hotplug_mask)
 630			queue_work(dev_priv->wq, &dev_priv->hotplug_work);
 631		pch_irq_handler(dev);
 632	}
 633
 634	if (de_iir & DE_PCU_EVENT) {
 635		I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
 636		i915_handle_rps_change(dev);
 637	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 638
 639	if (IS_GEN6(dev) && pm_iir & GEN6_PM_DEFERRED_EVENTS) {
 640		/*
 641		 * IIR bits should never already be set because IMR should
 642		 * prevent an interrupt from being shown in IIR. The warning
 643		 * displays a case where we've unsafely cleared
 644		 * dev_priv->pm_iir. Although missing an interrupt of the same
 645		 * type is not a problem, it displays a problem in the logic.
 646		 *
 647		 * The mask bit in IMR is cleared by rps_work.
 
 
 
 
 
 
 
 
 648		 */
 649		unsigned long flags;
 650		spin_lock_irqsave(&dev_priv->rps_lock, flags);
 651		WARN(dev_priv->pm_iir & pm_iir, "Missed a PM interrupt\n");
 652		I915_WRITE(GEN6_PMIMR, pm_iir);
 653		dev_priv->pm_iir |= pm_iir;
 654		spin_unlock_irqrestore(&dev_priv->rps_lock, flags);
 655		queue_work(dev_priv->wq, &dev_priv->rps_work);
 656	}
 657
 658	/* should clear PCH hotplug event before clear CPU irq */
 659	I915_WRITE(SDEIIR, pch_iir);
 660	I915_WRITE(GTIIR, gt_iir);
 661	I915_WRITE(DEIIR, de_iir);
 662	I915_WRITE(GEN6_PMIIR, pm_iir);
 663
 664done:
 665	I915_WRITE(DEIER, de_ier);
 666	POSTING_READ(DEIER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 667
 668	return ret;
 669}
 670
 671/**
 672 * i915_error_work_func - do process context error handling work
 673 * @work: work struct
 674 *
 675 * Fire an error uevent so userspace can see that a hang or error
 676 * was detected.
 677 */
 678static void i915_error_work_func(struct work_struct *work)
 679{
 680	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
 681						    error_work);
 682	struct drm_device *dev = dev_priv->dev;
 683	char *error_event[] = { "ERROR=1", NULL };
 684	char *reset_event[] = { "RESET=1", NULL };
 685	char *reset_done_event[] = { "ERROR=0", NULL };
 686
 687	kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
 688
 689	if (atomic_read(&dev_priv->mm.wedged)) {
 690		DRM_DEBUG_DRIVER("resetting chip\n");
 691		kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, reset_event);
 692		if (!i915_reset(dev, GRDOM_RENDER)) {
 693			atomic_set(&dev_priv->mm.wedged, 0);
 694			kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, reset_done_event);
 695		}
 696		complete_all(&dev_priv->error_completion);
 697	}
 
 
 
 
 
 
 
 
 
 
 
 698}
 699
 700#ifdef CONFIG_DEBUG_FS
 701static struct drm_i915_error_object *
 702i915_error_object_create(struct drm_i915_private *dev_priv,
 703			 struct drm_i915_gem_object *src)
 704{
 705	struct drm_i915_error_object *dst;
 706	int page, page_count;
 707	u32 reloc_offset;
 708
 709	if (src == NULL || src->pages == NULL)
 710		return NULL;
 711
 712	page_count = src->base.size / PAGE_SIZE;
 
 
 
 
 
 713
 714	dst = kmalloc(sizeof(*dst) + page_count * sizeof (u32 *), GFP_ATOMIC);
 715	if (dst == NULL)
 716		return NULL;
 717
 718	reloc_offset = src->gtt_offset;
 719	for (page = 0; page < page_count; page++) {
 720		unsigned long flags;
 721		void __iomem *s;
 722		void *d;
 723
 724		d = kmalloc(PAGE_SIZE, GFP_ATOMIC);
 725		if (d == NULL)
 726			goto unwind;
 727
 728		local_irq_save(flags);
 729		s = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
 730					     reloc_offset);
 731		memcpy_fromio(d, s, PAGE_SIZE);
 732		io_mapping_unmap_atomic(s);
 733		local_irq_restore(flags);
 734
 735		dst->pages[page] = d;
 
 736
 737		reloc_offset += PAGE_SIZE;
 
 
 
 
 738	}
 739	dst->page_count = page_count;
 740	dst->gtt_offset = src->gtt_offset;
 741
 742	return dst;
 
 743
 744unwind:
 745	while (page--)
 746		kfree(dst->pages[page]);
 747	kfree(dst);
 748	return NULL;
 
 
 
 
 749}
 750
 751static void
 752i915_error_object_free(struct drm_i915_error_object *obj)
 753{
 754	int page;
 
 755
 756	if (obj == NULL)
 757		return;
 
 
 
 
 758
 759	for (page = 0; page < obj->page_count; page++)
 760		kfree(obj->pages[page]);
 
 
 
 
 
 761
 762	kfree(obj);
 763}
 764
 765static void
 766i915_error_state_free(struct drm_device *dev,
 767		      struct drm_i915_error_state *error)
 768{
 769	int i;
 
 770
 771	for (i = 0; i < ARRAY_SIZE(error->batchbuffer); i++)
 772		i915_error_object_free(error->batchbuffer[i]);
 773
 774	for (i = 0; i < ARRAY_SIZE(error->ringbuffer); i++)
 775		i915_error_object_free(error->ringbuffer[i]);
 
 776
 777	kfree(error->active_bo);
 778	kfree(error->overlay);
 779	kfree(error);
 780}
 781
 782static u32 capture_bo_list(struct drm_i915_error_buffer *err,
 783			   int count,
 784			   struct list_head *head)
 785{
 786	struct drm_i915_gem_object *obj;
 787	int i = 0;
 788
 789	list_for_each_entry(obj, head, mm_list) {
 790		err->size = obj->base.size;
 791		err->name = obj->base.name;
 792		err->seqno = obj->last_rendering_seqno;
 793		err->gtt_offset = obj->gtt_offset;
 794		err->read_domains = obj->base.read_domains;
 795		err->write_domain = obj->base.write_domain;
 796		err->fence_reg = obj->fence_reg;
 797		err->pinned = 0;
 798		if (obj->pin_count > 0)
 799			err->pinned = 1;
 800		if (obj->user_pin_count > 0)
 801			err->pinned = -1;
 802		err->tiling = obj->tiling_mode;
 803		err->dirty = obj->dirty;
 804		err->purgeable = obj->madv != I915_MADV_WILLNEED;
 805		err->ring = obj->ring ? obj->ring->id : 0;
 806		err->cache_level = obj->cache_level;
 807
 808		if (++i == count)
 809			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810
 811		err++;
 
 
 
 
 812	}
 813
 814	return i;
 
 815}
 816
 817static void i915_gem_record_fences(struct drm_device *dev,
 818				   struct drm_i915_error_state *error)
 819{
 820	struct drm_i915_private *dev_priv = dev->dev_private;
 821	int i;
 
 822
 823	/* Fences */
 824	switch (INTEL_INFO(dev)->gen) {
 825	case 6:
 826		for (i = 0; i < 16; i++)
 827			error->fence[i] = I915_READ64(FENCE_REG_SANDYBRIDGE_0 + (i * 8));
 828		break;
 829	case 5:
 830	case 4:
 831		for (i = 0; i < 16; i++)
 832			error->fence[i] = I915_READ64(FENCE_REG_965_0 + (i * 8));
 833		break;
 834	case 3:
 835		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
 836			for (i = 0; i < 8; i++)
 837				error->fence[i+8] = I915_READ(FENCE_REG_945_8 + (i * 4));
 838	case 2:
 839		for (i = 0; i < 8; i++)
 840			error->fence[i] = I915_READ(FENCE_REG_830_0 + (i * 4));
 841		break;
 842
 
 
 
 
 843	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 844}
 845
 846static struct drm_i915_error_object *
 847i915_error_first_batchbuffer(struct drm_i915_private *dev_priv,
 848			     struct intel_ring_buffer *ring)
 849{
 850	struct drm_i915_gem_object *obj;
 851	u32 seqno;
 852
 853	if (!ring->get_seqno)
 854		return NULL;
 855
 856	seqno = ring->get_seqno(ring);
 857	list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list) {
 858		if (obj->ring != ring)
 859			continue;
 860
 861		if (i915_seqno_passed(seqno, obj->last_rendering_seqno))
 862			continue;
 863
 864		if ((obj->base.read_domains & I915_GEM_DOMAIN_COMMAND) == 0)
 865			continue;
 866
 867		/* We need to copy these to an anonymous buffer as the simplest
 868		 * method to avoid being overwritten by userspace.
 869		 */
 870		return i915_error_object_create(dev_priv, obj);
 871	}
 872
 873	return NULL;
 874}
 875
 876/**
 877 * i915_capture_error_state - capture an error record for later analysis
 878 * @dev: drm device
 879 *
 880 * Should be called when an error is detected (either a hang or an error
 881 * interrupt) to capture error state from the time of the error.  Fills
 882 * out a structure which becomes available in debugfs for user level tools
 883 * to pick up.
 884 */
 885static void i915_capture_error_state(struct drm_device *dev)
 886{
 887	struct drm_i915_private *dev_priv = dev->dev_private;
 888	struct drm_i915_gem_object *obj;
 889	struct drm_i915_error_state *error;
 890	unsigned long flags;
 891	int i, pipe;
 892
 893	spin_lock_irqsave(&dev_priv->error_lock, flags);
 894	error = dev_priv->first_error;
 895	spin_unlock_irqrestore(&dev_priv->error_lock, flags);
 896	if (error)
 897		return;
 898
 899	/* Account for pipe specific data like PIPE*STAT */
 900	error = kmalloc(sizeof(*error), GFP_ATOMIC);
 901	if (!error) {
 902		DRM_DEBUG_DRIVER("out of memory, not capturing error state\n");
 903		return;
 904	}
 905
 906	DRM_INFO("capturing error event; look for more information in /debug/dri/%d/i915_error_state\n",
 907		 dev->primary->index);
 908
 909	error->seqno = dev_priv->ring[RCS].get_seqno(&dev_priv->ring[RCS]);
 910	error->eir = I915_READ(EIR);
 911	error->pgtbl_er = I915_READ(PGTBL_ER);
 912	for_each_pipe(pipe)
 913		error->pipestat[pipe] = I915_READ(PIPESTAT(pipe));
 914	error->instpm = I915_READ(INSTPM);
 915	error->error = 0;
 916	if (INTEL_INFO(dev)->gen >= 6) {
 917		error->error = I915_READ(ERROR_GEN6);
 918
 919		error->bcs_acthd = I915_READ(BCS_ACTHD);
 920		error->bcs_ipehr = I915_READ(BCS_IPEHR);
 921		error->bcs_ipeir = I915_READ(BCS_IPEIR);
 922		error->bcs_instdone = I915_READ(BCS_INSTDONE);
 923		error->bcs_seqno = 0;
 924		if (dev_priv->ring[BCS].get_seqno)
 925			error->bcs_seqno = dev_priv->ring[BCS].get_seqno(&dev_priv->ring[BCS]);
 926
 927		error->vcs_acthd = I915_READ(VCS_ACTHD);
 928		error->vcs_ipehr = I915_READ(VCS_IPEHR);
 929		error->vcs_ipeir = I915_READ(VCS_IPEIR);
 930		error->vcs_instdone = I915_READ(VCS_INSTDONE);
 931		error->vcs_seqno = 0;
 932		if (dev_priv->ring[VCS].get_seqno)
 933			error->vcs_seqno = dev_priv->ring[VCS].get_seqno(&dev_priv->ring[VCS]);
 934	}
 935	if (INTEL_INFO(dev)->gen >= 4) {
 936		error->ipeir = I915_READ(IPEIR_I965);
 937		error->ipehr = I915_READ(IPEHR_I965);
 938		error->instdone = I915_READ(INSTDONE_I965);
 939		error->instps = I915_READ(INSTPS);
 940		error->instdone1 = I915_READ(INSTDONE1);
 941		error->acthd = I915_READ(ACTHD_I965);
 942		error->bbaddr = I915_READ64(BB_ADDR);
 943	} else {
 944		error->ipeir = I915_READ(IPEIR);
 945		error->ipehr = I915_READ(IPEHR);
 946		error->instdone = I915_READ(INSTDONE);
 947		error->acthd = I915_READ(ACTHD);
 948		error->bbaddr = 0;
 949	}
 950	i915_gem_record_fences(dev, error);
 951
 952	/* Record the active batch and ring buffers */
 953	for (i = 0; i < I915_NUM_RINGS; i++) {
 954		error->batchbuffer[i] =
 955			i915_error_first_batchbuffer(dev_priv,
 956						     &dev_priv->ring[i]);
 957
 958		error->ringbuffer[i] =
 959			i915_error_object_create(dev_priv,
 960						 dev_priv->ring[i].obj);
 961	}
 962
 963	/* Record buffers on the active and pinned lists. */
 964	error->active_bo = NULL;
 965	error->pinned_bo = NULL;
 966
 967	i = 0;
 968	list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list)
 969		i++;
 970	error->active_bo_count = i;
 971	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
 972		i++;
 973	error->pinned_bo_count = i - error->active_bo_count;
 974
 975	error->active_bo = NULL;
 976	error->pinned_bo = NULL;
 977	if (i) {
 978		error->active_bo = kmalloc(sizeof(*error->active_bo)*i,
 979					   GFP_ATOMIC);
 980		if (error->active_bo)
 981			error->pinned_bo =
 982				error->active_bo + error->active_bo_count;
 983	}
 984
 985	if (error->active_bo)
 986		error->active_bo_count =
 987			capture_bo_list(error->active_bo,
 988					error->active_bo_count,
 989					&dev_priv->mm.active_list);
 990
 991	if (error->pinned_bo)
 992		error->pinned_bo_count =
 993			capture_bo_list(error->pinned_bo,
 994					error->pinned_bo_count,
 995					&dev_priv->mm.pinned_list);
 996
 997	do_gettimeofday(&error->time);
 998
 999	error->overlay = intel_overlay_capture_error_state(dev);
1000	error->display = intel_display_capture_error_state(dev);
1001
1002	spin_lock_irqsave(&dev_priv->error_lock, flags);
1003	if (dev_priv->first_error == NULL) {
1004		dev_priv->first_error = error;
1005		error = NULL;
1006	}
1007	spin_unlock_irqrestore(&dev_priv->error_lock, flags);
1008
1009	if (error)
1010		i915_error_state_free(dev, error);
1011}
1012
1013void i915_destroy_error_state(struct drm_device *dev)
1014{
1015	struct drm_i915_private *dev_priv = dev->dev_private;
1016	struct drm_i915_error_state *error;
1017
1018	spin_lock(&dev_priv->error_lock);
1019	error = dev_priv->first_error;
1020	dev_priv->first_error = NULL;
1021	spin_unlock(&dev_priv->error_lock);
1022
1023	if (error)
1024		i915_error_state_free(dev, error);
1025}
1026#else
1027#define i915_capture_error_state(x)
1028#endif
1029
1030static void i915_report_and_clear_eir(struct drm_device *dev)
 
1031{
1032	struct drm_i915_private *dev_priv = dev->dev_private;
1033	u32 eir = I915_READ(EIR);
1034	int pipe;
1035
1036	if (!eir)
1037		return;
1038
1039	printk(KERN_ERR "render error detected, EIR: 0x%08x\n",
1040	       eir);
1041
1042	if (IS_G4X(dev)) {
1043		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1044			u32 ipeir = I915_READ(IPEIR_I965);
1045
1046			printk(KERN_ERR "  IPEIR: 0x%08x\n",
1047			       I915_READ(IPEIR_I965));
1048			printk(KERN_ERR "  IPEHR: 0x%08x\n",
1049			       I915_READ(IPEHR_I965));
1050			printk(KERN_ERR "  INSTDONE: 0x%08x\n",
1051			       I915_READ(INSTDONE_I965));
1052			printk(KERN_ERR "  INSTPS: 0x%08x\n",
1053			       I915_READ(INSTPS));
1054			printk(KERN_ERR "  INSTDONE1: 0x%08x\n",
1055			       I915_READ(INSTDONE1));
1056			printk(KERN_ERR "  ACTHD: 0x%08x\n",
1057			       I915_READ(ACTHD_I965));
1058			I915_WRITE(IPEIR_I965, ipeir);
1059			POSTING_READ(IPEIR_I965);
1060		}
1061		if (eir & GM45_ERROR_PAGE_TABLE) {
1062			u32 pgtbl_err = I915_READ(PGTBL_ER);
1063			printk(KERN_ERR "page table error\n");
1064			printk(KERN_ERR "  PGTBL_ER: 0x%08x\n",
1065			       pgtbl_err);
1066			I915_WRITE(PGTBL_ER, pgtbl_err);
1067			POSTING_READ(PGTBL_ER);
1068		}
 
 
 
 
 
 
1069	}
1070
1071	if (!IS_GEN2(dev)) {
1072		if (eir & I915_ERROR_PAGE_TABLE) {
1073			u32 pgtbl_err = I915_READ(PGTBL_ER);
1074			printk(KERN_ERR "page table error\n");
1075			printk(KERN_ERR "  PGTBL_ER: 0x%08x\n",
1076			       pgtbl_err);
1077			I915_WRITE(PGTBL_ER, pgtbl_err);
1078			POSTING_READ(PGTBL_ER);
1079		}
 
 
1080	}
1081
1082	if (eir & I915_ERROR_MEMORY_REFRESH) {
1083		printk(KERN_ERR "memory refresh error:\n");
1084		for_each_pipe(pipe)
1085			printk(KERN_ERR "pipe %c stat: 0x%08x\n",
1086			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1087		/* pipestat has already been acked */
1088	}
1089	if (eir & I915_ERROR_INSTRUCTION) {
1090		printk(KERN_ERR "instruction error\n");
1091		printk(KERN_ERR "  INSTPM: 0x%08x\n",
1092		       I915_READ(INSTPM));
1093		if (INTEL_INFO(dev)->gen < 4) {
1094			u32 ipeir = I915_READ(IPEIR);
1095
1096			printk(KERN_ERR "  IPEIR: 0x%08x\n",
1097			       I915_READ(IPEIR));
1098			printk(KERN_ERR "  IPEHR: 0x%08x\n",
1099			       I915_READ(IPEHR));
1100			printk(KERN_ERR "  INSTDONE: 0x%08x\n",
1101			       I915_READ(INSTDONE));
1102			printk(KERN_ERR "  ACTHD: 0x%08x\n",
1103			       I915_READ(ACTHD));
1104			I915_WRITE(IPEIR, ipeir);
1105			POSTING_READ(IPEIR);
1106		} else {
1107			u32 ipeir = I915_READ(IPEIR_I965);
1108
1109			printk(KERN_ERR "  IPEIR: 0x%08x\n",
1110			       I915_READ(IPEIR_I965));
1111			printk(KERN_ERR "  IPEHR: 0x%08x\n",
1112			       I915_READ(IPEHR_I965));
1113			printk(KERN_ERR "  INSTDONE: 0x%08x\n",
1114			       I915_READ(INSTDONE_I965));
1115			printk(KERN_ERR "  INSTPS: 0x%08x\n",
1116			       I915_READ(INSTPS));
1117			printk(KERN_ERR "  INSTDONE1: 0x%08x\n",
1118			       I915_READ(INSTDONE1));
1119			printk(KERN_ERR "  ACTHD: 0x%08x\n",
1120			       I915_READ(ACTHD_I965));
1121			I915_WRITE(IPEIR_I965, ipeir);
1122			POSTING_READ(IPEIR_I965);
1123		}
1124	}
1125
1126	I915_WRITE(EIR, eir);
1127	POSTING_READ(EIR);
1128	eir = I915_READ(EIR);
1129	if (eir) {
1130		/*
1131		 * some errors might have become stuck,
1132		 * mask them.
1133		 */
1134		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1135		I915_WRITE(EMR, I915_READ(EMR) | eir);
1136		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
 
 
 
 
 
 
 
 
 
 
 
1137	}
1138}
1139
1140/**
1141 * i915_handle_error - handle an error interrupt
1142 * @dev: drm device
1143 *
1144 * Do some basic checking of regsiter state at error interrupt time and
1145 * dump it to the syslog.  Also call i915_capture_error_state() to make
1146 * sure we get a record and make it available in debugfs.  Fire a uevent
1147 * so userspace knows something bad happened (should trigger collection
1148 * of a ring dump etc.).
1149 */
1150void i915_handle_error(struct drm_device *dev, bool wedged)
1151{
1152	struct drm_i915_private *dev_priv = dev->dev_private;
1153
1154	i915_capture_error_state(dev);
1155	i915_report_and_clear_eir(dev);
1156
1157	if (wedged) {
1158		INIT_COMPLETION(dev_priv->error_completion);
1159		atomic_set(&dev_priv->mm.wedged, 1);
1160
1161		/*
1162		 * Wakeup waiting processes so they don't hang
1163		 */
1164		wake_up_all(&dev_priv->ring[RCS].irq_queue);
1165		if (HAS_BSD(dev))
1166			wake_up_all(&dev_priv->ring[VCS].irq_queue);
1167		if (HAS_BLT(dev))
1168			wake_up_all(&dev_priv->ring[BCS].irq_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1169	}
1170
1171	queue_work(dev_priv->wq, &dev_priv->error_work);
 
 
 
 
 
 
 
 
 
1172}
1173
1174static void i915_pageflip_stall_check(struct drm_device *dev, int pipe)
 
1175{
1176	drm_i915_private_t *dev_priv = dev->dev_private;
1177	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1178	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1179	struct drm_i915_gem_object *obj;
1180	struct intel_unpin_work *work;
1181	unsigned long flags;
1182	bool stall_detected;
1183
1184	/* Ignore early vblank irqs */
1185	if (intel_crtc == NULL)
1186		return;
1187
1188	spin_lock_irqsave(&dev->event_lock, flags);
1189	work = intel_crtc->unpin_work;
 
 
1190
1191	if (work == NULL || work->pending || !work->enable_stall_check) {
1192		/* Either the pending flip IRQ arrived, or we're too early. Don't check */
1193		spin_unlock_irqrestore(&dev->event_lock, flags);
1194		return;
1195	}
1196
1197	/* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1198	obj = work->pending_flip_obj;
1199	if (INTEL_INFO(dev)->gen >= 4) {
1200		int dspsurf = DSPSURF(intel_crtc->plane);
1201		stall_detected = I915_READ(dspsurf) == obj->gtt_offset;
1202	} else {
1203		int dspaddr = DSPADDR(intel_crtc->plane);
1204		stall_detected = I915_READ(dspaddr) == (obj->gtt_offset +
1205							crtc->y * crtc->fb->pitch +
1206							crtc->x * crtc->fb->bits_per_pixel/8);
 
 
 
 
 
 
1207	}
1208
1209	spin_unlock_irqrestore(&dev->event_lock, flags);
 
 
 
 
1210
1211	if (stall_detected) {
1212		DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1213		intel_prepare_page_flip(dev, intel_crtc->plane);
 
1214	}
 
 
 
 
 
 
1215}
1216
1217static irqreturn_t i915_driver_irq_handler(DRM_IRQ_ARGS)
1218{
1219	struct drm_device *dev = (struct drm_device *) arg;
1220	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1221	struct drm_i915_master_private *master_priv;
1222	u32 iir, new_iir;
1223	u32 pipe_stats[I915_MAX_PIPES];
1224	u32 vblank_status;
1225	int vblank = 0;
1226	unsigned long irqflags;
1227	int irq_received;
1228	int ret = IRQ_NONE, pipe;
1229	bool blc_event = false;
1230
1231	atomic_inc(&dev_priv->irq_received);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1232
1233	iir = I915_READ(IIR);
 
 
 
1234
1235	if (INTEL_INFO(dev)->gen >= 4)
1236		vblank_status = PIPE_START_VBLANK_INTERRUPT_STATUS;
1237	else
1238		vblank_status = PIPE_VBLANK_INTERRUPT_STATUS;
1239
1240	for (;;) {
1241		irq_received = iir != 0;
 
 
1242
1243		/* Can't rely on pipestat interrupt bit in iir as it might
1244		 * have been cleared after the pipestat interrupt was received.
1245		 * It doesn't set the bit in iir again, but it still produces
1246		 * interrupts (for non-MSI).
1247		 */
1248		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1249		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
1250			i915_handle_error(dev, false);
1251
1252		for_each_pipe(pipe) {
1253			int reg = PIPESTAT(pipe);
1254			pipe_stats[pipe] = I915_READ(reg);
1255
1256			/*
1257			 * Clear the PIPE*STAT regs before the IIR
1258			 */
1259			if (pipe_stats[pipe] & 0x8000ffff) {
1260				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1261					DRM_DEBUG_DRIVER("pipe %c underrun\n",
1262							 pipe_name(pipe));
1263				I915_WRITE(reg, pipe_stats[pipe]);
1264				irq_received = 1;
1265			}
1266		}
1267		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1268
1269		if (!irq_received)
1270			break;
1271
1272		ret = IRQ_HANDLED;
 
1273
1274		/* Consume port.  Then clear IIR or we'll miss events */
1275		if ((I915_HAS_HOTPLUG(dev)) &&
1276		    (iir & I915_DISPLAY_PORT_INTERRUPT)) {
1277			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1278
1279			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1280				  hotplug_status);
1281			if (hotplug_status & dev_priv->hotplug_supported_mask)
1282				queue_work(dev_priv->wq,
1283					   &dev_priv->hotplug_work);
1284
1285			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1286			I915_READ(PORT_HOTPLUG_STAT);
 
1287		}
 
1288
1289		I915_WRITE(IIR, iir);
1290		new_iir = I915_READ(IIR); /* Flush posted writes */
 
1291
1292		if (dev->primary->master) {
1293			master_priv = dev->primary->master->driver_priv;
1294			if (master_priv->sarea_priv)
1295				master_priv->sarea_priv->last_dispatch =
1296					READ_BREADCRUMB(dev_priv);
1297		}
 
1298
1299		if (iir & I915_USER_INTERRUPT)
1300			notify_ring(dev, &dev_priv->ring[RCS]);
1301		if (iir & I915_BSD_USER_INTERRUPT)
1302			notify_ring(dev, &dev_priv->ring[VCS]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303
1304		if (iir & I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT) {
1305			intel_prepare_page_flip(dev, 0);
1306			if (dev_priv->flip_pending_is_done)
1307				intel_finish_page_flip_plane(dev, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1308		}
 
1309
1310		if (iir & I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT) {
1311			intel_prepare_page_flip(dev, 1);
1312			if (dev_priv->flip_pending_is_done)
1313				intel_finish_page_flip_plane(dev, 1);
 
 
 
 
 
1314		}
 
1315
1316		for_each_pipe(pipe) {
1317			if (pipe_stats[pipe] & vblank_status &&
1318			    drm_handle_vblank(dev, pipe)) {
1319				vblank++;
1320				if (!dev_priv->flip_pending_is_done) {
1321					i915_pageflip_stall_check(dev, pipe);
1322					intel_finish_page_flip(dev, pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1323				}
1324			}
1325
1326			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1327				blc_event = true;
 
1328		}
 
 
 
 
1329
 
 
1330
1331		if (blc_event || (iir & I915_ASLE_INTERRUPT))
1332			intel_opregion_asle_intr(dev);
1333
1334		/* With MSI, interrupts are only generated when iir
1335		 * transitions from zero to nonzero.  If another bit got
1336		 * set while we were handling the existing iir bits, then
1337		 * we would never get another interrupt.
1338		 *
1339		 * This is fine on non-MSI as well, as if we hit this path
1340		 * we avoid exiting the interrupt handler only to generate
1341		 * another one.
1342		 *
1343		 * Note that for MSI this could cause a stray interrupt report
1344		 * if an interrupt landed in the time between writing IIR and
1345		 * the posting read.  This should be rare enough to never
1346		 * trigger the 99% of 100,000 interrupts test for disabling
1347		 * stray interrupts.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1348		 */
1349		iir = new_iir;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1350	}
1351
1352	return ret;
1353}
1354
1355static int i915_emit_irq(struct drm_device * dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1356{
1357	drm_i915_private_t *dev_priv = dev->dev_private;
1358	struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
 
1359
1360	i915_kernel_lost_context(dev);
 
1361
1362	DRM_DEBUG_DRIVER("\n");
 
 
 
 
1363
1364	dev_priv->counter++;
1365	if (dev_priv->counter > 0x7FFFFFFFUL)
1366		dev_priv->counter = 1;
1367	if (master_priv->sarea_priv)
1368		master_priv->sarea_priv->last_enqueue = dev_priv->counter;
1369
1370	if (BEGIN_LP_RING(4) == 0) {
1371		OUT_RING(MI_STORE_DWORD_INDEX);
1372		OUT_RING(I915_BREADCRUMB_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1373		OUT_RING(dev_priv->counter);
1374		OUT_RING(MI_USER_INTERRUPT);
1375		ADVANCE_LP_RING();
1376	}
1377
1378	return dev_priv->counter;
 
 
 
 
1379}
1380
1381static int i915_wait_irq(struct drm_device * dev, int irq_nr)
 
1382{
1383	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1384	struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1385	int ret = 0;
1386	struct intel_ring_buffer *ring = LP_RING(dev_priv);
1387
1388	DRM_DEBUG_DRIVER("irq_nr=%d breadcrumb=%d\n", irq_nr,
1389		  READ_BREADCRUMB(dev_priv));
1390
1391	if (READ_BREADCRUMB(dev_priv) >= irq_nr) {
1392		if (master_priv->sarea_priv)
1393			master_priv->sarea_priv->last_dispatch = READ_BREADCRUMB(dev_priv);
1394		return 0;
1395	}
1396
1397	if (master_priv->sarea_priv)
1398		master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
 
1399
1400	if (ring->irq_get(ring)) {
1401		DRM_WAIT_ON(ret, ring->irq_queue, 3 * DRM_HZ,
1402			    READ_BREADCRUMB(dev_priv) >= irq_nr);
1403		ring->irq_put(ring);
1404	} else if (wait_for(READ_BREADCRUMB(dev_priv) >= irq_nr, 3000))
1405		ret = -EBUSY;
1406
1407	if (ret == -EBUSY) {
1408		DRM_ERROR("EBUSY -- rec: %d emitted: %d\n",
1409			  READ_BREADCRUMB(dev_priv), (int)dev_priv->counter);
1410	}
1411
1412	return ret;
 
 
 
 
1413}
1414
1415/* Needs the lock as it touches the ring.
1416 */
1417int i915_irq_emit(struct drm_device *dev, void *data,
1418			 struct drm_file *file_priv)
1419{
1420	drm_i915_private_t *dev_priv = dev->dev_private;
1421	drm_i915_irq_emit_t *emit = data;
1422	int result;
1423
1424	if (!dev_priv || !LP_RING(dev_priv)->virtual_start) {
1425		DRM_ERROR("called with no initialization\n");
1426		return -EINVAL;
1427	}
 
 
 
 
1428
1429	RING_LOCK_TEST_WITH_RETURN(dev, file_priv);
 
 
 
1430
1431	mutex_lock(&dev->struct_mutex);
1432	result = i915_emit_irq(dev);
1433	mutex_unlock(&dev->struct_mutex);
 
 
1434
1435	if (DRM_COPY_TO_USER(emit->irq_seq, &result, sizeof(int))) {
1436		DRM_ERROR("copy_to_user\n");
1437		return -EFAULT;
1438	}
 
 
 
 
 
1439
1440	return 0;
1441}
1442
1443/* Doesn't need the hardware lock.
1444 */
1445int i915_irq_wait(struct drm_device *dev, void *data,
1446			 struct drm_file *file_priv)
1447{
1448	drm_i915_private_t *dev_priv = dev->dev_private;
1449	drm_i915_irq_wait_t *irqwait = data;
 
 
 
 
 
1450
1451	if (!dev_priv) {
1452		DRM_ERROR("called with no initialization\n");
1453		return -EINVAL;
 
1454	}
1455
1456	return i915_wait_irq(dev, irqwait->irq_seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1457}
1458
1459/* Called from drm generic code, passed 'crtc' which
1460 * we use as a pipe index
1461 */
1462static int i915_enable_vblank(struct drm_device *dev, int pipe)
1463{
1464	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1465	unsigned long irqflags;
1466
1467	if (!i915_pipe_enabled(dev, pipe))
1468		return -EINVAL;
1469
1470	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1471	if (INTEL_INFO(dev)->gen >= 4)
1472		i915_enable_pipestat(dev_priv, pipe,
1473				     PIPE_START_VBLANK_INTERRUPT_ENABLE);
1474	else
1475		i915_enable_pipestat(dev_priv, pipe,
1476				     PIPE_VBLANK_INTERRUPT_ENABLE);
1477
1478	/* maintain vblank delivery even in deep C-states */
1479	if (dev_priv->info->gen == 3)
1480		I915_WRITE(INSTPM, INSTPM_AGPBUSY_DIS << 16);
1481	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1482
1483	return 0;
1484}
1485
1486static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1487{
1488	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1489	unsigned long irqflags;
1490
1491	if (!i915_pipe_enabled(dev, pipe))
1492		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
1493
1494	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1495	ironlake_enable_display_irq(dev_priv, (pipe == 0) ?
1496				    DE_PIPEA_VBLANK: DE_PIPEB_VBLANK);
1497	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1498
 
 
 
 
 
 
1499	return 0;
1500}
1501
1502static int ivybridge_enable_vblank(struct drm_device *dev, int pipe)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1503{
1504	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
 
1505	unsigned long irqflags;
1506
1507	if (!i915_pipe_enabled(dev, pipe))
1508		return -EINVAL;
1509
1510	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1511	ironlake_enable_display_irq(dev_priv, (pipe == 0) ?
1512				    DE_PIPEA_VBLANK_IVB : DE_PIPEB_VBLANK_IVB);
1513	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1514
 
 
 
 
 
 
1515	return 0;
1516}
1517
1518/* Called from drm generic code, passed 'crtc' which
1519 * we use as a pipe index
1520 */
1521static void i915_disable_vblank(struct drm_device *dev, int pipe)
1522{
1523	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1524	unsigned long irqflags;
1525
1526	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1527	if (dev_priv->info->gen == 3)
1528		I915_WRITE(INSTPM,
1529			   INSTPM_AGPBUSY_DIS << 16 | INSTPM_AGPBUSY_DIS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530
 
1531	i915_disable_pipestat(dev_priv, pipe,
1532			      PIPE_VBLANK_INTERRUPT_ENABLE |
1533			      PIPE_START_VBLANK_INTERRUPT_ENABLE);
1534	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1535}
1536
1537static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
1538{
1539	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1540	unsigned long irqflags;
 
 
1541
1542	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1543	ironlake_disable_display_irq(dev_priv, (pipe == 0) ?
1544				     DE_PIPEA_VBLANK: DE_PIPEB_VBLANK);
1545	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1546}
1547
1548static void ivybridge_disable_vblank(struct drm_device *dev, int pipe)
1549{
1550	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
 
1551	unsigned long irqflags;
1552
 
 
 
1553	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1554	ironlake_disable_display_irq(dev_priv, (pipe == 0) ?
1555				     DE_PIPEA_VBLANK_IVB : DE_PIPEB_VBLANK_IVB);
1556	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1557}
1558
1559/* Set the vblank monitor pipe
1560 */
1561int i915_vblank_pipe_set(struct drm_device *dev, void *data,
1562			 struct drm_file *file_priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1563{
1564	drm_i915_private_t *dev_priv = dev->dev_private;
 
 
 
1565
1566	if (!dev_priv) {
1567		DRM_ERROR("called with no initialization\n");
1568		return -EINVAL;
 
 
 
1569	}
1570
1571	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1572}
1573
1574int i915_vblank_pipe_get(struct drm_device *dev, void *data,
1575			 struct drm_file *file_priv)
1576{
1577	drm_i915_private_t *dev_priv = dev->dev_private;
1578	drm_i915_vblank_pipe_t *pipe = data;
 
 
 
 
 
 
 
 
 
 
 
1579
1580	if (!dev_priv) {
1581		DRM_ERROR("called with no initialization\n");
1582		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
1583	}
1584
1585	pipe->pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B;
 
 
 
1586
1587	return 0;
1588}
1589
1590/**
1591 * Schedule buffer swap at given vertical blank.
1592 */
1593int i915_vblank_swap(struct drm_device *dev, void *data,
1594		     struct drm_file *file_priv)
1595{
1596	/* The delayed swap mechanism was fundamentally racy, and has been
1597	 * removed.  The model was that the client requested a delayed flip/swap
1598	 * from the kernel, then waited for vblank before continuing to perform
1599	 * rendering.  The problem was that the kernel might wake the client
1600	 * up before it dispatched the vblank swap (since the lock has to be
1601	 * held while touching the ringbuffer), in which case the client would
1602	 * clear and start the next frame before the swap occurred, and
1603	 * flicker would occur in addition to likely missing the vblank.
1604	 *
1605	 * In the absence of this ioctl, userland falls back to a correct path
1606	 * of waiting for a vblank, then dispatching the swap on its own.
1607	 * Context switching to userland and back is plenty fast enough for
1608	 * meeting the requirements of vblank swapping.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1609	 */
1610	return -EINVAL;
 
 
 
 
 
 
 
 
 
1611}
1612
1613static u32
1614ring_last_seqno(struct intel_ring_buffer *ring)
1615{
1616	return list_entry(ring->request_list.prev,
1617			  struct drm_i915_gem_request, list)->seqno;
 
 
 
 
 
 
1618}
1619
1620static bool i915_hangcheck_ring_idle(struct intel_ring_buffer *ring, bool *err)
 
1621{
1622	if (list_empty(&ring->request_list) ||
1623	    i915_seqno_passed(ring->get_seqno(ring), ring_last_seqno(ring))) {
1624		/* Issue a wake-up to catch stuck h/w. */
1625		if (ring->waiting_seqno && waitqueue_active(&ring->irq_queue)) {
1626			DRM_ERROR("Hangcheck timer elapsed... %s idle [waiting on %d, at %d], missed IRQ?\n",
1627				  ring->name,
1628				  ring->waiting_seqno,
1629				  ring->get_seqno(ring));
1630			wake_up_all(&ring->irq_queue);
1631			*err = true;
1632		}
1633		return true;
1634	}
1635	return false;
1636}
1637
1638static bool kick_ring(struct intel_ring_buffer *ring)
 
1639{
1640	struct drm_device *dev = ring->dev;
1641	struct drm_i915_private *dev_priv = dev->dev_private;
1642	u32 tmp = I915_READ_CTL(ring);
1643	if (tmp & RING_WAIT) {
1644		DRM_ERROR("Kicking stuck wait on %s\n",
1645			  ring->name);
1646		I915_WRITE_CTL(ring, tmp);
1647		return true;
1648	}
1649	if (IS_GEN6(dev) &&
1650	    (tmp & RING_WAIT_SEMAPHORE)) {
1651		DRM_ERROR("Kicking stuck semaphore on %s\n",
1652			  ring->name);
1653		I915_WRITE_CTL(ring, tmp);
1654		return true;
1655	}
1656	return false;
1657}
1658
1659/**
1660 * This is called when the chip hasn't reported back with completed
1661 * batchbuffers in a long time. The first time this is called we simply record
1662 * ACTHD. If ACTHD hasn't changed by the time the hangcheck timer elapses
1663 * again, we assume the chip is wedged and try to fix it.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664 */
1665void i915_hangcheck_elapsed(unsigned long data)
1666{
1667	struct drm_device *dev = (struct drm_device *)data;
1668	drm_i915_private_t *dev_priv = dev->dev_private;
1669	uint32_t acthd, instdone, instdone1;
1670	bool err = false;
1671
1672	if (!i915_enable_hangcheck)
1673		return;
1674
1675	/* If all work is done then ACTHD clearly hasn't advanced. */
1676	if (i915_hangcheck_ring_idle(&dev_priv->ring[RCS], &err) &&
1677	    i915_hangcheck_ring_idle(&dev_priv->ring[VCS], &err) &&
1678	    i915_hangcheck_ring_idle(&dev_priv->ring[BCS], &err)) {
1679		dev_priv->hangcheck_count = 0;
1680		if (err)
1681			goto repeat;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1682		return;
 
 
 
 
 
 
1683	}
 
1684
1685	if (INTEL_INFO(dev)->gen < 4) {
1686		acthd = I915_READ(ACTHD);
1687		instdone = I915_READ(INSTDONE);
1688		instdone1 = 0;
1689	} else {
1690		acthd = I915_READ(ACTHD_I965);
1691		instdone = I915_READ(INSTDONE_I965);
1692		instdone1 = I915_READ(INSTDONE1);
1693	}
1694
1695	if (dev_priv->last_acthd == acthd &&
1696	    dev_priv->last_instdone == instdone &&
1697	    dev_priv->last_instdone1 == instdone1) {
1698		if (dev_priv->hangcheck_count++ > 1) {
1699			DRM_ERROR("Hangcheck timer elapsed... GPU hung\n");
1700
1701			if (!IS_GEN2(dev)) {
1702				/* Is the chip hanging on a WAIT_FOR_EVENT?
1703				 * If so we can simply poke the RB_WAIT bit
1704				 * and break the hang. This should work on
1705				 * all but the second generation chipsets.
1706				 */
1707
1708				if (kick_ring(&dev_priv->ring[RCS]))
1709					goto repeat;
1710
1711				if (HAS_BSD(dev) &&
1712				    kick_ring(&dev_priv->ring[VCS]))
1713					goto repeat;
1714
1715				if (HAS_BLT(dev) &&
1716				    kick_ring(&dev_priv->ring[BCS]))
1717					goto repeat;
1718			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1719
1720			i915_handle_error(dev, true);
1721			return;
 
 
 
1722		}
1723	} else {
1724		dev_priv->hangcheck_count = 0;
 
 
 
 
1725
1726		dev_priv->last_acthd = acthd;
1727		dev_priv->last_instdone = instdone;
1728		dev_priv->last_instdone1 = instdone1;
 
 
1729	}
1730
1731repeat:
1732	/* Reset timer case chip hangs without another request being added */
1733	mod_timer(&dev_priv->hangcheck_timer,
1734		  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
 
 
 
 
 
 
 
1735}
1736
1737/* drm_dma.h hooks
1738*/
1739static void ironlake_irq_preinstall(struct drm_device *dev)
1740{
1741	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1742
1743	atomic_set(&dev_priv->irq_received, 0);
 
1744
1745	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
1746	INIT_WORK(&dev_priv->error_work, i915_error_work_func);
1747	if (IS_GEN6(dev) || IS_IVYBRIDGE(dev))
1748		INIT_WORK(&dev_priv->rps_work, gen6_pm_rps_work);
1749
1750	I915_WRITE(HWSTAM, 0xeffe);
1751	if (IS_GEN6(dev) || IS_GEN7(dev)) {
1752		/* Workaround stalls observed on Sandy Bridge GPUs by
1753		 * making the blitter command streamer generate a
1754		 * write to the Hardware Status Page for
1755		 * MI_USER_INTERRUPT.  This appears to serialize the
1756		 * previous seqno write out before the interrupt
1757		 * happens.
1758		 */
1759		I915_WRITE(GEN6_BLITTER_HWSTAM, ~GEN6_BLITTER_USER_INTERRUPT);
1760		I915_WRITE(GEN6_BSD_HWSTAM, ~GEN6_BSD_USER_INTERRUPT);
1761	}
1762
1763	/* XXX hotplug from PCH */
 
1764
1765	I915_WRITE(DEIMR, 0xffffffff);
1766	I915_WRITE(DEIER, 0x0);
1767	POSTING_READ(DEIER);
1768
1769	/* and GT */
1770	I915_WRITE(GTIMR, 0xffffffff);
1771	I915_WRITE(GTIER, 0x0);
1772	POSTING_READ(GTIER);
1773
1774	/* south display irq */
1775	I915_WRITE(SDEIMR, 0xffffffff);
1776	I915_WRITE(SDEIER, 0x0);
1777	POSTING_READ(SDEIER);
1778}
1779
1780static int ironlake_irq_postinstall(struct drm_device *dev)
1781{
1782	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1783	/* enable kind of interrupts always enabled */
1784	u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
1785			   DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE;
1786	u32 render_irqs;
1787	u32 hotplug_mask;
1788
1789	DRM_INIT_WAITQUEUE(&dev_priv->ring[RCS].irq_queue);
1790	if (HAS_BSD(dev))
1791		DRM_INIT_WAITQUEUE(&dev_priv->ring[VCS].irq_queue);
1792	if (HAS_BLT(dev))
1793		DRM_INIT_WAITQUEUE(&dev_priv->ring[BCS].irq_queue);
1794
1795	dev_priv->vblank_pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B;
1796	dev_priv->irq_mask = ~display_mask;
1797
1798	/* should always can generate irq */
1799	I915_WRITE(DEIIR, I915_READ(DEIIR));
1800	I915_WRITE(DEIMR, dev_priv->irq_mask);
1801	I915_WRITE(DEIER, display_mask | DE_PIPEA_VBLANK | DE_PIPEB_VBLANK);
1802	POSTING_READ(DEIER);
1803
1804	dev_priv->gt_irq_mask = ~0;
1805
1806	I915_WRITE(GTIIR, I915_READ(GTIIR));
1807	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1808
1809	if (IS_GEN6(dev))
1810		render_irqs =
1811			GT_USER_INTERRUPT |
1812			GT_GEN6_BSD_USER_INTERRUPT |
1813			GT_BLT_USER_INTERRUPT;
1814	else
1815		render_irqs =
1816			GT_USER_INTERRUPT |
1817			GT_PIPE_NOTIFY |
1818			GT_BSD_USER_INTERRUPT;
1819	I915_WRITE(GTIER, render_irqs);
1820	POSTING_READ(GTIER);
1821
1822	if (HAS_PCH_CPT(dev)) {
1823		hotplug_mask = (SDE_CRT_HOTPLUG_CPT |
1824				SDE_PORTB_HOTPLUG_CPT |
1825				SDE_PORTC_HOTPLUG_CPT |
1826				SDE_PORTD_HOTPLUG_CPT);
1827	} else {
1828		hotplug_mask = (SDE_CRT_HOTPLUG |
1829				SDE_PORTB_HOTPLUG |
1830				SDE_PORTC_HOTPLUG |
1831				SDE_PORTD_HOTPLUG |
1832				SDE_AUX_MASK);
1833	}
1834
1835	dev_priv->pch_irq_mask = ~hotplug_mask;
1836
1837	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
1838	I915_WRITE(SDEIMR, dev_priv->pch_irq_mask);
1839	I915_WRITE(SDEIER, hotplug_mask);
1840	POSTING_READ(SDEIER);
1841
1842	if (IS_IRONLAKE_M(dev)) {
1843		/* Clear & enable PCU event interrupts */
1844		I915_WRITE(DEIIR, DE_PCU_EVENT);
1845		I915_WRITE(DEIER, I915_READ(DEIER) | DE_PCU_EVENT);
1846		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
1847	}
 
1848
1849	return 0;
 
 
 
 
 
 
 
 
 
 
1850}
1851
1852static int ivybridge_irq_postinstall(struct drm_device *dev)
1853{
1854	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1855	/* enable kind of interrupts always enabled */
1856	u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
1857		DE_PCH_EVENT_IVB | DE_PLANEA_FLIP_DONE_IVB |
1858		DE_PLANEB_FLIP_DONE_IVB;
1859	u32 render_irqs;
1860	u32 hotplug_mask;
1861
1862	DRM_INIT_WAITQUEUE(&dev_priv->ring[RCS].irq_queue);
1863	if (HAS_BSD(dev))
1864		DRM_INIT_WAITQUEUE(&dev_priv->ring[VCS].irq_queue);
1865	if (HAS_BLT(dev))
1866		DRM_INIT_WAITQUEUE(&dev_priv->ring[BCS].irq_queue);
1867
1868	dev_priv->vblank_pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B;
1869	dev_priv->irq_mask = ~display_mask;
1870
1871	/* should always can generate irq */
1872	I915_WRITE(DEIIR, I915_READ(DEIIR));
1873	I915_WRITE(DEIMR, dev_priv->irq_mask);
1874	I915_WRITE(DEIER, display_mask | DE_PIPEA_VBLANK_IVB |
1875		   DE_PIPEB_VBLANK_IVB);
1876	POSTING_READ(DEIER);
1877
1878	dev_priv->gt_irq_mask = ~0;
1879
1880	I915_WRITE(GTIIR, I915_READ(GTIIR));
1881	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1882
1883	render_irqs = GT_USER_INTERRUPT | GT_GEN6_BSD_USER_INTERRUPT |
1884		GT_BLT_USER_INTERRUPT;
1885	I915_WRITE(GTIER, render_irqs);
1886	POSTING_READ(GTIER);
1887
1888	hotplug_mask = (SDE_CRT_HOTPLUG_CPT |
1889			SDE_PORTB_HOTPLUG_CPT |
1890			SDE_PORTC_HOTPLUG_CPT |
1891			SDE_PORTD_HOTPLUG_CPT);
1892	dev_priv->pch_irq_mask = ~hotplug_mask;
1893
1894	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
1895	I915_WRITE(SDEIMR, dev_priv->pch_irq_mask);
1896	I915_WRITE(SDEIER, hotplug_mask);
1897	POSTING_READ(SDEIER);
1898
1899	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1900}
1901
1902static void i915_driver_irq_preinstall(struct drm_device * dev)
 
1903{
1904	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1905	int pipe;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1906
1907	atomic_set(&dev_priv->irq_received, 0);
 
1908
1909	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
1910	INIT_WORK(&dev_priv->error_work, i915_error_work_func);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1911
1912	if (I915_HAS_HOTPLUG(dev)) {
1913		I915_WRITE(PORT_HOTPLUG_EN, 0);
1914		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1915	}
1916
1917	I915_WRITE(HWSTAM, 0xeffe);
1918	for_each_pipe(pipe)
1919		I915_WRITE(PIPESTAT(pipe), 0);
1920	I915_WRITE(IMR, 0xffffffff);
1921	I915_WRITE(IER, 0x0);
1922	POSTING_READ(IER);
1923}
1924
1925/*
1926 * Must be called after intel_modeset_init or hotplug interrupts won't be
1927 * enabled correctly.
1928 */
1929static int i915_driver_irq_postinstall(struct drm_device *dev)
1930{
1931	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1932	u32 enable_mask = I915_INTERRUPT_ENABLE_FIX | I915_INTERRUPT_ENABLE_VAR;
1933	u32 error_mask;
1934
1935	dev_priv->vblank_pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B;
 
1936
1937	/* Unmask the interrupts that we always want on. */
1938	dev_priv->irq_mask = ~I915_INTERRUPT_ENABLE_FIX;
 
 
 
 
 
 
 
 
 
 
 
1939
1940	dev_priv->pipestat[0] = 0;
1941	dev_priv->pipestat[1] = 0;
1942
1943	if (I915_HAS_HOTPLUG(dev)) {
1944		/* Enable in IER... */
1945		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
1946		/* and unmask in IMR */
1947		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
1948	}
1949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1950	/*
1951	 * Enable some error detection, note the instruction error mask
1952	 * bit is reserved, so we leave it masked.
1953	 */
1954	if (IS_G4X(dev)) {
1955		error_mask = ~(GM45_ERROR_PAGE_TABLE |
1956			       GM45_ERROR_MEM_PRIV |
1957			       GM45_ERROR_CP_PRIV |
1958			       I915_ERROR_MEMORY_REFRESH);
1959	} else {
1960		error_mask = ~(I915_ERROR_PAGE_TABLE |
1961			       I915_ERROR_MEMORY_REFRESH);
1962	}
1963	I915_WRITE(EMR, error_mask);
1964
1965	I915_WRITE(IMR, dev_priv->irq_mask);
1966	I915_WRITE(IER, enable_mask);
1967	POSTING_READ(IER);
1968
1969	if (I915_HAS_HOTPLUG(dev)) {
1970		u32 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
1971
1972		/* Note HDMI and DP share bits */
1973		if (dev_priv->hotplug_supported_mask & HDMIB_HOTPLUG_INT_STATUS)
1974			hotplug_en |= HDMIB_HOTPLUG_INT_EN;
1975		if (dev_priv->hotplug_supported_mask & HDMIC_HOTPLUG_INT_STATUS)
1976			hotplug_en |= HDMIC_HOTPLUG_INT_EN;
1977		if (dev_priv->hotplug_supported_mask & HDMID_HOTPLUG_INT_STATUS)
1978			hotplug_en |= HDMID_HOTPLUG_INT_EN;
1979		if (dev_priv->hotplug_supported_mask & SDVOC_HOTPLUG_INT_STATUS)
1980			hotplug_en |= SDVOC_HOTPLUG_INT_EN;
1981		if (dev_priv->hotplug_supported_mask & SDVOB_HOTPLUG_INT_STATUS)
1982			hotplug_en |= SDVOB_HOTPLUG_INT_EN;
1983		if (dev_priv->hotplug_supported_mask & CRT_HOTPLUG_INT_STATUS) {
1984			hotplug_en |= CRT_HOTPLUG_INT_EN;
1985
1986			/* Programming the CRT detection parameters tends
1987			   to generate a spurious hotplug event about three
1988			   seconds later.  So just do it once.
1989			*/
1990			if (IS_G4X(dev))
1991				hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
1992			hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
1993		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1994
1995		/* Ignore TV since it's buggy */
 
1996
1997		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
1998	}
1999
2000	intel_opregion_enable_asle(dev);
 
 
 
 
2001
2002	return 0;
2003}
 
2004
2005static void ironlake_irq_uninstall(struct drm_device *dev)
2006{
2007	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2008
2009	if (!dev_priv)
2010		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2011
2012	dev_priv->vblank_pipe = 0;
 
2013
2014	I915_WRITE(HWSTAM, 0xffffffff);
 
2015
2016	I915_WRITE(DEIMR, 0xffffffff);
2017	I915_WRITE(DEIER, 0x0);
2018	I915_WRITE(DEIIR, I915_READ(DEIIR));
2019
2020	I915_WRITE(GTIMR, 0xffffffff);
2021	I915_WRITE(GTIER, 0x0);
2022	I915_WRITE(GTIIR, I915_READ(GTIIR));
 
 
2023}
2024
2025static void i915_driver_irq_uninstall(struct drm_device * dev)
 
 
 
 
 
 
 
2026{
2027	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2028	int pipe;
 
 
 
 
 
 
 
 
2029
2030	if (!dev_priv)
2031		return;
2032
2033	dev_priv->vblank_pipe = 0;
 
 
 
 
2034
2035	if (I915_HAS_HOTPLUG(dev)) {
2036		I915_WRITE(PORT_HOTPLUG_EN, 0);
2037		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2038	}
 
2039
2040	I915_WRITE(HWSTAM, 0xffffffff);
2041	for_each_pipe(pipe)
2042		I915_WRITE(PIPESTAT(pipe), 0);
2043	I915_WRITE(IMR, 0xffffffff);
2044	I915_WRITE(IER, 0x0);
 
 
 
 
2045
2046	for_each_pipe(pipe)
2047		I915_WRITE(PIPESTAT(pipe),
2048			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
2049	I915_WRITE(IIR, I915_READ(IIR));
2050}
2051
2052void intel_irq_init(struct drm_device *dev)
2053{
2054	dev->driver->get_vblank_counter = i915_get_vblank_counter;
2055	dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
2056	if (IS_G4X(dev) || IS_GEN5(dev) || IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
2057		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
2058		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2059	}
 
2060
2061	if (drm_core_check_feature(dev, DRIVER_MODESET))
2062		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
2063	else
2064		dev->driver->get_vblank_timestamp = NULL;
2065	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2066
2067	if (IS_IVYBRIDGE(dev)) {
2068		/* Share pre & uninstall handlers with ILK/SNB */
2069		dev->driver->irq_handler = ivybridge_irq_handler;
2070		dev->driver->irq_preinstall = ironlake_irq_preinstall;
2071		dev->driver->irq_postinstall = ivybridge_irq_postinstall;
2072		dev->driver->irq_uninstall = ironlake_irq_uninstall;
2073		dev->driver->enable_vblank = ivybridge_enable_vblank;
2074		dev->driver->disable_vblank = ivybridge_disable_vblank;
2075	} else if (HAS_PCH_SPLIT(dev)) {
2076		dev->driver->irq_handler = ironlake_irq_handler;
2077		dev->driver->irq_preinstall = ironlake_irq_preinstall;
2078		dev->driver->irq_postinstall = ironlake_irq_postinstall;
2079		dev->driver->irq_uninstall = ironlake_irq_uninstall;
2080		dev->driver->enable_vblank = ironlake_enable_vblank;
2081		dev->driver->disable_vblank = ironlake_disable_vblank;
2082	} else {
2083		dev->driver->irq_preinstall = i915_driver_irq_preinstall;
2084		dev->driver->irq_postinstall = i915_driver_irq_postinstall;
2085		dev->driver->irq_uninstall = i915_driver_irq_uninstall;
2086		dev->driver->irq_handler = i915_driver_irq_handler;
2087		dev->driver->enable_vblank = i915_enable_vblank;
2088		dev->driver->disable_vblank = i915_disable_vblank;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2089	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2090}
v5.14.15
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/circ_buf.h>
  32#include <linux/slab.h>
  33#include <linux/sysrq.h>
  34
  35#include <drm/drm_drv.h>
  36
  37#include "display/intel_de.h"
  38#include "display/intel_display_types.h"
  39#include "display/intel_fifo_underrun.h"
  40#include "display/intel_hotplug.h"
  41#include "display/intel_lpe_audio.h"
  42#include "display/intel_psr.h"
  43
  44#include "gt/intel_breadcrumbs.h"
  45#include "gt/intel_gt.h"
  46#include "gt/intel_gt_irq.h"
  47#include "gt/intel_gt_pm_irq.h"
  48#include "gt/intel_rps.h"
  49
  50#include "i915_drv.h"
  51#include "i915_irq.h"
  52#include "i915_trace.h"
  53#include "intel_pm.h"
 
 
  54
  55/**
  56 * DOC: interrupt handling
  57 *
  58 * These functions provide the basic support for enabling and disabling the
  59 * interrupt handling support. There's a lot more functionality in i915_irq.c
  60 * and related files, but that will be described in separate chapters.
  61 */
  62
  63/*
  64 * Interrupt statistic for PMU. Increments the counter only if the
  65 * interrupt originated from the the GPU so interrupts from a device which
  66 * shares the interrupt line are not accounted.
  67 */
  68static inline void pmu_irq_stats(struct drm_i915_private *i915,
  69				 irqreturn_t res)
  70{
  71	if (unlikely(res != IRQ_HANDLED))
  72		return;
  73
  74	/*
  75	 * A clever compiler translates that into INC. A not so clever one
  76	 * should at least prevent store tearing.
  77	 */
  78	WRITE_ONCE(i915->pmu.irq_count, i915->pmu.irq_count + 1);
  79}
  80
  81typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
  82typedef u32 (*hotplug_enables_func)(struct drm_i915_private *i915,
  83				    enum hpd_pin pin);
  84
  85static const u32 hpd_ilk[HPD_NUM_PINS] = {
  86	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
  87};
  88
  89static const u32 hpd_ivb[HPD_NUM_PINS] = {
  90	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  91};
  92
  93static const u32 hpd_bdw[HPD_NUM_PINS] = {
  94	[HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
  95};
  96
  97static const u32 hpd_ibx[HPD_NUM_PINS] = {
  98	[HPD_CRT] = SDE_CRT_HOTPLUG,
  99	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
 100	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
 101	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
 102	[HPD_PORT_D] = SDE_PORTD_HOTPLUG,
 103};
 104
 105static const u32 hpd_cpt[HPD_NUM_PINS] = {
 106	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
 107	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
 108	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
 109	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
 110	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
 111};
 112
 113static const u32 hpd_spt[HPD_NUM_PINS] = {
 114	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
 115	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
 116	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
 117	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
 118	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
 119};
 120
 121static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
 122	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
 123	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
 124	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
 125	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
 126	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
 127	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
 128};
 129
 130static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
 131	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 132	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
 133	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
 134	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 135	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 136	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
 137};
 138
 139static const u32 hpd_status_i915[HPD_NUM_PINS] = {
 140	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 141	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
 142	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
 143	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 144	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 145	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
 146};
 147
 148static const u32 hpd_bxt[HPD_NUM_PINS] = {
 149	[HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
 150	[HPD_PORT_B] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_B),
 151	[HPD_PORT_C] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_C),
 152};
 153
 154static const u32 hpd_gen11[HPD_NUM_PINS] = {
 155	[HPD_PORT_TC1] = GEN11_TC_HOTPLUG(HPD_PORT_TC1) | GEN11_TBT_HOTPLUG(HPD_PORT_TC1),
 156	[HPD_PORT_TC2] = GEN11_TC_HOTPLUG(HPD_PORT_TC2) | GEN11_TBT_HOTPLUG(HPD_PORT_TC2),
 157	[HPD_PORT_TC3] = GEN11_TC_HOTPLUG(HPD_PORT_TC3) | GEN11_TBT_HOTPLUG(HPD_PORT_TC3),
 158	[HPD_PORT_TC4] = GEN11_TC_HOTPLUG(HPD_PORT_TC4) | GEN11_TBT_HOTPLUG(HPD_PORT_TC4),
 159	[HPD_PORT_TC5] = GEN11_TC_HOTPLUG(HPD_PORT_TC5) | GEN11_TBT_HOTPLUG(HPD_PORT_TC5),
 160	[HPD_PORT_TC6] = GEN11_TC_HOTPLUG(HPD_PORT_TC6) | GEN11_TBT_HOTPLUG(HPD_PORT_TC6),
 161};
 162
 163static const u32 hpd_icp[HPD_NUM_PINS] = {
 164	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
 165	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
 166	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
 167	[HPD_PORT_TC1] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC1),
 168	[HPD_PORT_TC2] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC2),
 169	[HPD_PORT_TC3] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC3),
 170	[HPD_PORT_TC4] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC4),
 171	[HPD_PORT_TC5] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC5),
 172	[HPD_PORT_TC6] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC6),
 173};
 174
 175static const u32 hpd_sde_dg1[HPD_NUM_PINS] = {
 176	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
 177	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
 178	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
 179	[HPD_PORT_D] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_D),
 180};
 181
 182static void intel_hpd_init_pins(struct drm_i915_private *dev_priv)
 183{
 184	struct i915_hotplug *hpd = &dev_priv->hotplug;
 185
 186	if (HAS_GMCH(dev_priv)) {
 187		if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
 188		    IS_CHERRYVIEW(dev_priv))
 189			hpd->hpd = hpd_status_g4x;
 190		else
 191			hpd->hpd = hpd_status_i915;
 192		return;
 193	}
 194
 195	if (DISPLAY_VER(dev_priv) >= 11)
 196		hpd->hpd = hpd_gen11;
 197	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
 198		hpd->hpd = hpd_bxt;
 199	else if (DISPLAY_VER(dev_priv) >= 8)
 200		hpd->hpd = hpd_bdw;
 201	else if (DISPLAY_VER(dev_priv) >= 7)
 202		hpd->hpd = hpd_ivb;
 203	else
 204		hpd->hpd = hpd_ilk;
 205
 206	if ((INTEL_PCH_TYPE(dev_priv) < PCH_DG1) &&
 207	    (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv)))
 208		return;
 209
 210	if (HAS_PCH_DG1(dev_priv))
 211		hpd->pch_hpd = hpd_sde_dg1;
 212	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
 213		hpd->pch_hpd = hpd_icp;
 214	else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv))
 215		hpd->pch_hpd = hpd_spt;
 216	else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv))
 217		hpd->pch_hpd = hpd_cpt;
 218	else if (HAS_PCH_IBX(dev_priv))
 219		hpd->pch_hpd = hpd_ibx;
 220	else
 221		MISSING_CASE(INTEL_PCH_TYPE(dev_priv));
 222}
 223
 
 224static void
 225intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
 226{
 227	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
 228
 229	drm_crtc_handle_vblank(&crtc->base);
 
 
 230}
 231
 232void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
 233		    i915_reg_t iir, i915_reg_t ier)
 234{
 235	intel_uncore_write(uncore, imr, 0xffffffff);
 236	intel_uncore_posting_read(uncore, imr);
 237
 238	intel_uncore_write(uncore, ier, 0);
 239
 240	/* IIR can theoretically queue up two events. Be paranoid. */
 241	intel_uncore_write(uncore, iir, 0xffffffff);
 242	intel_uncore_posting_read(uncore, iir);
 243	intel_uncore_write(uncore, iir, 0xffffffff);
 244	intel_uncore_posting_read(uncore, iir);
 245}
 246
 247void gen2_irq_reset(struct intel_uncore *uncore)
 248{
 249	intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
 250	intel_uncore_posting_read16(uncore, GEN2_IMR);
 251
 252	intel_uncore_write16(uncore, GEN2_IER, 0);
 253
 254	/* IIR can theoretically queue up two events. Be paranoid. */
 255	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 256	intel_uncore_posting_read16(uncore, GEN2_IIR);
 257	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 258	intel_uncore_posting_read16(uncore, GEN2_IIR);
 259}
 260
 261/*
 262 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
 263 */
 264static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
 265{
 266	u32 val = intel_uncore_read(uncore, reg);
 267
 268	if (val == 0)
 269		return;
 270
 271	drm_WARN(&uncore->i915->drm, 1,
 272		 "Interrupt register 0x%x is not zero: 0x%08x\n",
 273		 i915_mmio_reg_offset(reg), val);
 274	intel_uncore_write(uncore, reg, 0xffffffff);
 275	intel_uncore_posting_read(uncore, reg);
 276	intel_uncore_write(uncore, reg, 0xffffffff);
 277	intel_uncore_posting_read(uncore, reg);
 278}
 279
 280static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
 281{
 282	u16 val = intel_uncore_read16(uncore, GEN2_IIR);
 283
 284	if (val == 0)
 285		return;
 286
 287	drm_WARN(&uncore->i915->drm, 1,
 288		 "Interrupt register 0x%x is not zero: 0x%08x\n",
 289		 i915_mmio_reg_offset(GEN2_IIR), val);
 290	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 291	intel_uncore_posting_read16(uncore, GEN2_IIR);
 292	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 293	intel_uncore_posting_read16(uncore, GEN2_IIR);
 294}
 295
 296void gen3_irq_init(struct intel_uncore *uncore,
 297		   i915_reg_t imr, u32 imr_val,
 298		   i915_reg_t ier, u32 ier_val,
 299		   i915_reg_t iir)
 300{
 301	gen3_assert_iir_is_zero(uncore, iir);
 302
 303	intel_uncore_write(uncore, ier, ier_val);
 304	intel_uncore_write(uncore, imr, imr_val);
 305	intel_uncore_posting_read(uncore, imr);
 306}
 307
 308void gen2_irq_init(struct intel_uncore *uncore,
 309		   u32 imr_val, u32 ier_val)
 310{
 311	gen2_assert_iir_is_zero(uncore);
 
 312
 313	intel_uncore_write16(uncore, GEN2_IER, ier_val);
 314	intel_uncore_write16(uncore, GEN2_IMR, imr_val);
 315	intel_uncore_posting_read16(uncore, GEN2_IMR);
 316}
 317
 318/* For display hotplug interrupt */
 319static inline void
 320i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
 321				     u32 mask,
 322				     u32 bits)
 323{
 324	u32 val;
 325
 326	lockdep_assert_held(&dev_priv->irq_lock);
 327	drm_WARN_ON(&dev_priv->drm, bits & ~mask);
 328
 329	val = intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_EN);
 330	val &= ~mask;
 331	val |= bits;
 332	intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_EN, val);
 333}
 334
 335/**
 336 * i915_hotplug_interrupt_update - update hotplug interrupt enable
 337 * @dev_priv: driver private
 338 * @mask: bits to update
 339 * @bits: bits to enable
 340 * NOTE: the HPD enable bits are modified both inside and outside
 341 * of an interrupt context. To avoid that read-modify-write cycles
 342 * interfer, these bits are protected by a spinlock. Since this
 343 * function is usually not called from a context where the lock is
 344 * held already, this function acquires the lock itself. A non-locking
 345 * version is also available.
 346 */
 347void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
 348				   u32 mask,
 349				   u32 bits)
 350{
 351	spin_lock_irq(&dev_priv->irq_lock);
 352	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
 353	spin_unlock_irq(&dev_priv->irq_lock);
 354}
 355
 356/**
 357 * ilk_update_display_irq - update DEIMR
 358 * @dev_priv: driver private
 359 * @interrupt_mask: mask of interrupt bits to update
 360 * @enabled_irq_mask: mask of interrupt bits to enable
 361 */
 362void ilk_update_display_irq(struct drm_i915_private *dev_priv,
 363			    u32 interrupt_mask,
 364			    u32 enabled_irq_mask)
 365{
 366	u32 new_val;
 367
 368	lockdep_assert_held(&dev_priv->irq_lock);
 369	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
 370
 371	new_val = dev_priv->irq_mask;
 372	new_val &= ~interrupt_mask;
 373	new_val |= (~enabled_irq_mask & interrupt_mask);
 374
 375	if (new_val != dev_priv->irq_mask &&
 376	    !drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) {
 377		dev_priv->irq_mask = new_val;
 378		intel_uncore_write(&dev_priv->uncore, DEIMR, dev_priv->irq_mask);
 379		intel_uncore_posting_read(&dev_priv->uncore, DEIMR);
 380	}
 381}
 382
 383/**
 384 * bdw_update_port_irq - update DE port interrupt
 385 * @dev_priv: driver private
 386 * @interrupt_mask: mask of interrupt bits to update
 387 * @enabled_irq_mask: mask of interrupt bits to enable
 388 */
 389static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
 390				u32 interrupt_mask,
 391				u32 enabled_irq_mask)
 392{
 393	u32 new_val;
 394	u32 old_val;
 395
 396	lockdep_assert_held(&dev_priv->irq_lock);
 397
 398	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
 399
 400	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
 401		return;
 402
 403	old_val = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PORT_IMR);
 404
 405	new_val = old_val;
 406	new_val &= ~interrupt_mask;
 407	new_val |= (~enabled_irq_mask & interrupt_mask);
 408
 409	if (new_val != old_val) {
 410		intel_uncore_write(&dev_priv->uncore, GEN8_DE_PORT_IMR, new_val);
 411		intel_uncore_posting_read(&dev_priv->uncore, GEN8_DE_PORT_IMR);
 412	}
 413}
 414
 415/**
 416 * bdw_update_pipe_irq - update DE pipe interrupt
 417 * @dev_priv: driver private
 418 * @pipe: pipe whose interrupt to update
 419 * @interrupt_mask: mask of interrupt bits to update
 420 * @enabled_irq_mask: mask of interrupt bits to enable
 421 */
 422void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
 423			 enum pipe pipe,
 424			 u32 interrupt_mask,
 425			 u32 enabled_irq_mask)
 426{
 427	u32 new_val;
 
 428
 429	lockdep_assert_held(&dev_priv->irq_lock);
 430
 431	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
 432
 433	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
 434		return;
 435
 436	new_val = dev_priv->de_irq_mask[pipe];
 437	new_val &= ~interrupt_mask;
 438	new_val |= (~enabled_irq_mask & interrupt_mask);
 439
 440	if (new_val != dev_priv->de_irq_mask[pipe]) {
 441		dev_priv->de_irq_mask[pipe] = new_val;
 442		intel_uncore_write(&dev_priv->uncore, GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
 443		intel_uncore_posting_read(&dev_priv->uncore, GEN8_DE_PIPE_IMR(pipe));
 444	}
 445}
 446
 447/**
 448 * ibx_display_interrupt_update - update SDEIMR
 449 * @dev_priv: driver private
 450 * @interrupt_mask: mask of interrupt bits to update
 451 * @enabled_irq_mask: mask of interrupt bits to enable
 452 */
 453void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
 454				  u32 interrupt_mask,
 455				  u32 enabled_irq_mask)
 456{
 457	u32 sdeimr = intel_uncore_read(&dev_priv->uncore, SDEIMR);
 458	sdeimr &= ~interrupt_mask;
 459	sdeimr |= (~enabled_irq_mask & interrupt_mask);
 460
 461	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
 462
 463	lockdep_assert_held(&dev_priv->irq_lock);
 464
 465	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
 466		return;
 467
 468	intel_uncore_write(&dev_priv->uncore, SDEIMR, sdeimr);
 469	intel_uncore_posting_read(&dev_priv->uncore, SDEIMR);
 470}
 471
 472u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
 473			      enum pipe pipe)
 474{
 475	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
 476	u32 enable_mask = status_mask << 16;
 477
 478	lockdep_assert_held(&dev_priv->irq_lock);
 479
 480	if (DISPLAY_VER(dev_priv) < 5)
 481		goto out;
 482
 483	/*
 484	 * On pipe A we don't support the PSR interrupt yet,
 485	 * on pipe B and C the same bit MBZ.
 486	 */
 487	if (drm_WARN_ON_ONCE(&dev_priv->drm,
 488			     status_mask & PIPE_A_PSR_STATUS_VLV))
 489		return 0;
 490	/*
 491	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
 492	 * A the same bit is for perf counters which we don't use either.
 493	 */
 494	if (drm_WARN_ON_ONCE(&dev_priv->drm,
 495			     status_mask & PIPE_B_PSR_STATUS_VLV))
 496		return 0;
 497
 498	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
 499			 SPRITE0_FLIP_DONE_INT_EN_VLV |
 500			 SPRITE1_FLIP_DONE_INT_EN_VLV);
 501	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
 502		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
 503	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
 504		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
 505
 506out:
 507	drm_WARN_ONCE(&dev_priv->drm,
 508		      enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 509		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
 510		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 511		      pipe_name(pipe), enable_mask, status_mask);
 512
 513	return enable_mask;
 514}
 515
 516void i915_enable_pipestat(struct drm_i915_private *dev_priv,
 517			  enum pipe pipe, u32 status_mask)
 518{
 519	i915_reg_t reg = PIPESTAT(pipe);
 520	u32 enable_mask;
 521
 522	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
 523		      "pipe %c: status_mask=0x%x\n",
 524		      pipe_name(pipe), status_mask);
 525
 526	lockdep_assert_held(&dev_priv->irq_lock);
 527	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
 528
 529	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
 530		return;
 531
 532	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
 533	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 534
 535	intel_uncore_write(&dev_priv->uncore, reg, enable_mask | status_mask);
 536	intel_uncore_posting_read(&dev_priv->uncore, reg);
 537}
 538
 539void i915_disable_pipestat(struct drm_i915_private *dev_priv,
 540			   enum pipe pipe, u32 status_mask)
 541{
 542	i915_reg_t reg = PIPESTAT(pipe);
 543	u32 enable_mask;
 544
 545	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
 546		      "pipe %c: status_mask=0x%x\n",
 547		      pipe_name(pipe), status_mask);
 548
 549	lockdep_assert_held(&dev_priv->irq_lock);
 550	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
 551
 552	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
 553		return;
 554
 555	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
 556	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 557
 558	intel_uncore_write(&dev_priv->uncore, reg, enable_mask | status_mask);
 559	intel_uncore_posting_read(&dev_priv->uncore, reg);
 560}
 561
 562static bool i915_has_asle(struct drm_i915_private *dev_priv)
 563{
 564	if (!dev_priv->opregion.asle)
 565		return false;
 566
 567	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
 568}
 569
 570/**
 571 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
 572 * @dev_priv: i915 device private
 
 
 
 
 
 573 */
 574static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
 
 575{
 576	if (!i915_has_asle(dev_priv))
 577		return;
 578
 579	spin_lock_irq(&dev_priv->irq_lock);
 580
 581	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
 582	if (DISPLAY_VER(dev_priv) >= 4)
 583		i915_enable_pipestat(dev_priv, PIPE_A,
 584				     PIPE_LEGACY_BLC_EVENT_STATUS);
 585
 586	spin_unlock_irq(&dev_priv->irq_lock);
 587}
 588
 589/*
 590 * This timing diagram depicts the video signal in and
 591 * around the vertical blanking period.
 592 *
 593 * Assumptions about the fictitious mode used in this example:
 594 *  vblank_start >= 3
 595 *  vsync_start = vblank_start + 1
 596 *  vsync_end = vblank_start + 2
 597 *  vtotal = vblank_start + 3
 598 *
 599 *           start of vblank:
 600 *           latch double buffered registers
 601 *           increment frame counter (ctg+)
 602 *           generate start of vblank interrupt (gen4+)
 603 *           |
 604 *           |          frame start:
 605 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
 606 *           |          may be shifted forward 1-3 extra lines via PIPECONF
 607 *           |          |
 608 *           |          |  start of vsync:
 609 *           |          |  generate vsync interrupt
 610 *           |          |  |
 611 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
 612 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
 613 * ----va---> <-----------------vb--------------------> <--------va-------------
 614 *       |          |       <----vs----->                     |
 615 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
 616 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
 617 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
 618 *       |          |                                         |
 619 *       last visible pixel                                   first visible pixel
 620 *                  |                                         increment frame counter (gen3/4)
 621 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
 622 *
 623 * x  = horizontal active
 624 * _  = horizontal blanking
 625 * hs = horizontal sync
 626 * va = vertical active
 627 * vb = vertical blanking
 628 * vs = vertical sync
 629 * vbs = vblank_start (number)
 630 *
 631 * Summary:
 632 * - most events happen at the start of horizontal sync
 633 * - frame start happens at the start of horizontal blank, 1-4 lines
 634 *   (depending on PIPECONF settings) after the start of vblank
 635 * - gen3/4 pixel and frame counter are synchronized with the start
 636 *   of horizontal active on the first line of vertical active
 637 */
 638
 639/* Called from drm generic code, passed a 'crtc', which
 640 * we use as a pipe index
 641 */
 642u32 i915_get_vblank_counter(struct drm_crtc *crtc)
 643{
 644	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 645	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
 646	const struct drm_display_mode *mode = &vblank->hwmode;
 647	enum pipe pipe = to_intel_crtc(crtc)->pipe;
 648	i915_reg_t high_frame, low_frame;
 649	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
 650	unsigned long irqflags;
 651
 652	/*
 653	 * On i965gm TV output the frame counter only works up to
 654	 * the point when we enable the TV encoder. After that the
 655	 * frame counter ceases to work and reads zero. We need a
 656	 * vblank wait before enabling the TV encoder and so we
 657	 * have to enable vblank interrupts while the frame counter
 658	 * is still in a working state. However the core vblank code
 659	 * does not like us returning non-zero frame counter values
 660	 * when we've told it that we don't have a working frame
 661	 * counter. Thus we must stop non-zero values leaking out.
 662	 */
 663	if (!vblank->max_vblank_count)
 664		return 0;
 665
 666	htotal = mode->crtc_htotal;
 667	hsync_start = mode->crtc_hsync_start;
 668	vbl_start = mode->crtc_vblank_start;
 669	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 670		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 671
 672	/* Convert to pixel count */
 673	vbl_start *= htotal;
 674
 675	/* Start of vblank event occurs at start of hsync */
 676	vbl_start -= htotal - hsync_start;
 677
 678	high_frame = PIPEFRAME(pipe);
 679	low_frame = PIPEFRAMEPIXEL(pipe);
 680
 681	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 682
 683	/*
 684	 * High & low register fields aren't synchronized, so make sure
 685	 * we get a low value that's stable across two reads of the high
 686	 * register.
 687	 */
 688	do {
 689		high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
 690		low   = intel_de_read_fw(dev_priv, low_frame);
 691		high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
 692	} while (high1 != high2);
 693
 694	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 695
 696	high1 >>= PIPE_FRAME_HIGH_SHIFT;
 697	pixel = low & PIPE_PIXEL_MASK;
 698	low >>= PIPE_FRAME_LOW_SHIFT;
 699
 700	/*
 701	 * The frame counter increments at beginning of active.
 702	 * Cook up a vblank counter by also checking the pixel
 703	 * counter against vblank start.
 704	 */
 705	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
 706}
 707
 708u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
 709{
 710	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 711	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
 712	enum pipe pipe = to_intel_crtc(crtc)->pipe;
 713
 714	if (!vblank->max_vblank_count)
 
 
 715		return 0;
 
 716
 717	return intel_uncore_read(&dev_priv->uncore, PIPE_FRMCOUNT_G4X(pipe));
 718}
 719
 720static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc)
 721{
 722	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 723	struct drm_vblank_crtc *vblank =
 724		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 725	const struct drm_display_mode *mode = &vblank->hwmode;
 726	u32 htotal = mode->crtc_htotal;
 727	u32 clock = mode->crtc_clock;
 728	u32 scan_prev_time, scan_curr_time, scan_post_time;
 729
 730	/*
 731	 * To avoid the race condition where we might cross into the
 732	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
 733	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
 734	 * during the same frame.
 735	 */
 736	do {
 737		/*
 738		 * This field provides read back of the display
 739		 * pipe frame time stamp. The time stamp value
 740		 * is sampled at every start of vertical blank.
 741		 */
 742		scan_prev_time = intel_de_read_fw(dev_priv,
 743						  PIPE_FRMTMSTMP(crtc->pipe));
 744
 745		/*
 746		 * The TIMESTAMP_CTR register has the current
 747		 * time stamp value.
 748		 */
 749		scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
 750
 751		scan_post_time = intel_de_read_fw(dev_priv,
 752						  PIPE_FRMTMSTMP(crtc->pipe));
 753	} while (scan_post_time != scan_prev_time);
 754
 755	return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
 756				   clock), 1000 * htotal);
 757}
 758
 759/*
 760 * On certain encoders on certain platforms, pipe
 761 * scanline register will not work to get the scanline,
 762 * since the timings are driven from the PORT or issues
 763 * with scanline register updates.
 764 * This function will use Framestamp and current
 765 * timestamp registers to calculate the scanline.
 766 */
 767static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
 768{
 769	struct drm_vblank_crtc *vblank =
 770		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 771	const struct drm_display_mode *mode = &vblank->hwmode;
 772	u32 vblank_start = mode->crtc_vblank_start;
 773	u32 vtotal = mode->crtc_vtotal;
 774	u32 scanline;
 775
 776	scanline = intel_crtc_scanlines_since_frame_timestamp(crtc);
 777	scanline = min(scanline, vtotal - 1);
 778	scanline = (scanline + vblank_start) % vtotal;
 779
 780	return scanline;
 781}
 782
 783/*
 784 * intel_de_read_fw(), only for fast reads of display block, no need for
 785 * forcewake etc.
 786 */
 787static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
 788{
 789	struct drm_device *dev = crtc->base.dev;
 790	struct drm_i915_private *dev_priv = to_i915(dev);
 791	const struct drm_display_mode *mode;
 792	struct drm_vblank_crtc *vblank;
 793	enum pipe pipe = crtc->pipe;
 794	int position, vtotal;
 795
 796	if (!crtc->active)
 
 
 797		return 0;
 798
 799	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 800	mode = &vblank->hwmode;
 801
 802	if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
 803		return __intel_get_crtc_scanline_from_timestamp(crtc);
 804
 805	vtotal = mode->crtc_vtotal;
 806	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 807		vtotal /= 2;
 808
 809	if (DISPLAY_VER(dev_priv) == 2)
 810		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
 811	else
 812		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 813
 814	/*
 815	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
 816	 * read it just before the start of vblank.  So try it again
 817	 * so we don't accidentally end up spanning a vblank frame
 818	 * increment, causing the pipe_update_end() code to squak at us.
 819	 *
 820	 * The nature of this problem means we can't simply check the ISR
 821	 * bit and return the vblank start value; nor can we use the scanline
 822	 * debug register in the transcoder as it appears to have the same
 823	 * problem.  We may need to extend this to include other platforms,
 824	 * but so far testing only shows the problem on HSW.
 825	 */
 826	if (HAS_DDI(dev_priv) && !position) {
 827		int i, temp;
 828
 829		for (i = 0; i < 100; i++) {
 830			udelay(1);
 831			temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 832			if (temp != position) {
 833				position = temp;
 834				break;
 835			}
 836		}
 837	}
 838
 839	/*
 840	 * See update_scanline_offset() for the details on the
 841	 * scanline_offset adjustment.
 842	 */
 843	return (position + crtc->scanline_offset) % vtotal;
 844}
 845
 846static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
 847				     bool in_vblank_irq,
 848				     int *vpos, int *hpos,
 849				     ktime_t *stime, ktime_t *etime,
 850				     const struct drm_display_mode *mode)
 851{
 852	struct drm_device *dev = _crtc->dev;
 853	struct drm_i915_private *dev_priv = to_i915(dev);
 854	struct intel_crtc *crtc = to_intel_crtc(_crtc);
 855	enum pipe pipe = crtc->pipe;
 856	int position;
 857	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
 858	unsigned long irqflags;
 859	bool use_scanline_counter = DISPLAY_VER(dev_priv) >= 5 ||
 860		IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) == 2 ||
 861		crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
 862
 863	if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
 864		drm_dbg(&dev_priv->drm,
 865			"trying to get scanoutpos for disabled "
 866			"pipe %c\n", pipe_name(pipe));
 867		return false;
 868	}
 869
 870	htotal = mode->crtc_htotal;
 871	hsync_start = mode->crtc_hsync_start;
 872	vtotal = mode->crtc_vtotal;
 873	vbl_start = mode->crtc_vblank_start;
 874	vbl_end = mode->crtc_vblank_end;
 875
 876	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 877		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 878		vbl_end /= 2;
 879		vtotal /= 2;
 880	}
 881
 882	/*
 883	 * Lock uncore.lock, as we will do multiple timing critical raw
 884	 * register reads, potentially with preemption disabled, so the
 885	 * following code must not block on uncore.lock.
 886	 */
 887	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 888
 889	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 890
 891	/* Get optional system timestamp before query. */
 892	if (stime)
 893		*stime = ktime_get();
 894
 895	if (crtc->mode_flags & I915_MODE_FLAG_VRR) {
 896		int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc);
 897
 898		position = __intel_get_crtc_scanline(crtc);
 899
 900		/*
 901		 * Already exiting vblank? If so, shift our position
 902		 * so it looks like we're already apporaching the full
 903		 * vblank end. This should make the generated timestamp
 904		 * more or less match when the active portion will start.
 905		 */
 906		if (position >= vbl_start && scanlines < position)
 907			position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1);
 908	} else if (use_scanline_counter) {
 909		/* No obvious pixelcount register. Only query vertical
 910		 * scanout position from Display scan line register.
 911		 */
 912		position = __intel_get_crtc_scanline(crtc);
 
 
 
 
 
 
 913	} else {
 914		/* Have access to pixelcount since start of frame.
 915		 * We can split this into vertical and horizontal
 916		 * scanout position.
 917		 */
 918		position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
 919
 920		/* convert to pixel counts */
 921		vbl_start *= htotal;
 922		vbl_end *= htotal;
 923		vtotal *= htotal;
 924
 925		/*
 926		 * In interlaced modes, the pixel counter counts all pixels,
 927		 * so one field will have htotal more pixels. In order to avoid
 928		 * the reported position from jumping backwards when the pixel
 929		 * counter is beyond the length of the shorter field, just
 930		 * clamp the position the length of the shorter field. This
 931		 * matches how the scanline counter based position works since
 932		 * the scanline counter doesn't count the two half lines.
 933		 */
 934		if (position >= vtotal)
 935			position = vtotal - 1;
 936
 937		/*
 938		 * Start of vblank interrupt is triggered at start of hsync,
 939		 * just prior to the first active line of vblank. However we
 940		 * consider lines to start at the leading edge of horizontal
 941		 * active. So, should we get here before we've crossed into
 942		 * the horizontal active of the first line in vblank, we would
 943		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
 944		 * always add htotal-hsync_start to the current pixel position.
 945		 */
 946		position = (position + htotal - hsync_start) % vtotal;
 947	}
 948
 949	/* Get optional system timestamp after query. */
 950	if (etime)
 951		*etime = ktime_get();
 952
 953	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 954
 955	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 956
 957	/*
 958	 * While in vblank, position will be negative
 959	 * counting up towards 0 at vbl_end. And outside
 960	 * vblank, position will be positive counting
 961	 * up since vbl_end.
 962	 */
 963	if (position >= vbl_start)
 964		position -= vbl_end;
 965	else
 966		position += vtotal - vbl_end;
 967
 968	if (use_scanline_counter) {
 969		*vpos = position;
 970		*hpos = 0;
 971	} else {
 972		*vpos = position / htotal;
 973		*hpos = position - (*vpos * htotal);
 974	}
 975
 976	return true;
 977}
 978
 979bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
 980				     ktime_t *vblank_time, bool in_vblank_irq)
 981{
 982	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
 983		crtc, max_error, vblank_time, in_vblank_irq,
 984		i915_get_crtc_scanoutpos);
 985}
 
 
 
 
 
 
 
 
 
 
 
 986
 987int intel_get_crtc_scanline(struct intel_crtc *crtc)
 988{
 989	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 990	unsigned long irqflags;
 991	int position;
 992
 993	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 994	position = __intel_get_crtc_scanline(crtc);
 995	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 996
 997	return position;
 998}
 999
1000/**
1001 * ivb_parity_work - Workqueue called when a parity error interrupt
1002 * occurred.
1003 * @work: workqueue struct
1004 *
1005 * Doesn't actually do anything except notify userspace. As a consequence of
1006 * this event, userspace should try to remap the bad rows since statistically
1007 * it is likely the same row is more likely to go bad again.
1008 */
1009static void ivb_parity_work(struct work_struct *work)
1010{
1011	struct drm_i915_private *dev_priv =
1012		container_of(work, typeof(*dev_priv), l3_parity.error_work);
1013	struct intel_gt *gt = &dev_priv->gt;
1014	u32 error_status, row, bank, subbank;
1015	char *parity_event[6];
1016	u32 misccpctl;
1017	u8 slice = 0;
1018
1019	/* We must turn off DOP level clock gating to access the L3 registers.
1020	 * In order to prevent a get/put style interface, acquire struct mutex
1021	 * any time we access those registers.
1022	 */
1023	mutex_lock(&dev_priv->drm.struct_mutex);
1024
1025	/* If we've screwed up tracking, just let the interrupt fire again */
1026	if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
1027		goto out;
1028
1029	misccpctl = intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL);
1030	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1031	intel_uncore_posting_read(&dev_priv->uncore, GEN7_MISCCPCTL);
1032
1033	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1034		i915_reg_t reg;
1035
1036		slice--;
1037		if (drm_WARN_ON_ONCE(&dev_priv->drm,
1038				     slice >= NUM_L3_SLICES(dev_priv)))
1039			break;
1040
1041		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1042
1043		reg = GEN7_L3CDERRST1(slice);
1044
1045		error_status = intel_uncore_read(&dev_priv->uncore, reg);
1046		row = GEN7_PARITY_ERROR_ROW(error_status);
1047		bank = GEN7_PARITY_ERROR_BANK(error_status);
1048		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1049
1050		intel_uncore_write(&dev_priv->uncore, reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1051		intel_uncore_posting_read(&dev_priv->uncore, reg);
1052
1053		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1054		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1055		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1056		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1057		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1058		parity_event[5] = NULL;
1059
1060		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1061				   KOBJ_CHANGE, parity_event);
1062
1063		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1064			  slice, row, bank, subbank);
1065
1066		kfree(parity_event[4]);
1067		kfree(parity_event[3]);
1068		kfree(parity_event[2]);
1069		kfree(parity_event[1]);
1070	}
1071
1072	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
1073
1074out:
1075	drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
1076	spin_lock_irq(&gt->irq_lock);
1077	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1078	spin_unlock_irq(&gt->irq_lock);
1079
1080	mutex_unlock(&dev_priv->drm.struct_mutex);
1081}
1082
1083static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
 
 
 
1084{
1085	switch (pin) {
1086	case HPD_PORT_TC1:
1087	case HPD_PORT_TC2:
1088	case HPD_PORT_TC3:
1089	case HPD_PORT_TC4:
1090	case HPD_PORT_TC5:
1091	case HPD_PORT_TC6:
1092		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(pin);
1093	default:
1094		return false;
1095	}
1096}
1097
1098static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1099{
1100	switch (pin) {
1101	case HPD_PORT_A:
1102		return val & PORTA_HOTPLUG_LONG_DETECT;
1103	case HPD_PORT_B:
1104		return val & PORTB_HOTPLUG_LONG_DETECT;
1105	case HPD_PORT_C:
1106		return val & PORTC_HOTPLUG_LONG_DETECT;
1107	default:
1108		return false;
1109	}
1110}
1111
1112static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1113{
1114	switch (pin) {
1115	case HPD_PORT_A:
1116	case HPD_PORT_B:
1117	case HPD_PORT_C:
1118	case HPD_PORT_D:
1119		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(pin);
1120	default:
1121		return false;
1122	}
1123}
1124
1125static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1126{
1127	switch (pin) {
1128	case HPD_PORT_TC1:
1129	case HPD_PORT_TC2:
1130	case HPD_PORT_TC3:
1131	case HPD_PORT_TC4:
1132	case HPD_PORT_TC5:
1133	case HPD_PORT_TC6:
1134		return val & ICP_TC_HPD_LONG_DETECT(pin);
1135	default:
1136		return false;
1137	}
1138}
1139
1140static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1141{
1142	switch (pin) {
1143	case HPD_PORT_E:
1144		return val & PORTE_HOTPLUG_LONG_DETECT;
1145	default:
1146		return false;
1147	}
1148}
1149
1150static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1151{
1152	switch (pin) {
1153	case HPD_PORT_A:
1154		return val & PORTA_HOTPLUG_LONG_DETECT;
1155	case HPD_PORT_B:
1156		return val & PORTB_HOTPLUG_LONG_DETECT;
1157	case HPD_PORT_C:
1158		return val & PORTC_HOTPLUG_LONG_DETECT;
1159	case HPD_PORT_D:
1160		return val & PORTD_HOTPLUG_LONG_DETECT;
1161	default:
1162		return false;
1163	}
1164}
1165
1166static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1167{
1168	switch (pin) {
1169	case HPD_PORT_A:
1170		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1171	default:
1172		return false;
1173	}
1174}
1175
1176static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1177{
1178	switch (pin) {
1179	case HPD_PORT_B:
1180		return val & PORTB_HOTPLUG_LONG_DETECT;
1181	case HPD_PORT_C:
1182		return val & PORTC_HOTPLUG_LONG_DETECT;
1183	case HPD_PORT_D:
1184		return val & PORTD_HOTPLUG_LONG_DETECT;
1185	default:
1186		return false;
1187	}
1188}
1189
1190static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1191{
1192	switch (pin) {
1193	case HPD_PORT_B:
1194		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1195	case HPD_PORT_C:
1196		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1197	case HPD_PORT_D:
1198		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1199	default:
1200		return false;
1201	}
1202}
1203
1204/*
1205 * Get a bit mask of pins that have triggered, and which ones may be long.
1206 * This can be called multiple times with the same masks to accumulate
1207 * hotplug detection results from several registers.
1208 *
1209 * Note that the caller is expected to zero out the masks initially.
1210 */
1211static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1212			       u32 *pin_mask, u32 *long_mask,
1213			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1214			       const u32 hpd[HPD_NUM_PINS],
1215			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1216{
1217	enum hpd_pin pin;
1218
1219	BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1220
1221	for_each_hpd_pin(pin) {
1222		if ((hpd[pin] & hotplug_trigger) == 0)
1223			continue;
1224
1225		*pin_mask |= BIT(pin);
1226
1227		if (long_pulse_detect(pin, dig_hotplug_reg))
1228			*long_mask |= BIT(pin);
1229	}
1230
1231	drm_dbg(&dev_priv->drm,
1232		"hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1233		hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1234
1235}
1236
1237static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
1238				  const u32 hpd[HPD_NUM_PINS])
1239{
 
 
 
 
1240	struct intel_encoder *encoder;
1241	u32 enabled_irqs = 0;
1242
1243	for_each_intel_encoder(&dev_priv->drm, encoder)
1244		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
1245			enabled_irqs |= hpd[encoder->hpd_pin];
1246
1247	return enabled_irqs;
1248}
1249
1250static u32 intel_hpd_hotplug_irqs(struct drm_i915_private *dev_priv,
1251				  const u32 hpd[HPD_NUM_PINS])
1252{
1253	struct intel_encoder *encoder;
1254	u32 hotplug_irqs = 0;
1255
1256	for_each_intel_encoder(&dev_priv->drm, encoder)
1257		hotplug_irqs |= hpd[encoder->hpd_pin];
1258
1259	return hotplug_irqs;
 
1260}
1261
1262static u32 intel_hpd_hotplug_enables(struct drm_i915_private *i915,
1263				     hotplug_enables_func hotplug_enables)
1264{
1265	struct intel_encoder *encoder;
1266	u32 hotplug = 0;
 
1267
1268	for_each_intel_encoder(&i915->drm, encoder)
1269		hotplug |= hotplug_enables(i915, encoder->hpd_pin);
 
 
 
1270
1271	return hotplug;
1272}
 
 
 
 
 
 
 
 
 
 
1273
1274static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1275{
1276	wake_up_all(&dev_priv->gmbus_wait_queue);
1277}
1278
1279static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1280{
1281	wake_up_all(&dev_priv->gmbus_wait_queue);
1282}
1283
1284#if defined(CONFIG_DEBUG_FS)
1285static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1286					 enum pipe pipe,
1287					 u32 crc0, u32 crc1,
1288					 u32 crc2, u32 crc3,
1289					 u32 crc4)
1290{
1291	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1292	struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1293	u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1294
1295	trace_intel_pipe_crc(crtc, crcs);
1296
1297	spin_lock(&pipe_crc->lock);
1298	/*
1299	 * For some not yet identified reason, the first CRC is
1300	 * bonkers. So let's just wait for the next vblank and read
1301	 * out the buggy result.
1302	 *
1303	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1304	 * don't trust that one either.
1305	 */
1306	if (pipe_crc->skipped <= 0 ||
1307	    (DISPLAY_VER(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1308		pipe_crc->skipped++;
1309		spin_unlock(&pipe_crc->lock);
1310		return;
1311	}
1312	spin_unlock(&pipe_crc->lock);
1313
1314	drm_crtc_add_crc_entry(&crtc->base, true,
1315				drm_crtc_accurate_vblank_count(&crtc->base),
1316				crcs);
1317}
1318#else
1319static inline void
1320display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1321			     enum pipe pipe,
1322			     u32 crc0, u32 crc1,
1323			     u32 crc2, u32 crc3,
1324			     u32 crc4) {}
1325#endif
1326
1327static void flip_done_handler(struct drm_i915_private *i915,
1328			      enum pipe pipe)
1329{
1330	struct intel_crtc *crtc = intel_get_crtc_for_pipe(i915, pipe);
1331	struct drm_crtc_state *crtc_state = crtc->base.state;
1332	struct drm_pending_vblank_event *e = crtc_state->event;
1333	struct drm_device *dev = &i915->drm;
1334	unsigned long irqflags;
1335
1336	spin_lock_irqsave(&dev->event_lock, irqflags);
1337
1338	crtc_state->event = NULL;
1339
1340	drm_crtc_send_vblank_event(&crtc->base, e);
1341
1342	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1343}
1344
1345static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1346				     enum pipe pipe)
1347{
1348	display_pipe_crc_irq_handler(dev_priv, pipe,
1349				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_1_IVB(pipe)),
1350				     0, 0, 0, 0);
1351}
1352
1353static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1354				     enum pipe pipe)
1355{
1356	display_pipe_crc_irq_handler(dev_priv, pipe,
1357				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_1_IVB(pipe)),
1358				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_2_IVB(pipe)),
1359				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_3_IVB(pipe)),
1360				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_4_IVB(pipe)),
1361				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_5_IVB(pipe)));
1362}
1363
1364static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1365				      enum pipe pipe)
1366{
1367	u32 res1, res2;
1368
1369	if (DISPLAY_VER(dev_priv) >= 3)
1370		res1 = intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RES1_I915(pipe));
1371	else
1372		res1 = 0;
1373
1374	if (DISPLAY_VER(dev_priv) >= 5 || IS_G4X(dev_priv))
1375		res2 = intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RES2_G4X(pipe));
1376	else
1377		res2 = 0;
1378
1379	display_pipe_crc_irq_handler(dev_priv, pipe,
1380				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RED(pipe)),
1381				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_GREEN(pipe)),
1382				     intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_BLUE(pipe)),
1383				     res1, res2);
1384}
1385
1386static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1387{
1388	enum pipe pipe;
1389
1390	for_each_pipe(dev_priv, pipe) {
1391		intel_uncore_write(&dev_priv->uncore, PIPESTAT(pipe),
1392			   PIPESTAT_INT_STATUS_MASK |
1393			   PIPE_FIFO_UNDERRUN_STATUS);
1394
1395		dev_priv->pipestat_irq_mask[pipe] = 0;
1396	}
1397}
1398
1399static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1400				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1401{
1402	enum pipe pipe;
 
 
 
1403
1404	spin_lock(&dev_priv->irq_lock);
 
 
 
 
1405
1406	if (!dev_priv->display_irqs_enabled) {
1407		spin_unlock(&dev_priv->irq_lock);
1408		return;
1409	}
1410
1411	for_each_pipe(dev_priv, pipe) {
1412		i915_reg_t reg;
1413		u32 status_mask, enable_mask, iir_bit = 0;
1414
1415		/*
1416		 * PIPESTAT bits get signalled even when the interrupt is
1417		 * disabled with the mask bits, and some of the status bits do
1418		 * not generate interrupts at all (like the underrun bit). Hence
1419		 * we need to be careful that we only handle what we want to
1420		 * handle.
1421		 */
1422
1423		/* fifo underruns are filterered in the underrun handler. */
1424		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1425
1426		switch (pipe) {
1427		default:
1428		case PIPE_A:
1429			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1430			break;
1431		case PIPE_B:
1432			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1433			break;
1434		case PIPE_C:
1435			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1436			break;
1437		}
1438		if (iir & iir_bit)
1439			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1440
1441		if (!status_mask)
1442			continue;
1443
1444		reg = PIPESTAT(pipe);
1445		pipe_stats[pipe] = intel_uncore_read(&dev_priv->uncore, reg) & status_mask;
1446		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1447
1448		/*
1449		 * Clear the PIPE*STAT regs before the IIR
1450		 *
1451		 * Toggle the enable bits to make sure we get an
1452		 * edge in the ISR pipe event bit if we don't clear
1453		 * all the enabled status bits. Otherwise the edge
1454		 * triggered IIR on i965/g4x wouldn't notice that
1455		 * an interrupt is still pending.
1456		 */
1457		if (pipe_stats[pipe]) {
1458			intel_uncore_write(&dev_priv->uncore, reg, pipe_stats[pipe]);
1459			intel_uncore_write(&dev_priv->uncore, reg, enable_mask);
1460		}
 
1461	}
1462	spin_unlock(&dev_priv->irq_lock);
1463}
1464
1465static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1466				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1467{
1468	enum pipe pipe;
1469
1470	for_each_pipe(dev_priv, pipe) {
1471		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1472			intel_handle_vblank(dev_priv, pipe);
1473
1474		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1475			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1476
1477		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1478			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1479	}
1480}
1481
1482static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1483				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1484{
1485	bool blc_event = false;
1486	enum pipe pipe;
 
1487
1488	for_each_pipe(dev_priv, pipe) {
1489		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1490			intel_handle_vblank(dev_priv, pipe);
1491
1492		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1493			blc_event = true;
 
 
1494
1495		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1496			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1497
1498		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1499			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1500	}
1501
1502	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1503		intel_opregion_asle_intr(dev_priv);
1504}
1505
1506static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1507				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1508{
1509	bool blc_event = false;
1510	enum pipe pipe;
1511
1512	for_each_pipe(dev_priv, pipe) {
1513		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1514			intel_handle_vblank(dev_priv, pipe);
 
 
1515
1516		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1517			blc_event = true;
1518
1519		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1520			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1521
1522		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1523			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1524	}
1525
1526	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1527		intel_opregion_asle_intr(dev_priv);
1528
1529	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1530		gmbus_irq_handler(dev_priv);
1531}
1532
1533static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1534					    u32 pipe_stats[I915_MAX_PIPES])
1535{
1536	enum pipe pipe;
 
 
 
 
1537
1538	for_each_pipe(dev_priv, pipe) {
1539		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1540			intel_handle_vblank(dev_priv, pipe);
1541
1542		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1543			flip_done_handler(dev_priv, pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544
1545		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1546			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1547
1548		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1549			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
 
1550	}
1551
1552	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1553		gmbus_irq_handler(dev_priv);
1554}
1555
1556static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1557{
1558	u32 hotplug_status = 0, hotplug_status_mask;
1559	int i;
1560
1561	if (IS_G4X(dev_priv) ||
1562	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1563		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1564			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1565	else
1566		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1567
1568	/*
1569	 * We absolutely have to clear all the pending interrupt
1570	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1571	 * interrupt bit won't have an edge, and the i965/g4x
1572	 * edge triggered IIR will not notice that an interrupt
1573	 * is still pending. We can't use PORT_HOTPLUG_EN to
1574	 * guarantee the edge as the act of toggling the enable
1575	 * bits can itself generate a new hotplug interrupt :(
1576	 */
1577	for (i = 0; i < 10; i++) {
1578		u32 tmp = intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT) & hotplug_status_mask;
1579
1580		if (tmp == 0)
1581			return hotplug_status;
1582
1583		hotplug_status |= tmp;
1584		intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, hotplug_status);
1585	}
1586
1587	drm_WARN_ONCE(&dev_priv->drm, 1,
1588		      "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1589		      intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
1590
1591	return hotplug_status;
1592}
1593
1594static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1595				 u32 hotplug_status)
1596{
1597	u32 pin_mask = 0, long_mask = 0;
1598	u32 hotplug_trigger;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1599
1600	if (IS_G4X(dev_priv) ||
1601	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1602		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1603	else
1604		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1605
1606	if (hotplug_trigger) {
1607		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1608				   hotplug_trigger, hotplug_trigger,
1609				   dev_priv->hotplug.hpd,
1610				   i9xx_port_hotplug_long_detect);
1611
1612		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1613	}
1614
1615	if ((IS_G4X(dev_priv) ||
1616	     IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1617	    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1618		dp_aux_irq_handler(dev_priv);
1619}
1620
1621static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1622{
1623	struct drm_i915_private *dev_priv = arg;
1624	irqreturn_t ret = IRQ_NONE;
 
 
 
 
 
1625
1626	if (!intel_irqs_enabled(dev_priv))
1627		return IRQ_NONE;
1628
1629	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1630	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1631
1632	do {
1633		u32 iir, gt_iir, pm_iir;
1634		u32 pipe_stats[I915_MAX_PIPES] = {};
1635		u32 hotplug_status = 0;
1636		u32 ier = 0;
1637
1638		gt_iir = intel_uncore_read(&dev_priv->uncore, GTIIR);
1639		pm_iir = intel_uncore_read(&dev_priv->uncore, GEN6_PMIIR);
1640		iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
 
 
 
 
1641
1642		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1643			break;
 
 
1644
1645		ret = IRQ_HANDLED;
1646
1647		/*
1648		 * Theory on interrupt generation, based on empirical evidence:
1649		 *
1650		 * x = ((VLV_IIR & VLV_IER) ||
1651		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1652		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1653		 *
1654		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1655		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1656		 * guarantee the CPU interrupt will be raised again even if we
1657		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1658		 * bits this time around.
1659		 */
1660		intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
1661		ier = intel_uncore_read(&dev_priv->uncore, VLV_IER);
1662		intel_uncore_write(&dev_priv->uncore, VLV_IER, 0);
1663
1664		if (gt_iir)
1665			intel_uncore_write(&dev_priv->uncore, GTIIR, gt_iir);
1666		if (pm_iir)
1667			intel_uncore_write(&dev_priv->uncore, GEN6_PMIIR, pm_iir);
1668
1669		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1670			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1671
1672		/* Call regardless, as some status bits might not be
1673		 * signalled in iir */
1674		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1675
1676		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1677			   I915_LPE_PIPE_B_INTERRUPT))
1678			intel_lpe_audio_irq_handler(dev_priv);
1679
1680		/*
1681		 * VLV_IIR is single buffered, and reflects the level
1682		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1683		 */
1684		if (iir)
1685			intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
1686
1687		intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
1688		intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
 
 
1689
1690		if (gt_iir)
1691			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1692		if (pm_iir)
1693			gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1694
1695		if (hotplug_status)
1696			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1697
1698		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1699	} while (0);
1700
1701	pmu_irq_stats(dev_priv, ret);
 
 
 
 
 
1702
1703	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1704
1705	return ret;
1706}
1707
1708static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1709{
1710	struct drm_i915_private *dev_priv = arg;
1711	irqreturn_t ret = IRQ_NONE;
1712
1713	if (!intel_irqs_enabled(dev_priv))
1714		return IRQ_NONE;
1715
1716	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1717	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1718
1719	do {
1720		u32 master_ctl, iir;
1721		u32 pipe_stats[I915_MAX_PIPES] = {};
1722		u32 hotplug_status = 0;
1723		u32 ier = 0;
1724
1725		master_ctl = intel_uncore_read(&dev_priv->uncore, GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1726		iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
1727
1728		if (master_ctl == 0 && iir == 0)
1729			break;
1730
1731		ret = IRQ_HANDLED;
1732
 
1733		/*
1734		 * Theory on interrupt generation, based on empirical evidence:
 
 
 
 
1735		 *
1736		 * x = ((VLV_IIR & VLV_IER) ||
1737		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1738		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1739		 *
1740		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1741		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1742		 * guarantee the CPU interrupt will be raised again even if we
1743		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1744		 * bits this time around.
1745		 */
1746		intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0);
1747		ier = intel_uncore_read(&dev_priv->uncore, VLV_IER);
1748		intel_uncore_write(&dev_priv->uncore, VLV_IER, 0);
1749
1750		gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
1751
1752		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1753			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1754
1755		/* Call regardless, as some status bits might not be
1756		 * signalled in iir */
1757		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1758
1759		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1760			   I915_LPE_PIPE_B_INTERRUPT |
1761			   I915_LPE_PIPE_C_INTERRUPT))
1762			intel_lpe_audio_irq_handler(dev_priv);
1763
1764		/*
1765		 * VLV_IIR is single buffered, and reflects the level
1766		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1767		 */
1768		if (iir)
1769			intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
1770
1771		intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
1772		intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1773
1774		if (hotplug_status)
1775			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1776
1777		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1778	} while (0);
1779
1780	pmu_irq_stats(dev_priv, ret);
1781
1782	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1783
1784	return ret;
1785}
1786
1787static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1788				u32 hotplug_trigger)
 
 
 
 
 
 
1789{
1790	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1791
1792	/*
1793	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1794	 * unless we touch the hotplug register, even if hotplug_trigger is
1795	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1796	 * errors.
1797	 */
1798	dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
1799	if (!hotplug_trigger) {
1800		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1801			PORTD_HOTPLUG_STATUS_MASK |
1802			PORTC_HOTPLUG_STATUS_MASK |
1803			PORTB_HOTPLUG_STATUS_MASK;
1804		dig_hotplug_reg &= ~mask;
 
 
1805	}
1806
1807	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg);
1808	if (!hotplug_trigger)
1809		return;
1810
1811	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1812			   hotplug_trigger, dig_hotplug_reg,
1813			   dev_priv->hotplug.pch_hpd,
1814			   pch_port_hotplug_long_detect);
1815
1816	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1817}
1818
1819static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
 
 
 
1820{
1821	enum pipe pipe;
1822	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
 
1823
1824	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
 
1825
1826	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1827		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1828			       SDE_AUDIO_POWER_SHIFT);
1829		drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1830			port_name(port));
1831	}
1832
1833	if (pch_iir & SDE_AUX_MASK)
1834		dp_aux_irq_handler(dev_priv);
 
1835
1836	if (pch_iir & SDE_GMBUS)
1837		gmbus_irq_handler(dev_priv);
 
 
 
1838
1839	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1840		drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
 
1841
1842	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1843		drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
 
 
 
 
1844
1845	if (pch_iir & SDE_POISON)
1846		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1847
1848	if (pch_iir & SDE_FDI_MASK) {
1849		for_each_pipe(dev_priv, pipe)
1850			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1851				pipe_name(pipe),
1852				intel_uncore_read(&dev_priv->uncore, FDI_RX_IIR(pipe)));
1853	}
 
 
1854
1855	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1856		drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1857
1858	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1859		drm_dbg(&dev_priv->drm,
1860			"PCH transcoder CRC error interrupt\n");
1861
1862	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1863		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1864
1865	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1866		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1867}
1868
1869static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
 
1870{
1871	u32 err_int = intel_uncore_read(&dev_priv->uncore, GEN7_ERR_INT);
1872	enum pipe pipe;
1873
1874	if (err_int & ERR_INT_POISON)
1875		drm_err(&dev_priv->drm, "Poison interrupt\n");
1876
1877	for_each_pipe(dev_priv, pipe) {
1878		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1879			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1880
1881		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1882			if (IS_IVYBRIDGE(dev_priv))
1883				ivb_pipe_crc_irq_handler(dev_priv, pipe);
1884			else
1885				hsw_pipe_crc_irq_handler(dev_priv, pipe);
1886		}
1887	}
1888
1889	intel_uncore_write(&dev_priv->uncore, GEN7_ERR_INT, err_int);
1890}
1891
1892static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
 
 
1893{
1894	u32 serr_int = intel_uncore_read(&dev_priv->uncore, SERR_INT);
1895	enum pipe pipe;
1896
1897	if (serr_int & SERR_INT_POISON)
1898		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1899
1900	for_each_pipe(dev_priv, pipe)
1901		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1902			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1903
1904	intel_uncore_write(&dev_priv->uncore, SERR_INT, serr_int);
1905}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1906
1907static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1908{
1909	enum pipe pipe;
1910	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1911
1912	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1913
1914	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1915		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1916			       SDE_AUDIO_POWER_SHIFT_CPT);
1917		drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1918			port_name(port));
1919	}
1920
1921	if (pch_iir & SDE_AUX_MASK_CPT)
1922		dp_aux_irq_handler(dev_priv);
1923
1924	if (pch_iir & SDE_GMBUS_CPT)
1925		gmbus_irq_handler(dev_priv);
1926
1927	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1928		drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1929
1930	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1931		drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1932
1933	if (pch_iir & SDE_FDI_MASK_CPT) {
1934		for_each_pipe(dev_priv, pipe)
1935			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1936				pipe_name(pipe),
1937				intel_uncore_read(&dev_priv->uncore, FDI_RX_IIR(pipe)));
1938	}
1939
1940	if (pch_iir & SDE_ERROR_CPT)
1941		cpt_serr_int_handler(dev_priv);
1942}
1943
1944static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
 
1945{
1946	u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_HOTPLUG_MASK_ICP;
1947	u32 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_MASK_ICP;
1948	u32 pin_mask = 0, long_mask = 0;
1949
1950	if (ddi_hotplug_trigger) {
1951		u32 dig_hotplug_reg;
1952
1953		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_DDI);
1954		intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_DDI, dig_hotplug_reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1955
1956		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1957				   ddi_hotplug_trigger, dig_hotplug_reg,
1958				   dev_priv->hotplug.pch_hpd,
1959				   icp_ddi_port_hotplug_long_detect);
1960	}
1961
1962	if (tc_hotplug_trigger) {
1963		u32 dig_hotplug_reg;
1964
1965		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_TC);
1966		intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_TC, dig_hotplug_reg);
1967
1968		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1969				   tc_hotplug_trigger, dig_hotplug_reg,
1970				   dev_priv->hotplug.pch_hpd,
1971				   icp_tc_port_hotplug_long_detect);
1972	}
1973
1974	if (pin_mask)
1975		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1976
1977	if (pch_iir & SDE_GMBUS_ICP)
1978		gmbus_irq_handler(dev_priv);
1979}
1980
1981static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1982{
1983	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1984		~SDE_PORTE_HOTPLUG_SPT;
1985	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1986	u32 pin_mask = 0, long_mask = 0;
 
 
 
 
 
 
 
 
1987
1988	if (hotplug_trigger) {
1989		u32 dig_hotplug_reg;
1990
1991		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
1992		intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg);
1993
1994		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1995				   hotplug_trigger, dig_hotplug_reg,
1996				   dev_priv->hotplug.pch_hpd,
1997				   spt_port_hotplug_long_detect);
1998	}
1999
2000	if (hotplug2_trigger) {
2001		u32 dig_hotplug_reg;
2002
2003		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG2);
2004		intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2005
2006		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2007				   hotplug2_trigger, dig_hotplug_reg,
2008				   dev_priv->hotplug.pch_hpd,
2009				   spt_port_hotplug2_long_detect);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2010	}
2011
2012	if (pin_mask)
2013		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014
2015	if (pch_iir & SDE_GMBUS_CPT)
2016		gmbus_irq_handler(dev_priv);
2017}
 
 
 
2018
2019static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2020				u32 hotplug_trigger)
2021{
2022	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2023
2024	dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL);
2025	intel_uncore_write(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2026
2027	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2028			   hotplug_trigger, dig_hotplug_reg,
2029			   dev_priv->hotplug.hpd,
2030			   ilk_port_hotplug_long_detect);
2031
2032	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2033}
2034
2035static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2036				    u32 de_iir)
2037{
2038	enum pipe pipe;
2039	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2040
2041	if (hotplug_trigger)
2042		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2043
2044	if (de_iir & DE_AUX_CHANNEL_A)
2045		dp_aux_irq_handler(dev_priv);
2046
2047	if (de_iir & DE_GSE)
2048		intel_opregion_asle_intr(dev_priv);
2049
2050	if (de_iir & DE_POISON)
2051		drm_err(&dev_priv->drm, "Poison interrupt\n");
2052
2053	for_each_pipe(dev_priv, pipe) {
2054		if (de_iir & DE_PIPE_VBLANK(pipe))
2055			intel_handle_vblank(dev_priv, pipe);
2056
2057		if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2058			flip_done_handler(dev_priv, pipe);
2059
2060		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2061			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2062
2063		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2064			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2065	}
2066
2067	/* check event from PCH */
2068	if (de_iir & DE_PCH_EVENT) {
2069		u32 pch_iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2070
2071		if (HAS_PCH_CPT(dev_priv))
2072			cpt_irq_handler(dev_priv, pch_iir);
2073		else
2074			ibx_irq_handler(dev_priv, pch_iir);
2075
2076		/* should clear PCH hotplug event before clear CPU irq */
2077		intel_uncore_write(&dev_priv->uncore, SDEIIR, pch_iir);
2078	}
2079
2080	if (DISPLAY_VER(dev_priv) == 5 && de_iir & DE_PCU_EVENT)
2081		gen5_rps_irq_handler(&dev_priv->gt.rps);
2082}
2083
2084static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2085				    u32 de_iir)
2086{
2087	enum pipe pipe;
2088	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2089
2090	if (hotplug_trigger)
2091		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2092
2093	if (de_iir & DE_ERR_INT_IVB)
2094		ivb_err_int_handler(dev_priv);
2095
2096	if (de_iir & DE_EDP_PSR_INT_HSW) {
2097		struct intel_encoder *encoder;
2098
2099		for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2100			struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 
 
 
 
 
2101
2102			u32 psr_iir = intel_uncore_read(&dev_priv->uncore,
2103							EDP_PSR_IIR);
2104
2105			intel_psr_irq_handler(intel_dp, psr_iir);
2106			intel_uncore_write(&dev_priv->uncore,
2107					   EDP_PSR_IIR, psr_iir);
2108			break;
 
 
 
 
 
 
 
2109		}
2110	}
2111
2112	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2113		dp_aux_irq_handler(dev_priv);
2114
2115	if (de_iir & DE_GSE_IVB)
2116		intel_opregion_asle_intr(dev_priv);
2117
2118	for_each_pipe(dev_priv, pipe) {
2119		if (de_iir & DE_PIPE_VBLANK_IVB(pipe))
2120			intel_handle_vblank(dev_priv, pipe);
2121
2122		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2123			flip_done_handler(dev_priv, pipe);
2124	}
2125
2126	/* check event from PCH */
2127	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2128		u32 pch_iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2129
2130		cpt_irq_handler(dev_priv, pch_iir);
2131
2132		/* clear PCH hotplug event before clear CPU irq */
2133		intel_uncore_write(&dev_priv->uncore, SDEIIR, pch_iir);
2134	}
2135}
2136
2137/*
2138 * To handle irqs with the minimum potential races with fresh interrupts, we:
2139 * 1 - Disable Master Interrupt Control.
2140 * 2 - Find the source(s) of the interrupt.
2141 * 3 - Clear the Interrupt Identity bits (IIR).
2142 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2143 * 5 - Re-enable Master Interrupt Control.
2144 */
2145static irqreturn_t ilk_irq_handler(int irq, void *arg)
2146{
2147	struct drm_i915_private *i915 = arg;
2148	void __iomem * const regs = i915->uncore.regs;
2149	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2150	irqreturn_t ret = IRQ_NONE;
 
 
 
 
 
 
2151
2152	if (unlikely(!intel_irqs_enabled(i915)))
2153		return IRQ_NONE;
2154
2155	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2156	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2157
2158	/* disable master interrupt before clearing iir  */
2159	de_ier = raw_reg_read(regs, DEIER);
2160	raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2161
2162	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2163	 * interrupts will will be stored on its back queue, and then we'll be
2164	 * able to process them after we restore SDEIER (as soon as we restore
2165	 * it, we'll get an interrupt if SDEIIR still has something to process
2166	 * due to its back queue). */
2167	if (!HAS_PCH_NOP(i915)) {
2168		sde_ier = raw_reg_read(regs, SDEIER);
2169		raw_reg_write(regs, SDEIER, 0);
2170	}
2171
2172	/* Find, clear, then process each source of interrupt */
2173
2174	gt_iir = raw_reg_read(regs, GTIIR);
2175	if (gt_iir) {
2176		raw_reg_write(regs, GTIIR, gt_iir);
2177		if (GRAPHICS_VER(i915) >= 6)
2178			gen6_gt_irq_handler(&i915->gt, gt_iir);
2179		else
2180			gen5_gt_irq_handler(&i915->gt, gt_iir);
2181		ret = IRQ_HANDLED;
2182	}
2183
2184	de_iir = raw_reg_read(regs, DEIIR);
2185	if (de_iir) {
2186		raw_reg_write(regs, DEIIR, de_iir);
2187		if (DISPLAY_VER(i915) >= 7)
2188			ivb_display_irq_handler(i915, de_iir);
2189		else
2190			ilk_display_irq_handler(i915, de_iir);
2191		ret = IRQ_HANDLED;
2192	}
2193
2194	if (GRAPHICS_VER(i915) >= 6) {
2195		u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
2196		if (pm_iir) {
2197			raw_reg_write(regs, GEN6_PMIIR, pm_iir);
2198			gen6_rps_irq_handler(&i915->gt.rps, pm_iir);
2199			ret = IRQ_HANDLED;
2200		}
2201	}
2202
2203	raw_reg_write(regs, DEIER, de_ier);
2204	if (sde_ier)
2205		raw_reg_write(regs, SDEIER, sde_ier);
2206
2207	pmu_irq_stats(i915, ret);
2208
2209	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2210	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2211
2212	return ret;
2213}
2214
2215static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2216				u32 hotplug_trigger)
2217{
2218	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
 
 
 
 
 
 
2219
2220	dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
2221	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg);
 
2222
2223	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2224			   hotplug_trigger, dig_hotplug_reg,
2225			   dev_priv->hotplug.hpd,
2226			   bxt_port_hotplug_long_detect);
2227
2228	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2229}
 
 
 
2230
2231static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2232{
2233	u32 pin_mask = 0, long_mask = 0;
2234	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2235	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2236
2237	if (trigger_tc) {
2238		u32 dig_hotplug_reg;
2239
2240		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL);
2241		intel_uncore_write(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2242
2243		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2244				   trigger_tc, dig_hotplug_reg,
2245				   dev_priv->hotplug.hpd,
2246				   gen11_port_hotplug_long_detect);
2247	}
2248
2249	if (trigger_tbt) {
2250		u32 dig_hotplug_reg;
2251
2252		dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL);
2253		intel_uncore_write(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2254
2255		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2256				   trigger_tbt, dig_hotplug_reg,
2257				   dev_priv->hotplug.hpd,
2258				   gen11_port_hotplug_long_detect);
2259	}
2260
2261	if (pin_mask)
2262		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2263	else
2264		drm_err(&dev_priv->drm,
2265			"Unexpected DE HPD interrupt 0x%08x\n", iir);
2266}
2267
2268static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2269{
2270	u32 mask;
 
 
 
 
 
 
 
 
 
 
2271
2272	if (DISPLAY_VER(dev_priv) >= 13)
2273		return TGL_DE_PORT_AUX_DDIA |
2274			TGL_DE_PORT_AUX_DDIB |
2275			TGL_DE_PORT_AUX_DDIC |
2276			XELPD_DE_PORT_AUX_DDID |
2277			XELPD_DE_PORT_AUX_DDIE |
2278			TGL_DE_PORT_AUX_USBC1 |
2279			TGL_DE_PORT_AUX_USBC2 |
2280			TGL_DE_PORT_AUX_USBC3 |
2281			TGL_DE_PORT_AUX_USBC4;
2282	else if (DISPLAY_VER(dev_priv) >= 12)
2283		return TGL_DE_PORT_AUX_DDIA |
2284			TGL_DE_PORT_AUX_DDIB |
2285			TGL_DE_PORT_AUX_DDIC |
2286			TGL_DE_PORT_AUX_USBC1 |
2287			TGL_DE_PORT_AUX_USBC2 |
2288			TGL_DE_PORT_AUX_USBC3 |
2289			TGL_DE_PORT_AUX_USBC4 |
2290			TGL_DE_PORT_AUX_USBC5 |
2291			TGL_DE_PORT_AUX_USBC6;
2292
2293
2294	mask = GEN8_AUX_CHANNEL_A;
2295	if (DISPLAY_VER(dev_priv) >= 9)
2296		mask |= GEN9_AUX_CHANNEL_B |
2297			GEN9_AUX_CHANNEL_C |
2298			GEN9_AUX_CHANNEL_D;
2299
2300	if (IS_CNL_WITH_PORT_F(dev_priv) || DISPLAY_VER(dev_priv) == 11)
2301		mask |= CNL_AUX_CHANNEL_F;
2302
2303	if (DISPLAY_VER(dev_priv) == 11)
2304		mask |= ICL_AUX_CHANNEL_E;
2305
2306	return mask;
2307}
2308
2309static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2310{
2311	if (DISPLAY_VER(dev_priv) >= 13 || HAS_D12_PLANE_MINIMIZATION(dev_priv))
2312		return RKL_DE_PIPE_IRQ_FAULT_ERRORS;
2313	else if (DISPLAY_VER(dev_priv) >= 11)
2314		return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2315	else if (DISPLAY_VER(dev_priv) >= 9)
2316		return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2317	else
2318		return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2319}
2320
2321static void
2322gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2323{
2324	bool found = false;
2325
2326	if (iir & GEN8_DE_MISC_GSE) {
2327		intel_opregion_asle_intr(dev_priv);
2328		found = true;
2329	}
2330
2331	if (iir & GEN8_DE_EDP_PSR) {
2332		struct intel_encoder *encoder;
2333		u32 psr_iir;
2334		i915_reg_t iir_reg;
2335
2336		for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2337			struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 
 
 
 
 
 
 
 
 
 
2338
2339			if (DISPLAY_VER(dev_priv) >= 12)
2340				iir_reg = TRANS_PSR_IIR(intel_dp->psr.transcoder);
2341			else
2342				iir_reg = EDP_PSR_IIR;
 
 
 
 
 
 
 
 
2343
2344			psr_iir = intel_uncore_read(&dev_priv->uncore, iir_reg);
2345			intel_uncore_write(&dev_priv->uncore, iir_reg, psr_iir);
2346
2347			if (psr_iir)
2348				found = true;
2349
2350			intel_psr_irq_handler(intel_dp, psr_iir);
 
 
 
 
 
 
 
 
 
2351
2352			/* prior GEN12 only have one EDP PSR */
2353			if (DISPLAY_VER(dev_priv) < 12)
2354				break;
2355		}
2356	}
2357
2358	if (!found)
2359		drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2360}
2361
2362static void gen11_dsi_te_interrupt_handler(struct drm_i915_private *dev_priv,
2363					   u32 te_trigger)
2364{
2365	enum pipe pipe = INVALID_PIPE;
2366	enum transcoder dsi_trans;
2367	enum port port;
2368	u32 val, tmp;
2369
2370	/*
2371	 * Incase of dual link, TE comes from DSI_1
2372	 * this is to check if dual link is enabled
2373	 */
2374	val = intel_uncore_read(&dev_priv->uncore, TRANS_DDI_FUNC_CTL2(TRANSCODER_DSI_0));
2375	val &= PORT_SYNC_MODE_ENABLE;
2376
2377	/*
2378	 * if dual link is enabled, then read DSI_0
2379	 * transcoder registers
2380	 */
2381	port = ((te_trigger & DSI1_TE && val) || (te_trigger & DSI0_TE)) ?
2382						  PORT_A : PORT_B;
2383	dsi_trans = (port == PORT_A) ? TRANSCODER_DSI_0 : TRANSCODER_DSI_1;
2384
2385	/* Check if DSI configured in command mode */
2386	val = intel_uncore_read(&dev_priv->uncore, DSI_TRANS_FUNC_CONF(dsi_trans));
2387	val = val & OP_MODE_MASK;
2388
2389	if (val != CMD_MODE_NO_GATE && val != CMD_MODE_TE_GATE) {
2390		drm_err(&dev_priv->drm, "DSI trancoder not configured in command mode\n");
2391		return;
2392	}
2393
2394	/* Get PIPE for handling VBLANK event */
2395	val = intel_uncore_read(&dev_priv->uncore, TRANS_DDI_FUNC_CTL(dsi_trans));
2396	switch (val & TRANS_DDI_EDP_INPUT_MASK) {
2397	case TRANS_DDI_EDP_INPUT_A_ON:
2398		pipe = PIPE_A;
2399		break;
2400	case TRANS_DDI_EDP_INPUT_B_ONOFF:
2401		pipe = PIPE_B;
2402		break;
2403	case TRANS_DDI_EDP_INPUT_C_ONOFF:
2404		pipe = PIPE_C;
2405		break;
2406	default:
2407		drm_err(&dev_priv->drm, "Invalid PIPE\n");
2408		return;
2409	}
2410
2411	intel_handle_vblank(dev_priv, pipe);
2412
2413	/* clear TE in dsi IIR */
2414	port = (te_trigger & DSI1_TE) ? PORT_B : PORT_A;
2415	tmp = intel_uncore_read(&dev_priv->uncore, DSI_INTR_IDENT_REG(port));
2416	intel_uncore_write(&dev_priv->uncore, DSI_INTR_IDENT_REG(port), tmp);
2417}
2418
2419static u32 gen8_de_pipe_flip_done_mask(struct drm_i915_private *i915)
2420{
2421	if (DISPLAY_VER(i915) >= 9)
2422		return GEN9_PIPE_PLANE1_FLIP_DONE;
2423	else
2424		return GEN8_PIPE_PRIMARY_FLIP_DONE;
2425}
2426
2427u32 gen8_de_pipe_underrun_mask(struct drm_i915_private *dev_priv)
2428{
2429	u32 mask = GEN8_PIPE_FIFO_UNDERRUN;
2430
2431	if (DISPLAY_VER(dev_priv) >= 13)
2432		mask |= XELPD_PIPE_SOFT_UNDERRUN |
2433			XELPD_PIPE_HARD_UNDERRUN;
2434
2435	return mask;
2436}
2437
2438static irqreturn_t
2439gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2440{
2441	irqreturn_t ret = IRQ_NONE;
2442	u32 iir;
2443	enum pipe pipe;
2444
2445	drm_WARN_ON_ONCE(&dev_priv->drm, !HAS_DISPLAY(dev_priv));
2446
2447	if (master_ctl & GEN8_DE_MISC_IRQ) {
2448		iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_MISC_IIR);
2449		if (iir) {
2450			intel_uncore_write(&dev_priv->uncore, GEN8_DE_MISC_IIR, iir);
2451			ret = IRQ_HANDLED;
2452			gen8_de_misc_irq_handler(dev_priv, iir);
2453		} else {
2454			drm_err(&dev_priv->drm,
2455				"The master control interrupt lied (DE MISC)!\n");
2456		}
2457	}
2458
2459	if (DISPLAY_VER(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2460		iir = intel_uncore_read(&dev_priv->uncore, GEN11_DE_HPD_IIR);
2461		if (iir) {
2462			intel_uncore_write(&dev_priv->uncore, GEN11_DE_HPD_IIR, iir);
2463			ret = IRQ_HANDLED;
2464			gen11_hpd_irq_handler(dev_priv, iir);
2465		} else {
2466			drm_err(&dev_priv->drm,
2467				"The master control interrupt lied, (DE HPD)!\n");
2468		}
2469	}
2470
2471	if (master_ctl & GEN8_DE_PORT_IRQ) {
2472		iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PORT_IIR);
2473		if (iir) {
2474			bool found = false;
2475
2476			intel_uncore_write(&dev_priv->uncore, GEN8_DE_PORT_IIR, iir);
2477			ret = IRQ_HANDLED;
2478
2479			if (iir & gen8_de_port_aux_mask(dev_priv)) {
2480				dp_aux_irq_handler(dev_priv);
2481				found = true;
2482			}
2483
2484			if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
2485				u32 hotplug_trigger = iir & BXT_DE_PORT_HOTPLUG_MASK;
2486
2487				if (hotplug_trigger) {
2488					bxt_hpd_irq_handler(dev_priv, hotplug_trigger);
2489					found = true;
2490				}
2491			} else if (IS_BROADWELL(dev_priv)) {
2492				u32 hotplug_trigger = iir & BDW_DE_PORT_HOTPLUG_MASK;
2493
2494				if (hotplug_trigger) {
2495					ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2496					found = true;
2497				}
2498			}
2499
2500			if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
2501			    (iir & BXT_DE_PORT_GMBUS)) {
2502				gmbus_irq_handler(dev_priv);
2503				found = true;
2504			}
2505
2506			if (DISPLAY_VER(dev_priv) >= 11) {
2507				u32 te_trigger = iir & (DSI0_TE | DSI1_TE);
2508
2509				if (te_trigger) {
2510					gen11_dsi_te_interrupt_handler(dev_priv, te_trigger);
2511					found = true;
2512				}
2513			}
2514
2515			if (!found)
2516				drm_err(&dev_priv->drm,
2517					"Unexpected DE Port interrupt\n");
2518		}
2519		else
2520			drm_err(&dev_priv->drm,
2521				"The master control interrupt lied (DE PORT)!\n");
2522	}
2523
2524	for_each_pipe(dev_priv, pipe) {
2525		u32 fault_errors;
2526
2527		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2528			continue;
2529
2530		iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PIPE_IIR(pipe));
2531		if (!iir) {
2532			drm_err(&dev_priv->drm,
2533				"The master control interrupt lied (DE PIPE)!\n");
2534			continue;
2535		}
2536
2537		ret = IRQ_HANDLED;
2538		intel_uncore_write(&dev_priv->uncore, GEN8_DE_PIPE_IIR(pipe), iir);
2539
2540		if (iir & GEN8_PIPE_VBLANK)
2541			intel_handle_vblank(dev_priv, pipe);
2542
2543		if (iir & gen8_de_pipe_flip_done_mask(dev_priv))
2544			flip_done_handler(dev_priv, pipe);
2545
2546		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2547			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2548
2549		if (iir & gen8_de_pipe_underrun_mask(dev_priv))
2550			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2551
2552		fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2553		if (fault_errors)
2554			drm_err(&dev_priv->drm,
2555				"Fault errors on pipe %c: 0x%08x\n",
2556				pipe_name(pipe),
2557				fault_errors);
2558	}
2559
2560	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2561	    master_ctl & GEN8_DE_PCH_IRQ) {
2562		/*
2563		 * FIXME(BDW): Assume for now that the new interrupt handling
2564		 * scheme also closed the SDE interrupt handling race we've seen
2565		 * on older pch-split platforms. But this needs testing.
2566		 */
2567		iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
2568		if (iir) {
2569			intel_uncore_write(&dev_priv->uncore, SDEIIR, iir);
2570			ret = IRQ_HANDLED;
2571
2572			if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2573				icp_irq_handler(dev_priv, iir);
2574			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2575				spt_irq_handler(dev_priv, iir);
2576			else
2577				cpt_irq_handler(dev_priv, iir);
2578		} else {
2579			/*
2580			 * Like on previous PCH there seems to be something
2581			 * fishy going on with forwarding PCH interrupts.
2582			 */
2583			drm_dbg(&dev_priv->drm,
2584				"The master control interrupt lied (SDE)!\n");
2585		}
2586	}
2587
2588	return ret;
2589}
2590
2591static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2592{
2593	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2594
2595	/*
2596	 * Now with master disabled, get a sample of level indications
2597	 * for this interrupt. Indications will be cleared on related acks.
2598	 * New indications can and will light up during processing,
2599	 * and will generate new interrupt after enabling master.
2600	 */
2601	return raw_reg_read(regs, GEN8_MASTER_IRQ);
2602}
2603
2604static inline void gen8_master_intr_enable(void __iomem * const regs)
2605{
2606	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2607}
2608
2609static irqreturn_t gen8_irq_handler(int irq, void *arg)
2610{
2611	struct drm_i915_private *dev_priv = arg;
2612	void __iomem * const regs = dev_priv->uncore.regs;
2613	u32 master_ctl;
2614
2615	if (!intel_irqs_enabled(dev_priv))
2616		return IRQ_NONE;
2617
2618	master_ctl = gen8_master_intr_disable(regs);
2619	if (!master_ctl) {
2620		gen8_master_intr_enable(regs);
2621		return IRQ_NONE;
2622	}
2623
2624	/* Find, queue (onto bottom-halves), then clear each source */
2625	gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
 
 
 
2626
2627	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2628	if (master_ctl & ~GEN8_GT_IRQS) {
2629		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2630		gen8_de_irq_handler(dev_priv, master_ctl);
2631		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
2632	}
2633
2634	gen8_master_intr_enable(regs);
2635
2636	pmu_irq_stats(dev_priv, IRQ_HANDLED);
2637
2638	return IRQ_HANDLED;
2639}
2640
2641static u32
2642gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2643{
2644	void __iomem * const regs = gt->uncore->regs;
2645	u32 iir;
 
 
2646
2647	if (!(master_ctl & GEN11_GU_MISC_IRQ))
 
 
 
 
 
2648		return 0;
 
2649
2650	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2651	if (likely(iir))
2652		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2653
2654	return iir;
2655}
 
 
 
 
 
 
 
 
 
2656
2657static void
2658gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2659{
2660	if (iir & GEN11_GU_MISC_GSE)
2661		intel_opregion_asle_intr(gt->i915);
2662}
2663
2664static inline u32 gen11_master_intr_disable(void __iomem * const regs)
 
 
 
2665{
2666	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
 
 
2667
2668	/*
2669	 * Now with master disabled, get a sample of level indications
2670	 * for this interrupt. Indications will be cleared on related acks.
2671	 * New indications can and will light up during processing,
2672	 * and will generate new interrupt after enabling master.
2673	 */
2674	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2675}
2676
2677static inline void gen11_master_intr_enable(void __iomem * const regs)
2678{
2679	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2680}
2681
2682static void
2683gen11_display_irq_handler(struct drm_i915_private *i915)
2684{
2685	void __iomem * const regs = i915->uncore.regs;
2686	const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2687
2688	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2689	/*
2690	 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2691	 * for the display related bits.
2692	 */
2693	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2694	gen8_de_irq_handler(i915, disp_ctl);
2695	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2696		      GEN11_DISPLAY_IRQ_ENABLE);
2697
2698	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2699}
2700
2701static __always_inline irqreturn_t
2702__gen11_irq_handler(struct drm_i915_private * const i915,
2703		    u32 (*intr_disable)(void __iomem * const regs),
2704		    void (*intr_enable)(void __iomem * const regs))
2705{
2706	void __iomem * const regs = i915->uncore.regs;
2707	struct intel_gt *gt = &i915->gt;
2708	u32 master_ctl;
2709	u32 gu_misc_iir;
2710
2711	if (!intel_irqs_enabled(i915))
2712		return IRQ_NONE;
2713
2714	master_ctl = intr_disable(regs);
2715	if (!master_ctl) {
2716		intr_enable(regs);
2717		return IRQ_NONE;
2718	}
2719
2720	/* Find, queue (onto bottom-halves), then clear each source */
2721	gen11_gt_irq_handler(gt, master_ctl);
2722
2723	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2724	if (master_ctl & GEN11_DISPLAY_IRQ)
2725		gen11_display_irq_handler(i915);
2726
2727	gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2728
2729	intr_enable(regs);
2730
2731	gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2732
2733	pmu_irq_stats(i915, IRQ_HANDLED);
2734
2735	return IRQ_HANDLED;
2736}
2737
2738static irqreturn_t gen11_irq_handler(int irq, void *arg)
2739{
2740	return __gen11_irq_handler(arg,
2741				   gen11_master_intr_disable,
2742				   gen11_master_intr_enable);
2743}
2744
2745static u32 dg1_master_intr_disable_and_ack(void __iomem * const regs)
2746{
2747	u32 val;
2748
2749	/* First disable interrupts */
2750	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, 0);
2751
2752	/* Get the indication levels and ack the master unit */
2753	val = raw_reg_read(regs, DG1_MSTR_UNIT_INTR);
2754	if (unlikely(!val))
2755		return 0;
2756
2757	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, val);
2758
2759	/*
2760	 * Now with master disabled, get a sample of level indications
2761	 * for this interrupt and ack them right away - we keep GEN11_MASTER_IRQ
2762	 * out as this bit doesn't exist anymore for DG1
2763	 */
2764	val = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ) & ~GEN11_MASTER_IRQ;
2765	if (unlikely(!val))
2766		return 0;
2767
2768	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, val);
2769
2770	return val;
2771}
2772
2773static inline void dg1_master_intr_enable(void __iomem * const regs)
2774{
2775	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, DG1_MSTR_IRQ);
2776}
2777
2778static irqreturn_t dg1_irq_handler(int irq, void *arg)
2779{
2780	return __gen11_irq_handler(arg,
2781				   dg1_master_intr_disable_and_ack,
2782				   dg1_master_intr_enable);
2783}
2784
2785/* Called from drm generic code, passed 'crtc' which
2786 * we use as a pipe index
2787 */
2788int i8xx_enable_vblank(struct drm_crtc *crtc)
2789{
2790	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2791	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2792	unsigned long irqflags;
2793
 
 
 
2794	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2795	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
 
 
 
 
 
 
 
 
 
2796	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2797
2798	return 0;
2799}
2800
2801int i915gm_enable_vblank(struct drm_crtc *crtc)
2802{
2803	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2804
2805	/*
2806	 * Vblank interrupts fail to wake the device up from C2+.
2807	 * Disabling render clock gating during C-states avoids
2808	 * the problem. There is a small power cost so we do this
2809	 * only when vblank interrupts are actually enabled.
2810	 */
2811	if (dev_priv->vblank_enabled++ == 0)
2812		intel_uncore_write(&dev_priv->uncore, SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2813
2814	return i8xx_enable_vblank(crtc);
2815}
2816
2817int i965_enable_vblank(struct drm_crtc *crtc)
2818{
2819	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2820	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2821	unsigned long irqflags;
2822
2823	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2824	i915_enable_pipestat(dev_priv, pipe,
2825			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2826	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2827
2828	return 0;
2829}
2830
2831int ilk_enable_vblank(struct drm_crtc *crtc)
2832{
2833	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2834	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2835	unsigned long irqflags;
2836	u32 bit = DISPLAY_VER(dev_priv) >= 7 ?
2837		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2838
2839	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2840	ilk_enable_display_irq(dev_priv, bit);
 
2841	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2842
2843	/* Even though there is no DMC, frame counter can get stuck when
2844	 * PSR is active as no frames are generated.
2845	 */
2846	if (HAS_PSR(dev_priv))
2847		drm_crtc_vblank_restore(crtc);
2848
2849	return 0;
2850}
2851
2852static bool gen11_dsi_configure_te(struct intel_crtc *intel_crtc,
2853				   bool enable)
2854{
2855	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
2856	enum port port;
2857	u32 tmp;
2858
2859	if (!(intel_crtc->mode_flags &
2860	    (I915_MODE_FLAG_DSI_USE_TE1 | I915_MODE_FLAG_DSI_USE_TE0)))
2861		return false;
2862
2863	/* for dual link cases we consider TE from slave */
2864	if (intel_crtc->mode_flags & I915_MODE_FLAG_DSI_USE_TE1)
2865		port = PORT_B;
2866	else
2867		port = PORT_A;
2868
2869	tmp =  intel_uncore_read(&dev_priv->uncore, DSI_INTR_MASK_REG(port));
2870	if (enable)
2871		tmp &= ~DSI_TE_EVENT;
2872	else
2873		tmp |= DSI_TE_EVENT;
2874
2875	intel_uncore_write(&dev_priv->uncore, DSI_INTR_MASK_REG(port), tmp);
2876
2877	tmp = intel_uncore_read(&dev_priv->uncore, DSI_INTR_IDENT_REG(port));
2878	intel_uncore_write(&dev_priv->uncore, DSI_INTR_IDENT_REG(port), tmp);
2879
2880	return true;
2881}
2882
2883int bdw_enable_vblank(struct drm_crtc *crtc)
2884{
2885	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2886	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2887	enum pipe pipe = intel_crtc->pipe;
2888	unsigned long irqflags;
2889
2890	if (gen11_dsi_configure_te(intel_crtc, true))
2891		return 0;
2892
2893	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2894	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
 
2895	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2896
2897	/* Even if there is no DMC, frame counter can get stuck when
2898	 * PSR is active as no frames are generated, so check only for PSR.
2899	 */
2900	if (HAS_PSR(dev_priv))
2901		drm_crtc_vblank_restore(crtc);
2902
2903	return 0;
2904}
2905
2906/* Called from drm generic code, passed 'crtc' which
2907 * we use as a pipe index
2908 */
2909void i8xx_disable_vblank(struct drm_crtc *crtc)
2910{
2911	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2912	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2913	unsigned long irqflags;
2914
2915	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2916	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2917	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2918}
2919
2920void i915gm_disable_vblank(struct drm_crtc *crtc)
2921{
2922	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2923
2924	i8xx_disable_vblank(crtc);
2925
2926	if (--dev_priv->vblank_enabled == 0)
2927		intel_uncore_write(&dev_priv->uncore, SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2928}
2929
2930void i965_disable_vblank(struct drm_crtc *crtc)
2931{
2932	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2933	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2934	unsigned long irqflags;
2935
2936	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2937	i915_disable_pipestat(dev_priv, pipe,
2938			      PIPE_START_VBLANK_INTERRUPT_STATUS);
 
2939	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2940}
2941
2942void ilk_disable_vblank(struct drm_crtc *crtc)
2943{
2944	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2945	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2946	unsigned long irqflags;
2947	u32 bit = DISPLAY_VER(dev_priv) >= 7 ?
2948		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2949
2950	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2951	ilk_disable_display_irq(dev_priv, bit);
 
2952	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2953}
2954
2955void bdw_disable_vblank(struct drm_crtc *crtc)
2956{
2957	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2958	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2959	enum pipe pipe = intel_crtc->pipe;
2960	unsigned long irqflags;
2961
2962	if (gen11_dsi_configure_te(intel_crtc, false))
2963		return;
2964
2965	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2966	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
 
2967	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2968}
2969
2970static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2971{
2972	struct intel_uncore *uncore = &dev_priv->uncore;
2973
2974	if (HAS_PCH_NOP(dev_priv))
2975		return;
2976
2977	GEN3_IRQ_RESET(uncore, SDE);
2978
2979	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2980		intel_uncore_write(&dev_priv->uncore, SERR_INT, 0xffffffff);
2981}
2982
2983static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2984{
2985	struct intel_uncore *uncore = &dev_priv->uncore;
2986
2987	if (IS_CHERRYVIEW(dev_priv))
2988		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2989	else
2990		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2991
2992	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2993	intel_uncore_write(uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
2994
2995	i9xx_pipestat_irq_reset(dev_priv);
2996
2997	GEN3_IRQ_RESET(uncore, VLV_);
2998	dev_priv->irq_mask = ~0u;
2999}
3000
3001static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3002{
3003	struct intel_uncore *uncore = &dev_priv->uncore;
3004
3005	u32 pipestat_mask;
3006	u32 enable_mask;
3007	enum pipe pipe;
3008
3009	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3010
3011	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3012	for_each_pipe(dev_priv, pipe)
3013		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3014
3015	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3016		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3017		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3018		I915_LPE_PIPE_A_INTERRUPT |
3019		I915_LPE_PIPE_B_INTERRUPT;
3020
3021	if (IS_CHERRYVIEW(dev_priv))
3022		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3023			I915_LPE_PIPE_C_INTERRUPT;
3024
3025	drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
3026
3027	dev_priv->irq_mask = ~enable_mask;
3028
3029	GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
3030}
3031
3032/* drm_dma.h hooks
3033*/
3034static void ilk_irq_reset(struct drm_i915_private *dev_priv)
3035{
3036	struct intel_uncore *uncore = &dev_priv->uncore;
3037
3038	GEN3_IRQ_RESET(uncore, DE);
3039	dev_priv->irq_mask = ~0u;
3040
3041	if (GRAPHICS_VER(dev_priv) == 7)
3042		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
3043
3044	if (IS_HASWELL(dev_priv)) {
3045		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3046		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3047	}
3048
3049	gen5_gt_irq_reset(&dev_priv->gt);
3050
3051	ibx_irq_reset(dev_priv);
3052}
3053
3054static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
3055{
3056	intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
3057	intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
3058
3059	gen5_gt_irq_reset(&dev_priv->gt);
3060
3061	spin_lock_irq(&dev_priv->irq_lock);
3062	if (dev_priv->display_irqs_enabled)
3063		vlv_display_irq_reset(dev_priv);
3064	spin_unlock_irq(&dev_priv->irq_lock);
3065}
3066
3067static void gen8_display_irq_reset(struct drm_i915_private *dev_priv)
3068{
3069	struct intel_uncore *uncore = &dev_priv->uncore;
3070	enum pipe pipe;
3071
3072	if (!HAS_DISPLAY(dev_priv))
3073		return;
3074
3075	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3076	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3077
3078	for_each_pipe(dev_priv, pipe)
3079		if (intel_display_power_is_enabled(dev_priv,
3080						   POWER_DOMAIN_PIPE(pipe)))
3081			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3082
3083	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3084	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3085}
3086
3087static void gen8_irq_reset(struct drm_i915_private *dev_priv)
3088{
3089	struct intel_uncore *uncore = &dev_priv->uncore;
3090
3091	gen8_master_intr_disable(dev_priv->uncore.regs);
3092
3093	gen8_gt_irq_reset(&dev_priv->gt);
3094	gen8_display_irq_reset(dev_priv);
3095	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3096
3097	if (HAS_PCH_SPLIT(dev_priv))
3098		ibx_irq_reset(dev_priv);
3099
3100}
3101
3102static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
3103{
3104	struct intel_uncore *uncore = &dev_priv->uncore;
3105	enum pipe pipe;
3106	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3107		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3108
3109	if (!HAS_DISPLAY(dev_priv))
3110		return;
3111
3112	intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
3113
3114	if (DISPLAY_VER(dev_priv) >= 12) {
3115		enum transcoder trans;
3116
3117		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3118			enum intel_display_power_domain domain;
3119
3120			domain = POWER_DOMAIN_TRANSCODER(trans);
3121			if (!intel_display_power_is_enabled(dev_priv, domain))
3122				continue;
3123
3124			intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
3125			intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
3126		}
3127	} else {
3128		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3129		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3130	}
3131
3132	for_each_pipe(dev_priv, pipe)
3133		if (intel_display_power_is_enabled(dev_priv,
3134						   POWER_DOMAIN_PIPE(pipe)))
3135			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3136
3137	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3138	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3139	GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3140
3141	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3142		GEN3_IRQ_RESET(uncore, SDE);
3143}
3144
3145static void gen11_irq_reset(struct drm_i915_private *dev_priv)
 
3146{
3147	struct intel_uncore *uncore = &dev_priv->uncore;
3148
3149	if (HAS_MASTER_UNIT_IRQ(dev_priv))
3150		dg1_master_intr_disable_and_ack(dev_priv->uncore.regs);
3151	else
3152		gen11_master_intr_disable(dev_priv->uncore.regs);
3153
3154	gen11_gt_irq_reset(&dev_priv->gt);
3155	gen11_display_irq_reset(dev_priv);
3156
3157	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3158	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3159}
3160
3161void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3162				     u8 pipe_mask)
3163{
3164	struct intel_uncore *uncore = &dev_priv->uncore;
3165	u32 extra_ier = GEN8_PIPE_VBLANK |
3166		gen8_de_pipe_underrun_mask(dev_priv) |
3167		gen8_de_pipe_flip_done_mask(dev_priv);
3168	enum pipe pipe;
3169
3170	spin_lock_irq(&dev_priv->irq_lock);
3171
3172	if (!intel_irqs_enabled(dev_priv)) {
3173		spin_unlock_irq(&dev_priv->irq_lock);
3174		return;
3175	}
3176
3177	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3178		GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3179				  dev_priv->de_irq_mask[pipe],
3180				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3181
3182	spin_unlock_irq(&dev_priv->irq_lock);
3183}
3184
3185void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3186				     u8 pipe_mask)
 
 
 
3187{
3188	struct intel_uncore *uncore = &dev_priv->uncore;
3189	enum pipe pipe;
3190
3191	spin_lock_irq(&dev_priv->irq_lock);
3192
3193	if (!intel_irqs_enabled(dev_priv)) {
3194		spin_unlock_irq(&dev_priv->irq_lock);
3195		return;
3196	}
3197
3198	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3199		GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3200
3201	spin_unlock_irq(&dev_priv->irq_lock);
3202
3203	/* make sure we're done processing display irqs */
3204	intel_synchronize_irq(dev_priv);
3205}
3206
3207static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3208{
3209	struct intel_uncore *uncore = &dev_priv->uncore;
3210
3211	intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0);
3212	intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
3213
3214	gen8_gt_irq_reset(&dev_priv->gt);
3215
3216	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3217
3218	spin_lock_irq(&dev_priv->irq_lock);
3219	if (dev_priv->display_irqs_enabled)
3220		vlv_display_irq_reset(dev_priv);
3221	spin_unlock_irq(&dev_priv->irq_lock);
3222}
3223
3224static u32 ibx_hotplug_enables(struct drm_i915_private *i915,
3225			       enum hpd_pin pin)
3226{
3227	switch (pin) {
3228	case HPD_PORT_A:
3229		/*
3230		 * When CPU and PCH are on the same package, port A
3231		 * HPD must be enabled in both north and south.
3232		 */
3233		return HAS_PCH_LPT_LP(i915) ?
3234			PORTA_HOTPLUG_ENABLE : 0;
3235	case HPD_PORT_B:
3236		return PORTB_HOTPLUG_ENABLE |
3237			PORTB_PULSE_DURATION_2ms;
3238	case HPD_PORT_C:
3239		return PORTC_HOTPLUG_ENABLE |
3240			PORTC_PULSE_DURATION_2ms;
3241	case HPD_PORT_D:
3242		return PORTD_HOTPLUG_ENABLE |
3243			PORTD_PULSE_DURATION_2ms;
3244	default:
3245		return 0;
3246	}
3247}
3248
3249static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3250{
3251	u32 hotplug;
3252
3253	/*
3254	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3255	 * duration to 2ms (which is the minimum in the Display Port spec).
3256	 * The pulse duration bits are reserved on LPT+.
3257	 */
3258	hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
3259	hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3260		     PORTB_HOTPLUG_ENABLE |
3261		     PORTC_HOTPLUG_ENABLE |
3262		     PORTD_HOTPLUG_ENABLE |
3263		     PORTB_PULSE_DURATION_MASK |
3264		     PORTC_PULSE_DURATION_MASK |
3265		     PORTD_PULSE_DURATION_MASK);
3266	hotplug |= intel_hpd_hotplug_enables(dev_priv, ibx_hotplug_enables);
3267	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug);
3268}
3269
3270static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
 
3271{
3272	u32 hotplug_irqs, enabled_irqs;
3273
3274	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3275	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3276
3277	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3278
3279	ibx_hpd_detection_setup(dev_priv);
3280}
3281
3282static u32 icp_ddi_hotplug_enables(struct drm_i915_private *i915,
3283				   enum hpd_pin pin)
3284{
3285	switch (pin) {
3286	case HPD_PORT_A:
3287	case HPD_PORT_B:
3288	case HPD_PORT_C:
3289	case HPD_PORT_D:
3290		return SHOTPLUG_CTL_DDI_HPD_ENABLE(pin);
3291	default:
3292		return 0;
 
 
 
 
3293	}
 
3294}
3295
3296static u32 icp_tc_hotplug_enables(struct drm_i915_private *i915,
3297				  enum hpd_pin pin)
3298{
3299	switch (pin) {
3300	case HPD_PORT_TC1:
3301	case HPD_PORT_TC2:
3302	case HPD_PORT_TC3:
3303	case HPD_PORT_TC4:
3304	case HPD_PORT_TC5:
3305	case HPD_PORT_TC6:
3306		return ICP_TC_HPD_ENABLE(pin);
3307	default:
3308		return 0;
 
 
 
 
 
3309	}
 
3310}
3311
3312static void icp_ddi_hpd_detection_setup(struct drm_i915_private *dev_priv)
3313{
3314	u32 hotplug;
3315
3316	hotplug = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_DDI);
3317	hotplug &= ~(SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_A) |
3318		     SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_B) |
3319		     SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_C) |
3320		     SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_D));
3321	hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_ddi_hotplug_enables);
3322	intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_DDI, hotplug);
3323}
3324
3325static void icp_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3326{
3327	u32 hotplug;
3328
3329	hotplug = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_TC);
3330	hotplug &= ~(ICP_TC_HPD_ENABLE(HPD_PORT_TC1) |
3331		     ICP_TC_HPD_ENABLE(HPD_PORT_TC2) |
3332		     ICP_TC_HPD_ENABLE(HPD_PORT_TC3) |
3333		     ICP_TC_HPD_ENABLE(HPD_PORT_TC4) |
3334		     ICP_TC_HPD_ENABLE(HPD_PORT_TC5) |
3335		     ICP_TC_HPD_ENABLE(HPD_PORT_TC6));
3336	hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_tc_hotplug_enables);
3337	intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_TC, hotplug);
3338}
3339
3340static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3341{
3342	u32 hotplug_irqs, enabled_irqs;
3343
3344	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3345	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3346
3347	if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP)
3348		intel_uncore_write(&dev_priv->uncore, SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3349
3350	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3351
3352	icp_ddi_hpd_detection_setup(dev_priv);
3353	icp_tc_hpd_detection_setup(dev_priv);
3354}
3355
3356static u32 gen11_hotplug_enables(struct drm_i915_private *i915,
3357				 enum hpd_pin pin)
3358{
3359	switch (pin) {
3360	case HPD_PORT_TC1:
3361	case HPD_PORT_TC2:
3362	case HPD_PORT_TC3:
3363	case HPD_PORT_TC4:
3364	case HPD_PORT_TC5:
3365	case HPD_PORT_TC6:
3366		return GEN11_HOTPLUG_CTL_ENABLE(pin);
3367	default:
3368		return 0;
3369	}
3370}
3371
3372static void dg1_hpd_irq_setup(struct drm_i915_private *dev_priv)
3373{
3374	u32 val;
3375
3376	val = intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN1);
3377	val |= (INVERT_DDIA_HPD |
3378		INVERT_DDIB_HPD |
3379		INVERT_DDIC_HPD |
3380		INVERT_DDID_HPD);
3381	intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN1, val);
3382
3383	icp_hpd_irq_setup(dev_priv);
3384}
3385
3386static void gen11_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3387{
3388	u32 hotplug;
3389
3390	hotplug = intel_uncore_read(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL);
3391	hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3392		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3393		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3394		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3395		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3396		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6));
3397	hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables);
3398	intel_uncore_write(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL, hotplug);
3399}
3400
3401static void gen11_tbt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3402{
3403	u32 hotplug;
3404
3405	hotplug = intel_uncore_read(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL);
3406	hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3407		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3408		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3409		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3410		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3411		     GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6));
3412	hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables);
3413	intel_uncore_write(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL, hotplug);
3414}
3415
3416static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3417{
3418	u32 hotplug_irqs, enabled_irqs;
3419	u32 val;
3420
3421	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3422	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3423
3424	val = intel_uncore_read(&dev_priv->uncore, GEN11_DE_HPD_IMR);
3425	val &= ~hotplug_irqs;
3426	val |= ~enabled_irqs & hotplug_irqs;
3427	intel_uncore_write(&dev_priv->uncore, GEN11_DE_HPD_IMR, val);
3428	intel_uncore_posting_read(&dev_priv->uncore, GEN11_DE_HPD_IMR);
3429
3430	gen11_tc_hpd_detection_setup(dev_priv);
3431	gen11_tbt_hpd_detection_setup(dev_priv);
3432
3433	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3434		icp_hpd_irq_setup(dev_priv);
3435}
3436
3437static u32 spt_hotplug_enables(struct drm_i915_private *i915,
3438			       enum hpd_pin pin)
3439{
3440	switch (pin) {
3441	case HPD_PORT_A:
3442		return PORTA_HOTPLUG_ENABLE;
3443	case HPD_PORT_B:
3444		return PORTB_HOTPLUG_ENABLE;
3445	case HPD_PORT_C:
3446		return PORTC_HOTPLUG_ENABLE;
3447	case HPD_PORT_D:
3448		return PORTD_HOTPLUG_ENABLE;
3449	default:
3450		return 0;
3451	}
3452}
3453
3454static u32 spt_hotplug2_enables(struct drm_i915_private *i915,
3455				enum hpd_pin pin)
3456{
3457	switch (pin) {
3458	case HPD_PORT_E:
3459		return PORTE_HOTPLUG_ENABLE;
3460	default:
3461		return 0;
3462	}
3463}
3464
3465static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3466{
3467	u32 val, hotplug;
3468
3469	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3470	if (HAS_PCH_CNP(dev_priv)) {
3471		val = intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN1);
3472		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3473		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3474		intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN1, val);
3475	}
3476
3477	/* Enable digital hotplug on the PCH */
3478	hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
3479	hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3480		     PORTB_HOTPLUG_ENABLE |
3481		     PORTC_HOTPLUG_ENABLE |
3482		     PORTD_HOTPLUG_ENABLE);
3483	hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug_enables);
3484	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug);
3485
3486	hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG2);
3487	hotplug &= ~PORTE_HOTPLUG_ENABLE;
3488	hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug2_enables);
3489	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG2, hotplug);
3490}
3491
3492static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3493{
3494	u32 hotplug_irqs, enabled_irqs;
3495
3496	if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3497		intel_uncore_write(&dev_priv->uncore, SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3498
3499	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3500	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3501
3502	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3503
3504	spt_hpd_detection_setup(dev_priv);
3505}
3506
3507static u32 ilk_hotplug_enables(struct drm_i915_private *i915,
3508			       enum hpd_pin pin)
3509{
3510	switch (pin) {
3511	case HPD_PORT_A:
3512		return DIGITAL_PORTA_HOTPLUG_ENABLE |
3513			DIGITAL_PORTA_PULSE_DURATION_2ms;
3514	default:
3515		return 0;
3516	}
3517}
3518
3519static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3520{
3521	u32 hotplug;
3522
3523	/*
3524	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3525	 * duration to 2ms (which is the minimum in the Display Port spec)
3526	 * The pulse duration bits are reserved on HSW+.
3527	 */
3528	hotplug = intel_uncore_read(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL);
3529	hotplug &= ~(DIGITAL_PORTA_HOTPLUG_ENABLE |
3530		     DIGITAL_PORTA_PULSE_DURATION_MASK);
3531	hotplug |= intel_hpd_hotplug_enables(dev_priv, ilk_hotplug_enables);
3532	intel_uncore_write(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3533}
3534
3535static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3536{
3537	u32 hotplug_irqs, enabled_irqs;
3538
3539	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3540	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3541
3542	if (DISPLAY_VER(dev_priv) >= 8)
3543		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3544	else
3545		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3546
3547	ilk_hpd_detection_setup(dev_priv);
3548
3549	ibx_hpd_irq_setup(dev_priv);
3550}
3551
3552static u32 bxt_hotplug_enables(struct drm_i915_private *i915,
3553			       enum hpd_pin pin)
3554{
3555	u32 hotplug;
3556
3557	switch (pin) {
3558	case HPD_PORT_A:
3559		hotplug = PORTA_HOTPLUG_ENABLE;
3560		if (intel_bios_is_port_hpd_inverted(i915, PORT_A))
3561			hotplug |= BXT_DDIA_HPD_INVERT;
3562		return hotplug;
3563	case HPD_PORT_B:
3564		hotplug = PORTB_HOTPLUG_ENABLE;
3565		if (intel_bios_is_port_hpd_inverted(i915, PORT_B))
3566			hotplug |= BXT_DDIB_HPD_INVERT;
3567		return hotplug;
3568	case HPD_PORT_C:
3569		hotplug = PORTC_HOTPLUG_ENABLE;
3570		if (intel_bios_is_port_hpd_inverted(i915, PORT_C))
3571			hotplug |= BXT_DDIC_HPD_INVERT;
3572		return hotplug;
3573	default:
3574		return 0;
3575	}
3576}
3577
3578static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3579{
3580	u32 hotplug;
3581
3582	hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
3583	hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3584		     PORTB_HOTPLUG_ENABLE |
3585		     PORTC_HOTPLUG_ENABLE |
3586		     BXT_DDIA_HPD_INVERT |
3587		     BXT_DDIB_HPD_INVERT |
3588		     BXT_DDIC_HPD_INVERT);
3589	hotplug |= intel_hpd_hotplug_enables(dev_priv, bxt_hotplug_enables);
3590	intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug);
3591}
3592
3593static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3594{
3595	u32 hotplug_irqs, enabled_irqs;
3596
3597	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3598	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3599
3600	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3601
3602	bxt_hpd_detection_setup(dev_priv);
3603}
3604
3605/*
3606 * SDEIER is also touched by the interrupt handler to work around missed PCH
3607 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3608 * instead we unconditionally enable all PCH interrupt sources here, but then
3609 * only unmask them as needed with SDEIMR.
3610 *
3611 * Note that we currently do this after installing the interrupt handler,
3612 * but before we enable the master interrupt. That should be sufficient
3613 * to avoid races with the irq handler, assuming we have MSI. Shared legacy
3614 * interrupts could still race.
3615 */
3616static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3617{
3618	struct intel_uncore *uncore = &dev_priv->uncore;
3619	u32 mask;
 
 
3620
3621	if (HAS_PCH_NOP(dev_priv))
3622		return;
3623
3624	if (HAS_PCH_IBX(dev_priv))
3625		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3626	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3627		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3628	else
3629		mask = SDE_GMBUS_CPT;
3630
3631	GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3632}
3633
3634static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3635{
3636	struct intel_uncore *uncore = &dev_priv->uncore;
3637	u32 display_mask, extra_mask;
3638
3639	if (GRAPHICS_VER(dev_priv) >= 7) {
3640		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3641				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3642		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3643			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3644			      DE_PLANE_FLIP_DONE_IVB(PLANE_C) |
3645			      DE_PLANE_FLIP_DONE_IVB(PLANE_B) |
3646			      DE_PLANE_FLIP_DONE_IVB(PLANE_A) |
3647			      DE_DP_A_HOTPLUG_IVB);
3648	} else {
3649		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3650				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3651				DE_PIPEA_CRC_DONE | DE_POISON);
3652		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK |
3653			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3654			      DE_PLANE_FLIP_DONE(PLANE_A) |
3655			      DE_PLANE_FLIP_DONE(PLANE_B) |
3656			      DE_DP_A_HOTPLUG);
3657	}
3658
3659	if (IS_HASWELL(dev_priv)) {
3660		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3661		display_mask |= DE_EDP_PSR_INT_HSW;
3662	}
3663
3664	if (IS_IRONLAKE_M(dev_priv))
3665		extra_mask |= DE_PCU_EVENT;
3666
3667	dev_priv->irq_mask = ~display_mask;
3668
3669	ibx_irq_postinstall(dev_priv);
3670
3671	gen5_gt_irq_postinstall(&dev_priv->gt);
3672
3673	GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3674		      display_mask | extra_mask);
3675}
3676
3677void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3678{
3679	lockdep_assert_held(&dev_priv->irq_lock);
3680
3681	if (dev_priv->display_irqs_enabled)
3682		return;
3683
3684	dev_priv->display_irqs_enabled = true;
3685
3686	if (intel_irqs_enabled(dev_priv)) {
3687		vlv_display_irq_reset(dev_priv);
3688		vlv_display_irq_postinstall(dev_priv);
3689	}
3690}
3691
3692void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3693{
3694	lockdep_assert_held(&dev_priv->irq_lock);
3695
3696	if (!dev_priv->display_irqs_enabled)
3697		return;
3698
3699	dev_priv->display_irqs_enabled = false;
3700
3701	if (intel_irqs_enabled(dev_priv))
3702		vlv_display_irq_reset(dev_priv);
3703}
3704
3705
3706static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3707{
3708	gen5_gt_irq_postinstall(&dev_priv->gt);
3709
3710	spin_lock_irq(&dev_priv->irq_lock);
3711	if (dev_priv->display_irqs_enabled)
3712		vlv_display_irq_postinstall(dev_priv);
3713	spin_unlock_irq(&dev_priv->irq_lock);
3714
3715	intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3716	intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
3717}
3718
3719static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3720{
3721	struct intel_uncore *uncore = &dev_priv->uncore;
3722
3723	u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3724		GEN8_PIPE_CDCLK_CRC_DONE;
3725	u32 de_pipe_enables;
3726	u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3727	u32 de_port_enables;
3728	u32 de_misc_masked = GEN8_DE_EDP_PSR;
3729	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3730		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3731	enum pipe pipe;
3732
3733	if (!HAS_DISPLAY(dev_priv))
3734		return;
3735
3736	if (DISPLAY_VER(dev_priv) <= 10)
3737		de_misc_masked |= GEN8_DE_MISC_GSE;
3738
3739	if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
3740		de_port_masked |= BXT_DE_PORT_GMBUS;
3741
3742	if (DISPLAY_VER(dev_priv) >= 11) {
3743		enum port port;
3744
3745		if (intel_bios_is_dsi_present(dev_priv, &port))
3746			de_port_masked |= DSI0_TE | DSI1_TE;
3747	}
3748
3749	de_pipe_enables = de_pipe_masked |
3750		GEN8_PIPE_VBLANK |
3751		gen8_de_pipe_underrun_mask(dev_priv) |
3752		gen8_de_pipe_flip_done_mask(dev_priv);
3753
3754	de_port_enables = de_port_masked;
3755	if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
3756		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3757	else if (IS_BROADWELL(dev_priv))
3758		de_port_enables |= BDW_DE_PORT_HOTPLUG_MASK;
3759
3760	if (DISPLAY_VER(dev_priv) >= 12) {
3761		enum transcoder trans;
3762
3763		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3764			enum intel_display_power_domain domain;
3765
3766			domain = POWER_DOMAIN_TRANSCODER(trans);
3767			if (!intel_display_power_is_enabled(dev_priv, domain))
3768				continue;
3769
3770			gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3771		}
3772	} else {
3773		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3774	}
3775
3776	for_each_pipe(dev_priv, pipe) {
3777		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3778
3779		if (intel_display_power_is_enabled(dev_priv,
3780				POWER_DOMAIN_PIPE(pipe)))
3781			GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3782					  dev_priv->de_irq_mask[pipe],
3783					  de_pipe_enables);
3784	}
3785
3786	GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3787	GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3788
3789	if (DISPLAY_VER(dev_priv) >= 11) {
3790		u32 de_hpd_masked = 0;
3791		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3792				     GEN11_DE_TBT_HOTPLUG_MASK;
3793
3794		GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3795			      de_hpd_enables);
3796	}
3797}
3798
3799static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
 
 
3800{
3801	struct intel_uncore *uncore = &dev_priv->uncore;
3802	u32 mask = SDE_GMBUS_ICP;
3803
3804	GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3805}
3806
3807static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3808{
3809	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3810		icp_irq_postinstall(dev_priv);
3811	else if (HAS_PCH_SPLIT(dev_priv))
3812		ibx_irq_postinstall(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
3813
3814	gen8_gt_irq_postinstall(&dev_priv->gt);
3815	gen8_de_irq_postinstall(dev_priv);
3816
3817	gen8_master_intr_enable(dev_priv->uncore.regs);
3818}
 
3819
3820static void gen11_de_irq_postinstall(struct drm_i915_private *dev_priv)
3821{
3822	if (!HAS_DISPLAY(dev_priv))
3823		return;
3824
3825	gen8_de_irq_postinstall(dev_priv);
3826
3827	intel_uncore_write(&dev_priv->uncore, GEN11_DISPLAY_INT_CTL,
3828			   GEN11_DISPLAY_IRQ_ENABLE);
3829}
3830
3831static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3832{
3833	struct intel_uncore *uncore = &dev_priv->uncore;
3834	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
 
 
 
 
3835
3836	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3837		icp_irq_postinstall(dev_priv);
 
 
 
3838
3839	gen11_gt_irq_postinstall(&dev_priv->gt);
3840	gen11_de_irq_postinstall(dev_priv);
3841
3842	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3843
3844	if (HAS_MASTER_UNIT_IRQ(dev_priv)) {
3845		dg1_master_intr_enable(uncore->regs);
3846		intel_uncore_posting_read(&dev_priv->uncore, DG1_MSTR_UNIT_INTR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3847	} else {
3848		gen11_master_intr_enable(uncore->regs);
3849		intel_uncore_posting_read(&dev_priv->uncore, GEN11_GFX_MSTR_IRQ);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3850	}
3851}
3852
3853static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3854{
3855	gen8_gt_irq_postinstall(&dev_priv->gt);
3856
3857	spin_lock_irq(&dev_priv->irq_lock);
3858	if (dev_priv->display_irqs_enabled)
3859		vlv_display_irq_postinstall(dev_priv);
3860	spin_unlock_irq(&dev_priv->irq_lock);
3861
3862	intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3863	intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
3864}
3865
3866static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3867{
3868	struct intel_uncore *uncore = &dev_priv->uncore;
 
 
 
 
 
 
 
 
 
 
 
 
3869
3870	i9xx_pipestat_irq_reset(dev_priv);
 
3871
3872	GEN2_IRQ_RESET(uncore);
3873	dev_priv->irq_mask = ~0u;
3874}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3875
3876static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3877{
3878	struct intel_uncore *uncore = &dev_priv->uncore;
3879	u16 enable_mask;
3880
3881	intel_uncore_write16(uncore,
3882			     EMR,
3883			     ~(I915_ERROR_PAGE_TABLE |
3884			       I915_ERROR_MEMORY_REFRESH));
3885
3886	/* Unmask the interrupts that we always want on. */
3887	dev_priv->irq_mask =
3888		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3889		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3890		  I915_MASTER_ERROR_INTERRUPT);
3891
3892	enable_mask =
3893		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3894		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3895		I915_MASTER_ERROR_INTERRUPT |
3896		I915_USER_INTERRUPT;
3897
3898	GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3899
3900	/* Interrupt setup is already guaranteed to be single-threaded, this is
3901	 * just to make the assert_spin_locked check happy. */
3902	spin_lock_irq(&dev_priv->irq_lock);
3903	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3904	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3905	spin_unlock_irq(&dev_priv->irq_lock);
3906}
3907
3908static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3909			       u16 *eir, u16 *eir_stuck)
3910{
3911	struct intel_uncore *uncore = &i915->uncore;
3912	u16 emr;
3913
3914	*eir = intel_uncore_read16(uncore, EIR);
3915
3916	if (*eir)
3917		intel_uncore_write16(uncore, EIR, *eir);
3918
3919	*eir_stuck = intel_uncore_read16(uncore, EIR);
3920	if (*eir_stuck == 0)
3921		return;
3922
3923	/*
3924	 * Toggle all EMR bits to make sure we get an edge
3925	 * in the ISR master error bit if we don't clear
3926	 * all the EIR bits. Otherwise the edge triggered
3927	 * IIR on i965/g4x wouldn't notice that an interrupt
3928	 * is still pending. Also some EIR bits can't be
3929	 * cleared except by handling the underlying error
3930	 * (or by a GPU reset) so we mask any bit that
3931	 * remains set.
3932	 */
3933	emr = intel_uncore_read16(uncore, EMR);
3934	intel_uncore_write16(uncore, EMR, 0xffff);
3935	intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3936}
3937
3938static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3939				   u16 eir, u16 eir_stuck)
3940{
3941	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3942
3943	if (eir_stuck)
3944		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3945			eir_stuck);
3946}
3947
3948static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3949			       u32 *eir, u32 *eir_stuck)
3950{
3951	u32 emr;
3952
3953	*eir = intel_uncore_read(&dev_priv->uncore, EIR);
3954
3955	intel_uncore_write(&dev_priv->uncore, EIR, *eir);
3956
3957	*eir_stuck = intel_uncore_read(&dev_priv->uncore, EIR);
3958	if (*eir_stuck == 0)
3959		return;
3960
3961	/*
3962	 * Toggle all EMR bits to make sure we get an edge
3963	 * in the ISR master error bit if we don't clear
3964	 * all the EIR bits. Otherwise the edge triggered
3965	 * IIR on i965/g4x wouldn't notice that an interrupt
3966	 * is still pending. Also some EIR bits can't be
3967	 * cleared except by handling the underlying error
3968	 * (or by a GPU reset) so we mask any bit that
3969	 * remains set.
3970	 */
3971	emr = intel_uncore_read(&dev_priv->uncore, EMR);
3972	intel_uncore_write(&dev_priv->uncore, EMR, 0xffffffff);
3973	intel_uncore_write(&dev_priv->uncore, EMR, emr | *eir_stuck);
3974}
3975
3976static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3977				   u32 eir, u32 eir_stuck)
3978{
3979	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3980
3981	if (eir_stuck)
3982		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3983			eir_stuck);
3984}
3985
3986static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3987{
3988	struct drm_i915_private *dev_priv = arg;
3989	irqreturn_t ret = IRQ_NONE;
3990
3991	if (!intel_irqs_enabled(dev_priv))
3992		return IRQ_NONE;
3993
3994	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3995	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3996
3997	do {
3998		u32 pipe_stats[I915_MAX_PIPES] = {};
3999		u16 eir = 0, eir_stuck = 0;
4000		u16 iir;
4001
4002		iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
4003		if (iir == 0)
4004			break;
4005
4006		ret = IRQ_HANDLED;
4007
4008		/* Call regardless, as some status bits might not be
4009		 * signalled in iir */
4010		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4011
4012		if (iir & I915_MASTER_ERROR_INTERRUPT)
4013			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4014
4015		intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
4016
4017		if (iir & I915_USER_INTERRUPT)
4018			intel_engine_cs_irq(dev_priv->gt.engine[RCS0], iir);
4019
4020		if (iir & I915_MASTER_ERROR_INTERRUPT)
4021			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4022
4023		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4024	} while (0);
4025
4026	pmu_irq_stats(dev_priv, ret);
4027
4028	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4029
4030	return ret;
4031}
4032
4033static void i915_irq_reset(struct drm_i915_private *dev_priv)
4034{
4035	struct intel_uncore *uncore = &dev_priv->uncore;
4036
4037	if (I915_HAS_HOTPLUG(dev_priv)) {
4038		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4039		intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
4040	}
4041
4042	i9xx_pipestat_irq_reset(dev_priv);
4043
4044	GEN3_IRQ_RESET(uncore, GEN2_);
4045	dev_priv->irq_mask = ~0u;
 
 
4046}
4047
4048static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
 
 
 
 
4049{
4050	struct intel_uncore *uncore = &dev_priv->uncore;
4051	u32 enable_mask;
 
4052
4053	intel_uncore_write(&dev_priv->uncore, EMR, ~(I915_ERROR_PAGE_TABLE |
4054			  I915_ERROR_MEMORY_REFRESH));
4055
4056	/* Unmask the interrupts that we always want on. */
4057	dev_priv->irq_mask =
4058		~(I915_ASLE_INTERRUPT |
4059		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4060		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4061		  I915_MASTER_ERROR_INTERRUPT);
4062
4063	enable_mask =
4064		I915_ASLE_INTERRUPT |
4065		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4066		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4067		I915_MASTER_ERROR_INTERRUPT |
4068		I915_USER_INTERRUPT;
4069
4070	if (I915_HAS_HOTPLUG(dev_priv)) {
 
 
 
4071		/* Enable in IER... */
4072		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4073		/* and unmask in IMR */
4074		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4075	}
4076
4077	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4078
4079	/* Interrupt setup is already guaranteed to be single-threaded, this is
4080	 * just to make the assert_spin_locked check happy. */
4081	spin_lock_irq(&dev_priv->irq_lock);
4082	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4083	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4084	spin_unlock_irq(&dev_priv->irq_lock);
4085
4086	i915_enable_asle_pipestat(dev_priv);
4087}
4088
4089static irqreturn_t i915_irq_handler(int irq, void *arg)
4090{
4091	struct drm_i915_private *dev_priv = arg;
4092	irqreturn_t ret = IRQ_NONE;
4093
4094	if (!intel_irqs_enabled(dev_priv))
4095		return IRQ_NONE;
4096
4097	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4098	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4099
4100	do {
4101		u32 pipe_stats[I915_MAX_PIPES] = {};
4102		u32 eir = 0, eir_stuck = 0;
4103		u32 hotplug_status = 0;
4104		u32 iir;
4105
4106		iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
4107		if (iir == 0)
4108			break;
4109
4110		ret = IRQ_HANDLED;
4111
4112		if (I915_HAS_HOTPLUG(dev_priv) &&
4113		    iir & I915_DISPLAY_PORT_INTERRUPT)
4114			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4115
4116		/* Call regardless, as some status bits might not be
4117		 * signalled in iir */
4118		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4119
4120		if (iir & I915_MASTER_ERROR_INTERRUPT)
4121			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4122
4123		intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
4124
4125		if (iir & I915_USER_INTERRUPT)
4126			intel_engine_cs_irq(dev_priv->gt.engine[RCS0], iir);
4127
4128		if (iir & I915_MASTER_ERROR_INTERRUPT)
4129			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4130
4131		if (hotplug_status)
4132			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4133
4134		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4135	} while (0);
4136
4137	pmu_irq_stats(dev_priv, ret);
4138
4139	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4140
4141	return ret;
4142}
4143
4144static void i965_irq_reset(struct drm_i915_private *dev_priv)
4145{
4146	struct intel_uncore *uncore = &dev_priv->uncore;
4147
4148	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4149	intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
4150
4151	i9xx_pipestat_irq_reset(dev_priv);
4152
4153	GEN3_IRQ_RESET(uncore, GEN2_);
4154	dev_priv->irq_mask = ~0u;
4155}
4156
4157static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
4158{
4159	struct intel_uncore *uncore = &dev_priv->uncore;
4160	u32 enable_mask;
4161	u32 error_mask;
4162
4163	/*
4164	 * Enable some error detection, note the instruction error mask
4165	 * bit is reserved, so we leave it masked.
4166	 */
4167	if (IS_G4X(dev_priv)) {
4168		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4169			       GM45_ERROR_MEM_PRIV |
4170			       GM45_ERROR_CP_PRIV |
4171			       I915_ERROR_MEMORY_REFRESH);
4172	} else {
4173		error_mask = ~(I915_ERROR_PAGE_TABLE |
4174			       I915_ERROR_MEMORY_REFRESH);
4175	}
4176	intel_uncore_write(&dev_priv->uncore, EMR, error_mask);
4177
4178	/* Unmask the interrupts that we always want on. */
4179	dev_priv->irq_mask =
4180		~(I915_ASLE_INTERRUPT |
4181		  I915_DISPLAY_PORT_INTERRUPT |
4182		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4183		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4184		  I915_MASTER_ERROR_INTERRUPT);
4185
4186	enable_mask =
4187		I915_ASLE_INTERRUPT |
4188		I915_DISPLAY_PORT_INTERRUPT |
4189		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4190		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4191		I915_MASTER_ERROR_INTERRUPT |
4192		I915_USER_INTERRUPT;
4193
4194	if (IS_G4X(dev_priv))
4195		enable_mask |= I915_BSD_USER_INTERRUPT;
4196
4197	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4198
4199	/* Interrupt setup is already guaranteed to be single-threaded, this is
4200	 * just to make the assert_spin_locked check happy. */
4201	spin_lock_irq(&dev_priv->irq_lock);
4202	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4203	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4204	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4205	spin_unlock_irq(&dev_priv->irq_lock);
4206
4207	i915_enable_asle_pipestat(dev_priv);
4208}
4209
4210static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4211{
4212	u32 hotplug_en;
4213
4214	lockdep_assert_held(&dev_priv->irq_lock);
4215
4216	/* Note HDMI and DP share hotplug bits */
4217	/* enable bits are the same for all generations */
4218	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4219	/* Programming the CRT detection parameters tends
4220	   to generate a spurious hotplug event about three
4221	   seconds later.  So just do it once.
4222	*/
4223	if (IS_G4X(dev_priv))
4224		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4225	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4226
4227	/* Ignore TV since it's buggy */
4228	i915_hotplug_interrupt_update_locked(dev_priv,
4229					     HOTPLUG_INT_EN_MASK |
4230					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4231					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4232					     hotplug_en);
4233}
4234
4235static irqreturn_t i965_irq_handler(int irq, void *arg)
4236{
4237	struct drm_i915_private *dev_priv = arg;
4238	irqreturn_t ret = IRQ_NONE;
4239
4240	if (!intel_irqs_enabled(dev_priv))
4241		return IRQ_NONE;
4242
4243	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4244	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4245
4246	do {
4247		u32 pipe_stats[I915_MAX_PIPES] = {};
4248		u32 eir = 0, eir_stuck = 0;
4249		u32 hotplug_status = 0;
4250		u32 iir;
4251
4252		iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
4253		if (iir == 0)
4254			break;
4255
4256		ret = IRQ_HANDLED;
 
 
4257
4258		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4259			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4260
4261		/* Call regardless, as some status bits might not be
4262		 * signalled in iir */
4263		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4264
4265		if (iir & I915_MASTER_ERROR_INTERRUPT)
4266			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4267
4268		intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
4269
4270		if (iir & I915_USER_INTERRUPT)
4271			intel_engine_cs_irq(dev_priv->gt.engine[RCS0],
4272					    iir);
4273
4274		if (iir & I915_BSD_USER_INTERRUPT)
4275			intel_engine_cs_irq(dev_priv->gt.engine[VCS0],
4276					    iir >> 25);
4277
4278		if (iir & I915_MASTER_ERROR_INTERRUPT)
4279			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4280
4281		if (hotplug_status)
4282			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4283
4284		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4285	} while (0);
 
4286
4287	pmu_irq_stats(dev_priv, IRQ_HANDLED);
4288
4289	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4290
4291	return ret;
4292}
4293
4294/**
4295 * intel_irq_init - initializes irq support
4296 * @dev_priv: i915 device instance
4297 *
4298 * This function initializes all the irq support including work items, timers
4299 * and all the vtables. It does not setup the interrupt itself though.
4300 */
4301void intel_irq_init(struct drm_i915_private *dev_priv)
4302{
4303	struct drm_device *dev = &dev_priv->drm;
4304	int i;
4305
4306	INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
4307	for (i = 0; i < MAX_L3_SLICES; ++i)
4308		dev_priv->l3_parity.remap_info[i] = NULL;
4309
4310	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4311	if (HAS_GT_UC(dev_priv) && GRAPHICS_VER(dev_priv) < 11)
4312		dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4313
4314	if (!HAS_DISPLAY(dev_priv))
4315		return;
4316
4317	intel_hpd_init_pins(dev_priv);
4318
4319	intel_hpd_init_work(dev_priv);
4320
4321	dev->vblank_disable_immediate = true;
4322
4323	/* Most platforms treat the display irq block as an always-on
4324	 * power domain. vlv/chv can disable it at runtime and need
4325	 * special care to avoid writing any of the display block registers
4326	 * outside of the power domain. We defer setting up the display irqs
4327	 * in this case to the runtime pm.
4328	 */
4329	dev_priv->display_irqs_enabled = true;
4330	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4331		dev_priv->display_irqs_enabled = false;
4332
4333	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4334	/* If we have MST support, we want to avoid doing short HPD IRQ storm
4335	 * detection, as short HPD storms will occur as a natural part of
4336	 * sideband messaging with MST.
4337	 * On older platforms however, IRQ storms can occur with both long and
4338	 * short pulses, as seen on some G4x systems.
4339	 */
4340	dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4341
4342	if (HAS_GMCH(dev_priv)) {
4343		if (I915_HAS_HOTPLUG(dev_priv))
4344			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4345	} else {
4346		if (HAS_PCH_DG1(dev_priv))
4347			dev_priv->display.hpd_irq_setup = dg1_hpd_irq_setup;
4348		else if (DISPLAY_VER(dev_priv) >= 11)
4349			dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4350		else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
4351			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4352		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
4353			dev_priv->display.hpd_irq_setup = icp_hpd_irq_setup;
4354		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4355			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4356		else
4357			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4358	}
4359}
4360
4361/**
4362 * intel_irq_fini - deinitializes IRQ support
4363 * @i915: i915 device instance
4364 *
4365 * This function deinitializes all the IRQ support.
4366 */
4367void intel_irq_fini(struct drm_i915_private *i915)
4368{
4369	int i;
4370
4371	for (i = 0; i < MAX_L3_SLICES; ++i)
4372		kfree(i915->l3_parity.remap_info[i]);
 
 
4373}
4374
4375static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4376{
4377	if (HAS_GMCH(dev_priv)) {
4378		if (IS_CHERRYVIEW(dev_priv))
4379			return cherryview_irq_handler;
4380		else if (IS_VALLEYVIEW(dev_priv))
4381			return valleyview_irq_handler;
4382		else if (GRAPHICS_VER(dev_priv) == 4)
4383			return i965_irq_handler;
4384		else if (GRAPHICS_VER(dev_priv) == 3)
4385			return i915_irq_handler;
4386		else
4387			return i8xx_irq_handler;
4388	} else {
4389		if (HAS_MASTER_UNIT_IRQ(dev_priv))
4390			return dg1_irq_handler;
4391		if (GRAPHICS_VER(dev_priv) >= 11)
4392			return gen11_irq_handler;
4393		else if (GRAPHICS_VER(dev_priv) >= 8)
4394			return gen8_irq_handler;
4395		else
4396			return ilk_irq_handler;
4397	}
4398}
4399
4400static void intel_irq_reset(struct drm_i915_private *dev_priv)
4401{
4402	if (HAS_GMCH(dev_priv)) {
4403		if (IS_CHERRYVIEW(dev_priv))
4404			cherryview_irq_reset(dev_priv);
4405		else if (IS_VALLEYVIEW(dev_priv))
4406			valleyview_irq_reset(dev_priv);
4407		else if (GRAPHICS_VER(dev_priv) == 4)
4408			i965_irq_reset(dev_priv);
4409		else if (GRAPHICS_VER(dev_priv) == 3)
4410			i915_irq_reset(dev_priv);
4411		else
4412			i8xx_irq_reset(dev_priv);
4413	} else {
4414		if (GRAPHICS_VER(dev_priv) >= 11)
4415			gen11_irq_reset(dev_priv);
4416		else if (GRAPHICS_VER(dev_priv) >= 8)
4417			gen8_irq_reset(dev_priv);
4418		else
4419			ilk_irq_reset(dev_priv);
4420	}
4421}
4422
4423static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4424{
4425	if (HAS_GMCH(dev_priv)) {
4426		if (IS_CHERRYVIEW(dev_priv))
4427			cherryview_irq_postinstall(dev_priv);
4428		else if (IS_VALLEYVIEW(dev_priv))
4429			valleyview_irq_postinstall(dev_priv);
4430		else if (GRAPHICS_VER(dev_priv) == 4)
4431			i965_irq_postinstall(dev_priv);
4432		else if (GRAPHICS_VER(dev_priv) == 3)
4433			i915_irq_postinstall(dev_priv);
4434		else
4435			i8xx_irq_postinstall(dev_priv);
 
 
4436	} else {
4437		if (GRAPHICS_VER(dev_priv) >= 11)
4438			gen11_irq_postinstall(dev_priv);
4439		else if (GRAPHICS_VER(dev_priv) >= 8)
4440			gen8_irq_postinstall(dev_priv);
4441		else
4442			ilk_irq_postinstall(dev_priv);
4443	}
4444}
4445
4446/**
4447 * intel_irq_install - enables the hardware interrupt
4448 * @dev_priv: i915 device instance
4449 *
4450 * This function enables the hardware interrupt handling, but leaves the hotplug
4451 * handling still disabled. It is called after intel_irq_init().
4452 *
4453 * In the driver load and resume code we need working interrupts in a few places
4454 * but don't want to deal with the hassle of concurrent probe and hotplug
4455 * workers. Hence the split into this two-stage approach.
4456 */
4457int intel_irq_install(struct drm_i915_private *dev_priv)
4458{
4459	int irq = to_pci_dev(dev_priv->drm.dev)->irq;
4460	int ret;
4461
4462	/*
4463	 * We enable some interrupt sources in our postinstall hooks, so mark
4464	 * interrupts as enabled _before_ actually enabling them to avoid
4465	 * special cases in our ordering checks.
4466	 */
4467	dev_priv->runtime_pm.irqs_enabled = true;
4468
4469	dev_priv->drm.irq_enabled = true;
4470
4471	intel_irq_reset(dev_priv);
4472
4473	ret = request_irq(irq, intel_irq_handler(dev_priv),
4474			  IRQF_SHARED, DRIVER_NAME, dev_priv);
4475	if (ret < 0) {
4476		dev_priv->drm.irq_enabled = false;
4477		return ret;
4478	}
4479
4480	intel_irq_postinstall(dev_priv);
4481
4482	return ret;
4483}
4484
4485/**
4486 * intel_irq_uninstall - finilizes all irq handling
4487 * @dev_priv: i915 device instance
4488 *
4489 * This stops interrupt and hotplug handling and unregisters and frees all
4490 * resources acquired in the init functions.
4491 */
4492void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4493{
4494	int irq = to_pci_dev(dev_priv->drm.dev)->irq;
4495
4496	/*
4497	 * FIXME we can get called twice during driver probe
4498	 * error handling as well as during driver remove due to
4499	 * intel_modeset_driver_remove() calling us out of sequence.
4500	 * Would be nice if it didn't do that...
4501	 */
4502	if (!dev_priv->drm.irq_enabled)
4503		return;
4504
4505	dev_priv->drm.irq_enabled = false;
4506
4507	intel_irq_reset(dev_priv);
4508
4509	free_irq(irq, dev_priv);
4510
4511	intel_hpd_cancel_work(dev_priv);
4512	dev_priv->runtime_pm.irqs_enabled = false;
4513}
4514
4515/**
4516 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4517 * @dev_priv: i915 device instance
4518 *
4519 * This function is used to disable interrupts at runtime, both in the runtime
4520 * pm and the system suspend/resume code.
4521 */
4522void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4523{
4524	intel_irq_reset(dev_priv);
4525	dev_priv->runtime_pm.irqs_enabled = false;
4526	intel_synchronize_irq(dev_priv);
4527}
4528
4529/**
4530 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4531 * @dev_priv: i915 device instance
4532 *
4533 * This function is used to enable interrupts at runtime, both in the runtime
4534 * pm and the system suspend/resume code.
4535 */
4536void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4537{
4538	dev_priv->runtime_pm.irqs_enabled = true;
4539	intel_irq_reset(dev_priv);
4540	intel_irq_postinstall(dev_priv);
4541}
4542
4543bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4544{
4545	return dev_priv->runtime_pm.irqs_enabled;
4546}
4547
4548void intel_synchronize_irq(struct drm_i915_private *i915)
4549{
4550	synchronize_irq(to_pci_dev(i915->drm.dev)->irq);
4551}
4552
4553void intel_synchronize_hardirq(struct drm_i915_private *i915)
4554{
4555	synchronize_hardirq(to_pci_dev(i915->drm.dev)->irq);
4556}