Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Freescale MPC85xx, MPC83xx DMA Engine support
   3 *
   4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
   5 *
   6 * Author:
   7 *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
   8 *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
   9 *
  10 * Description:
  11 *   DMA engine driver for Freescale MPC8540 DMA controller, which is
  12 *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
  13 *   The support for MPC8349 DMA controller is also added.
  14 *
  15 * This driver instructs the DMA controller to issue the PCI Read Multiple
  16 * command for PCI read operations, instead of using the default PCI Read Line
  17 * command. Please be aware that this setting may result in read pre-fetching
  18 * on some platforms.
  19 *
  20 * This is free software; you can redistribute it and/or modify
  21 * it under the terms of the GNU General Public License as published by
  22 * the Free Software Foundation; either version 2 of the License, or
  23 * (at your option) any later version.
  24 *
  25 */
  26
  27#include <linux/init.h>
  28#include <linux/module.h>
  29#include <linux/pci.h>
  30#include <linux/slab.h>
  31#include <linux/interrupt.h>
  32#include <linux/dmaengine.h>
  33#include <linux/delay.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/dmapool.h>
 
 
  36#include <linux/of_platform.h>
  37
 
  38#include "fsldma.h"
  39
  40#define chan_dbg(chan, fmt, arg...)					\
  41	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
  42#define chan_err(chan, fmt, arg...)					\
  43	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
  44
  45static const char msg_ld_oom[] = "No free memory for link descriptor";
  46
  47/*
  48 * Register Helpers
  49 */
  50
  51static void set_sr(struct fsldma_chan *chan, u32 val)
  52{
  53	DMA_OUT(chan, &chan->regs->sr, val, 32);
  54}
  55
  56static u32 get_sr(struct fsldma_chan *chan)
  57{
  58	return DMA_IN(chan, &chan->regs->sr, 32);
 
 
 
 
 
 
 
 
 
 
  59}
  60
  61static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
  62{
  63	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
  64}
  65
  66static dma_addr_t get_cdar(struct fsldma_chan *chan)
  67{
  68	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
 
 
 
 
 
  69}
  70
  71static u32 get_bcr(struct fsldma_chan *chan)
  72{
  73	return DMA_IN(chan, &chan->regs->bcr, 32);
  74}
  75
  76/*
  77 * Descriptor Helpers
  78 */
  79
  80static void set_desc_cnt(struct fsldma_chan *chan,
  81				struct fsl_dma_ld_hw *hw, u32 count)
  82{
  83	hw->count = CPU_TO_DMA(chan, count, 32);
  84}
  85
  86static u32 get_desc_cnt(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
  87{
  88	return DMA_TO_CPU(chan, desc->hw.count, 32);
  89}
  90
  91static void set_desc_src(struct fsldma_chan *chan,
  92			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
  93{
  94	u64 snoop_bits;
  95
  96	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
  97		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
  98	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
  99}
 100
 101static dma_addr_t get_desc_src(struct fsldma_chan *chan,
 102			       struct fsl_desc_sw *desc)
 103{
 104	u64 snoop_bits;
 105
 106	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 107		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
 108	return DMA_TO_CPU(chan, desc->hw.src_addr, 64) & ~snoop_bits;
 109}
 110
 111static void set_desc_dst(struct fsldma_chan *chan,
 112			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
 113{
 114	u64 snoop_bits;
 115
 116	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 117		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
 118	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
 119}
 120
 121static dma_addr_t get_desc_dst(struct fsldma_chan *chan,
 122			       struct fsl_desc_sw *desc)
 123{
 124	u64 snoop_bits;
 125
 126	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 127		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
 128	return DMA_TO_CPU(chan, desc->hw.dst_addr, 64) & ~snoop_bits;
 129}
 130
 131static void set_desc_next(struct fsldma_chan *chan,
 132			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
 133{
 134	u64 snoop_bits;
 135
 136	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 137		? FSL_DMA_SNEN : 0;
 138	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
 139}
 140
 141static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 142{
 143	u64 snoop_bits;
 144
 145	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 146		? FSL_DMA_SNEN : 0;
 147
 148	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
 149		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
 150			| snoop_bits, 64);
 151}
 152
 153/*
 154 * DMA Engine Hardware Control Helpers
 155 */
 156
 157static void dma_init(struct fsldma_chan *chan)
 158{
 159	/* Reset the channel */
 160	DMA_OUT(chan, &chan->regs->mr, 0, 32);
 161
 162	switch (chan->feature & FSL_DMA_IP_MASK) {
 163	case FSL_DMA_IP_85XX:
 164		/* Set the channel to below modes:
 165		 * EIE - Error interrupt enable
 166		 * EOLNIE - End of links interrupt enable
 167		 * BWC - Bandwidth sharing among channels
 168		 */
 169		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC
 170				| FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE, 32);
 171		break;
 172	case FSL_DMA_IP_83XX:
 173		/* Set the channel to below modes:
 174		 * EOTIE - End-of-transfer interrupt enable
 175		 * PRC_RM - PCI read multiple
 176		 */
 177		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
 178				| FSL_DMA_MR_PRC_RM, 32);
 179		break;
 180	}
 181}
 182
 183static int dma_is_idle(struct fsldma_chan *chan)
 184{
 185	u32 sr = get_sr(chan);
 186	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
 187}
 188
 189/*
 190 * Start the DMA controller
 191 *
 192 * Preconditions:
 193 * - the CDAR register must point to the start descriptor
 194 * - the MRn[CS] bit must be cleared
 195 */
 196static void dma_start(struct fsldma_chan *chan)
 197{
 198	u32 mode;
 199
 200	mode = DMA_IN(chan, &chan->regs->mr, 32);
 201
 202	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
 203		DMA_OUT(chan, &chan->regs->bcr, 0, 32);
 204		mode |= FSL_DMA_MR_EMP_EN;
 205	} else {
 206		mode &= ~FSL_DMA_MR_EMP_EN;
 207	}
 208
 209	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
 210		mode |= FSL_DMA_MR_EMS_EN;
 211	} else {
 212		mode &= ~FSL_DMA_MR_EMS_EN;
 213		mode |= FSL_DMA_MR_CS;
 214	}
 215
 216	DMA_OUT(chan, &chan->regs->mr, mode, 32);
 217}
 218
 219static void dma_halt(struct fsldma_chan *chan)
 220{
 221	u32 mode;
 222	int i;
 223
 224	/* read the mode register */
 225	mode = DMA_IN(chan, &chan->regs->mr, 32);
 226
 227	/*
 228	 * The 85xx controller supports channel abort, which will stop
 229	 * the current transfer. On 83xx, this bit is the transfer error
 230	 * mask bit, which should not be changed.
 231	 */
 232	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 233		mode |= FSL_DMA_MR_CA;
 234		DMA_OUT(chan, &chan->regs->mr, mode, 32);
 235
 236		mode &= ~FSL_DMA_MR_CA;
 237	}
 238
 239	/* stop the DMA controller */
 240	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
 241	DMA_OUT(chan, &chan->regs->mr, mode, 32);
 242
 243	/* wait for the DMA controller to become idle */
 244	for (i = 0; i < 100; i++) {
 245		if (dma_is_idle(chan))
 246			return;
 247
 248		udelay(10);
 249	}
 250
 251	if (!dma_is_idle(chan))
 252		chan_err(chan, "DMA halt timeout!\n");
 253}
 254
 255/**
 256 * fsl_chan_set_src_loop_size - Set source address hold transfer size
 257 * @chan : Freescale DMA channel
 258 * @size     : Address loop size, 0 for disable loop
 259 *
 260 * The set source address hold transfer size. The source
 261 * address hold or loop transfer size is when the DMA transfer
 262 * data from source address (SA), if the loop size is 4, the DMA will
 263 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
 264 * SA + 1 ... and so on.
 265 */
 266static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
 267{
 268	u32 mode;
 269
 270	mode = DMA_IN(chan, &chan->regs->mr, 32);
 271
 272	switch (size) {
 273	case 0:
 274		mode &= ~FSL_DMA_MR_SAHE;
 275		break;
 276	case 1:
 277	case 2:
 278	case 4:
 279	case 8:
 
 280		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
 281		break;
 282	}
 283
 284	DMA_OUT(chan, &chan->regs->mr, mode, 32);
 285}
 286
 287/**
 288 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
 289 * @chan : Freescale DMA channel
 290 * @size     : Address loop size, 0 for disable loop
 291 *
 292 * The set destination address hold transfer size. The destination
 293 * address hold or loop transfer size is when the DMA transfer
 294 * data to destination address (TA), if the loop size is 4, the DMA will
 295 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
 296 * TA + 1 ... and so on.
 297 */
 298static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
 299{
 300	u32 mode;
 301
 302	mode = DMA_IN(chan, &chan->regs->mr, 32);
 303
 304	switch (size) {
 305	case 0:
 306		mode &= ~FSL_DMA_MR_DAHE;
 307		break;
 308	case 1:
 309	case 2:
 310	case 4:
 311	case 8:
 
 312		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
 313		break;
 314	}
 315
 316	DMA_OUT(chan, &chan->regs->mr, mode, 32);
 317}
 318
 319/**
 320 * fsl_chan_set_request_count - Set DMA Request Count for external control
 321 * @chan : Freescale DMA channel
 322 * @size     : Number of bytes to transfer in a single request
 323 *
 324 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 325 * The DMA request count is how many bytes are allowed to transfer before
 326 * pausing the channel, after which a new assertion of DREQ# resumes channel
 327 * operation.
 328 *
 329 * A size of 0 disables external pause control. The maximum size is 1024.
 330 */
 331static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
 332{
 333	u32 mode;
 334
 335	BUG_ON(size > 1024);
 336
 337	mode = DMA_IN(chan, &chan->regs->mr, 32);
 338	mode |= (__ilog2(size) << 24) & 0x0f000000;
 
 339
 340	DMA_OUT(chan, &chan->regs->mr, mode, 32);
 341}
 342
 343/**
 344 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
 345 * @chan : Freescale DMA channel
 346 * @enable   : 0 is disabled, 1 is enabled.
 347 *
 348 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 349 * The DMA Request Count feature should be used in addition to this feature
 350 * to set the number of bytes to transfer before pausing the channel.
 351 */
 352static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
 353{
 354	if (enable)
 355		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
 356	else
 357		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
 358}
 359
 360/**
 361 * fsl_chan_toggle_ext_start - Toggle channel external start status
 362 * @chan : Freescale DMA channel
 363 * @enable   : 0 is disabled, 1 is enabled.
 364 *
 365 * If enable the external start, the channel can be started by an
 366 * external DMA start pin. So the dma_start() does not start the
 367 * transfer immediately. The DMA channel will wait for the
 368 * control pin asserted.
 369 */
 370static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
 371{
 372	if (enable)
 373		chan->feature |= FSL_DMA_CHAN_START_EXT;
 374	else
 375		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
 376}
 377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 379{
 380	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
 381
 382	if (list_empty(&chan->ld_pending))
 383		goto out_splice;
 384
 385	/*
 386	 * Add the hardware descriptor to the chain of hardware descriptors
 387	 * that already exists in memory.
 388	 *
 389	 * This will un-set the EOL bit of the existing transaction, and the
 390	 * last link in this transaction will become the EOL descriptor.
 391	 */
 392	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
 393
 394	/*
 395	 * Add the software descriptor and all children to the list
 396	 * of pending transactions
 397	 */
 398out_splice:
 399	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
 400}
 401
 402static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 403{
 404	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
 405	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
 406	struct fsl_desc_sw *child;
 407	unsigned long flags;
 408	dma_cookie_t cookie;
 
 409
 410	spin_lock_irqsave(&chan->desc_lock, flags);
 
 
 
 
 
 
 411
 412	/*
 413	 * assign cookies to all of the software descriptors
 414	 * that make up this transaction
 415	 */
 416	cookie = chan->common.cookie;
 417	list_for_each_entry(child, &desc->tx_list, node) {
 418		cookie++;
 419		if (cookie < DMA_MIN_COOKIE)
 420			cookie = DMA_MIN_COOKIE;
 421
 422		child->async_tx.cookie = cookie;
 423	}
 424
 425	chan->common.cookie = cookie;
 426
 427	/* put this transaction onto the tail of the pending queue */
 428	append_ld_queue(chan, desc);
 429
 430	spin_unlock_irqrestore(&chan->desc_lock, flags);
 431
 432	return cookie;
 433}
 434
 435/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 436 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
 437 * @chan : Freescale DMA channel
 438 *
 439 * Return - The descriptor allocated. NULL for failed.
 440 */
 441static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
 442{
 443	struct fsl_desc_sw *desc;
 444	dma_addr_t pdesc;
 445
 446	desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
 447	if (!desc) {
 448		chan_dbg(chan, "out of memory for link descriptor\n");
 449		return NULL;
 450	}
 451
 452	memset(desc, 0, sizeof(*desc));
 453	INIT_LIST_HEAD(&desc->tx_list);
 454	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
 455	desc->async_tx.tx_submit = fsl_dma_tx_submit;
 456	desc->async_tx.phys = pdesc;
 457
 458#ifdef FSL_DMA_LD_DEBUG
 459	chan_dbg(chan, "LD %p allocated\n", desc);
 460#endif
 461
 462	return desc;
 463}
 464
 465/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
 467 * @chan : Freescale DMA channel
 468 *
 469 * This function will create a dma pool for descriptor allocation.
 470 *
 471 * Return - The number of descriptors allocated.
 472 */
 473static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
 474{
 475	struct fsldma_chan *chan = to_fsl_chan(dchan);
 476
 477	/* Has this channel already been allocated? */
 478	if (chan->desc_pool)
 479		return 1;
 480
 481	/*
 482	 * We need the descriptor to be aligned to 32bytes
 483	 * for meeting FSL DMA specification requirement.
 484	 */
 485	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
 486					  sizeof(struct fsl_desc_sw),
 487					  __alignof__(struct fsl_desc_sw), 0);
 488	if (!chan->desc_pool) {
 489		chan_err(chan, "unable to allocate descriptor pool\n");
 490		return -ENOMEM;
 491	}
 492
 493	/* there is at least one descriptor free to be allocated */
 494	return 1;
 495}
 496
 497/**
 498 * fsldma_free_desc_list - Free all descriptors in a queue
 499 * @chan: Freescae DMA channel
 500 * @list: the list to free
 501 *
 502 * LOCKING: must hold chan->desc_lock
 503 */
 504static void fsldma_free_desc_list(struct fsldma_chan *chan,
 505				  struct list_head *list)
 506{
 507	struct fsl_desc_sw *desc, *_desc;
 508
 509	list_for_each_entry_safe(desc, _desc, list, node) {
 510		list_del(&desc->node);
 511#ifdef FSL_DMA_LD_DEBUG
 512		chan_dbg(chan, "LD %p free\n", desc);
 513#endif
 514		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 515	}
 516}
 517
 518static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
 519					  struct list_head *list)
 520{
 521	struct fsl_desc_sw *desc, *_desc;
 522
 523	list_for_each_entry_safe_reverse(desc, _desc, list, node) {
 524		list_del(&desc->node);
 525#ifdef FSL_DMA_LD_DEBUG
 526		chan_dbg(chan, "LD %p free\n", desc);
 527#endif
 528		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 529	}
 530}
 531
 532/**
 533 * fsl_dma_free_chan_resources - Free all resources of the channel.
 534 * @chan : Freescale DMA channel
 535 */
 536static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
 537{
 538	struct fsldma_chan *chan = to_fsl_chan(dchan);
 539	unsigned long flags;
 540
 541	chan_dbg(chan, "free all channel resources\n");
 542	spin_lock_irqsave(&chan->desc_lock, flags);
 
 543	fsldma_free_desc_list(chan, &chan->ld_pending);
 544	fsldma_free_desc_list(chan, &chan->ld_running);
 545	spin_unlock_irqrestore(&chan->desc_lock, flags);
 
 546
 547	dma_pool_destroy(chan->desc_pool);
 548	chan->desc_pool = NULL;
 549}
 550
 551static struct dma_async_tx_descriptor *
 552fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
 553{
 554	struct fsldma_chan *chan;
 555	struct fsl_desc_sw *new;
 556
 557	if (!dchan)
 558		return NULL;
 559
 560	chan = to_fsl_chan(dchan);
 561
 562	new = fsl_dma_alloc_descriptor(chan);
 563	if (!new) {
 564		chan_err(chan, "%s\n", msg_ld_oom);
 565		return NULL;
 566	}
 567
 568	new->async_tx.cookie = -EBUSY;
 569	new->async_tx.flags = flags;
 570
 571	/* Insert the link descriptor to the LD ring */
 572	list_add_tail(&new->node, &new->tx_list);
 573
 574	/* Set End-of-link to the last link descriptor of new list */
 575	set_ld_eol(chan, new);
 576
 577	return &new->async_tx;
 578}
 579
 580static struct dma_async_tx_descriptor *
 581fsl_dma_prep_memcpy(struct dma_chan *dchan,
 582	dma_addr_t dma_dst, dma_addr_t dma_src,
 583	size_t len, unsigned long flags)
 584{
 585	struct fsldma_chan *chan;
 586	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
 587	size_t copy;
 588
 589	if (!dchan)
 590		return NULL;
 591
 592	if (!len)
 593		return NULL;
 594
 595	chan = to_fsl_chan(dchan);
 596
 597	do {
 598
 599		/* Allocate the link descriptor from DMA pool */
 600		new = fsl_dma_alloc_descriptor(chan);
 601		if (!new) {
 602			chan_err(chan, "%s\n", msg_ld_oom);
 603			goto fail;
 604		}
 605
 606		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
 607
 608		set_desc_cnt(chan, &new->hw, copy);
 609		set_desc_src(chan, &new->hw, dma_src);
 610		set_desc_dst(chan, &new->hw, dma_dst);
 611
 612		if (!first)
 613			first = new;
 614		else
 615			set_desc_next(chan, &prev->hw, new->async_tx.phys);
 616
 617		new->async_tx.cookie = 0;
 618		async_tx_ack(&new->async_tx);
 619
 620		prev = new;
 621		len -= copy;
 622		dma_src += copy;
 623		dma_dst += copy;
 624
 625		/* Insert the link descriptor to the LD ring */
 626		list_add_tail(&new->node, &first->tx_list);
 627	} while (len);
 628
 629	new->async_tx.flags = flags; /* client is in control of this ack */
 630	new->async_tx.cookie = -EBUSY;
 631
 632	/* Set End-of-link to the last link descriptor of new list */
 633	set_ld_eol(chan, new);
 634
 635	return &first->async_tx;
 636
 637fail:
 638	if (!first)
 639		return NULL;
 640
 641	fsldma_free_desc_list_reverse(chan, &first->tx_list);
 642	return NULL;
 643}
 644
 645static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
 646	struct scatterlist *dst_sg, unsigned int dst_nents,
 647	struct scatterlist *src_sg, unsigned int src_nents,
 648	unsigned long flags)
 649{
 650	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
 651	struct fsldma_chan *chan = to_fsl_chan(dchan);
 652	size_t dst_avail, src_avail;
 653	dma_addr_t dst, src;
 654	size_t len;
 655
 656	/* basic sanity checks */
 657	if (dst_nents == 0 || src_nents == 0)
 658		return NULL;
 659
 660	if (dst_sg == NULL || src_sg == NULL)
 661		return NULL;
 662
 663	/*
 664	 * TODO: should we check that both scatterlists have the same
 665	 * TODO: number of bytes in total? Is that really an error?
 666	 */
 667
 668	/* get prepared for the loop */
 669	dst_avail = sg_dma_len(dst_sg);
 670	src_avail = sg_dma_len(src_sg);
 671
 672	/* run until we are out of scatterlist entries */
 673	while (true) {
 674
 675		/* create the largest transaction possible */
 676		len = min_t(size_t, src_avail, dst_avail);
 677		len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
 678		if (len == 0)
 679			goto fetch;
 680
 681		dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
 682		src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
 683
 684		/* allocate and populate the descriptor */
 685		new = fsl_dma_alloc_descriptor(chan);
 686		if (!new) {
 687			chan_err(chan, "%s\n", msg_ld_oom);
 688			goto fail;
 689		}
 690
 691		set_desc_cnt(chan, &new->hw, len);
 692		set_desc_src(chan, &new->hw, src);
 693		set_desc_dst(chan, &new->hw, dst);
 694
 695		if (!first)
 696			first = new;
 697		else
 698			set_desc_next(chan, &prev->hw, new->async_tx.phys);
 699
 700		new->async_tx.cookie = 0;
 701		async_tx_ack(&new->async_tx);
 702		prev = new;
 703
 704		/* Insert the link descriptor to the LD ring */
 705		list_add_tail(&new->node, &first->tx_list);
 706
 707		/* update metadata */
 708		dst_avail -= len;
 709		src_avail -= len;
 710
 711fetch:
 712		/* fetch the next dst scatterlist entry */
 713		if (dst_avail == 0) {
 714
 715			/* no more entries: we're done */
 716			if (dst_nents == 0)
 717				break;
 718
 719			/* fetch the next entry: if there are no more: done */
 720			dst_sg = sg_next(dst_sg);
 721			if (dst_sg == NULL)
 722				break;
 723
 724			dst_nents--;
 725			dst_avail = sg_dma_len(dst_sg);
 726		}
 727
 728		/* fetch the next src scatterlist entry */
 729		if (src_avail == 0) {
 730
 731			/* no more entries: we're done */
 732			if (src_nents == 0)
 733				break;
 734
 735			/* fetch the next entry: if there are no more: done */
 736			src_sg = sg_next(src_sg);
 737			if (src_sg == NULL)
 738				break;
 739
 740			src_nents--;
 741			src_avail = sg_dma_len(src_sg);
 742		}
 743	}
 744
 745	new->async_tx.flags = flags; /* client is in control of this ack */
 746	new->async_tx.cookie = -EBUSY;
 747
 748	/* Set End-of-link to the last link descriptor of new list */
 749	set_ld_eol(chan, new);
 750
 751	return &first->async_tx;
 752
 753fail:
 754	if (!first)
 755		return NULL;
 756
 757	fsldma_free_desc_list_reverse(chan, &first->tx_list);
 758	return NULL;
 759}
 
 
 760
 761/**
 762 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
 763 * @chan: DMA channel
 764 * @sgl: scatterlist to transfer to/from
 765 * @sg_len: number of entries in @scatterlist
 766 * @direction: DMA direction
 767 * @flags: DMAEngine flags
 768 *
 769 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
 770 * DMA_SLAVE API, this gets the device-specific information from the
 771 * chan->private variable.
 772 */
 773static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
 774	struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
 775	enum dma_data_direction direction, unsigned long flags)
 776{
 777	/*
 778	 * This operation is not supported on the Freescale DMA controller
 779	 *
 780	 * However, we need to provide the function pointer to allow the
 781	 * device_control() method to work.
 782	 */
 783	return NULL;
 784}
 785
 786static int fsl_dma_device_control(struct dma_chan *dchan,
 787				  enum dma_ctrl_cmd cmd, unsigned long arg)
 788{
 789	struct dma_slave_config *config;
 790	struct fsldma_chan *chan;
 791	unsigned long flags;
 792	int size;
 793
 794	if (!dchan)
 795		return -EINVAL;
 796
 797	chan = to_fsl_chan(dchan);
 798
 799	switch (cmd) {
 800	case DMA_TERMINATE_ALL:
 801		spin_lock_irqsave(&chan->desc_lock, flags);
 802
 803		/* Halt the DMA engine */
 804		dma_halt(chan);
 805
 806		/* Remove and free all of the descriptors in the LD queue */
 807		fsldma_free_desc_list(chan, &chan->ld_pending);
 808		fsldma_free_desc_list(chan, &chan->ld_running);
 809		chan->idle = true;
 810
 811		spin_unlock_irqrestore(&chan->desc_lock, flags);
 812		return 0;
 813
 814	case DMA_SLAVE_CONFIG:
 815		config = (struct dma_slave_config *)arg;
 816
 817		/* make sure the channel supports setting burst size */
 818		if (!chan->set_request_count)
 819			return -ENXIO;
 820
 821		/* we set the controller burst size depending on direction */
 822		if (config->direction == DMA_TO_DEVICE)
 823			size = config->dst_addr_width * config->dst_maxburst;
 824		else
 825			size = config->src_addr_width * config->src_maxburst;
 826
 827		chan->set_request_count(chan, size);
 828		return 0;
 829
 830	case FSLDMA_EXTERNAL_START:
 831
 832		/* make sure the channel supports external start */
 833		if (!chan->toggle_ext_start)
 834			return -ENXIO;
 835
 836		chan->toggle_ext_start(chan, arg);
 837		return 0;
 838
 839	default:
 840		return -ENXIO;
 841	}
 842
 843	return 0;
 844}
 845
 846/**
 847 * fsldma_cleanup_descriptor - cleanup and free a single link descriptor
 848 * @chan: Freescale DMA channel
 849 * @desc: descriptor to cleanup and free
 850 *
 851 * This function is used on a descriptor which has been executed by the DMA
 852 * controller. It will run any callbacks, submit any dependencies, and then
 853 * free the descriptor.
 854 */
 855static void fsldma_cleanup_descriptor(struct fsldma_chan *chan,
 856				      struct fsl_desc_sw *desc)
 857{
 858	struct dma_async_tx_descriptor *txd = &desc->async_tx;
 859	struct device *dev = chan->common.device->dev;
 860	dma_addr_t src = get_desc_src(chan, desc);
 861	dma_addr_t dst = get_desc_dst(chan, desc);
 862	u32 len = get_desc_cnt(chan, desc);
 863
 864	/* Run the link descriptor callback function */
 865	if (txd->callback) {
 866#ifdef FSL_DMA_LD_DEBUG
 867		chan_dbg(chan, "LD %p callback\n", desc);
 868#endif
 869		txd->callback(txd->callback_param);
 870	}
 871
 872	/* Run any dependencies */
 873	dma_run_dependencies(txd);
 874
 875	/* Unmap the dst buffer, if requested */
 876	if (!(txd->flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
 877		if (txd->flags & DMA_COMPL_DEST_UNMAP_SINGLE)
 878			dma_unmap_single(dev, dst, len, DMA_FROM_DEVICE);
 879		else
 880			dma_unmap_page(dev, dst, len, DMA_FROM_DEVICE);
 881	}
 882
 883	/* Unmap the src buffer, if requested */
 884	if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
 885		if (txd->flags & DMA_COMPL_SRC_UNMAP_SINGLE)
 886			dma_unmap_single(dev, src, len, DMA_TO_DEVICE);
 887		else
 888			dma_unmap_page(dev, src, len, DMA_TO_DEVICE);
 889	}
 890
 891#ifdef FSL_DMA_LD_DEBUG
 892	chan_dbg(chan, "LD %p free\n", desc);
 893#endif
 894	dma_pool_free(chan->desc_pool, desc, txd->phys);
 895}
 896
 897/**
 898 * fsl_chan_xfer_ld_queue - transfer any pending transactions
 899 * @chan : Freescale DMA channel
 900 *
 901 * HARDWARE STATE: idle
 902 * LOCKING: must hold chan->desc_lock
 903 */
 904static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
 905{
 906	struct fsl_desc_sw *desc;
 907
 908	/*
 909	 * If the list of pending descriptors is empty, then we
 910	 * don't need to do any work at all
 911	 */
 912	if (list_empty(&chan->ld_pending)) {
 913		chan_dbg(chan, "no pending LDs\n");
 914		return;
 915	}
 916
 917	/*
 918	 * The DMA controller is not idle, which means that the interrupt
 919	 * handler will start any queued transactions when it runs after
 920	 * this transaction finishes
 921	 */
 922	if (!chan->idle) {
 923		chan_dbg(chan, "DMA controller still busy\n");
 924		return;
 925	}
 926
 927	/*
 928	 * If there are some link descriptors which have not been
 929	 * transferred, we need to start the controller
 930	 */
 931
 932	/*
 933	 * Move all elements from the queue of pending transactions
 934	 * onto the list of running transactions
 935	 */
 936	chan_dbg(chan, "idle, starting controller\n");
 937	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
 938	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
 939
 940	/*
 941	 * The 85xx DMA controller doesn't clear the channel start bit
 942	 * automatically at the end of a transfer. Therefore we must clear
 943	 * it in software before starting the transfer.
 944	 */
 945	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 946		u32 mode;
 947
 948		mode = DMA_IN(chan, &chan->regs->mr, 32);
 949		mode &= ~FSL_DMA_MR_CS;
 950		DMA_OUT(chan, &chan->regs->mr, mode, 32);
 951	}
 952
 953	/*
 954	 * Program the descriptor's address into the DMA controller,
 955	 * then start the DMA transaction
 956	 */
 957	set_cdar(chan, desc->async_tx.phys);
 958	get_cdar(chan);
 959
 960	dma_start(chan);
 961	chan->idle = false;
 962}
 963
 964/**
 965 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
 966 * @chan : Freescale DMA channel
 967 */
 968static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
 969{
 970	struct fsldma_chan *chan = to_fsl_chan(dchan);
 971	unsigned long flags;
 972
 973	spin_lock_irqsave(&chan->desc_lock, flags);
 974	fsl_chan_xfer_ld_queue(chan);
 975	spin_unlock_irqrestore(&chan->desc_lock, flags);
 976}
 977
 978/**
 979 * fsl_tx_status - Determine the DMA status
 980 * @chan : Freescale DMA channel
 981 */
 982static enum dma_status fsl_tx_status(struct dma_chan *dchan,
 983					dma_cookie_t cookie,
 984					struct dma_tx_state *txstate)
 985{
 986	struct fsldma_chan *chan = to_fsl_chan(dchan);
 987	dma_cookie_t last_complete;
 988	dma_cookie_t last_used;
 989	unsigned long flags;
 990
 991	spin_lock_irqsave(&chan->desc_lock, flags);
 992
 993	last_complete = chan->completed_cookie;
 994	last_used = dchan->cookie;
 995
 996	spin_unlock_irqrestore(&chan->desc_lock, flags);
 
 
 997
 998	dma_set_tx_state(txstate, last_complete, last_used, 0);
 999	return dma_async_is_complete(cookie, last_complete, last_used);
1000}
1001
1002/*----------------------------------------------------------------------------*/
1003/* Interrupt Handling                                                         */
1004/*----------------------------------------------------------------------------*/
1005
1006static irqreturn_t fsldma_chan_irq(int irq, void *data)
1007{
1008	struct fsldma_chan *chan = data;
1009	u32 stat;
1010
1011	/* save and clear the status register */
1012	stat = get_sr(chan);
1013	set_sr(chan, stat);
1014	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1015
1016	/* check that this was really our device */
1017	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1018	if (!stat)
1019		return IRQ_NONE;
1020
1021	if (stat & FSL_DMA_SR_TE)
1022		chan_err(chan, "Transfer Error!\n");
1023
1024	/*
1025	 * Programming Error
1026	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1027	 * triger a PE interrupt.
1028	 */
1029	if (stat & FSL_DMA_SR_PE) {
1030		chan_dbg(chan, "irq: Programming Error INT\n");
1031		stat &= ~FSL_DMA_SR_PE;
1032		if (get_bcr(chan) != 0)
1033			chan_err(chan, "Programming Error!\n");
1034	}
1035
1036	/*
1037	 * For MPC8349, EOCDI event need to update cookie
1038	 * and start the next transfer if it exist.
1039	 */
1040	if (stat & FSL_DMA_SR_EOCDI) {
1041		chan_dbg(chan, "irq: End-of-Chain link INT\n");
1042		stat &= ~FSL_DMA_SR_EOCDI;
1043	}
1044
1045	/*
1046	 * If it current transfer is the end-of-transfer,
1047	 * we should clear the Channel Start bit for
1048	 * prepare next transfer.
1049	 */
1050	if (stat & FSL_DMA_SR_EOLNI) {
1051		chan_dbg(chan, "irq: End-of-link INT\n");
1052		stat &= ~FSL_DMA_SR_EOLNI;
1053	}
1054
1055	/* check that the DMA controller is really idle */
1056	if (!dma_is_idle(chan))
1057		chan_err(chan, "irq: controller not idle!\n");
1058
1059	/* check that we handled all of the bits */
1060	if (stat)
1061		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1062
1063	/*
1064	 * Schedule the tasklet to handle all cleanup of the current
1065	 * transaction. It will start a new transaction if there is
1066	 * one pending.
1067	 */
1068	tasklet_schedule(&chan->tasklet);
1069	chan_dbg(chan, "irq: Exit\n");
1070	return IRQ_HANDLED;
1071}
1072
1073static void dma_do_tasklet(unsigned long data)
1074{
1075	struct fsldma_chan *chan = (struct fsldma_chan *)data;
1076	struct fsl_desc_sw *desc, *_desc;
1077	LIST_HEAD(ld_cleanup);
1078	unsigned long flags;
1079
1080	chan_dbg(chan, "tasklet entry\n");
1081
1082	spin_lock_irqsave(&chan->desc_lock, flags);
1083
1084	/* update the cookie if we have some descriptors to cleanup */
1085	if (!list_empty(&chan->ld_running)) {
1086		dma_cookie_t cookie;
1087
1088		desc = to_fsl_desc(chan->ld_running.prev);
1089		cookie = desc->async_tx.cookie;
1090
1091		chan->completed_cookie = cookie;
1092		chan_dbg(chan, "completed_cookie=%d\n", cookie);
1093	}
1094
1095	/*
1096	 * move the descriptors to a temporary list so we can drop the lock
1097	 * during the entire cleanup operation
1098	 */
1099	list_splice_tail_init(&chan->ld_running, &ld_cleanup);
1100
1101	/* the hardware is now idle and ready for more */
1102	chan->idle = true;
1103
1104	/*
1105	 * Start any pending transactions automatically
1106	 *
1107	 * In the ideal case, we keep the DMA controller busy while we go
1108	 * ahead and free the descriptors below.
1109	 */
1110	fsl_chan_xfer_ld_queue(chan);
1111	spin_unlock_irqrestore(&chan->desc_lock, flags);
1112
1113	/* Run the callback for each descriptor, in order */
1114	list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) {
1115
1116		/* Remove from the list of transactions */
1117		list_del(&desc->node);
1118
1119		/* Run all cleanup for this descriptor */
1120		fsldma_cleanup_descriptor(chan, desc);
1121	}
1122
1123	chan_dbg(chan, "tasklet exit\n");
1124}
1125
1126static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1127{
1128	struct fsldma_device *fdev = data;
1129	struct fsldma_chan *chan;
1130	unsigned int handled = 0;
1131	u32 gsr, mask;
1132	int i;
1133
1134	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1135						   : in_le32(fdev->regs);
1136	mask = 0xff000000;
1137	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1138
1139	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1140		chan = fdev->chan[i];
1141		if (!chan)
1142			continue;
1143
1144		if (gsr & mask) {
1145			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1146			fsldma_chan_irq(irq, chan);
1147			handled++;
1148		}
1149
1150		gsr &= ~mask;
1151		mask >>= 8;
1152	}
1153
1154	return IRQ_RETVAL(handled);
1155}
1156
1157static void fsldma_free_irqs(struct fsldma_device *fdev)
1158{
1159	struct fsldma_chan *chan;
1160	int i;
1161
1162	if (fdev->irq != NO_IRQ) {
1163		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1164		free_irq(fdev->irq, fdev);
1165		return;
1166	}
1167
1168	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1169		chan = fdev->chan[i];
1170		if (chan && chan->irq != NO_IRQ) {
1171			chan_dbg(chan, "free per-channel IRQ\n");
1172			free_irq(chan->irq, chan);
1173		}
1174	}
1175}
1176
1177static int fsldma_request_irqs(struct fsldma_device *fdev)
1178{
1179	struct fsldma_chan *chan;
1180	int ret;
1181	int i;
1182
1183	/* if we have a per-controller IRQ, use that */
1184	if (fdev->irq != NO_IRQ) {
1185		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1186		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1187				  "fsldma-controller", fdev);
1188		return ret;
1189	}
1190
1191	/* no per-controller IRQ, use the per-channel IRQs */
1192	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1193		chan = fdev->chan[i];
1194		if (!chan)
1195			continue;
1196
1197		if (chan->irq == NO_IRQ) {
1198			chan_err(chan, "interrupts property missing in device tree\n");
1199			ret = -ENODEV;
1200			goto out_unwind;
1201		}
1202
1203		chan_dbg(chan, "request per-channel IRQ\n");
1204		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1205				  "fsldma-chan", chan);
1206		if (ret) {
1207			chan_err(chan, "unable to request per-channel IRQ\n");
1208			goto out_unwind;
1209		}
1210	}
1211
1212	return 0;
1213
1214out_unwind:
1215	for (/* none */; i >= 0; i--) {
1216		chan = fdev->chan[i];
1217		if (!chan)
1218			continue;
1219
1220		if (chan->irq == NO_IRQ)
1221			continue;
1222
1223		free_irq(chan->irq, chan);
1224	}
1225
1226	return ret;
1227}
1228
1229/*----------------------------------------------------------------------------*/
1230/* OpenFirmware Subsystem                                                     */
1231/*----------------------------------------------------------------------------*/
1232
1233static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
1234	struct device_node *node, u32 feature, const char *compatible)
1235{
1236	struct fsldma_chan *chan;
1237	struct resource res;
1238	int err;
1239
1240	/* alloc channel */
1241	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1242	if (!chan) {
1243		dev_err(fdev->dev, "no free memory for DMA channels!\n");
1244		err = -ENOMEM;
1245		goto out_return;
1246	}
1247
1248	/* ioremap registers for use */
1249	chan->regs = of_iomap(node, 0);
1250	if (!chan->regs) {
1251		dev_err(fdev->dev, "unable to ioremap registers\n");
1252		err = -ENOMEM;
1253		goto out_free_chan;
1254	}
1255
1256	err = of_address_to_resource(node, 0, &res);
1257	if (err) {
1258		dev_err(fdev->dev, "unable to find 'reg' property\n");
1259		goto out_iounmap_regs;
1260	}
1261
1262	chan->feature = feature;
1263	if (!fdev->feature)
1264		fdev->feature = chan->feature;
1265
1266	/*
1267	 * If the DMA device's feature is different than the feature
1268	 * of its channels, report the bug
1269	 */
1270	WARN_ON(fdev->feature != chan->feature);
1271
1272	chan->dev = fdev->dev;
1273	chan->id = ((res.start - 0x100) & 0xfff) >> 7;
 
 
1274	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1275		dev_err(fdev->dev, "too many channels for device\n");
1276		err = -EINVAL;
1277		goto out_iounmap_regs;
1278	}
1279
1280	fdev->chan[chan->id] = chan;
1281	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1282	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1283
1284	/* Initialize the channel */
1285	dma_init(chan);
1286
1287	/* Clear cdar registers */
1288	set_cdar(chan, 0);
1289
1290	switch (chan->feature & FSL_DMA_IP_MASK) {
1291	case FSL_DMA_IP_85XX:
1292		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
 
1293	case FSL_DMA_IP_83XX:
1294		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1295		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1296		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1297		chan->set_request_count = fsl_chan_set_request_count;
1298	}
1299
1300	spin_lock_init(&chan->desc_lock);
1301	INIT_LIST_HEAD(&chan->ld_pending);
1302	INIT_LIST_HEAD(&chan->ld_running);
 
1303	chan->idle = true;
 
 
 
1304
1305	chan->common.device = &fdev->common;
 
1306
1307	/* find the IRQ line, if it exists in the device tree */
1308	chan->irq = irq_of_parse_and_map(node, 0);
1309
1310	/* Add the channel to DMA device channel list */
1311	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1312	fdev->common.chancnt++;
1313
1314	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1315		 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1316
1317	return 0;
1318
1319out_iounmap_regs:
1320	iounmap(chan->regs);
1321out_free_chan:
1322	kfree(chan);
1323out_return:
1324	return err;
1325}
1326
1327static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1328{
1329	irq_dispose_mapping(chan->irq);
1330	list_del(&chan->common.device_node);
1331	iounmap(chan->regs);
1332	kfree(chan);
1333}
1334
1335static int __devinit fsldma_of_probe(struct platform_device *op)
1336{
1337	struct fsldma_device *fdev;
1338	struct device_node *child;
 
1339	int err;
1340
1341	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1342	if (!fdev) {
1343		dev_err(&op->dev, "No enough memory for 'priv'\n");
1344		err = -ENOMEM;
1345		goto out_return;
1346	}
1347
1348	fdev->dev = &op->dev;
1349	INIT_LIST_HEAD(&fdev->common.channels);
1350
1351	/* ioremap the registers for use */
1352	fdev->regs = of_iomap(op->dev.of_node, 0);
1353	if (!fdev->regs) {
1354		dev_err(&op->dev, "unable to ioremap registers\n");
1355		err = -ENOMEM;
1356		goto out_free_fdev;
1357	}
1358
1359	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1360	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1361
1362	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1363	dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1364	dma_cap_set(DMA_SG, fdev->common.cap_mask);
1365	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1366	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1367	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1368	fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1369	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1370	fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1371	fdev->common.device_tx_status = fsl_tx_status;
1372	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1373	fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1374	fdev->common.device_control = fsl_dma_device_control;
1375	fdev->common.dev = &op->dev;
1376
 
 
 
 
 
1377	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1378
1379	dev_set_drvdata(&op->dev, fdev);
1380
1381	/*
1382	 * We cannot use of_platform_bus_probe() because there is no
1383	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1384	 * channel object.
1385	 */
1386	for_each_child_of_node(op->dev.of_node, child) {
1387		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1388			fsl_dma_chan_probe(fdev, child,
1389				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1390				"fsl,eloplus-dma-channel");
1391		}
1392
1393		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1394			fsl_dma_chan_probe(fdev, child,
1395				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1396				"fsl,elo-dma-channel");
1397		}
1398	}
1399
1400	/*
1401	 * Hookup the IRQ handler(s)
1402	 *
1403	 * If we have a per-controller interrupt, we prefer that to the
1404	 * per-channel interrupts to reduce the number of shared interrupt
1405	 * handlers on the same IRQ line
1406	 */
1407	err = fsldma_request_irqs(fdev);
1408	if (err) {
1409		dev_err(fdev->dev, "unable to request IRQs\n");
1410		goto out_free_fdev;
1411	}
1412
1413	dma_async_device_register(&fdev->common);
1414	return 0;
1415
1416out_free_fdev:
 
 
 
 
1417	irq_dispose_mapping(fdev->irq);
 
 
1418	kfree(fdev);
1419out_return:
1420	return err;
1421}
1422
1423static int fsldma_of_remove(struct platform_device *op)
1424{
1425	struct fsldma_device *fdev;
1426	unsigned int i;
1427
1428	fdev = dev_get_drvdata(&op->dev);
1429	dma_async_device_unregister(&fdev->common);
1430
1431	fsldma_free_irqs(fdev);
1432
1433	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1434		if (fdev->chan[i])
1435			fsl_dma_chan_remove(fdev->chan[i]);
1436	}
 
1437
1438	iounmap(fdev->regs);
1439	dev_set_drvdata(&op->dev, NULL);
1440	kfree(fdev);
1441
1442	return 0;
1443}
1444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1445static const struct of_device_id fsldma_of_ids[] = {
 
1446	{ .compatible = "fsl,eloplus-dma", },
1447	{ .compatible = "fsl,elo-dma", },
1448	{}
1449};
 
1450
1451static struct platform_driver fsldma_of_driver = {
1452	.driver = {
1453		.name = "fsl-elo-dma",
1454		.owner = THIS_MODULE,
1455		.of_match_table = fsldma_of_ids,
 
 
 
1456	},
1457	.probe = fsldma_of_probe,
1458	.remove = fsldma_of_remove,
1459};
1460
1461/*----------------------------------------------------------------------------*/
1462/* Module Init / Exit                                                         */
1463/*----------------------------------------------------------------------------*/
1464
1465static __init int fsldma_init(void)
1466{
1467	pr_info("Freescale Elo / Elo Plus DMA driver\n");
1468	return platform_driver_register(&fsldma_of_driver);
1469}
1470
1471static void __exit fsldma_exit(void)
1472{
1473	platform_driver_unregister(&fsldma_of_driver);
1474}
1475
1476subsys_initcall(fsldma_init);
1477module_exit(fsldma_exit);
1478
1479MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1480MODULE_LICENSE("GPL");
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Freescale MPC85xx, MPC83xx DMA Engine support
   4 *
   5 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
   6 *
   7 * Author:
   8 *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
   9 *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
  10 *
  11 * Description:
  12 *   DMA engine driver for Freescale MPC8540 DMA controller, which is
  13 *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
  14 *   The support for MPC8349 DMA controller is also added.
  15 *
  16 * This driver instructs the DMA controller to issue the PCI Read Multiple
  17 * command for PCI read operations, instead of using the default PCI Read Line
  18 * command. Please be aware that this setting may result in read pre-fetching
  19 * on some platforms.
 
 
 
 
 
 
  20 */
  21
  22#include <linux/init.h>
  23#include <linux/module.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/interrupt.h>
  27#include <linux/dmaengine.h>
  28#include <linux/delay.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/dmapool.h>
  31#include <linux/of_address.h>
  32#include <linux/of_irq.h>
  33#include <linux/of_platform.h>
  34#include <linux/fsldma.h>
  35#include "dmaengine.h"
  36#include "fsldma.h"
  37
  38#define chan_dbg(chan, fmt, arg...)					\
  39	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
  40#define chan_err(chan, fmt, arg...)					\
  41	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
  42
  43static const char msg_ld_oom[] = "No free memory for link descriptor";
  44
  45/*
  46 * Register Helpers
  47 */
  48
  49static void set_sr(struct fsldma_chan *chan, u32 val)
  50{
  51	FSL_DMA_OUT(chan, &chan->regs->sr, val, 32);
  52}
  53
  54static u32 get_sr(struct fsldma_chan *chan)
  55{
  56	return FSL_DMA_IN(chan, &chan->regs->sr, 32);
  57}
  58
  59static void set_mr(struct fsldma_chan *chan, u32 val)
  60{
  61	FSL_DMA_OUT(chan, &chan->regs->mr, val, 32);
  62}
  63
  64static u32 get_mr(struct fsldma_chan *chan)
  65{
  66	return FSL_DMA_IN(chan, &chan->regs->mr, 32);
  67}
  68
  69static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
  70{
  71	FSL_DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
  72}
  73
  74static dma_addr_t get_cdar(struct fsldma_chan *chan)
  75{
  76	return FSL_DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
  77}
  78
  79static void set_bcr(struct fsldma_chan *chan, u32 val)
  80{
  81	FSL_DMA_OUT(chan, &chan->regs->bcr, val, 32);
  82}
  83
  84static u32 get_bcr(struct fsldma_chan *chan)
  85{
  86	return FSL_DMA_IN(chan, &chan->regs->bcr, 32);
  87}
  88
  89/*
  90 * Descriptor Helpers
  91 */
  92
  93static void set_desc_cnt(struct fsldma_chan *chan,
  94				struct fsl_dma_ld_hw *hw, u32 count)
  95{
  96	hw->count = CPU_TO_DMA(chan, count, 32);
  97}
  98
 
 
 
 
 
  99static void set_desc_src(struct fsldma_chan *chan,
 100			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
 101{
 102	u64 snoop_bits;
 103
 104	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 105		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
 106	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
 107}
 108
 
 
 
 
 
 
 
 
 
 
 109static void set_desc_dst(struct fsldma_chan *chan,
 110			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
 111{
 112	u64 snoop_bits;
 113
 114	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 115		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
 116	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
 117}
 118
 
 
 
 
 
 
 
 
 
 
 119static void set_desc_next(struct fsldma_chan *chan,
 120			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
 121{
 122	u64 snoop_bits;
 123
 124	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 125		? FSL_DMA_SNEN : 0;
 126	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
 127}
 128
 129static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 130{
 131	u64 snoop_bits;
 132
 133	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 134		? FSL_DMA_SNEN : 0;
 135
 136	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
 137		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
 138			| snoop_bits, 64);
 139}
 140
 141/*
 142 * DMA Engine Hardware Control Helpers
 143 */
 144
 145static void dma_init(struct fsldma_chan *chan)
 146{
 147	/* Reset the channel */
 148	set_mr(chan, 0);
 149
 150	switch (chan->feature & FSL_DMA_IP_MASK) {
 151	case FSL_DMA_IP_85XX:
 152		/* Set the channel to below modes:
 153		 * EIE - Error interrupt enable
 154		 * EOLNIE - End of links interrupt enable
 155		 * BWC - Bandwidth sharing among channels
 156		 */
 157		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
 158			| FSL_DMA_MR_EOLNIE);
 159		break;
 160	case FSL_DMA_IP_83XX:
 161		/* Set the channel to below modes:
 162		 * EOTIE - End-of-transfer interrupt enable
 163		 * PRC_RM - PCI read multiple
 164		 */
 165		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
 
 166		break;
 167	}
 168}
 169
 170static int dma_is_idle(struct fsldma_chan *chan)
 171{
 172	u32 sr = get_sr(chan);
 173	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
 174}
 175
 176/*
 177 * Start the DMA controller
 178 *
 179 * Preconditions:
 180 * - the CDAR register must point to the start descriptor
 181 * - the MRn[CS] bit must be cleared
 182 */
 183static void dma_start(struct fsldma_chan *chan)
 184{
 185	u32 mode;
 186
 187	mode = get_mr(chan);
 188
 189	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
 190		set_bcr(chan, 0);
 191		mode |= FSL_DMA_MR_EMP_EN;
 192	} else {
 193		mode &= ~FSL_DMA_MR_EMP_EN;
 194	}
 195
 196	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
 197		mode |= FSL_DMA_MR_EMS_EN;
 198	} else {
 199		mode &= ~FSL_DMA_MR_EMS_EN;
 200		mode |= FSL_DMA_MR_CS;
 201	}
 202
 203	set_mr(chan, mode);
 204}
 205
 206static void dma_halt(struct fsldma_chan *chan)
 207{
 208	u32 mode;
 209	int i;
 210
 211	/* read the mode register */
 212	mode = get_mr(chan);
 213
 214	/*
 215	 * The 85xx controller supports channel abort, which will stop
 216	 * the current transfer. On 83xx, this bit is the transfer error
 217	 * mask bit, which should not be changed.
 218	 */
 219	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 220		mode |= FSL_DMA_MR_CA;
 221		set_mr(chan, mode);
 222
 223		mode &= ~FSL_DMA_MR_CA;
 224	}
 225
 226	/* stop the DMA controller */
 227	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
 228	set_mr(chan, mode);
 229
 230	/* wait for the DMA controller to become idle */
 231	for (i = 0; i < 100; i++) {
 232		if (dma_is_idle(chan))
 233			return;
 234
 235		udelay(10);
 236	}
 237
 238	if (!dma_is_idle(chan))
 239		chan_err(chan, "DMA halt timeout!\n");
 240}
 241
 242/**
 243 * fsl_chan_set_src_loop_size - Set source address hold transfer size
 244 * @chan : Freescale DMA channel
 245 * @size     : Address loop size, 0 for disable loop
 246 *
 247 * The set source address hold transfer size. The source
 248 * address hold or loop transfer size is when the DMA transfer
 249 * data from source address (SA), if the loop size is 4, the DMA will
 250 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
 251 * SA + 1 ... and so on.
 252 */
 253static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
 254{
 255	u32 mode;
 256
 257	mode = get_mr(chan);
 258
 259	switch (size) {
 260	case 0:
 261		mode &= ~FSL_DMA_MR_SAHE;
 262		break;
 263	case 1:
 264	case 2:
 265	case 4:
 266	case 8:
 267		mode &= ~FSL_DMA_MR_SAHTS_MASK;
 268		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
 269		break;
 270	}
 271
 272	set_mr(chan, mode);
 273}
 274
 275/**
 276 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
 277 * @chan : Freescale DMA channel
 278 * @size     : Address loop size, 0 for disable loop
 279 *
 280 * The set destination address hold transfer size. The destination
 281 * address hold or loop transfer size is when the DMA transfer
 282 * data to destination address (TA), if the loop size is 4, the DMA will
 283 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
 284 * TA + 1 ... and so on.
 285 */
 286static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
 287{
 288	u32 mode;
 289
 290	mode = get_mr(chan);
 291
 292	switch (size) {
 293	case 0:
 294		mode &= ~FSL_DMA_MR_DAHE;
 295		break;
 296	case 1:
 297	case 2:
 298	case 4:
 299	case 8:
 300		mode &= ~FSL_DMA_MR_DAHTS_MASK;
 301		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
 302		break;
 303	}
 304
 305	set_mr(chan, mode);
 306}
 307
 308/**
 309 * fsl_chan_set_request_count - Set DMA Request Count for external control
 310 * @chan : Freescale DMA channel
 311 * @size     : Number of bytes to transfer in a single request
 312 *
 313 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 314 * The DMA request count is how many bytes are allowed to transfer before
 315 * pausing the channel, after which a new assertion of DREQ# resumes channel
 316 * operation.
 317 *
 318 * A size of 0 disables external pause control. The maximum size is 1024.
 319 */
 320static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
 321{
 322	u32 mode;
 323
 324	BUG_ON(size > 1024);
 325
 326	mode = get_mr(chan);
 327	mode &= ~FSL_DMA_MR_BWC_MASK;
 328	mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK;
 329
 330	set_mr(chan, mode);
 331}
 332
 333/**
 334 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
 335 * @chan : Freescale DMA channel
 336 * @enable   : 0 is disabled, 1 is enabled.
 337 *
 338 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 339 * The DMA Request Count feature should be used in addition to this feature
 340 * to set the number of bytes to transfer before pausing the channel.
 341 */
 342static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
 343{
 344	if (enable)
 345		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
 346	else
 347		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
 348}
 349
 350/**
 351 * fsl_chan_toggle_ext_start - Toggle channel external start status
 352 * @chan : Freescale DMA channel
 353 * @enable   : 0 is disabled, 1 is enabled.
 354 *
 355 * If enable the external start, the channel can be started by an
 356 * external DMA start pin. So the dma_start() does not start the
 357 * transfer immediately. The DMA channel will wait for the
 358 * control pin asserted.
 359 */
 360static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
 361{
 362	if (enable)
 363		chan->feature |= FSL_DMA_CHAN_START_EXT;
 364	else
 365		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
 366}
 367
 368int fsl_dma_external_start(struct dma_chan *dchan, int enable)
 369{
 370	struct fsldma_chan *chan;
 371
 372	if (!dchan)
 373		return -EINVAL;
 374
 375	chan = to_fsl_chan(dchan);
 376
 377	fsl_chan_toggle_ext_start(chan, enable);
 378	return 0;
 379}
 380EXPORT_SYMBOL_GPL(fsl_dma_external_start);
 381
 382static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 383{
 384	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
 385
 386	if (list_empty(&chan->ld_pending))
 387		goto out_splice;
 388
 389	/*
 390	 * Add the hardware descriptor to the chain of hardware descriptors
 391	 * that already exists in memory.
 392	 *
 393	 * This will un-set the EOL bit of the existing transaction, and the
 394	 * last link in this transaction will become the EOL descriptor.
 395	 */
 396	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
 397
 398	/*
 399	 * Add the software descriptor and all children to the list
 400	 * of pending transactions
 401	 */
 402out_splice:
 403	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
 404}
 405
 406static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 407{
 408	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
 409	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
 410	struct fsl_desc_sw *child;
 411	dma_cookie_t cookie = -EINVAL;
 412
 413	spin_lock_bh(&chan->desc_lock);
 414
 415#ifdef CONFIG_PM
 416	if (unlikely(chan->pm_state != RUNNING)) {
 417		chan_dbg(chan, "cannot submit due to suspend\n");
 418		spin_unlock_bh(&chan->desc_lock);
 419		return -1;
 420	}
 421#endif
 422
 423	/*
 424	 * assign cookies to all of the software descriptors
 425	 * that make up this transaction
 426	 */
 
 427	list_for_each_entry(child, &desc->tx_list, node) {
 428		cookie = dma_cookie_assign(&child->async_tx);
 
 
 
 
 429	}
 430
 
 
 431	/* put this transaction onto the tail of the pending queue */
 432	append_ld_queue(chan, desc);
 433
 434	spin_unlock_bh(&chan->desc_lock);
 435
 436	return cookie;
 437}
 438
 439/**
 440 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
 441 * @chan : Freescale DMA channel
 442 * @desc: descriptor to be freed
 443 */
 444static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
 445		struct fsl_desc_sw *desc)
 446{
 447	list_del(&desc->node);
 448	chan_dbg(chan, "LD %p free\n", desc);
 449	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 450}
 451
 452/**
 453 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
 454 * @chan : Freescale DMA channel
 455 *
 456 * Return - The descriptor allocated. NULL for failed.
 457 */
 458static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
 459{
 460	struct fsl_desc_sw *desc;
 461	dma_addr_t pdesc;
 462
 463	desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
 464	if (!desc) {
 465		chan_dbg(chan, "out of memory for link descriptor\n");
 466		return NULL;
 467	}
 468
 
 469	INIT_LIST_HEAD(&desc->tx_list);
 470	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
 471	desc->async_tx.tx_submit = fsl_dma_tx_submit;
 472	desc->async_tx.phys = pdesc;
 473
 
 474	chan_dbg(chan, "LD %p allocated\n", desc);
 
 475
 476	return desc;
 477}
 478
 479/**
 480 * fsldma_clean_completed_descriptor - free all descriptors which
 481 * has been completed and acked
 482 * @chan: Freescale DMA channel
 483 *
 484 * This function is used on all completed and acked descriptors.
 485 * All descriptors should only be freed in this function.
 486 */
 487static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
 488{
 489	struct fsl_desc_sw *desc, *_desc;
 490
 491	/* Run the callback for each descriptor, in order */
 492	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
 493		if (async_tx_test_ack(&desc->async_tx))
 494			fsl_dma_free_descriptor(chan, desc);
 495}
 496
 497/**
 498 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
 499 * @chan: Freescale DMA channel
 500 * @desc: descriptor to cleanup and free
 501 * @cookie: Freescale DMA transaction identifier
 502 *
 503 * This function is used on a descriptor which has been executed by the DMA
 504 * controller. It will run any callbacks, submit any dependencies.
 505 */
 506static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
 507		struct fsl_desc_sw *desc, dma_cookie_t cookie)
 508{
 509	struct dma_async_tx_descriptor *txd = &desc->async_tx;
 510	dma_cookie_t ret = cookie;
 511
 512	BUG_ON(txd->cookie < 0);
 513
 514	if (txd->cookie > 0) {
 515		ret = txd->cookie;
 516
 517		dma_descriptor_unmap(txd);
 518		/* Run the link descriptor callback function */
 519		dmaengine_desc_get_callback_invoke(txd, NULL);
 520	}
 521
 522	/* Run any dependencies */
 523	dma_run_dependencies(txd);
 524
 525	return ret;
 526}
 527
 528/**
 529 * fsldma_clean_running_descriptor - move the completed descriptor from
 530 * ld_running to ld_completed
 531 * @chan: Freescale DMA channel
 532 * @desc: the descriptor which is completed
 533 *
 534 * Free the descriptor directly if acked by async_tx api, or move it to
 535 * queue ld_completed.
 536 */
 537static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
 538		struct fsl_desc_sw *desc)
 539{
 540	/* Remove from the list of transactions */
 541	list_del(&desc->node);
 542
 543	/*
 544	 * the client is allowed to attach dependent operations
 545	 * until 'ack' is set
 546	 */
 547	if (!async_tx_test_ack(&desc->async_tx)) {
 548		/*
 549		 * Move this descriptor to the list of descriptors which is
 550		 * completed, but still awaiting the 'ack' bit to be set.
 551		 */
 552		list_add_tail(&desc->node, &chan->ld_completed);
 553		return;
 554	}
 555
 556	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 557}
 558
 559/**
 560 * fsl_chan_xfer_ld_queue - transfer any pending transactions
 561 * @chan : Freescale DMA channel
 562 *
 563 * HARDWARE STATE: idle
 564 * LOCKING: must hold chan->desc_lock
 565 */
 566static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
 567{
 568	struct fsl_desc_sw *desc;
 569
 570	/*
 571	 * If the list of pending descriptors is empty, then we
 572	 * don't need to do any work at all
 573	 */
 574	if (list_empty(&chan->ld_pending)) {
 575		chan_dbg(chan, "no pending LDs\n");
 576		return;
 577	}
 578
 579	/*
 580	 * The DMA controller is not idle, which means that the interrupt
 581	 * handler will start any queued transactions when it runs after
 582	 * this transaction finishes
 583	 */
 584	if (!chan->idle) {
 585		chan_dbg(chan, "DMA controller still busy\n");
 586		return;
 587	}
 588
 589	/*
 590	 * If there are some link descriptors which have not been
 591	 * transferred, we need to start the controller
 592	 */
 593
 594	/*
 595	 * Move all elements from the queue of pending transactions
 596	 * onto the list of running transactions
 597	 */
 598	chan_dbg(chan, "idle, starting controller\n");
 599	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
 600	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
 601
 602	/*
 603	 * The 85xx DMA controller doesn't clear the channel start bit
 604	 * automatically at the end of a transfer. Therefore we must clear
 605	 * it in software before starting the transfer.
 606	 */
 607	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 608		u32 mode;
 609
 610		mode = get_mr(chan);
 611		mode &= ~FSL_DMA_MR_CS;
 612		set_mr(chan, mode);
 613	}
 614
 615	/*
 616	 * Program the descriptor's address into the DMA controller,
 617	 * then start the DMA transaction
 618	 */
 619	set_cdar(chan, desc->async_tx.phys);
 620	get_cdar(chan);
 621
 622	dma_start(chan);
 623	chan->idle = false;
 624}
 625
 626/**
 627 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
 628 * and move them to ld_completed to free until flag 'ack' is set
 629 * @chan: Freescale DMA channel
 630 *
 631 * This function is used on descriptors which have been executed by the DMA
 632 * controller. It will run any callbacks, submit any dependencies, then
 633 * free these descriptors if flag 'ack' is set.
 634 */
 635static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
 636{
 637	struct fsl_desc_sw *desc, *_desc;
 638	dma_cookie_t cookie = 0;
 639	dma_addr_t curr_phys = get_cdar(chan);
 640	int seen_current = 0;
 641
 642	fsldma_clean_completed_descriptor(chan);
 643
 644	/* Run the callback for each descriptor, in order */
 645	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
 646		/*
 647		 * do not advance past the current descriptor loaded into the
 648		 * hardware channel, subsequent descriptors are either in
 649		 * process or have not been submitted
 650		 */
 651		if (seen_current)
 652			break;
 653
 654		/*
 655		 * stop the search if we reach the current descriptor and the
 656		 * channel is busy
 657		 */
 658		if (desc->async_tx.phys == curr_phys) {
 659			seen_current = 1;
 660			if (!dma_is_idle(chan))
 661				break;
 662		}
 663
 664		cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
 665
 666		fsldma_clean_running_descriptor(chan, desc);
 667	}
 668
 669	/*
 670	 * Start any pending transactions automatically
 671	 *
 672	 * In the ideal case, we keep the DMA controller busy while we go
 673	 * ahead and free the descriptors below.
 674	 */
 675	fsl_chan_xfer_ld_queue(chan);
 676
 677	if (cookie > 0)
 678		chan->common.completed_cookie = cookie;
 679}
 680
 681/**
 682 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
 683 * @chan : Freescale DMA channel
 684 *
 685 * This function will create a dma pool for descriptor allocation.
 686 *
 687 * Return - The number of descriptors allocated.
 688 */
 689static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
 690{
 691	struct fsldma_chan *chan = to_fsl_chan(dchan);
 692
 693	/* Has this channel already been allocated? */
 694	if (chan->desc_pool)
 695		return 1;
 696
 697	/*
 698	 * We need the descriptor to be aligned to 32bytes
 699	 * for meeting FSL DMA specification requirement.
 700	 */
 701	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
 702					  sizeof(struct fsl_desc_sw),
 703					  __alignof__(struct fsl_desc_sw), 0);
 704	if (!chan->desc_pool) {
 705		chan_err(chan, "unable to allocate descriptor pool\n");
 706		return -ENOMEM;
 707	}
 708
 709	/* there is at least one descriptor free to be allocated */
 710	return 1;
 711}
 712
 713/**
 714 * fsldma_free_desc_list - Free all descriptors in a queue
 715 * @chan: Freescae DMA channel
 716 * @list: the list to free
 717 *
 718 * LOCKING: must hold chan->desc_lock
 719 */
 720static void fsldma_free_desc_list(struct fsldma_chan *chan,
 721				  struct list_head *list)
 722{
 723	struct fsl_desc_sw *desc, *_desc;
 724
 725	list_for_each_entry_safe(desc, _desc, list, node)
 726		fsl_dma_free_descriptor(chan, desc);
 
 
 
 
 
 727}
 728
 729static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
 730					  struct list_head *list)
 731{
 732	struct fsl_desc_sw *desc, *_desc;
 733
 734	list_for_each_entry_safe_reverse(desc, _desc, list, node)
 735		fsl_dma_free_descriptor(chan, desc);
 
 
 
 
 
 736}
 737
 738/**
 739 * fsl_dma_free_chan_resources - Free all resources of the channel.
 740 * @chan : Freescale DMA channel
 741 */
 742static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
 743{
 744	struct fsldma_chan *chan = to_fsl_chan(dchan);
 
 745
 746	chan_dbg(chan, "free all channel resources\n");
 747	spin_lock_bh(&chan->desc_lock);
 748	fsldma_cleanup_descriptors(chan);
 749	fsldma_free_desc_list(chan, &chan->ld_pending);
 750	fsldma_free_desc_list(chan, &chan->ld_running);
 751	fsldma_free_desc_list(chan, &chan->ld_completed);
 752	spin_unlock_bh(&chan->desc_lock);
 753
 754	dma_pool_destroy(chan->desc_pool);
 755	chan->desc_pool = NULL;
 756}
 757
 758static struct dma_async_tx_descriptor *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 759fsl_dma_prep_memcpy(struct dma_chan *dchan,
 760	dma_addr_t dma_dst, dma_addr_t dma_src,
 761	size_t len, unsigned long flags)
 762{
 763	struct fsldma_chan *chan;
 764	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
 765	size_t copy;
 766
 767	if (!dchan)
 768		return NULL;
 769
 770	if (!len)
 771		return NULL;
 772
 773	chan = to_fsl_chan(dchan);
 774
 775	do {
 776
 777		/* Allocate the link descriptor from DMA pool */
 778		new = fsl_dma_alloc_descriptor(chan);
 779		if (!new) {
 780			chan_err(chan, "%s\n", msg_ld_oom);
 781			goto fail;
 782		}
 783
 784		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
 785
 786		set_desc_cnt(chan, &new->hw, copy);
 787		set_desc_src(chan, &new->hw, dma_src);
 788		set_desc_dst(chan, &new->hw, dma_dst);
 789
 790		if (!first)
 791			first = new;
 792		else
 793			set_desc_next(chan, &prev->hw, new->async_tx.phys);
 794
 795		new->async_tx.cookie = 0;
 796		async_tx_ack(&new->async_tx);
 797
 798		prev = new;
 799		len -= copy;
 800		dma_src += copy;
 801		dma_dst += copy;
 802
 803		/* Insert the link descriptor to the LD ring */
 804		list_add_tail(&new->node, &first->tx_list);
 805	} while (len);
 806
 807	new->async_tx.flags = flags; /* client is in control of this ack */
 808	new->async_tx.cookie = -EBUSY;
 809
 810	/* Set End-of-link to the last link descriptor of new list */
 811	set_ld_eol(chan, new);
 812
 813	return &first->async_tx;
 814
 815fail:
 816	if (!first)
 817		return NULL;
 818
 819	fsldma_free_desc_list_reverse(chan, &first->tx_list);
 820	return NULL;
 821}
 822
 823static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
 
 
 
 824{
 825	struct fsldma_chan *chan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826
 827	if (!dchan)
 828		return -EINVAL;
 829
 830	chan = to_fsl_chan(dchan);
 
 831
 832	spin_lock_bh(&chan->desc_lock);
 833
 834	/* Halt the DMA engine */
 835	dma_halt(chan);
 
 836
 837	/* Remove and free all of the descriptors in the LD queue */
 838	fsldma_free_desc_list(chan, &chan->ld_pending);
 839	fsldma_free_desc_list(chan, &chan->ld_running);
 840	fsldma_free_desc_list(chan, &chan->ld_completed);
 841	chan->idle = true;
 842
 843	spin_unlock_bh(&chan->desc_lock);
 844	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845}
 846
 847static int fsl_dma_device_config(struct dma_chan *dchan,
 848				 struct dma_slave_config *config)
 849{
 
 850	struct fsldma_chan *chan;
 
 851	int size;
 852
 853	if (!dchan)
 854		return -EINVAL;
 855
 856	chan = to_fsl_chan(dchan);
 857
 858	/* make sure the channel supports setting burst size */
 859	if (!chan->set_request_count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860		return -ENXIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861
 862	/* we set the controller burst size depending on direction */
 863	if (config->direction == DMA_MEM_TO_DEV)
 864		size = config->dst_addr_width * config->dst_maxburst;
 865	else
 866		size = config->src_addr_width * config->src_maxburst;
 
 
 867
 868	chan->set_request_count(chan, size);
 869	return 0;
 
 
 870}
 871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 872
 873/**
 874 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
 875 * @chan : Freescale DMA channel
 876 */
 877static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
 878{
 879	struct fsldma_chan *chan = to_fsl_chan(dchan);
 
 880
 881	spin_lock_bh(&chan->desc_lock);
 882	fsl_chan_xfer_ld_queue(chan);
 883	spin_unlock_bh(&chan->desc_lock);
 884}
 885
 886/**
 887 * fsl_tx_status - Determine the DMA status
 888 * @chan : Freescale DMA channel
 889 */
 890static enum dma_status fsl_tx_status(struct dma_chan *dchan,
 891					dma_cookie_t cookie,
 892					struct dma_tx_state *txstate)
 893{
 894	struct fsldma_chan *chan = to_fsl_chan(dchan);
 895	enum dma_status ret;
 
 
 896
 897	ret = dma_cookie_status(dchan, cookie, txstate);
 898	if (ret == DMA_COMPLETE)
 899		return ret;
 
 900
 901	spin_lock_bh(&chan->desc_lock);
 902	fsldma_cleanup_descriptors(chan);
 903	spin_unlock_bh(&chan->desc_lock);
 904
 905	return dma_cookie_status(dchan, cookie, txstate);
 
 906}
 907
 908/*----------------------------------------------------------------------------*/
 909/* Interrupt Handling                                                         */
 910/*----------------------------------------------------------------------------*/
 911
 912static irqreturn_t fsldma_chan_irq(int irq, void *data)
 913{
 914	struct fsldma_chan *chan = data;
 915	u32 stat;
 916
 917	/* save and clear the status register */
 918	stat = get_sr(chan);
 919	set_sr(chan, stat);
 920	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
 921
 922	/* check that this was really our device */
 923	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
 924	if (!stat)
 925		return IRQ_NONE;
 926
 927	if (stat & FSL_DMA_SR_TE)
 928		chan_err(chan, "Transfer Error!\n");
 929
 930	/*
 931	 * Programming Error
 932	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
 933	 * trigger a PE interrupt.
 934	 */
 935	if (stat & FSL_DMA_SR_PE) {
 936		chan_dbg(chan, "irq: Programming Error INT\n");
 937		stat &= ~FSL_DMA_SR_PE;
 938		if (get_bcr(chan) != 0)
 939			chan_err(chan, "Programming Error!\n");
 940	}
 941
 942	/*
 943	 * For MPC8349, EOCDI event need to update cookie
 944	 * and start the next transfer if it exist.
 945	 */
 946	if (stat & FSL_DMA_SR_EOCDI) {
 947		chan_dbg(chan, "irq: End-of-Chain link INT\n");
 948		stat &= ~FSL_DMA_SR_EOCDI;
 949	}
 950
 951	/*
 952	 * If it current transfer is the end-of-transfer,
 953	 * we should clear the Channel Start bit for
 954	 * prepare next transfer.
 955	 */
 956	if (stat & FSL_DMA_SR_EOLNI) {
 957		chan_dbg(chan, "irq: End-of-link INT\n");
 958		stat &= ~FSL_DMA_SR_EOLNI;
 959	}
 960
 961	/* check that the DMA controller is really idle */
 962	if (!dma_is_idle(chan))
 963		chan_err(chan, "irq: controller not idle!\n");
 964
 965	/* check that we handled all of the bits */
 966	if (stat)
 967		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
 968
 969	/*
 970	 * Schedule the tasklet to handle all cleanup of the current
 971	 * transaction. It will start a new transaction if there is
 972	 * one pending.
 973	 */
 974	tasklet_schedule(&chan->tasklet);
 975	chan_dbg(chan, "irq: Exit\n");
 976	return IRQ_HANDLED;
 977}
 978
 979static void dma_do_tasklet(struct tasklet_struct *t)
 980{
 981	struct fsldma_chan *chan = from_tasklet(chan, t, tasklet);
 
 
 
 982
 983	chan_dbg(chan, "tasklet entry\n");
 984
 985	spin_lock(&chan->desc_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986
 987	/* the hardware is now idle and ready for more */
 988	chan->idle = true;
 989
 990	/* Run all cleanup for descriptors which have been completed */
 991	fsldma_cleanup_descriptors(chan);
 
 
 
 
 
 
 
 
 
 
 
 
 992
 993	spin_unlock(&chan->desc_lock);
 
 
 994
 995	chan_dbg(chan, "tasklet exit\n");
 996}
 997
 998static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
 999{
1000	struct fsldma_device *fdev = data;
1001	struct fsldma_chan *chan;
1002	unsigned int handled = 0;
1003	u32 gsr, mask;
1004	int i;
1005
1006	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1007						   : in_le32(fdev->regs);
1008	mask = 0xff000000;
1009	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1010
1011	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1012		chan = fdev->chan[i];
1013		if (!chan)
1014			continue;
1015
1016		if (gsr & mask) {
1017			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1018			fsldma_chan_irq(irq, chan);
1019			handled++;
1020		}
1021
1022		gsr &= ~mask;
1023		mask >>= 8;
1024	}
1025
1026	return IRQ_RETVAL(handled);
1027}
1028
1029static void fsldma_free_irqs(struct fsldma_device *fdev)
1030{
1031	struct fsldma_chan *chan;
1032	int i;
1033
1034	if (fdev->irq) {
1035		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1036		free_irq(fdev->irq, fdev);
1037		return;
1038	}
1039
1040	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1041		chan = fdev->chan[i];
1042		if (chan && chan->irq) {
1043			chan_dbg(chan, "free per-channel IRQ\n");
1044			free_irq(chan->irq, chan);
1045		}
1046	}
1047}
1048
1049static int fsldma_request_irqs(struct fsldma_device *fdev)
1050{
1051	struct fsldma_chan *chan;
1052	int ret;
1053	int i;
1054
1055	/* if we have a per-controller IRQ, use that */
1056	if (fdev->irq) {
1057		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1058		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1059				  "fsldma-controller", fdev);
1060		return ret;
1061	}
1062
1063	/* no per-controller IRQ, use the per-channel IRQs */
1064	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1065		chan = fdev->chan[i];
1066		if (!chan)
1067			continue;
1068
1069		if (!chan->irq) {
1070			chan_err(chan, "interrupts property missing in device tree\n");
1071			ret = -ENODEV;
1072			goto out_unwind;
1073		}
1074
1075		chan_dbg(chan, "request per-channel IRQ\n");
1076		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1077				  "fsldma-chan", chan);
1078		if (ret) {
1079			chan_err(chan, "unable to request per-channel IRQ\n");
1080			goto out_unwind;
1081		}
1082	}
1083
1084	return 0;
1085
1086out_unwind:
1087	for (/* none */; i >= 0; i--) {
1088		chan = fdev->chan[i];
1089		if (!chan)
1090			continue;
1091
1092		if (!chan->irq)
1093			continue;
1094
1095		free_irq(chan->irq, chan);
1096	}
1097
1098	return ret;
1099}
1100
1101/*----------------------------------------------------------------------------*/
1102/* OpenFirmware Subsystem                                                     */
1103/*----------------------------------------------------------------------------*/
1104
1105static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1106	struct device_node *node, u32 feature, const char *compatible)
1107{
1108	struct fsldma_chan *chan;
1109	struct resource res;
1110	int err;
1111
1112	/* alloc channel */
1113	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1114	if (!chan) {
 
1115		err = -ENOMEM;
1116		goto out_return;
1117	}
1118
1119	/* ioremap registers for use */
1120	chan->regs = of_iomap(node, 0);
1121	if (!chan->regs) {
1122		dev_err(fdev->dev, "unable to ioremap registers\n");
1123		err = -ENOMEM;
1124		goto out_free_chan;
1125	}
1126
1127	err = of_address_to_resource(node, 0, &res);
1128	if (err) {
1129		dev_err(fdev->dev, "unable to find 'reg' property\n");
1130		goto out_iounmap_regs;
1131	}
1132
1133	chan->feature = feature;
1134	if (!fdev->feature)
1135		fdev->feature = chan->feature;
1136
1137	/*
1138	 * If the DMA device's feature is different than the feature
1139	 * of its channels, report the bug
1140	 */
1141	WARN_ON(fdev->feature != chan->feature);
1142
1143	chan->dev = fdev->dev;
1144	chan->id = (res.start & 0xfff) < 0x300 ?
1145		   ((res.start - 0x100) & 0xfff) >> 7 :
1146		   ((res.start - 0x200) & 0xfff) >> 7;
1147	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1148		dev_err(fdev->dev, "too many channels for device\n");
1149		err = -EINVAL;
1150		goto out_iounmap_regs;
1151	}
1152
1153	fdev->chan[chan->id] = chan;
1154	tasklet_setup(&chan->tasklet, dma_do_tasklet);
1155	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1156
1157	/* Initialize the channel */
1158	dma_init(chan);
1159
1160	/* Clear cdar registers */
1161	set_cdar(chan, 0);
1162
1163	switch (chan->feature & FSL_DMA_IP_MASK) {
1164	case FSL_DMA_IP_85XX:
1165		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1166		fallthrough;
1167	case FSL_DMA_IP_83XX:
1168		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1169		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1170		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1171		chan->set_request_count = fsl_chan_set_request_count;
1172	}
1173
1174	spin_lock_init(&chan->desc_lock);
1175	INIT_LIST_HEAD(&chan->ld_pending);
1176	INIT_LIST_HEAD(&chan->ld_running);
1177	INIT_LIST_HEAD(&chan->ld_completed);
1178	chan->idle = true;
1179#ifdef CONFIG_PM
1180	chan->pm_state = RUNNING;
1181#endif
1182
1183	chan->common.device = &fdev->common;
1184	dma_cookie_init(&chan->common);
1185
1186	/* find the IRQ line, if it exists in the device tree */
1187	chan->irq = irq_of_parse_and_map(node, 0);
1188
1189	/* Add the channel to DMA device channel list */
1190	list_add_tail(&chan->common.device_node, &fdev->common.channels);
 
1191
1192	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1193		 chan->irq ? chan->irq : fdev->irq);
1194
1195	return 0;
1196
1197out_iounmap_regs:
1198	iounmap(chan->regs);
1199out_free_chan:
1200	kfree(chan);
1201out_return:
1202	return err;
1203}
1204
1205static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1206{
1207	irq_dispose_mapping(chan->irq);
1208	list_del(&chan->common.device_node);
1209	iounmap(chan->regs);
1210	kfree(chan);
1211}
1212
1213static int fsldma_of_probe(struct platform_device *op)
1214{
1215	struct fsldma_device *fdev;
1216	struct device_node *child;
1217	unsigned int i;
1218	int err;
1219
1220	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1221	if (!fdev) {
 
1222		err = -ENOMEM;
1223		goto out_return;
1224	}
1225
1226	fdev->dev = &op->dev;
1227	INIT_LIST_HEAD(&fdev->common.channels);
1228
1229	/* ioremap the registers for use */
1230	fdev->regs = of_iomap(op->dev.of_node, 0);
1231	if (!fdev->regs) {
1232		dev_err(&op->dev, "unable to ioremap registers\n");
1233		err = -ENOMEM;
1234		goto out_free;
1235	}
1236
1237	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1238	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1239
1240	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
 
 
1241	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1242	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1243	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
 
1244	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
 
1245	fdev->common.device_tx_status = fsl_tx_status;
1246	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1247	fdev->common.device_config = fsl_dma_device_config;
1248	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1249	fdev->common.dev = &op->dev;
1250
1251	fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1252	fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1253	fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1254	fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1255
1256	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1257
1258	platform_set_drvdata(op, fdev);
1259
1260	/*
1261	 * We cannot use of_platform_bus_probe() because there is no
1262	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1263	 * channel object.
1264	 */
1265	for_each_child_of_node(op->dev.of_node, child) {
1266		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1267			fsl_dma_chan_probe(fdev, child,
1268				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1269				"fsl,eloplus-dma-channel");
1270		}
1271
1272		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1273			fsl_dma_chan_probe(fdev, child,
1274				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1275				"fsl,elo-dma-channel");
1276		}
1277	}
1278
1279	/*
1280	 * Hookup the IRQ handler(s)
1281	 *
1282	 * If we have a per-controller interrupt, we prefer that to the
1283	 * per-channel interrupts to reduce the number of shared interrupt
1284	 * handlers on the same IRQ line
1285	 */
1286	err = fsldma_request_irqs(fdev);
1287	if (err) {
1288		dev_err(fdev->dev, "unable to request IRQs\n");
1289		goto out_free_fdev;
1290	}
1291
1292	dma_async_device_register(&fdev->common);
1293	return 0;
1294
1295out_free_fdev:
1296	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1297		if (fdev->chan[i])
1298			fsl_dma_chan_remove(fdev->chan[i]);
1299	}
1300	irq_dispose_mapping(fdev->irq);
1301	iounmap(fdev->regs);
1302out_free:
1303	kfree(fdev);
1304out_return:
1305	return err;
1306}
1307
1308static int fsldma_of_remove(struct platform_device *op)
1309{
1310	struct fsldma_device *fdev;
1311	unsigned int i;
1312
1313	fdev = platform_get_drvdata(op);
1314	dma_async_device_unregister(&fdev->common);
1315
1316	fsldma_free_irqs(fdev);
1317
1318	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1319		if (fdev->chan[i])
1320			fsl_dma_chan_remove(fdev->chan[i]);
1321	}
1322	irq_dispose_mapping(fdev->irq);
1323
1324	iounmap(fdev->regs);
 
1325	kfree(fdev);
1326
1327	return 0;
1328}
1329
1330#ifdef CONFIG_PM
1331static int fsldma_suspend_late(struct device *dev)
1332{
1333	struct fsldma_device *fdev = dev_get_drvdata(dev);
1334	struct fsldma_chan *chan;
1335	int i;
1336
1337	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1338		chan = fdev->chan[i];
1339		if (!chan)
1340			continue;
1341
1342		spin_lock_bh(&chan->desc_lock);
1343		if (unlikely(!chan->idle))
1344			goto out;
1345		chan->regs_save.mr = get_mr(chan);
1346		chan->pm_state = SUSPENDED;
1347		spin_unlock_bh(&chan->desc_lock);
1348	}
1349	return 0;
1350
1351out:
1352	for (; i >= 0; i--) {
1353		chan = fdev->chan[i];
1354		if (!chan)
1355			continue;
1356		chan->pm_state = RUNNING;
1357		spin_unlock_bh(&chan->desc_lock);
1358	}
1359	return -EBUSY;
1360}
1361
1362static int fsldma_resume_early(struct device *dev)
1363{
1364	struct fsldma_device *fdev = dev_get_drvdata(dev);
1365	struct fsldma_chan *chan;
1366	u32 mode;
1367	int i;
1368
1369	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1370		chan = fdev->chan[i];
1371		if (!chan)
1372			continue;
1373
1374		spin_lock_bh(&chan->desc_lock);
1375		mode = chan->regs_save.mr
1376			& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1377		set_mr(chan, mode);
1378		chan->pm_state = RUNNING;
1379		spin_unlock_bh(&chan->desc_lock);
1380	}
1381
1382	return 0;
1383}
1384
1385static const struct dev_pm_ops fsldma_pm_ops = {
1386	.suspend_late	= fsldma_suspend_late,
1387	.resume_early	= fsldma_resume_early,
1388};
1389#endif
1390
1391static const struct of_device_id fsldma_of_ids[] = {
1392	{ .compatible = "fsl,elo3-dma", },
1393	{ .compatible = "fsl,eloplus-dma", },
1394	{ .compatible = "fsl,elo-dma", },
1395	{}
1396};
1397MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1398
1399static struct platform_driver fsldma_of_driver = {
1400	.driver = {
1401		.name = "fsl-elo-dma",
 
1402		.of_match_table = fsldma_of_ids,
1403#ifdef CONFIG_PM
1404		.pm = &fsldma_pm_ops,
1405#endif
1406	},
1407	.probe = fsldma_of_probe,
1408	.remove = fsldma_of_remove,
1409};
1410
1411/*----------------------------------------------------------------------------*/
1412/* Module Init / Exit                                                         */
1413/*----------------------------------------------------------------------------*/
1414
1415static __init int fsldma_init(void)
1416{
1417	pr_info("Freescale Elo series DMA driver\n");
1418	return platform_driver_register(&fsldma_of_driver);
1419}
1420
1421static void __exit fsldma_exit(void)
1422{
1423	platform_driver_unregister(&fsldma_of_driver);
1424}
1425
1426subsys_initcall(fsldma_init);
1427module_exit(fsldma_exit);
1428
1429MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1430MODULE_LICENSE("GPL");