Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Freescale MPC85xx, MPC83xx DMA Engine support
   3 *
   4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
   5 *
   6 * Author:
   7 *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
   8 *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
   9 *
  10 * Description:
  11 *   DMA engine driver for Freescale MPC8540 DMA controller, which is
  12 *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
  13 *   The support for MPC8349 DMA controller is also added.
  14 *
  15 * This driver instructs the DMA controller to issue the PCI Read Multiple
  16 * command for PCI read operations, instead of using the default PCI Read Line
  17 * command. Please be aware that this setting may result in read pre-fetching
  18 * on some platforms.
  19 *
  20 * This is free software; you can redistribute it and/or modify
  21 * it under the terms of the GNU General Public License as published by
  22 * the Free Software Foundation; either version 2 of the License, or
  23 * (at your option) any later version.
  24 *
  25 */
  26
  27#include <linux/init.h>
  28#include <linux/module.h>
  29#include <linux/pci.h>
  30#include <linux/slab.h>
  31#include <linux/interrupt.h>
  32#include <linux/dmaengine.h>
  33#include <linux/delay.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/dmapool.h>
 
 
  36#include <linux/of_platform.h>
  37
 
  38#include "fsldma.h"
  39
  40#define chan_dbg(chan, fmt, arg...)					\
  41	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
  42#define chan_err(chan, fmt, arg...)					\
  43	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
  44
  45static const char msg_ld_oom[] = "No free memory for link descriptor";
  46
  47/*
  48 * Register Helpers
  49 */
  50
  51static void set_sr(struct fsldma_chan *chan, u32 val)
  52{
  53	DMA_OUT(chan, &chan->regs->sr, val, 32);
  54}
  55
  56static u32 get_sr(struct fsldma_chan *chan)
  57{
  58	return DMA_IN(chan, &chan->regs->sr, 32);
  59}
  60
 
 
 
 
 
 
 
 
 
 
  61static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
  62{
  63	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
  64}
  65
  66static dma_addr_t get_cdar(struct fsldma_chan *chan)
  67{
  68	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
  69}
  70
 
 
 
 
 
  71static u32 get_bcr(struct fsldma_chan *chan)
  72{
  73	return DMA_IN(chan, &chan->regs->bcr, 32);
  74}
  75
  76/*
  77 * Descriptor Helpers
  78 */
  79
  80static void set_desc_cnt(struct fsldma_chan *chan,
  81				struct fsl_dma_ld_hw *hw, u32 count)
  82{
  83	hw->count = CPU_TO_DMA(chan, count, 32);
  84}
  85
  86static u32 get_desc_cnt(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
  87{
  88	return DMA_TO_CPU(chan, desc->hw.count, 32);
  89}
  90
  91static void set_desc_src(struct fsldma_chan *chan,
  92			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
  93{
  94	u64 snoop_bits;
  95
  96	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
  97		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
  98	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
  99}
 100
 101static dma_addr_t get_desc_src(struct fsldma_chan *chan,
 102			       struct fsl_desc_sw *desc)
 103{
 104	u64 snoop_bits;
 105
 106	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 107		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
 108	return DMA_TO_CPU(chan, desc->hw.src_addr, 64) & ~snoop_bits;
 109}
 110
 111static void set_desc_dst(struct fsldma_chan *chan,
 112			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
 113{
 114	u64 snoop_bits;
 115
 116	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 117		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
 118	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
 119}
 120
 121static dma_addr_t get_desc_dst(struct fsldma_chan *chan,
 122			       struct fsl_desc_sw *desc)
 123{
 124	u64 snoop_bits;
 125
 126	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 127		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
 128	return DMA_TO_CPU(chan, desc->hw.dst_addr, 64) & ~snoop_bits;
 129}
 130
 131static void set_desc_next(struct fsldma_chan *chan,
 132			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
 133{
 134	u64 snoop_bits;
 135
 136	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 137		? FSL_DMA_SNEN : 0;
 138	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
 139}
 140
 141static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 142{
 143	u64 snoop_bits;
 144
 145	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 146		? FSL_DMA_SNEN : 0;
 147
 148	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
 149		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
 150			| snoop_bits, 64);
 151}
 152
 153/*
 154 * DMA Engine Hardware Control Helpers
 155 */
 156
 157static void dma_init(struct fsldma_chan *chan)
 158{
 159	/* Reset the channel */
 160	DMA_OUT(chan, &chan->regs->mr, 0, 32);
 161
 162	switch (chan->feature & FSL_DMA_IP_MASK) {
 163	case FSL_DMA_IP_85XX:
 164		/* Set the channel to below modes:
 165		 * EIE - Error interrupt enable
 166		 * EOLNIE - End of links interrupt enable
 167		 * BWC - Bandwidth sharing among channels
 168		 */
 169		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC
 170				| FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE, 32);
 171		break;
 172	case FSL_DMA_IP_83XX:
 173		/* Set the channel to below modes:
 174		 * EOTIE - End-of-transfer interrupt enable
 175		 * PRC_RM - PCI read multiple
 176		 */
 177		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
 178				| FSL_DMA_MR_PRC_RM, 32);
 179		break;
 180	}
 181}
 182
 183static int dma_is_idle(struct fsldma_chan *chan)
 184{
 185	u32 sr = get_sr(chan);
 186	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
 187}
 188
 189/*
 190 * Start the DMA controller
 191 *
 192 * Preconditions:
 193 * - the CDAR register must point to the start descriptor
 194 * - the MRn[CS] bit must be cleared
 195 */
 196static void dma_start(struct fsldma_chan *chan)
 197{
 198	u32 mode;
 199
 200	mode = DMA_IN(chan, &chan->regs->mr, 32);
 201
 202	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
 203		DMA_OUT(chan, &chan->regs->bcr, 0, 32);
 204		mode |= FSL_DMA_MR_EMP_EN;
 205	} else {
 206		mode &= ~FSL_DMA_MR_EMP_EN;
 207	}
 208
 209	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
 210		mode |= FSL_DMA_MR_EMS_EN;
 211	} else {
 212		mode &= ~FSL_DMA_MR_EMS_EN;
 213		mode |= FSL_DMA_MR_CS;
 214	}
 215
 216	DMA_OUT(chan, &chan->regs->mr, mode, 32);
 217}
 218
 219static void dma_halt(struct fsldma_chan *chan)
 220{
 221	u32 mode;
 222	int i;
 223
 224	/* read the mode register */
 225	mode = DMA_IN(chan, &chan->regs->mr, 32);
 226
 227	/*
 228	 * The 85xx controller supports channel abort, which will stop
 229	 * the current transfer. On 83xx, this bit is the transfer error
 230	 * mask bit, which should not be changed.
 231	 */
 232	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 233		mode |= FSL_DMA_MR_CA;
 234		DMA_OUT(chan, &chan->regs->mr, mode, 32);
 235
 236		mode &= ~FSL_DMA_MR_CA;
 237	}
 238
 239	/* stop the DMA controller */
 240	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
 241	DMA_OUT(chan, &chan->regs->mr, mode, 32);
 242
 243	/* wait for the DMA controller to become idle */
 244	for (i = 0; i < 100; i++) {
 245		if (dma_is_idle(chan))
 246			return;
 247
 248		udelay(10);
 249	}
 250
 251	if (!dma_is_idle(chan))
 252		chan_err(chan, "DMA halt timeout!\n");
 253}
 254
 255/**
 256 * fsl_chan_set_src_loop_size - Set source address hold transfer size
 257 * @chan : Freescale DMA channel
 258 * @size     : Address loop size, 0 for disable loop
 259 *
 260 * The set source address hold transfer size. The source
 261 * address hold or loop transfer size is when the DMA transfer
 262 * data from source address (SA), if the loop size is 4, the DMA will
 263 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
 264 * SA + 1 ... and so on.
 265 */
 266static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
 267{
 268	u32 mode;
 269
 270	mode = DMA_IN(chan, &chan->regs->mr, 32);
 271
 272	switch (size) {
 273	case 0:
 274		mode &= ~FSL_DMA_MR_SAHE;
 275		break;
 276	case 1:
 277	case 2:
 278	case 4:
 279	case 8:
 
 280		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
 281		break;
 282	}
 283
 284	DMA_OUT(chan, &chan->regs->mr, mode, 32);
 285}
 286
 287/**
 288 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
 289 * @chan : Freescale DMA channel
 290 * @size     : Address loop size, 0 for disable loop
 291 *
 292 * The set destination address hold transfer size. The destination
 293 * address hold or loop transfer size is when the DMA transfer
 294 * data to destination address (TA), if the loop size is 4, the DMA will
 295 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
 296 * TA + 1 ... and so on.
 297 */
 298static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
 299{
 300	u32 mode;
 301
 302	mode = DMA_IN(chan, &chan->regs->mr, 32);
 303
 304	switch (size) {
 305	case 0:
 306		mode &= ~FSL_DMA_MR_DAHE;
 307		break;
 308	case 1:
 309	case 2:
 310	case 4:
 311	case 8:
 
 312		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
 313		break;
 314	}
 315
 316	DMA_OUT(chan, &chan->regs->mr, mode, 32);
 317}
 318
 319/**
 320 * fsl_chan_set_request_count - Set DMA Request Count for external control
 321 * @chan : Freescale DMA channel
 322 * @size     : Number of bytes to transfer in a single request
 323 *
 324 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 325 * The DMA request count is how many bytes are allowed to transfer before
 326 * pausing the channel, after which a new assertion of DREQ# resumes channel
 327 * operation.
 328 *
 329 * A size of 0 disables external pause control. The maximum size is 1024.
 330 */
 331static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
 332{
 333	u32 mode;
 334
 335	BUG_ON(size > 1024);
 336
 337	mode = DMA_IN(chan, &chan->regs->mr, 32);
 338	mode |= (__ilog2(size) << 24) & 0x0f000000;
 
 339
 340	DMA_OUT(chan, &chan->regs->mr, mode, 32);
 341}
 342
 343/**
 344 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
 345 * @chan : Freescale DMA channel
 346 * @enable   : 0 is disabled, 1 is enabled.
 347 *
 348 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 349 * The DMA Request Count feature should be used in addition to this feature
 350 * to set the number of bytes to transfer before pausing the channel.
 351 */
 352static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
 353{
 354	if (enable)
 355		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
 356	else
 357		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
 358}
 359
 360/**
 361 * fsl_chan_toggle_ext_start - Toggle channel external start status
 362 * @chan : Freescale DMA channel
 363 * @enable   : 0 is disabled, 1 is enabled.
 364 *
 365 * If enable the external start, the channel can be started by an
 366 * external DMA start pin. So the dma_start() does not start the
 367 * transfer immediately. The DMA channel will wait for the
 368 * control pin asserted.
 369 */
 370static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
 371{
 372	if (enable)
 373		chan->feature |= FSL_DMA_CHAN_START_EXT;
 374	else
 375		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
 376}
 377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 379{
 380	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
 381
 382	if (list_empty(&chan->ld_pending))
 383		goto out_splice;
 384
 385	/*
 386	 * Add the hardware descriptor to the chain of hardware descriptors
 387	 * that already exists in memory.
 388	 *
 389	 * This will un-set the EOL bit of the existing transaction, and the
 390	 * last link in this transaction will become the EOL descriptor.
 391	 */
 392	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
 393
 394	/*
 395	 * Add the software descriptor and all children to the list
 396	 * of pending transactions
 397	 */
 398out_splice:
 399	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
 400}
 401
 402static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 403{
 404	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
 405	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
 406	struct fsl_desc_sw *child;
 407	unsigned long flags;
 408	dma_cookie_t cookie;
 409
 410	spin_lock_irqsave(&chan->desc_lock, flags);
 
 
 
 
 
 
 
 
 411
 412	/*
 413	 * assign cookies to all of the software descriptors
 414	 * that make up this transaction
 415	 */
 416	cookie = chan->common.cookie;
 417	list_for_each_entry(child, &desc->tx_list, node) {
 418		cookie++;
 419		if (cookie < DMA_MIN_COOKIE)
 420			cookie = DMA_MIN_COOKIE;
 421
 422		child->async_tx.cookie = cookie;
 423	}
 424
 425	chan->common.cookie = cookie;
 426
 427	/* put this transaction onto the tail of the pending queue */
 428	append_ld_queue(chan, desc);
 429
 430	spin_unlock_irqrestore(&chan->desc_lock, flags);
 431
 432	return cookie;
 433}
 434
 435/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 436 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
 437 * @chan : Freescale DMA channel
 438 *
 439 * Return - The descriptor allocated. NULL for failed.
 440 */
 441static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
 442{
 443	struct fsl_desc_sw *desc;
 444	dma_addr_t pdesc;
 445
 446	desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
 447	if (!desc) {
 448		chan_dbg(chan, "out of memory for link descriptor\n");
 449		return NULL;
 450	}
 451
 452	memset(desc, 0, sizeof(*desc));
 453	INIT_LIST_HEAD(&desc->tx_list);
 454	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
 455	desc->async_tx.tx_submit = fsl_dma_tx_submit;
 456	desc->async_tx.phys = pdesc;
 457
 458#ifdef FSL_DMA_LD_DEBUG
 459	chan_dbg(chan, "LD %p allocated\n", desc);
 460#endif
 461
 462	return desc;
 463}
 464
 465/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
 467 * @chan : Freescale DMA channel
 468 *
 469 * This function will create a dma pool for descriptor allocation.
 470 *
 471 * Return - The number of descriptors allocated.
 472 */
 473static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
 474{
 475	struct fsldma_chan *chan = to_fsl_chan(dchan);
 476
 477	/* Has this channel already been allocated? */
 478	if (chan->desc_pool)
 479		return 1;
 480
 481	/*
 482	 * We need the descriptor to be aligned to 32bytes
 483	 * for meeting FSL DMA specification requirement.
 484	 */
 485	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
 486					  sizeof(struct fsl_desc_sw),
 487					  __alignof__(struct fsl_desc_sw), 0);
 488	if (!chan->desc_pool) {
 489		chan_err(chan, "unable to allocate descriptor pool\n");
 490		return -ENOMEM;
 491	}
 492
 493	/* there is at least one descriptor free to be allocated */
 494	return 1;
 495}
 496
 497/**
 498 * fsldma_free_desc_list - Free all descriptors in a queue
 499 * @chan: Freescae DMA channel
 500 * @list: the list to free
 501 *
 502 * LOCKING: must hold chan->desc_lock
 503 */
 504static void fsldma_free_desc_list(struct fsldma_chan *chan,
 505				  struct list_head *list)
 506{
 507	struct fsl_desc_sw *desc, *_desc;
 508
 509	list_for_each_entry_safe(desc, _desc, list, node) {
 510		list_del(&desc->node);
 511#ifdef FSL_DMA_LD_DEBUG
 512		chan_dbg(chan, "LD %p free\n", desc);
 513#endif
 514		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 515	}
 516}
 517
 518static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
 519					  struct list_head *list)
 520{
 521	struct fsl_desc_sw *desc, *_desc;
 522
 523	list_for_each_entry_safe_reverse(desc, _desc, list, node) {
 524		list_del(&desc->node);
 525#ifdef FSL_DMA_LD_DEBUG
 526		chan_dbg(chan, "LD %p free\n", desc);
 527#endif
 528		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 529	}
 530}
 531
 532/**
 533 * fsl_dma_free_chan_resources - Free all resources of the channel.
 534 * @chan : Freescale DMA channel
 535 */
 536static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
 537{
 538	struct fsldma_chan *chan = to_fsl_chan(dchan);
 539	unsigned long flags;
 540
 541	chan_dbg(chan, "free all channel resources\n");
 542	spin_lock_irqsave(&chan->desc_lock, flags);
 
 543	fsldma_free_desc_list(chan, &chan->ld_pending);
 544	fsldma_free_desc_list(chan, &chan->ld_running);
 545	spin_unlock_irqrestore(&chan->desc_lock, flags);
 
 546
 547	dma_pool_destroy(chan->desc_pool);
 548	chan->desc_pool = NULL;
 549}
 550
 551static struct dma_async_tx_descriptor *
 552fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
 553{
 554	struct fsldma_chan *chan;
 555	struct fsl_desc_sw *new;
 556
 557	if (!dchan)
 558		return NULL;
 559
 560	chan = to_fsl_chan(dchan);
 561
 562	new = fsl_dma_alloc_descriptor(chan);
 563	if (!new) {
 564		chan_err(chan, "%s\n", msg_ld_oom);
 565		return NULL;
 566	}
 567
 568	new->async_tx.cookie = -EBUSY;
 569	new->async_tx.flags = flags;
 570
 571	/* Insert the link descriptor to the LD ring */
 572	list_add_tail(&new->node, &new->tx_list);
 573
 574	/* Set End-of-link to the last link descriptor of new list */
 575	set_ld_eol(chan, new);
 576
 577	return &new->async_tx;
 578}
 579
 580static struct dma_async_tx_descriptor *
 581fsl_dma_prep_memcpy(struct dma_chan *dchan,
 582	dma_addr_t dma_dst, dma_addr_t dma_src,
 583	size_t len, unsigned long flags)
 584{
 585	struct fsldma_chan *chan;
 586	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
 587	size_t copy;
 588
 589	if (!dchan)
 590		return NULL;
 591
 592	if (!len)
 593		return NULL;
 594
 595	chan = to_fsl_chan(dchan);
 596
 597	do {
 598
 599		/* Allocate the link descriptor from DMA pool */
 600		new = fsl_dma_alloc_descriptor(chan);
 601		if (!new) {
 602			chan_err(chan, "%s\n", msg_ld_oom);
 603			goto fail;
 604		}
 605
 606		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
 607
 608		set_desc_cnt(chan, &new->hw, copy);
 609		set_desc_src(chan, &new->hw, dma_src);
 610		set_desc_dst(chan, &new->hw, dma_dst);
 611
 612		if (!first)
 613			first = new;
 614		else
 615			set_desc_next(chan, &prev->hw, new->async_tx.phys);
 616
 617		new->async_tx.cookie = 0;
 618		async_tx_ack(&new->async_tx);
 619
 620		prev = new;
 621		len -= copy;
 622		dma_src += copy;
 623		dma_dst += copy;
 624
 625		/* Insert the link descriptor to the LD ring */
 626		list_add_tail(&new->node, &first->tx_list);
 627	} while (len);
 628
 629	new->async_tx.flags = flags; /* client is in control of this ack */
 630	new->async_tx.cookie = -EBUSY;
 631
 632	/* Set End-of-link to the last link descriptor of new list */
 633	set_ld_eol(chan, new);
 634
 635	return &first->async_tx;
 636
 637fail:
 638	if (!first)
 639		return NULL;
 640
 641	fsldma_free_desc_list_reverse(chan, &first->tx_list);
 642	return NULL;
 643}
 644
 645static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
 646	struct scatterlist *dst_sg, unsigned int dst_nents,
 647	struct scatterlist *src_sg, unsigned int src_nents,
 648	unsigned long flags)
 649{
 650	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
 651	struct fsldma_chan *chan = to_fsl_chan(dchan);
 652	size_t dst_avail, src_avail;
 653	dma_addr_t dst, src;
 654	size_t len;
 655
 656	/* basic sanity checks */
 657	if (dst_nents == 0 || src_nents == 0)
 658		return NULL;
 659
 660	if (dst_sg == NULL || src_sg == NULL)
 661		return NULL;
 662
 663	/*
 664	 * TODO: should we check that both scatterlists have the same
 665	 * TODO: number of bytes in total? Is that really an error?
 666	 */
 667
 668	/* get prepared for the loop */
 669	dst_avail = sg_dma_len(dst_sg);
 670	src_avail = sg_dma_len(src_sg);
 671
 672	/* run until we are out of scatterlist entries */
 673	while (true) {
 674
 675		/* create the largest transaction possible */
 676		len = min_t(size_t, src_avail, dst_avail);
 677		len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
 678		if (len == 0)
 679			goto fetch;
 680
 681		dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
 682		src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
 683
 684		/* allocate and populate the descriptor */
 685		new = fsl_dma_alloc_descriptor(chan);
 686		if (!new) {
 687			chan_err(chan, "%s\n", msg_ld_oom);
 688			goto fail;
 689		}
 690
 691		set_desc_cnt(chan, &new->hw, len);
 692		set_desc_src(chan, &new->hw, src);
 693		set_desc_dst(chan, &new->hw, dst);
 694
 695		if (!first)
 696			first = new;
 697		else
 698			set_desc_next(chan, &prev->hw, new->async_tx.phys);
 699
 700		new->async_tx.cookie = 0;
 701		async_tx_ack(&new->async_tx);
 702		prev = new;
 703
 704		/* Insert the link descriptor to the LD ring */
 705		list_add_tail(&new->node, &first->tx_list);
 706
 707		/* update metadata */
 708		dst_avail -= len;
 709		src_avail -= len;
 710
 711fetch:
 712		/* fetch the next dst scatterlist entry */
 713		if (dst_avail == 0) {
 714
 715			/* no more entries: we're done */
 716			if (dst_nents == 0)
 717				break;
 718
 719			/* fetch the next entry: if there are no more: done */
 720			dst_sg = sg_next(dst_sg);
 721			if (dst_sg == NULL)
 722				break;
 723
 724			dst_nents--;
 725			dst_avail = sg_dma_len(dst_sg);
 726		}
 727
 728		/* fetch the next src scatterlist entry */
 729		if (src_avail == 0) {
 730
 731			/* no more entries: we're done */
 732			if (src_nents == 0)
 733				break;
 734
 735			/* fetch the next entry: if there are no more: done */
 736			src_sg = sg_next(src_sg);
 737			if (src_sg == NULL)
 738				break;
 739
 740			src_nents--;
 741			src_avail = sg_dma_len(src_sg);
 742		}
 743	}
 744
 745	new->async_tx.flags = flags; /* client is in control of this ack */
 746	new->async_tx.cookie = -EBUSY;
 747
 748	/* Set End-of-link to the last link descriptor of new list */
 749	set_ld_eol(chan, new);
 750
 751	return &first->async_tx;
 752
 753fail:
 754	if (!first)
 755		return NULL;
 756
 757	fsldma_free_desc_list_reverse(chan, &first->tx_list);
 758	return NULL;
 759}
 
 
 760
 761/**
 762 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
 763 * @chan: DMA channel
 764 * @sgl: scatterlist to transfer to/from
 765 * @sg_len: number of entries in @scatterlist
 766 * @direction: DMA direction
 767 * @flags: DMAEngine flags
 768 *
 769 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
 770 * DMA_SLAVE API, this gets the device-specific information from the
 771 * chan->private variable.
 772 */
 773static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
 774	struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
 775	enum dma_data_direction direction, unsigned long flags)
 776{
 777	/*
 778	 * This operation is not supported on the Freescale DMA controller
 779	 *
 780	 * However, we need to provide the function pointer to allow the
 781	 * device_control() method to work.
 782	 */
 783	return NULL;
 784}
 785
 786static int fsl_dma_device_control(struct dma_chan *dchan,
 787				  enum dma_ctrl_cmd cmd, unsigned long arg)
 788{
 789	struct dma_slave_config *config;
 790	struct fsldma_chan *chan;
 791	unsigned long flags;
 792	int size;
 793
 794	if (!dchan)
 795		return -EINVAL;
 796
 797	chan = to_fsl_chan(dchan);
 798
 799	switch (cmd) {
 800	case DMA_TERMINATE_ALL:
 801		spin_lock_irqsave(&chan->desc_lock, flags);
 802
 803		/* Halt the DMA engine */
 804		dma_halt(chan);
 805
 806		/* Remove and free all of the descriptors in the LD queue */
 807		fsldma_free_desc_list(chan, &chan->ld_pending);
 808		fsldma_free_desc_list(chan, &chan->ld_running);
 809		chan->idle = true;
 810
 811		spin_unlock_irqrestore(&chan->desc_lock, flags);
 812		return 0;
 813
 814	case DMA_SLAVE_CONFIG:
 815		config = (struct dma_slave_config *)arg;
 816
 817		/* make sure the channel supports setting burst size */
 818		if (!chan->set_request_count)
 819			return -ENXIO;
 820
 821		/* we set the controller burst size depending on direction */
 822		if (config->direction == DMA_TO_DEVICE)
 823			size = config->dst_addr_width * config->dst_maxburst;
 824		else
 825			size = config->src_addr_width * config->src_maxburst;
 826
 827		chan->set_request_count(chan, size);
 828		return 0;
 829
 830	case FSLDMA_EXTERNAL_START:
 831
 832		/* make sure the channel supports external start */
 833		if (!chan->toggle_ext_start)
 834			return -ENXIO;
 835
 836		chan->toggle_ext_start(chan, arg);
 837		return 0;
 838
 839	default:
 840		return -ENXIO;
 841	}
 842
 843	return 0;
 844}
 845
 846/**
 847 * fsldma_cleanup_descriptor - cleanup and free a single link descriptor
 848 * @chan: Freescale DMA channel
 849 * @desc: descriptor to cleanup and free
 850 *
 851 * This function is used on a descriptor which has been executed by the DMA
 852 * controller. It will run any callbacks, submit any dependencies, and then
 853 * free the descriptor.
 854 */
 855static void fsldma_cleanup_descriptor(struct fsldma_chan *chan,
 856				      struct fsl_desc_sw *desc)
 857{
 858	struct dma_async_tx_descriptor *txd = &desc->async_tx;
 859	struct device *dev = chan->common.device->dev;
 860	dma_addr_t src = get_desc_src(chan, desc);
 861	dma_addr_t dst = get_desc_dst(chan, desc);
 862	u32 len = get_desc_cnt(chan, desc);
 863
 864	/* Run the link descriptor callback function */
 865	if (txd->callback) {
 866#ifdef FSL_DMA_LD_DEBUG
 867		chan_dbg(chan, "LD %p callback\n", desc);
 868#endif
 869		txd->callback(txd->callback_param);
 870	}
 871
 872	/* Run any dependencies */
 873	dma_run_dependencies(txd);
 874
 875	/* Unmap the dst buffer, if requested */
 876	if (!(txd->flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
 877		if (txd->flags & DMA_COMPL_DEST_UNMAP_SINGLE)
 878			dma_unmap_single(dev, dst, len, DMA_FROM_DEVICE);
 879		else
 880			dma_unmap_page(dev, dst, len, DMA_FROM_DEVICE);
 881	}
 882
 883	/* Unmap the src buffer, if requested */
 884	if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
 885		if (txd->flags & DMA_COMPL_SRC_UNMAP_SINGLE)
 886			dma_unmap_single(dev, src, len, DMA_TO_DEVICE);
 887		else
 888			dma_unmap_page(dev, src, len, DMA_TO_DEVICE);
 889	}
 890
 891#ifdef FSL_DMA_LD_DEBUG
 892	chan_dbg(chan, "LD %p free\n", desc);
 893#endif
 894	dma_pool_free(chan->desc_pool, desc, txd->phys);
 895}
 896
 897/**
 898 * fsl_chan_xfer_ld_queue - transfer any pending transactions
 899 * @chan : Freescale DMA channel
 900 *
 901 * HARDWARE STATE: idle
 902 * LOCKING: must hold chan->desc_lock
 903 */
 904static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
 905{
 906	struct fsl_desc_sw *desc;
 907
 908	/*
 909	 * If the list of pending descriptors is empty, then we
 910	 * don't need to do any work at all
 911	 */
 912	if (list_empty(&chan->ld_pending)) {
 913		chan_dbg(chan, "no pending LDs\n");
 914		return;
 915	}
 916
 917	/*
 918	 * The DMA controller is not idle, which means that the interrupt
 919	 * handler will start any queued transactions when it runs after
 920	 * this transaction finishes
 921	 */
 922	if (!chan->idle) {
 923		chan_dbg(chan, "DMA controller still busy\n");
 924		return;
 925	}
 926
 927	/*
 928	 * If there are some link descriptors which have not been
 929	 * transferred, we need to start the controller
 930	 */
 931
 932	/*
 933	 * Move all elements from the queue of pending transactions
 934	 * onto the list of running transactions
 935	 */
 936	chan_dbg(chan, "idle, starting controller\n");
 937	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
 938	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
 939
 940	/*
 941	 * The 85xx DMA controller doesn't clear the channel start bit
 942	 * automatically at the end of a transfer. Therefore we must clear
 943	 * it in software before starting the transfer.
 944	 */
 945	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 946		u32 mode;
 947
 948		mode = DMA_IN(chan, &chan->regs->mr, 32);
 949		mode &= ~FSL_DMA_MR_CS;
 950		DMA_OUT(chan, &chan->regs->mr, mode, 32);
 951	}
 952
 953	/*
 954	 * Program the descriptor's address into the DMA controller,
 955	 * then start the DMA transaction
 956	 */
 957	set_cdar(chan, desc->async_tx.phys);
 958	get_cdar(chan);
 959
 960	dma_start(chan);
 961	chan->idle = false;
 962}
 963
 964/**
 965 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
 966 * @chan : Freescale DMA channel
 967 */
 968static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
 969{
 970	struct fsldma_chan *chan = to_fsl_chan(dchan);
 971	unsigned long flags;
 972
 973	spin_lock_irqsave(&chan->desc_lock, flags);
 974	fsl_chan_xfer_ld_queue(chan);
 975	spin_unlock_irqrestore(&chan->desc_lock, flags);
 976}
 977
 978/**
 979 * fsl_tx_status - Determine the DMA status
 980 * @chan : Freescale DMA channel
 981 */
 982static enum dma_status fsl_tx_status(struct dma_chan *dchan,
 983					dma_cookie_t cookie,
 984					struct dma_tx_state *txstate)
 985{
 986	struct fsldma_chan *chan = to_fsl_chan(dchan);
 987	dma_cookie_t last_complete;
 988	dma_cookie_t last_used;
 989	unsigned long flags;
 990
 991	spin_lock_irqsave(&chan->desc_lock, flags);
 992
 993	last_complete = chan->completed_cookie;
 994	last_used = dchan->cookie;
 
 995
 996	spin_unlock_irqrestore(&chan->desc_lock, flags);
 
 
 997
 998	dma_set_tx_state(txstate, last_complete, last_used, 0);
 999	return dma_async_is_complete(cookie, last_complete, last_used);
1000}
1001
1002/*----------------------------------------------------------------------------*/
1003/* Interrupt Handling                                                         */
1004/*----------------------------------------------------------------------------*/
1005
1006static irqreturn_t fsldma_chan_irq(int irq, void *data)
1007{
1008	struct fsldma_chan *chan = data;
1009	u32 stat;
1010
1011	/* save and clear the status register */
1012	stat = get_sr(chan);
1013	set_sr(chan, stat);
1014	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1015
1016	/* check that this was really our device */
1017	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1018	if (!stat)
1019		return IRQ_NONE;
1020
1021	if (stat & FSL_DMA_SR_TE)
1022		chan_err(chan, "Transfer Error!\n");
1023
1024	/*
1025	 * Programming Error
1026	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1027	 * triger a PE interrupt.
1028	 */
1029	if (stat & FSL_DMA_SR_PE) {
1030		chan_dbg(chan, "irq: Programming Error INT\n");
1031		stat &= ~FSL_DMA_SR_PE;
1032		if (get_bcr(chan) != 0)
1033			chan_err(chan, "Programming Error!\n");
1034	}
1035
1036	/*
1037	 * For MPC8349, EOCDI event need to update cookie
1038	 * and start the next transfer if it exist.
1039	 */
1040	if (stat & FSL_DMA_SR_EOCDI) {
1041		chan_dbg(chan, "irq: End-of-Chain link INT\n");
1042		stat &= ~FSL_DMA_SR_EOCDI;
1043	}
1044
1045	/*
1046	 * If it current transfer is the end-of-transfer,
1047	 * we should clear the Channel Start bit for
1048	 * prepare next transfer.
1049	 */
1050	if (stat & FSL_DMA_SR_EOLNI) {
1051		chan_dbg(chan, "irq: End-of-link INT\n");
1052		stat &= ~FSL_DMA_SR_EOLNI;
1053	}
1054
1055	/* check that the DMA controller is really idle */
1056	if (!dma_is_idle(chan))
1057		chan_err(chan, "irq: controller not idle!\n");
1058
1059	/* check that we handled all of the bits */
1060	if (stat)
1061		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1062
1063	/*
1064	 * Schedule the tasklet to handle all cleanup of the current
1065	 * transaction. It will start a new transaction if there is
1066	 * one pending.
1067	 */
1068	tasklet_schedule(&chan->tasklet);
1069	chan_dbg(chan, "irq: Exit\n");
1070	return IRQ_HANDLED;
1071}
1072
1073static void dma_do_tasklet(unsigned long data)
1074{
1075	struct fsldma_chan *chan = (struct fsldma_chan *)data;
1076	struct fsl_desc_sw *desc, *_desc;
1077	LIST_HEAD(ld_cleanup);
1078	unsigned long flags;
1079
1080	chan_dbg(chan, "tasklet entry\n");
1081
1082	spin_lock_irqsave(&chan->desc_lock, flags);
1083
1084	/* update the cookie if we have some descriptors to cleanup */
1085	if (!list_empty(&chan->ld_running)) {
1086		dma_cookie_t cookie;
1087
1088		desc = to_fsl_desc(chan->ld_running.prev);
1089		cookie = desc->async_tx.cookie;
1090
1091		chan->completed_cookie = cookie;
1092		chan_dbg(chan, "completed_cookie=%d\n", cookie);
1093	}
1094
1095	/*
1096	 * move the descriptors to a temporary list so we can drop the lock
1097	 * during the entire cleanup operation
1098	 */
1099	list_splice_tail_init(&chan->ld_running, &ld_cleanup);
1100
1101	/* the hardware is now idle and ready for more */
1102	chan->idle = true;
1103
1104	/*
1105	 * Start any pending transactions automatically
1106	 *
1107	 * In the ideal case, we keep the DMA controller busy while we go
1108	 * ahead and free the descriptors below.
1109	 */
1110	fsl_chan_xfer_ld_queue(chan);
1111	spin_unlock_irqrestore(&chan->desc_lock, flags);
1112
1113	/* Run the callback for each descriptor, in order */
1114	list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) {
1115
1116		/* Remove from the list of transactions */
1117		list_del(&desc->node);
1118
1119		/* Run all cleanup for this descriptor */
1120		fsldma_cleanup_descriptor(chan, desc);
1121	}
1122
1123	chan_dbg(chan, "tasklet exit\n");
1124}
1125
1126static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1127{
1128	struct fsldma_device *fdev = data;
1129	struct fsldma_chan *chan;
1130	unsigned int handled = 0;
1131	u32 gsr, mask;
1132	int i;
1133
1134	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1135						   : in_le32(fdev->regs);
1136	mask = 0xff000000;
1137	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1138
1139	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1140		chan = fdev->chan[i];
1141		if (!chan)
1142			continue;
1143
1144		if (gsr & mask) {
1145			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1146			fsldma_chan_irq(irq, chan);
1147			handled++;
1148		}
1149
1150		gsr &= ~mask;
1151		mask >>= 8;
1152	}
1153
1154	return IRQ_RETVAL(handled);
1155}
1156
1157static void fsldma_free_irqs(struct fsldma_device *fdev)
1158{
1159	struct fsldma_chan *chan;
1160	int i;
1161
1162	if (fdev->irq != NO_IRQ) {
1163		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1164		free_irq(fdev->irq, fdev);
1165		return;
1166	}
1167
1168	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1169		chan = fdev->chan[i];
1170		if (chan && chan->irq != NO_IRQ) {
1171			chan_dbg(chan, "free per-channel IRQ\n");
1172			free_irq(chan->irq, chan);
1173		}
1174	}
1175}
1176
1177static int fsldma_request_irqs(struct fsldma_device *fdev)
1178{
1179	struct fsldma_chan *chan;
1180	int ret;
1181	int i;
1182
1183	/* if we have a per-controller IRQ, use that */
1184	if (fdev->irq != NO_IRQ) {
1185		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1186		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1187				  "fsldma-controller", fdev);
1188		return ret;
1189	}
1190
1191	/* no per-controller IRQ, use the per-channel IRQs */
1192	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1193		chan = fdev->chan[i];
1194		if (!chan)
1195			continue;
1196
1197		if (chan->irq == NO_IRQ) {
1198			chan_err(chan, "interrupts property missing in device tree\n");
1199			ret = -ENODEV;
1200			goto out_unwind;
1201		}
1202
1203		chan_dbg(chan, "request per-channel IRQ\n");
1204		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1205				  "fsldma-chan", chan);
1206		if (ret) {
1207			chan_err(chan, "unable to request per-channel IRQ\n");
1208			goto out_unwind;
1209		}
1210	}
1211
1212	return 0;
1213
1214out_unwind:
1215	for (/* none */; i >= 0; i--) {
1216		chan = fdev->chan[i];
1217		if (!chan)
1218			continue;
1219
1220		if (chan->irq == NO_IRQ)
1221			continue;
1222
1223		free_irq(chan->irq, chan);
1224	}
1225
1226	return ret;
1227}
1228
1229/*----------------------------------------------------------------------------*/
1230/* OpenFirmware Subsystem                                                     */
1231/*----------------------------------------------------------------------------*/
1232
1233static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
1234	struct device_node *node, u32 feature, const char *compatible)
1235{
1236	struct fsldma_chan *chan;
1237	struct resource res;
1238	int err;
1239
1240	/* alloc channel */
1241	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1242	if (!chan) {
1243		dev_err(fdev->dev, "no free memory for DMA channels!\n");
1244		err = -ENOMEM;
1245		goto out_return;
1246	}
1247
1248	/* ioremap registers for use */
1249	chan->regs = of_iomap(node, 0);
1250	if (!chan->regs) {
1251		dev_err(fdev->dev, "unable to ioremap registers\n");
1252		err = -ENOMEM;
1253		goto out_free_chan;
1254	}
1255
1256	err = of_address_to_resource(node, 0, &res);
1257	if (err) {
1258		dev_err(fdev->dev, "unable to find 'reg' property\n");
1259		goto out_iounmap_regs;
1260	}
1261
1262	chan->feature = feature;
1263	if (!fdev->feature)
1264		fdev->feature = chan->feature;
1265
1266	/*
1267	 * If the DMA device's feature is different than the feature
1268	 * of its channels, report the bug
1269	 */
1270	WARN_ON(fdev->feature != chan->feature);
1271
1272	chan->dev = fdev->dev;
1273	chan->id = ((res.start - 0x100) & 0xfff) >> 7;
 
 
1274	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1275		dev_err(fdev->dev, "too many channels for device\n");
1276		err = -EINVAL;
1277		goto out_iounmap_regs;
1278	}
1279
1280	fdev->chan[chan->id] = chan;
1281	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1282	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1283
1284	/* Initialize the channel */
1285	dma_init(chan);
1286
1287	/* Clear cdar registers */
1288	set_cdar(chan, 0);
1289
1290	switch (chan->feature & FSL_DMA_IP_MASK) {
1291	case FSL_DMA_IP_85XX:
1292		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1293	case FSL_DMA_IP_83XX:
1294		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1295		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1296		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1297		chan->set_request_count = fsl_chan_set_request_count;
1298	}
1299
1300	spin_lock_init(&chan->desc_lock);
1301	INIT_LIST_HEAD(&chan->ld_pending);
1302	INIT_LIST_HEAD(&chan->ld_running);
 
1303	chan->idle = true;
 
 
 
1304
1305	chan->common.device = &fdev->common;
 
1306
1307	/* find the IRQ line, if it exists in the device tree */
1308	chan->irq = irq_of_parse_and_map(node, 0);
1309
1310	/* Add the channel to DMA device channel list */
1311	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1312	fdev->common.chancnt++;
1313
1314	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1315		 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1316
1317	return 0;
1318
1319out_iounmap_regs:
1320	iounmap(chan->regs);
1321out_free_chan:
1322	kfree(chan);
1323out_return:
1324	return err;
1325}
1326
1327static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1328{
1329	irq_dispose_mapping(chan->irq);
1330	list_del(&chan->common.device_node);
1331	iounmap(chan->regs);
1332	kfree(chan);
1333}
1334
1335static int __devinit fsldma_of_probe(struct platform_device *op)
1336{
1337	struct fsldma_device *fdev;
1338	struct device_node *child;
1339	int err;
1340
1341	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1342	if (!fdev) {
1343		dev_err(&op->dev, "No enough memory for 'priv'\n");
1344		err = -ENOMEM;
1345		goto out_return;
1346	}
1347
1348	fdev->dev = &op->dev;
1349	INIT_LIST_HEAD(&fdev->common.channels);
1350
1351	/* ioremap the registers for use */
1352	fdev->regs = of_iomap(op->dev.of_node, 0);
1353	if (!fdev->regs) {
1354		dev_err(&op->dev, "unable to ioremap registers\n");
1355		err = -ENOMEM;
1356		goto out_free_fdev;
1357	}
1358
1359	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1360	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1361
1362	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1363	dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1364	dma_cap_set(DMA_SG, fdev->common.cap_mask);
1365	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1366	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1367	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1368	fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1369	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1370	fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1371	fdev->common.device_tx_status = fsl_tx_status;
1372	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1373	fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1374	fdev->common.device_control = fsl_dma_device_control;
1375	fdev->common.dev = &op->dev;
1376
 
 
 
 
 
1377	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1378
1379	dev_set_drvdata(&op->dev, fdev);
1380
1381	/*
1382	 * We cannot use of_platform_bus_probe() because there is no
1383	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1384	 * channel object.
1385	 */
1386	for_each_child_of_node(op->dev.of_node, child) {
1387		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1388			fsl_dma_chan_probe(fdev, child,
1389				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1390				"fsl,eloplus-dma-channel");
1391		}
1392
1393		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1394			fsl_dma_chan_probe(fdev, child,
1395				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1396				"fsl,elo-dma-channel");
1397		}
1398	}
1399
1400	/*
1401	 * Hookup the IRQ handler(s)
1402	 *
1403	 * If we have a per-controller interrupt, we prefer that to the
1404	 * per-channel interrupts to reduce the number of shared interrupt
1405	 * handlers on the same IRQ line
1406	 */
1407	err = fsldma_request_irqs(fdev);
1408	if (err) {
1409		dev_err(fdev->dev, "unable to request IRQs\n");
1410		goto out_free_fdev;
1411	}
1412
1413	dma_async_device_register(&fdev->common);
1414	return 0;
1415
1416out_free_fdev:
1417	irq_dispose_mapping(fdev->irq);
 
 
1418	kfree(fdev);
1419out_return:
1420	return err;
1421}
1422
1423static int fsldma_of_remove(struct platform_device *op)
1424{
1425	struct fsldma_device *fdev;
1426	unsigned int i;
1427
1428	fdev = dev_get_drvdata(&op->dev);
1429	dma_async_device_unregister(&fdev->common);
1430
1431	fsldma_free_irqs(fdev);
1432
1433	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1434		if (fdev->chan[i])
1435			fsl_dma_chan_remove(fdev->chan[i]);
1436	}
1437
1438	iounmap(fdev->regs);
1439	dev_set_drvdata(&op->dev, NULL);
1440	kfree(fdev);
1441
1442	return 0;
1443}
1444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1445static const struct of_device_id fsldma_of_ids[] = {
 
1446	{ .compatible = "fsl,eloplus-dma", },
1447	{ .compatible = "fsl,elo-dma", },
1448	{}
1449};
 
1450
1451static struct platform_driver fsldma_of_driver = {
1452	.driver = {
1453		.name = "fsl-elo-dma",
1454		.owner = THIS_MODULE,
1455		.of_match_table = fsldma_of_ids,
 
 
 
1456	},
1457	.probe = fsldma_of_probe,
1458	.remove = fsldma_of_remove,
1459};
1460
1461/*----------------------------------------------------------------------------*/
1462/* Module Init / Exit                                                         */
1463/*----------------------------------------------------------------------------*/
1464
1465static __init int fsldma_init(void)
1466{
1467	pr_info("Freescale Elo / Elo Plus DMA driver\n");
1468	return platform_driver_register(&fsldma_of_driver);
1469}
1470
1471static void __exit fsldma_exit(void)
1472{
1473	platform_driver_unregister(&fsldma_of_driver);
1474}
1475
1476subsys_initcall(fsldma_init);
1477module_exit(fsldma_exit);
1478
1479MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1480MODULE_LICENSE("GPL");
v4.17
   1/*
   2 * Freescale MPC85xx, MPC83xx DMA Engine support
   3 *
   4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
   5 *
   6 * Author:
   7 *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
   8 *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
   9 *
  10 * Description:
  11 *   DMA engine driver for Freescale MPC8540 DMA controller, which is
  12 *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
  13 *   The support for MPC8349 DMA controller is also added.
  14 *
  15 * This driver instructs the DMA controller to issue the PCI Read Multiple
  16 * command for PCI read operations, instead of using the default PCI Read Line
  17 * command. Please be aware that this setting may result in read pre-fetching
  18 * on some platforms.
  19 *
  20 * This is free software; you can redistribute it and/or modify
  21 * it under the terms of the GNU General Public License as published by
  22 * the Free Software Foundation; either version 2 of the License, or
  23 * (at your option) any later version.
  24 *
  25 */
  26
  27#include <linux/init.h>
  28#include <linux/module.h>
  29#include <linux/pci.h>
  30#include <linux/slab.h>
  31#include <linux/interrupt.h>
  32#include <linux/dmaengine.h>
  33#include <linux/delay.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/dmapool.h>
  36#include <linux/of_address.h>
  37#include <linux/of_irq.h>
  38#include <linux/of_platform.h>
  39#include <linux/fsldma.h>
  40#include "dmaengine.h"
  41#include "fsldma.h"
  42
  43#define chan_dbg(chan, fmt, arg...)					\
  44	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
  45#define chan_err(chan, fmt, arg...)					\
  46	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
  47
  48static const char msg_ld_oom[] = "No free memory for link descriptor";
  49
  50/*
  51 * Register Helpers
  52 */
  53
  54static void set_sr(struct fsldma_chan *chan, u32 val)
  55{
  56	DMA_OUT(chan, &chan->regs->sr, val, 32);
  57}
  58
  59static u32 get_sr(struct fsldma_chan *chan)
  60{
  61	return DMA_IN(chan, &chan->regs->sr, 32);
  62}
  63
  64static void set_mr(struct fsldma_chan *chan, u32 val)
  65{
  66	DMA_OUT(chan, &chan->regs->mr, val, 32);
  67}
  68
  69static u32 get_mr(struct fsldma_chan *chan)
  70{
  71	return DMA_IN(chan, &chan->regs->mr, 32);
  72}
  73
  74static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
  75{
  76	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
  77}
  78
  79static dma_addr_t get_cdar(struct fsldma_chan *chan)
  80{
  81	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
  82}
  83
  84static void set_bcr(struct fsldma_chan *chan, u32 val)
  85{
  86	DMA_OUT(chan, &chan->regs->bcr, val, 32);
  87}
  88
  89static u32 get_bcr(struct fsldma_chan *chan)
  90{
  91	return DMA_IN(chan, &chan->regs->bcr, 32);
  92}
  93
  94/*
  95 * Descriptor Helpers
  96 */
  97
  98static void set_desc_cnt(struct fsldma_chan *chan,
  99				struct fsl_dma_ld_hw *hw, u32 count)
 100{
 101	hw->count = CPU_TO_DMA(chan, count, 32);
 102}
 103
 
 
 
 
 
 104static void set_desc_src(struct fsldma_chan *chan,
 105			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
 106{
 107	u64 snoop_bits;
 108
 109	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 110		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
 111	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
 112}
 113
 
 
 
 
 
 
 
 
 
 
 114static void set_desc_dst(struct fsldma_chan *chan,
 115			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
 116{
 117	u64 snoop_bits;
 118
 119	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 120		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
 121	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
 122}
 123
 
 
 
 
 
 
 
 
 
 
 124static void set_desc_next(struct fsldma_chan *chan,
 125			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
 126{
 127	u64 snoop_bits;
 128
 129	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 130		? FSL_DMA_SNEN : 0;
 131	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
 132}
 133
 134static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 135{
 136	u64 snoop_bits;
 137
 138	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 139		? FSL_DMA_SNEN : 0;
 140
 141	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
 142		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
 143			| snoop_bits, 64);
 144}
 145
 146/*
 147 * DMA Engine Hardware Control Helpers
 148 */
 149
 150static void dma_init(struct fsldma_chan *chan)
 151{
 152	/* Reset the channel */
 153	set_mr(chan, 0);
 154
 155	switch (chan->feature & FSL_DMA_IP_MASK) {
 156	case FSL_DMA_IP_85XX:
 157		/* Set the channel to below modes:
 158		 * EIE - Error interrupt enable
 159		 * EOLNIE - End of links interrupt enable
 160		 * BWC - Bandwidth sharing among channels
 161		 */
 162		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
 163			| FSL_DMA_MR_EOLNIE);
 164		break;
 165	case FSL_DMA_IP_83XX:
 166		/* Set the channel to below modes:
 167		 * EOTIE - End-of-transfer interrupt enable
 168		 * PRC_RM - PCI read multiple
 169		 */
 170		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
 
 171		break;
 172	}
 173}
 174
 175static int dma_is_idle(struct fsldma_chan *chan)
 176{
 177	u32 sr = get_sr(chan);
 178	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
 179}
 180
 181/*
 182 * Start the DMA controller
 183 *
 184 * Preconditions:
 185 * - the CDAR register must point to the start descriptor
 186 * - the MRn[CS] bit must be cleared
 187 */
 188static void dma_start(struct fsldma_chan *chan)
 189{
 190	u32 mode;
 191
 192	mode = get_mr(chan);
 193
 194	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
 195		set_bcr(chan, 0);
 196		mode |= FSL_DMA_MR_EMP_EN;
 197	} else {
 198		mode &= ~FSL_DMA_MR_EMP_EN;
 199	}
 200
 201	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
 202		mode |= FSL_DMA_MR_EMS_EN;
 203	} else {
 204		mode &= ~FSL_DMA_MR_EMS_EN;
 205		mode |= FSL_DMA_MR_CS;
 206	}
 207
 208	set_mr(chan, mode);
 209}
 210
 211static void dma_halt(struct fsldma_chan *chan)
 212{
 213	u32 mode;
 214	int i;
 215
 216	/* read the mode register */
 217	mode = get_mr(chan);
 218
 219	/*
 220	 * The 85xx controller supports channel abort, which will stop
 221	 * the current transfer. On 83xx, this bit is the transfer error
 222	 * mask bit, which should not be changed.
 223	 */
 224	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 225		mode |= FSL_DMA_MR_CA;
 226		set_mr(chan, mode);
 227
 228		mode &= ~FSL_DMA_MR_CA;
 229	}
 230
 231	/* stop the DMA controller */
 232	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
 233	set_mr(chan, mode);
 234
 235	/* wait for the DMA controller to become idle */
 236	for (i = 0; i < 100; i++) {
 237		if (dma_is_idle(chan))
 238			return;
 239
 240		udelay(10);
 241	}
 242
 243	if (!dma_is_idle(chan))
 244		chan_err(chan, "DMA halt timeout!\n");
 245}
 246
 247/**
 248 * fsl_chan_set_src_loop_size - Set source address hold transfer size
 249 * @chan : Freescale DMA channel
 250 * @size     : Address loop size, 0 for disable loop
 251 *
 252 * The set source address hold transfer size. The source
 253 * address hold or loop transfer size is when the DMA transfer
 254 * data from source address (SA), if the loop size is 4, the DMA will
 255 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
 256 * SA + 1 ... and so on.
 257 */
 258static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
 259{
 260	u32 mode;
 261
 262	mode = get_mr(chan);
 263
 264	switch (size) {
 265	case 0:
 266		mode &= ~FSL_DMA_MR_SAHE;
 267		break;
 268	case 1:
 269	case 2:
 270	case 4:
 271	case 8:
 272		mode &= ~FSL_DMA_MR_SAHTS_MASK;
 273		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
 274		break;
 275	}
 276
 277	set_mr(chan, mode);
 278}
 279
 280/**
 281 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
 282 * @chan : Freescale DMA channel
 283 * @size     : Address loop size, 0 for disable loop
 284 *
 285 * The set destination address hold transfer size. The destination
 286 * address hold or loop transfer size is when the DMA transfer
 287 * data to destination address (TA), if the loop size is 4, the DMA will
 288 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
 289 * TA + 1 ... and so on.
 290 */
 291static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
 292{
 293	u32 mode;
 294
 295	mode = get_mr(chan);
 296
 297	switch (size) {
 298	case 0:
 299		mode &= ~FSL_DMA_MR_DAHE;
 300		break;
 301	case 1:
 302	case 2:
 303	case 4:
 304	case 8:
 305		mode &= ~FSL_DMA_MR_DAHTS_MASK;
 306		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
 307		break;
 308	}
 309
 310	set_mr(chan, mode);
 311}
 312
 313/**
 314 * fsl_chan_set_request_count - Set DMA Request Count for external control
 315 * @chan : Freescale DMA channel
 316 * @size     : Number of bytes to transfer in a single request
 317 *
 318 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 319 * The DMA request count is how many bytes are allowed to transfer before
 320 * pausing the channel, after which a new assertion of DREQ# resumes channel
 321 * operation.
 322 *
 323 * A size of 0 disables external pause control. The maximum size is 1024.
 324 */
 325static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
 326{
 327	u32 mode;
 328
 329	BUG_ON(size > 1024);
 330
 331	mode = get_mr(chan);
 332	mode &= ~FSL_DMA_MR_BWC_MASK;
 333	mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK;
 334
 335	set_mr(chan, mode);
 336}
 337
 338/**
 339 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
 340 * @chan : Freescale DMA channel
 341 * @enable   : 0 is disabled, 1 is enabled.
 342 *
 343 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 344 * The DMA Request Count feature should be used in addition to this feature
 345 * to set the number of bytes to transfer before pausing the channel.
 346 */
 347static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
 348{
 349	if (enable)
 350		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
 351	else
 352		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
 353}
 354
 355/**
 356 * fsl_chan_toggle_ext_start - Toggle channel external start status
 357 * @chan : Freescale DMA channel
 358 * @enable   : 0 is disabled, 1 is enabled.
 359 *
 360 * If enable the external start, the channel can be started by an
 361 * external DMA start pin. So the dma_start() does not start the
 362 * transfer immediately. The DMA channel will wait for the
 363 * control pin asserted.
 364 */
 365static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
 366{
 367	if (enable)
 368		chan->feature |= FSL_DMA_CHAN_START_EXT;
 369	else
 370		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
 371}
 372
 373int fsl_dma_external_start(struct dma_chan *dchan, int enable)
 374{
 375	struct fsldma_chan *chan;
 376
 377	if (!dchan)
 378		return -EINVAL;
 379
 380	chan = to_fsl_chan(dchan);
 381
 382	fsl_chan_toggle_ext_start(chan, enable);
 383	return 0;
 384}
 385EXPORT_SYMBOL_GPL(fsl_dma_external_start);
 386
 387static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 388{
 389	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
 390
 391	if (list_empty(&chan->ld_pending))
 392		goto out_splice;
 393
 394	/*
 395	 * Add the hardware descriptor to the chain of hardware descriptors
 396	 * that already exists in memory.
 397	 *
 398	 * This will un-set the EOL bit of the existing transaction, and the
 399	 * last link in this transaction will become the EOL descriptor.
 400	 */
 401	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
 402
 403	/*
 404	 * Add the software descriptor and all children to the list
 405	 * of pending transactions
 406	 */
 407out_splice:
 408	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
 409}
 410
 411static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 412{
 413	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
 414	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
 415	struct fsl_desc_sw *child;
 416	dma_cookie_t cookie = -EINVAL;
 
 417
 418	spin_lock_bh(&chan->desc_lock);
 419
 420#ifdef CONFIG_PM
 421	if (unlikely(chan->pm_state != RUNNING)) {
 422		chan_dbg(chan, "cannot submit due to suspend\n");
 423		spin_unlock_bh(&chan->desc_lock);
 424		return -1;
 425	}
 426#endif
 427
 428	/*
 429	 * assign cookies to all of the software descriptors
 430	 * that make up this transaction
 431	 */
 
 432	list_for_each_entry(child, &desc->tx_list, node) {
 433		cookie = dma_cookie_assign(&child->async_tx);
 
 
 
 
 434	}
 435
 
 
 436	/* put this transaction onto the tail of the pending queue */
 437	append_ld_queue(chan, desc);
 438
 439	spin_unlock_bh(&chan->desc_lock);
 440
 441	return cookie;
 442}
 443
 444/**
 445 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
 446 * @chan : Freescale DMA channel
 447 * @desc: descriptor to be freed
 448 */
 449static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
 450		struct fsl_desc_sw *desc)
 451{
 452	list_del(&desc->node);
 453	chan_dbg(chan, "LD %p free\n", desc);
 454	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 455}
 456
 457/**
 458 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
 459 * @chan : Freescale DMA channel
 460 *
 461 * Return - The descriptor allocated. NULL for failed.
 462 */
 463static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
 464{
 465	struct fsl_desc_sw *desc;
 466	dma_addr_t pdesc;
 467
 468	desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
 469	if (!desc) {
 470		chan_dbg(chan, "out of memory for link descriptor\n");
 471		return NULL;
 472	}
 473
 
 474	INIT_LIST_HEAD(&desc->tx_list);
 475	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
 476	desc->async_tx.tx_submit = fsl_dma_tx_submit;
 477	desc->async_tx.phys = pdesc;
 478
 
 479	chan_dbg(chan, "LD %p allocated\n", desc);
 
 480
 481	return desc;
 482}
 483
 484/**
 485 * fsldma_clean_completed_descriptor - free all descriptors which
 486 * has been completed and acked
 487 * @chan: Freescale DMA channel
 488 *
 489 * This function is used on all completed and acked descriptors.
 490 * All descriptors should only be freed in this function.
 491 */
 492static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
 493{
 494	struct fsl_desc_sw *desc, *_desc;
 495
 496	/* Run the callback for each descriptor, in order */
 497	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
 498		if (async_tx_test_ack(&desc->async_tx))
 499			fsl_dma_free_descriptor(chan, desc);
 500}
 501
 502/**
 503 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
 504 * @chan: Freescale DMA channel
 505 * @desc: descriptor to cleanup and free
 506 * @cookie: Freescale DMA transaction identifier
 507 *
 508 * This function is used on a descriptor which has been executed by the DMA
 509 * controller. It will run any callbacks, submit any dependencies.
 510 */
 511static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
 512		struct fsl_desc_sw *desc, dma_cookie_t cookie)
 513{
 514	struct dma_async_tx_descriptor *txd = &desc->async_tx;
 515	dma_cookie_t ret = cookie;
 516
 517	BUG_ON(txd->cookie < 0);
 518
 519	if (txd->cookie > 0) {
 520		ret = txd->cookie;
 521
 522		dma_descriptor_unmap(txd);
 523		/* Run the link descriptor callback function */
 524		dmaengine_desc_get_callback_invoke(txd, NULL);
 525	}
 526
 527	/* Run any dependencies */
 528	dma_run_dependencies(txd);
 529
 530	return ret;
 531}
 532
 533/**
 534 * fsldma_clean_running_descriptor - move the completed descriptor from
 535 * ld_running to ld_completed
 536 * @chan: Freescale DMA channel
 537 * @desc: the descriptor which is completed
 538 *
 539 * Free the descriptor directly if acked by async_tx api, or move it to
 540 * queue ld_completed.
 541 */
 542static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
 543		struct fsl_desc_sw *desc)
 544{
 545	/* Remove from the list of transactions */
 546	list_del(&desc->node);
 547
 548	/*
 549	 * the client is allowed to attach dependent operations
 550	 * until 'ack' is set
 551	 */
 552	if (!async_tx_test_ack(&desc->async_tx)) {
 553		/*
 554		 * Move this descriptor to the list of descriptors which is
 555		 * completed, but still awaiting the 'ack' bit to be set.
 556		 */
 557		list_add_tail(&desc->node, &chan->ld_completed);
 558		return;
 559	}
 560
 561	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 562}
 563
 564/**
 565 * fsl_chan_xfer_ld_queue - transfer any pending transactions
 566 * @chan : Freescale DMA channel
 567 *
 568 * HARDWARE STATE: idle
 569 * LOCKING: must hold chan->desc_lock
 570 */
 571static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
 572{
 573	struct fsl_desc_sw *desc;
 574
 575	/*
 576	 * If the list of pending descriptors is empty, then we
 577	 * don't need to do any work at all
 578	 */
 579	if (list_empty(&chan->ld_pending)) {
 580		chan_dbg(chan, "no pending LDs\n");
 581		return;
 582	}
 583
 584	/*
 585	 * The DMA controller is not idle, which means that the interrupt
 586	 * handler will start any queued transactions when it runs after
 587	 * this transaction finishes
 588	 */
 589	if (!chan->idle) {
 590		chan_dbg(chan, "DMA controller still busy\n");
 591		return;
 592	}
 593
 594	/*
 595	 * If there are some link descriptors which have not been
 596	 * transferred, we need to start the controller
 597	 */
 598
 599	/*
 600	 * Move all elements from the queue of pending transactions
 601	 * onto the list of running transactions
 602	 */
 603	chan_dbg(chan, "idle, starting controller\n");
 604	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
 605	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
 606
 607	/*
 608	 * The 85xx DMA controller doesn't clear the channel start bit
 609	 * automatically at the end of a transfer. Therefore we must clear
 610	 * it in software before starting the transfer.
 611	 */
 612	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 613		u32 mode;
 614
 615		mode = get_mr(chan);
 616		mode &= ~FSL_DMA_MR_CS;
 617		set_mr(chan, mode);
 618	}
 619
 620	/*
 621	 * Program the descriptor's address into the DMA controller,
 622	 * then start the DMA transaction
 623	 */
 624	set_cdar(chan, desc->async_tx.phys);
 625	get_cdar(chan);
 626
 627	dma_start(chan);
 628	chan->idle = false;
 629}
 630
 631/**
 632 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
 633 * and move them to ld_completed to free until flag 'ack' is set
 634 * @chan: Freescale DMA channel
 635 *
 636 * This function is used on descriptors which have been executed by the DMA
 637 * controller. It will run any callbacks, submit any dependencies, then
 638 * free these descriptors if flag 'ack' is set.
 639 */
 640static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
 641{
 642	struct fsl_desc_sw *desc, *_desc;
 643	dma_cookie_t cookie = 0;
 644	dma_addr_t curr_phys = get_cdar(chan);
 645	int seen_current = 0;
 646
 647	fsldma_clean_completed_descriptor(chan);
 648
 649	/* Run the callback for each descriptor, in order */
 650	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
 651		/*
 652		 * do not advance past the current descriptor loaded into the
 653		 * hardware channel, subsequent descriptors are either in
 654		 * process or have not been submitted
 655		 */
 656		if (seen_current)
 657			break;
 658
 659		/*
 660		 * stop the search if we reach the current descriptor and the
 661		 * channel is busy
 662		 */
 663		if (desc->async_tx.phys == curr_phys) {
 664			seen_current = 1;
 665			if (!dma_is_idle(chan))
 666				break;
 667		}
 668
 669		cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
 670
 671		fsldma_clean_running_descriptor(chan, desc);
 672	}
 673
 674	/*
 675	 * Start any pending transactions automatically
 676	 *
 677	 * In the ideal case, we keep the DMA controller busy while we go
 678	 * ahead and free the descriptors below.
 679	 */
 680	fsl_chan_xfer_ld_queue(chan);
 681
 682	if (cookie > 0)
 683		chan->common.completed_cookie = cookie;
 684}
 685
 686/**
 687 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
 688 * @chan : Freescale DMA channel
 689 *
 690 * This function will create a dma pool for descriptor allocation.
 691 *
 692 * Return - The number of descriptors allocated.
 693 */
 694static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
 695{
 696	struct fsldma_chan *chan = to_fsl_chan(dchan);
 697
 698	/* Has this channel already been allocated? */
 699	if (chan->desc_pool)
 700		return 1;
 701
 702	/*
 703	 * We need the descriptor to be aligned to 32bytes
 704	 * for meeting FSL DMA specification requirement.
 705	 */
 706	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
 707					  sizeof(struct fsl_desc_sw),
 708					  __alignof__(struct fsl_desc_sw), 0);
 709	if (!chan->desc_pool) {
 710		chan_err(chan, "unable to allocate descriptor pool\n");
 711		return -ENOMEM;
 712	}
 713
 714	/* there is at least one descriptor free to be allocated */
 715	return 1;
 716}
 717
 718/**
 719 * fsldma_free_desc_list - Free all descriptors in a queue
 720 * @chan: Freescae DMA channel
 721 * @list: the list to free
 722 *
 723 * LOCKING: must hold chan->desc_lock
 724 */
 725static void fsldma_free_desc_list(struct fsldma_chan *chan,
 726				  struct list_head *list)
 727{
 728	struct fsl_desc_sw *desc, *_desc;
 729
 730	list_for_each_entry_safe(desc, _desc, list, node)
 731		fsl_dma_free_descriptor(chan, desc);
 
 
 
 
 
 732}
 733
 734static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
 735					  struct list_head *list)
 736{
 737	struct fsl_desc_sw *desc, *_desc;
 738
 739	list_for_each_entry_safe_reverse(desc, _desc, list, node)
 740		fsl_dma_free_descriptor(chan, desc);
 
 
 
 
 
 741}
 742
 743/**
 744 * fsl_dma_free_chan_resources - Free all resources of the channel.
 745 * @chan : Freescale DMA channel
 746 */
 747static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
 748{
 749	struct fsldma_chan *chan = to_fsl_chan(dchan);
 
 750
 751	chan_dbg(chan, "free all channel resources\n");
 752	spin_lock_bh(&chan->desc_lock);
 753	fsldma_cleanup_descriptors(chan);
 754	fsldma_free_desc_list(chan, &chan->ld_pending);
 755	fsldma_free_desc_list(chan, &chan->ld_running);
 756	fsldma_free_desc_list(chan, &chan->ld_completed);
 757	spin_unlock_bh(&chan->desc_lock);
 758
 759	dma_pool_destroy(chan->desc_pool);
 760	chan->desc_pool = NULL;
 761}
 762
 763static struct dma_async_tx_descriptor *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 764fsl_dma_prep_memcpy(struct dma_chan *dchan,
 765	dma_addr_t dma_dst, dma_addr_t dma_src,
 766	size_t len, unsigned long flags)
 767{
 768	struct fsldma_chan *chan;
 769	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
 770	size_t copy;
 771
 772	if (!dchan)
 773		return NULL;
 774
 775	if (!len)
 776		return NULL;
 777
 778	chan = to_fsl_chan(dchan);
 779
 780	do {
 781
 782		/* Allocate the link descriptor from DMA pool */
 783		new = fsl_dma_alloc_descriptor(chan);
 784		if (!new) {
 785			chan_err(chan, "%s\n", msg_ld_oom);
 786			goto fail;
 787		}
 788
 789		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
 790
 791		set_desc_cnt(chan, &new->hw, copy);
 792		set_desc_src(chan, &new->hw, dma_src);
 793		set_desc_dst(chan, &new->hw, dma_dst);
 794
 795		if (!first)
 796			first = new;
 797		else
 798			set_desc_next(chan, &prev->hw, new->async_tx.phys);
 799
 800		new->async_tx.cookie = 0;
 801		async_tx_ack(&new->async_tx);
 802
 803		prev = new;
 804		len -= copy;
 805		dma_src += copy;
 806		dma_dst += copy;
 807
 808		/* Insert the link descriptor to the LD ring */
 809		list_add_tail(&new->node, &first->tx_list);
 810	} while (len);
 811
 812	new->async_tx.flags = flags; /* client is in control of this ack */
 813	new->async_tx.cookie = -EBUSY;
 814
 815	/* Set End-of-link to the last link descriptor of new list */
 816	set_ld_eol(chan, new);
 817
 818	return &first->async_tx;
 819
 820fail:
 821	if (!first)
 822		return NULL;
 823
 824	fsldma_free_desc_list_reverse(chan, &first->tx_list);
 825	return NULL;
 826}
 827
 828static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
 
 
 
 829{
 830	struct fsldma_chan *chan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831
 832	if (!dchan)
 833		return -EINVAL;
 834
 835	chan = to_fsl_chan(dchan);
 
 836
 837	spin_lock_bh(&chan->desc_lock);
 838
 839	/* Halt the DMA engine */
 840	dma_halt(chan);
 
 841
 842	/* Remove and free all of the descriptors in the LD queue */
 843	fsldma_free_desc_list(chan, &chan->ld_pending);
 844	fsldma_free_desc_list(chan, &chan->ld_running);
 845	fsldma_free_desc_list(chan, &chan->ld_completed);
 846	chan->idle = true;
 847
 848	spin_unlock_bh(&chan->desc_lock);
 849	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850}
 851
 852static int fsl_dma_device_config(struct dma_chan *dchan,
 853				 struct dma_slave_config *config)
 854{
 
 855	struct fsldma_chan *chan;
 
 856	int size;
 857
 858	if (!dchan)
 859		return -EINVAL;
 860
 861	chan = to_fsl_chan(dchan);
 862
 863	/* make sure the channel supports setting burst size */
 864	if (!chan->set_request_count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865		return -ENXIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 866
 867	/* we set the controller burst size depending on direction */
 868	if (config->direction == DMA_MEM_TO_DEV)
 869		size = config->dst_addr_width * config->dst_maxburst;
 870	else
 871		size = config->src_addr_width * config->src_maxburst;
 
 
 
 
 
 
 
 
 
 
 
 
 
 872
 873	chan->set_request_count(chan, size);
 874	return 0;
 
 
 875}
 876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877
 878/**
 879 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
 880 * @chan : Freescale DMA channel
 881 */
 882static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
 883{
 884	struct fsldma_chan *chan = to_fsl_chan(dchan);
 
 885
 886	spin_lock_bh(&chan->desc_lock);
 887	fsl_chan_xfer_ld_queue(chan);
 888	spin_unlock_bh(&chan->desc_lock);
 889}
 890
 891/**
 892 * fsl_tx_status - Determine the DMA status
 893 * @chan : Freescale DMA channel
 894 */
 895static enum dma_status fsl_tx_status(struct dma_chan *dchan,
 896					dma_cookie_t cookie,
 897					struct dma_tx_state *txstate)
 898{
 899	struct fsldma_chan *chan = to_fsl_chan(dchan);
 900	enum dma_status ret;
 
 
 
 
 901
 902	ret = dma_cookie_status(dchan, cookie, txstate);
 903	if (ret == DMA_COMPLETE)
 904		return ret;
 905
 906	spin_lock_bh(&chan->desc_lock);
 907	fsldma_cleanup_descriptors(chan);
 908	spin_unlock_bh(&chan->desc_lock);
 909
 910	return dma_cookie_status(dchan, cookie, txstate);
 
 911}
 912
 913/*----------------------------------------------------------------------------*/
 914/* Interrupt Handling                                                         */
 915/*----------------------------------------------------------------------------*/
 916
 917static irqreturn_t fsldma_chan_irq(int irq, void *data)
 918{
 919	struct fsldma_chan *chan = data;
 920	u32 stat;
 921
 922	/* save and clear the status register */
 923	stat = get_sr(chan);
 924	set_sr(chan, stat);
 925	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
 926
 927	/* check that this was really our device */
 928	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
 929	if (!stat)
 930		return IRQ_NONE;
 931
 932	if (stat & FSL_DMA_SR_TE)
 933		chan_err(chan, "Transfer Error!\n");
 934
 935	/*
 936	 * Programming Error
 937	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
 938	 * trigger a PE interrupt.
 939	 */
 940	if (stat & FSL_DMA_SR_PE) {
 941		chan_dbg(chan, "irq: Programming Error INT\n");
 942		stat &= ~FSL_DMA_SR_PE;
 943		if (get_bcr(chan) != 0)
 944			chan_err(chan, "Programming Error!\n");
 945	}
 946
 947	/*
 948	 * For MPC8349, EOCDI event need to update cookie
 949	 * and start the next transfer if it exist.
 950	 */
 951	if (stat & FSL_DMA_SR_EOCDI) {
 952		chan_dbg(chan, "irq: End-of-Chain link INT\n");
 953		stat &= ~FSL_DMA_SR_EOCDI;
 954	}
 955
 956	/*
 957	 * If it current transfer is the end-of-transfer,
 958	 * we should clear the Channel Start bit for
 959	 * prepare next transfer.
 960	 */
 961	if (stat & FSL_DMA_SR_EOLNI) {
 962		chan_dbg(chan, "irq: End-of-link INT\n");
 963		stat &= ~FSL_DMA_SR_EOLNI;
 964	}
 965
 966	/* check that the DMA controller is really idle */
 967	if (!dma_is_idle(chan))
 968		chan_err(chan, "irq: controller not idle!\n");
 969
 970	/* check that we handled all of the bits */
 971	if (stat)
 972		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
 973
 974	/*
 975	 * Schedule the tasklet to handle all cleanup of the current
 976	 * transaction. It will start a new transaction if there is
 977	 * one pending.
 978	 */
 979	tasklet_schedule(&chan->tasklet);
 980	chan_dbg(chan, "irq: Exit\n");
 981	return IRQ_HANDLED;
 982}
 983
 984static void dma_do_tasklet(unsigned long data)
 985{
 986	struct fsldma_chan *chan = (struct fsldma_chan *)data;
 
 
 
 987
 988	chan_dbg(chan, "tasklet entry\n");
 989
 990	spin_lock_bh(&chan->desc_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 991
 992	/* the hardware is now idle and ready for more */
 993	chan->idle = true;
 994
 995	/* Run all cleanup for descriptors which have been completed */
 996	fsldma_cleanup_descriptors(chan);
 
 
 
 
 
 
 
 
 
 
 
 
 997
 998	spin_unlock_bh(&chan->desc_lock);
 
 
 999
1000	chan_dbg(chan, "tasklet exit\n");
1001}
1002
1003static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1004{
1005	struct fsldma_device *fdev = data;
1006	struct fsldma_chan *chan;
1007	unsigned int handled = 0;
1008	u32 gsr, mask;
1009	int i;
1010
1011	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1012						   : in_le32(fdev->regs);
1013	mask = 0xff000000;
1014	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1015
1016	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1017		chan = fdev->chan[i];
1018		if (!chan)
1019			continue;
1020
1021		if (gsr & mask) {
1022			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1023			fsldma_chan_irq(irq, chan);
1024			handled++;
1025		}
1026
1027		gsr &= ~mask;
1028		mask >>= 8;
1029	}
1030
1031	return IRQ_RETVAL(handled);
1032}
1033
1034static void fsldma_free_irqs(struct fsldma_device *fdev)
1035{
1036	struct fsldma_chan *chan;
1037	int i;
1038
1039	if (fdev->irq) {
1040		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1041		free_irq(fdev->irq, fdev);
1042		return;
1043	}
1044
1045	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1046		chan = fdev->chan[i];
1047		if (chan && chan->irq) {
1048			chan_dbg(chan, "free per-channel IRQ\n");
1049			free_irq(chan->irq, chan);
1050		}
1051	}
1052}
1053
1054static int fsldma_request_irqs(struct fsldma_device *fdev)
1055{
1056	struct fsldma_chan *chan;
1057	int ret;
1058	int i;
1059
1060	/* if we have a per-controller IRQ, use that */
1061	if (fdev->irq) {
1062		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1063		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1064				  "fsldma-controller", fdev);
1065		return ret;
1066	}
1067
1068	/* no per-controller IRQ, use the per-channel IRQs */
1069	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1070		chan = fdev->chan[i];
1071		if (!chan)
1072			continue;
1073
1074		if (!chan->irq) {
1075			chan_err(chan, "interrupts property missing in device tree\n");
1076			ret = -ENODEV;
1077			goto out_unwind;
1078		}
1079
1080		chan_dbg(chan, "request per-channel IRQ\n");
1081		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1082				  "fsldma-chan", chan);
1083		if (ret) {
1084			chan_err(chan, "unable to request per-channel IRQ\n");
1085			goto out_unwind;
1086		}
1087	}
1088
1089	return 0;
1090
1091out_unwind:
1092	for (/* none */; i >= 0; i--) {
1093		chan = fdev->chan[i];
1094		if (!chan)
1095			continue;
1096
1097		if (!chan->irq)
1098			continue;
1099
1100		free_irq(chan->irq, chan);
1101	}
1102
1103	return ret;
1104}
1105
1106/*----------------------------------------------------------------------------*/
1107/* OpenFirmware Subsystem                                                     */
1108/*----------------------------------------------------------------------------*/
1109
1110static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1111	struct device_node *node, u32 feature, const char *compatible)
1112{
1113	struct fsldma_chan *chan;
1114	struct resource res;
1115	int err;
1116
1117	/* alloc channel */
1118	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1119	if (!chan) {
 
1120		err = -ENOMEM;
1121		goto out_return;
1122	}
1123
1124	/* ioremap registers for use */
1125	chan->regs = of_iomap(node, 0);
1126	if (!chan->regs) {
1127		dev_err(fdev->dev, "unable to ioremap registers\n");
1128		err = -ENOMEM;
1129		goto out_free_chan;
1130	}
1131
1132	err = of_address_to_resource(node, 0, &res);
1133	if (err) {
1134		dev_err(fdev->dev, "unable to find 'reg' property\n");
1135		goto out_iounmap_regs;
1136	}
1137
1138	chan->feature = feature;
1139	if (!fdev->feature)
1140		fdev->feature = chan->feature;
1141
1142	/*
1143	 * If the DMA device's feature is different than the feature
1144	 * of its channels, report the bug
1145	 */
1146	WARN_ON(fdev->feature != chan->feature);
1147
1148	chan->dev = fdev->dev;
1149	chan->id = (res.start & 0xfff) < 0x300 ?
1150		   ((res.start - 0x100) & 0xfff) >> 7 :
1151		   ((res.start - 0x200) & 0xfff) >> 7;
1152	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1153		dev_err(fdev->dev, "too many channels for device\n");
1154		err = -EINVAL;
1155		goto out_iounmap_regs;
1156	}
1157
1158	fdev->chan[chan->id] = chan;
1159	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1160	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1161
1162	/* Initialize the channel */
1163	dma_init(chan);
1164
1165	/* Clear cdar registers */
1166	set_cdar(chan, 0);
1167
1168	switch (chan->feature & FSL_DMA_IP_MASK) {
1169	case FSL_DMA_IP_85XX:
1170		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1171	case FSL_DMA_IP_83XX:
1172		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1173		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1174		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1175		chan->set_request_count = fsl_chan_set_request_count;
1176	}
1177
1178	spin_lock_init(&chan->desc_lock);
1179	INIT_LIST_HEAD(&chan->ld_pending);
1180	INIT_LIST_HEAD(&chan->ld_running);
1181	INIT_LIST_HEAD(&chan->ld_completed);
1182	chan->idle = true;
1183#ifdef CONFIG_PM
1184	chan->pm_state = RUNNING;
1185#endif
1186
1187	chan->common.device = &fdev->common;
1188	dma_cookie_init(&chan->common);
1189
1190	/* find the IRQ line, if it exists in the device tree */
1191	chan->irq = irq_of_parse_and_map(node, 0);
1192
1193	/* Add the channel to DMA device channel list */
1194	list_add_tail(&chan->common.device_node, &fdev->common.channels);
 
1195
1196	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1197		 chan->irq ? chan->irq : fdev->irq);
1198
1199	return 0;
1200
1201out_iounmap_regs:
1202	iounmap(chan->regs);
1203out_free_chan:
1204	kfree(chan);
1205out_return:
1206	return err;
1207}
1208
1209static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1210{
1211	irq_dispose_mapping(chan->irq);
1212	list_del(&chan->common.device_node);
1213	iounmap(chan->regs);
1214	kfree(chan);
1215}
1216
1217static int fsldma_of_probe(struct platform_device *op)
1218{
1219	struct fsldma_device *fdev;
1220	struct device_node *child;
1221	int err;
1222
1223	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1224	if (!fdev) {
 
1225		err = -ENOMEM;
1226		goto out_return;
1227	}
1228
1229	fdev->dev = &op->dev;
1230	INIT_LIST_HEAD(&fdev->common.channels);
1231
1232	/* ioremap the registers for use */
1233	fdev->regs = of_iomap(op->dev.of_node, 0);
1234	if (!fdev->regs) {
1235		dev_err(&op->dev, "unable to ioremap registers\n");
1236		err = -ENOMEM;
1237		goto out_free;
1238	}
1239
1240	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1241	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1242
1243	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
 
 
1244	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1245	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1246	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
 
1247	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
 
1248	fdev->common.device_tx_status = fsl_tx_status;
1249	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1250	fdev->common.device_config = fsl_dma_device_config;
1251	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1252	fdev->common.dev = &op->dev;
1253
1254	fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1255	fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1256	fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1257	fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1258
1259	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1260
1261	platform_set_drvdata(op, fdev);
1262
1263	/*
1264	 * We cannot use of_platform_bus_probe() because there is no
1265	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1266	 * channel object.
1267	 */
1268	for_each_child_of_node(op->dev.of_node, child) {
1269		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1270			fsl_dma_chan_probe(fdev, child,
1271				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1272				"fsl,eloplus-dma-channel");
1273		}
1274
1275		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1276			fsl_dma_chan_probe(fdev, child,
1277				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1278				"fsl,elo-dma-channel");
1279		}
1280	}
1281
1282	/*
1283	 * Hookup the IRQ handler(s)
1284	 *
1285	 * If we have a per-controller interrupt, we prefer that to the
1286	 * per-channel interrupts to reduce the number of shared interrupt
1287	 * handlers on the same IRQ line
1288	 */
1289	err = fsldma_request_irqs(fdev);
1290	if (err) {
1291		dev_err(fdev->dev, "unable to request IRQs\n");
1292		goto out_free_fdev;
1293	}
1294
1295	dma_async_device_register(&fdev->common);
1296	return 0;
1297
1298out_free_fdev:
1299	irq_dispose_mapping(fdev->irq);
1300	iounmap(fdev->regs);
1301out_free:
1302	kfree(fdev);
1303out_return:
1304	return err;
1305}
1306
1307static int fsldma_of_remove(struct platform_device *op)
1308{
1309	struct fsldma_device *fdev;
1310	unsigned int i;
1311
1312	fdev = platform_get_drvdata(op);
1313	dma_async_device_unregister(&fdev->common);
1314
1315	fsldma_free_irqs(fdev);
1316
1317	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1318		if (fdev->chan[i])
1319			fsl_dma_chan_remove(fdev->chan[i]);
1320	}
1321
1322	iounmap(fdev->regs);
 
1323	kfree(fdev);
1324
1325	return 0;
1326}
1327
1328#ifdef CONFIG_PM
1329static int fsldma_suspend_late(struct device *dev)
1330{
1331	struct platform_device *pdev = to_platform_device(dev);
1332	struct fsldma_device *fdev = platform_get_drvdata(pdev);
1333	struct fsldma_chan *chan;
1334	int i;
1335
1336	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1337		chan = fdev->chan[i];
1338		if (!chan)
1339			continue;
1340
1341		spin_lock_bh(&chan->desc_lock);
1342		if (unlikely(!chan->idle))
1343			goto out;
1344		chan->regs_save.mr = get_mr(chan);
1345		chan->pm_state = SUSPENDED;
1346		spin_unlock_bh(&chan->desc_lock);
1347	}
1348	return 0;
1349
1350out:
1351	for (; i >= 0; i--) {
1352		chan = fdev->chan[i];
1353		if (!chan)
1354			continue;
1355		chan->pm_state = RUNNING;
1356		spin_unlock_bh(&chan->desc_lock);
1357	}
1358	return -EBUSY;
1359}
1360
1361static int fsldma_resume_early(struct device *dev)
1362{
1363	struct platform_device *pdev = to_platform_device(dev);
1364	struct fsldma_device *fdev = platform_get_drvdata(pdev);
1365	struct fsldma_chan *chan;
1366	u32 mode;
1367	int i;
1368
1369	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1370		chan = fdev->chan[i];
1371		if (!chan)
1372			continue;
1373
1374		spin_lock_bh(&chan->desc_lock);
1375		mode = chan->regs_save.mr
1376			& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1377		set_mr(chan, mode);
1378		chan->pm_state = RUNNING;
1379		spin_unlock_bh(&chan->desc_lock);
1380	}
1381
1382	return 0;
1383}
1384
1385static const struct dev_pm_ops fsldma_pm_ops = {
1386	.suspend_late	= fsldma_suspend_late,
1387	.resume_early	= fsldma_resume_early,
1388};
1389#endif
1390
1391static const struct of_device_id fsldma_of_ids[] = {
1392	{ .compatible = "fsl,elo3-dma", },
1393	{ .compatible = "fsl,eloplus-dma", },
1394	{ .compatible = "fsl,elo-dma", },
1395	{}
1396};
1397MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1398
1399static struct platform_driver fsldma_of_driver = {
1400	.driver = {
1401		.name = "fsl-elo-dma",
 
1402		.of_match_table = fsldma_of_ids,
1403#ifdef CONFIG_PM
1404		.pm = &fsldma_pm_ops,
1405#endif
1406	},
1407	.probe = fsldma_of_probe,
1408	.remove = fsldma_of_remove,
1409};
1410
1411/*----------------------------------------------------------------------------*/
1412/* Module Init / Exit                                                         */
1413/*----------------------------------------------------------------------------*/
1414
1415static __init int fsldma_init(void)
1416{
1417	pr_info("Freescale Elo series DMA driver\n");
1418	return platform_driver_register(&fsldma_of_driver);
1419}
1420
1421static void __exit fsldma_exit(void)
1422{
1423	platform_driver_unregister(&fsldma_of_driver);
1424}
1425
1426subsys_initcall(fsldma_init);
1427module_exit(fsldma_exit);
1428
1429MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1430MODULE_LICENSE("GPL");