Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved. * * Author: * Zhang Wei <wei.zhang@freescale.com>, Jul 2007 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007 */ #ifndef __DMA_FSLDMA_H #define __DMA_FSLDMA_H #include <linux/device.h> #include <linux/dmapool.h> #include <linux/dmaengine.h> /* Define data structures needed by Freescale * MPC8540 and MPC8349 DMA controller. */ #define FSL_DMA_MR_CS 0x00000001 #define FSL_DMA_MR_CC 0x00000002 #define FSL_DMA_MR_CA 0x00000008 #define FSL_DMA_MR_EIE 0x00000040 #define FSL_DMA_MR_XFE 0x00000020 #define FSL_DMA_MR_EOLNIE 0x00000100 #define FSL_DMA_MR_EOLSIE 0x00000080 #define FSL_DMA_MR_EOSIE 0x00000200 #define FSL_DMA_MR_CDSM 0x00000010 #define FSL_DMA_MR_CTM 0x00000004 #define FSL_DMA_MR_EMP_EN 0x00200000 #define FSL_DMA_MR_EMS_EN 0x00040000 #define FSL_DMA_MR_DAHE 0x00002000 #define FSL_DMA_MR_SAHE 0x00001000 #define FSL_DMA_MR_SAHTS_MASK 0x0000C000 #define FSL_DMA_MR_DAHTS_MASK 0x00030000 #define FSL_DMA_MR_BWC_MASK 0x0f000000 /* * Bandwidth/pause control determines how many bytes a given * channel is allowed to transfer before the DMA engine pauses * the current channel and switches to the next channel */ #define FSL_DMA_MR_BWC 0x0A000000 /* Special MR definition for MPC8349 */ #define FSL_DMA_MR_EOTIE 0x00000080 #define FSL_DMA_MR_PRC_RM 0x00000800 #define FSL_DMA_SR_CH 0x00000020 #define FSL_DMA_SR_PE 0x00000010 #define FSL_DMA_SR_CB 0x00000004 #define FSL_DMA_SR_TE 0x00000080 #define FSL_DMA_SR_EOSI 0x00000002 #define FSL_DMA_SR_EOLSI 0x00000001 #define FSL_DMA_SR_EOCDI 0x00000001 #define FSL_DMA_SR_EOLNI 0x00000008 #define FSL_DMA_SATR_SBPATMU 0x20000000 #define FSL_DMA_SATR_STRANSINT_RIO 0x00c00000 #define FSL_DMA_SATR_SREADTYPE_SNOOP_READ 0x00050000 #define FSL_DMA_SATR_SREADTYPE_BP_IORH 0x00020000 #define FSL_DMA_SATR_SREADTYPE_BP_NREAD 0x00040000 #define FSL_DMA_SATR_SREADTYPE_BP_MREAD 0x00070000 #define FSL_DMA_DATR_DBPATMU 0x20000000 #define FSL_DMA_DATR_DTRANSINT_RIO 0x00c00000 #define FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE 0x00050000 #define FSL_DMA_DATR_DWRITETYPE_BP_FLUSH 0x00010000 #define FSL_DMA_EOL ((u64)0x1) #define FSL_DMA_SNEN ((u64)0x10) #define FSL_DMA_EOSIE 0x8 #define FSL_DMA_NLDA_MASK (~(u64)0x1f) #define FSL_DMA_BCR_MAX_CNT 0x03ffffffu #define FSL_DMA_DGSR_TE 0x80 #define FSL_DMA_DGSR_CH 0x20 #define FSL_DMA_DGSR_PE 0x10 #define FSL_DMA_DGSR_EOLNI 0x08 #define FSL_DMA_DGSR_CB 0x04 #define FSL_DMA_DGSR_EOSI 0x02 #define FSL_DMA_DGSR_EOLSI 0x01 #define FSL_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) typedef u64 __bitwise v64; typedef u32 __bitwise v32; struct fsl_dma_ld_hw { v64 src_addr; v64 dst_addr; v64 next_ln_addr; v32 count; v32 reserve; } __attribute__((aligned(32))); struct fsl_desc_sw { struct fsl_dma_ld_hw hw; struct list_head node; struct list_head tx_list; struct dma_async_tx_descriptor async_tx; } __attribute__((aligned(32))); struct fsldma_chan_regs { u32 mr; /* 0x00 - Mode Register */ u32 sr; /* 0x04 - Status Register */ u64 cdar; /* 0x08 - Current descriptor address register */ u64 sar; /* 0x10 - Source Address Register */ u64 dar; /* 0x18 - Destination Address Register */ u32 bcr; /* 0x20 - Byte Count Register */ u64 ndar; /* 0x24 - Next Descriptor Address Register */ }; struct fsldma_chan; #define FSL_DMA_MAX_CHANS_PER_DEVICE 8 struct fsldma_device { void __iomem *regs; /* DGSR register base */ struct device *dev; struct dma_device common; struct fsldma_chan *chan[FSL_DMA_MAX_CHANS_PER_DEVICE]; u32 feature; /* The same as DMA channels */ int irq; /* Channel IRQ */ }; /* Define macros for fsldma_chan->feature property */ #define FSL_DMA_LITTLE_ENDIAN 0x00000000 #define FSL_DMA_BIG_ENDIAN 0x00000001 #define FSL_DMA_IP_MASK 0x00000ff0 #define FSL_DMA_IP_85XX 0x00000010 #define FSL_DMA_IP_83XX 0x00000020 #define FSL_DMA_CHAN_PAUSE_EXT 0x00001000 #define FSL_DMA_CHAN_START_EXT 0x00002000 #ifdef CONFIG_PM struct fsldma_chan_regs_save { u32 mr; }; enum fsldma_pm_state { RUNNING = 0, SUSPENDED, }; #endif struct fsldma_chan { char name[8]; /* Channel name */ struct fsldma_chan_regs __iomem *regs; spinlock_t desc_lock; /* Descriptor operation lock */ /* * Descriptors which are queued to run, but have not yet been * submitted to the hardware for execution */ struct list_head ld_pending; /* * Descriptors which are currently being executed by the hardware */ struct list_head ld_running; /* * Descriptors which have finished execution by the hardware. These * descriptors have already had their cleanup actions run. They are * waiting for the ACK bit to be set by the async_tx API. */ struct list_head ld_completed; /* Link descriptors queue */ struct dma_chan common; /* DMA common channel */ struct dma_pool *desc_pool; /* Descriptors pool */ struct device *dev; /* Channel device */ int irq; /* Channel IRQ */ int id; /* Raw id of this channel */ struct tasklet_struct tasklet; u32 feature; bool idle; /* DMA controller is idle */ #ifdef CONFIG_PM struct fsldma_chan_regs_save regs_save; enum fsldma_pm_state pm_state; #endif void (*toggle_ext_pause)(struct fsldma_chan *fsl_chan, int enable); void (*toggle_ext_start)(struct fsldma_chan *fsl_chan, int enable); void (*set_src_loop_size)(struct fsldma_chan *fsl_chan, int size); void (*set_dst_loop_size)(struct fsldma_chan *fsl_chan, int size); void (*set_request_count)(struct fsldma_chan *fsl_chan, int size); }; #define to_fsl_chan(chan) container_of(chan, struct fsldma_chan, common) #define to_fsl_desc(lh) container_of(lh, struct fsl_desc_sw, node) #define tx_to_fsl_desc(tx) container_of(tx, struct fsl_desc_sw, async_tx) #ifdef CONFIG_PPC #define fsl_ioread32(p) in_le32(p) #define fsl_ioread32be(p) in_be32(p) #define fsl_iowrite32(v, p) out_le32(p, v) #define fsl_iowrite32be(v, p) out_be32(p, v) #ifdef __powerpc64__ #define fsl_ioread64(p) in_le64(p) #define fsl_ioread64be(p) in_be64(p) #define fsl_iowrite64(v, p) out_le64(p, v) #define fsl_iowrite64be(v, p) out_be64(p, v) #else static u64 fsl_ioread64(const u64 __iomem *addr) { u32 val_lo = in_le32((u32 __iomem *)addr); u32 val_hi = in_le32((u32 __iomem *)addr + 1); return ((u64)val_hi << 32) + val_lo; } static void fsl_iowrite64(u64 val, u64 __iomem *addr) { out_le32((u32 __iomem *)addr + 1, val >> 32); out_le32((u32 __iomem *)addr, (u32)val); } static u64 fsl_ioread64be(const u64 __iomem *addr) { u32 val_hi = in_be32((u32 __iomem *)addr); u32 val_lo = in_be32((u32 __iomem *)addr + 1); return ((u64)val_hi << 32) + val_lo; } static void fsl_iowrite64be(u64 val, u64 __iomem *addr) { out_be32((u32 __iomem *)addr, val >> 32); out_be32((u32 __iomem *)addr + 1, (u32)val); } #endif #endif #if defined(CONFIG_ARM64) || defined(CONFIG_ARM) #define fsl_ioread32(p) ioread32(p) #define fsl_ioread32be(p) ioread32be(p) #define fsl_iowrite32(v, p) iowrite32(v, p) #define fsl_iowrite32be(v, p) iowrite32be(v, p) #define fsl_ioread64(p) ioread64(p) #define fsl_ioread64be(p) ioread64be(p) #define fsl_iowrite64(v, p) iowrite64(v, p) #define fsl_iowrite64be(v, p) iowrite64be(v, p) #endif #define FSL_DMA_IN(fsl_dma, addr, width) \ (((fsl_dma)->feature & FSL_DMA_BIG_ENDIAN) ? \ fsl_ioread##width##be(addr) : fsl_ioread##width(addr)) #define FSL_DMA_OUT(fsl_dma, addr, val, width) \ (((fsl_dma)->feature & FSL_DMA_BIG_ENDIAN) ? \ fsl_iowrite##width##be(val, addr) : fsl_iowrite \ ##width(val, addr)) #define DMA_TO_CPU(fsl_chan, d, width) \ (((fsl_chan)->feature & FSL_DMA_BIG_ENDIAN) ? \ be##width##_to_cpu((__force __be##width)(v##width)d) : \ le##width##_to_cpu((__force __le##width)(v##width)d)) #define CPU_TO_DMA(fsl_chan, c, width) \ (((fsl_chan)->feature & FSL_DMA_BIG_ENDIAN) ? \ (__force v##width)cpu_to_be##width(c) : \ (__force v##width)cpu_to_le##width(c)) #endif /* __DMA_FSLDMA_H */ |