Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
 
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
 
 
  72
  73extern void selnl_notify_policyload(u32 seqno);
  74
  75int selinux_policycap_netpeer;
  76int selinux_policycap_openperm;
  77
  78static DEFINE_RWLOCK(policy_rwlock);
  79
  80static struct sidtab sidtab;
  81struct policydb policydb;
  82int ss_initialized;
  83
  84/*
  85 * The largest sequence number that has been used when
  86 * providing an access decision to the access vector cache.
  87 * The sequence number only changes when a policy change
  88 * occurs.
  89 */
  90static u32 latest_granting;
  91
  92/* Forward declaration. */
  93static int context_struct_to_string(struct context *context, char **scontext,
 
 
  94				    u32 *scontext_len);
  95
  96static void context_struct_compute_av(struct context *scontext,
 
 
 
 
 
 
 
  97				      struct context *tcontext,
  98				      u16 tclass,
  99				      struct av_decision *avd);
 100
 101struct selinux_mapping {
 102	u16 value; /* policy value */
 103	unsigned num_perms;
 104	u32 perms[sizeof(u32) * 8];
 105};
 106
 107static struct selinux_mapping *current_mapping;
 108static u16 current_mapping_size;
 109
 110static int selinux_set_mapping(struct policydb *pol,
 111			       struct security_class_mapping *map,
 112			       struct selinux_mapping **out_map_p,
 113			       u16 *out_map_size)
 114{
 115	struct selinux_mapping *out_map = NULL;
 116	size_t size = sizeof(struct selinux_mapping);
 117	u16 i, j;
 118	unsigned k;
 119	bool print_unknown_handle = false;
 120
 121	/* Find number of classes in the input mapping */
 122	if (!map)
 123		return -EINVAL;
 124	i = 0;
 125	while (map[i].name)
 126		i++;
 127
 128	/* Allocate space for the class records, plus one for class zero */
 129	out_map = kcalloc(++i, size, GFP_ATOMIC);
 130	if (!out_map)
 131		return -ENOMEM;
 132
 133	/* Store the raw class and permission values */
 134	j = 0;
 135	while (map[j].name) {
 136		struct security_class_mapping *p_in = map + (j++);
 137		struct selinux_mapping *p_out = out_map + j;
 138
 139		/* An empty class string skips ahead */
 140		if (!strcmp(p_in->name, "")) {
 141			p_out->num_perms = 0;
 142			continue;
 143		}
 144
 145		p_out->value = string_to_security_class(pol, p_in->name);
 146		if (!p_out->value) {
 147			printk(KERN_INFO
 148			       "SELinux:  Class %s not defined in policy.\n",
 149			       p_in->name);
 150			if (pol->reject_unknown)
 151				goto err;
 152			p_out->num_perms = 0;
 153			print_unknown_handle = true;
 154			continue;
 155		}
 156
 157		k = 0;
 158		while (p_in->perms && p_in->perms[k]) {
 159			/* An empty permission string skips ahead */
 160			if (!*p_in->perms[k]) {
 161				k++;
 162				continue;
 163			}
 164			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 165							    p_in->perms[k]);
 166			if (!p_out->perms[k]) {
 167				printk(KERN_INFO
 168				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 169				       p_in->perms[k], p_in->name);
 170				if (pol->reject_unknown)
 171					goto err;
 172				print_unknown_handle = true;
 173			}
 174
 175			k++;
 176		}
 177		p_out->num_perms = k;
 178	}
 179
 180	if (print_unknown_handle)
 181		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 182		       pol->allow_unknown ? "allowed" : "denied");
 183
 184	*out_map_p = out_map;
 185	*out_map_size = i;
 186	return 0;
 187err:
 188	kfree(out_map);
 
 189	return -EINVAL;
 190}
 191
 192/*
 193 * Get real, policy values from mapped values
 194 */
 195
 196static u16 unmap_class(u16 tclass)
 197{
 198	if (tclass < current_mapping_size)
 199		return current_mapping[tclass].value;
 200
 201	return tclass;
 202}
 203
 204/*
 205 * Get kernel value for class from its policy value
 206 */
 207static u16 map_class(u16 pol_value)
 208{
 209	u16 i;
 210
 211	for (i = 1; i < current_mapping_size; i++) {
 212		if (current_mapping[i].value == pol_value)
 213			return i;
 214	}
 215
 216	return SECCLASS_NULL;
 217}
 218
 219static void map_decision(u16 tclass, struct av_decision *avd,
 
 220			 int allow_unknown)
 221{
 222	if (tclass < current_mapping_size) {
 223		unsigned i, n = current_mapping[tclass].num_perms;
 
 224		u32 result;
 225
 226		for (i = 0, result = 0; i < n; i++) {
 227			if (avd->allowed & current_mapping[tclass].perms[i])
 228				result |= 1<<i;
 229			if (allow_unknown && !current_mapping[tclass].perms[i])
 230				result |= 1<<i;
 231		}
 232		avd->allowed = result;
 233
 234		for (i = 0, result = 0; i < n; i++)
 235			if (avd->auditallow & current_mapping[tclass].perms[i])
 236				result |= 1<<i;
 237		avd->auditallow = result;
 238
 239		for (i = 0, result = 0; i < n; i++) {
 240			if (avd->auditdeny & current_mapping[tclass].perms[i])
 241				result |= 1<<i;
 242			if (!allow_unknown && !current_mapping[tclass].perms[i])
 243				result |= 1<<i;
 244		}
 245		/*
 246		 * In case the kernel has a bug and requests a permission
 247		 * between num_perms and the maximum permission number, we
 248		 * should audit that denial
 249		 */
 250		for (; i < (sizeof(u32)*8); i++)
 251			result |= 1<<i;
 252		avd->auditdeny = result;
 253	}
 254}
 255
 256int security_mls_enabled(void)
 257{
 258	return policydb.mls_enabled;
 
 
 
 
 
 
 
 
 
 
 259}
 260
 261/*
 262 * Return the boolean value of a constraint expression
 263 * when it is applied to the specified source and target
 264 * security contexts.
 265 *
 266 * xcontext is a special beast...  It is used by the validatetrans rules
 267 * only.  For these rules, scontext is the context before the transition,
 268 * tcontext is the context after the transition, and xcontext is the context
 269 * of the process performing the transition.  All other callers of
 270 * constraint_expr_eval should pass in NULL for xcontext.
 271 */
 272static int constraint_expr_eval(struct context *scontext,
 
 273				struct context *tcontext,
 274				struct context *xcontext,
 275				struct constraint_expr *cexpr)
 276{
 277	u32 val1, val2;
 278	struct context *c;
 279	struct role_datum *r1, *r2;
 280	struct mls_level *l1, *l2;
 281	struct constraint_expr *e;
 282	int s[CEXPR_MAXDEPTH];
 283	int sp = -1;
 284
 285	for (e = cexpr; e; e = e->next) {
 286		switch (e->expr_type) {
 287		case CEXPR_NOT:
 288			BUG_ON(sp < 0);
 289			s[sp] = !s[sp];
 290			break;
 291		case CEXPR_AND:
 292			BUG_ON(sp < 1);
 293			sp--;
 294			s[sp] &= s[sp + 1];
 295			break;
 296		case CEXPR_OR:
 297			BUG_ON(sp < 1);
 298			sp--;
 299			s[sp] |= s[sp + 1];
 300			break;
 301		case CEXPR_ATTR:
 302			if (sp == (CEXPR_MAXDEPTH - 1))
 303				return 0;
 304			switch (e->attr) {
 305			case CEXPR_USER:
 306				val1 = scontext->user;
 307				val2 = tcontext->user;
 308				break;
 309			case CEXPR_TYPE:
 310				val1 = scontext->type;
 311				val2 = tcontext->type;
 312				break;
 313			case CEXPR_ROLE:
 314				val1 = scontext->role;
 315				val2 = tcontext->role;
 316				r1 = policydb.role_val_to_struct[val1 - 1];
 317				r2 = policydb.role_val_to_struct[val2 - 1];
 318				switch (e->op) {
 319				case CEXPR_DOM:
 320					s[++sp] = ebitmap_get_bit(&r1->dominates,
 321								  val2 - 1);
 322					continue;
 323				case CEXPR_DOMBY:
 324					s[++sp] = ebitmap_get_bit(&r2->dominates,
 325								  val1 - 1);
 326					continue;
 327				case CEXPR_INCOMP:
 328					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 329								    val2 - 1) &&
 330						   !ebitmap_get_bit(&r2->dominates,
 331								    val1 - 1));
 332					continue;
 333				default:
 334					break;
 335				}
 336				break;
 337			case CEXPR_L1L2:
 338				l1 = &(scontext->range.level[0]);
 339				l2 = &(tcontext->range.level[0]);
 340				goto mls_ops;
 341			case CEXPR_L1H2:
 342				l1 = &(scontext->range.level[0]);
 343				l2 = &(tcontext->range.level[1]);
 344				goto mls_ops;
 345			case CEXPR_H1L2:
 346				l1 = &(scontext->range.level[1]);
 347				l2 = &(tcontext->range.level[0]);
 348				goto mls_ops;
 349			case CEXPR_H1H2:
 350				l1 = &(scontext->range.level[1]);
 351				l2 = &(tcontext->range.level[1]);
 352				goto mls_ops;
 353			case CEXPR_L1H1:
 354				l1 = &(scontext->range.level[0]);
 355				l2 = &(scontext->range.level[1]);
 356				goto mls_ops;
 357			case CEXPR_L2H2:
 358				l1 = &(tcontext->range.level[0]);
 359				l2 = &(tcontext->range.level[1]);
 360				goto mls_ops;
 361mls_ops:
 362			switch (e->op) {
 363			case CEXPR_EQ:
 364				s[++sp] = mls_level_eq(l1, l2);
 365				continue;
 366			case CEXPR_NEQ:
 367				s[++sp] = !mls_level_eq(l1, l2);
 368				continue;
 369			case CEXPR_DOM:
 370				s[++sp] = mls_level_dom(l1, l2);
 371				continue;
 372			case CEXPR_DOMBY:
 373				s[++sp] = mls_level_dom(l2, l1);
 374				continue;
 375			case CEXPR_INCOMP:
 376				s[++sp] = mls_level_incomp(l2, l1);
 377				continue;
 378			default:
 379				BUG();
 380				return 0;
 381			}
 382			break;
 383			default:
 384				BUG();
 385				return 0;
 386			}
 387
 388			switch (e->op) {
 389			case CEXPR_EQ:
 390				s[++sp] = (val1 == val2);
 391				break;
 392			case CEXPR_NEQ:
 393				s[++sp] = (val1 != val2);
 394				break;
 395			default:
 396				BUG();
 397				return 0;
 398			}
 399			break;
 400		case CEXPR_NAMES:
 401			if (sp == (CEXPR_MAXDEPTH-1))
 402				return 0;
 403			c = scontext;
 404			if (e->attr & CEXPR_TARGET)
 405				c = tcontext;
 406			else if (e->attr & CEXPR_XTARGET) {
 407				c = xcontext;
 408				if (!c) {
 409					BUG();
 410					return 0;
 411				}
 412			}
 413			if (e->attr & CEXPR_USER)
 414				val1 = c->user;
 415			else if (e->attr & CEXPR_ROLE)
 416				val1 = c->role;
 417			else if (e->attr & CEXPR_TYPE)
 418				val1 = c->type;
 419			else {
 420				BUG();
 421				return 0;
 422			}
 423
 424			switch (e->op) {
 425			case CEXPR_EQ:
 426				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 427				break;
 428			case CEXPR_NEQ:
 429				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 430				break;
 431			default:
 432				BUG();
 433				return 0;
 434			}
 435			break;
 436		default:
 437			BUG();
 438			return 0;
 439		}
 440	}
 441
 442	BUG_ON(sp != 0);
 443	return s[0];
 444}
 445
 446/*
 447 * security_dump_masked_av - dumps masked permissions during
 448 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 449 */
 450static int dump_masked_av_helper(void *k, void *d, void *args)
 451{
 452	struct perm_datum *pdatum = d;
 453	char **permission_names = args;
 454
 455	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 456
 457	permission_names[pdatum->value - 1] = (char *)k;
 458
 459	return 0;
 460}
 461
 462static void security_dump_masked_av(struct context *scontext,
 
 463				    struct context *tcontext,
 464				    u16 tclass,
 465				    u32 permissions,
 466				    const char *reason)
 467{
 468	struct common_datum *common_dat;
 469	struct class_datum *tclass_dat;
 470	struct audit_buffer *ab;
 471	char *tclass_name;
 472	char *scontext_name = NULL;
 473	char *tcontext_name = NULL;
 474	char *permission_names[32];
 475	int index;
 476	u32 length;
 477	bool need_comma = false;
 478
 479	if (!permissions)
 480		return;
 481
 482	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 483	tclass_dat = policydb.class_val_to_struct[tclass - 1];
 484	common_dat = tclass_dat->comdatum;
 485
 486	/* init permission_names */
 487	if (common_dat &&
 488	    hashtab_map(common_dat->permissions.table,
 489			dump_masked_av_helper, permission_names) < 0)
 490		goto out;
 491
 492	if (hashtab_map(tclass_dat->permissions.table,
 493			dump_masked_av_helper, permission_names) < 0)
 494		goto out;
 495
 496	/* get scontext/tcontext in text form */
 497	if (context_struct_to_string(scontext,
 498				     &scontext_name, &length) < 0)
 499		goto out;
 500
 501	if (context_struct_to_string(tcontext,
 502				     &tcontext_name, &length) < 0)
 503		goto out;
 504
 505	/* audit a message */
 506	ab = audit_log_start(current->audit_context,
 507			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 508	if (!ab)
 509		goto out;
 510
 511	audit_log_format(ab, "op=security_compute_av reason=%s "
 512			 "scontext=%s tcontext=%s tclass=%s perms=",
 513			 reason, scontext_name, tcontext_name, tclass_name);
 514
 515	for (index = 0; index < 32; index++) {
 516		u32 mask = (1 << index);
 517
 518		if ((mask & permissions) == 0)
 519			continue;
 520
 521		audit_log_format(ab, "%s%s",
 522				 need_comma ? "," : "",
 523				 permission_names[index]
 524				 ? permission_names[index] : "????");
 525		need_comma = true;
 526	}
 527	audit_log_end(ab);
 528out:
 529	/* release scontext/tcontext */
 530	kfree(tcontext_name);
 531	kfree(scontext_name);
 532
 533	return;
 534}
 535
 536/*
 537 * security_boundary_permission - drops violated permissions
 538 * on boundary constraint.
 539 */
 540static void type_attribute_bounds_av(struct context *scontext,
 
 541				     struct context *tcontext,
 542				     u16 tclass,
 543				     struct av_decision *avd)
 544{
 545	struct context lo_scontext;
 546	struct context lo_tcontext;
 547	struct av_decision lo_avd;
 548	struct type_datum *source;
 549	struct type_datum *target;
 550	u32 masked = 0;
 551
 552	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 553				    scontext->type - 1);
 554	BUG_ON(!source);
 555
 556	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 557				    tcontext->type - 1);
 558	BUG_ON(!target);
 559
 560	if (source->bounds) {
 561		memset(&lo_avd, 0, sizeof(lo_avd));
 562
 563		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 564		lo_scontext.type = source->bounds;
 565
 566		context_struct_compute_av(&lo_scontext,
 567					  tcontext,
 568					  tclass,
 569					  &lo_avd);
 570		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 571			return;		/* no masked permission */
 572		masked = ~lo_avd.allowed & avd->allowed;
 573	}
 574
 575	if (target->bounds) {
 576		memset(&lo_avd, 0, sizeof(lo_avd));
 577
 578		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 579		lo_tcontext.type = target->bounds;
 580
 581		context_struct_compute_av(scontext,
 582					  &lo_tcontext,
 583					  tclass,
 584					  &lo_avd);
 585		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 586			return;		/* no masked permission */
 587		masked = ~lo_avd.allowed & avd->allowed;
 588	}
 589
 590	if (source->bounds && target->bounds) {
 591		memset(&lo_avd, 0, sizeof(lo_avd));
 592		/*
 593		 * lo_scontext and lo_tcontext are already
 594		 * set up.
 595		 */
 
 
 
 
 
 
 
 
 
 
 
 
 596
 597		context_struct_compute_av(&lo_scontext,
 598					  &lo_tcontext,
 599					  tclass,
 600					  &lo_avd);
 601		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 602			return;		/* no masked permission */
 603		masked = ~lo_avd.allowed & avd->allowed;
 604	}
 605
 606	if (masked) {
 607		/* mask violated permissions */
 608		avd->allowed &= ~masked;
 609
 610		/* audit masked permissions */
 611		security_dump_masked_av(scontext, tcontext,
 612					tclass, masked, "bounds");
 
 
 613	}
 
 
 614}
 615
 616/*
 617 * Compute access vectors based on a context structure pair for
 618 * the permissions in a particular class.
 619 */
 620static void context_struct_compute_av(struct context *scontext,
 
 621				      struct context *tcontext,
 622				      u16 tclass,
 623				      struct av_decision *avd)
 
 624{
 625	struct constraint_node *constraint;
 626	struct role_allow *ra;
 627	struct avtab_key avkey;
 628	struct avtab_node *node;
 629	struct class_datum *tclass_datum;
 630	struct ebitmap *sattr, *tattr;
 631	struct ebitmap_node *snode, *tnode;
 632	unsigned int i, j;
 633
 634	avd->allowed = 0;
 635	avd->auditallow = 0;
 636	avd->auditdeny = 0xffffffff;
 
 
 
 
 637
 638	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 639		if (printk_ratelimit())
 640			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 641		return;
 642	}
 643
 644	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 645
 646	/*
 647	 * If a specific type enforcement rule was defined for
 648	 * this permission check, then use it.
 649	 */
 650	avkey.target_class = tclass;
 651	avkey.specified = AVTAB_AV;
 652	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 653	BUG_ON(!sattr);
 654	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 655	BUG_ON(!tattr);
 656	ebitmap_for_each_positive_bit(sattr, snode, i) {
 657		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 658			avkey.source_type = i + 1;
 659			avkey.target_type = j + 1;
 660			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 
 661			     node;
 662			     node = avtab_search_node_next(node, avkey.specified)) {
 663				if (node->key.specified == AVTAB_ALLOWED)
 664					avd->allowed |= node->datum.data;
 665				else if (node->key.specified == AVTAB_AUDITALLOW)
 666					avd->auditallow |= node->datum.data;
 667				else if (node->key.specified == AVTAB_AUDITDENY)
 668					avd->auditdeny &= node->datum.data;
 
 
 669			}
 670
 671			/* Check conditional av table for additional permissions */
 672			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
 
 673
 674		}
 675	}
 676
 677	/*
 678	 * Remove any permissions prohibited by a constraint (this includes
 679	 * the MLS policy).
 680	 */
 681	constraint = tclass_datum->constraints;
 682	while (constraint) {
 683		if ((constraint->permissions & (avd->allowed)) &&
 684		    !constraint_expr_eval(scontext, tcontext, NULL,
 685					  constraint->expr)) {
 686			avd->allowed &= ~(constraint->permissions);
 687		}
 688		constraint = constraint->next;
 689	}
 690
 691	/*
 692	 * If checking process transition permission and the
 693	 * role is changing, then check the (current_role, new_role)
 694	 * pair.
 695	 */
 696	if (tclass == policydb.process_class &&
 697	    (avd->allowed & policydb.process_trans_perms) &&
 698	    scontext->role != tcontext->role) {
 699		for (ra = policydb.role_allow; ra; ra = ra->next) {
 700			if (scontext->role == ra->role &&
 701			    tcontext->role == ra->new_role)
 702				break;
 703		}
 704		if (!ra)
 705			avd->allowed &= ~policydb.process_trans_perms;
 706	}
 707
 708	/*
 709	 * If the given source and target types have boundary
 710	 * constraint, lazy checks have to mask any violated
 711	 * permission and notice it to userspace via audit.
 712	 */
 713	type_attribute_bounds_av(scontext, tcontext,
 714				 tclass, avd);
 715}
 716
 717static int security_validtrans_handle_fail(struct context *ocontext,
 718					   struct context *ncontext,
 719					   struct context *tcontext,
 720					   u16 tclass)
 
 
 721{
 
 
 722	char *o = NULL, *n = NULL, *t = NULL;
 723	u32 olen, nlen, tlen;
 724
 725	if (context_struct_to_string(ocontext, &o, &olen))
 726		goto out;
 727	if (context_struct_to_string(ncontext, &n, &nlen))
 728		goto out;
 729	if (context_struct_to_string(tcontext, &t, &tlen))
 730		goto out;
 731	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 732		  "security_validate_transition:  denied for"
 733		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 734		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 735out:
 736	kfree(o);
 737	kfree(n);
 738	kfree(t);
 739
 740	if (!selinux_enforcing)
 741		return 0;
 742	return -EPERM;
 743}
 744
 745int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 746				 u16 orig_tclass)
 747{
 748	struct context *ocontext;
 749	struct context *ncontext;
 750	struct context *tcontext;
 
 
 
 
 751	struct class_datum *tclass_datum;
 752	struct constraint_node *constraint;
 753	u16 tclass;
 754	int rc = 0;
 755
 756	if (!ss_initialized)
 
 757		return 0;
 758
 759	read_lock(&policy_rwlock);
 760
 761	tclass = unmap_class(orig_tclass);
 
 
 
 
 
 
 
 762
 763	if (!tclass || tclass > policydb.p_classes.nprim) {
 764		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
 765			__func__, tclass);
 766		rc = -EINVAL;
 767		goto out;
 768	}
 769	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 770
 771	ocontext = sidtab_search(&sidtab, oldsid);
 772	if (!ocontext) {
 773		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 774			__func__, oldsid);
 775		rc = -EINVAL;
 776		goto out;
 777	}
 778
 779	ncontext = sidtab_search(&sidtab, newsid);
 780	if (!ncontext) {
 781		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 782			__func__, newsid);
 783		rc = -EINVAL;
 784		goto out;
 785	}
 786
 787	tcontext = sidtab_search(&sidtab, tasksid);
 788	if (!tcontext) {
 789		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 790			__func__, tasksid);
 791		rc = -EINVAL;
 792		goto out;
 793	}
 794
 795	constraint = tclass_datum->validatetrans;
 796	while (constraint) {
 797		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 
 798					  constraint->expr)) {
 799			rc = security_validtrans_handle_fail(ocontext, ncontext,
 800							     tcontext, tclass);
 
 
 
 
 
 
 
 801			goto out;
 802		}
 803		constraint = constraint->next;
 804	}
 805
 806out:
 807	read_unlock(&policy_rwlock);
 808	return rc;
 809}
 810
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 811/*
 812 * security_bounded_transition - check whether the given
 813 * transition is directed to bounded, or not.
 814 * It returns 0, if @newsid is bounded by @oldsid.
 815 * Otherwise, it returns error code.
 816 *
 
 817 * @oldsid : current security identifier
 818 * @newsid : destinated security identifier
 819 */
 820int security_bounded_transition(u32 old_sid, u32 new_sid)
 
 821{
 822	struct context *old_context, *new_context;
 
 
 
 823	struct type_datum *type;
 824	int index;
 825	int rc;
 826
 827	read_lock(&policy_rwlock);
 
 
 
 
 
 
 828
 829	rc = -EINVAL;
 830	old_context = sidtab_search(&sidtab, old_sid);
 831	if (!old_context) {
 832		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 833		       __func__, old_sid);
 834		goto out;
 835	}
 836
 837	rc = -EINVAL;
 838	new_context = sidtab_search(&sidtab, new_sid);
 839	if (!new_context) {
 840		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 841		       __func__, new_sid);
 842		goto out;
 843	}
 844
 845	rc = 0;
 846	/* type/domain unchanged */
 847	if (old_context->type == new_context->type)
 848		goto out;
 849
 850	index = new_context->type;
 851	while (true) {
 852		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 853					  index - 1);
 854		BUG_ON(!type);
 855
 856		/* not bounded anymore */
 857		rc = -EPERM;
 858		if (!type->bounds)
 859			break;
 860
 861		/* @newsid is bounded by @oldsid */
 862		rc = 0;
 863		if (type->bounds == old_context->type)
 864			break;
 865
 866		index = type->bounds;
 867	}
 868
 869	if (rc) {
 870		char *old_name = NULL;
 871		char *new_name = NULL;
 872		u32 length;
 873
 874		if (!context_struct_to_string(old_context,
 875					      &old_name, &length) &&
 876		    !context_struct_to_string(new_context,
 877					      &new_name, &length)) {
 878			audit_log(current->audit_context,
 879				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 880				  "op=security_bounded_transition "
 881				  "result=denied "
 882				  "oldcontext=%s newcontext=%s",
 883				  old_name, new_name);
 884		}
 885		kfree(new_name);
 886		kfree(old_name);
 887	}
 888out:
 889	read_unlock(&policy_rwlock);
 890
 891	return rc;
 892}
 893
 894static void avd_init(struct av_decision *avd)
 895{
 896	avd->allowed = 0;
 897	avd->auditallow = 0;
 898	avd->auditdeny = 0xffffffff;
 899	avd->seqno = latest_granting;
 
 
 
 900	avd->flags = 0;
 901}
 902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903
 904/**
 905 * security_compute_av - Compute access vector decisions.
 
 906 * @ssid: source security identifier
 907 * @tsid: target security identifier
 908 * @tclass: target security class
 909 * @avd: access vector decisions
 
 910 *
 911 * Compute a set of access vector decisions based on the
 912 * SID pair (@ssid, @tsid) for the permissions in @tclass.
 913 */
 914void security_compute_av(u32 ssid,
 
 915			 u32 tsid,
 916			 u16 orig_tclass,
 917			 struct av_decision *avd)
 
 918{
 
 
 
 919	u16 tclass;
 920	struct context *scontext = NULL, *tcontext = NULL;
 921
 922	read_lock(&policy_rwlock);
 923	avd_init(avd);
 924	if (!ss_initialized)
 
 
 925		goto allow;
 926
 927	scontext = sidtab_search(&sidtab, ssid);
 
 
 
 928	if (!scontext) {
 929		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 930		       __func__, ssid);
 931		goto out;
 932	}
 933
 934	/* permissive domain? */
 935	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 936		avd->flags |= AVD_FLAGS_PERMISSIVE;
 937
 938	tcontext = sidtab_search(&sidtab, tsid);
 939	if (!tcontext) {
 940		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 941		       __func__, tsid);
 942		goto out;
 943	}
 944
 945	tclass = unmap_class(orig_tclass);
 946	if (unlikely(orig_tclass && !tclass)) {
 947		if (policydb.allow_unknown)
 948			goto allow;
 949		goto out;
 950	}
 951	context_struct_compute_av(scontext, tcontext, tclass, avd);
 952	map_decision(orig_tclass, avd, policydb.allow_unknown);
 
 
 953out:
 954	read_unlock(&policy_rwlock);
 955	return;
 956allow:
 957	avd->allowed = 0xffffffff;
 958	goto out;
 959}
 960
 961void security_compute_av_user(u32 ssid,
 
 962			      u32 tsid,
 963			      u16 tclass,
 964			      struct av_decision *avd)
 965{
 
 
 
 966	struct context *scontext = NULL, *tcontext = NULL;
 967
 968	read_lock(&policy_rwlock);
 969	avd_init(avd);
 970	if (!ss_initialized)
 
 971		goto allow;
 972
 973	scontext = sidtab_search(&sidtab, ssid);
 
 
 
 974	if (!scontext) {
 975		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 976		       __func__, ssid);
 977		goto out;
 978	}
 979
 980	/* permissive domain? */
 981	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 982		avd->flags |= AVD_FLAGS_PERMISSIVE;
 983
 984	tcontext = sidtab_search(&sidtab, tsid);
 985	if (!tcontext) {
 986		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 987		       __func__, tsid);
 988		goto out;
 989	}
 990
 991	if (unlikely(!tclass)) {
 992		if (policydb.allow_unknown)
 993			goto allow;
 994		goto out;
 995	}
 996
 997	context_struct_compute_av(scontext, tcontext, tclass, avd);
 
 998 out:
 999	read_unlock(&policy_rwlock);
1000	return;
1001allow:
1002	avd->allowed = 0xffffffff;
1003	goto out;
1004}
1005
1006/*
1007 * Write the security context string representation of
1008 * the context structure `context' into a dynamically
1009 * allocated string of the correct size.  Set `*scontext'
1010 * to point to this string and set `*scontext_len' to
1011 * the length of the string.
1012 */
1013static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
 
 
1014{
1015	char *scontextp;
1016
1017	if (scontext)
1018		*scontext = NULL;
1019	*scontext_len = 0;
1020
1021	if (context->len) {
1022		*scontext_len = context->len;
1023		*scontext = kstrdup(context->str, GFP_ATOMIC);
1024		if (!(*scontext))
1025			return -ENOMEM;
 
 
1026		return 0;
1027	}
1028
1029	/* Compute the size of the context. */
1030	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1031	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1032	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1033	*scontext_len += mls_compute_context_len(context);
1034
1035	if (!scontext)
1036		return 0;
1037
1038	/* Allocate space for the context; caller must free this space. */
1039	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1040	if (!scontextp)
1041		return -ENOMEM;
1042	*scontext = scontextp;
1043
1044	/*
1045	 * Copy the user name, role name and type name into the context.
1046	 */
1047	sprintf(scontextp, "%s:%s:%s",
1048		sym_name(&policydb, SYM_USERS, context->user - 1),
1049		sym_name(&policydb, SYM_ROLES, context->role - 1),
1050		sym_name(&policydb, SYM_TYPES, context->type - 1));
1051	scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1052		     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1053		     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1054
1055	mls_sid_to_context(context, &scontextp);
1056
1057	*scontextp = 0;
1058
1059	return 0;
1060}
1061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062#include "initial_sid_to_string.h"
1063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064const char *security_get_initial_sid_context(u32 sid)
1065{
1066	if (unlikely(sid > SECINITSID_NUM))
1067		return NULL;
1068	return initial_sid_to_string[sid];
1069}
1070
1071static int security_sid_to_context_core(u32 sid, char **scontext,
1072					u32 *scontext_len, int force)
1073{
1074	struct context *context;
 
 
 
 
 
1075	int rc = 0;
1076
1077	if (scontext)
1078		*scontext = NULL;
1079	*scontext_len  = 0;
1080
1081	if (!ss_initialized) {
1082		if (sid <= SECINITSID_NUM) {
1083			char *scontextp;
 
1084
1085			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
 
 
1086			if (!scontext)
1087				goto out;
1088			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1089			if (!scontextp) {
1090				rc = -ENOMEM;
1091				goto out;
1092			}
1093			strcpy(scontextp, initial_sid_to_string[sid]);
1094			*scontext = scontextp;
1095			goto out;
1096		}
1097		printk(KERN_ERR "SELinux: %s:  called before initial "
1098		       "load_policy on unknown SID %d\n", __func__, sid);
1099		rc = -EINVAL;
1100		goto out;
1101	}
1102	read_lock(&policy_rwlock);
 
 
 
 
1103	if (force)
1104		context = sidtab_search_force(&sidtab, sid);
1105	else
1106		context = sidtab_search(&sidtab, sid);
1107	if (!context) {
1108		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1109			__func__, sid);
1110		rc = -EINVAL;
1111		goto out_unlock;
1112	}
1113	rc = context_struct_to_string(context, scontext, scontext_len);
 
 
 
 
 
1114out_unlock:
1115	read_unlock(&policy_rwlock);
1116out:
1117	return rc;
1118
1119}
1120
1121/**
1122 * security_sid_to_context - Obtain a context for a given SID.
 
1123 * @sid: security identifier, SID
1124 * @scontext: security context
1125 * @scontext_len: length in bytes
1126 *
1127 * Write the string representation of the context associated with @sid
1128 * into a dynamically allocated string of the correct size.  Set @scontext
1129 * to point to this string and set @scontext_len to the length of the string.
1130 */
1131int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
 
1132{
1133	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
 
1134}
1135
1136int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
 
1137{
1138	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139}
1140
1141/*
1142 * Caveat:  Mutates scontext.
1143 */
1144static int string_to_context_struct(struct policydb *pol,
1145				    struct sidtab *sidtabp,
1146				    char *scontext,
1147				    u32 scontext_len,
1148				    struct context *ctx,
1149				    u32 def_sid)
1150{
1151	struct role_datum *role;
1152	struct type_datum *typdatum;
1153	struct user_datum *usrdatum;
1154	char *scontextp, *p, oldc;
1155	int rc = 0;
1156
1157	context_init(ctx);
1158
1159	/* Parse the security context. */
1160
1161	rc = -EINVAL;
1162	scontextp = (char *) scontext;
1163
1164	/* Extract the user. */
1165	p = scontextp;
1166	while (*p && *p != ':')
1167		p++;
1168
1169	if (*p == 0)
1170		goto out;
1171
1172	*p++ = 0;
1173
1174	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1175	if (!usrdatum)
1176		goto out;
1177
1178	ctx->user = usrdatum->value;
1179
1180	/* Extract role. */
1181	scontextp = p;
1182	while (*p && *p != ':')
1183		p++;
1184
1185	if (*p == 0)
1186		goto out;
1187
1188	*p++ = 0;
1189
1190	role = hashtab_search(pol->p_roles.table, scontextp);
1191	if (!role)
1192		goto out;
1193	ctx->role = role->value;
1194
1195	/* Extract type. */
1196	scontextp = p;
1197	while (*p && *p != ':')
1198		p++;
1199	oldc = *p;
1200	*p++ = 0;
1201
1202	typdatum = hashtab_search(pol->p_types.table, scontextp);
1203	if (!typdatum || typdatum->attribute)
1204		goto out;
1205
1206	ctx->type = typdatum->value;
1207
1208	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1209	if (rc)
1210		goto out;
1211
1212	rc = -EINVAL;
1213	if ((p - scontext) < scontext_len)
1214		goto out;
1215
1216	/* Check the validity of the new context. */
 
1217	if (!policydb_context_isvalid(pol, ctx))
1218		goto out;
1219	rc = 0;
1220out:
1221	if (rc)
1222		context_destroy(ctx);
1223	return rc;
1224}
1225
1226static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
 
1227					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1228					int force)
1229{
 
 
 
1230	char *scontext2, *str = NULL;
1231	struct context context;
1232	int rc = 0;
1233
1234	if (!ss_initialized) {
 
 
 
 
 
 
 
 
 
1235		int i;
1236
1237		for (i = 1; i < SECINITSID_NUM; i++) {
1238			if (!strcmp(initial_sid_to_string[i], scontext)) {
 
 
1239				*sid = i;
1240				return 0;
1241			}
1242		}
1243		*sid = SECINITSID_KERNEL;
1244		return 0;
1245	}
1246	*sid = SECSID_NULL;
1247
1248	/* Copy the string so that we can modify the copy as we parse it. */
1249	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1250	if (!scontext2)
1251		return -ENOMEM;
1252	memcpy(scontext2, scontext, scontext_len);
1253	scontext2[scontext_len] = 0;
1254
1255	if (force) {
1256		/* Save another copy for storing in uninterpreted form */
1257		rc = -ENOMEM;
1258		str = kstrdup(scontext2, gfp_flags);
1259		if (!str)
1260			goto out;
1261	}
1262
1263	read_lock(&policy_rwlock);
1264	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1265				      scontext_len, &context, def_sid);
 
 
 
1266	if (rc == -EINVAL && force) {
1267		context.str = str;
1268		context.len = scontext_len;
1269		str = NULL;
1270	} else if (rc)
1271		goto out_unlock;
1272	rc = sidtab_context_to_sid(&sidtab, &context, sid);
 
 
 
 
 
 
 
 
 
1273	context_destroy(&context);
1274out_unlock:
1275	read_unlock(&policy_rwlock);
1276out:
1277	kfree(scontext2);
1278	kfree(str);
1279	return rc;
1280}
1281
1282/**
1283 * security_context_to_sid - Obtain a SID for a given security context.
 
1284 * @scontext: security context
1285 * @scontext_len: length in bytes
1286 * @sid: security identifier, SID
 
1287 *
1288 * Obtains a SID associated with the security context that
1289 * has the string representation specified by @scontext.
1290 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1291 * memory is available, or 0 on success.
1292 */
1293int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
 
 
1294{
1295	return security_context_to_sid_core(scontext, scontext_len,
1296					    sid, SECSID_NULL, GFP_KERNEL, 0);
 
 
 
 
 
 
 
1297}
1298
1299/**
1300 * security_context_to_sid_default - Obtain a SID for a given security context,
1301 * falling back to specified default if needed.
1302 *
 
1303 * @scontext: security context
1304 * @scontext_len: length in bytes
1305 * @sid: security identifier, SID
1306 * @def_sid: default SID to assign on error
 
1307 *
1308 * Obtains a SID associated with the security context that
1309 * has the string representation specified by @scontext.
1310 * The default SID is passed to the MLS layer to be used to allow
1311 * kernel labeling of the MLS field if the MLS field is not present
1312 * (for upgrading to MLS without full relabel).
1313 * Implicitly forces adding of the context even if it cannot be mapped yet.
1314 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1315 * memory is available, or 0 on success.
1316 */
1317int security_context_to_sid_default(const char *scontext, u32 scontext_len,
 
1318				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1319{
1320	return security_context_to_sid_core(scontext, scontext_len,
1321					    sid, def_sid, gfp_flags, 1);
1322}
1323
1324int security_context_to_sid_force(const char *scontext, u32 scontext_len,
 
1325				  u32 *sid)
1326{
1327	return security_context_to_sid_core(scontext, scontext_len,
1328					    sid, SECSID_NULL, GFP_KERNEL, 1);
1329}
1330
1331static int compute_sid_handle_invalid_context(
1332	struct context *scontext,
1333	struct context *tcontext,
 
 
1334	u16 tclass,
1335	struct context *newcontext)
1336{
 
 
1337	char *s = NULL, *t = NULL, *n = NULL;
1338	u32 slen, tlen, nlen;
 
1339
1340	if (context_struct_to_string(scontext, &s, &slen))
1341		goto out;
1342	if (context_struct_to_string(tcontext, &t, &tlen))
1343		goto out;
1344	if (context_struct_to_string(newcontext, &n, &nlen))
 
 
 
1345		goto out;
1346	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1347		  "security_compute_sid:  invalid context %s"
1348		  " for scontext=%s"
1349		  " tcontext=%s"
1350		  " tclass=%s",
1351		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 
1352out:
1353	kfree(s);
1354	kfree(t);
1355	kfree(n);
1356	if (!selinux_enforcing)
1357		return 0;
1358	return -EACCES;
1359}
1360
1361static void filename_compute_type(struct policydb *p, struct context *newcontext,
 
1362				  u32 stype, u32 ttype, u16 tclass,
1363				  const char *objname)
1364{
1365	struct filename_trans ft;
1366	struct filename_trans_datum *otype;
1367
1368	/*
1369	 * Most filename trans rules are going to live in specific directories
1370	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1371	 * if the ttype does not contain any rules.
1372	 */
1373	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1374		return;
1375
1376	ft.stype = stype;
1377	ft.ttype = ttype;
1378	ft.tclass = tclass;
1379	ft.name = objname;
1380
1381	otype = hashtab_search(p->filename_trans, &ft);
1382	if (otype)
1383		newcontext->type = otype->otype;
 
 
 
 
 
1384}
1385
1386static int security_compute_sid(u32 ssid,
 
1387				u32 tsid,
1388				u16 orig_tclass,
1389				u32 specified,
1390				const char *objname,
1391				u32 *out_sid,
1392				bool kern)
1393{
1394	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1395	struct role_trans *roletr = NULL;
 
 
 
 
1396	struct avtab_key avkey;
1397	struct avtab_datum *avdatum;
1398	struct avtab_node *node;
1399	u16 tclass;
1400	int rc = 0;
1401	bool sock;
1402
1403	if (!ss_initialized) {
1404		switch (orig_tclass) {
1405		case SECCLASS_PROCESS: /* kernel value */
1406			*out_sid = ssid;
1407			break;
1408		default:
1409			*out_sid = tsid;
1410			break;
1411		}
1412		goto out;
1413	}
1414
 
 
1415	context_init(&newcontext);
1416
1417	read_lock(&policy_rwlock);
 
 
1418
1419	if (kern) {
1420		tclass = unmap_class(orig_tclass);
1421		sock = security_is_socket_class(orig_tclass);
1422	} else {
1423		tclass = orig_tclass;
1424		sock = security_is_socket_class(map_class(tclass));
 
1425	}
1426
1427	scontext = sidtab_search(&sidtab, ssid);
1428	if (!scontext) {
1429		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 
 
 
1430		       __func__, ssid);
1431		rc = -EINVAL;
1432		goto out_unlock;
1433	}
1434	tcontext = sidtab_search(&sidtab, tsid);
1435	if (!tcontext) {
1436		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1437		       __func__, tsid);
1438		rc = -EINVAL;
1439		goto out_unlock;
1440	}
1441
 
 
 
 
 
 
1442	/* Set the user identity. */
1443	switch (specified) {
1444	case AVTAB_TRANSITION:
1445	case AVTAB_CHANGE:
1446		/* Use the process user identity. */
1447		newcontext.user = scontext->user;
 
 
 
 
 
1448		break;
1449	case AVTAB_MEMBER:
1450		/* Use the related object owner. */
1451		newcontext.user = tcontext->user;
1452		break;
1453	}
1454
1455	/* Set the role and type to default values. */
1456	if ((tclass == policydb.process_class) || (sock == true)) {
1457		/* Use the current role and type of process. */
1458		newcontext.role = scontext->role;
1459		newcontext.type = scontext->type;
 
1460	} else {
1461		/* Use the well-defined object role. */
1462		newcontext.role = OBJECT_R_VAL;
1463		/* Use the type of the related object. */
 
 
 
 
 
 
 
1464		newcontext.type = tcontext->type;
 
 
 
 
 
 
 
 
1465	}
1466
1467	/* Look for a type transition/member/change rule. */
1468	avkey.source_type = scontext->type;
1469	avkey.target_type = tcontext->type;
1470	avkey.target_class = tclass;
1471	avkey.specified = specified;
1472	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1473
1474	/* If no permanent rule, also check for enabled conditional rules */
1475	if (!avdatum) {
1476		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1477		for (; node; node = avtab_search_node_next(node, specified)) {
1478			if (node->key.specified & AVTAB_ENABLED) {
1479				avdatum = &node->datum;
1480				break;
1481			}
1482		}
1483	}
1484
1485	if (avdatum) {
1486		/* Use the type from the type transition/member/change rule. */
1487		newcontext.type = avdatum->data;
1488	}
1489
1490	/* if we have a objname this is a file trans check so check those rules */
1491	if (objname)
1492		filename_compute_type(&policydb, &newcontext, scontext->type,
1493				      tcontext->type, tclass, objname);
1494
1495	/* Check for class-specific changes. */
1496	if (specified & AVTAB_TRANSITION) {
1497		/* Look for a role transition rule. */
1498		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1499			if ((roletr->role == scontext->role) &&
1500			    (roletr->type == tcontext->type) &&
1501			    (roletr->tclass == tclass)) {
1502				/* Use the role transition rule. */
1503				newcontext.role = roletr->new_role;
1504				break;
1505			}
1506		}
 
1507	}
1508
1509	/* Set the MLS attributes.
1510	   This is done last because it may allocate memory. */
1511	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1512			     &newcontext, sock);
1513	if (rc)
1514		goto out_unlock;
1515
1516	/* Check the validity of the context. */
1517	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1518		rc = compute_sid_handle_invalid_context(scontext,
1519							tcontext,
1520							tclass,
1521							&newcontext);
1522		if (rc)
1523			goto out_unlock;
1524	}
1525	/* Obtain the sid for the context. */
1526	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
 
 
 
 
 
1527out_unlock:
1528	read_unlock(&policy_rwlock);
1529	context_destroy(&newcontext);
1530out:
1531	return rc;
1532}
1533
1534/**
1535 * security_transition_sid - Compute the SID for a new subject/object.
 
1536 * @ssid: source security identifier
1537 * @tsid: target security identifier
1538 * @tclass: target security class
 
1539 * @out_sid: security identifier for new subject/object
1540 *
1541 * Compute a SID to use for labeling a new subject or object in the
1542 * class @tclass based on a SID pair (@ssid, @tsid).
1543 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1544 * if insufficient memory is available, or %0 if the new SID was
1545 * computed successfully.
1546 */
1547int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
 
1548			    const struct qstr *qstr, u32 *out_sid)
1549{
1550	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1551				    qstr ? qstr->name : NULL, out_sid, true);
1552}
1553
1554int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
 
1555				 const char *objname, u32 *out_sid)
1556{
1557	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1558				    objname, out_sid, false);
1559}
1560
1561/**
1562 * security_member_sid - Compute the SID for member selection.
 
1563 * @ssid: source security identifier
1564 * @tsid: target security identifier
1565 * @tclass: target security class
1566 * @out_sid: security identifier for selected member
1567 *
1568 * Compute a SID to use when selecting a member of a polyinstantiated
1569 * object of class @tclass based on a SID pair (@ssid, @tsid).
1570 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1571 * if insufficient memory is available, or %0 if the SID was
1572 * computed successfully.
1573 */
1574int security_member_sid(u32 ssid,
 
1575			u32 tsid,
1576			u16 tclass,
1577			u32 *out_sid)
1578{
1579	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
 
1580				    out_sid, false);
1581}
1582
1583/**
1584 * security_change_sid - Compute the SID for object relabeling.
 
1585 * @ssid: source security identifier
1586 * @tsid: target security identifier
1587 * @tclass: target security class
1588 * @out_sid: security identifier for selected member
1589 *
1590 * Compute a SID to use for relabeling an object of class @tclass
1591 * based on a SID pair (@ssid, @tsid).
1592 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1593 * if insufficient memory is available, or %0 if the SID was
1594 * computed successfully.
1595 */
1596int security_change_sid(u32 ssid,
 
1597			u32 tsid,
1598			u16 tclass,
1599			u32 *out_sid)
1600{
1601	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
 
1602				    out_sid, false);
1603}
1604
1605/* Clone the SID into the new SID table. */
1606static int clone_sid(u32 sid,
1607		     struct context *context,
1608		     void *arg)
1609{
1610	struct sidtab *s = arg;
1611
1612	if (sid > SECINITSID_NUM)
1613		return sidtab_insert(s, sid, context);
1614	else
1615		return 0;
1616}
1617
1618static inline int convert_context_handle_invalid_context(struct context *context)
1619{
1620	char *s;
1621	u32 len;
1622
1623	if (selinux_enforcing)
1624		return -EINVAL;
1625
1626	if (!context_struct_to_string(context, &s, &len)) {
1627		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
 
1628		kfree(s);
1629	}
1630	return 0;
1631}
1632
1633struct convert_context_args {
1634	struct policydb *oldp;
1635	struct policydb *newp;
1636};
1637
1638/*
1639 * Convert the values in the security context
1640 * structure `c' from the values specified
1641 * in the policy `p->oldp' to the values specified
1642 * in the policy `p->newp'.  Verify that the
1643 * context is valid under the new policy.
1644 */
1645static int convert_context(u32 key,
1646			   struct context *c,
1647			   void *p)
1648{
1649	struct convert_context_args *args;
1650	struct context oldc;
1651	struct ocontext *oc;
1652	struct mls_range *range;
1653	struct role_datum *role;
1654	struct type_datum *typdatum;
1655	struct user_datum *usrdatum;
1656	char *s;
1657	u32 len;
1658	int rc = 0;
1659
1660	if (key <= SECINITSID_NUM)
1661		goto out;
1662
1663	args = p;
1664
1665	if (c->str) {
1666		struct context ctx;
1667
1668		rc = -ENOMEM;
1669		s = kstrdup(c->str, GFP_KERNEL);
1670		if (!s)
1671			goto out;
1672
1673		rc = string_to_context_struct(args->newp, NULL, s,
1674					      c->len, &ctx, SECSID_NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
1675		kfree(s);
1676		if (!rc) {
1677			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1678			       c->str);
1679			/* Replace string with mapped representation. */
1680			kfree(c->str);
1681			memcpy(c, &ctx, sizeof(*c));
1682			goto out;
1683		} else if (rc == -EINVAL) {
1684			/* Retain string representation for later mapping. */
1685			rc = 0;
1686			goto out;
1687		} else {
1688			/* Other error condition, e.g. ENOMEM. */
1689			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1690			       c->str, -rc);
1691			goto out;
1692		}
 
 
 
1693	}
1694
1695	rc = context_cpy(&oldc, c);
1696	if (rc)
1697		goto out;
1698
1699	/* Convert the user. */
1700	rc = -EINVAL;
1701	usrdatum = hashtab_search(args->newp->p_users.table,
1702				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1703	if (!usrdatum)
1704		goto bad;
1705	c->user = usrdatum->value;
1706
1707	/* Convert the role. */
1708	rc = -EINVAL;
1709	role = hashtab_search(args->newp->p_roles.table,
1710			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1711	if (!role)
1712		goto bad;
1713	c->role = role->value;
1714
1715	/* Convert the type. */
1716	rc = -EINVAL;
1717	typdatum = hashtab_search(args->newp->p_types.table,
1718				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1719	if (!typdatum)
1720		goto bad;
1721	c->type = typdatum->value;
1722
1723	/* Convert the MLS fields if dealing with MLS policies */
1724	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1725		rc = mls_convert_context(args->oldp, args->newp, c);
1726		if (rc)
1727			goto bad;
1728	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1729		/*
1730		 * Switching between MLS and non-MLS policy:
1731		 * free any storage used by the MLS fields in the
1732		 * context for all existing entries in the sidtab.
1733		 */
1734		mls_context_destroy(c);
1735	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1736		/*
1737		 * Switching between non-MLS and MLS policy:
1738		 * ensure that the MLS fields of the context for all
1739		 * existing entries in the sidtab are filled in with a
1740		 * suitable default value, likely taken from one of the
1741		 * initial SIDs.
1742		 */
1743		oc = args->newp->ocontexts[OCON_ISID];
1744		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1745			oc = oc->next;
1746		rc = -EINVAL;
1747		if (!oc) {
1748			printk(KERN_ERR "SELinux:  unable to look up"
1749				" the initial SIDs list\n");
1750			goto bad;
1751		}
1752		range = &oc->context[0].range;
1753		rc = mls_range_set(c, range);
1754		if (rc)
1755			goto bad;
1756	}
1757
1758	/* Check the validity of the new context. */
1759	if (!policydb_context_isvalid(args->newp, c)) {
1760		rc = convert_context_handle_invalid_context(&oldc);
 
1761		if (rc)
1762			goto bad;
1763	}
1764
1765	context_destroy(&oldc);
1766
1767	rc = 0;
1768out:
1769	return rc;
1770bad:
1771	/* Map old representation to string and save it. */
1772	rc = context_struct_to_string(&oldc, &s, &len);
1773	if (rc)
1774		return rc;
1775	context_destroy(&oldc);
1776	context_destroy(c);
1777	c->str = s;
1778	c->len = len;
1779	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1780	       c->str);
1781	rc = 0;
1782	goto out;
1783}
1784
1785static void security_load_policycaps(void)
 
1786{
1787	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1788						  POLICYDB_CAPABILITY_NETPEER);
1789	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1790						  POLICYDB_CAPABILITY_OPENPERM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1791}
1792
1793extern void selinux_complete_init(void);
1794static int security_preserve_bools(struct policydb *p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1795
1796/**
1797 * security_load_policy - Load a security policy configuration.
 
1798 * @data: binary policy data
1799 * @len: length of data in bytes
 
1800 *
1801 * Load a new set of security policy configuration data,
1802 * validate it and convert the SID table as necessary.
1803 * This function will flush the access vector cache after
1804 * loading the new policy.
1805 */
1806int security_load_policy(void *data, size_t len)
 
1807{
1808	struct policydb oldpolicydb, newpolicydb;
1809	struct sidtab oldsidtab, newsidtab;
1810	struct selinux_mapping *oldmap, *map = NULL;
1811	struct convert_context_args args;
1812	u32 seqno;
1813	u16 map_size;
1814	int rc = 0;
1815	struct policy_file file = { data, len }, *fp = &file;
1816
1817	if (!ss_initialized) {
1818		avtab_cache_init();
1819		rc = policydb_read(&policydb, fp);
1820		if (rc) {
1821			avtab_cache_destroy();
1822			return rc;
1823		}
1824
1825		policydb.len = len;
1826		rc = selinux_set_mapping(&policydb, secclass_map,
1827					 &current_mapping,
1828					 &current_mapping_size);
1829		if (rc) {
1830			policydb_destroy(&policydb);
1831			avtab_cache_destroy();
1832			return rc;
1833		}
1834
1835		rc = policydb_load_isids(&policydb, &sidtab);
1836		if (rc) {
1837			policydb_destroy(&policydb);
1838			avtab_cache_destroy();
1839			return rc;
1840		}
1841
1842		security_load_policycaps();
1843		ss_initialized = 1;
1844		seqno = ++latest_granting;
1845		selinux_complete_init();
1846		avc_ss_reset(seqno);
1847		selnl_notify_policyload(seqno);
1848		selinux_status_update_policyload(seqno);
1849		selinux_netlbl_cache_invalidate();
1850		selinux_xfrm_notify_policyload();
1851		return 0;
1852	}
1853
1854#if 0
1855	sidtab_hash_eval(&sidtab, "sids");
1856#endif
1857
1858	rc = policydb_read(&newpolicydb, fp);
1859	if (rc)
1860		return rc;
1861
1862	newpolicydb.len = len;
1863	/* If switching between different policy types, log MLS status */
1864	if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1865		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1866	else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1867		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1868
1869	rc = policydb_load_isids(&newpolicydb, &newsidtab);
1870	if (rc) {
1871		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1872		policydb_destroy(&newpolicydb);
1873		return rc;
1874	}
1875
1876	rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1877	if (rc)
1878		goto err;
1879
1880	rc = security_preserve_bools(&newpolicydb);
1881	if (rc) {
1882		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1883		goto err;
1884	}
1885
1886	/* Clone the SID table. */
1887	sidtab_shutdown(&sidtab);
1888
1889	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1890	if (rc)
1891		goto err;
 
 
 
1892
1893	/*
1894	 * Convert the internal representations of contexts
1895	 * in the new SID table.
1896	 */
1897	args.oldp = &policydb;
1898	args.newp = &newpolicydb;
1899	rc = sidtab_map(&newsidtab, convert_context, &args);
 
 
 
 
 
 
 
 
 
 
 
 
1900	if (rc) {
1901		printk(KERN_ERR "SELinux:  unable to convert the internal"
1902			" representation of contexts in the new SID"
1903			" table\n");
1904		goto err;
1905	}
1906
1907	/* Save the old policydb and SID table to free later. */
1908	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1909	sidtab_set(&oldsidtab, &sidtab);
1910
1911	/* Install the new policydb and SID table. */
1912	write_lock_irq(&policy_rwlock);
1913	memcpy(&policydb, &newpolicydb, sizeof policydb);
1914	sidtab_set(&sidtab, &newsidtab);
1915	security_load_policycaps();
1916	oldmap = current_mapping;
1917	current_mapping = map;
1918	current_mapping_size = map_size;
1919	seqno = ++latest_granting;
1920	write_unlock_irq(&policy_rwlock);
1921
1922	/* Free the old policydb and SID table. */
1923	policydb_destroy(&oldpolicydb);
1924	sidtab_destroy(&oldsidtab);
1925	kfree(oldmap);
1926
1927	avc_ss_reset(seqno);
1928	selnl_notify_policyload(seqno);
1929	selinux_status_update_policyload(seqno);
1930	selinux_netlbl_cache_invalidate();
1931	selinux_xfrm_notify_policyload();
1932
1933	return 0;
1934
1935err:
1936	kfree(map);
1937	sidtab_destroy(&newsidtab);
1938	policydb_destroy(&newpolicydb);
1939	return rc;
 
 
 
 
 
 
 
1940
 
1941}
1942
1943size_t security_policydb_len(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1944{
1945	size_t len;
 
1946
1947	read_lock(&policy_rwlock);
1948	len = policydb.len;
1949	read_unlock(&policy_rwlock);
 
 
 
1950
1951	return len;
 
 
 
 
 
 
 
1952}
1953
1954/**
1955 * security_port_sid - Obtain the SID for a port.
 
1956 * @protocol: protocol number
1957 * @port: port number
1958 * @out_sid: security identifier
1959 */
1960int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
 
1961{
 
 
 
1962	struct ocontext *c;
1963	int rc = 0;
1964
1965	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
1966
1967	c = policydb.ocontexts[OCON_PORT];
1968	while (c) {
1969		if (c->u.port.protocol == protocol &&
1970		    c->u.port.low_port <= port &&
1971		    c->u.port.high_port >= port)
1972			break;
1973		c = c->next;
1974	}
1975
1976	if (c) {
1977		if (!c->sid[0]) {
1978			rc = sidtab_context_to_sid(&sidtab,
1979						   &c->context[0],
1980						   &c->sid[0]);
1981			if (rc)
1982				goto out;
1983		}
1984		*out_sid = c->sid[0];
 
1985	} else {
1986		*out_sid = SECINITSID_PORT;
1987	}
1988
1989out:
1990	read_unlock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991	return rc;
1992}
1993
1994/**
1995 * security_netif_sid - Obtain the SID for a network interface.
 
1996 * @name: interface name
1997 * @if_sid: interface SID
1998 */
1999int security_netif_sid(char *name, u32 *if_sid)
 
2000{
2001	int rc = 0;
 
 
 
2002	struct ocontext *c;
2003
2004	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
2005
2006	c = policydb.ocontexts[OCON_NETIF];
2007	while (c) {
2008		if (strcmp(name, c->u.name) == 0)
2009			break;
2010		c = c->next;
2011	}
2012
2013	if (c) {
2014		if (!c->sid[0] || !c->sid[1]) {
2015			rc = sidtab_context_to_sid(&sidtab,
2016						  &c->context[0],
2017						  &c->sid[0]);
2018			if (rc)
2019				goto out;
2020			rc = sidtab_context_to_sid(&sidtab,
2021						   &c->context[1],
2022						   &c->sid[1]);
2023			if (rc)
2024				goto out;
2025		}
2026		*if_sid = c->sid[0];
 
2027	} else
2028		*if_sid = SECINITSID_NETIF;
2029
2030out:
2031	read_unlock(&policy_rwlock);
2032	return rc;
2033}
2034
2035static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2036{
2037	int i, fail = 0;
2038
2039	for (i = 0; i < 4; i++)
2040		if (addr[i] != (input[i] & mask[i])) {
2041			fail = 1;
2042			break;
2043		}
2044
2045	return !fail;
2046}
2047
2048/**
2049 * security_node_sid - Obtain the SID for a node (host).
 
2050 * @domain: communication domain aka address family
2051 * @addrp: address
2052 * @addrlen: address length in bytes
2053 * @out_sid: security identifier
2054 */
2055int security_node_sid(u16 domain,
 
2056		      void *addrp,
2057		      u32 addrlen,
2058		      u32 *out_sid)
2059{
 
 
 
2060	int rc;
2061	struct ocontext *c;
2062
2063	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
2064
2065	switch (domain) {
2066	case AF_INET: {
2067		u32 addr;
2068
2069		rc = -EINVAL;
2070		if (addrlen != sizeof(u32))
2071			goto out;
2072
2073		addr = *((u32 *)addrp);
2074
2075		c = policydb.ocontexts[OCON_NODE];
2076		while (c) {
2077			if (c->u.node.addr == (addr & c->u.node.mask))
2078				break;
2079			c = c->next;
2080		}
2081		break;
2082	}
2083
2084	case AF_INET6:
2085		rc = -EINVAL;
2086		if (addrlen != sizeof(u64) * 2)
2087			goto out;
2088		c = policydb.ocontexts[OCON_NODE6];
2089		while (c) {
2090			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2091						c->u.node6.mask))
2092				break;
2093			c = c->next;
2094		}
2095		break;
2096
2097	default:
2098		rc = 0;
2099		*out_sid = SECINITSID_NODE;
2100		goto out;
2101	}
2102
2103	if (c) {
2104		if (!c->sid[0]) {
2105			rc = sidtab_context_to_sid(&sidtab,
2106						   &c->context[0],
2107						   &c->sid[0]);
2108			if (rc)
2109				goto out;
2110		}
2111		*out_sid = c->sid[0];
 
2112	} else {
2113		*out_sid = SECINITSID_NODE;
2114	}
2115
2116	rc = 0;
2117out:
2118	read_unlock(&policy_rwlock);
2119	return rc;
2120}
2121
2122#define SIDS_NEL 25
2123
2124/**
2125 * security_get_user_sids - Obtain reachable SIDs for a user.
 
2126 * @fromsid: starting SID
2127 * @username: username
2128 * @sids: array of reachable SIDs for user
2129 * @nel: number of elements in @sids
2130 *
2131 * Generate the set of SIDs for legal security contexts
2132 * for a given user that can be reached by @fromsid.
2133 * Set *@sids to point to a dynamically allocated
2134 * array containing the set of SIDs.  Set *@nel to the
2135 * number of elements in the array.
2136 */
2137
2138int security_get_user_sids(u32 fromsid,
 
2139			   char *username,
2140			   u32 **sids,
2141			   u32 *nel)
2142{
 
 
 
2143	struct context *fromcon, usercon;
2144	u32 *mysids = NULL, *mysids2, sid;
2145	u32 mynel = 0, maxnel = SIDS_NEL;
2146	struct user_datum *user;
2147	struct role_datum *role;
2148	struct ebitmap_node *rnode, *tnode;
2149	int rc = 0, i, j;
2150
2151	*sids = NULL;
2152	*nel = 0;
2153
2154	if (!ss_initialized)
2155		goto out;
 
 
 
 
2156
2157	read_lock(&policy_rwlock);
 
 
 
 
 
2158
2159	context_init(&usercon);
2160
2161	rc = -EINVAL;
2162	fromcon = sidtab_search(&sidtab, fromsid);
2163	if (!fromcon)
2164		goto out_unlock;
2165
2166	rc = -EINVAL;
2167	user = hashtab_search(policydb.p_users.table, username);
2168	if (!user)
2169		goto out_unlock;
2170
2171	usercon.user = user->value;
2172
2173	rc = -ENOMEM;
2174	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2175	if (!mysids)
2176		goto out_unlock;
2177
2178	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2179		role = policydb.role_val_to_struct[i];
2180		usercon.role = i + 1;
2181		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2182			usercon.type = j + 1;
2183
2184			if (mls_setup_user_range(fromcon, user, &usercon))
 
2185				continue;
2186
2187			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
 
 
 
 
2188			if (rc)
2189				goto out_unlock;
2190			if (mynel < maxnel) {
2191				mysids[mynel++] = sid;
2192			} else {
2193				rc = -ENOMEM;
2194				maxnel += SIDS_NEL;
2195				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2196				if (!mysids2)
2197					goto out_unlock;
2198				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2199				kfree(mysids);
2200				mysids = mysids2;
2201				mysids[mynel++] = sid;
2202			}
2203		}
2204	}
2205	rc = 0;
2206out_unlock:
2207	read_unlock(&policy_rwlock);
2208	if (rc || !mynel) {
2209		kfree(mysids);
2210		goto out;
2211	}
2212
2213	rc = -ENOMEM;
2214	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2215	if (!mysids2) {
2216		kfree(mysids);
2217		goto out;
2218	}
2219	for (i = 0, j = 0; i < mynel; i++) {
2220		struct av_decision dummy_avd;
2221		rc = avc_has_perm_noaudit(fromsid, mysids[i],
 
2222					  SECCLASS_PROCESS, /* kernel value */
2223					  PROCESS__TRANSITION, AVC_STRICT,
2224					  &dummy_avd);
2225		if (!rc)
2226			mysids2[j++] = mysids[i];
2227		cond_resched();
2228	}
2229	rc = 0;
2230	kfree(mysids);
2231	*sids = mysids2;
2232	*nel = j;
2233out:
2234	return rc;
2235}
2236
2237/**
2238 * security_genfs_sid - Obtain a SID for a file in a filesystem
 
2239 * @fstype: filesystem type
2240 * @path: path from root of mount
2241 * @sclass: file security class
2242 * @sid: SID for path
2243 *
2244 * Obtain a SID to use for a file in a filesystem that
2245 * cannot support xattr or use a fixed labeling behavior like
2246 * transition SIDs or task SIDs.
 
 
 
2247 */
2248int security_genfs_sid(const char *fstype,
2249		       char *path,
2250		       u16 orig_sclass,
2251		       u32 *sid)
 
2252{
 
 
2253	int len;
2254	u16 sclass;
2255	struct genfs *genfs;
2256	struct ocontext *c;
2257	int rc, cmp = 0;
2258
2259	while (path[0] == '/' && path[1] == '/')
2260		path++;
2261
2262	read_lock(&policy_rwlock);
2263
2264	sclass = unmap_class(orig_sclass);
2265	*sid = SECINITSID_UNLABELED;
2266
2267	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2268		cmp = strcmp(fstype, genfs->fstype);
2269		if (cmp <= 0)
2270			break;
2271	}
2272
2273	rc = -ENOENT;
2274	if (!genfs || cmp)
2275		goto out;
2276
2277	for (c = genfs->head; c; c = c->next) {
2278		len = strlen(c->u.name);
2279		if ((!c->v.sclass || sclass == c->v.sclass) &&
2280		    (strncmp(c->u.name, path, len) == 0))
2281			break;
2282	}
2283
2284	rc = -ENOENT;
2285	if (!c)
2286		goto out;
2287
2288	if (!c->sid[0]) {
2289		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2290		if (rc)
2291			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2292	}
2293
2294	*sid = c->sid[0];
2295	rc = 0;
2296out:
2297	read_unlock(&policy_rwlock);
2298	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
2299}
2300
2301/**
2302 * security_fs_use - Determine how to handle labeling for a filesystem.
2303 * @fstype: filesystem type
2304 * @behavior: labeling behavior
2305 * @sid: SID for filesystem (superblock)
2306 */
2307int security_fs_use(
2308	const char *fstype,
2309	unsigned int *behavior,
2310	u32 *sid)
2311{
2312	int rc = 0;
 
 
 
2313	struct ocontext *c;
 
 
 
 
 
 
 
 
2314
2315	read_lock(&policy_rwlock);
 
 
 
 
2316
2317	c = policydb.ocontexts[OCON_FSUSE];
2318	while (c) {
2319		if (strcmp(fstype, c->u.name) == 0)
2320			break;
2321		c = c->next;
2322	}
2323
2324	if (c) {
2325		*behavior = c->v.behavior;
2326		if (!c->sid[0]) {
2327			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2328						   &c->sid[0]);
2329			if (rc)
2330				goto out;
2331		}
2332		*sid = c->sid[0];
 
2333	} else {
2334		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
 
 
 
 
 
2335		if (rc) {
2336			*behavior = SECURITY_FS_USE_NONE;
2337			rc = 0;
2338		} else {
2339			*behavior = SECURITY_FS_USE_GENFS;
2340		}
2341	}
2342
2343out:
2344	read_unlock(&policy_rwlock);
2345	return rc;
2346}
2347
2348int security_get_bools(int *len, char ***names, int **values)
 
2349{
2350	int i, rc;
 
 
 
 
2351
2352	read_lock(&policy_rwlock);
2353	*names = NULL;
2354	*values = NULL;
2355
2356	rc = 0;
2357	*len = policydb.p_bools.nprim;
2358	if (!*len)
2359		goto out;
2360
2361	rc = -ENOMEM;
2362	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2363	if (!*names)
2364		goto err;
2365
2366	rc = -ENOMEM;
2367	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2368	if (!*values)
2369		goto err;
2370
2371	for (i = 0; i < *len; i++) {
2372		size_t name_len;
2373
2374		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2375		name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2376
2377		rc = -ENOMEM;
2378		(*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
 
2379		if (!(*names)[i])
2380			goto err;
2381
2382		strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2383		(*names)[i][name_len - 1] = 0;
2384	}
2385	rc = 0;
2386out:
2387	read_unlock(&policy_rwlock);
2388	return rc;
2389err:
2390	if (*names) {
2391		for (i = 0; i < *len; i++)
2392			kfree((*names)[i]);
 
2393	}
2394	kfree(*values);
 
 
 
2395	goto out;
2396}
2397
2398
2399int security_set_bools(int len, int *values)
2400{
2401	int i, rc;
2402	int lenp, seqno = 0;
2403	struct cond_node *cur;
2404
2405	write_lock_irq(&policy_rwlock);
 
2406
2407	rc = -EFAULT;
2408	lenp = policydb.p_bools.nprim;
2409	if (len != lenp)
2410		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411
 
2412	for (i = 0; i < len; i++) {
2413		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2414			audit_log(current->audit_context, GFP_ATOMIC,
 
 
 
2415				AUDIT_MAC_CONFIG_CHANGE,
2416				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2417				sym_name(&policydb, SYM_BOOLS, i),
2418				!!values[i],
2419				policydb.bool_val_to_struct[i]->state,
2420				audit_get_loginuid(current),
2421				audit_get_sessionid(current));
 
2422		}
2423		if (values[i])
2424			policydb.bool_val_to_struct[i]->state = 1;
2425		else
2426			policydb.bool_val_to_struct[i]->state = 0;
2427	}
2428
2429	for (cur = policydb.cond_list; cur; cur = cur->next) {
2430		rc = evaluate_cond_node(&policydb, cur);
2431		if (rc)
2432			goto out;
2433	}
2434
2435	seqno = ++latest_granting;
2436	rc = 0;
2437out:
2438	write_unlock_irq(&policy_rwlock);
2439	if (!rc) {
2440		avc_ss_reset(seqno);
2441		selnl_notify_policyload(seqno);
2442		selinux_status_update_policyload(seqno);
2443		selinux_xfrm_notify_policyload();
2444	}
2445	return rc;
 
 
 
 
 
 
 
2446}
2447
2448int security_get_bool_value(int bool)
 
2449{
 
 
2450	int rc;
2451	int len;
2452
2453	read_lock(&policy_rwlock);
 
 
 
 
 
2454
2455	rc = -EFAULT;
2456	len = policydb.p_bools.nprim;
2457	if (bool >= len)
2458		goto out;
2459
2460	rc = policydb.bool_val_to_struct[bool]->state;
2461out:
2462	read_unlock(&policy_rwlock);
2463	return rc;
2464}
2465
2466static int security_preserve_bools(struct policydb *p)
 
2467{
2468	int rc, nbools = 0, *bvalues = NULL, i;
2469	char **bnames = NULL;
2470	struct cond_bool_datum *booldatum;
2471	struct cond_node *cur;
2472
2473	rc = security_get_bools(&nbools, &bnames, &bvalues);
2474	if (rc)
2475		goto out;
2476	for (i = 0; i < nbools; i++) {
2477		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
 
2478		if (booldatum)
2479			booldatum->state = bvalues[i];
2480	}
2481	for (cur = p->cond_list; cur; cur = cur->next) {
2482		rc = evaluate_cond_node(p, cur);
2483		if (rc)
2484			goto out;
2485	}
2486
2487out:
2488	if (bnames) {
2489		for (i = 0; i < nbools; i++)
2490			kfree(bnames[i]);
2491	}
2492	kfree(bnames);
2493	kfree(bvalues);
2494	return rc;
2495}
2496
2497/*
2498 * security_sid_mls_copy() - computes a new sid based on the given
2499 * sid and the mls portion of mls_sid.
2500 */
2501int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
 
2502{
 
 
 
2503	struct context *context1;
2504	struct context *context2;
2505	struct context newcon;
2506	char *s;
2507	u32 len;
2508	int rc;
2509
2510	rc = 0;
2511	if (!ss_initialized || !policydb.mls_enabled) {
2512		*new_sid = sid;
2513		goto out;
2514	}
2515
 
 
2516	context_init(&newcon);
2517
2518	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
2519
2520	rc = -EINVAL;
2521	context1 = sidtab_search(&sidtab, sid);
2522	if (!context1) {
2523		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2524			__func__, sid);
2525		goto out_unlock;
2526	}
2527
2528	rc = -EINVAL;
2529	context2 = sidtab_search(&sidtab, mls_sid);
2530	if (!context2) {
2531		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2532			__func__, mls_sid);
2533		goto out_unlock;
2534	}
2535
2536	newcon.user = context1->user;
2537	newcon.role = context1->role;
2538	newcon.type = context1->type;
2539	rc = mls_context_cpy(&newcon, context2);
2540	if (rc)
2541		goto out_unlock;
2542
2543	/* Check the validity of the new context. */
2544	if (!policydb_context_isvalid(&policydb, &newcon)) {
2545		rc = convert_context_handle_invalid_context(&newcon);
 
2546		if (rc) {
2547			if (!context_struct_to_string(&newcon, &s, &len)) {
2548				audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2549					  "security_sid_mls_copy: invalid context %s", s);
 
 
 
 
 
 
 
 
 
2550				kfree(s);
2551			}
2552			goto out_unlock;
2553		}
2554	}
2555
2556	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
 
 
 
 
2557out_unlock:
2558	read_unlock(&policy_rwlock);
2559	context_destroy(&newcon);
2560out:
2561	return rc;
2562}
2563
2564/**
2565 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
 
2566 * @nlbl_sid: NetLabel SID
2567 * @nlbl_type: NetLabel labeling protocol type
2568 * @xfrm_sid: XFRM SID
 
2569 *
2570 * Description:
2571 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2572 * resolved into a single SID it is returned via @peer_sid and the function
2573 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2574 * returns a negative value.  A table summarizing the behavior is below:
2575 *
2576 *                                 | function return |      @sid
2577 *   ------------------------------+-----------------+-----------------
2578 *   no peer labels                |        0        |    SECSID_NULL
2579 *   single peer label             |        0        |    <peer_label>
2580 *   multiple, consistent labels   |        0        |    <peer_label>
2581 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2582 *
2583 */
2584int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
 
2585				 u32 xfrm_sid,
2586				 u32 *peer_sid)
2587{
 
 
 
2588	int rc;
2589	struct context *nlbl_ctx;
2590	struct context *xfrm_ctx;
2591
2592	*peer_sid = SECSID_NULL;
2593
2594	/* handle the common (which also happens to be the set of easy) cases
2595	 * right away, these two if statements catch everything involving a
2596	 * single or absent peer SID/label */
2597	if (xfrm_sid == SECSID_NULL) {
2598		*peer_sid = nlbl_sid;
2599		return 0;
2600	}
2601	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2602	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2603	 * is present */
2604	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2605		*peer_sid = xfrm_sid;
2606		return 0;
2607	}
2608
2609	/* we don't need to check ss_initialized here since the only way both
2610	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2611	 * security server was initialized and ss_initialized was true */
2612	if (!policydb.mls_enabled)
2613		return 0;
2614
2615	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
2616
2617	rc = -EINVAL;
2618	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2619	if (!nlbl_ctx) {
2620		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2621		       __func__, nlbl_sid);
2622		goto out;
2623	}
2624	rc = -EINVAL;
2625	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2626	if (!xfrm_ctx) {
2627		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2628		       __func__, xfrm_sid);
2629		goto out;
2630	}
2631	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2632	if (rc)
2633		goto out;
2634
2635	/* at present NetLabel SIDs/labels really only carry MLS
2636	 * information so if the MLS portion of the NetLabel SID
2637	 * matches the MLS portion of the labeled XFRM SID/label
2638	 * then pass along the XFRM SID as it is the most
2639	 * expressive */
2640	*peer_sid = xfrm_sid;
2641out:
2642	read_unlock(&policy_rwlock);
2643	return rc;
2644}
2645
2646static int get_classes_callback(void *k, void *d, void *args)
2647{
2648	struct class_datum *datum = d;
2649	char *name = k, **classes = args;
2650	int value = datum->value - 1;
2651
2652	classes[value] = kstrdup(name, GFP_ATOMIC);
2653	if (!classes[value])
2654		return -ENOMEM;
2655
2656	return 0;
2657}
2658
2659int security_get_classes(char ***classes, int *nclasses)
 
2660{
 
2661	int rc;
2662
2663	read_lock(&policy_rwlock);
2664
2665	rc = -ENOMEM;
2666	*nclasses = policydb.p_classes.nprim;
2667	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2668	if (!*classes)
2669		goto out;
2670
2671	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2672			*classes);
2673	if (rc) {
2674		int i;
2675		for (i = 0; i < *nclasses; i++)
2676			kfree((*classes)[i]);
2677		kfree(*classes);
2678	}
2679
2680out:
2681	read_unlock(&policy_rwlock);
2682	return rc;
2683}
2684
2685static int get_permissions_callback(void *k, void *d, void *args)
2686{
2687	struct perm_datum *datum = d;
2688	char *name = k, **perms = args;
2689	int value = datum->value - 1;
2690
2691	perms[value] = kstrdup(name, GFP_ATOMIC);
2692	if (!perms[value])
2693		return -ENOMEM;
2694
2695	return 0;
2696}
2697
2698int security_get_permissions(char *class, char ***perms, int *nperms)
 
2699{
 
2700	int rc, i;
2701	struct class_datum *match;
2702
2703	read_lock(&policy_rwlock);
2704
2705	rc = -EINVAL;
2706	match = hashtab_search(policydb.p_classes.table, class);
2707	if (!match) {
2708		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2709			__func__, class);
2710		goto out;
2711	}
2712
2713	rc = -ENOMEM;
2714	*nperms = match->permissions.nprim;
2715	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2716	if (!*perms)
2717		goto out;
2718
2719	if (match->comdatum) {
2720		rc = hashtab_map(match->comdatum->permissions.table,
2721				get_permissions_callback, *perms);
2722		if (rc)
2723			goto err;
2724	}
2725
2726	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2727			*perms);
2728	if (rc)
2729		goto err;
2730
2731out:
2732	read_unlock(&policy_rwlock);
2733	return rc;
2734
2735err:
2736	read_unlock(&policy_rwlock);
2737	for (i = 0; i < *nperms; i++)
2738		kfree((*perms)[i]);
2739	kfree(*perms);
2740	return rc;
2741}
2742
2743int security_get_reject_unknown(void)
2744{
2745	return policydb.reject_unknown;
 
 
 
 
 
 
 
 
 
 
2746}
2747
2748int security_get_allow_unknown(void)
2749{
2750	return policydb.allow_unknown;
 
 
 
 
 
 
 
 
 
 
2751}
2752
2753/**
2754 * security_policycap_supported - Check for a specific policy capability
 
2755 * @req_cap: capability
2756 *
2757 * Description:
2758 * This function queries the currently loaded policy to see if it supports the
2759 * capability specified by @req_cap.  Returns true (1) if the capability is
2760 * supported, false (0) if it isn't supported.
2761 *
2762 */
2763int security_policycap_supported(unsigned int req_cap)
 
2764{
 
2765	int rc;
2766
2767	read_lock(&policy_rwlock);
2768	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2769	read_unlock(&policy_rwlock);
 
 
 
 
2770
2771	return rc;
2772}
2773
2774struct selinux_audit_rule {
2775	u32 au_seqno;
2776	struct context au_ctxt;
2777};
2778
2779void selinux_audit_rule_free(void *vrule)
2780{
2781	struct selinux_audit_rule *rule = vrule;
2782
2783	if (rule) {
2784		context_destroy(&rule->au_ctxt);
2785		kfree(rule);
2786	}
2787}
2788
2789int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2790{
 
 
 
2791	struct selinux_audit_rule *tmprule;
2792	struct role_datum *roledatum;
2793	struct type_datum *typedatum;
2794	struct user_datum *userdatum;
2795	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2796	int rc = 0;
2797
2798	*rule = NULL;
2799
2800	if (!ss_initialized)
2801		return -EOPNOTSUPP;
2802
2803	switch (field) {
2804	case AUDIT_SUBJ_USER:
2805	case AUDIT_SUBJ_ROLE:
2806	case AUDIT_SUBJ_TYPE:
2807	case AUDIT_OBJ_USER:
2808	case AUDIT_OBJ_ROLE:
2809	case AUDIT_OBJ_TYPE:
2810		/* only 'equals' and 'not equals' fit user, role, and type */
2811		if (op != Audit_equal && op != Audit_not_equal)
2812			return -EINVAL;
2813		break;
2814	case AUDIT_SUBJ_SEN:
2815	case AUDIT_SUBJ_CLR:
2816	case AUDIT_OBJ_LEV_LOW:
2817	case AUDIT_OBJ_LEV_HIGH:
2818		/* we do not allow a range, indicated by the presence of '-' */
2819		if (strchr(rulestr, '-'))
2820			return -EINVAL;
2821		break;
2822	default:
2823		/* only the above fields are valid */
2824		return -EINVAL;
2825	}
2826
2827	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2828	if (!tmprule)
2829		return -ENOMEM;
2830
2831	context_init(&tmprule->au_ctxt);
2832
2833	read_lock(&policy_rwlock);
 
 
2834
2835	tmprule->au_seqno = latest_granting;
2836
2837	switch (field) {
2838	case AUDIT_SUBJ_USER:
2839	case AUDIT_OBJ_USER:
2840		rc = -EINVAL;
2841		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2842		if (!userdatum)
2843			goto out;
2844		tmprule->au_ctxt.user = userdatum->value;
2845		break;
2846	case AUDIT_SUBJ_ROLE:
2847	case AUDIT_OBJ_ROLE:
2848		rc = -EINVAL;
2849		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2850		if (!roledatum)
2851			goto out;
2852		tmprule->au_ctxt.role = roledatum->value;
2853		break;
2854	case AUDIT_SUBJ_TYPE:
2855	case AUDIT_OBJ_TYPE:
2856		rc = -EINVAL;
2857		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2858		if (!typedatum)
2859			goto out;
2860		tmprule->au_ctxt.type = typedatum->value;
2861		break;
2862	case AUDIT_SUBJ_SEN:
2863	case AUDIT_SUBJ_CLR:
2864	case AUDIT_OBJ_LEV_LOW:
2865	case AUDIT_OBJ_LEV_HIGH:
2866		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
 
2867		if (rc)
2868			goto out;
2869		break;
2870	}
2871	rc = 0;
2872out:
2873	read_unlock(&policy_rwlock);
2874
2875	if (rc) {
2876		selinux_audit_rule_free(tmprule);
2877		tmprule = NULL;
2878	}
2879
2880	*rule = tmprule;
2881
2882	return rc;
2883}
2884
2885/* Check to see if the rule contains any selinux fields */
2886int selinux_audit_rule_known(struct audit_krule *rule)
2887{
2888	int i;
2889
2890	for (i = 0; i < rule->field_count; i++) {
2891		struct audit_field *f = &rule->fields[i];
2892		switch (f->type) {
2893		case AUDIT_SUBJ_USER:
2894		case AUDIT_SUBJ_ROLE:
2895		case AUDIT_SUBJ_TYPE:
2896		case AUDIT_SUBJ_SEN:
2897		case AUDIT_SUBJ_CLR:
2898		case AUDIT_OBJ_USER:
2899		case AUDIT_OBJ_ROLE:
2900		case AUDIT_OBJ_TYPE:
2901		case AUDIT_OBJ_LEV_LOW:
2902		case AUDIT_OBJ_LEV_HIGH:
2903			return 1;
2904		}
2905	}
2906
2907	return 0;
2908}
2909
2910int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2911			     struct audit_context *actx)
2912{
 
 
2913	struct context *ctxt;
2914	struct mls_level *level;
2915	struct selinux_audit_rule *rule = vrule;
2916	int match = 0;
2917
2918	if (!rule) {
2919		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2920			  "selinux_audit_rule_match: missing rule\n");
2921		return -ENOENT;
2922	}
2923
2924	read_lock(&policy_rwlock);
 
 
 
2925
2926	if (rule->au_seqno < latest_granting) {
2927		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2928			  "selinux_audit_rule_match: stale rule\n");
2929		match = -ESTALE;
2930		goto out;
2931	}
2932
2933	ctxt = sidtab_search(&sidtab, sid);
2934	if (!ctxt) {
2935		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2936			  "selinux_audit_rule_match: unrecognized SID %d\n",
2937			  sid);
2938		match = -ENOENT;
2939		goto out;
2940	}
2941
2942	/* a field/op pair that is not caught here will simply fall through
2943	   without a match */
2944	switch (field) {
2945	case AUDIT_SUBJ_USER:
2946	case AUDIT_OBJ_USER:
2947		switch (op) {
2948		case Audit_equal:
2949			match = (ctxt->user == rule->au_ctxt.user);
2950			break;
2951		case Audit_not_equal:
2952			match = (ctxt->user != rule->au_ctxt.user);
2953			break;
2954		}
2955		break;
2956	case AUDIT_SUBJ_ROLE:
2957	case AUDIT_OBJ_ROLE:
2958		switch (op) {
2959		case Audit_equal:
2960			match = (ctxt->role == rule->au_ctxt.role);
2961			break;
2962		case Audit_not_equal:
2963			match = (ctxt->role != rule->au_ctxt.role);
2964			break;
2965		}
2966		break;
2967	case AUDIT_SUBJ_TYPE:
2968	case AUDIT_OBJ_TYPE:
2969		switch (op) {
2970		case Audit_equal:
2971			match = (ctxt->type == rule->au_ctxt.type);
2972			break;
2973		case Audit_not_equal:
2974			match = (ctxt->type != rule->au_ctxt.type);
2975			break;
2976		}
2977		break;
2978	case AUDIT_SUBJ_SEN:
2979	case AUDIT_SUBJ_CLR:
2980	case AUDIT_OBJ_LEV_LOW:
2981	case AUDIT_OBJ_LEV_HIGH:
2982		level = ((field == AUDIT_SUBJ_SEN ||
2983			  field == AUDIT_OBJ_LEV_LOW) ?
2984			 &ctxt->range.level[0] : &ctxt->range.level[1]);
2985		switch (op) {
2986		case Audit_equal:
2987			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2988					     level);
2989			break;
2990		case Audit_not_equal:
2991			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2992					      level);
2993			break;
2994		case Audit_lt:
2995			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2996					       level) &&
2997				 !mls_level_eq(&rule->au_ctxt.range.level[0],
2998					       level));
2999			break;
3000		case Audit_le:
3001			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3002					      level);
3003			break;
3004		case Audit_gt:
3005			match = (mls_level_dom(level,
3006					      &rule->au_ctxt.range.level[0]) &&
3007				 !mls_level_eq(level,
3008					       &rule->au_ctxt.range.level[0]));
3009			break;
3010		case Audit_ge:
3011			match = mls_level_dom(level,
3012					      &rule->au_ctxt.range.level[0]);
3013			break;
3014		}
3015	}
3016
3017out:
3018	read_unlock(&policy_rwlock);
3019	return match;
3020}
3021
3022static int (*aurule_callback)(void) = audit_update_lsm_rules;
3023
3024static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
3025			       u16 class, u32 perms, u32 *retained)
3026{
3027	int err = 0;
3028
3029	if (event == AVC_CALLBACK_RESET && aurule_callback)
3030		err = aurule_callback();
3031	return err;
3032}
3033
3034static int __init aurule_init(void)
3035{
3036	int err;
3037
3038	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
3039			       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
3040	if (err)
3041		panic("avc_add_callback() failed, error %d\n", err);
3042
3043	return err;
3044}
3045__initcall(aurule_init);
3046
3047#ifdef CONFIG_NETLABEL
3048/**
3049 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3050 * @secattr: the NetLabel packet security attributes
3051 * @sid: the SELinux SID
3052 *
3053 * Description:
3054 * Attempt to cache the context in @ctx, which was derived from the packet in
3055 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3056 * already been initialized.
3057 *
3058 */
3059static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3060				      u32 sid)
3061{
3062	u32 *sid_cache;
3063
3064	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3065	if (sid_cache == NULL)
3066		return;
3067	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3068	if (secattr->cache == NULL) {
3069		kfree(sid_cache);
3070		return;
3071	}
3072
3073	*sid_cache = sid;
3074	secattr->cache->free = kfree;
3075	secattr->cache->data = sid_cache;
3076	secattr->flags |= NETLBL_SECATTR_CACHE;
3077}
3078
3079/**
3080 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
 
3081 * @secattr: the NetLabel packet security attributes
3082 * @sid: the SELinux SID
3083 *
3084 * Description:
3085 * Convert the given NetLabel security attributes in @secattr into a
3086 * SELinux SID.  If the @secattr field does not contain a full SELinux
3087 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3088 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3089 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3090 * conversion for future lookups.  Returns zero on success, negative values on
3091 * failure.
3092 *
3093 */
3094int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
 
3095				   u32 *sid)
3096{
 
 
 
3097	int rc;
3098	struct context *ctx;
3099	struct context ctx_new;
3100
3101	if (!ss_initialized) {
3102		*sid = SECSID_NULL;
3103		return 0;
3104	}
3105
3106	read_lock(&policy_rwlock);
 
 
 
 
 
3107
3108	if (secattr->flags & NETLBL_SECATTR_CACHE)
3109		*sid = *(u32 *)secattr->cache->data;
3110	else if (secattr->flags & NETLBL_SECATTR_SECID)
3111		*sid = secattr->attr.secid;
3112	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3113		rc = -EIDRM;
3114		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3115		if (ctx == NULL)
3116			goto out;
3117
3118		context_init(&ctx_new);
3119		ctx_new.user = ctx->user;
3120		ctx_new.role = ctx->role;
3121		ctx_new.type = ctx->type;
3122		mls_import_netlbl_lvl(&ctx_new, secattr);
3123		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3124			rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3125						   secattr->attr.mls.cat);
3126			if (rc)
3127				goto out;
3128			memcpy(&ctx_new.range.level[1].cat,
3129			       &ctx_new.range.level[0].cat,
3130			       sizeof(ctx_new.range.level[0].cat));
3131		}
3132		rc = -EIDRM;
3133		if (!mls_context_isvalid(&policydb, &ctx_new))
3134			goto out_free;
 
 
3135
3136		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
 
 
 
 
 
3137		if (rc)
3138			goto out_free;
3139
3140		security_netlbl_cache_add(secattr, *sid);
3141
3142		ebitmap_destroy(&ctx_new.range.level[0].cat);
3143	} else
3144		*sid = SECSID_NULL;
3145
3146	read_unlock(&policy_rwlock);
3147	return 0;
3148out_free:
3149	ebitmap_destroy(&ctx_new.range.level[0].cat);
3150out:
3151	read_unlock(&policy_rwlock);
3152	return rc;
3153}
3154
3155/**
3156 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
 
3157 * @sid: the SELinux SID
3158 * @secattr: the NetLabel packet security attributes
3159 *
3160 * Description:
3161 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3162 * Returns zero on success, negative values on failure.
3163 *
3164 */
3165int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
 
3166{
 
 
3167	int rc;
3168	struct context *ctx;
3169
3170	if (!ss_initialized)
3171		return 0;
3172
3173	read_lock(&policy_rwlock);
 
 
3174
3175	rc = -ENOENT;
3176	ctx = sidtab_search(&sidtab, sid);
3177	if (ctx == NULL)
3178		goto out;
3179
3180	rc = -ENOMEM;
3181	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3182				  GFP_ATOMIC);
3183	if (secattr->domain == NULL)
3184		goto out;
3185
3186	secattr->attr.secid = sid;
3187	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3188	mls_export_netlbl_lvl(ctx, secattr);
3189	rc = mls_export_netlbl_cat(ctx, secattr);
3190out:
3191	read_unlock(&policy_rwlock);
3192	return rc;
3193}
3194#endif /* CONFIG_NETLABEL */
3195
3196/**
3197 * security_read_policy - read the policy.
 
3198 * @data: binary policy data
3199 * @len: length of data in bytes
3200 *
3201 */
3202int security_read_policy(void **data, size_t *len)
 
3203{
3204	int rc;
3205	struct policy_file fp;
3206
3207	if (!ss_initialized)
3208		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3209
3210	*len = security_policydb_len();
 
 
 
3211
 
3212	*data = vmalloc_user(*len);
3213	if (!*data)
3214		return -ENOMEM;
3215
3216	fp.data = *data;
3217	fp.len = *len;
3218
3219	read_lock(&policy_rwlock);
3220	rc = policydb_write(&policydb, &fp);
3221	read_unlock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3222
3223	if (rc)
3224		return rc;
 
 
3225
3226	*len = (unsigned long)fp.data - (unsigned long)*data;
3227	return 0;
 
 
3228
 
 
 
 
 
 
 
3229}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
 
 
 
  49#include <linux/vmalloc.h>
  50#include <linux/lsm_hooks.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68#include "policycap_names.h"
  69#include "ima.h"
  70
  71struct selinux_policy_convert_data {
  72	struct convert_context_args args;
  73	struct sidtab_convert_params sidtab_params;
  74};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75
  76/* Forward declaration. */
  77static int context_struct_to_string(struct policydb *policydb,
  78				    struct context *context,
  79				    char **scontext,
  80				    u32 *scontext_len);
  81
  82static int sidtab_entry_to_string(struct policydb *policydb,
  83				  struct sidtab *sidtab,
  84				  struct sidtab_entry *entry,
  85				  char **scontext,
  86				  u32 *scontext_len);
  87
  88static void context_struct_compute_av(struct policydb *policydb,
  89				      struct context *scontext,
  90				      struct context *tcontext,
  91				      u16 tclass,
  92				      struct av_decision *avd,
  93				      struct extended_perms *xperms);
 
 
 
 
 
 
 
 
  94
  95static int selinux_set_mapping(struct policydb *pol,
  96			       const struct security_class_mapping *map,
  97			       struct selinux_map *out_map)
 
  98{
 
 
  99	u16 i, j;
 100	unsigned k;
 101	bool print_unknown_handle = false;
 102
 103	/* Find number of classes in the input mapping */
 104	if (!map)
 105		return -EINVAL;
 106	i = 0;
 107	while (map[i].name)
 108		i++;
 109
 110	/* Allocate space for the class records, plus one for class zero */
 111	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 112	if (!out_map->mapping)
 113		return -ENOMEM;
 114
 115	/* Store the raw class and permission values */
 116	j = 0;
 117	while (map[j].name) {
 118		const struct security_class_mapping *p_in = map + (j++);
 119		struct selinux_mapping *p_out = out_map->mapping + j;
 120
 121		/* An empty class string skips ahead */
 122		if (!strcmp(p_in->name, "")) {
 123			p_out->num_perms = 0;
 124			continue;
 125		}
 126
 127		p_out->value = string_to_security_class(pol, p_in->name);
 128		if (!p_out->value) {
 129			pr_info("SELinux:  Class %s not defined in policy.\n",
 
 130			       p_in->name);
 131			if (pol->reject_unknown)
 132				goto err;
 133			p_out->num_perms = 0;
 134			print_unknown_handle = true;
 135			continue;
 136		}
 137
 138		k = 0;
 139		while (p_in->perms[k]) {
 140			/* An empty permission string skips ahead */
 141			if (!*p_in->perms[k]) {
 142				k++;
 143				continue;
 144			}
 145			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 146							    p_in->perms[k]);
 147			if (!p_out->perms[k]) {
 148				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 
 149				       p_in->perms[k], p_in->name);
 150				if (pol->reject_unknown)
 151					goto err;
 152				print_unknown_handle = true;
 153			}
 154
 155			k++;
 156		}
 157		p_out->num_perms = k;
 158	}
 159
 160	if (print_unknown_handle)
 161		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 162		       pol->allow_unknown ? "allowed" : "denied");
 163
 164	out_map->size = i;
 
 165	return 0;
 166err:
 167	kfree(out_map->mapping);
 168	out_map->mapping = NULL;
 169	return -EINVAL;
 170}
 171
 172/*
 173 * Get real, policy values from mapped values
 174 */
 175
 176static u16 unmap_class(struct selinux_map *map, u16 tclass)
 177{
 178	if (tclass < map->size)
 179		return map->mapping[tclass].value;
 180
 181	return tclass;
 182}
 183
 184/*
 185 * Get kernel value for class from its policy value
 186 */
 187static u16 map_class(struct selinux_map *map, u16 pol_value)
 188{
 189	u16 i;
 190
 191	for (i = 1; i < map->size; i++) {
 192		if (map->mapping[i].value == pol_value)
 193			return i;
 194	}
 195
 196	return SECCLASS_NULL;
 197}
 198
 199static void map_decision(struct selinux_map *map,
 200			 u16 tclass, struct av_decision *avd,
 201			 int allow_unknown)
 202{
 203	if (tclass < map->size) {
 204		struct selinux_mapping *mapping = &map->mapping[tclass];
 205		unsigned int i, n = mapping->num_perms;
 206		u32 result;
 207
 208		for (i = 0, result = 0; i < n; i++) {
 209			if (avd->allowed & mapping->perms[i])
 210				result |= 1<<i;
 211			if (allow_unknown && !mapping->perms[i])
 212				result |= 1<<i;
 213		}
 214		avd->allowed = result;
 215
 216		for (i = 0, result = 0; i < n; i++)
 217			if (avd->auditallow & mapping->perms[i])
 218				result |= 1<<i;
 219		avd->auditallow = result;
 220
 221		for (i = 0, result = 0; i < n; i++) {
 222			if (avd->auditdeny & mapping->perms[i])
 223				result |= 1<<i;
 224			if (!allow_unknown && !mapping->perms[i])
 225				result |= 1<<i;
 226		}
 227		/*
 228		 * In case the kernel has a bug and requests a permission
 229		 * between num_perms and the maximum permission number, we
 230		 * should audit that denial
 231		 */
 232		for (; i < (sizeof(u32)*8); i++)
 233			result |= 1<<i;
 234		avd->auditdeny = result;
 235	}
 236}
 237
 238int security_mls_enabled(struct selinux_state *state)
 239{
 240	int mls_enabled;
 241	struct selinux_policy *policy;
 242
 243	if (!selinux_initialized(state))
 244		return 0;
 245
 246	rcu_read_lock();
 247	policy = rcu_dereference(state->policy);
 248	mls_enabled = policy->policydb.mls_enabled;
 249	rcu_read_unlock();
 250	return mls_enabled;
 251}
 252
 253/*
 254 * Return the boolean value of a constraint expression
 255 * when it is applied to the specified source and target
 256 * security contexts.
 257 *
 258 * xcontext is a special beast...  It is used by the validatetrans rules
 259 * only.  For these rules, scontext is the context before the transition,
 260 * tcontext is the context after the transition, and xcontext is the context
 261 * of the process performing the transition.  All other callers of
 262 * constraint_expr_eval should pass in NULL for xcontext.
 263 */
 264static int constraint_expr_eval(struct policydb *policydb,
 265				struct context *scontext,
 266				struct context *tcontext,
 267				struct context *xcontext,
 268				struct constraint_expr *cexpr)
 269{
 270	u32 val1, val2;
 271	struct context *c;
 272	struct role_datum *r1, *r2;
 273	struct mls_level *l1, *l2;
 274	struct constraint_expr *e;
 275	int s[CEXPR_MAXDEPTH];
 276	int sp = -1;
 277
 278	for (e = cexpr; e; e = e->next) {
 279		switch (e->expr_type) {
 280		case CEXPR_NOT:
 281			BUG_ON(sp < 0);
 282			s[sp] = !s[sp];
 283			break;
 284		case CEXPR_AND:
 285			BUG_ON(sp < 1);
 286			sp--;
 287			s[sp] &= s[sp + 1];
 288			break;
 289		case CEXPR_OR:
 290			BUG_ON(sp < 1);
 291			sp--;
 292			s[sp] |= s[sp + 1];
 293			break;
 294		case CEXPR_ATTR:
 295			if (sp == (CEXPR_MAXDEPTH - 1))
 296				return 0;
 297			switch (e->attr) {
 298			case CEXPR_USER:
 299				val1 = scontext->user;
 300				val2 = tcontext->user;
 301				break;
 302			case CEXPR_TYPE:
 303				val1 = scontext->type;
 304				val2 = tcontext->type;
 305				break;
 306			case CEXPR_ROLE:
 307				val1 = scontext->role;
 308				val2 = tcontext->role;
 309				r1 = policydb->role_val_to_struct[val1 - 1];
 310				r2 = policydb->role_val_to_struct[val2 - 1];
 311				switch (e->op) {
 312				case CEXPR_DOM:
 313					s[++sp] = ebitmap_get_bit(&r1->dominates,
 314								  val2 - 1);
 315					continue;
 316				case CEXPR_DOMBY:
 317					s[++sp] = ebitmap_get_bit(&r2->dominates,
 318								  val1 - 1);
 319					continue;
 320				case CEXPR_INCOMP:
 321					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 322								    val2 - 1) &&
 323						   !ebitmap_get_bit(&r2->dominates,
 324								    val1 - 1));
 325					continue;
 326				default:
 327					break;
 328				}
 329				break;
 330			case CEXPR_L1L2:
 331				l1 = &(scontext->range.level[0]);
 332				l2 = &(tcontext->range.level[0]);
 333				goto mls_ops;
 334			case CEXPR_L1H2:
 335				l1 = &(scontext->range.level[0]);
 336				l2 = &(tcontext->range.level[1]);
 337				goto mls_ops;
 338			case CEXPR_H1L2:
 339				l1 = &(scontext->range.level[1]);
 340				l2 = &(tcontext->range.level[0]);
 341				goto mls_ops;
 342			case CEXPR_H1H2:
 343				l1 = &(scontext->range.level[1]);
 344				l2 = &(tcontext->range.level[1]);
 345				goto mls_ops;
 346			case CEXPR_L1H1:
 347				l1 = &(scontext->range.level[0]);
 348				l2 = &(scontext->range.level[1]);
 349				goto mls_ops;
 350			case CEXPR_L2H2:
 351				l1 = &(tcontext->range.level[0]);
 352				l2 = &(tcontext->range.level[1]);
 353				goto mls_ops;
 354mls_ops:
 355				switch (e->op) {
 356				case CEXPR_EQ:
 357					s[++sp] = mls_level_eq(l1, l2);
 358					continue;
 359				case CEXPR_NEQ:
 360					s[++sp] = !mls_level_eq(l1, l2);
 361					continue;
 362				case CEXPR_DOM:
 363					s[++sp] = mls_level_dom(l1, l2);
 364					continue;
 365				case CEXPR_DOMBY:
 366					s[++sp] = mls_level_dom(l2, l1);
 367					continue;
 368				case CEXPR_INCOMP:
 369					s[++sp] = mls_level_incomp(l2, l1);
 370					continue;
 371				default:
 372					BUG();
 373					return 0;
 374				}
 375				break;
 376			default:
 377				BUG();
 378				return 0;
 379			}
 380
 381			switch (e->op) {
 382			case CEXPR_EQ:
 383				s[++sp] = (val1 == val2);
 384				break;
 385			case CEXPR_NEQ:
 386				s[++sp] = (val1 != val2);
 387				break;
 388			default:
 389				BUG();
 390				return 0;
 391			}
 392			break;
 393		case CEXPR_NAMES:
 394			if (sp == (CEXPR_MAXDEPTH-1))
 395				return 0;
 396			c = scontext;
 397			if (e->attr & CEXPR_TARGET)
 398				c = tcontext;
 399			else if (e->attr & CEXPR_XTARGET) {
 400				c = xcontext;
 401				if (!c) {
 402					BUG();
 403					return 0;
 404				}
 405			}
 406			if (e->attr & CEXPR_USER)
 407				val1 = c->user;
 408			else if (e->attr & CEXPR_ROLE)
 409				val1 = c->role;
 410			else if (e->attr & CEXPR_TYPE)
 411				val1 = c->type;
 412			else {
 413				BUG();
 414				return 0;
 415			}
 416
 417			switch (e->op) {
 418			case CEXPR_EQ:
 419				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 420				break;
 421			case CEXPR_NEQ:
 422				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 423				break;
 424			default:
 425				BUG();
 426				return 0;
 427			}
 428			break;
 429		default:
 430			BUG();
 431			return 0;
 432		}
 433	}
 434
 435	BUG_ON(sp != 0);
 436	return s[0];
 437}
 438
 439/*
 440 * security_dump_masked_av - dumps masked permissions during
 441 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 442 */
 443static int dump_masked_av_helper(void *k, void *d, void *args)
 444{
 445	struct perm_datum *pdatum = d;
 446	char **permission_names = args;
 447
 448	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 449
 450	permission_names[pdatum->value - 1] = (char *)k;
 451
 452	return 0;
 453}
 454
 455static void security_dump_masked_av(struct policydb *policydb,
 456				    struct context *scontext,
 457				    struct context *tcontext,
 458				    u16 tclass,
 459				    u32 permissions,
 460				    const char *reason)
 461{
 462	struct common_datum *common_dat;
 463	struct class_datum *tclass_dat;
 464	struct audit_buffer *ab;
 465	char *tclass_name;
 466	char *scontext_name = NULL;
 467	char *tcontext_name = NULL;
 468	char *permission_names[32];
 469	int index;
 470	u32 length;
 471	bool need_comma = false;
 472
 473	if (!permissions)
 474		return;
 475
 476	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 477	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 478	common_dat = tclass_dat->comdatum;
 479
 480	/* init permission_names */
 481	if (common_dat &&
 482	    hashtab_map(&common_dat->permissions.table,
 483			dump_masked_av_helper, permission_names) < 0)
 484		goto out;
 485
 486	if (hashtab_map(&tclass_dat->permissions.table,
 487			dump_masked_av_helper, permission_names) < 0)
 488		goto out;
 489
 490	/* get scontext/tcontext in text form */
 491	if (context_struct_to_string(policydb, scontext,
 492				     &scontext_name, &length) < 0)
 493		goto out;
 494
 495	if (context_struct_to_string(policydb, tcontext,
 496				     &tcontext_name, &length) < 0)
 497		goto out;
 498
 499	/* audit a message */
 500	ab = audit_log_start(audit_context(),
 501			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 502	if (!ab)
 503		goto out;
 504
 505	audit_log_format(ab, "op=security_compute_av reason=%s "
 506			 "scontext=%s tcontext=%s tclass=%s perms=",
 507			 reason, scontext_name, tcontext_name, tclass_name);
 508
 509	for (index = 0; index < 32; index++) {
 510		u32 mask = (1 << index);
 511
 512		if ((mask & permissions) == 0)
 513			continue;
 514
 515		audit_log_format(ab, "%s%s",
 516				 need_comma ? "," : "",
 517				 permission_names[index]
 518				 ? permission_names[index] : "????");
 519		need_comma = true;
 520	}
 521	audit_log_end(ab);
 522out:
 523	/* release scontext/tcontext */
 524	kfree(tcontext_name);
 525	kfree(scontext_name);
 
 
 526}
 527
 528/*
 529 * security_boundary_permission - drops violated permissions
 530 * on boundary constraint.
 531 */
 532static void type_attribute_bounds_av(struct policydb *policydb,
 533				     struct context *scontext,
 534				     struct context *tcontext,
 535				     u16 tclass,
 536				     struct av_decision *avd)
 537{
 538	struct context lo_scontext;
 539	struct context lo_tcontext, *tcontextp = tcontext;
 540	struct av_decision lo_avd;
 541	struct type_datum *source;
 542	struct type_datum *target;
 543	u32 masked = 0;
 544
 545	source = policydb->type_val_to_struct[scontext->type - 1];
 
 546	BUG_ON(!source);
 547
 548	if (!source->bounds)
 549		return;
 
 550
 551	target = policydb->type_val_to_struct[tcontext->type - 1];
 552	BUG_ON(!target);
 553
 554	memset(&lo_avd, 0, sizeof(lo_avd));
 
 555
 556	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 557	lo_scontext.type = source->bounds;
 
 
 
 
 
 
 558
 559	if (target->bounds) {
 
 
 560		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 561		lo_tcontext.type = target->bounds;
 562		tcontextp = &lo_tcontext;
 
 
 
 
 
 
 
 563	}
 564
 565	context_struct_compute_av(policydb, &lo_scontext,
 566				  tcontextp,
 567				  tclass,
 568				  &lo_avd,
 569				  NULL);
 570
 571	masked = ~lo_avd.allowed & avd->allowed;
 572
 573	if (likely(!masked))
 574		return;		/* no masked permission */
 575
 576	/* mask violated permissions */
 577	avd->allowed &= ~masked;
 578
 579	/* audit masked permissions */
 580	security_dump_masked_av(policydb, scontext, tcontext,
 581				tclass, masked, "bounds");
 582}
 583
 584/*
 585 * flag which drivers have permissions
 586 * only looking for ioctl based extended permssions
 587 */
 588void services_compute_xperms_drivers(
 589		struct extended_perms *xperms,
 590		struct avtab_node *node)
 591{
 592	unsigned int i;
 593
 594	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 595		/* if one or more driver has all permissions allowed */
 596		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 597			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 598	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 599		/* if allowing permissions within a driver */
 600		security_xperm_set(xperms->drivers.p,
 601					node->datum.u.xperms->driver);
 602	}
 603
 604	xperms->len = 1;
 605}
 606
 607/*
 608 * Compute access vectors and extended permissions based on a context
 609 * structure pair for the permissions in a particular class.
 610 */
 611static void context_struct_compute_av(struct policydb *policydb,
 612				      struct context *scontext,
 613				      struct context *tcontext,
 614				      u16 tclass,
 615				      struct av_decision *avd,
 616				      struct extended_perms *xperms)
 617{
 618	struct constraint_node *constraint;
 619	struct role_allow *ra;
 620	struct avtab_key avkey;
 621	struct avtab_node *node;
 622	struct class_datum *tclass_datum;
 623	struct ebitmap *sattr, *tattr;
 624	struct ebitmap_node *snode, *tnode;
 625	unsigned int i, j;
 626
 627	avd->allowed = 0;
 628	avd->auditallow = 0;
 629	avd->auditdeny = 0xffffffff;
 630	if (xperms) {
 631		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 632		xperms->len = 0;
 633	}
 634
 635	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 636		if (printk_ratelimit())
 637			pr_warn("SELinux:  Invalid class %hu\n", tclass);
 638		return;
 639	}
 640
 641	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 642
 643	/*
 644	 * If a specific type enforcement rule was defined for
 645	 * this permission check, then use it.
 646	 */
 647	avkey.target_class = tclass;
 648	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 649	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 650	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 651	ebitmap_for_each_positive_bit(sattr, snode, i) {
 652		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 653			avkey.source_type = i + 1;
 654			avkey.target_type = j + 1;
 655			for (node = avtab_search_node(&policydb->te_avtab,
 656						      &avkey);
 657			     node;
 658			     node = avtab_search_node_next(node, avkey.specified)) {
 659				if (node->key.specified == AVTAB_ALLOWED)
 660					avd->allowed |= node->datum.u.data;
 661				else if (node->key.specified == AVTAB_AUDITALLOW)
 662					avd->auditallow |= node->datum.u.data;
 663				else if (node->key.specified == AVTAB_AUDITDENY)
 664					avd->auditdeny &= node->datum.u.data;
 665				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 666					services_compute_xperms_drivers(xperms, node);
 667			}
 668
 669			/* Check conditional av table for additional permissions */
 670			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 671					avd, xperms);
 672
 673		}
 674	}
 675
 676	/*
 677	 * Remove any permissions prohibited by a constraint (this includes
 678	 * the MLS policy).
 679	 */
 680	constraint = tclass_datum->constraints;
 681	while (constraint) {
 682		if ((constraint->permissions & (avd->allowed)) &&
 683		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 684					  constraint->expr)) {
 685			avd->allowed &= ~(constraint->permissions);
 686		}
 687		constraint = constraint->next;
 688	}
 689
 690	/*
 691	 * If checking process transition permission and the
 692	 * role is changing, then check the (current_role, new_role)
 693	 * pair.
 694	 */
 695	if (tclass == policydb->process_class &&
 696	    (avd->allowed & policydb->process_trans_perms) &&
 697	    scontext->role != tcontext->role) {
 698		for (ra = policydb->role_allow; ra; ra = ra->next) {
 699			if (scontext->role == ra->role &&
 700			    tcontext->role == ra->new_role)
 701				break;
 702		}
 703		if (!ra)
 704			avd->allowed &= ~policydb->process_trans_perms;
 705	}
 706
 707	/*
 708	 * If the given source and target types have boundary
 709	 * constraint, lazy checks have to mask any violated
 710	 * permission and notice it to userspace via audit.
 711	 */
 712	type_attribute_bounds_av(policydb, scontext, tcontext,
 713				 tclass, avd);
 714}
 715
 716static int security_validtrans_handle_fail(struct selinux_state *state,
 717					struct selinux_policy *policy,
 718					struct sidtab_entry *oentry,
 719					struct sidtab_entry *nentry,
 720					struct sidtab_entry *tentry,
 721					u16 tclass)
 722{
 723	struct policydb *p = &policy->policydb;
 724	struct sidtab *sidtab = policy->sidtab;
 725	char *o = NULL, *n = NULL, *t = NULL;
 726	u32 olen, nlen, tlen;
 727
 728	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
 729		goto out;
 730	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
 731		goto out;
 732	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
 733		goto out;
 734	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 735		  "op=security_validate_transition seresult=denied"
 736		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 737		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 738out:
 739	kfree(o);
 740	kfree(n);
 741	kfree(t);
 742
 743	if (!enforcing_enabled(state))
 744		return 0;
 745	return -EPERM;
 746}
 747
 748static int security_compute_validatetrans(struct selinux_state *state,
 749					  u32 oldsid, u32 newsid, u32 tasksid,
 750					  u16 orig_tclass, bool user)
 751{
 752	struct selinux_policy *policy;
 753	struct policydb *policydb;
 754	struct sidtab *sidtab;
 755	struct sidtab_entry *oentry;
 756	struct sidtab_entry *nentry;
 757	struct sidtab_entry *tentry;
 758	struct class_datum *tclass_datum;
 759	struct constraint_node *constraint;
 760	u16 tclass;
 761	int rc = 0;
 762
 763
 764	if (!selinux_initialized(state))
 765		return 0;
 766
 767	rcu_read_lock();
 768
 769	policy = rcu_dereference(state->policy);
 770	policydb = &policy->policydb;
 771	sidtab = policy->sidtab;
 772
 773	if (!user)
 774		tclass = unmap_class(&policy->map, orig_tclass);
 775	else
 776		tclass = orig_tclass;
 777
 778	if (!tclass || tclass > policydb->p_classes.nprim) {
 
 
 779		rc = -EINVAL;
 780		goto out;
 781	}
 782	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 783
 784	oentry = sidtab_search_entry(sidtab, oldsid);
 785	if (!oentry) {
 786		pr_err("SELinux: %s:  unrecognized SID %d\n",
 787			__func__, oldsid);
 788		rc = -EINVAL;
 789		goto out;
 790	}
 791
 792	nentry = sidtab_search_entry(sidtab, newsid);
 793	if (!nentry) {
 794		pr_err("SELinux: %s:  unrecognized SID %d\n",
 795			__func__, newsid);
 796		rc = -EINVAL;
 797		goto out;
 798	}
 799
 800	tentry = sidtab_search_entry(sidtab, tasksid);
 801	if (!tentry) {
 802		pr_err("SELinux: %s:  unrecognized SID %d\n",
 803			__func__, tasksid);
 804		rc = -EINVAL;
 805		goto out;
 806	}
 807
 808	constraint = tclass_datum->validatetrans;
 809	while (constraint) {
 810		if (!constraint_expr_eval(policydb, &oentry->context,
 811					  &nentry->context, &tentry->context,
 812					  constraint->expr)) {
 813			if (user)
 814				rc = -EPERM;
 815			else
 816				rc = security_validtrans_handle_fail(state,
 817								policy,
 818								oentry,
 819								nentry,
 820								tentry,
 821								tclass);
 822			goto out;
 823		}
 824		constraint = constraint->next;
 825	}
 826
 827out:
 828	rcu_read_unlock();
 829	return rc;
 830}
 831
 832int security_validate_transition_user(struct selinux_state *state,
 833				      u32 oldsid, u32 newsid, u32 tasksid,
 834				      u16 tclass)
 835{
 836	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 837					      tclass, true);
 838}
 839
 840int security_validate_transition(struct selinux_state *state,
 841				 u32 oldsid, u32 newsid, u32 tasksid,
 842				 u16 orig_tclass)
 843{
 844	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 845					      orig_tclass, false);
 846}
 847
 848/*
 849 * security_bounded_transition - check whether the given
 850 * transition is directed to bounded, or not.
 851 * It returns 0, if @newsid is bounded by @oldsid.
 852 * Otherwise, it returns error code.
 853 *
 854 * @state: SELinux state
 855 * @oldsid : current security identifier
 856 * @newsid : destinated security identifier
 857 */
 858int security_bounded_transition(struct selinux_state *state,
 859				u32 old_sid, u32 new_sid)
 860{
 861	struct selinux_policy *policy;
 862	struct policydb *policydb;
 863	struct sidtab *sidtab;
 864	struct sidtab_entry *old_entry, *new_entry;
 865	struct type_datum *type;
 866	int index;
 867	int rc;
 868
 869	if (!selinux_initialized(state))
 870		return 0;
 871
 872	rcu_read_lock();
 873	policy = rcu_dereference(state->policy);
 874	policydb = &policy->policydb;
 875	sidtab = policy->sidtab;
 876
 877	rc = -EINVAL;
 878	old_entry = sidtab_search_entry(sidtab, old_sid);
 879	if (!old_entry) {
 880		pr_err("SELinux: %s: unrecognized SID %u\n",
 881		       __func__, old_sid);
 882		goto out;
 883	}
 884
 885	rc = -EINVAL;
 886	new_entry = sidtab_search_entry(sidtab, new_sid);
 887	if (!new_entry) {
 888		pr_err("SELinux: %s: unrecognized SID %u\n",
 889		       __func__, new_sid);
 890		goto out;
 891	}
 892
 893	rc = 0;
 894	/* type/domain unchanged */
 895	if (old_entry->context.type == new_entry->context.type)
 896		goto out;
 897
 898	index = new_entry->context.type;
 899	while (true) {
 900		type = policydb->type_val_to_struct[index - 1];
 
 901		BUG_ON(!type);
 902
 903		/* not bounded anymore */
 904		rc = -EPERM;
 905		if (!type->bounds)
 906			break;
 907
 908		/* @newsid is bounded by @oldsid */
 909		rc = 0;
 910		if (type->bounds == old_entry->context.type)
 911			break;
 912
 913		index = type->bounds;
 914	}
 915
 916	if (rc) {
 917		char *old_name = NULL;
 918		char *new_name = NULL;
 919		u32 length;
 920
 921		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
 922					    &old_name, &length) &&
 923		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
 924					    &new_name, &length)) {
 925			audit_log(audit_context(),
 926				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 927				  "op=security_bounded_transition "
 928				  "seresult=denied "
 929				  "oldcontext=%s newcontext=%s",
 930				  old_name, new_name);
 931		}
 932		kfree(new_name);
 933		kfree(old_name);
 934	}
 935out:
 936	rcu_read_unlock();
 937
 938	return rc;
 939}
 940
 941static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
 942{
 943	avd->allowed = 0;
 944	avd->auditallow = 0;
 945	avd->auditdeny = 0xffffffff;
 946	if (policy)
 947		avd->seqno = policy->latest_granting;
 948	else
 949		avd->seqno = 0;
 950	avd->flags = 0;
 951}
 952
 953void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 954					struct avtab_node *node)
 955{
 956	unsigned int i;
 957
 958	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 959		if (xpermd->driver != node->datum.u.xperms->driver)
 960			return;
 961	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 962		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 963					xpermd->driver))
 964			return;
 965	} else {
 966		BUG();
 967	}
 968
 969	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 970		xpermd->used |= XPERMS_ALLOWED;
 971		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 972			memset(xpermd->allowed->p, 0xff,
 973					sizeof(xpermd->allowed->p));
 974		}
 975		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 976			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 977				xpermd->allowed->p[i] |=
 978					node->datum.u.xperms->perms.p[i];
 979		}
 980	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 981		xpermd->used |= XPERMS_AUDITALLOW;
 982		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 983			memset(xpermd->auditallow->p, 0xff,
 984					sizeof(xpermd->auditallow->p));
 985		}
 986		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 987			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 988				xpermd->auditallow->p[i] |=
 989					node->datum.u.xperms->perms.p[i];
 990		}
 991	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 992		xpermd->used |= XPERMS_DONTAUDIT;
 993		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 994			memset(xpermd->dontaudit->p, 0xff,
 995					sizeof(xpermd->dontaudit->p));
 996		}
 997		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 998			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 999				xpermd->dontaudit->p[i] |=
1000					node->datum.u.xperms->perms.p[i];
1001		}
1002	} else {
1003		BUG();
1004	}
1005}
1006
1007void security_compute_xperms_decision(struct selinux_state *state,
1008				      u32 ssid,
1009				      u32 tsid,
1010				      u16 orig_tclass,
1011				      u8 driver,
1012				      struct extended_perms_decision *xpermd)
1013{
1014	struct selinux_policy *policy;
1015	struct policydb *policydb;
1016	struct sidtab *sidtab;
1017	u16 tclass;
1018	struct context *scontext, *tcontext;
1019	struct avtab_key avkey;
1020	struct avtab_node *node;
1021	struct ebitmap *sattr, *tattr;
1022	struct ebitmap_node *snode, *tnode;
1023	unsigned int i, j;
1024
1025	xpermd->driver = driver;
1026	xpermd->used = 0;
1027	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1028	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1029	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1030
1031	rcu_read_lock();
1032	if (!selinux_initialized(state))
1033		goto allow;
1034
1035	policy = rcu_dereference(state->policy);
1036	policydb = &policy->policydb;
1037	sidtab = policy->sidtab;
1038
1039	scontext = sidtab_search(sidtab, ssid);
1040	if (!scontext) {
1041		pr_err("SELinux: %s:  unrecognized SID %d\n",
1042		       __func__, ssid);
1043		goto out;
1044	}
1045
1046	tcontext = sidtab_search(sidtab, tsid);
1047	if (!tcontext) {
1048		pr_err("SELinux: %s:  unrecognized SID %d\n",
1049		       __func__, tsid);
1050		goto out;
1051	}
1052
1053	tclass = unmap_class(&policy->map, orig_tclass);
1054	if (unlikely(orig_tclass && !tclass)) {
1055		if (policydb->allow_unknown)
1056			goto allow;
1057		goto out;
1058	}
1059
1060
1061	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1062		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1063		goto out;
1064	}
1065
1066	avkey.target_class = tclass;
1067	avkey.specified = AVTAB_XPERMS;
1068	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1069	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1070	ebitmap_for_each_positive_bit(sattr, snode, i) {
1071		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1072			avkey.source_type = i + 1;
1073			avkey.target_type = j + 1;
1074			for (node = avtab_search_node(&policydb->te_avtab,
1075						      &avkey);
1076			     node;
1077			     node = avtab_search_node_next(node, avkey.specified))
1078				services_compute_xperms_decision(xpermd, node);
1079
1080			cond_compute_xperms(&policydb->te_cond_avtab,
1081						&avkey, xpermd);
1082		}
1083	}
1084out:
1085	rcu_read_unlock();
1086	return;
1087allow:
1088	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1089	goto out;
1090}
1091
1092/**
1093 * security_compute_av - Compute access vector decisions.
1094 * @state: SELinux state
1095 * @ssid: source security identifier
1096 * @tsid: target security identifier
1097 * @orig_tclass: target security class
1098 * @avd: access vector decisions
1099 * @xperms: extended permissions
1100 *
1101 * Compute a set of access vector decisions based on the
1102 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1103 */
1104void security_compute_av(struct selinux_state *state,
1105			 u32 ssid,
1106			 u32 tsid,
1107			 u16 orig_tclass,
1108			 struct av_decision *avd,
1109			 struct extended_perms *xperms)
1110{
1111	struct selinux_policy *policy;
1112	struct policydb *policydb;
1113	struct sidtab *sidtab;
1114	u16 tclass;
1115	struct context *scontext = NULL, *tcontext = NULL;
1116
1117	rcu_read_lock();
1118	policy = rcu_dereference(state->policy);
1119	avd_init(policy, avd);
1120	xperms->len = 0;
1121	if (!selinux_initialized(state))
1122		goto allow;
1123
1124	policydb = &policy->policydb;
1125	sidtab = policy->sidtab;
1126
1127	scontext = sidtab_search(sidtab, ssid);
1128	if (!scontext) {
1129		pr_err("SELinux: %s:  unrecognized SID %d\n",
1130		       __func__, ssid);
1131		goto out;
1132	}
1133
1134	/* permissive domain? */
1135	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1136		avd->flags |= AVD_FLAGS_PERMISSIVE;
1137
1138	tcontext = sidtab_search(sidtab, tsid);
1139	if (!tcontext) {
1140		pr_err("SELinux: %s:  unrecognized SID %d\n",
1141		       __func__, tsid);
1142		goto out;
1143	}
1144
1145	tclass = unmap_class(&policy->map, orig_tclass);
1146	if (unlikely(orig_tclass && !tclass)) {
1147		if (policydb->allow_unknown)
1148			goto allow;
1149		goto out;
1150	}
1151	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1152				  xperms);
1153	map_decision(&policy->map, orig_tclass, avd,
1154		     policydb->allow_unknown);
1155out:
1156	rcu_read_unlock();
1157	return;
1158allow:
1159	avd->allowed = 0xffffffff;
1160	goto out;
1161}
1162
1163void security_compute_av_user(struct selinux_state *state,
1164			      u32 ssid,
1165			      u32 tsid,
1166			      u16 tclass,
1167			      struct av_decision *avd)
1168{
1169	struct selinux_policy *policy;
1170	struct policydb *policydb;
1171	struct sidtab *sidtab;
1172	struct context *scontext = NULL, *tcontext = NULL;
1173
1174	rcu_read_lock();
1175	policy = rcu_dereference(state->policy);
1176	avd_init(policy, avd);
1177	if (!selinux_initialized(state))
1178		goto allow;
1179
1180	policydb = &policy->policydb;
1181	sidtab = policy->sidtab;
1182
1183	scontext = sidtab_search(sidtab, ssid);
1184	if (!scontext) {
1185		pr_err("SELinux: %s:  unrecognized SID %d\n",
1186		       __func__, ssid);
1187		goto out;
1188	}
1189
1190	/* permissive domain? */
1191	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1192		avd->flags |= AVD_FLAGS_PERMISSIVE;
1193
1194	tcontext = sidtab_search(sidtab, tsid);
1195	if (!tcontext) {
1196		pr_err("SELinux: %s:  unrecognized SID %d\n",
1197		       __func__, tsid);
1198		goto out;
1199	}
1200
1201	if (unlikely(!tclass)) {
1202		if (policydb->allow_unknown)
1203			goto allow;
1204		goto out;
1205	}
1206
1207	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1208				  NULL);
1209 out:
1210	rcu_read_unlock();
1211	return;
1212allow:
1213	avd->allowed = 0xffffffff;
1214	goto out;
1215}
1216
1217/*
1218 * Write the security context string representation of
1219 * the context structure `context' into a dynamically
1220 * allocated string of the correct size.  Set `*scontext'
1221 * to point to this string and set `*scontext_len' to
1222 * the length of the string.
1223 */
1224static int context_struct_to_string(struct policydb *p,
1225				    struct context *context,
1226				    char **scontext, u32 *scontext_len)
1227{
1228	char *scontextp;
1229
1230	if (scontext)
1231		*scontext = NULL;
1232	*scontext_len = 0;
1233
1234	if (context->len) {
1235		*scontext_len = context->len;
1236		if (scontext) {
1237			*scontext = kstrdup(context->str, GFP_ATOMIC);
1238			if (!(*scontext))
1239				return -ENOMEM;
1240		}
1241		return 0;
1242	}
1243
1244	/* Compute the size of the context. */
1245	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1246	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1247	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1248	*scontext_len += mls_compute_context_len(p, context);
1249
1250	if (!scontext)
1251		return 0;
1252
1253	/* Allocate space for the context; caller must free this space. */
1254	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1255	if (!scontextp)
1256		return -ENOMEM;
1257	*scontext = scontextp;
1258
1259	/*
1260	 * Copy the user name, role name and type name into the context.
1261	 */
1262	scontextp += sprintf(scontextp, "%s:%s:%s",
1263		sym_name(p, SYM_USERS, context->user - 1),
1264		sym_name(p, SYM_ROLES, context->role - 1),
1265		sym_name(p, SYM_TYPES, context->type - 1));
 
 
 
1266
1267	mls_sid_to_context(p, context, &scontextp);
1268
1269	*scontextp = 0;
1270
1271	return 0;
1272}
1273
1274static int sidtab_entry_to_string(struct policydb *p,
1275				  struct sidtab *sidtab,
1276				  struct sidtab_entry *entry,
1277				  char **scontext, u32 *scontext_len)
1278{
1279	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1280
1281	if (rc != -ENOENT)
1282		return rc;
1283
1284	rc = context_struct_to_string(p, &entry->context, scontext,
1285				      scontext_len);
1286	if (!rc && scontext)
1287		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1288	return rc;
1289}
1290
1291#include "initial_sid_to_string.h"
1292
1293int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1294{
1295	struct selinux_policy *policy;
1296	int rc;
1297
1298	if (!selinux_initialized(state)) {
1299		pr_err("SELinux: %s:  called before initial load_policy\n",
1300		       __func__);
1301		return -EINVAL;
1302	}
1303
1304	rcu_read_lock();
1305	policy = rcu_dereference(state->policy);
1306	rc = sidtab_hash_stats(policy->sidtab, page);
1307	rcu_read_unlock();
1308
1309	return rc;
1310}
1311
1312const char *security_get_initial_sid_context(u32 sid)
1313{
1314	if (unlikely(sid > SECINITSID_NUM))
1315		return NULL;
1316	return initial_sid_to_string[sid];
1317}
1318
1319static int security_sid_to_context_core(struct selinux_state *state,
1320					u32 sid, char **scontext,
1321					u32 *scontext_len, int force,
1322					int only_invalid)
1323{
1324	struct selinux_policy *policy;
1325	struct policydb *policydb;
1326	struct sidtab *sidtab;
1327	struct sidtab_entry *entry;
1328	int rc = 0;
1329
1330	if (scontext)
1331		*scontext = NULL;
1332	*scontext_len  = 0;
1333
1334	if (!selinux_initialized(state)) {
1335		if (sid <= SECINITSID_NUM) {
1336			char *scontextp;
1337			const char *s = initial_sid_to_string[sid];
1338
1339			if (!s)
1340				return -EINVAL;
1341			*scontext_len = strlen(s) + 1;
1342			if (!scontext)
1343				return 0;
1344			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1345			if (!scontextp)
1346				return -ENOMEM;
 
 
 
1347			*scontext = scontextp;
1348			return 0;
1349		}
1350		pr_err("SELinux: %s:  called before initial "
1351		       "load_policy on unknown SID %d\n", __func__, sid);
1352		return -EINVAL;
 
1353	}
1354	rcu_read_lock();
1355	policy = rcu_dereference(state->policy);
1356	policydb = &policy->policydb;
1357	sidtab = policy->sidtab;
1358
1359	if (force)
1360		entry = sidtab_search_entry_force(sidtab, sid);
1361	else
1362		entry = sidtab_search_entry(sidtab, sid);
1363	if (!entry) {
1364		pr_err("SELinux: %s:  unrecognized SID %d\n",
1365			__func__, sid);
1366		rc = -EINVAL;
1367		goto out_unlock;
1368	}
1369	if (only_invalid && !entry->context.len)
1370		goto out_unlock;
1371
1372	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1373				    scontext_len);
1374
1375out_unlock:
1376	rcu_read_unlock();
 
1377	return rc;
1378
1379}
1380
1381/**
1382 * security_sid_to_context - Obtain a context for a given SID.
1383 * @state: SELinux state
1384 * @sid: security identifier, SID
1385 * @scontext: security context
1386 * @scontext_len: length in bytes
1387 *
1388 * Write the string representation of the context associated with @sid
1389 * into a dynamically allocated string of the correct size.  Set @scontext
1390 * to point to this string and set @scontext_len to the length of the string.
1391 */
1392int security_sid_to_context(struct selinux_state *state,
1393			    u32 sid, char **scontext, u32 *scontext_len)
1394{
1395	return security_sid_to_context_core(state, sid, scontext,
1396					    scontext_len, 0, 0);
1397}
1398
1399int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1400				  char **scontext, u32 *scontext_len)
1401{
1402	return security_sid_to_context_core(state, sid, scontext,
1403					    scontext_len, 1, 0);
1404}
1405
1406/**
1407 * security_sid_to_context_inval - Obtain a context for a given SID if it
1408 *                                 is invalid.
1409 * @state: SELinux state
1410 * @sid: security identifier, SID
1411 * @scontext: security context
1412 * @scontext_len: length in bytes
1413 *
1414 * Write the string representation of the context associated with @sid
1415 * into a dynamically allocated string of the correct size, but only if the
1416 * context is invalid in the current policy.  Set @scontext to point to
1417 * this string (or NULL if the context is valid) and set @scontext_len to
1418 * the length of the string (or 0 if the context is valid).
1419 */
1420int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1421				  char **scontext, u32 *scontext_len)
1422{
1423	return security_sid_to_context_core(state, sid, scontext,
1424					    scontext_len, 1, 1);
1425}
1426
1427/*
1428 * Caveat:  Mutates scontext.
1429 */
1430static int string_to_context_struct(struct policydb *pol,
1431				    struct sidtab *sidtabp,
1432				    char *scontext,
 
1433				    struct context *ctx,
1434				    u32 def_sid)
1435{
1436	struct role_datum *role;
1437	struct type_datum *typdatum;
1438	struct user_datum *usrdatum;
1439	char *scontextp, *p, oldc;
1440	int rc = 0;
1441
1442	context_init(ctx);
1443
1444	/* Parse the security context. */
1445
1446	rc = -EINVAL;
1447	scontextp = scontext;
1448
1449	/* Extract the user. */
1450	p = scontextp;
1451	while (*p && *p != ':')
1452		p++;
1453
1454	if (*p == 0)
1455		goto out;
1456
1457	*p++ = 0;
1458
1459	usrdatum = symtab_search(&pol->p_users, scontextp);
1460	if (!usrdatum)
1461		goto out;
1462
1463	ctx->user = usrdatum->value;
1464
1465	/* Extract role. */
1466	scontextp = p;
1467	while (*p && *p != ':')
1468		p++;
1469
1470	if (*p == 0)
1471		goto out;
1472
1473	*p++ = 0;
1474
1475	role = symtab_search(&pol->p_roles, scontextp);
1476	if (!role)
1477		goto out;
1478	ctx->role = role->value;
1479
1480	/* Extract type. */
1481	scontextp = p;
1482	while (*p && *p != ':')
1483		p++;
1484	oldc = *p;
1485	*p++ = 0;
1486
1487	typdatum = symtab_search(&pol->p_types, scontextp);
1488	if (!typdatum || typdatum->attribute)
1489		goto out;
1490
1491	ctx->type = typdatum->value;
1492
1493	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1494	if (rc)
1495		goto out;
1496
 
 
 
 
1497	/* Check the validity of the new context. */
1498	rc = -EINVAL;
1499	if (!policydb_context_isvalid(pol, ctx))
1500		goto out;
1501	rc = 0;
1502out:
1503	if (rc)
1504		context_destroy(ctx);
1505	return rc;
1506}
1507
1508static int security_context_to_sid_core(struct selinux_state *state,
1509					const char *scontext, u32 scontext_len,
1510					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1511					int force)
1512{
1513	struct selinux_policy *policy;
1514	struct policydb *policydb;
1515	struct sidtab *sidtab;
1516	char *scontext2, *str = NULL;
1517	struct context context;
1518	int rc = 0;
1519
1520	/* An empty security context is never valid. */
1521	if (!scontext_len)
1522		return -EINVAL;
1523
1524	/* Copy the string to allow changes and ensure a NUL terminator */
1525	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1526	if (!scontext2)
1527		return -ENOMEM;
1528
1529	if (!selinux_initialized(state)) {
1530		int i;
1531
1532		for (i = 1; i < SECINITSID_NUM; i++) {
1533			const char *s = initial_sid_to_string[i];
1534
1535			if (s && !strcmp(s, scontext2)) {
1536				*sid = i;
1537				goto out;
1538			}
1539		}
1540		*sid = SECINITSID_KERNEL;
1541		goto out;
1542	}
1543	*sid = SECSID_NULL;
1544
 
 
 
 
 
 
 
1545	if (force) {
1546		/* Save another copy for storing in uninterpreted form */
1547		rc = -ENOMEM;
1548		str = kstrdup(scontext2, gfp_flags);
1549		if (!str)
1550			goto out;
1551	}
1552retry:
1553	rcu_read_lock();
1554	policy = rcu_dereference(state->policy);
1555	policydb = &policy->policydb;
1556	sidtab = policy->sidtab;
1557	rc = string_to_context_struct(policydb, sidtab, scontext2,
1558				      &context, def_sid);
1559	if (rc == -EINVAL && force) {
1560		context.str = str;
1561		context.len = strlen(str) + 1;
1562		str = NULL;
1563	} else if (rc)
1564		goto out_unlock;
1565	rc = sidtab_context_to_sid(sidtab, &context, sid);
1566	if (rc == -ESTALE) {
1567		rcu_read_unlock();
1568		if (context.str) {
1569			str = context.str;
1570			context.str = NULL;
1571		}
1572		context_destroy(&context);
1573		goto retry;
1574	}
1575	context_destroy(&context);
1576out_unlock:
1577	rcu_read_unlock();
1578out:
1579	kfree(scontext2);
1580	kfree(str);
1581	return rc;
1582}
1583
1584/**
1585 * security_context_to_sid - Obtain a SID for a given security context.
1586 * @state: SELinux state
1587 * @scontext: security context
1588 * @scontext_len: length in bytes
1589 * @sid: security identifier, SID
1590 * @gfp: context for the allocation
1591 *
1592 * Obtains a SID associated with the security context that
1593 * has the string representation specified by @scontext.
1594 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1595 * memory is available, or 0 on success.
1596 */
1597int security_context_to_sid(struct selinux_state *state,
1598			    const char *scontext, u32 scontext_len, u32 *sid,
1599			    gfp_t gfp)
1600{
1601	return security_context_to_sid_core(state, scontext, scontext_len,
1602					    sid, SECSID_NULL, gfp, 0);
1603}
1604
1605int security_context_str_to_sid(struct selinux_state *state,
1606				const char *scontext, u32 *sid, gfp_t gfp)
1607{
1608	return security_context_to_sid(state, scontext, strlen(scontext),
1609				       sid, gfp);
1610}
1611
1612/**
1613 * security_context_to_sid_default - Obtain a SID for a given security context,
1614 * falling back to specified default if needed.
1615 *
1616 * @state: SELinux state
1617 * @scontext: security context
1618 * @scontext_len: length in bytes
1619 * @sid: security identifier, SID
1620 * @def_sid: default SID to assign on error
1621 * @gfp_flags: the allocator get-free-page (GFP) flags
1622 *
1623 * Obtains a SID associated with the security context that
1624 * has the string representation specified by @scontext.
1625 * The default SID is passed to the MLS layer to be used to allow
1626 * kernel labeling of the MLS field if the MLS field is not present
1627 * (for upgrading to MLS without full relabel).
1628 * Implicitly forces adding of the context even if it cannot be mapped yet.
1629 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1630 * memory is available, or 0 on success.
1631 */
1632int security_context_to_sid_default(struct selinux_state *state,
1633				    const char *scontext, u32 scontext_len,
1634				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1635{
1636	return security_context_to_sid_core(state, scontext, scontext_len,
1637					    sid, def_sid, gfp_flags, 1);
1638}
1639
1640int security_context_to_sid_force(struct selinux_state *state,
1641				  const char *scontext, u32 scontext_len,
1642				  u32 *sid)
1643{
1644	return security_context_to_sid_core(state, scontext, scontext_len,
1645					    sid, SECSID_NULL, GFP_KERNEL, 1);
1646}
1647
1648static int compute_sid_handle_invalid_context(
1649	struct selinux_state *state,
1650	struct selinux_policy *policy,
1651	struct sidtab_entry *sentry,
1652	struct sidtab_entry *tentry,
1653	u16 tclass,
1654	struct context *newcontext)
1655{
1656	struct policydb *policydb = &policy->policydb;
1657	struct sidtab *sidtab = policy->sidtab;
1658	char *s = NULL, *t = NULL, *n = NULL;
1659	u32 slen, tlen, nlen;
1660	struct audit_buffer *ab;
1661
1662	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1663		goto out;
1664	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1665		goto out;
1666	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1667		goto out;
1668	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1669	if (!ab)
1670		goto out;
1671	audit_log_format(ab,
1672			 "op=security_compute_sid invalid_context=");
1673	/* no need to record the NUL with untrusted strings */
1674	audit_log_n_untrustedstring(ab, n, nlen - 1);
1675	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1676			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1677	audit_log_end(ab);
1678out:
1679	kfree(s);
1680	kfree(t);
1681	kfree(n);
1682	if (!enforcing_enabled(state))
1683		return 0;
1684	return -EACCES;
1685}
1686
1687static void filename_compute_type(struct policydb *policydb,
1688				  struct context *newcontext,
1689				  u32 stype, u32 ttype, u16 tclass,
1690				  const char *objname)
1691{
1692	struct filename_trans_key ft;
1693	struct filename_trans_datum *datum;
1694
1695	/*
1696	 * Most filename trans rules are going to live in specific directories
1697	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1698	 * if the ttype does not contain any rules.
1699	 */
1700	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1701		return;
1702
 
1703	ft.ttype = ttype;
1704	ft.tclass = tclass;
1705	ft.name = objname;
1706
1707	datum = policydb_filenametr_search(policydb, &ft);
1708	while (datum) {
1709		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1710			newcontext->type = datum->otype;
1711			return;
1712		}
1713		datum = datum->next;
1714	}
1715}
1716
1717static int security_compute_sid(struct selinux_state *state,
1718				u32 ssid,
1719				u32 tsid,
1720				u16 orig_tclass,
1721				u32 specified,
1722				const char *objname,
1723				u32 *out_sid,
1724				bool kern)
1725{
1726	struct selinux_policy *policy;
1727	struct policydb *policydb;
1728	struct sidtab *sidtab;
1729	struct class_datum *cladatum;
1730	struct context *scontext, *tcontext, newcontext;
1731	struct sidtab_entry *sentry, *tentry;
1732	struct avtab_key avkey;
1733	struct avtab_datum *avdatum;
1734	struct avtab_node *node;
1735	u16 tclass;
1736	int rc = 0;
1737	bool sock;
1738
1739	if (!selinux_initialized(state)) {
1740		switch (orig_tclass) {
1741		case SECCLASS_PROCESS: /* kernel value */
1742			*out_sid = ssid;
1743			break;
1744		default:
1745			*out_sid = tsid;
1746			break;
1747		}
1748		goto out;
1749	}
1750
1751retry:
1752	cladatum = NULL;
1753	context_init(&newcontext);
1754
1755	rcu_read_lock();
1756
1757	policy = rcu_dereference(state->policy);
1758
1759	if (kern) {
1760		tclass = unmap_class(&policy->map, orig_tclass);
1761		sock = security_is_socket_class(orig_tclass);
1762	} else {
1763		tclass = orig_tclass;
1764		sock = security_is_socket_class(map_class(&policy->map,
1765							  tclass));
1766	}
1767
1768	policydb = &policy->policydb;
1769	sidtab = policy->sidtab;
1770
1771	sentry = sidtab_search_entry(sidtab, ssid);
1772	if (!sentry) {
1773		pr_err("SELinux: %s:  unrecognized SID %d\n",
1774		       __func__, ssid);
1775		rc = -EINVAL;
1776		goto out_unlock;
1777	}
1778	tentry = sidtab_search_entry(sidtab, tsid);
1779	if (!tentry) {
1780		pr_err("SELinux: %s:  unrecognized SID %d\n",
1781		       __func__, tsid);
1782		rc = -EINVAL;
1783		goto out_unlock;
1784	}
1785
1786	scontext = &sentry->context;
1787	tcontext = &tentry->context;
1788
1789	if (tclass && tclass <= policydb->p_classes.nprim)
1790		cladatum = policydb->class_val_to_struct[tclass - 1];
1791
1792	/* Set the user identity. */
1793	switch (specified) {
1794	case AVTAB_TRANSITION:
1795	case AVTAB_CHANGE:
1796		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1797			newcontext.user = tcontext->user;
1798		} else {
1799			/* notice this gets both DEFAULT_SOURCE and unset */
1800			/* Use the process user identity. */
1801			newcontext.user = scontext->user;
1802		}
1803		break;
1804	case AVTAB_MEMBER:
1805		/* Use the related object owner. */
1806		newcontext.user = tcontext->user;
1807		break;
1808	}
1809
1810	/* Set the role to default values. */
1811	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
 
1812		newcontext.role = scontext->role;
1813	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1814		newcontext.role = tcontext->role;
1815	} else {
1816		if ((tclass == policydb->process_class) || sock)
1817			newcontext.role = scontext->role;
1818		else
1819			newcontext.role = OBJECT_R_VAL;
1820	}
1821
1822	/* Set the type to default values. */
1823	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1824		newcontext.type = scontext->type;
1825	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1826		newcontext.type = tcontext->type;
1827	} else {
1828		if ((tclass == policydb->process_class) || sock) {
1829			/* Use the type of process. */
1830			newcontext.type = scontext->type;
1831		} else {
1832			/* Use the type of the related object. */
1833			newcontext.type = tcontext->type;
1834		}
1835	}
1836
1837	/* Look for a type transition/member/change rule. */
1838	avkey.source_type = scontext->type;
1839	avkey.target_type = tcontext->type;
1840	avkey.target_class = tclass;
1841	avkey.specified = specified;
1842	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1843
1844	/* If no permanent rule, also check for enabled conditional rules */
1845	if (!avdatum) {
1846		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1847		for (; node; node = avtab_search_node_next(node, specified)) {
1848			if (node->key.specified & AVTAB_ENABLED) {
1849				avdatum = &node->datum;
1850				break;
1851			}
1852		}
1853	}
1854
1855	if (avdatum) {
1856		/* Use the type from the type transition/member/change rule. */
1857		newcontext.type = avdatum->u.data;
1858	}
1859
1860	/* if we have a objname this is a file trans check so check those rules */
1861	if (objname)
1862		filename_compute_type(policydb, &newcontext, scontext->type,
1863				      tcontext->type, tclass, objname);
1864
1865	/* Check for class-specific changes. */
1866	if (specified & AVTAB_TRANSITION) {
1867		/* Look for a role transition rule. */
1868		struct role_trans_datum *rtd;
1869		struct role_trans_key rtk = {
1870			.role = scontext->role,
1871			.type = tcontext->type,
1872			.tclass = tclass,
1873		};
1874
1875		rtd = policydb_roletr_search(policydb, &rtk);
1876		if (rtd)
1877			newcontext.role = rtd->new_role;
1878	}
1879
1880	/* Set the MLS attributes.
1881	   This is done last because it may allocate memory. */
1882	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1883			     &newcontext, sock);
1884	if (rc)
1885		goto out_unlock;
1886
1887	/* Check the validity of the context. */
1888	if (!policydb_context_isvalid(policydb, &newcontext)) {
1889		rc = compute_sid_handle_invalid_context(state, policy, sentry,
1890							tentry, tclass,
 
1891							&newcontext);
1892		if (rc)
1893			goto out_unlock;
1894	}
1895	/* Obtain the sid for the context. */
1896	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1897	if (rc == -ESTALE) {
1898		rcu_read_unlock();
1899		context_destroy(&newcontext);
1900		goto retry;
1901	}
1902out_unlock:
1903	rcu_read_unlock();
1904	context_destroy(&newcontext);
1905out:
1906	return rc;
1907}
1908
1909/**
1910 * security_transition_sid - Compute the SID for a new subject/object.
1911 * @state: SELinux state
1912 * @ssid: source security identifier
1913 * @tsid: target security identifier
1914 * @tclass: target security class
1915 * @qstr: object name
1916 * @out_sid: security identifier for new subject/object
1917 *
1918 * Compute a SID to use for labeling a new subject or object in the
1919 * class @tclass based on a SID pair (@ssid, @tsid).
1920 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1921 * if insufficient memory is available, or %0 if the new SID was
1922 * computed successfully.
1923 */
1924int security_transition_sid(struct selinux_state *state,
1925			    u32 ssid, u32 tsid, u16 tclass,
1926			    const struct qstr *qstr, u32 *out_sid)
1927{
1928	return security_compute_sid(state, ssid, tsid, tclass,
1929				    AVTAB_TRANSITION,
1930				    qstr ? qstr->name : NULL, out_sid, true);
1931}
1932
1933int security_transition_sid_user(struct selinux_state *state,
1934				 u32 ssid, u32 tsid, u16 tclass,
1935				 const char *objname, u32 *out_sid)
1936{
1937	return security_compute_sid(state, ssid, tsid, tclass,
1938				    AVTAB_TRANSITION,
1939				    objname, out_sid, false);
1940}
1941
1942/**
1943 * security_member_sid - Compute the SID for member selection.
1944 * @state: SELinux state
1945 * @ssid: source security identifier
1946 * @tsid: target security identifier
1947 * @tclass: target security class
1948 * @out_sid: security identifier for selected member
1949 *
1950 * Compute a SID to use when selecting a member of a polyinstantiated
1951 * object of class @tclass based on a SID pair (@ssid, @tsid).
1952 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1953 * if insufficient memory is available, or %0 if the SID was
1954 * computed successfully.
1955 */
1956int security_member_sid(struct selinux_state *state,
1957			u32 ssid,
1958			u32 tsid,
1959			u16 tclass,
1960			u32 *out_sid)
1961{
1962	return security_compute_sid(state, ssid, tsid, tclass,
1963				    AVTAB_MEMBER, NULL,
1964				    out_sid, false);
1965}
1966
1967/**
1968 * security_change_sid - Compute the SID for object relabeling.
1969 * @state: SELinux state
1970 * @ssid: source security identifier
1971 * @tsid: target security identifier
1972 * @tclass: target security class
1973 * @out_sid: security identifier for selected member
1974 *
1975 * Compute a SID to use for relabeling an object of class @tclass
1976 * based on a SID pair (@ssid, @tsid).
1977 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1978 * if insufficient memory is available, or %0 if the SID was
1979 * computed successfully.
1980 */
1981int security_change_sid(struct selinux_state *state,
1982			u32 ssid,
1983			u32 tsid,
1984			u16 tclass,
1985			u32 *out_sid)
1986{
1987	return security_compute_sid(state,
1988				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1989				    out_sid, false);
1990}
1991
1992static inline int convert_context_handle_invalid_context(
1993	struct selinux_state *state,
1994	struct policydb *policydb,
1995	struct context *context)
 
 
 
 
 
 
 
 
 
 
1996{
1997	char *s;
1998	u32 len;
1999
2000	if (enforcing_enabled(state))
2001		return -EINVAL;
2002
2003	if (!context_struct_to_string(policydb, context, &s, &len)) {
2004		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2005			s);
2006		kfree(s);
2007	}
2008	return 0;
2009}
2010
2011/**
2012 * services_convert_context - Convert a security context across policies.
2013 * @args: populated convert_context_args struct
2014 * @oldc: original context
2015 * @newc: converted context
2016 * @gfp_flags: allocation flags
2017 *
2018 * Convert the values in the security context structure @oldc from the values
2019 * specified in the policy @args->oldp to the values specified in the policy
2020 * @args->newp, storing the new context in @newc, and verifying that the
2021 * context is valid under the new policy.
2022 */
2023int services_convert_context(struct convert_context_args *args,
2024			     struct context *oldc, struct context *newc,
2025			     gfp_t gfp_flags)
2026{
 
 
2027	struct ocontext *oc;
 
2028	struct role_datum *role;
2029	struct type_datum *typdatum;
2030	struct user_datum *usrdatum;
2031	char *s;
2032	u32 len;
2033	int rc;
 
 
 
 
 
 
 
 
2034
2035	if (oldc->str) {
2036		s = kstrdup(oldc->str, gfp_flags);
2037		if (!s)
2038			return -ENOMEM;
2039
2040		rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2041		if (rc == -EINVAL) {
2042			/*
2043			 * Retain string representation for later mapping.
2044			 *
2045			 * IMPORTANT: We need to copy the contents of oldc->str
2046			 * back into s again because string_to_context_struct()
2047			 * may have garbled it.
2048			 */
2049			memcpy(s, oldc->str, oldc->len);
2050			context_init(newc);
2051			newc->str = s;
2052			newc->len = oldc->len;
2053			return 0;
2054		}
2055		kfree(s);
2056		if (rc) {
 
 
 
 
 
 
 
 
 
 
 
2057			/* Other error condition, e.g. ENOMEM. */
2058			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2059			       oldc->str, -rc);
2060			return rc;
2061		}
2062		pr_info("SELinux:  Context %s became valid (mapped).\n",
2063			oldc->str);
2064		return 0;
2065	}
2066
2067	context_init(newc);
 
 
2068
2069	/* Convert the user. */
2070	usrdatum = symtab_search(&args->newp->p_users,
2071				 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
 
2072	if (!usrdatum)
2073		goto bad;
2074	newc->user = usrdatum->value;
2075
2076	/* Convert the role. */
2077	role = symtab_search(&args->newp->p_roles,
2078			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
 
2079	if (!role)
2080		goto bad;
2081	newc->role = role->value;
2082
2083	/* Convert the type. */
2084	typdatum = symtab_search(&args->newp->p_types,
2085				 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
 
2086	if (!typdatum)
2087		goto bad;
2088	newc->type = typdatum->value;
2089
2090	/* Convert the MLS fields if dealing with MLS policies */
2091	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2092		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2093		if (rc)
2094			goto bad;
 
 
 
 
 
 
 
2095	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2096		/*
2097		 * Switching between non-MLS and MLS policy:
2098		 * ensure that the MLS fields of the context for all
2099		 * existing entries in the sidtab are filled in with a
2100		 * suitable default value, likely taken from one of the
2101		 * initial SIDs.
2102		 */
2103		oc = args->newp->ocontexts[OCON_ISID];
2104		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2105			oc = oc->next;
 
2106		if (!oc) {
2107			pr_err("SELinux:  unable to look up"
2108				" the initial SIDs list\n");
2109			goto bad;
2110		}
2111		rc = mls_range_set(newc, &oc->context[0].range);
 
2112		if (rc)
2113			goto bad;
2114	}
2115
2116	/* Check the validity of the new context. */
2117	if (!policydb_context_isvalid(args->newp, newc)) {
2118		rc = convert_context_handle_invalid_context(args->state,
2119							    args->oldp, oldc);
2120		if (rc)
2121			goto bad;
2122	}
2123
2124	return 0;
 
 
 
 
2125bad:
2126	/* Map old representation to string and save it. */
2127	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2128	if (rc)
2129		return rc;
2130	context_destroy(newc);
2131	newc->str = s;
2132	newc->len = len;
2133	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2134		newc->str);
2135	return 0;
 
 
2136}
2137
2138static void security_load_policycaps(struct selinux_state *state,
2139				struct selinux_policy *policy)
2140{
2141	struct policydb *p;
2142	unsigned int i;
2143	struct ebitmap_node *node;
2144
2145	p = &policy->policydb;
2146
2147	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2148		WRITE_ONCE(state->policycap[i],
2149			ebitmap_get_bit(&p->policycaps, i));
2150
2151	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2152		pr_info("SELinux:  policy capability %s=%d\n",
2153			selinux_policycap_names[i],
2154			ebitmap_get_bit(&p->policycaps, i));
2155
2156	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2157		if (i >= ARRAY_SIZE(selinux_policycap_names))
2158			pr_info("SELinux:  unknown policy capability %u\n",
2159				i);
2160	}
2161}
2162
2163static int security_preserve_bools(struct selinux_policy *oldpolicy,
2164				struct selinux_policy *newpolicy);
2165
2166static void selinux_policy_free(struct selinux_policy *policy)
2167{
2168	if (!policy)
2169		return;
2170
2171	sidtab_destroy(policy->sidtab);
2172	kfree(policy->map.mapping);
2173	policydb_destroy(&policy->policydb);
2174	kfree(policy->sidtab);
2175	kfree(policy);
2176}
2177
2178static void selinux_policy_cond_free(struct selinux_policy *policy)
2179{
2180	cond_policydb_destroy_dup(&policy->policydb);
2181	kfree(policy);
2182}
2183
2184void selinux_policy_cancel(struct selinux_state *state,
2185			   struct selinux_load_state *load_state)
2186{
2187	struct selinux_policy *oldpolicy;
2188
2189	oldpolicy = rcu_dereference_protected(state->policy,
2190					lockdep_is_held(&state->policy_mutex));
2191
2192	sidtab_cancel_convert(oldpolicy->sidtab);
2193	selinux_policy_free(load_state->policy);
2194	kfree(load_state->convert_data);
2195}
2196
2197static void selinux_notify_policy_change(struct selinux_state *state,
2198					u32 seqno)
2199{
2200	/* Flush external caches and notify userspace of policy load */
2201	avc_ss_reset(state->avc, seqno);
2202	selnl_notify_policyload(seqno);
2203	selinux_status_update_policyload(state, seqno);
2204	selinux_netlbl_cache_invalidate();
2205	selinux_xfrm_notify_policyload();
2206	selinux_ima_measure_state_locked(state);
2207}
2208
2209void selinux_policy_commit(struct selinux_state *state,
2210			   struct selinux_load_state *load_state)
2211{
2212	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2213	unsigned long flags;
2214	u32 seqno;
2215
2216	oldpolicy = rcu_dereference_protected(state->policy,
2217					lockdep_is_held(&state->policy_mutex));
2218
2219	/* If switching between different policy types, log MLS status */
2220	if (oldpolicy) {
2221		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2222			pr_info("SELinux: Disabling MLS support...\n");
2223		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2224			pr_info("SELinux: Enabling MLS support...\n");
2225	}
2226
2227	/* Set latest granting seqno for new policy. */
2228	if (oldpolicy)
2229		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2230	else
2231		newpolicy->latest_granting = 1;
2232	seqno = newpolicy->latest_granting;
2233
2234	/* Install the new policy. */
2235	if (oldpolicy) {
2236		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2237		rcu_assign_pointer(state->policy, newpolicy);
2238		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2239	} else {
2240		rcu_assign_pointer(state->policy, newpolicy);
2241	}
2242
2243	/* Load the policycaps from the new policy */
2244	security_load_policycaps(state, newpolicy);
2245
2246	if (!selinux_initialized(state)) {
2247		/*
2248		 * After first policy load, the security server is
2249		 * marked as initialized and ready to handle requests and
2250		 * any objects created prior to policy load are then labeled.
2251		 */
2252		selinux_mark_initialized(state);
2253		selinux_complete_init();
2254	}
2255
2256	/* Free the old policy */
2257	synchronize_rcu();
2258	selinux_policy_free(oldpolicy);
2259	kfree(load_state->convert_data);
2260
2261	/* Notify others of the policy change */
2262	selinux_notify_policy_change(state, seqno);
2263}
2264
2265/**
2266 * security_load_policy - Load a security policy configuration.
2267 * @state: SELinux state
2268 * @data: binary policy data
2269 * @len: length of data in bytes
2270 * @load_state: policy load state
2271 *
2272 * Load a new set of security policy configuration data,
2273 * validate it and convert the SID table as necessary.
2274 * This function will flush the access vector cache after
2275 * loading the new policy.
2276 */
2277int security_load_policy(struct selinux_state *state, void *data, size_t len,
2278			 struct selinux_load_state *load_state)
2279{
2280	struct selinux_policy *newpolicy, *oldpolicy;
2281	struct selinux_policy_convert_data *convert_data;
 
 
 
 
2282	int rc = 0;
2283	struct policy_file file = { data, len }, *fp = &file;
2284
2285	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2286	if (!newpolicy)
2287		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2288
2289	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2290	if (!newpolicy->sidtab) {
2291		rc = -ENOMEM;
2292		goto err_policy;
 
 
 
 
 
 
2293	}
2294
2295	rc = policydb_read(&newpolicy->policydb, fp);
 
 
 
 
2296	if (rc)
2297		goto err_sidtab;
2298
2299	newpolicy->policydb.len = len;
2300	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2301				&newpolicy->map);
2302	if (rc)
2303		goto err_policydb;
 
2304
2305	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2306	if (rc) {
2307		pr_err("SELinux:  unable to load the initial SIDs\n");
2308		goto err_mapping;
 
2309	}
2310
2311	if (!selinux_initialized(state)) {
2312		/* First policy load, so no need to preserve state from old policy */
2313		load_state->policy = newpolicy;
2314		load_state->convert_data = NULL;
2315		return 0;
 
 
 
2316	}
2317
2318	oldpolicy = rcu_dereference_protected(state->policy,
2319					lockdep_is_held(&state->policy_mutex));
2320
2321	/* Preserve active boolean values from the old policy */
2322	rc = security_preserve_bools(oldpolicy, newpolicy);
2323	if (rc) {
2324		pr_err("SELinux:  unable to preserve booleans\n");
2325		goto err_free_isids;
2326	}
2327
2328	/*
2329	 * Convert the internal representations of contexts
2330	 * in the new SID table.
2331	 */
2332
2333	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2334	if (!convert_data) {
2335		rc = -ENOMEM;
2336		goto err_free_isids;
2337	}
2338
2339	convert_data->args.state = state;
2340	convert_data->args.oldp = &oldpolicy->policydb;
2341	convert_data->args.newp = &newpolicy->policydb;
2342
2343	convert_data->sidtab_params.args = &convert_data->args;
2344	convert_data->sidtab_params.target = newpolicy->sidtab;
2345
2346	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2347	if (rc) {
2348		pr_err("SELinux:  unable to convert the internal"
2349			" representation of contexts in the new SID"
2350			" table\n");
2351		goto err_free_convert_data;
2352	}
2353
2354	load_state->policy = newpolicy;
2355	load_state->convert_data = convert_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2356	return 0;
2357
2358err_free_convert_data:
2359	kfree(convert_data);
2360err_free_isids:
2361	sidtab_destroy(newpolicy->sidtab);
2362err_mapping:
2363	kfree(newpolicy->map.mapping);
2364err_policydb:
2365	policydb_destroy(&newpolicy->policydb);
2366err_sidtab:
2367	kfree(newpolicy->sidtab);
2368err_policy:
2369	kfree(newpolicy);
2370
2371	return rc;
2372}
2373
2374/**
2375 * ocontext_to_sid - Helper to safely get sid for an ocontext
2376 * @sidtab: SID table
2377 * @c: ocontext structure
2378 * @index: index of the context entry (0 or 1)
2379 * @out_sid: pointer to the resulting SID value
2380 *
2381 * For all ocontexts except OCON_ISID the SID fields are populated
2382 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2383 * operation, this helper must be used to do that safely.
2384 *
2385 * WARNING: This function may return -ESTALE, indicating that the caller
2386 * must retry the operation after re-acquiring the policy pointer!
2387 */
2388static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2389			   size_t index, u32 *out_sid)
2390{
2391	int rc;
2392	u32 sid;
2393
2394	/* Ensure the associated sidtab entry is visible to this thread. */
2395	sid = smp_load_acquire(&c->sid[index]);
2396	if (!sid) {
2397		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2398		if (rc)
2399			return rc;
2400
2401		/*
2402		 * Ensure the new sidtab entry is visible to other threads
2403		 * when they see the SID.
2404		 */
2405		smp_store_release(&c->sid[index], sid);
2406	}
2407	*out_sid = sid;
2408	return 0;
2409}
2410
2411/**
2412 * security_port_sid - Obtain the SID for a port.
2413 * @state: SELinux state
2414 * @protocol: protocol number
2415 * @port: port number
2416 * @out_sid: security identifier
2417 */
2418int security_port_sid(struct selinux_state *state,
2419		      u8 protocol, u16 port, u32 *out_sid)
2420{
2421	struct selinux_policy *policy;
2422	struct policydb *policydb;
2423	struct sidtab *sidtab;
2424	struct ocontext *c;
2425	int rc;
2426
2427	if (!selinux_initialized(state)) {
2428		*out_sid = SECINITSID_PORT;
2429		return 0;
2430	}
2431
2432retry:
2433	rc = 0;
2434	rcu_read_lock();
2435	policy = rcu_dereference(state->policy);
2436	policydb = &policy->policydb;
2437	sidtab = policy->sidtab;
2438
2439	c = policydb->ocontexts[OCON_PORT];
2440	while (c) {
2441		if (c->u.port.protocol == protocol &&
2442		    c->u.port.low_port <= port &&
2443		    c->u.port.high_port >= port)
2444			break;
2445		c = c->next;
2446	}
2447
2448	if (c) {
2449		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2450		if (rc == -ESTALE) {
2451			rcu_read_unlock();
2452			goto retry;
 
 
2453		}
2454		if (rc)
2455			goto out;
2456	} else {
2457		*out_sid = SECINITSID_PORT;
2458	}
2459
2460out:
2461	rcu_read_unlock();
2462	return rc;
2463}
2464
2465/**
2466 * security_ib_pkey_sid - Obtain the SID for a pkey.
2467 * @state: SELinux state
2468 * @subnet_prefix: Subnet Prefix
2469 * @pkey_num: pkey number
2470 * @out_sid: security identifier
2471 */
2472int security_ib_pkey_sid(struct selinux_state *state,
2473			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2474{
2475	struct selinux_policy *policy;
2476	struct policydb *policydb;
2477	struct sidtab *sidtab;
2478	struct ocontext *c;
2479	int rc;
2480
2481	if (!selinux_initialized(state)) {
2482		*out_sid = SECINITSID_UNLABELED;
2483		return 0;
2484	}
2485
2486retry:
2487	rc = 0;
2488	rcu_read_lock();
2489	policy = rcu_dereference(state->policy);
2490	policydb = &policy->policydb;
2491	sidtab = policy->sidtab;
2492
2493	c = policydb->ocontexts[OCON_IBPKEY];
2494	while (c) {
2495		if (c->u.ibpkey.low_pkey <= pkey_num &&
2496		    c->u.ibpkey.high_pkey >= pkey_num &&
2497		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2498			break;
2499
2500		c = c->next;
2501	}
2502
2503	if (c) {
2504		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2505		if (rc == -ESTALE) {
2506			rcu_read_unlock();
2507			goto retry;
2508		}
2509		if (rc)
2510			goto out;
2511	} else
2512		*out_sid = SECINITSID_UNLABELED;
2513
2514out:
2515	rcu_read_unlock();
2516	return rc;
2517}
2518
2519/**
2520 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2521 * @state: SELinux state
2522 * @dev_name: device name
2523 * @port_num: port number
2524 * @out_sid: security identifier
2525 */
2526int security_ib_endport_sid(struct selinux_state *state,
2527			    const char *dev_name, u8 port_num, u32 *out_sid)
2528{
2529	struct selinux_policy *policy;
2530	struct policydb *policydb;
2531	struct sidtab *sidtab;
2532	struct ocontext *c;
2533	int rc;
2534
2535	if (!selinux_initialized(state)) {
2536		*out_sid = SECINITSID_UNLABELED;
2537		return 0;
2538	}
2539
2540retry:
2541	rc = 0;
2542	rcu_read_lock();
2543	policy = rcu_dereference(state->policy);
2544	policydb = &policy->policydb;
2545	sidtab = policy->sidtab;
2546
2547	c = policydb->ocontexts[OCON_IBENDPORT];
2548	while (c) {
2549		if (c->u.ibendport.port == port_num &&
2550		    !strncmp(c->u.ibendport.dev_name,
2551			     dev_name,
2552			     IB_DEVICE_NAME_MAX))
2553			break;
2554
2555		c = c->next;
2556	}
2557
2558	if (c) {
2559		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2560		if (rc == -ESTALE) {
2561			rcu_read_unlock();
2562			goto retry;
2563		}
2564		if (rc)
2565			goto out;
2566	} else
2567		*out_sid = SECINITSID_UNLABELED;
2568
2569out:
2570	rcu_read_unlock();
2571	return rc;
2572}
2573
2574/**
2575 * security_netif_sid - Obtain the SID for a network interface.
2576 * @state: SELinux state
2577 * @name: interface name
2578 * @if_sid: interface SID
2579 */
2580int security_netif_sid(struct selinux_state *state,
2581		       char *name, u32 *if_sid)
2582{
2583	struct selinux_policy *policy;
2584	struct policydb *policydb;
2585	struct sidtab *sidtab;
2586	int rc;
2587	struct ocontext *c;
2588
2589	if (!selinux_initialized(state)) {
2590		*if_sid = SECINITSID_NETIF;
2591		return 0;
2592	}
2593
2594retry:
2595	rc = 0;
2596	rcu_read_lock();
2597	policy = rcu_dereference(state->policy);
2598	policydb = &policy->policydb;
2599	sidtab = policy->sidtab;
2600
2601	c = policydb->ocontexts[OCON_NETIF];
2602	while (c) {
2603		if (strcmp(name, c->u.name) == 0)
2604			break;
2605		c = c->next;
2606	}
2607
2608	if (c) {
2609		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2610		if (rc == -ESTALE) {
2611			rcu_read_unlock();
2612			goto retry;
 
 
 
 
 
 
 
2613		}
2614		if (rc)
2615			goto out;
2616	} else
2617		*if_sid = SECINITSID_NETIF;
2618
2619out:
2620	rcu_read_unlock();
2621	return rc;
2622}
2623
2624static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2625{
2626	int i, fail = 0;
2627
2628	for (i = 0; i < 4; i++)
2629		if (addr[i] != (input[i] & mask[i])) {
2630			fail = 1;
2631			break;
2632		}
2633
2634	return !fail;
2635}
2636
2637/**
2638 * security_node_sid - Obtain the SID for a node (host).
2639 * @state: SELinux state
2640 * @domain: communication domain aka address family
2641 * @addrp: address
2642 * @addrlen: address length in bytes
2643 * @out_sid: security identifier
2644 */
2645int security_node_sid(struct selinux_state *state,
2646		      u16 domain,
2647		      void *addrp,
2648		      u32 addrlen,
2649		      u32 *out_sid)
2650{
2651	struct selinux_policy *policy;
2652	struct policydb *policydb;
2653	struct sidtab *sidtab;
2654	int rc;
2655	struct ocontext *c;
2656
2657	if (!selinux_initialized(state)) {
2658		*out_sid = SECINITSID_NODE;
2659		return 0;
2660	}
2661
2662retry:
2663	rcu_read_lock();
2664	policy = rcu_dereference(state->policy);
2665	policydb = &policy->policydb;
2666	sidtab = policy->sidtab;
2667
2668	switch (domain) {
2669	case AF_INET: {
2670		u32 addr;
2671
2672		rc = -EINVAL;
2673		if (addrlen != sizeof(u32))
2674			goto out;
2675
2676		addr = *((u32 *)addrp);
2677
2678		c = policydb->ocontexts[OCON_NODE];
2679		while (c) {
2680			if (c->u.node.addr == (addr & c->u.node.mask))
2681				break;
2682			c = c->next;
2683		}
2684		break;
2685	}
2686
2687	case AF_INET6:
2688		rc = -EINVAL;
2689		if (addrlen != sizeof(u64) * 2)
2690			goto out;
2691		c = policydb->ocontexts[OCON_NODE6];
2692		while (c) {
2693			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2694						c->u.node6.mask))
2695				break;
2696			c = c->next;
2697		}
2698		break;
2699
2700	default:
2701		rc = 0;
2702		*out_sid = SECINITSID_NODE;
2703		goto out;
2704	}
2705
2706	if (c) {
2707		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2708		if (rc == -ESTALE) {
2709			rcu_read_unlock();
2710			goto retry;
 
 
2711		}
2712		if (rc)
2713			goto out;
2714	} else {
2715		*out_sid = SECINITSID_NODE;
2716	}
2717
2718	rc = 0;
2719out:
2720	rcu_read_unlock();
2721	return rc;
2722}
2723
2724#define SIDS_NEL 25
2725
2726/**
2727 * security_get_user_sids - Obtain reachable SIDs for a user.
2728 * @state: SELinux state
2729 * @fromsid: starting SID
2730 * @username: username
2731 * @sids: array of reachable SIDs for user
2732 * @nel: number of elements in @sids
2733 *
2734 * Generate the set of SIDs for legal security contexts
2735 * for a given user that can be reached by @fromsid.
2736 * Set *@sids to point to a dynamically allocated
2737 * array containing the set of SIDs.  Set *@nel to the
2738 * number of elements in the array.
2739 */
2740
2741int security_get_user_sids(struct selinux_state *state,
2742			   u32 fromsid,
2743			   char *username,
2744			   u32 **sids,
2745			   u32 *nel)
2746{
2747	struct selinux_policy *policy;
2748	struct policydb *policydb;
2749	struct sidtab *sidtab;
2750	struct context *fromcon, usercon;
2751	u32 *mysids = NULL, *mysids2, sid;
2752	u32 i, j, mynel, maxnel = SIDS_NEL;
2753	struct user_datum *user;
2754	struct role_datum *role;
2755	struct ebitmap_node *rnode, *tnode;
2756	int rc;
2757
2758	*sids = NULL;
2759	*nel = 0;
2760
2761	if (!selinux_initialized(state))
2762		return 0;
2763
2764	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2765	if (!mysids)
2766		return -ENOMEM;
2767
2768retry:
2769	mynel = 0;
2770	rcu_read_lock();
2771	policy = rcu_dereference(state->policy);
2772	policydb = &policy->policydb;
2773	sidtab = policy->sidtab;
2774
2775	context_init(&usercon);
2776
2777	rc = -EINVAL;
2778	fromcon = sidtab_search(sidtab, fromsid);
2779	if (!fromcon)
2780		goto out_unlock;
2781
2782	rc = -EINVAL;
2783	user = symtab_search(&policydb->p_users, username);
2784	if (!user)
2785		goto out_unlock;
2786
2787	usercon.user = user->value;
2788
 
 
 
 
 
2789	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2790		role = policydb->role_val_to_struct[i];
2791		usercon.role = i + 1;
2792		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2793			usercon.type = j + 1;
2794
2795			if (mls_setup_user_range(policydb, fromcon, user,
2796						 &usercon))
2797				continue;
2798
2799			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2800			if (rc == -ESTALE) {
2801				rcu_read_unlock();
2802				goto retry;
2803			}
2804			if (rc)
2805				goto out_unlock;
2806			if (mynel < maxnel) {
2807				mysids[mynel++] = sid;
2808			} else {
2809				rc = -ENOMEM;
2810				maxnel += SIDS_NEL;
2811				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2812				if (!mysids2)
2813					goto out_unlock;
2814				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2815				kfree(mysids);
2816				mysids = mysids2;
2817				mysids[mynel++] = sid;
2818			}
2819		}
2820	}
2821	rc = 0;
2822out_unlock:
2823	rcu_read_unlock();
2824	if (rc || !mynel) {
2825		kfree(mysids);
2826		return rc;
2827	}
2828
2829	rc = -ENOMEM;
2830	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2831	if (!mysids2) {
2832		kfree(mysids);
2833		return rc;
2834	}
2835	for (i = 0, j = 0; i < mynel; i++) {
2836		struct av_decision dummy_avd;
2837		rc = avc_has_perm_noaudit(state,
2838					  fromsid, mysids[i],
2839					  SECCLASS_PROCESS, /* kernel value */
2840					  PROCESS__TRANSITION, AVC_STRICT,
2841					  &dummy_avd);
2842		if (!rc)
2843			mysids2[j++] = mysids[i];
2844		cond_resched();
2845	}
 
2846	kfree(mysids);
2847	*sids = mysids2;
2848	*nel = j;
2849	return 0;
 
2850}
2851
2852/**
2853 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2854 * @policy: policy
2855 * @fstype: filesystem type
2856 * @path: path from root of mount
2857 * @orig_sclass: file security class
2858 * @sid: SID for path
2859 *
2860 * Obtain a SID to use for a file in a filesystem that
2861 * cannot support xattr or use a fixed labeling behavior like
2862 * transition SIDs or task SIDs.
2863 *
2864 * WARNING: This function may return -ESTALE, indicating that the caller
2865 * must retry the operation after re-acquiring the policy pointer!
2866 */
2867static inline int __security_genfs_sid(struct selinux_policy *policy,
2868				       const char *fstype,
2869				       const char *path,
2870				       u16 orig_sclass,
2871				       u32 *sid)
2872{
2873	struct policydb *policydb = &policy->policydb;
2874	struct sidtab *sidtab = policy->sidtab;
2875	int len;
2876	u16 sclass;
2877	struct genfs *genfs;
2878	struct ocontext *c;
2879	int cmp = 0;
2880
2881	while (path[0] == '/' && path[1] == '/')
2882		path++;
2883
2884	sclass = unmap_class(&policy->map, orig_sclass);
 
 
2885	*sid = SECINITSID_UNLABELED;
2886
2887	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2888		cmp = strcmp(fstype, genfs->fstype);
2889		if (cmp <= 0)
2890			break;
2891	}
2892
 
2893	if (!genfs || cmp)
2894		return -ENOENT;
2895
2896	for (c = genfs->head; c; c = c->next) {
2897		len = strlen(c->u.name);
2898		if ((!c->v.sclass || sclass == c->v.sclass) &&
2899		    (strncmp(c->u.name, path, len) == 0))
2900			break;
2901	}
2902
 
2903	if (!c)
2904		return -ENOENT;
2905
2906	return ocontext_to_sid(sidtab, c, 0, sid);
2907}
2908
2909/**
2910 * security_genfs_sid - Obtain a SID for a file in a filesystem
2911 * @state: SELinux state
2912 * @fstype: filesystem type
2913 * @path: path from root of mount
2914 * @orig_sclass: file security class
2915 * @sid: SID for path
2916 *
2917 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2918 * it afterward.
2919 */
2920int security_genfs_sid(struct selinux_state *state,
2921		       const char *fstype,
2922		       const char *path,
2923		       u16 orig_sclass,
2924		       u32 *sid)
2925{
2926	struct selinux_policy *policy;
2927	int retval;
2928
2929	if (!selinux_initialized(state)) {
2930		*sid = SECINITSID_UNLABELED;
2931		return 0;
2932	}
2933
2934	do {
2935		rcu_read_lock();
2936		policy = rcu_dereference(state->policy);
2937		retval = __security_genfs_sid(policy, fstype, path,
2938					      orig_sclass, sid);
2939		rcu_read_unlock();
2940	} while (retval == -ESTALE);
2941	return retval;
2942}
2943
2944int selinux_policy_genfs_sid(struct selinux_policy *policy,
2945			const char *fstype,
2946			const char *path,
2947			u16 orig_sclass,
2948			u32 *sid)
2949{
2950	/* no lock required, policy is not yet accessible by other threads */
2951	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2952}
2953
2954/**
2955 * security_fs_use - Determine how to handle labeling for a filesystem.
2956 * @state: SELinux state
2957 * @sb: superblock in question
 
2958 */
2959int security_fs_use(struct selinux_state *state, struct super_block *sb)
 
 
 
2960{
2961	struct selinux_policy *policy;
2962	struct policydb *policydb;
2963	struct sidtab *sidtab;
2964	int rc;
2965	struct ocontext *c;
2966	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2967	const char *fstype = sb->s_type->name;
2968
2969	if (!selinux_initialized(state)) {
2970		sbsec->behavior = SECURITY_FS_USE_NONE;
2971		sbsec->sid = SECINITSID_UNLABELED;
2972		return 0;
2973	}
2974
2975retry:
2976	rcu_read_lock();
2977	policy = rcu_dereference(state->policy);
2978	policydb = &policy->policydb;
2979	sidtab = policy->sidtab;
2980
2981	c = policydb->ocontexts[OCON_FSUSE];
2982	while (c) {
2983		if (strcmp(fstype, c->u.name) == 0)
2984			break;
2985		c = c->next;
2986	}
2987
2988	if (c) {
2989		sbsec->behavior = c->v.behavior;
2990		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2991		if (rc == -ESTALE) {
2992			rcu_read_unlock();
2993			goto retry;
 
2994		}
2995		if (rc)
2996			goto out;
2997	} else {
2998		rc = __security_genfs_sid(policy, fstype, "/",
2999					SECCLASS_DIR, &sbsec->sid);
3000		if (rc == -ESTALE) {
3001			rcu_read_unlock();
3002			goto retry;
3003		}
3004		if (rc) {
3005			sbsec->behavior = SECURITY_FS_USE_NONE;
3006			rc = 0;
3007		} else {
3008			sbsec->behavior = SECURITY_FS_USE_GENFS;
3009		}
3010	}
3011
3012out:
3013	rcu_read_unlock();
3014	return rc;
3015}
3016
3017int security_get_bools(struct selinux_policy *policy,
3018		       u32 *len, char ***names, int **values)
3019{
3020	struct policydb *policydb;
3021	u32 i;
3022	int rc;
3023
3024	policydb = &policy->policydb;
3025
 
3026	*names = NULL;
3027	*values = NULL;
3028
3029	rc = 0;
3030	*len = policydb->p_bools.nprim;
3031	if (!*len)
3032		goto out;
3033
3034	rc = -ENOMEM;
3035	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3036	if (!*names)
3037		goto err;
3038
3039	rc = -ENOMEM;
3040	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3041	if (!*values)
3042		goto err;
3043
3044	for (i = 0; i < *len; i++) {
3045		(*values)[i] = policydb->bool_val_to_struct[i]->state;
 
 
 
3046
3047		rc = -ENOMEM;
3048		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3049				      GFP_ATOMIC);
3050		if (!(*names)[i])
3051			goto err;
 
 
 
3052	}
3053	rc = 0;
3054out:
 
3055	return rc;
3056err:
3057	if (*names) {
3058		for (i = 0; i < *len; i++)
3059			kfree((*names)[i]);
3060		kfree(*names);
3061	}
3062	kfree(*values);
3063	*len = 0;
3064	*names = NULL;
3065	*values = NULL;
3066	goto out;
3067}
3068
3069
3070int security_set_bools(struct selinux_state *state, u32 len, int *values)
3071{
3072	struct selinux_policy *newpolicy, *oldpolicy;
3073	int rc;
3074	u32 i, seqno = 0;
3075
3076	if (!selinux_initialized(state))
3077		return -EINVAL;
3078
3079	oldpolicy = rcu_dereference_protected(state->policy,
3080					lockdep_is_held(&state->policy_mutex));
3081
3082	/* Consistency check on number of booleans, should never fail */
3083	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3084		return -EINVAL;
3085
3086	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3087	if (!newpolicy)
3088		return -ENOMEM;
3089
3090	/*
3091	 * Deep copy only the parts of the policydb that might be
3092	 * modified as a result of changing booleans.
3093	 */
3094	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3095	if (rc) {
3096		kfree(newpolicy);
3097		return -ENOMEM;
3098	}
3099
3100	/* Update the boolean states in the copy */
3101	for (i = 0; i < len; i++) {
3102		int new_state = !!values[i];
3103		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3104
3105		if (new_state != old_state) {
3106			audit_log(audit_context(), GFP_ATOMIC,
3107				AUDIT_MAC_CONFIG_CHANGE,
3108				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3109				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3110				new_state,
3111				old_state,
3112				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3113				audit_get_sessionid(current));
3114			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3115		}
 
 
 
 
3116	}
3117
3118	/* Re-evaluate the conditional rules in the copy */
3119	evaluate_cond_nodes(&newpolicy->policydb);
 
 
 
3120
3121	/* Set latest granting seqno for new policy */
3122	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3123	seqno = newpolicy->latest_granting;
3124
3125	/* Install the new policy */
3126	rcu_assign_pointer(state->policy, newpolicy);
3127
3128	/*
3129	 * Free the conditional portions of the old policydb
3130	 * that were copied for the new policy, and the oldpolicy
3131	 * structure itself but not what it references.
3132	 */
3133	synchronize_rcu();
3134	selinux_policy_cond_free(oldpolicy);
3135
3136	/* Notify others of the policy change */
3137	selinux_notify_policy_change(state, seqno);
3138	return 0;
3139}
3140
3141int security_get_bool_value(struct selinux_state *state,
3142			    u32 index)
3143{
3144	struct selinux_policy *policy;
3145	struct policydb *policydb;
3146	int rc;
3147	u32 len;
3148
3149	if (!selinux_initialized(state))
3150		return 0;
3151
3152	rcu_read_lock();
3153	policy = rcu_dereference(state->policy);
3154	policydb = &policy->policydb;
3155
3156	rc = -EFAULT;
3157	len = policydb->p_bools.nprim;
3158	if (index >= len)
3159		goto out;
3160
3161	rc = policydb->bool_val_to_struct[index]->state;
3162out:
3163	rcu_read_unlock();
3164	return rc;
3165}
3166
3167static int security_preserve_bools(struct selinux_policy *oldpolicy,
3168				struct selinux_policy *newpolicy)
3169{
3170	int rc, *bvalues = NULL;
3171	char **bnames = NULL;
3172	struct cond_bool_datum *booldatum;
3173	u32 i, nbools = 0;
3174
3175	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3176	if (rc)
3177		goto out;
3178	for (i = 0; i < nbools; i++) {
3179		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3180					bnames[i]);
3181		if (booldatum)
3182			booldatum->state = bvalues[i];
3183	}
3184	evaluate_cond_nodes(&newpolicy->policydb);
 
 
 
 
3185
3186out:
3187	if (bnames) {
3188		for (i = 0; i < nbools; i++)
3189			kfree(bnames[i]);
3190	}
3191	kfree(bnames);
3192	kfree(bvalues);
3193	return rc;
3194}
3195
3196/*
3197 * security_sid_mls_copy() - computes a new sid based on the given
3198 * sid and the mls portion of mls_sid.
3199 */
3200int security_sid_mls_copy(struct selinux_state *state,
3201			  u32 sid, u32 mls_sid, u32 *new_sid)
3202{
3203	struct selinux_policy *policy;
3204	struct policydb *policydb;
3205	struct sidtab *sidtab;
3206	struct context *context1;
3207	struct context *context2;
3208	struct context newcon;
3209	char *s;
3210	u32 len;
3211	int rc;
3212
3213	if (!selinux_initialized(state)) {
 
3214		*new_sid = sid;
3215		return 0;
3216	}
3217
3218retry:
3219	rc = 0;
3220	context_init(&newcon);
3221
3222	rcu_read_lock();
3223	policy = rcu_dereference(state->policy);
3224	policydb = &policy->policydb;
3225	sidtab = policy->sidtab;
3226
3227	if (!policydb->mls_enabled) {
3228		*new_sid = sid;
3229		goto out_unlock;
3230	}
3231
3232	rc = -EINVAL;
3233	context1 = sidtab_search(sidtab, sid);
3234	if (!context1) {
3235		pr_err("SELinux: %s:  unrecognized SID %d\n",
3236			__func__, sid);
3237		goto out_unlock;
3238	}
3239
3240	rc = -EINVAL;
3241	context2 = sidtab_search(sidtab, mls_sid);
3242	if (!context2) {
3243		pr_err("SELinux: %s:  unrecognized SID %d\n",
3244			__func__, mls_sid);
3245		goto out_unlock;
3246	}
3247
3248	newcon.user = context1->user;
3249	newcon.role = context1->role;
3250	newcon.type = context1->type;
3251	rc = mls_context_cpy(&newcon, context2);
3252	if (rc)
3253		goto out_unlock;
3254
3255	/* Check the validity of the new context. */
3256	if (!policydb_context_isvalid(policydb, &newcon)) {
3257		rc = convert_context_handle_invalid_context(state, policydb,
3258							&newcon);
3259		if (rc) {
3260			if (!context_struct_to_string(policydb, &newcon, &s,
3261						      &len)) {
3262				struct audit_buffer *ab;
3263
3264				ab = audit_log_start(audit_context(),
3265						     GFP_ATOMIC,
3266						     AUDIT_SELINUX_ERR);
3267				audit_log_format(ab,
3268						 "op=security_sid_mls_copy invalid_context=");
3269				/* don't record NUL with untrusted strings */
3270				audit_log_n_untrustedstring(ab, s, len - 1);
3271				audit_log_end(ab);
3272				kfree(s);
3273			}
3274			goto out_unlock;
3275		}
3276	}
3277	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3278	if (rc == -ESTALE) {
3279		rcu_read_unlock();
3280		context_destroy(&newcon);
3281		goto retry;
3282	}
3283out_unlock:
3284	rcu_read_unlock();
3285	context_destroy(&newcon);
 
3286	return rc;
3287}
3288
3289/**
3290 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3291 * @state: SELinux state
3292 * @nlbl_sid: NetLabel SID
3293 * @nlbl_type: NetLabel labeling protocol type
3294 * @xfrm_sid: XFRM SID
3295 * @peer_sid: network peer sid
3296 *
3297 * Description:
3298 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3299 * resolved into a single SID it is returned via @peer_sid and the function
3300 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3301 * returns a negative value.  A table summarizing the behavior is below:
3302 *
3303 *                                 | function return |      @sid
3304 *   ------------------------------+-----------------+-----------------
3305 *   no peer labels                |        0        |    SECSID_NULL
3306 *   single peer label             |        0        |    <peer_label>
3307 *   multiple, consistent labels   |        0        |    <peer_label>
3308 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3309 *
3310 */
3311int security_net_peersid_resolve(struct selinux_state *state,
3312				 u32 nlbl_sid, u32 nlbl_type,
3313				 u32 xfrm_sid,
3314				 u32 *peer_sid)
3315{
3316	struct selinux_policy *policy;
3317	struct policydb *policydb;
3318	struct sidtab *sidtab;
3319	int rc;
3320	struct context *nlbl_ctx;
3321	struct context *xfrm_ctx;
3322
3323	*peer_sid = SECSID_NULL;
3324
3325	/* handle the common (which also happens to be the set of easy) cases
3326	 * right away, these two if statements catch everything involving a
3327	 * single or absent peer SID/label */
3328	if (xfrm_sid == SECSID_NULL) {
3329		*peer_sid = nlbl_sid;
3330		return 0;
3331	}
3332	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3333	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3334	 * is present */
3335	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3336		*peer_sid = xfrm_sid;
3337		return 0;
3338	}
3339
3340	if (!selinux_initialized(state))
 
 
 
3341		return 0;
3342
3343	rcu_read_lock();
3344	policy = rcu_dereference(state->policy);
3345	policydb = &policy->policydb;
3346	sidtab = policy->sidtab;
3347
3348	/*
3349	 * We don't need to check initialized here since the only way both
3350	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3351	 * security server was initialized and state->initialized was true.
3352	 */
3353	if (!policydb->mls_enabled) {
3354		rc = 0;
3355		goto out;
3356	}
3357
3358	rc = -EINVAL;
3359	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3360	if (!nlbl_ctx) {
3361		pr_err("SELinux: %s:  unrecognized SID %d\n",
3362		       __func__, nlbl_sid);
3363		goto out;
3364	}
3365	rc = -EINVAL;
3366	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3367	if (!xfrm_ctx) {
3368		pr_err("SELinux: %s:  unrecognized SID %d\n",
3369		       __func__, xfrm_sid);
3370		goto out;
3371	}
3372	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3373	if (rc)
3374		goto out;
3375
3376	/* at present NetLabel SIDs/labels really only carry MLS
3377	 * information so if the MLS portion of the NetLabel SID
3378	 * matches the MLS portion of the labeled XFRM SID/label
3379	 * then pass along the XFRM SID as it is the most
3380	 * expressive */
3381	*peer_sid = xfrm_sid;
3382out:
3383	rcu_read_unlock();
3384	return rc;
3385}
3386
3387static int get_classes_callback(void *k, void *d, void *args)
3388{
3389	struct class_datum *datum = d;
3390	char *name = k, **classes = args;
3391	int value = datum->value - 1;
3392
3393	classes[value] = kstrdup(name, GFP_ATOMIC);
3394	if (!classes[value])
3395		return -ENOMEM;
3396
3397	return 0;
3398}
3399
3400int security_get_classes(struct selinux_policy *policy,
3401			 char ***classes, int *nclasses)
3402{
3403	struct policydb *policydb;
3404	int rc;
3405
3406	policydb = &policy->policydb;
3407
3408	rc = -ENOMEM;
3409	*nclasses = policydb->p_classes.nprim;
3410	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3411	if (!*classes)
3412		goto out;
3413
3414	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3415			 *classes);
3416	if (rc) {
3417		int i;
3418		for (i = 0; i < *nclasses; i++)
3419			kfree((*classes)[i]);
3420		kfree(*classes);
3421	}
3422
3423out:
 
3424	return rc;
3425}
3426
3427static int get_permissions_callback(void *k, void *d, void *args)
3428{
3429	struct perm_datum *datum = d;
3430	char *name = k, **perms = args;
3431	int value = datum->value - 1;
3432
3433	perms[value] = kstrdup(name, GFP_ATOMIC);
3434	if (!perms[value])
3435		return -ENOMEM;
3436
3437	return 0;
3438}
3439
3440int security_get_permissions(struct selinux_policy *policy,
3441			     char *class, char ***perms, int *nperms)
3442{
3443	struct policydb *policydb;
3444	int rc, i;
3445	struct class_datum *match;
3446
3447	policydb = &policy->policydb;
3448
3449	rc = -EINVAL;
3450	match = symtab_search(&policydb->p_classes, class);
3451	if (!match) {
3452		pr_err("SELinux: %s:  unrecognized class %s\n",
3453			__func__, class);
3454		goto out;
3455	}
3456
3457	rc = -ENOMEM;
3458	*nperms = match->permissions.nprim;
3459	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3460	if (!*perms)
3461		goto out;
3462
3463	if (match->comdatum) {
3464		rc = hashtab_map(&match->comdatum->permissions.table,
3465				 get_permissions_callback, *perms);
3466		if (rc)
3467			goto err;
3468	}
3469
3470	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3471			 *perms);
3472	if (rc)
3473		goto err;
3474
3475out:
 
3476	return rc;
3477
3478err:
 
3479	for (i = 0; i < *nperms; i++)
3480		kfree((*perms)[i]);
3481	kfree(*perms);
3482	return rc;
3483}
3484
3485int security_get_reject_unknown(struct selinux_state *state)
3486{
3487	struct selinux_policy *policy;
3488	int value;
3489
3490	if (!selinux_initialized(state))
3491		return 0;
3492
3493	rcu_read_lock();
3494	policy = rcu_dereference(state->policy);
3495	value = policy->policydb.reject_unknown;
3496	rcu_read_unlock();
3497	return value;
3498}
3499
3500int security_get_allow_unknown(struct selinux_state *state)
3501{
3502	struct selinux_policy *policy;
3503	int value;
3504
3505	if (!selinux_initialized(state))
3506		return 0;
3507
3508	rcu_read_lock();
3509	policy = rcu_dereference(state->policy);
3510	value = policy->policydb.allow_unknown;
3511	rcu_read_unlock();
3512	return value;
3513}
3514
3515/**
3516 * security_policycap_supported - Check for a specific policy capability
3517 * @state: SELinux state
3518 * @req_cap: capability
3519 *
3520 * Description:
3521 * This function queries the currently loaded policy to see if it supports the
3522 * capability specified by @req_cap.  Returns true (1) if the capability is
3523 * supported, false (0) if it isn't supported.
3524 *
3525 */
3526int security_policycap_supported(struct selinux_state *state,
3527				 unsigned int req_cap)
3528{
3529	struct selinux_policy *policy;
3530	int rc;
3531
3532	if (!selinux_initialized(state))
3533		return 0;
3534
3535	rcu_read_lock();
3536	policy = rcu_dereference(state->policy);
3537	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3538	rcu_read_unlock();
3539
3540	return rc;
3541}
3542
3543struct selinux_audit_rule {
3544	u32 au_seqno;
3545	struct context au_ctxt;
3546};
3547
3548void selinux_audit_rule_free(void *vrule)
3549{
3550	struct selinux_audit_rule *rule = vrule;
3551
3552	if (rule) {
3553		context_destroy(&rule->au_ctxt);
3554		kfree(rule);
3555	}
3556}
3557
3558int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3559{
3560	struct selinux_state *state = &selinux_state;
3561	struct selinux_policy *policy;
3562	struct policydb *policydb;
3563	struct selinux_audit_rule *tmprule;
3564	struct role_datum *roledatum;
3565	struct type_datum *typedatum;
3566	struct user_datum *userdatum;
3567	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3568	int rc = 0;
3569
3570	*rule = NULL;
3571
3572	if (!selinux_initialized(state))
3573		return -EOPNOTSUPP;
3574
3575	switch (field) {
3576	case AUDIT_SUBJ_USER:
3577	case AUDIT_SUBJ_ROLE:
3578	case AUDIT_SUBJ_TYPE:
3579	case AUDIT_OBJ_USER:
3580	case AUDIT_OBJ_ROLE:
3581	case AUDIT_OBJ_TYPE:
3582		/* only 'equals' and 'not equals' fit user, role, and type */
3583		if (op != Audit_equal && op != Audit_not_equal)
3584			return -EINVAL;
3585		break;
3586	case AUDIT_SUBJ_SEN:
3587	case AUDIT_SUBJ_CLR:
3588	case AUDIT_OBJ_LEV_LOW:
3589	case AUDIT_OBJ_LEV_HIGH:
3590		/* we do not allow a range, indicated by the presence of '-' */
3591		if (strchr(rulestr, '-'))
3592			return -EINVAL;
3593		break;
3594	default:
3595		/* only the above fields are valid */
3596		return -EINVAL;
3597	}
3598
3599	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3600	if (!tmprule)
3601		return -ENOMEM;
3602
3603	context_init(&tmprule->au_ctxt);
3604
3605	rcu_read_lock();
3606	policy = rcu_dereference(state->policy);
3607	policydb = &policy->policydb;
3608
3609	tmprule->au_seqno = policy->latest_granting;
3610
3611	switch (field) {
3612	case AUDIT_SUBJ_USER:
3613	case AUDIT_OBJ_USER:
3614		rc = -EINVAL;
3615		userdatum = symtab_search(&policydb->p_users, rulestr);
3616		if (!userdatum)
3617			goto out;
3618		tmprule->au_ctxt.user = userdatum->value;
3619		break;
3620	case AUDIT_SUBJ_ROLE:
3621	case AUDIT_OBJ_ROLE:
3622		rc = -EINVAL;
3623		roledatum = symtab_search(&policydb->p_roles, rulestr);
3624		if (!roledatum)
3625			goto out;
3626		tmprule->au_ctxt.role = roledatum->value;
3627		break;
3628	case AUDIT_SUBJ_TYPE:
3629	case AUDIT_OBJ_TYPE:
3630		rc = -EINVAL;
3631		typedatum = symtab_search(&policydb->p_types, rulestr);
3632		if (!typedatum)
3633			goto out;
3634		tmprule->au_ctxt.type = typedatum->value;
3635		break;
3636	case AUDIT_SUBJ_SEN:
3637	case AUDIT_SUBJ_CLR:
3638	case AUDIT_OBJ_LEV_LOW:
3639	case AUDIT_OBJ_LEV_HIGH:
3640		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3641				     GFP_ATOMIC);
3642		if (rc)
3643			goto out;
3644		break;
3645	}
3646	rc = 0;
3647out:
3648	rcu_read_unlock();
3649
3650	if (rc) {
3651		selinux_audit_rule_free(tmprule);
3652		tmprule = NULL;
3653	}
3654
3655	*rule = tmprule;
3656
3657	return rc;
3658}
3659
3660/* Check to see if the rule contains any selinux fields */
3661int selinux_audit_rule_known(struct audit_krule *rule)
3662{
3663	int i;
3664
3665	for (i = 0; i < rule->field_count; i++) {
3666		struct audit_field *f = &rule->fields[i];
3667		switch (f->type) {
3668		case AUDIT_SUBJ_USER:
3669		case AUDIT_SUBJ_ROLE:
3670		case AUDIT_SUBJ_TYPE:
3671		case AUDIT_SUBJ_SEN:
3672		case AUDIT_SUBJ_CLR:
3673		case AUDIT_OBJ_USER:
3674		case AUDIT_OBJ_ROLE:
3675		case AUDIT_OBJ_TYPE:
3676		case AUDIT_OBJ_LEV_LOW:
3677		case AUDIT_OBJ_LEV_HIGH:
3678			return 1;
3679		}
3680	}
3681
3682	return 0;
3683}
3684
3685int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
 
3686{
3687	struct selinux_state *state = &selinux_state;
3688	struct selinux_policy *policy;
3689	struct context *ctxt;
3690	struct mls_level *level;
3691	struct selinux_audit_rule *rule = vrule;
3692	int match = 0;
3693
3694	if (unlikely(!rule)) {
3695		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
 
3696		return -ENOENT;
3697	}
3698
3699	if (!selinux_initialized(state))
3700		return 0;
3701
3702	rcu_read_lock();
3703
3704	policy = rcu_dereference(state->policy);
3705
3706	if (rule->au_seqno < policy->latest_granting) {
3707		match = -ESTALE;
3708		goto out;
3709	}
3710
3711	ctxt = sidtab_search(policy->sidtab, sid);
3712	if (unlikely(!ctxt)) {
3713		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
 
3714			  sid);
3715		match = -ENOENT;
3716		goto out;
3717	}
3718
3719	/* a field/op pair that is not caught here will simply fall through
3720	   without a match */
3721	switch (field) {
3722	case AUDIT_SUBJ_USER:
3723	case AUDIT_OBJ_USER:
3724		switch (op) {
3725		case Audit_equal:
3726			match = (ctxt->user == rule->au_ctxt.user);
3727			break;
3728		case Audit_not_equal:
3729			match = (ctxt->user != rule->au_ctxt.user);
3730			break;
3731		}
3732		break;
3733	case AUDIT_SUBJ_ROLE:
3734	case AUDIT_OBJ_ROLE:
3735		switch (op) {
3736		case Audit_equal:
3737			match = (ctxt->role == rule->au_ctxt.role);
3738			break;
3739		case Audit_not_equal:
3740			match = (ctxt->role != rule->au_ctxt.role);
3741			break;
3742		}
3743		break;
3744	case AUDIT_SUBJ_TYPE:
3745	case AUDIT_OBJ_TYPE:
3746		switch (op) {
3747		case Audit_equal:
3748			match = (ctxt->type == rule->au_ctxt.type);
3749			break;
3750		case Audit_not_equal:
3751			match = (ctxt->type != rule->au_ctxt.type);
3752			break;
3753		}
3754		break;
3755	case AUDIT_SUBJ_SEN:
3756	case AUDIT_SUBJ_CLR:
3757	case AUDIT_OBJ_LEV_LOW:
3758	case AUDIT_OBJ_LEV_HIGH:
3759		level = ((field == AUDIT_SUBJ_SEN ||
3760			  field == AUDIT_OBJ_LEV_LOW) ?
3761			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3762		switch (op) {
3763		case Audit_equal:
3764			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3765					     level);
3766			break;
3767		case Audit_not_equal:
3768			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3769					      level);
3770			break;
3771		case Audit_lt:
3772			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3773					       level) &&
3774				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3775					       level));
3776			break;
3777		case Audit_le:
3778			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3779					      level);
3780			break;
3781		case Audit_gt:
3782			match = (mls_level_dom(level,
3783					      &rule->au_ctxt.range.level[0]) &&
3784				 !mls_level_eq(level,
3785					       &rule->au_ctxt.range.level[0]));
3786			break;
3787		case Audit_ge:
3788			match = mls_level_dom(level,
3789					      &rule->au_ctxt.range.level[0]);
3790			break;
3791		}
3792	}
3793
3794out:
3795	rcu_read_unlock();
3796	return match;
3797}
3798
3799static int aurule_avc_callback(u32 event)
 
 
 
3800{
3801	if (event == AVC_CALLBACK_RESET)
3802		return audit_update_lsm_rules();
3803	return 0;
 
 
3804}
3805
3806static int __init aurule_init(void)
3807{
3808	int err;
3809
3810	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
 
3811	if (err)
3812		panic("avc_add_callback() failed, error %d\n", err);
3813
3814	return err;
3815}
3816__initcall(aurule_init);
3817
3818#ifdef CONFIG_NETLABEL
3819/**
3820 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3821 * @secattr: the NetLabel packet security attributes
3822 * @sid: the SELinux SID
3823 *
3824 * Description:
3825 * Attempt to cache the context in @ctx, which was derived from the packet in
3826 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3827 * already been initialized.
3828 *
3829 */
3830static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3831				      u32 sid)
3832{
3833	u32 *sid_cache;
3834
3835	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3836	if (sid_cache == NULL)
3837		return;
3838	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3839	if (secattr->cache == NULL) {
3840		kfree(sid_cache);
3841		return;
3842	}
3843
3844	*sid_cache = sid;
3845	secattr->cache->free = kfree;
3846	secattr->cache->data = sid_cache;
3847	secattr->flags |= NETLBL_SECATTR_CACHE;
3848}
3849
3850/**
3851 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3852 * @state: SELinux state
3853 * @secattr: the NetLabel packet security attributes
3854 * @sid: the SELinux SID
3855 *
3856 * Description:
3857 * Convert the given NetLabel security attributes in @secattr into a
3858 * SELinux SID.  If the @secattr field does not contain a full SELinux
3859 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3860 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3861 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3862 * conversion for future lookups.  Returns zero on success, negative values on
3863 * failure.
3864 *
3865 */
3866int security_netlbl_secattr_to_sid(struct selinux_state *state,
3867				   struct netlbl_lsm_secattr *secattr,
3868				   u32 *sid)
3869{
3870	struct selinux_policy *policy;
3871	struct policydb *policydb;
3872	struct sidtab *sidtab;
3873	int rc;
3874	struct context *ctx;
3875	struct context ctx_new;
3876
3877	if (!selinux_initialized(state)) {
3878		*sid = SECSID_NULL;
3879		return 0;
3880	}
3881
3882retry:
3883	rc = 0;
3884	rcu_read_lock();
3885	policy = rcu_dereference(state->policy);
3886	policydb = &policy->policydb;
3887	sidtab = policy->sidtab;
3888
3889	if (secattr->flags & NETLBL_SECATTR_CACHE)
3890		*sid = *(u32 *)secattr->cache->data;
3891	else if (secattr->flags & NETLBL_SECATTR_SECID)
3892		*sid = secattr->attr.secid;
3893	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3894		rc = -EIDRM;
3895		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3896		if (ctx == NULL)
3897			goto out;
3898
3899		context_init(&ctx_new);
3900		ctx_new.user = ctx->user;
3901		ctx_new.role = ctx->role;
3902		ctx_new.type = ctx->type;
3903		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3904		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3905			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
 
3906			if (rc)
3907				goto out;
 
 
 
3908		}
3909		rc = -EIDRM;
3910		if (!mls_context_isvalid(policydb, &ctx_new)) {
3911			ebitmap_destroy(&ctx_new.range.level[0].cat);
3912			goto out;
3913		}
3914
3915		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3916		ebitmap_destroy(&ctx_new.range.level[0].cat);
3917		if (rc == -ESTALE) {
3918			rcu_read_unlock();
3919			goto retry;
3920		}
3921		if (rc)
3922			goto out;
3923
3924		security_netlbl_cache_add(secattr, *sid);
 
 
3925	} else
3926		*sid = SECSID_NULL;
3927
 
 
 
 
3928out:
3929	rcu_read_unlock();
3930	return rc;
3931}
3932
3933/**
3934 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3935 * @state: SELinux state
3936 * @sid: the SELinux SID
3937 * @secattr: the NetLabel packet security attributes
3938 *
3939 * Description:
3940 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3941 * Returns zero on success, negative values on failure.
3942 *
3943 */
3944int security_netlbl_sid_to_secattr(struct selinux_state *state,
3945				   u32 sid, struct netlbl_lsm_secattr *secattr)
3946{
3947	struct selinux_policy *policy;
3948	struct policydb *policydb;
3949	int rc;
3950	struct context *ctx;
3951
3952	if (!selinux_initialized(state))
3953		return 0;
3954
3955	rcu_read_lock();
3956	policy = rcu_dereference(state->policy);
3957	policydb = &policy->policydb;
3958
3959	rc = -ENOENT;
3960	ctx = sidtab_search(policy->sidtab, sid);
3961	if (ctx == NULL)
3962		goto out;
3963
3964	rc = -ENOMEM;
3965	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3966				  GFP_ATOMIC);
3967	if (secattr->domain == NULL)
3968		goto out;
3969
3970	secattr->attr.secid = sid;
3971	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3972	mls_export_netlbl_lvl(policydb, ctx, secattr);
3973	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3974out:
3975	rcu_read_unlock();
3976	return rc;
3977}
3978#endif /* CONFIG_NETLABEL */
3979
3980/**
3981 * __security_read_policy - read the policy.
3982 * @policy: SELinux policy
3983 * @data: binary policy data
3984 * @len: length of data in bytes
3985 *
3986 */
3987static int __security_read_policy(struct selinux_policy *policy,
3988				  void *data, size_t *len)
3989{
3990	int rc;
3991	struct policy_file fp;
3992
3993	fp.data = data;
3994	fp.len = *len;
3995
3996	rc = policydb_write(&policy->policydb, &fp);
3997	if (rc)
3998		return rc;
3999
4000	*len = (unsigned long)fp.data - (unsigned long)data;
4001	return 0;
4002}
4003
4004/**
4005 * security_read_policy - read the policy.
4006 * @state: selinux_state
4007 * @data: binary policy data
4008 * @len: length of data in bytes
4009 *
4010 */
4011int security_read_policy(struct selinux_state *state,
4012			 void **data, size_t *len)
4013{
4014	struct selinux_policy *policy;
4015
4016	policy = rcu_dereference_protected(
4017			state->policy, lockdep_is_held(&state->policy_mutex));
4018	if (!policy)
4019		return -EINVAL;
4020
4021	*len = policy->policydb.len;
4022	*data = vmalloc_user(*len);
4023	if (!*data)
4024		return -ENOMEM;
4025
4026	return __security_read_policy(policy, *data, len);
4027}
4028
4029/**
4030 * security_read_state_kernel - read the policy.
4031 * @state: selinux_state
4032 * @data: binary policy data
4033 * @len: length of data in bytes
4034 *
4035 * Allocates kernel memory for reading SELinux policy.
4036 * This function is for internal use only and should not
4037 * be used for returning data to user space.
4038 *
4039 * This function must be called with policy_mutex held.
4040 */
4041int security_read_state_kernel(struct selinux_state *state,
4042			       void **data, size_t *len)
4043{
4044	int err;
4045	struct selinux_policy *policy;
4046
4047	policy = rcu_dereference_protected(
4048			state->policy, lockdep_is_held(&state->policy_mutex));
4049	if (!policy)
4050		return -EINVAL;
4051
4052	*len = policy->policydb.len;
4053	*data = vmalloc(*len);
4054	if (!*data)
4055		return -ENOMEM;
4056
4057	err = __security_read_policy(policy, *data, len);
4058	if (err) {
4059		vfree(*data);
4060		*data = NULL;
4061		*len = 0;
4062	}
4063	return err;
4064}