Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
  72
  73extern void selnl_notify_policyload(u32 seqno);
  74
  75int selinux_policycap_netpeer;
  76int selinux_policycap_openperm;
  77
  78static DEFINE_RWLOCK(policy_rwlock);
 
 
 
  79
  80static struct sidtab sidtab;
  81struct policydb policydb;
  82int ss_initialized;
  83
  84/*
  85 * The largest sequence number that has been used when
  86 * providing an access decision to the access vector cache.
  87 * The sequence number only changes when a policy change
  88 * occurs.
  89 */
  90static u32 latest_granting;
  91
  92/* Forward declaration. */
  93static int context_struct_to_string(struct context *context, char **scontext,
 
 
  94				    u32 *scontext_len);
  95
  96static void context_struct_compute_av(struct context *scontext,
 
  97				      struct context *tcontext,
  98				      u16 tclass,
  99				      struct av_decision *avd);
 100
 101struct selinux_mapping {
 102	u16 value; /* policy value */
 103	unsigned num_perms;
 104	u32 perms[sizeof(u32) * 8];
 105};
 106
 107static struct selinux_mapping *current_mapping;
 108static u16 current_mapping_size;
 109
 110static int selinux_set_mapping(struct policydb *pol,
 111			       struct security_class_mapping *map,
 112			       struct selinux_mapping **out_map_p,
 113			       u16 *out_map_size)
 114{
 115	struct selinux_mapping *out_map = NULL;
 116	size_t size = sizeof(struct selinux_mapping);
 117	u16 i, j;
 118	unsigned k;
 119	bool print_unknown_handle = false;
 120
 121	/* Find number of classes in the input mapping */
 122	if (!map)
 123		return -EINVAL;
 124	i = 0;
 125	while (map[i].name)
 126		i++;
 127
 128	/* Allocate space for the class records, plus one for class zero */
 129	out_map = kcalloc(++i, size, GFP_ATOMIC);
 130	if (!out_map)
 131		return -ENOMEM;
 132
 133	/* Store the raw class and permission values */
 134	j = 0;
 135	while (map[j].name) {
 136		struct security_class_mapping *p_in = map + (j++);
 137		struct selinux_mapping *p_out = out_map + j;
 138
 139		/* An empty class string skips ahead */
 140		if (!strcmp(p_in->name, "")) {
 141			p_out->num_perms = 0;
 142			continue;
 143		}
 144
 145		p_out->value = string_to_security_class(pol, p_in->name);
 146		if (!p_out->value) {
 147			printk(KERN_INFO
 148			       "SELinux:  Class %s not defined in policy.\n",
 149			       p_in->name);
 150			if (pol->reject_unknown)
 151				goto err;
 152			p_out->num_perms = 0;
 153			print_unknown_handle = true;
 154			continue;
 155		}
 156
 157		k = 0;
 158		while (p_in->perms && p_in->perms[k]) {
 159			/* An empty permission string skips ahead */
 160			if (!*p_in->perms[k]) {
 161				k++;
 162				continue;
 163			}
 164			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 165							    p_in->perms[k]);
 166			if (!p_out->perms[k]) {
 167				printk(KERN_INFO
 168				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 169				       p_in->perms[k], p_in->name);
 170				if (pol->reject_unknown)
 171					goto err;
 172				print_unknown_handle = true;
 173			}
 174
 175			k++;
 176		}
 177		p_out->num_perms = k;
 178	}
 179
 180	if (print_unknown_handle)
 181		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 182		       pol->allow_unknown ? "allowed" : "denied");
 183
 184	*out_map_p = out_map;
 185	*out_map_size = i;
 186	return 0;
 187err:
 188	kfree(out_map);
 
 189	return -EINVAL;
 190}
 191
 192/*
 193 * Get real, policy values from mapped values
 194 */
 195
 196static u16 unmap_class(u16 tclass)
 197{
 198	if (tclass < current_mapping_size)
 199		return current_mapping[tclass].value;
 200
 201	return tclass;
 202}
 203
 204/*
 205 * Get kernel value for class from its policy value
 206 */
 207static u16 map_class(u16 pol_value)
 208{
 209	u16 i;
 210
 211	for (i = 1; i < current_mapping_size; i++) {
 212		if (current_mapping[i].value == pol_value)
 213			return i;
 214	}
 215
 216	return SECCLASS_NULL;
 217}
 218
 219static void map_decision(u16 tclass, struct av_decision *avd,
 
 220			 int allow_unknown)
 221{
 222	if (tclass < current_mapping_size) {
 223		unsigned i, n = current_mapping[tclass].num_perms;
 
 224		u32 result;
 225
 226		for (i = 0, result = 0; i < n; i++) {
 227			if (avd->allowed & current_mapping[tclass].perms[i])
 228				result |= 1<<i;
 229			if (allow_unknown && !current_mapping[tclass].perms[i])
 230				result |= 1<<i;
 231		}
 232		avd->allowed = result;
 233
 234		for (i = 0, result = 0; i < n; i++)
 235			if (avd->auditallow & current_mapping[tclass].perms[i])
 236				result |= 1<<i;
 237		avd->auditallow = result;
 238
 239		for (i = 0, result = 0; i < n; i++) {
 240			if (avd->auditdeny & current_mapping[tclass].perms[i])
 241				result |= 1<<i;
 242			if (!allow_unknown && !current_mapping[tclass].perms[i])
 243				result |= 1<<i;
 244		}
 245		/*
 246		 * In case the kernel has a bug and requests a permission
 247		 * between num_perms and the maximum permission number, we
 248		 * should audit that denial
 249		 */
 250		for (; i < (sizeof(u32)*8); i++)
 251			result |= 1<<i;
 252		avd->auditdeny = result;
 253	}
 254}
 255
 256int security_mls_enabled(void)
 257{
 258	return policydb.mls_enabled;
 
 
 259}
 260
 261/*
 262 * Return the boolean value of a constraint expression
 263 * when it is applied to the specified source and target
 264 * security contexts.
 265 *
 266 * xcontext is a special beast...  It is used by the validatetrans rules
 267 * only.  For these rules, scontext is the context before the transition,
 268 * tcontext is the context after the transition, and xcontext is the context
 269 * of the process performing the transition.  All other callers of
 270 * constraint_expr_eval should pass in NULL for xcontext.
 271 */
 272static int constraint_expr_eval(struct context *scontext,
 
 273				struct context *tcontext,
 274				struct context *xcontext,
 275				struct constraint_expr *cexpr)
 276{
 277	u32 val1, val2;
 278	struct context *c;
 279	struct role_datum *r1, *r2;
 280	struct mls_level *l1, *l2;
 281	struct constraint_expr *e;
 282	int s[CEXPR_MAXDEPTH];
 283	int sp = -1;
 284
 285	for (e = cexpr; e; e = e->next) {
 286		switch (e->expr_type) {
 287		case CEXPR_NOT:
 288			BUG_ON(sp < 0);
 289			s[sp] = !s[sp];
 290			break;
 291		case CEXPR_AND:
 292			BUG_ON(sp < 1);
 293			sp--;
 294			s[sp] &= s[sp + 1];
 295			break;
 296		case CEXPR_OR:
 297			BUG_ON(sp < 1);
 298			sp--;
 299			s[sp] |= s[sp + 1];
 300			break;
 301		case CEXPR_ATTR:
 302			if (sp == (CEXPR_MAXDEPTH - 1))
 303				return 0;
 304			switch (e->attr) {
 305			case CEXPR_USER:
 306				val1 = scontext->user;
 307				val2 = tcontext->user;
 308				break;
 309			case CEXPR_TYPE:
 310				val1 = scontext->type;
 311				val2 = tcontext->type;
 312				break;
 313			case CEXPR_ROLE:
 314				val1 = scontext->role;
 315				val2 = tcontext->role;
 316				r1 = policydb.role_val_to_struct[val1 - 1];
 317				r2 = policydb.role_val_to_struct[val2 - 1];
 318				switch (e->op) {
 319				case CEXPR_DOM:
 320					s[++sp] = ebitmap_get_bit(&r1->dominates,
 321								  val2 - 1);
 322					continue;
 323				case CEXPR_DOMBY:
 324					s[++sp] = ebitmap_get_bit(&r2->dominates,
 325								  val1 - 1);
 326					continue;
 327				case CEXPR_INCOMP:
 328					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 329								    val2 - 1) &&
 330						   !ebitmap_get_bit(&r2->dominates,
 331								    val1 - 1));
 332					continue;
 333				default:
 334					break;
 335				}
 336				break;
 337			case CEXPR_L1L2:
 338				l1 = &(scontext->range.level[0]);
 339				l2 = &(tcontext->range.level[0]);
 340				goto mls_ops;
 341			case CEXPR_L1H2:
 342				l1 = &(scontext->range.level[0]);
 343				l2 = &(tcontext->range.level[1]);
 344				goto mls_ops;
 345			case CEXPR_H1L2:
 346				l1 = &(scontext->range.level[1]);
 347				l2 = &(tcontext->range.level[0]);
 348				goto mls_ops;
 349			case CEXPR_H1H2:
 350				l1 = &(scontext->range.level[1]);
 351				l2 = &(tcontext->range.level[1]);
 352				goto mls_ops;
 353			case CEXPR_L1H1:
 354				l1 = &(scontext->range.level[0]);
 355				l2 = &(scontext->range.level[1]);
 356				goto mls_ops;
 357			case CEXPR_L2H2:
 358				l1 = &(tcontext->range.level[0]);
 359				l2 = &(tcontext->range.level[1]);
 360				goto mls_ops;
 361mls_ops:
 362			switch (e->op) {
 363			case CEXPR_EQ:
 364				s[++sp] = mls_level_eq(l1, l2);
 365				continue;
 366			case CEXPR_NEQ:
 367				s[++sp] = !mls_level_eq(l1, l2);
 368				continue;
 369			case CEXPR_DOM:
 370				s[++sp] = mls_level_dom(l1, l2);
 371				continue;
 372			case CEXPR_DOMBY:
 373				s[++sp] = mls_level_dom(l2, l1);
 374				continue;
 375			case CEXPR_INCOMP:
 376				s[++sp] = mls_level_incomp(l2, l1);
 377				continue;
 378			default:
 379				BUG();
 380				return 0;
 381			}
 382			break;
 383			default:
 384				BUG();
 385				return 0;
 386			}
 387
 388			switch (e->op) {
 389			case CEXPR_EQ:
 390				s[++sp] = (val1 == val2);
 391				break;
 392			case CEXPR_NEQ:
 393				s[++sp] = (val1 != val2);
 394				break;
 395			default:
 396				BUG();
 397				return 0;
 398			}
 399			break;
 400		case CEXPR_NAMES:
 401			if (sp == (CEXPR_MAXDEPTH-1))
 402				return 0;
 403			c = scontext;
 404			if (e->attr & CEXPR_TARGET)
 405				c = tcontext;
 406			else if (e->attr & CEXPR_XTARGET) {
 407				c = xcontext;
 408				if (!c) {
 409					BUG();
 410					return 0;
 411				}
 412			}
 413			if (e->attr & CEXPR_USER)
 414				val1 = c->user;
 415			else if (e->attr & CEXPR_ROLE)
 416				val1 = c->role;
 417			else if (e->attr & CEXPR_TYPE)
 418				val1 = c->type;
 419			else {
 420				BUG();
 421				return 0;
 422			}
 423
 424			switch (e->op) {
 425			case CEXPR_EQ:
 426				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 427				break;
 428			case CEXPR_NEQ:
 429				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 430				break;
 431			default:
 432				BUG();
 433				return 0;
 434			}
 435			break;
 436		default:
 437			BUG();
 438			return 0;
 439		}
 440	}
 441
 442	BUG_ON(sp != 0);
 443	return s[0];
 444}
 445
 446/*
 447 * security_dump_masked_av - dumps masked permissions during
 448 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 449 */
 450static int dump_masked_av_helper(void *k, void *d, void *args)
 451{
 452	struct perm_datum *pdatum = d;
 453	char **permission_names = args;
 454
 455	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 456
 457	permission_names[pdatum->value - 1] = (char *)k;
 458
 459	return 0;
 460}
 461
 462static void security_dump_masked_av(struct context *scontext,
 
 463				    struct context *tcontext,
 464				    u16 tclass,
 465				    u32 permissions,
 466				    const char *reason)
 467{
 468	struct common_datum *common_dat;
 469	struct class_datum *tclass_dat;
 470	struct audit_buffer *ab;
 471	char *tclass_name;
 472	char *scontext_name = NULL;
 473	char *tcontext_name = NULL;
 474	char *permission_names[32];
 475	int index;
 476	u32 length;
 477	bool need_comma = false;
 478
 479	if (!permissions)
 480		return;
 481
 482	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 483	tclass_dat = policydb.class_val_to_struct[tclass - 1];
 484	common_dat = tclass_dat->comdatum;
 485
 486	/* init permission_names */
 487	if (common_dat &&
 488	    hashtab_map(common_dat->permissions.table,
 489			dump_masked_av_helper, permission_names) < 0)
 490		goto out;
 491
 492	if (hashtab_map(tclass_dat->permissions.table,
 493			dump_masked_av_helper, permission_names) < 0)
 494		goto out;
 495
 496	/* get scontext/tcontext in text form */
 497	if (context_struct_to_string(scontext,
 498				     &scontext_name, &length) < 0)
 499		goto out;
 500
 501	if (context_struct_to_string(tcontext,
 502				     &tcontext_name, &length) < 0)
 503		goto out;
 504
 505	/* audit a message */
 506	ab = audit_log_start(current->audit_context,
 507			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 508	if (!ab)
 509		goto out;
 510
 511	audit_log_format(ab, "op=security_compute_av reason=%s "
 512			 "scontext=%s tcontext=%s tclass=%s perms=",
 513			 reason, scontext_name, tcontext_name, tclass_name);
 514
 515	for (index = 0; index < 32; index++) {
 516		u32 mask = (1 << index);
 517
 518		if ((mask & permissions) == 0)
 519			continue;
 520
 521		audit_log_format(ab, "%s%s",
 522				 need_comma ? "," : "",
 523				 permission_names[index]
 524				 ? permission_names[index] : "????");
 525		need_comma = true;
 526	}
 527	audit_log_end(ab);
 528out:
 529	/* release scontext/tcontext */
 530	kfree(tcontext_name);
 531	kfree(scontext_name);
 532
 533	return;
 534}
 535
 536/*
 537 * security_boundary_permission - drops violated permissions
 538 * on boundary constraint.
 539 */
 540static void type_attribute_bounds_av(struct context *scontext,
 
 541				     struct context *tcontext,
 542				     u16 tclass,
 543				     struct av_decision *avd)
 544{
 545	struct context lo_scontext;
 546	struct context lo_tcontext;
 547	struct av_decision lo_avd;
 548	struct type_datum *source;
 549	struct type_datum *target;
 550	u32 masked = 0;
 551
 552	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 553				    scontext->type - 1);
 554	BUG_ON(!source);
 555
 556	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 
 
 
 557				    tcontext->type - 1);
 558	BUG_ON(!target);
 559
 560	if (source->bounds) {
 561		memset(&lo_avd, 0, sizeof(lo_avd));
 562
 563		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 564		lo_scontext.type = source->bounds;
 565
 566		context_struct_compute_av(&lo_scontext,
 567					  tcontext,
 568					  tclass,
 569					  &lo_avd);
 570		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 571			return;		/* no masked permission */
 572		masked = ~lo_avd.allowed & avd->allowed;
 573	}
 574
 575	if (target->bounds) {
 576		memset(&lo_avd, 0, sizeof(lo_avd));
 577
 578		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 579		lo_tcontext.type = target->bounds;
 580
 581		context_struct_compute_av(scontext,
 582					  &lo_tcontext,
 583					  tclass,
 584					  &lo_avd);
 585		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 586			return;		/* no masked permission */
 587		masked = ~lo_avd.allowed & avd->allowed;
 588	}
 589
 590	if (source->bounds && target->bounds) {
 591		memset(&lo_avd, 0, sizeof(lo_avd));
 592		/*
 593		 * lo_scontext and lo_tcontext are already
 594		 * set up.
 595		 */
 596
 597		context_struct_compute_av(&lo_scontext,
 598					  &lo_tcontext,
 599					  tclass,
 600					  &lo_avd);
 601		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 602			return;		/* no masked permission */
 603		masked = ~lo_avd.allowed & avd->allowed;
 604	}
 605
 606	if (masked) {
 607		/* mask violated permissions */
 608		avd->allowed &= ~masked;
 609
 610		/* audit masked permissions */
 611		security_dump_masked_av(scontext, tcontext,
 612					tclass, masked, "bounds");
 613	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614}
 615
 616/*
 617 * Compute access vectors based on a context structure pair for
 618 * the permissions in a particular class.
 619 */
 620static void context_struct_compute_av(struct context *scontext,
 
 621				      struct context *tcontext,
 622				      u16 tclass,
 623				      struct av_decision *avd)
 
 624{
 625	struct constraint_node *constraint;
 626	struct role_allow *ra;
 627	struct avtab_key avkey;
 628	struct avtab_node *node;
 629	struct class_datum *tclass_datum;
 630	struct ebitmap *sattr, *tattr;
 631	struct ebitmap_node *snode, *tnode;
 632	unsigned int i, j;
 633
 634	avd->allowed = 0;
 635	avd->auditallow = 0;
 636	avd->auditdeny = 0xffffffff;
 
 
 
 
 637
 638	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 639		if (printk_ratelimit())
 640			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 641		return;
 642	}
 643
 644	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 645
 646	/*
 647	 * If a specific type enforcement rule was defined for
 648	 * this permission check, then use it.
 649	 */
 650	avkey.target_class = tclass;
 651	avkey.specified = AVTAB_AV;
 652	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 
 653	BUG_ON(!sattr);
 654	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 
 655	BUG_ON(!tattr);
 656	ebitmap_for_each_positive_bit(sattr, snode, i) {
 657		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 658			avkey.source_type = i + 1;
 659			avkey.target_type = j + 1;
 660			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 
 661			     node;
 662			     node = avtab_search_node_next(node, avkey.specified)) {
 663				if (node->key.specified == AVTAB_ALLOWED)
 664					avd->allowed |= node->datum.data;
 665				else if (node->key.specified == AVTAB_AUDITALLOW)
 666					avd->auditallow |= node->datum.data;
 667				else if (node->key.specified == AVTAB_AUDITDENY)
 668					avd->auditdeny &= node->datum.data;
 
 
 669			}
 670
 671			/* Check conditional av table for additional permissions */
 672			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
 
 673
 674		}
 675	}
 676
 677	/*
 678	 * Remove any permissions prohibited by a constraint (this includes
 679	 * the MLS policy).
 680	 */
 681	constraint = tclass_datum->constraints;
 682	while (constraint) {
 683		if ((constraint->permissions & (avd->allowed)) &&
 684		    !constraint_expr_eval(scontext, tcontext, NULL,
 685					  constraint->expr)) {
 686			avd->allowed &= ~(constraint->permissions);
 687		}
 688		constraint = constraint->next;
 689	}
 690
 691	/*
 692	 * If checking process transition permission and the
 693	 * role is changing, then check the (current_role, new_role)
 694	 * pair.
 695	 */
 696	if (tclass == policydb.process_class &&
 697	    (avd->allowed & policydb.process_trans_perms) &&
 698	    scontext->role != tcontext->role) {
 699		for (ra = policydb.role_allow; ra; ra = ra->next) {
 700			if (scontext->role == ra->role &&
 701			    tcontext->role == ra->new_role)
 702				break;
 703		}
 704		if (!ra)
 705			avd->allowed &= ~policydb.process_trans_perms;
 706	}
 707
 708	/*
 709	 * If the given source and target types have boundary
 710	 * constraint, lazy checks have to mask any violated
 711	 * permission and notice it to userspace via audit.
 712	 */
 713	type_attribute_bounds_av(scontext, tcontext,
 714				 tclass, avd);
 715}
 716
 717static int security_validtrans_handle_fail(struct context *ocontext,
 
 718					   struct context *ncontext,
 719					   struct context *tcontext,
 720					   u16 tclass)
 721{
 
 722	char *o = NULL, *n = NULL, *t = NULL;
 723	u32 olen, nlen, tlen;
 724
 725	if (context_struct_to_string(ocontext, &o, &olen))
 726		goto out;
 727	if (context_struct_to_string(ncontext, &n, &nlen))
 728		goto out;
 729	if (context_struct_to_string(tcontext, &t, &tlen))
 730		goto out;
 731	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 732		  "security_validate_transition:  denied for"
 733		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 734		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 735out:
 736	kfree(o);
 737	kfree(n);
 738	kfree(t);
 739
 740	if (!selinux_enforcing)
 741		return 0;
 742	return -EPERM;
 743}
 744
 745int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 746				 u16 orig_tclass)
 
 747{
 
 
 748	struct context *ocontext;
 749	struct context *ncontext;
 750	struct context *tcontext;
 751	struct class_datum *tclass_datum;
 752	struct constraint_node *constraint;
 753	u16 tclass;
 754	int rc = 0;
 755
 756	if (!ss_initialized)
 
 757		return 0;
 758
 759	read_lock(&policy_rwlock);
 
 
 
 760
 761	tclass = unmap_class(orig_tclass);
 
 
 
 762
 763	if (!tclass || tclass > policydb.p_classes.nprim) {
 764		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
 765			__func__, tclass);
 766		rc = -EINVAL;
 767		goto out;
 768	}
 769	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 770
 771	ocontext = sidtab_search(&sidtab, oldsid);
 772	if (!ocontext) {
 773		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 774			__func__, oldsid);
 775		rc = -EINVAL;
 776		goto out;
 777	}
 778
 779	ncontext = sidtab_search(&sidtab, newsid);
 780	if (!ncontext) {
 781		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 782			__func__, newsid);
 783		rc = -EINVAL;
 784		goto out;
 785	}
 786
 787	tcontext = sidtab_search(&sidtab, tasksid);
 788	if (!tcontext) {
 789		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 790			__func__, tasksid);
 791		rc = -EINVAL;
 792		goto out;
 793	}
 794
 795	constraint = tclass_datum->validatetrans;
 796	while (constraint) {
 797		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 798					  constraint->expr)) {
 799			rc = security_validtrans_handle_fail(ocontext, ncontext,
 800							     tcontext, tclass);
 
 
 
 
 
 
 801			goto out;
 802		}
 803		constraint = constraint->next;
 804	}
 805
 806out:
 807	read_unlock(&policy_rwlock);
 808	return rc;
 809}
 810
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 811/*
 812 * security_bounded_transition - check whether the given
 813 * transition is directed to bounded, or not.
 814 * It returns 0, if @newsid is bounded by @oldsid.
 815 * Otherwise, it returns error code.
 816 *
 817 * @oldsid : current security identifier
 818 * @newsid : destinated security identifier
 819 */
 820int security_bounded_transition(u32 old_sid, u32 new_sid)
 
 821{
 
 
 822	struct context *old_context, *new_context;
 823	struct type_datum *type;
 824	int index;
 825	int rc;
 826
 827	read_lock(&policy_rwlock);
 
 
 
 
 
 
 828
 829	rc = -EINVAL;
 830	old_context = sidtab_search(&sidtab, old_sid);
 831	if (!old_context) {
 832		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 833		       __func__, old_sid);
 834		goto out;
 835	}
 836
 837	rc = -EINVAL;
 838	new_context = sidtab_search(&sidtab, new_sid);
 839	if (!new_context) {
 840		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 841		       __func__, new_sid);
 842		goto out;
 843	}
 844
 845	rc = 0;
 846	/* type/domain unchanged */
 847	if (old_context->type == new_context->type)
 848		goto out;
 849
 850	index = new_context->type;
 851	while (true) {
 852		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 853					  index - 1);
 854		BUG_ON(!type);
 855
 856		/* not bounded anymore */
 857		rc = -EPERM;
 858		if (!type->bounds)
 859			break;
 860
 861		/* @newsid is bounded by @oldsid */
 862		rc = 0;
 863		if (type->bounds == old_context->type)
 864			break;
 865
 866		index = type->bounds;
 867	}
 868
 869	if (rc) {
 870		char *old_name = NULL;
 871		char *new_name = NULL;
 872		u32 length;
 873
 874		if (!context_struct_to_string(old_context,
 875					      &old_name, &length) &&
 876		    !context_struct_to_string(new_context,
 877					      &new_name, &length)) {
 878			audit_log(current->audit_context,
 879				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 880				  "op=security_bounded_transition "
 881				  "result=denied "
 882				  "oldcontext=%s newcontext=%s",
 883				  old_name, new_name);
 884		}
 885		kfree(new_name);
 886		kfree(old_name);
 887	}
 888out:
 889	read_unlock(&policy_rwlock);
 890
 891	return rc;
 892}
 893
 894static void avd_init(struct av_decision *avd)
 895{
 896	avd->allowed = 0;
 897	avd->auditallow = 0;
 898	avd->auditdeny = 0xffffffff;
 899	avd->seqno = latest_granting;
 900	avd->flags = 0;
 901}
 902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903
 904/**
 905 * security_compute_av - Compute access vector decisions.
 906 * @ssid: source security identifier
 907 * @tsid: target security identifier
 908 * @tclass: target security class
 909 * @avd: access vector decisions
 
 910 *
 911 * Compute a set of access vector decisions based on the
 912 * SID pair (@ssid, @tsid) for the permissions in @tclass.
 913 */
 914void security_compute_av(u32 ssid,
 
 915			 u32 tsid,
 916			 u16 orig_tclass,
 917			 struct av_decision *avd)
 
 918{
 
 
 919	u16 tclass;
 920	struct context *scontext = NULL, *tcontext = NULL;
 921
 922	read_lock(&policy_rwlock);
 923	avd_init(avd);
 924	if (!ss_initialized)
 
 925		goto allow;
 926
 927	scontext = sidtab_search(&sidtab, ssid);
 
 
 
 928	if (!scontext) {
 929		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 930		       __func__, ssid);
 931		goto out;
 932	}
 933
 934	/* permissive domain? */
 935	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 936		avd->flags |= AVD_FLAGS_PERMISSIVE;
 937
 938	tcontext = sidtab_search(&sidtab, tsid);
 939	if (!tcontext) {
 940		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 941		       __func__, tsid);
 942		goto out;
 943	}
 944
 945	tclass = unmap_class(orig_tclass);
 946	if (unlikely(orig_tclass && !tclass)) {
 947		if (policydb.allow_unknown)
 948			goto allow;
 949		goto out;
 950	}
 951	context_struct_compute_av(scontext, tcontext, tclass, avd);
 952	map_decision(orig_tclass, avd, policydb.allow_unknown);
 
 
 953out:
 954	read_unlock(&policy_rwlock);
 955	return;
 956allow:
 957	avd->allowed = 0xffffffff;
 958	goto out;
 959}
 960
 961void security_compute_av_user(u32 ssid,
 
 962			      u32 tsid,
 963			      u16 tclass,
 964			      struct av_decision *avd)
 965{
 
 
 966	struct context *scontext = NULL, *tcontext = NULL;
 967
 968	read_lock(&policy_rwlock);
 969	avd_init(avd);
 970	if (!ss_initialized)
 971		goto allow;
 972
 973	scontext = sidtab_search(&sidtab, ssid);
 
 
 
 974	if (!scontext) {
 975		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 976		       __func__, ssid);
 977		goto out;
 978	}
 979
 980	/* permissive domain? */
 981	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 982		avd->flags |= AVD_FLAGS_PERMISSIVE;
 983
 984	tcontext = sidtab_search(&sidtab, tsid);
 985	if (!tcontext) {
 986		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 987		       __func__, tsid);
 988		goto out;
 989	}
 990
 991	if (unlikely(!tclass)) {
 992		if (policydb.allow_unknown)
 993			goto allow;
 994		goto out;
 995	}
 996
 997	context_struct_compute_av(scontext, tcontext, tclass, avd);
 
 998 out:
 999	read_unlock(&policy_rwlock);
1000	return;
1001allow:
1002	avd->allowed = 0xffffffff;
1003	goto out;
1004}
1005
1006/*
1007 * Write the security context string representation of
1008 * the context structure `context' into a dynamically
1009 * allocated string of the correct size.  Set `*scontext'
1010 * to point to this string and set `*scontext_len' to
1011 * the length of the string.
1012 */
1013static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
 
 
1014{
1015	char *scontextp;
1016
1017	if (scontext)
1018		*scontext = NULL;
1019	*scontext_len = 0;
1020
1021	if (context->len) {
1022		*scontext_len = context->len;
1023		*scontext = kstrdup(context->str, GFP_ATOMIC);
1024		if (!(*scontext))
1025			return -ENOMEM;
 
 
1026		return 0;
1027	}
1028
1029	/* Compute the size of the context. */
1030	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1031	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1032	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1033	*scontext_len += mls_compute_context_len(context);
1034
1035	if (!scontext)
1036		return 0;
1037
1038	/* Allocate space for the context; caller must free this space. */
1039	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1040	if (!scontextp)
1041		return -ENOMEM;
1042	*scontext = scontextp;
1043
1044	/*
1045	 * Copy the user name, role name and type name into the context.
1046	 */
1047	sprintf(scontextp, "%s:%s:%s",
1048		sym_name(&policydb, SYM_USERS, context->user - 1),
1049		sym_name(&policydb, SYM_ROLES, context->role - 1),
1050		sym_name(&policydb, SYM_TYPES, context->type - 1));
1051	scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1052		     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1053		     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1054
1055	mls_sid_to_context(context, &scontextp);
1056
1057	*scontextp = 0;
1058
1059	return 0;
1060}
1061
1062#include "initial_sid_to_string.h"
1063
1064const char *security_get_initial_sid_context(u32 sid)
1065{
1066	if (unlikely(sid > SECINITSID_NUM))
1067		return NULL;
1068	return initial_sid_to_string[sid];
1069}
1070
1071static int security_sid_to_context_core(u32 sid, char **scontext,
 
1072					u32 *scontext_len, int force)
1073{
 
 
1074	struct context *context;
1075	int rc = 0;
1076
1077	if (scontext)
1078		*scontext = NULL;
1079	*scontext_len  = 0;
1080
1081	if (!ss_initialized) {
1082		if (sid <= SECINITSID_NUM) {
1083			char *scontextp;
1084
1085			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1086			if (!scontext)
1087				goto out;
1088			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
 
1089			if (!scontextp) {
1090				rc = -ENOMEM;
1091				goto out;
1092			}
1093			strcpy(scontextp, initial_sid_to_string[sid]);
1094			*scontext = scontextp;
1095			goto out;
1096		}
1097		printk(KERN_ERR "SELinux: %s:  called before initial "
1098		       "load_policy on unknown SID %d\n", __func__, sid);
1099		rc = -EINVAL;
1100		goto out;
1101	}
1102	read_lock(&policy_rwlock);
 
 
1103	if (force)
1104		context = sidtab_search_force(&sidtab, sid);
1105	else
1106		context = sidtab_search(&sidtab, sid);
1107	if (!context) {
1108		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1109			__func__, sid);
1110		rc = -EINVAL;
1111		goto out_unlock;
1112	}
1113	rc = context_struct_to_string(context, scontext, scontext_len);
 
1114out_unlock:
1115	read_unlock(&policy_rwlock);
1116out:
1117	return rc;
1118
1119}
1120
1121/**
1122 * security_sid_to_context - Obtain a context for a given SID.
1123 * @sid: security identifier, SID
1124 * @scontext: security context
1125 * @scontext_len: length in bytes
1126 *
1127 * Write the string representation of the context associated with @sid
1128 * into a dynamically allocated string of the correct size.  Set @scontext
1129 * to point to this string and set @scontext_len to the length of the string.
1130 */
1131int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
 
1132{
1133	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
 
1134}
1135
1136int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
 
1137{
1138	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
 
1139}
1140
1141/*
1142 * Caveat:  Mutates scontext.
1143 */
1144static int string_to_context_struct(struct policydb *pol,
1145				    struct sidtab *sidtabp,
1146				    char *scontext,
1147				    u32 scontext_len,
1148				    struct context *ctx,
1149				    u32 def_sid)
1150{
1151	struct role_datum *role;
1152	struct type_datum *typdatum;
1153	struct user_datum *usrdatum;
1154	char *scontextp, *p, oldc;
1155	int rc = 0;
1156
1157	context_init(ctx);
1158
1159	/* Parse the security context. */
1160
1161	rc = -EINVAL;
1162	scontextp = (char *) scontext;
1163
1164	/* Extract the user. */
1165	p = scontextp;
1166	while (*p && *p != ':')
1167		p++;
1168
1169	if (*p == 0)
1170		goto out;
1171
1172	*p++ = 0;
1173
1174	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1175	if (!usrdatum)
1176		goto out;
1177
1178	ctx->user = usrdatum->value;
1179
1180	/* Extract role. */
1181	scontextp = p;
1182	while (*p && *p != ':')
1183		p++;
1184
1185	if (*p == 0)
1186		goto out;
1187
1188	*p++ = 0;
1189
1190	role = hashtab_search(pol->p_roles.table, scontextp);
1191	if (!role)
1192		goto out;
1193	ctx->role = role->value;
1194
1195	/* Extract type. */
1196	scontextp = p;
1197	while (*p && *p != ':')
1198		p++;
1199	oldc = *p;
1200	*p++ = 0;
1201
1202	typdatum = hashtab_search(pol->p_types.table, scontextp);
1203	if (!typdatum || typdatum->attribute)
1204		goto out;
1205
1206	ctx->type = typdatum->value;
1207
1208	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1209	if (rc)
1210		goto out;
1211
1212	rc = -EINVAL;
1213	if ((p - scontext) < scontext_len)
1214		goto out;
1215
1216	/* Check the validity of the new context. */
1217	if (!policydb_context_isvalid(pol, ctx))
1218		goto out;
1219	rc = 0;
1220out:
1221	if (rc)
1222		context_destroy(ctx);
1223	return rc;
1224}
1225
1226static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
 
1227					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1228					int force)
1229{
 
 
1230	char *scontext2, *str = NULL;
1231	struct context context;
1232	int rc = 0;
1233
1234	if (!ss_initialized) {
 
 
 
 
 
 
 
 
 
1235		int i;
1236
1237		for (i = 1; i < SECINITSID_NUM; i++) {
1238			if (!strcmp(initial_sid_to_string[i], scontext)) {
1239				*sid = i;
1240				return 0;
1241			}
1242		}
1243		*sid = SECINITSID_KERNEL;
1244		return 0;
1245	}
1246	*sid = SECSID_NULL;
1247
1248	/* Copy the string so that we can modify the copy as we parse it. */
1249	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1250	if (!scontext2)
1251		return -ENOMEM;
1252	memcpy(scontext2, scontext, scontext_len);
1253	scontext2[scontext_len] = 0;
1254
1255	if (force) {
1256		/* Save another copy for storing in uninterpreted form */
1257		rc = -ENOMEM;
1258		str = kstrdup(scontext2, gfp_flags);
1259		if (!str)
1260			goto out;
1261	}
1262
1263	read_lock(&policy_rwlock);
1264	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
 
1265				      scontext_len, &context, def_sid);
1266	if (rc == -EINVAL && force) {
1267		context.str = str;
1268		context.len = scontext_len;
1269		str = NULL;
1270	} else if (rc)
1271		goto out_unlock;
1272	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1273	context_destroy(&context);
1274out_unlock:
1275	read_unlock(&policy_rwlock);
1276out:
1277	kfree(scontext2);
1278	kfree(str);
1279	return rc;
1280}
1281
1282/**
1283 * security_context_to_sid - Obtain a SID for a given security context.
1284 * @scontext: security context
1285 * @scontext_len: length in bytes
1286 * @sid: security identifier, SID
 
1287 *
1288 * Obtains a SID associated with the security context that
1289 * has the string representation specified by @scontext.
1290 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1291 * memory is available, or 0 on success.
1292 */
1293int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
 
 
 
 
 
 
 
 
 
1294{
1295	return security_context_to_sid_core(scontext, scontext_len,
1296					    sid, SECSID_NULL, GFP_KERNEL, 0);
1297}
1298
1299/**
1300 * security_context_to_sid_default - Obtain a SID for a given security context,
1301 * falling back to specified default if needed.
1302 *
1303 * @scontext: security context
1304 * @scontext_len: length in bytes
1305 * @sid: security identifier, SID
1306 * @def_sid: default SID to assign on error
1307 *
1308 * Obtains a SID associated with the security context that
1309 * has the string representation specified by @scontext.
1310 * The default SID is passed to the MLS layer to be used to allow
1311 * kernel labeling of the MLS field if the MLS field is not present
1312 * (for upgrading to MLS without full relabel).
1313 * Implicitly forces adding of the context even if it cannot be mapped yet.
1314 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1315 * memory is available, or 0 on success.
1316 */
1317int security_context_to_sid_default(const char *scontext, u32 scontext_len,
 
1318				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1319{
1320	return security_context_to_sid_core(scontext, scontext_len,
1321					    sid, def_sid, gfp_flags, 1);
1322}
1323
1324int security_context_to_sid_force(const char *scontext, u32 scontext_len,
 
1325				  u32 *sid)
1326{
1327	return security_context_to_sid_core(scontext, scontext_len,
1328					    sid, SECSID_NULL, GFP_KERNEL, 1);
1329}
1330
1331static int compute_sid_handle_invalid_context(
 
1332	struct context *scontext,
1333	struct context *tcontext,
1334	u16 tclass,
1335	struct context *newcontext)
1336{
 
1337	char *s = NULL, *t = NULL, *n = NULL;
1338	u32 slen, tlen, nlen;
1339
1340	if (context_struct_to_string(scontext, &s, &slen))
1341		goto out;
1342	if (context_struct_to_string(tcontext, &t, &tlen))
1343		goto out;
1344	if (context_struct_to_string(newcontext, &n, &nlen))
1345		goto out;
1346	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1347		  "security_compute_sid:  invalid context %s"
1348		  " for scontext=%s"
1349		  " tcontext=%s"
1350		  " tclass=%s",
1351		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1352out:
1353	kfree(s);
1354	kfree(t);
1355	kfree(n);
1356	if (!selinux_enforcing)
1357		return 0;
1358	return -EACCES;
1359}
1360
1361static void filename_compute_type(struct policydb *p, struct context *newcontext,
 
1362				  u32 stype, u32 ttype, u16 tclass,
1363				  const char *objname)
1364{
1365	struct filename_trans ft;
1366	struct filename_trans_datum *otype;
1367
1368	/*
1369	 * Most filename trans rules are going to live in specific directories
1370	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1371	 * if the ttype does not contain any rules.
1372	 */
1373	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1374		return;
1375
1376	ft.stype = stype;
1377	ft.ttype = ttype;
1378	ft.tclass = tclass;
1379	ft.name = objname;
1380
1381	otype = hashtab_search(p->filename_trans, &ft);
1382	if (otype)
1383		newcontext->type = otype->otype;
1384}
1385
1386static int security_compute_sid(u32 ssid,
 
1387				u32 tsid,
1388				u16 orig_tclass,
1389				u32 specified,
1390				const char *objname,
1391				u32 *out_sid,
1392				bool kern)
1393{
 
 
 
1394	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1395	struct role_trans *roletr = NULL;
1396	struct avtab_key avkey;
1397	struct avtab_datum *avdatum;
1398	struct avtab_node *node;
1399	u16 tclass;
1400	int rc = 0;
1401	bool sock;
1402
1403	if (!ss_initialized) {
1404		switch (orig_tclass) {
1405		case SECCLASS_PROCESS: /* kernel value */
1406			*out_sid = ssid;
1407			break;
1408		default:
1409			*out_sid = tsid;
1410			break;
1411		}
1412		goto out;
1413	}
1414
1415	context_init(&newcontext);
1416
1417	read_lock(&policy_rwlock);
1418
1419	if (kern) {
1420		tclass = unmap_class(orig_tclass);
1421		sock = security_is_socket_class(orig_tclass);
1422	} else {
1423		tclass = orig_tclass;
1424		sock = security_is_socket_class(map_class(tclass));
 
1425	}
1426
1427	scontext = sidtab_search(&sidtab, ssid);
 
 
 
1428	if (!scontext) {
1429		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1430		       __func__, ssid);
1431		rc = -EINVAL;
1432		goto out_unlock;
1433	}
1434	tcontext = sidtab_search(&sidtab, tsid);
1435	if (!tcontext) {
1436		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1437		       __func__, tsid);
1438		rc = -EINVAL;
1439		goto out_unlock;
1440	}
1441
 
 
 
1442	/* Set the user identity. */
1443	switch (specified) {
1444	case AVTAB_TRANSITION:
1445	case AVTAB_CHANGE:
1446		/* Use the process user identity. */
1447		newcontext.user = scontext->user;
 
 
 
 
 
1448		break;
1449	case AVTAB_MEMBER:
1450		/* Use the related object owner. */
1451		newcontext.user = tcontext->user;
1452		break;
1453	}
1454
1455	/* Set the role and type to default values. */
1456	if ((tclass == policydb.process_class) || (sock == true)) {
1457		/* Use the current role and type of process. */
1458		newcontext.role = scontext->role;
1459		newcontext.type = scontext->type;
 
1460	} else {
1461		/* Use the well-defined object role. */
1462		newcontext.role = OBJECT_R_VAL;
1463		/* Use the type of the related object. */
 
 
 
 
 
 
 
1464		newcontext.type = tcontext->type;
 
 
 
 
 
 
 
 
1465	}
1466
1467	/* Look for a type transition/member/change rule. */
1468	avkey.source_type = scontext->type;
1469	avkey.target_type = tcontext->type;
1470	avkey.target_class = tclass;
1471	avkey.specified = specified;
1472	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1473
1474	/* If no permanent rule, also check for enabled conditional rules */
1475	if (!avdatum) {
1476		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1477		for (; node; node = avtab_search_node_next(node, specified)) {
1478			if (node->key.specified & AVTAB_ENABLED) {
1479				avdatum = &node->datum;
1480				break;
1481			}
1482		}
1483	}
1484
1485	if (avdatum) {
1486		/* Use the type from the type transition/member/change rule. */
1487		newcontext.type = avdatum->data;
1488	}
1489
1490	/* if we have a objname this is a file trans check so check those rules */
1491	if (objname)
1492		filename_compute_type(&policydb, &newcontext, scontext->type,
1493				      tcontext->type, tclass, objname);
1494
1495	/* Check for class-specific changes. */
1496	if (specified & AVTAB_TRANSITION) {
1497		/* Look for a role transition rule. */
1498		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
 
1499			if ((roletr->role == scontext->role) &&
1500			    (roletr->type == tcontext->type) &&
1501			    (roletr->tclass == tclass)) {
1502				/* Use the role transition rule. */
1503				newcontext.role = roletr->new_role;
1504				break;
1505			}
1506		}
1507	}
1508
1509	/* Set the MLS attributes.
1510	   This is done last because it may allocate memory. */
1511	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1512			     &newcontext, sock);
1513	if (rc)
1514		goto out_unlock;
1515
1516	/* Check the validity of the context. */
1517	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1518		rc = compute_sid_handle_invalid_context(scontext,
1519							tcontext,
1520							tclass,
1521							&newcontext);
1522		if (rc)
1523			goto out_unlock;
1524	}
1525	/* Obtain the sid for the context. */
1526	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1527out_unlock:
1528	read_unlock(&policy_rwlock);
1529	context_destroy(&newcontext);
1530out:
1531	return rc;
1532}
1533
1534/**
1535 * security_transition_sid - Compute the SID for a new subject/object.
1536 * @ssid: source security identifier
1537 * @tsid: target security identifier
1538 * @tclass: target security class
1539 * @out_sid: security identifier for new subject/object
1540 *
1541 * Compute a SID to use for labeling a new subject or object in the
1542 * class @tclass based on a SID pair (@ssid, @tsid).
1543 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1544 * if insufficient memory is available, or %0 if the new SID was
1545 * computed successfully.
1546 */
1547int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
 
1548			    const struct qstr *qstr, u32 *out_sid)
1549{
1550	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1551				    qstr ? qstr->name : NULL, out_sid, true);
1552}
1553
1554int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
 
1555				 const char *objname, u32 *out_sid)
1556{
1557	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1558				    objname, out_sid, false);
1559}
1560
1561/**
1562 * security_member_sid - Compute the SID for member selection.
1563 * @ssid: source security identifier
1564 * @tsid: target security identifier
1565 * @tclass: target security class
1566 * @out_sid: security identifier for selected member
1567 *
1568 * Compute a SID to use when selecting a member of a polyinstantiated
1569 * object of class @tclass based on a SID pair (@ssid, @tsid).
1570 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1571 * if insufficient memory is available, or %0 if the SID was
1572 * computed successfully.
1573 */
1574int security_member_sid(u32 ssid,
 
1575			u32 tsid,
1576			u16 tclass,
1577			u32 *out_sid)
1578{
1579	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
 
1580				    out_sid, false);
1581}
1582
1583/**
1584 * security_change_sid - Compute the SID for object relabeling.
1585 * @ssid: source security identifier
1586 * @tsid: target security identifier
1587 * @tclass: target security class
1588 * @out_sid: security identifier for selected member
1589 *
1590 * Compute a SID to use for relabeling an object of class @tclass
1591 * based on a SID pair (@ssid, @tsid).
1592 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1593 * if insufficient memory is available, or %0 if the SID was
1594 * computed successfully.
1595 */
1596int security_change_sid(u32 ssid,
 
1597			u32 tsid,
1598			u16 tclass,
1599			u32 *out_sid)
1600{
1601	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
 
1602				    out_sid, false);
1603}
1604
1605/* Clone the SID into the new SID table. */
1606static int clone_sid(u32 sid,
1607		     struct context *context,
1608		     void *arg)
1609{
1610	struct sidtab *s = arg;
1611
1612	if (sid > SECINITSID_NUM)
1613		return sidtab_insert(s, sid, context);
1614	else
1615		return 0;
1616}
1617
1618static inline int convert_context_handle_invalid_context(struct context *context)
 
 
1619{
 
1620	char *s;
1621	u32 len;
1622
1623	if (selinux_enforcing)
1624		return -EINVAL;
1625
1626	if (!context_struct_to_string(context, &s, &len)) {
1627		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1628		kfree(s);
1629	}
1630	return 0;
1631}
1632
1633struct convert_context_args {
 
1634	struct policydb *oldp;
1635	struct policydb *newp;
1636};
1637
1638/*
1639 * Convert the values in the security context
1640 * structure `c' from the values specified
1641 * in the policy `p->oldp' to the values specified
1642 * in the policy `p->newp'.  Verify that the
1643 * context is valid under the new policy.
1644 */
1645static int convert_context(u32 key,
1646			   struct context *c,
1647			   void *p)
1648{
1649	struct convert_context_args *args;
1650	struct context oldc;
1651	struct ocontext *oc;
1652	struct mls_range *range;
1653	struct role_datum *role;
1654	struct type_datum *typdatum;
1655	struct user_datum *usrdatum;
1656	char *s;
1657	u32 len;
1658	int rc = 0;
1659
1660	if (key <= SECINITSID_NUM)
1661		goto out;
1662
1663	args = p;
1664
1665	if (c->str) {
1666		struct context ctx;
1667
1668		rc = -ENOMEM;
1669		s = kstrdup(c->str, GFP_KERNEL);
1670		if (!s)
1671			goto out;
1672
1673		rc = string_to_context_struct(args->newp, NULL, s,
1674					      c->len, &ctx, SECSID_NULL);
1675		kfree(s);
1676		if (!rc) {
1677			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1678			       c->str);
1679			/* Replace string with mapped representation. */
1680			kfree(c->str);
1681			memcpy(c, &ctx, sizeof(*c));
1682			goto out;
1683		} else if (rc == -EINVAL) {
1684			/* Retain string representation for later mapping. */
1685			rc = 0;
1686			goto out;
1687		} else {
1688			/* Other error condition, e.g. ENOMEM. */
1689			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1690			       c->str, -rc);
1691			goto out;
1692		}
1693	}
1694
1695	rc = context_cpy(&oldc, c);
1696	if (rc)
1697		goto out;
1698
1699	/* Convert the user. */
1700	rc = -EINVAL;
1701	usrdatum = hashtab_search(args->newp->p_users.table,
1702				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1703	if (!usrdatum)
1704		goto bad;
1705	c->user = usrdatum->value;
1706
1707	/* Convert the role. */
1708	rc = -EINVAL;
1709	role = hashtab_search(args->newp->p_roles.table,
1710			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1711	if (!role)
1712		goto bad;
1713	c->role = role->value;
1714
1715	/* Convert the type. */
1716	rc = -EINVAL;
1717	typdatum = hashtab_search(args->newp->p_types.table,
1718				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1719	if (!typdatum)
1720		goto bad;
1721	c->type = typdatum->value;
1722
1723	/* Convert the MLS fields if dealing with MLS policies */
1724	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1725		rc = mls_convert_context(args->oldp, args->newp, c);
1726		if (rc)
1727			goto bad;
1728	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1729		/*
1730		 * Switching between MLS and non-MLS policy:
1731		 * free any storage used by the MLS fields in the
1732		 * context for all existing entries in the sidtab.
1733		 */
1734		mls_context_destroy(c);
1735	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1736		/*
1737		 * Switching between non-MLS and MLS policy:
1738		 * ensure that the MLS fields of the context for all
1739		 * existing entries in the sidtab are filled in with a
1740		 * suitable default value, likely taken from one of the
1741		 * initial SIDs.
1742		 */
1743		oc = args->newp->ocontexts[OCON_ISID];
1744		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1745			oc = oc->next;
1746		rc = -EINVAL;
1747		if (!oc) {
1748			printk(KERN_ERR "SELinux:  unable to look up"
1749				" the initial SIDs list\n");
1750			goto bad;
1751		}
1752		range = &oc->context[0].range;
1753		rc = mls_range_set(c, range);
1754		if (rc)
1755			goto bad;
1756	}
1757
1758	/* Check the validity of the new context. */
1759	if (!policydb_context_isvalid(args->newp, c)) {
1760		rc = convert_context_handle_invalid_context(&oldc);
 
1761		if (rc)
1762			goto bad;
1763	}
1764
1765	context_destroy(&oldc);
1766
1767	rc = 0;
1768out:
1769	return rc;
1770bad:
1771	/* Map old representation to string and save it. */
1772	rc = context_struct_to_string(&oldc, &s, &len);
1773	if (rc)
1774		return rc;
1775	context_destroy(&oldc);
1776	context_destroy(c);
1777	c->str = s;
1778	c->len = len;
1779	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1780	       c->str);
1781	rc = 0;
1782	goto out;
1783}
1784
1785static void security_load_policycaps(void)
1786{
1787	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1788						  POLICYDB_CAPABILITY_NETPEER);
1789	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1790						  POLICYDB_CAPABILITY_OPENPERM);
 
 
 
 
 
 
 
 
 
 
 
 
 
1791}
1792
1793extern void selinux_complete_init(void);
1794static int security_preserve_bools(struct policydb *p);
1795
1796/**
1797 * security_load_policy - Load a security policy configuration.
1798 * @data: binary policy data
1799 * @len: length of data in bytes
1800 *
1801 * Load a new set of security policy configuration data,
1802 * validate it and convert the SID table as necessary.
1803 * This function will flush the access vector cache after
1804 * loading the new policy.
1805 */
1806int security_load_policy(void *data, size_t len)
1807{
1808	struct policydb oldpolicydb, newpolicydb;
 
 
1809	struct sidtab oldsidtab, newsidtab;
1810	struct selinux_mapping *oldmap, *map = NULL;
 
1811	struct convert_context_args args;
1812	u32 seqno;
1813	u16 map_size;
1814	int rc = 0;
1815	struct policy_file file = { data, len }, *fp = &file;
1816
1817	if (!ss_initialized) {
1818		avtab_cache_init();
1819		rc = policydb_read(&policydb, fp);
1820		if (rc) {
1821			avtab_cache_destroy();
1822			return rc;
1823		}
 
 
 
 
 
 
 
1824
1825		policydb.len = len;
1826		rc = selinux_set_mapping(&policydb, secclass_map,
1827					 &current_mapping,
1828					 &current_mapping_size);
1829		if (rc) {
1830			policydb_destroy(&policydb);
1831			avtab_cache_destroy();
1832			return rc;
1833		}
1834
1835		rc = policydb_load_isids(&policydb, &sidtab);
1836		if (rc) {
1837			policydb_destroy(&policydb);
1838			avtab_cache_destroy();
1839			return rc;
1840		}
1841
1842		security_load_policycaps();
1843		ss_initialized = 1;
1844		seqno = ++latest_granting;
1845		selinux_complete_init();
1846		avc_ss_reset(seqno);
1847		selnl_notify_policyload(seqno);
1848		selinux_status_update_policyload(seqno);
1849		selinux_netlbl_cache_invalidate();
1850		selinux_xfrm_notify_policyload();
1851		return 0;
1852	}
1853
1854#if 0
1855	sidtab_hash_eval(&sidtab, "sids");
1856#endif
1857
1858	rc = policydb_read(&newpolicydb, fp);
1859	if (rc)
1860		return rc;
1861
1862	newpolicydb.len = len;
1863	/* If switching between different policy types, log MLS status */
1864	if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1865		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1866	else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1867		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1868
1869	rc = policydb_load_isids(&newpolicydb, &newsidtab);
1870	if (rc) {
1871		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1872		policydb_destroy(&newpolicydb);
1873		return rc;
1874	}
1875
1876	rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1877	if (rc)
1878		goto err;
1879
1880	rc = security_preserve_bools(&newpolicydb);
1881	if (rc) {
1882		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1883		goto err;
1884	}
1885
1886	/* Clone the SID table. */
1887	sidtab_shutdown(&sidtab);
1888
1889	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1890	if (rc)
1891		goto err;
1892
1893	/*
1894	 * Convert the internal representations of contexts
1895	 * in the new SID table.
1896	 */
1897	args.oldp = &policydb;
1898	args.newp = &newpolicydb;
 
1899	rc = sidtab_map(&newsidtab, convert_context, &args);
1900	if (rc) {
1901		printk(KERN_ERR "SELinux:  unable to convert the internal"
1902			" representation of contexts in the new SID"
1903			" table\n");
1904		goto err;
1905	}
1906
1907	/* Save the old policydb and SID table to free later. */
1908	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1909	sidtab_set(&oldsidtab, &sidtab);
1910
1911	/* Install the new policydb and SID table. */
1912	write_lock_irq(&policy_rwlock);
1913	memcpy(&policydb, &newpolicydb, sizeof policydb);
1914	sidtab_set(&sidtab, &newsidtab);
1915	security_load_policycaps();
1916	oldmap = current_mapping;
1917	current_mapping = map;
1918	current_mapping_size = map_size;
1919	seqno = ++latest_granting;
1920	write_unlock_irq(&policy_rwlock);
1921
1922	/* Free the old policydb and SID table. */
1923	policydb_destroy(&oldpolicydb);
1924	sidtab_destroy(&oldsidtab);
1925	kfree(oldmap);
1926
1927	avc_ss_reset(seqno);
1928	selnl_notify_policyload(seqno);
1929	selinux_status_update_policyload(seqno);
1930	selinux_netlbl_cache_invalidate();
1931	selinux_xfrm_notify_policyload();
1932
1933	return 0;
 
1934
1935err:
1936	kfree(map);
1937	sidtab_destroy(&newsidtab);
1938	policydb_destroy(&newpolicydb);
1939	return rc;
1940
 
 
 
1941}
1942
1943size_t security_policydb_len(void)
1944{
 
1945	size_t len;
1946
1947	read_lock(&policy_rwlock);
1948	len = policydb.len;
1949	read_unlock(&policy_rwlock);
1950
1951	return len;
1952}
1953
1954/**
1955 * security_port_sid - Obtain the SID for a port.
1956 * @protocol: protocol number
1957 * @port: port number
1958 * @out_sid: security identifier
1959 */
1960int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
 
1961{
 
 
1962	struct ocontext *c;
1963	int rc = 0;
1964
1965	read_lock(&policy_rwlock);
1966
1967	c = policydb.ocontexts[OCON_PORT];
 
 
 
1968	while (c) {
1969		if (c->u.port.protocol == protocol &&
1970		    c->u.port.low_port <= port &&
1971		    c->u.port.high_port >= port)
1972			break;
1973		c = c->next;
1974	}
1975
1976	if (c) {
1977		if (!c->sid[0]) {
1978			rc = sidtab_context_to_sid(&sidtab,
1979						   &c->context[0],
1980						   &c->sid[0]);
1981			if (rc)
1982				goto out;
1983		}
1984		*out_sid = c->sid[0];
1985	} else {
1986		*out_sid = SECINITSID_PORT;
1987	}
1988
1989out:
1990	read_unlock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991	return rc;
1992}
1993
1994/**
1995 * security_netif_sid - Obtain the SID for a network interface.
1996 * @name: interface name
1997 * @if_sid: interface SID
1998 */
1999int security_netif_sid(char *name, u32 *if_sid)
 
2000{
 
 
2001	int rc = 0;
2002	struct ocontext *c;
2003
2004	read_lock(&policy_rwlock);
2005
2006	c = policydb.ocontexts[OCON_NETIF];
 
 
 
2007	while (c) {
2008		if (strcmp(name, c->u.name) == 0)
2009			break;
2010		c = c->next;
2011	}
2012
2013	if (c) {
2014		if (!c->sid[0] || !c->sid[1]) {
2015			rc = sidtab_context_to_sid(&sidtab,
2016						  &c->context[0],
2017						  &c->sid[0]);
2018			if (rc)
2019				goto out;
2020			rc = sidtab_context_to_sid(&sidtab,
2021						   &c->context[1],
2022						   &c->sid[1]);
2023			if (rc)
2024				goto out;
2025		}
2026		*if_sid = c->sid[0];
2027	} else
2028		*if_sid = SECINITSID_NETIF;
2029
2030out:
2031	read_unlock(&policy_rwlock);
2032	return rc;
2033}
2034
2035static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2036{
2037	int i, fail = 0;
2038
2039	for (i = 0; i < 4; i++)
2040		if (addr[i] != (input[i] & mask[i])) {
2041			fail = 1;
2042			break;
2043		}
2044
2045	return !fail;
2046}
2047
2048/**
2049 * security_node_sid - Obtain the SID for a node (host).
2050 * @domain: communication domain aka address family
2051 * @addrp: address
2052 * @addrlen: address length in bytes
2053 * @out_sid: security identifier
2054 */
2055int security_node_sid(u16 domain,
 
2056		      void *addrp,
2057		      u32 addrlen,
2058		      u32 *out_sid)
2059{
 
 
2060	int rc;
2061	struct ocontext *c;
2062
2063	read_lock(&policy_rwlock);
 
 
 
2064
2065	switch (domain) {
2066	case AF_INET: {
2067		u32 addr;
2068
2069		rc = -EINVAL;
2070		if (addrlen != sizeof(u32))
2071			goto out;
2072
2073		addr = *((u32 *)addrp);
2074
2075		c = policydb.ocontexts[OCON_NODE];
2076		while (c) {
2077			if (c->u.node.addr == (addr & c->u.node.mask))
2078				break;
2079			c = c->next;
2080		}
2081		break;
2082	}
2083
2084	case AF_INET6:
2085		rc = -EINVAL;
2086		if (addrlen != sizeof(u64) * 2)
2087			goto out;
2088		c = policydb.ocontexts[OCON_NODE6];
2089		while (c) {
2090			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2091						c->u.node6.mask))
2092				break;
2093			c = c->next;
2094		}
2095		break;
2096
2097	default:
2098		rc = 0;
2099		*out_sid = SECINITSID_NODE;
2100		goto out;
2101	}
2102
2103	if (c) {
2104		if (!c->sid[0]) {
2105			rc = sidtab_context_to_sid(&sidtab,
2106						   &c->context[0],
2107						   &c->sid[0]);
2108			if (rc)
2109				goto out;
2110		}
2111		*out_sid = c->sid[0];
2112	} else {
2113		*out_sid = SECINITSID_NODE;
2114	}
2115
2116	rc = 0;
2117out:
2118	read_unlock(&policy_rwlock);
2119	return rc;
2120}
2121
2122#define SIDS_NEL 25
2123
2124/**
2125 * security_get_user_sids - Obtain reachable SIDs for a user.
2126 * @fromsid: starting SID
2127 * @username: username
2128 * @sids: array of reachable SIDs for user
2129 * @nel: number of elements in @sids
2130 *
2131 * Generate the set of SIDs for legal security contexts
2132 * for a given user that can be reached by @fromsid.
2133 * Set *@sids to point to a dynamically allocated
2134 * array containing the set of SIDs.  Set *@nel to the
2135 * number of elements in the array.
2136 */
2137
2138int security_get_user_sids(u32 fromsid,
 
2139			   char *username,
2140			   u32 **sids,
2141			   u32 *nel)
2142{
 
 
2143	struct context *fromcon, usercon;
2144	u32 *mysids = NULL, *mysids2, sid;
2145	u32 mynel = 0, maxnel = SIDS_NEL;
2146	struct user_datum *user;
2147	struct role_datum *role;
2148	struct ebitmap_node *rnode, *tnode;
2149	int rc = 0, i, j;
2150
2151	*sids = NULL;
2152	*nel = 0;
2153
2154	if (!ss_initialized)
2155		goto out;
2156
2157	read_lock(&policy_rwlock);
 
 
 
2158
2159	context_init(&usercon);
2160
2161	rc = -EINVAL;
2162	fromcon = sidtab_search(&sidtab, fromsid);
2163	if (!fromcon)
2164		goto out_unlock;
2165
2166	rc = -EINVAL;
2167	user = hashtab_search(policydb.p_users.table, username);
2168	if (!user)
2169		goto out_unlock;
2170
2171	usercon.user = user->value;
2172
2173	rc = -ENOMEM;
2174	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2175	if (!mysids)
2176		goto out_unlock;
2177
2178	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2179		role = policydb.role_val_to_struct[i];
2180		usercon.role = i + 1;
2181		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2182			usercon.type = j + 1;
2183
2184			if (mls_setup_user_range(fromcon, user, &usercon))
 
2185				continue;
2186
2187			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2188			if (rc)
2189				goto out_unlock;
2190			if (mynel < maxnel) {
2191				mysids[mynel++] = sid;
2192			} else {
2193				rc = -ENOMEM;
2194				maxnel += SIDS_NEL;
2195				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2196				if (!mysids2)
2197					goto out_unlock;
2198				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2199				kfree(mysids);
2200				mysids = mysids2;
2201				mysids[mynel++] = sid;
2202			}
2203		}
2204	}
2205	rc = 0;
2206out_unlock:
2207	read_unlock(&policy_rwlock);
2208	if (rc || !mynel) {
2209		kfree(mysids);
2210		goto out;
2211	}
2212
2213	rc = -ENOMEM;
2214	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2215	if (!mysids2) {
2216		kfree(mysids);
2217		goto out;
2218	}
2219	for (i = 0, j = 0; i < mynel; i++) {
2220		struct av_decision dummy_avd;
2221		rc = avc_has_perm_noaudit(fromsid, mysids[i],
 
2222					  SECCLASS_PROCESS, /* kernel value */
2223					  PROCESS__TRANSITION, AVC_STRICT,
2224					  &dummy_avd);
2225		if (!rc)
2226			mysids2[j++] = mysids[i];
2227		cond_resched();
2228	}
2229	rc = 0;
2230	kfree(mysids);
2231	*sids = mysids2;
2232	*nel = j;
2233out:
2234	return rc;
2235}
2236
2237/**
2238 * security_genfs_sid - Obtain a SID for a file in a filesystem
2239 * @fstype: filesystem type
2240 * @path: path from root of mount
2241 * @sclass: file security class
2242 * @sid: SID for path
2243 *
2244 * Obtain a SID to use for a file in a filesystem that
2245 * cannot support xattr or use a fixed labeling behavior like
2246 * transition SIDs or task SIDs.
 
 
2247 */
2248int security_genfs_sid(const char *fstype,
2249		       char *path,
2250		       u16 orig_sclass,
2251		       u32 *sid)
 
2252{
 
 
2253	int len;
2254	u16 sclass;
2255	struct genfs *genfs;
2256	struct ocontext *c;
2257	int rc, cmp = 0;
2258
2259	while (path[0] == '/' && path[1] == '/')
2260		path++;
2261
2262	read_lock(&policy_rwlock);
2263
2264	sclass = unmap_class(orig_sclass);
2265	*sid = SECINITSID_UNLABELED;
2266
2267	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2268		cmp = strcmp(fstype, genfs->fstype);
2269		if (cmp <= 0)
2270			break;
2271	}
2272
2273	rc = -ENOENT;
2274	if (!genfs || cmp)
2275		goto out;
2276
2277	for (c = genfs->head; c; c = c->next) {
2278		len = strlen(c->u.name);
2279		if ((!c->v.sclass || sclass == c->v.sclass) &&
2280		    (strncmp(c->u.name, path, len) == 0))
2281			break;
2282	}
2283
2284	rc = -ENOENT;
2285	if (!c)
2286		goto out;
2287
2288	if (!c->sid[0]) {
2289		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2290		if (rc)
2291			goto out;
2292	}
2293
2294	*sid = c->sid[0];
2295	rc = 0;
2296out:
2297	read_unlock(&policy_rwlock);
2298	return rc;
2299}
2300
2301/**
2302 * security_fs_use - Determine how to handle labeling for a filesystem.
2303 * @fstype: filesystem type
2304 * @behavior: labeling behavior
2305 * @sid: SID for filesystem (superblock)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2306 */
2307int security_fs_use(
2308	const char *fstype,
2309	unsigned int *behavior,
2310	u32 *sid)
2311{
 
 
2312	int rc = 0;
2313	struct ocontext *c;
 
 
 
 
2314
2315	read_lock(&policy_rwlock);
 
2316
2317	c = policydb.ocontexts[OCON_FSUSE];
2318	while (c) {
2319		if (strcmp(fstype, c->u.name) == 0)
2320			break;
2321		c = c->next;
2322	}
2323
2324	if (c) {
2325		*behavior = c->v.behavior;
2326		if (!c->sid[0]) {
2327			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2328						   &c->sid[0]);
2329			if (rc)
2330				goto out;
2331		}
2332		*sid = c->sid[0];
2333	} else {
2334		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
 
2335		if (rc) {
2336			*behavior = SECURITY_FS_USE_NONE;
2337			rc = 0;
2338		} else {
2339			*behavior = SECURITY_FS_USE_GENFS;
2340		}
2341	}
2342
2343out:
2344	read_unlock(&policy_rwlock);
2345	return rc;
2346}
2347
2348int security_get_bools(int *len, char ***names, int **values)
 
2349{
 
2350	int i, rc;
2351
2352	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
2353	*names = NULL;
2354	*values = NULL;
2355
2356	rc = 0;
2357	*len = policydb.p_bools.nprim;
2358	if (!*len)
2359		goto out;
2360
2361	rc = -ENOMEM;
2362	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2363	if (!*names)
2364		goto err;
2365
2366	rc = -ENOMEM;
2367	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2368	if (!*values)
2369		goto err;
2370
2371	for (i = 0; i < *len; i++) {
2372		size_t name_len;
2373
2374		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2375		name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2376
2377		rc = -ENOMEM;
2378		(*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
 
2379		if (!(*names)[i])
2380			goto err;
2381
2382		strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2383		(*names)[i][name_len - 1] = 0;
2384	}
2385	rc = 0;
2386out:
2387	read_unlock(&policy_rwlock);
2388	return rc;
2389err:
2390	if (*names) {
2391		for (i = 0; i < *len; i++)
2392			kfree((*names)[i]);
2393	}
2394	kfree(*values);
2395	goto out;
2396}
2397
2398
2399int security_set_bools(int len, int *values)
2400{
 
2401	int i, rc;
2402	int lenp, seqno = 0;
2403	struct cond_node *cur;
2404
2405	write_lock_irq(&policy_rwlock);
 
 
2406
2407	rc = -EFAULT;
2408	lenp = policydb.p_bools.nprim;
2409	if (len != lenp)
2410		goto out;
2411
2412	for (i = 0; i < len; i++) {
2413		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2414			audit_log(current->audit_context, GFP_ATOMIC,
2415				AUDIT_MAC_CONFIG_CHANGE,
2416				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2417				sym_name(&policydb, SYM_BOOLS, i),
2418				!!values[i],
2419				policydb.bool_val_to_struct[i]->state,
2420				audit_get_loginuid(current),
2421				audit_get_sessionid(current));
2422		}
2423		if (values[i])
2424			policydb.bool_val_to_struct[i]->state = 1;
2425		else
2426			policydb.bool_val_to_struct[i]->state = 0;
2427	}
2428
2429	for (cur = policydb.cond_list; cur; cur = cur->next) {
2430		rc = evaluate_cond_node(&policydb, cur);
2431		if (rc)
2432			goto out;
2433	}
2434
2435	seqno = ++latest_granting;
2436	rc = 0;
2437out:
2438	write_unlock_irq(&policy_rwlock);
2439	if (!rc) {
2440		avc_ss_reset(seqno);
2441		selnl_notify_policyload(seqno);
2442		selinux_status_update_policyload(seqno);
2443		selinux_xfrm_notify_policyload();
2444	}
2445	return rc;
2446}
2447
2448int security_get_bool_value(int bool)
 
2449{
 
2450	int rc;
2451	int len;
2452
2453	read_lock(&policy_rwlock);
 
 
2454
2455	rc = -EFAULT;
2456	len = policydb.p_bools.nprim;
2457	if (bool >= len)
2458		goto out;
2459
2460	rc = policydb.bool_val_to_struct[bool]->state;
2461out:
2462	read_unlock(&policy_rwlock);
2463	return rc;
2464}
2465
2466static int security_preserve_bools(struct policydb *p)
 
2467{
2468	int rc, nbools = 0, *bvalues = NULL, i;
2469	char **bnames = NULL;
2470	struct cond_bool_datum *booldatum;
2471	struct cond_node *cur;
2472
2473	rc = security_get_bools(&nbools, &bnames, &bvalues);
2474	if (rc)
2475		goto out;
2476	for (i = 0; i < nbools; i++) {
2477		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2478		if (booldatum)
2479			booldatum->state = bvalues[i];
2480	}
2481	for (cur = p->cond_list; cur; cur = cur->next) {
2482		rc = evaluate_cond_node(p, cur);
2483		if (rc)
2484			goto out;
2485	}
2486
2487out:
2488	if (bnames) {
2489		for (i = 0; i < nbools; i++)
2490			kfree(bnames[i]);
2491	}
2492	kfree(bnames);
2493	kfree(bvalues);
2494	return rc;
2495}
2496
2497/*
2498 * security_sid_mls_copy() - computes a new sid based on the given
2499 * sid and the mls portion of mls_sid.
2500 */
2501int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
 
2502{
 
 
2503	struct context *context1;
2504	struct context *context2;
2505	struct context newcon;
2506	char *s;
2507	u32 len;
2508	int rc;
2509
2510	rc = 0;
2511	if (!ss_initialized || !policydb.mls_enabled) {
2512		*new_sid = sid;
2513		goto out;
2514	}
2515
2516	context_init(&newcon);
2517
2518	read_lock(&policy_rwlock);
2519
2520	rc = -EINVAL;
2521	context1 = sidtab_search(&sidtab, sid);
2522	if (!context1) {
2523		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2524			__func__, sid);
2525		goto out_unlock;
2526	}
2527
2528	rc = -EINVAL;
2529	context2 = sidtab_search(&sidtab, mls_sid);
2530	if (!context2) {
2531		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2532			__func__, mls_sid);
2533		goto out_unlock;
2534	}
2535
2536	newcon.user = context1->user;
2537	newcon.role = context1->role;
2538	newcon.type = context1->type;
2539	rc = mls_context_cpy(&newcon, context2);
2540	if (rc)
2541		goto out_unlock;
2542
2543	/* Check the validity of the new context. */
2544	if (!policydb_context_isvalid(&policydb, &newcon)) {
2545		rc = convert_context_handle_invalid_context(&newcon);
2546		if (rc) {
2547			if (!context_struct_to_string(&newcon, &s, &len)) {
2548				audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2549					  "security_sid_mls_copy: invalid context %s", s);
 
 
 
2550				kfree(s);
2551			}
2552			goto out_unlock;
2553		}
2554	}
2555
2556	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2557out_unlock:
2558	read_unlock(&policy_rwlock);
2559	context_destroy(&newcon);
2560out:
2561	return rc;
2562}
2563
2564/**
2565 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2566 * @nlbl_sid: NetLabel SID
2567 * @nlbl_type: NetLabel labeling protocol type
2568 * @xfrm_sid: XFRM SID
2569 *
2570 * Description:
2571 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2572 * resolved into a single SID it is returned via @peer_sid and the function
2573 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2574 * returns a negative value.  A table summarizing the behavior is below:
2575 *
2576 *                                 | function return |      @sid
2577 *   ------------------------------+-----------------+-----------------
2578 *   no peer labels                |        0        |    SECSID_NULL
2579 *   single peer label             |        0        |    <peer_label>
2580 *   multiple, consistent labels   |        0        |    <peer_label>
2581 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2582 *
2583 */
2584int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
 
2585				 u32 xfrm_sid,
2586				 u32 *peer_sid)
2587{
 
 
2588	int rc;
2589	struct context *nlbl_ctx;
2590	struct context *xfrm_ctx;
2591
2592	*peer_sid = SECSID_NULL;
2593
2594	/* handle the common (which also happens to be the set of easy) cases
2595	 * right away, these two if statements catch everything involving a
2596	 * single or absent peer SID/label */
2597	if (xfrm_sid == SECSID_NULL) {
2598		*peer_sid = nlbl_sid;
2599		return 0;
2600	}
2601	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2602	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2603	 * is present */
2604	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2605		*peer_sid = xfrm_sid;
2606		return 0;
2607	}
2608
2609	/* we don't need to check ss_initialized here since the only way both
 
2610	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2611	 * security server was initialized and ss_initialized was true */
2612	if (!policydb.mls_enabled)
 
2613		return 0;
2614
2615	read_lock(&policy_rwlock);
2616
2617	rc = -EINVAL;
2618	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2619	if (!nlbl_ctx) {
2620		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2621		       __func__, nlbl_sid);
2622		goto out;
2623	}
2624	rc = -EINVAL;
2625	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2626	if (!xfrm_ctx) {
2627		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2628		       __func__, xfrm_sid);
2629		goto out;
2630	}
2631	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2632	if (rc)
2633		goto out;
2634
2635	/* at present NetLabel SIDs/labels really only carry MLS
2636	 * information so if the MLS portion of the NetLabel SID
2637	 * matches the MLS portion of the labeled XFRM SID/label
2638	 * then pass along the XFRM SID as it is the most
2639	 * expressive */
2640	*peer_sid = xfrm_sid;
2641out:
2642	read_unlock(&policy_rwlock);
2643	return rc;
2644}
2645
2646static int get_classes_callback(void *k, void *d, void *args)
2647{
2648	struct class_datum *datum = d;
2649	char *name = k, **classes = args;
2650	int value = datum->value - 1;
2651
2652	classes[value] = kstrdup(name, GFP_ATOMIC);
2653	if (!classes[value])
2654		return -ENOMEM;
2655
2656	return 0;
2657}
2658
2659int security_get_classes(char ***classes, int *nclasses)
 
2660{
 
2661	int rc;
2662
2663	read_lock(&policy_rwlock);
 
 
 
 
 
 
2664
2665	rc = -ENOMEM;
2666	*nclasses = policydb.p_classes.nprim;
2667	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2668	if (!*classes)
2669		goto out;
2670
2671	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2672			*classes);
2673	if (rc) {
2674		int i;
2675		for (i = 0; i < *nclasses; i++)
2676			kfree((*classes)[i]);
2677		kfree(*classes);
2678	}
2679
2680out:
2681	read_unlock(&policy_rwlock);
2682	return rc;
2683}
2684
2685static int get_permissions_callback(void *k, void *d, void *args)
2686{
2687	struct perm_datum *datum = d;
2688	char *name = k, **perms = args;
2689	int value = datum->value - 1;
2690
2691	perms[value] = kstrdup(name, GFP_ATOMIC);
2692	if (!perms[value])
2693		return -ENOMEM;
2694
2695	return 0;
2696}
2697
2698int security_get_permissions(char *class, char ***perms, int *nperms)
 
2699{
 
2700	int rc, i;
2701	struct class_datum *match;
2702
2703	read_lock(&policy_rwlock);
2704
2705	rc = -EINVAL;
2706	match = hashtab_search(policydb.p_classes.table, class);
2707	if (!match) {
2708		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2709			__func__, class);
2710		goto out;
2711	}
2712
2713	rc = -ENOMEM;
2714	*nperms = match->permissions.nprim;
2715	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2716	if (!*perms)
2717		goto out;
2718
2719	if (match->comdatum) {
2720		rc = hashtab_map(match->comdatum->permissions.table,
2721				get_permissions_callback, *perms);
2722		if (rc)
2723			goto err;
2724	}
2725
2726	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2727			*perms);
2728	if (rc)
2729		goto err;
2730
2731out:
2732	read_unlock(&policy_rwlock);
2733	return rc;
2734
2735err:
2736	read_unlock(&policy_rwlock);
2737	for (i = 0; i < *nperms; i++)
2738		kfree((*perms)[i]);
2739	kfree(*perms);
2740	return rc;
2741}
2742
2743int security_get_reject_unknown(void)
2744{
2745	return policydb.reject_unknown;
2746}
2747
2748int security_get_allow_unknown(void)
2749{
2750	return policydb.allow_unknown;
2751}
2752
2753/**
2754 * security_policycap_supported - Check for a specific policy capability
2755 * @req_cap: capability
2756 *
2757 * Description:
2758 * This function queries the currently loaded policy to see if it supports the
2759 * capability specified by @req_cap.  Returns true (1) if the capability is
2760 * supported, false (0) if it isn't supported.
2761 *
2762 */
2763int security_policycap_supported(unsigned int req_cap)
 
2764{
 
2765	int rc;
2766
2767	read_lock(&policy_rwlock);
2768	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2769	read_unlock(&policy_rwlock);
2770
2771	return rc;
2772}
2773
2774struct selinux_audit_rule {
2775	u32 au_seqno;
2776	struct context au_ctxt;
2777};
2778
2779void selinux_audit_rule_free(void *vrule)
2780{
2781	struct selinux_audit_rule *rule = vrule;
2782
2783	if (rule) {
2784		context_destroy(&rule->au_ctxt);
2785		kfree(rule);
2786	}
2787}
2788
2789int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2790{
 
 
2791	struct selinux_audit_rule *tmprule;
2792	struct role_datum *roledatum;
2793	struct type_datum *typedatum;
2794	struct user_datum *userdatum;
2795	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2796	int rc = 0;
2797
2798	*rule = NULL;
2799
2800	if (!ss_initialized)
2801		return -EOPNOTSUPP;
2802
2803	switch (field) {
2804	case AUDIT_SUBJ_USER:
2805	case AUDIT_SUBJ_ROLE:
2806	case AUDIT_SUBJ_TYPE:
2807	case AUDIT_OBJ_USER:
2808	case AUDIT_OBJ_ROLE:
2809	case AUDIT_OBJ_TYPE:
2810		/* only 'equals' and 'not equals' fit user, role, and type */
2811		if (op != Audit_equal && op != Audit_not_equal)
2812			return -EINVAL;
2813		break;
2814	case AUDIT_SUBJ_SEN:
2815	case AUDIT_SUBJ_CLR:
2816	case AUDIT_OBJ_LEV_LOW:
2817	case AUDIT_OBJ_LEV_HIGH:
2818		/* we do not allow a range, indicated by the presence of '-' */
2819		if (strchr(rulestr, '-'))
2820			return -EINVAL;
2821		break;
2822	default:
2823		/* only the above fields are valid */
2824		return -EINVAL;
2825	}
2826
2827	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2828	if (!tmprule)
2829		return -ENOMEM;
2830
2831	context_init(&tmprule->au_ctxt);
2832
2833	read_lock(&policy_rwlock);
2834
2835	tmprule->au_seqno = latest_granting;
2836
2837	switch (field) {
2838	case AUDIT_SUBJ_USER:
2839	case AUDIT_OBJ_USER:
2840		rc = -EINVAL;
2841		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2842		if (!userdatum)
2843			goto out;
2844		tmprule->au_ctxt.user = userdatum->value;
2845		break;
2846	case AUDIT_SUBJ_ROLE:
2847	case AUDIT_OBJ_ROLE:
2848		rc = -EINVAL;
2849		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2850		if (!roledatum)
2851			goto out;
2852		tmprule->au_ctxt.role = roledatum->value;
2853		break;
2854	case AUDIT_SUBJ_TYPE:
2855	case AUDIT_OBJ_TYPE:
2856		rc = -EINVAL;
2857		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2858		if (!typedatum)
2859			goto out;
2860		tmprule->au_ctxt.type = typedatum->value;
2861		break;
2862	case AUDIT_SUBJ_SEN:
2863	case AUDIT_SUBJ_CLR:
2864	case AUDIT_OBJ_LEV_LOW:
2865	case AUDIT_OBJ_LEV_HIGH:
2866		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
 
2867		if (rc)
2868			goto out;
2869		break;
2870	}
2871	rc = 0;
2872out:
2873	read_unlock(&policy_rwlock);
2874
2875	if (rc) {
2876		selinux_audit_rule_free(tmprule);
2877		tmprule = NULL;
2878	}
2879
2880	*rule = tmprule;
2881
2882	return rc;
2883}
2884
2885/* Check to see if the rule contains any selinux fields */
2886int selinux_audit_rule_known(struct audit_krule *rule)
2887{
2888	int i;
2889
2890	for (i = 0; i < rule->field_count; i++) {
2891		struct audit_field *f = &rule->fields[i];
2892		switch (f->type) {
2893		case AUDIT_SUBJ_USER:
2894		case AUDIT_SUBJ_ROLE:
2895		case AUDIT_SUBJ_TYPE:
2896		case AUDIT_SUBJ_SEN:
2897		case AUDIT_SUBJ_CLR:
2898		case AUDIT_OBJ_USER:
2899		case AUDIT_OBJ_ROLE:
2900		case AUDIT_OBJ_TYPE:
2901		case AUDIT_OBJ_LEV_LOW:
2902		case AUDIT_OBJ_LEV_HIGH:
2903			return 1;
2904		}
2905	}
2906
2907	return 0;
2908}
2909
2910int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2911			     struct audit_context *actx)
2912{
 
2913	struct context *ctxt;
2914	struct mls_level *level;
2915	struct selinux_audit_rule *rule = vrule;
2916	int match = 0;
2917
2918	if (!rule) {
2919		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2920			  "selinux_audit_rule_match: missing rule\n");
2921		return -ENOENT;
2922	}
2923
2924	read_lock(&policy_rwlock);
2925
2926	if (rule->au_seqno < latest_granting) {
2927		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2928			  "selinux_audit_rule_match: stale rule\n");
2929		match = -ESTALE;
2930		goto out;
2931	}
2932
2933	ctxt = sidtab_search(&sidtab, sid);
2934	if (!ctxt) {
2935		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2936			  "selinux_audit_rule_match: unrecognized SID %d\n",
2937			  sid);
2938		match = -ENOENT;
2939		goto out;
2940	}
2941
2942	/* a field/op pair that is not caught here will simply fall through
2943	   without a match */
2944	switch (field) {
2945	case AUDIT_SUBJ_USER:
2946	case AUDIT_OBJ_USER:
2947		switch (op) {
2948		case Audit_equal:
2949			match = (ctxt->user == rule->au_ctxt.user);
2950			break;
2951		case Audit_not_equal:
2952			match = (ctxt->user != rule->au_ctxt.user);
2953			break;
2954		}
2955		break;
2956	case AUDIT_SUBJ_ROLE:
2957	case AUDIT_OBJ_ROLE:
2958		switch (op) {
2959		case Audit_equal:
2960			match = (ctxt->role == rule->au_ctxt.role);
2961			break;
2962		case Audit_not_equal:
2963			match = (ctxt->role != rule->au_ctxt.role);
2964			break;
2965		}
2966		break;
2967	case AUDIT_SUBJ_TYPE:
2968	case AUDIT_OBJ_TYPE:
2969		switch (op) {
2970		case Audit_equal:
2971			match = (ctxt->type == rule->au_ctxt.type);
2972			break;
2973		case Audit_not_equal:
2974			match = (ctxt->type != rule->au_ctxt.type);
2975			break;
2976		}
2977		break;
2978	case AUDIT_SUBJ_SEN:
2979	case AUDIT_SUBJ_CLR:
2980	case AUDIT_OBJ_LEV_LOW:
2981	case AUDIT_OBJ_LEV_HIGH:
2982		level = ((field == AUDIT_SUBJ_SEN ||
2983			  field == AUDIT_OBJ_LEV_LOW) ?
2984			 &ctxt->range.level[0] : &ctxt->range.level[1]);
2985		switch (op) {
2986		case Audit_equal:
2987			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2988					     level);
2989			break;
2990		case Audit_not_equal:
2991			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2992					      level);
2993			break;
2994		case Audit_lt:
2995			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2996					       level) &&
2997				 !mls_level_eq(&rule->au_ctxt.range.level[0],
2998					       level));
2999			break;
3000		case Audit_le:
3001			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3002					      level);
3003			break;
3004		case Audit_gt:
3005			match = (mls_level_dom(level,
3006					      &rule->au_ctxt.range.level[0]) &&
3007				 !mls_level_eq(level,
3008					       &rule->au_ctxt.range.level[0]));
3009			break;
3010		case Audit_ge:
3011			match = mls_level_dom(level,
3012					      &rule->au_ctxt.range.level[0]);
3013			break;
3014		}
3015	}
3016
3017out:
3018	read_unlock(&policy_rwlock);
3019	return match;
3020}
3021
3022static int (*aurule_callback)(void) = audit_update_lsm_rules;
3023
3024static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
3025			       u16 class, u32 perms, u32 *retained)
3026{
3027	int err = 0;
3028
3029	if (event == AVC_CALLBACK_RESET && aurule_callback)
3030		err = aurule_callback();
3031	return err;
3032}
3033
3034static int __init aurule_init(void)
3035{
3036	int err;
3037
3038	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
3039			       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
3040	if (err)
3041		panic("avc_add_callback() failed, error %d\n", err);
3042
3043	return err;
3044}
3045__initcall(aurule_init);
3046
3047#ifdef CONFIG_NETLABEL
3048/**
3049 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3050 * @secattr: the NetLabel packet security attributes
3051 * @sid: the SELinux SID
3052 *
3053 * Description:
3054 * Attempt to cache the context in @ctx, which was derived from the packet in
3055 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3056 * already been initialized.
3057 *
3058 */
3059static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3060				      u32 sid)
3061{
3062	u32 *sid_cache;
3063
3064	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3065	if (sid_cache == NULL)
3066		return;
3067	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3068	if (secattr->cache == NULL) {
3069		kfree(sid_cache);
3070		return;
3071	}
3072
3073	*sid_cache = sid;
3074	secattr->cache->free = kfree;
3075	secattr->cache->data = sid_cache;
3076	secattr->flags |= NETLBL_SECATTR_CACHE;
3077}
3078
3079/**
3080 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3081 * @secattr: the NetLabel packet security attributes
3082 * @sid: the SELinux SID
3083 *
3084 * Description:
3085 * Convert the given NetLabel security attributes in @secattr into a
3086 * SELinux SID.  If the @secattr field does not contain a full SELinux
3087 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3088 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3089 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3090 * conversion for future lookups.  Returns zero on success, negative values on
3091 * failure.
3092 *
3093 */
3094int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
 
3095				   u32 *sid)
3096{
 
 
3097	int rc;
3098	struct context *ctx;
3099	struct context ctx_new;
3100
3101	if (!ss_initialized) {
3102		*sid = SECSID_NULL;
3103		return 0;
3104	}
3105
3106	read_lock(&policy_rwlock);
3107
3108	if (secattr->flags & NETLBL_SECATTR_CACHE)
3109		*sid = *(u32 *)secattr->cache->data;
3110	else if (secattr->flags & NETLBL_SECATTR_SECID)
3111		*sid = secattr->attr.secid;
3112	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3113		rc = -EIDRM;
3114		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3115		if (ctx == NULL)
3116			goto out;
3117
3118		context_init(&ctx_new);
3119		ctx_new.user = ctx->user;
3120		ctx_new.role = ctx->role;
3121		ctx_new.type = ctx->type;
3122		mls_import_netlbl_lvl(&ctx_new, secattr);
3123		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3124			rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3125						   secattr->attr.mls.cat);
3126			if (rc)
3127				goto out;
3128			memcpy(&ctx_new.range.level[1].cat,
3129			       &ctx_new.range.level[0].cat,
3130			       sizeof(ctx_new.range.level[0].cat));
3131		}
3132		rc = -EIDRM;
3133		if (!mls_context_isvalid(&policydb, &ctx_new))
3134			goto out_free;
3135
3136		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3137		if (rc)
3138			goto out_free;
3139
3140		security_netlbl_cache_add(secattr, *sid);
3141
3142		ebitmap_destroy(&ctx_new.range.level[0].cat);
3143	} else
3144		*sid = SECSID_NULL;
3145
3146	read_unlock(&policy_rwlock);
3147	return 0;
3148out_free:
3149	ebitmap_destroy(&ctx_new.range.level[0].cat);
3150out:
3151	read_unlock(&policy_rwlock);
3152	return rc;
3153}
3154
3155/**
3156 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3157 * @sid: the SELinux SID
3158 * @secattr: the NetLabel packet security attributes
3159 *
3160 * Description:
3161 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3162 * Returns zero on success, negative values on failure.
3163 *
3164 */
3165int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
 
3166{
 
3167	int rc;
3168	struct context *ctx;
3169
3170	if (!ss_initialized)
3171		return 0;
3172
3173	read_lock(&policy_rwlock);
3174
3175	rc = -ENOENT;
3176	ctx = sidtab_search(&sidtab, sid);
3177	if (ctx == NULL)
3178		goto out;
3179
3180	rc = -ENOMEM;
3181	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3182				  GFP_ATOMIC);
3183	if (secattr->domain == NULL)
3184		goto out;
3185
3186	secattr->attr.secid = sid;
3187	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3188	mls_export_netlbl_lvl(ctx, secattr);
3189	rc = mls_export_netlbl_cat(ctx, secattr);
3190out:
3191	read_unlock(&policy_rwlock);
3192	return rc;
3193}
3194#endif /* CONFIG_NETLABEL */
3195
3196/**
3197 * security_read_policy - read the policy.
3198 * @data: binary policy data
3199 * @len: length of data in bytes
3200 *
3201 */
3202int security_read_policy(void **data, size_t *len)
 
3203{
 
3204	int rc;
3205	struct policy_file fp;
3206
3207	if (!ss_initialized)
3208		return -EINVAL;
3209
3210	*len = security_policydb_len();
3211
3212	*data = vmalloc_user(*len);
3213	if (!*data)
3214		return -ENOMEM;
3215
3216	fp.data = *data;
3217	fp.len = *len;
3218
3219	read_lock(&policy_rwlock);
3220	rc = policydb_write(&policydb, &fp);
3221	read_unlock(&policy_rwlock);
3222
3223	if (rc)
3224		return rc;
3225
3226	*len = (unsigned long)fp.data - (unsigned long)*data;
3227	return 0;
3228
3229}
v4.17
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
  72
  73/* Policy capability names */
  74char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
  75	"network_peer_controls",
  76	"open_perms",
  77	"extended_socket_class",
  78	"always_check_network",
  79	"cgroup_seclabel",
  80	"nnp_nosuid_transition"
  81};
  82
  83static struct selinux_ss selinux_ss;
 
 
  84
  85void selinux_ss_init(struct selinux_ss **ss)
  86{
  87	rwlock_init(&selinux_ss.policy_rwlock);
  88	mutex_init(&selinux_ss.status_lock);
  89	*ss = &selinux_ss;
  90}
 
  91
  92/* Forward declaration. */
  93static int context_struct_to_string(struct policydb *policydb,
  94				    struct context *context,
  95				    char **scontext,
  96				    u32 *scontext_len);
  97
  98static void context_struct_compute_av(struct policydb *policydb,
  99				      struct context *scontext,
 100				      struct context *tcontext,
 101				      u16 tclass,
 102				      struct av_decision *avd,
 103				      struct extended_perms *xperms);
 
 
 
 
 
 
 
 
 104
 105static int selinux_set_mapping(struct policydb *pol,
 106			       struct security_class_mapping *map,
 107			       struct selinux_map *out_map)
 
 108{
 
 
 109	u16 i, j;
 110	unsigned k;
 111	bool print_unknown_handle = false;
 112
 113	/* Find number of classes in the input mapping */
 114	if (!map)
 115		return -EINVAL;
 116	i = 0;
 117	while (map[i].name)
 118		i++;
 119
 120	/* Allocate space for the class records, plus one for class zero */
 121	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 122	if (!out_map->mapping)
 123		return -ENOMEM;
 124
 125	/* Store the raw class and permission values */
 126	j = 0;
 127	while (map[j].name) {
 128		struct security_class_mapping *p_in = map + (j++);
 129		struct selinux_mapping *p_out = out_map->mapping + j;
 130
 131		/* An empty class string skips ahead */
 132		if (!strcmp(p_in->name, "")) {
 133			p_out->num_perms = 0;
 134			continue;
 135		}
 136
 137		p_out->value = string_to_security_class(pol, p_in->name);
 138		if (!p_out->value) {
 139			printk(KERN_INFO
 140			       "SELinux:  Class %s not defined in policy.\n",
 141			       p_in->name);
 142			if (pol->reject_unknown)
 143				goto err;
 144			p_out->num_perms = 0;
 145			print_unknown_handle = true;
 146			continue;
 147		}
 148
 149		k = 0;
 150		while (p_in->perms[k]) {
 151			/* An empty permission string skips ahead */
 152			if (!*p_in->perms[k]) {
 153				k++;
 154				continue;
 155			}
 156			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 157							    p_in->perms[k]);
 158			if (!p_out->perms[k]) {
 159				printk(KERN_INFO
 160				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 161				       p_in->perms[k], p_in->name);
 162				if (pol->reject_unknown)
 163					goto err;
 164				print_unknown_handle = true;
 165			}
 166
 167			k++;
 168		}
 169		p_out->num_perms = k;
 170	}
 171
 172	if (print_unknown_handle)
 173		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 174		       pol->allow_unknown ? "allowed" : "denied");
 175
 176	out_map->size = i;
 
 177	return 0;
 178err:
 179	kfree(out_map->mapping);
 180	out_map->mapping = NULL;
 181	return -EINVAL;
 182}
 183
 184/*
 185 * Get real, policy values from mapped values
 186 */
 187
 188static u16 unmap_class(struct selinux_map *map, u16 tclass)
 189{
 190	if (tclass < map->size)
 191		return map->mapping[tclass].value;
 192
 193	return tclass;
 194}
 195
 196/*
 197 * Get kernel value for class from its policy value
 198 */
 199static u16 map_class(struct selinux_map *map, u16 pol_value)
 200{
 201	u16 i;
 202
 203	for (i = 1; i < map->size; i++) {
 204		if (map->mapping[i].value == pol_value)
 205			return i;
 206	}
 207
 208	return SECCLASS_NULL;
 209}
 210
 211static void map_decision(struct selinux_map *map,
 212			 u16 tclass, struct av_decision *avd,
 213			 int allow_unknown)
 214{
 215	if (tclass < map->size) {
 216		struct selinux_mapping *mapping = &map->mapping[tclass];
 217		unsigned int i, n = mapping->num_perms;
 218		u32 result;
 219
 220		for (i = 0, result = 0; i < n; i++) {
 221			if (avd->allowed & mapping->perms[i])
 222				result |= 1<<i;
 223			if (allow_unknown && !mapping->perms[i])
 224				result |= 1<<i;
 225		}
 226		avd->allowed = result;
 227
 228		for (i = 0, result = 0; i < n; i++)
 229			if (avd->auditallow & mapping->perms[i])
 230				result |= 1<<i;
 231		avd->auditallow = result;
 232
 233		for (i = 0, result = 0; i < n; i++) {
 234			if (avd->auditdeny & mapping->perms[i])
 235				result |= 1<<i;
 236			if (!allow_unknown && !mapping->perms[i])
 237				result |= 1<<i;
 238		}
 239		/*
 240		 * In case the kernel has a bug and requests a permission
 241		 * between num_perms and the maximum permission number, we
 242		 * should audit that denial
 243		 */
 244		for (; i < (sizeof(u32)*8); i++)
 245			result |= 1<<i;
 246		avd->auditdeny = result;
 247	}
 248}
 249
 250int security_mls_enabled(struct selinux_state *state)
 251{
 252	struct policydb *p = &state->ss->policydb;
 253
 254	return p->mls_enabled;
 255}
 256
 257/*
 258 * Return the boolean value of a constraint expression
 259 * when it is applied to the specified source and target
 260 * security contexts.
 261 *
 262 * xcontext is a special beast...  It is used by the validatetrans rules
 263 * only.  For these rules, scontext is the context before the transition,
 264 * tcontext is the context after the transition, and xcontext is the context
 265 * of the process performing the transition.  All other callers of
 266 * constraint_expr_eval should pass in NULL for xcontext.
 267 */
 268static int constraint_expr_eval(struct policydb *policydb,
 269				struct context *scontext,
 270				struct context *tcontext,
 271				struct context *xcontext,
 272				struct constraint_expr *cexpr)
 273{
 274	u32 val1, val2;
 275	struct context *c;
 276	struct role_datum *r1, *r2;
 277	struct mls_level *l1, *l2;
 278	struct constraint_expr *e;
 279	int s[CEXPR_MAXDEPTH];
 280	int sp = -1;
 281
 282	for (e = cexpr; e; e = e->next) {
 283		switch (e->expr_type) {
 284		case CEXPR_NOT:
 285			BUG_ON(sp < 0);
 286			s[sp] = !s[sp];
 287			break;
 288		case CEXPR_AND:
 289			BUG_ON(sp < 1);
 290			sp--;
 291			s[sp] &= s[sp + 1];
 292			break;
 293		case CEXPR_OR:
 294			BUG_ON(sp < 1);
 295			sp--;
 296			s[sp] |= s[sp + 1];
 297			break;
 298		case CEXPR_ATTR:
 299			if (sp == (CEXPR_MAXDEPTH - 1))
 300				return 0;
 301			switch (e->attr) {
 302			case CEXPR_USER:
 303				val1 = scontext->user;
 304				val2 = tcontext->user;
 305				break;
 306			case CEXPR_TYPE:
 307				val1 = scontext->type;
 308				val2 = tcontext->type;
 309				break;
 310			case CEXPR_ROLE:
 311				val1 = scontext->role;
 312				val2 = tcontext->role;
 313				r1 = policydb->role_val_to_struct[val1 - 1];
 314				r2 = policydb->role_val_to_struct[val2 - 1];
 315				switch (e->op) {
 316				case CEXPR_DOM:
 317					s[++sp] = ebitmap_get_bit(&r1->dominates,
 318								  val2 - 1);
 319					continue;
 320				case CEXPR_DOMBY:
 321					s[++sp] = ebitmap_get_bit(&r2->dominates,
 322								  val1 - 1);
 323					continue;
 324				case CEXPR_INCOMP:
 325					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 326								    val2 - 1) &&
 327						   !ebitmap_get_bit(&r2->dominates,
 328								    val1 - 1));
 329					continue;
 330				default:
 331					break;
 332				}
 333				break;
 334			case CEXPR_L1L2:
 335				l1 = &(scontext->range.level[0]);
 336				l2 = &(tcontext->range.level[0]);
 337				goto mls_ops;
 338			case CEXPR_L1H2:
 339				l1 = &(scontext->range.level[0]);
 340				l2 = &(tcontext->range.level[1]);
 341				goto mls_ops;
 342			case CEXPR_H1L2:
 343				l1 = &(scontext->range.level[1]);
 344				l2 = &(tcontext->range.level[0]);
 345				goto mls_ops;
 346			case CEXPR_H1H2:
 347				l1 = &(scontext->range.level[1]);
 348				l2 = &(tcontext->range.level[1]);
 349				goto mls_ops;
 350			case CEXPR_L1H1:
 351				l1 = &(scontext->range.level[0]);
 352				l2 = &(scontext->range.level[1]);
 353				goto mls_ops;
 354			case CEXPR_L2H2:
 355				l1 = &(tcontext->range.level[0]);
 356				l2 = &(tcontext->range.level[1]);
 357				goto mls_ops;
 358mls_ops:
 359			switch (e->op) {
 360			case CEXPR_EQ:
 361				s[++sp] = mls_level_eq(l1, l2);
 362				continue;
 363			case CEXPR_NEQ:
 364				s[++sp] = !mls_level_eq(l1, l2);
 365				continue;
 366			case CEXPR_DOM:
 367				s[++sp] = mls_level_dom(l1, l2);
 368				continue;
 369			case CEXPR_DOMBY:
 370				s[++sp] = mls_level_dom(l2, l1);
 371				continue;
 372			case CEXPR_INCOMP:
 373				s[++sp] = mls_level_incomp(l2, l1);
 374				continue;
 375			default:
 376				BUG();
 377				return 0;
 378			}
 379			break;
 380			default:
 381				BUG();
 382				return 0;
 383			}
 384
 385			switch (e->op) {
 386			case CEXPR_EQ:
 387				s[++sp] = (val1 == val2);
 388				break;
 389			case CEXPR_NEQ:
 390				s[++sp] = (val1 != val2);
 391				break;
 392			default:
 393				BUG();
 394				return 0;
 395			}
 396			break;
 397		case CEXPR_NAMES:
 398			if (sp == (CEXPR_MAXDEPTH-1))
 399				return 0;
 400			c = scontext;
 401			if (e->attr & CEXPR_TARGET)
 402				c = tcontext;
 403			else if (e->attr & CEXPR_XTARGET) {
 404				c = xcontext;
 405				if (!c) {
 406					BUG();
 407					return 0;
 408				}
 409			}
 410			if (e->attr & CEXPR_USER)
 411				val1 = c->user;
 412			else if (e->attr & CEXPR_ROLE)
 413				val1 = c->role;
 414			else if (e->attr & CEXPR_TYPE)
 415				val1 = c->type;
 416			else {
 417				BUG();
 418				return 0;
 419			}
 420
 421			switch (e->op) {
 422			case CEXPR_EQ:
 423				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 424				break;
 425			case CEXPR_NEQ:
 426				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 427				break;
 428			default:
 429				BUG();
 430				return 0;
 431			}
 432			break;
 433		default:
 434			BUG();
 435			return 0;
 436		}
 437	}
 438
 439	BUG_ON(sp != 0);
 440	return s[0];
 441}
 442
 443/*
 444 * security_dump_masked_av - dumps masked permissions during
 445 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 446 */
 447static int dump_masked_av_helper(void *k, void *d, void *args)
 448{
 449	struct perm_datum *pdatum = d;
 450	char **permission_names = args;
 451
 452	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 453
 454	permission_names[pdatum->value - 1] = (char *)k;
 455
 456	return 0;
 457}
 458
 459static void security_dump_masked_av(struct policydb *policydb,
 460				    struct context *scontext,
 461				    struct context *tcontext,
 462				    u16 tclass,
 463				    u32 permissions,
 464				    const char *reason)
 465{
 466	struct common_datum *common_dat;
 467	struct class_datum *tclass_dat;
 468	struct audit_buffer *ab;
 469	char *tclass_name;
 470	char *scontext_name = NULL;
 471	char *tcontext_name = NULL;
 472	char *permission_names[32];
 473	int index;
 474	u32 length;
 475	bool need_comma = false;
 476
 477	if (!permissions)
 478		return;
 479
 480	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 481	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 482	common_dat = tclass_dat->comdatum;
 483
 484	/* init permission_names */
 485	if (common_dat &&
 486	    hashtab_map(common_dat->permissions.table,
 487			dump_masked_av_helper, permission_names) < 0)
 488		goto out;
 489
 490	if (hashtab_map(tclass_dat->permissions.table,
 491			dump_masked_av_helper, permission_names) < 0)
 492		goto out;
 493
 494	/* get scontext/tcontext in text form */
 495	if (context_struct_to_string(policydb, scontext,
 496				     &scontext_name, &length) < 0)
 497		goto out;
 498
 499	if (context_struct_to_string(policydb, tcontext,
 500				     &tcontext_name, &length) < 0)
 501		goto out;
 502
 503	/* audit a message */
 504	ab = audit_log_start(current->audit_context,
 505			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 506	if (!ab)
 507		goto out;
 508
 509	audit_log_format(ab, "op=security_compute_av reason=%s "
 510			 "scontext=%s tcontext=%s tclass=%s perms=",
 511			 reason, scontext_name, tcontext_name, tclass_name);
 512
 513	for (index = 0; index < 32; index++) {
 514		u32 mask = (1 << index);
 515
 516		if ((mask & permissions) == 0)
 517			continue;
 518
 519		audit_log_format(ab, "%s%s",
 520				 need_comma ? "," : "",
 521				 permission_names[index]
 522				 ? permission_names[index] : "????");
 523		need_comma = true;
 524	}
 525	audit_log_end(ab);
 526out:
 527	/* release scontext/tcontext */
 528	kfree(tcontext_name);
 529	kfree(scontext_name);
 530
 531	return;
 532}
 533
 534/*
 535 * security_boundary_permission - drops violated permissions
 536 * on boundary constraint.
 537 */
 538static void type_attribute_bounds_av(struct policydb *policydb,
 539				     struct context *scontext,
 540				     struct context *tcontext,
 541				     u16 tclass,
 542				     struct av_decision *avd)
 543{
 544	struct context lo_scontext;
 545	struct context lo_tcontext, *tcontextp = tcontext;
 546	struct av_decision lo_avd;
 547	struct type_datum *source;
 548	struct type_datum *target;
 549	u32 masked = 0;
 550
 551	source = flex_array_get_ptr(policydb->type_val_to_struct_array,
 552				    scontext->type - 1);
 553	BUG_ON(!source);
 554
 555	if (!source->bounds)
 556		return;
 557
 558	target = flex_array_get_ptr(policydb->type_val_to_struct_array,
 559				    tcontext->type - 1);
 560	BUG_ON(!target);
 561
 562	memset(&lo_avd, 0, sizeof(lo_avd));
 
 563
 564	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 565	lo_scontext.type = source->bounds;
 
 
 
 
 
 
 
 
 
 566
 567	if (target->bounds) {
 
 
 568		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 569		lo_tcontext.type = target->bounds;
 570		tcontextp = &lo_tcontext;
 
 
 
 
 
 
 
 571	}
 572
 573	context_struct_compute_av(policydb, &lo_scontext,
 574				  tcontextp,
 575				  tclass,
 576				  &lo_avd,
 577				  NULL);
 
 578
 579	masked = ~lo_avd.allowed & avd->allowed;
 580
 581	if (likely(!masked))
 582		return;		/* no masked permission */
 583
 584	/* mask violated permissions */
 585	avd->allowed &= ~masked;
 586
 587	/* audit masked permissions */
 588	security_dump_masked_av(policydb, scontext, tcontext,
 589				tclass, masked, "bounds");
 590}
 591
 592/*
 593 * flag which drivers have permissions
 594 * only looking for ioctl based extended permssions
 595 */
 596void services_compute_xperms_drivers(
 597		struct extended_perms *xperms,
 598		struct avtab_node *node)
 599{
 600	unsigned int i;
 601
 602	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 603		/* if one or more driver has all permissions allowed */
 604		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 605			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 606	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 607		/* if allowing permissions within a driver */
 608		security_xperm_set(xperms->drivers.p,
 609					node->datum.u.xperms->driver);
 610	}
 611
 612	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 613	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 614		xperms->len = 1;
 615}
 616
 617/*
 618 * Compute access vectors and extended permissions based on a context
 619 * structure pair for the permissions in a particular class.
 620 */
 621static void context_struct_compute_av(struct policydb *policydb,
 622				      struct context *scontext,
 623				      struct context *tcontext,
 624				      u16 tclass,
 625				      struct av_decision *avd,
 626				      struct extended_perms *xperms)
 627{
 628	struct constraint_node *constraint;
 629	struct role_allow *ra;
 630	struct avtab_key avkey;
 631	struct avtab_node *node;
 632	struct class_datum *tclass_datum;
 633	struct ebitmap *sattr, *tattr;
 634	struct ebitmap_node *snode, *tnode;
 635	unsigned int i, j;
 636
 637	avd->allowed = 0;
 638	avd->auditallow = 0;
 639	avd->auditdeny = 0xffffffff;
 640	if (xperms) {
 641		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 642		xperms->len = 0;
 643	}
 644
 645	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 646		if (printk_ratelimit())
 647			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 648		return;
 649	}
 650
 651	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 652
 653	/*
 654	 * If a specific type enforcement rule was defined for
 655	 * this permission check, then use it.
 656	 */
 657	avkey.target_class = tclass;
 658	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 659	sattr = flex_array_get(policydb->type_attr_map_array,
 660			       scontext->type - 1);
 661	BUG_ON(!sattr);
 662	tattr = flex_array_get(policydb->type_attr_map_array,
 663			       tcontext->type - 1);
 664	BUG_ON(!tattr);
 665	ebitmap_for_each_positive_bit(sattr, snode, i) {
 666		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 667			avkey.source_type = i + 1;
 668			avkey.target_type = j + 1;
 669			for (node = avtab_search_node(&policydb->te_avtab,
 670						      &avkey);
 671			     node;
 672			     node = avtab_search_node_next(node, avkey.specified)) {
 673				if (node->key.specified == AVTAB_ALLOWED)
 674					avd->allowed |= node->datum.u.data;
 675				else if (node->key.specified == AVTAB_AUDITALLOW)
 676					avd->auditallow |= node->datum.u.data;
 677				else if (node->key.specified == AVTAB_AUDITDENY)
 678					avd->auditdeny &= node->datum.u.data;
 679				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 680					services_compute_xperms_drivers(xperms, node);
 681			}
 682
 683			/* Check conditional av table for additional permissions */
 684			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 685					avd, xperms);
 686
 687		}
 688	}
 689
 690	/*
 691	 * Remove any permissions prohibited by a constraint (this includes
 692	 * the MLS policy).
 693	 */
 694	constraint = tclass_datum->constraints;
 695	while (constraint) {
 696		if ((constraint->permissions & (avd->allowed)) &&
 697		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 698					  constraint->expr)) {
 699			avd->allowed &= ~(constraint->permissions);
 700		}
 701		constraint = constraint->next;
 702	}
 703
 704	/*
 705	 * If checking process transition permission and the
 706	 * role is changing, then check the (current_role, new_role)
 707	 * pair.
 708	 */
 709	if (tclass == policydb->process_class &&
 710	    (avd->allowed & policydb->process_trans_perms) &&
 711	    scontext->role != tcontext->role) {
 712		for (ra = policydb->role_allow; ra; ra = ra->next) {
 713			if (scontext->role == ra->role &&
 714			    tcontext->role == ra->new_role)
 715				break;
 716		}
 717		if (!ra)
 718			avd->allowed &= ~policydb->process_trans_perms;
 719	}
 720
 721	/*
 722	 * If the given source and target types have boundary
 723	 * constraint, lazy checks have to mask any violated
 724	 * permission and notice it to userspace via audit.
 725	 */
 726	type_attribute_bounds_av(policydb, scontext, tcontext,
 727				 tclass, avd);
 728}
 729
 730static int security_validtrans_handle_fail(struct selinux_state *state,
 731					   struct context *ocontext,
 732					   struct context *ncontext,
 733					   struct context *tcontext,
 734					   u16 tclass)
 735{
 736	struct policydb *p = &state->ss->policydb;
 737	char *o = NULL, *n = NULL, *t = NULL;
 738	u32 olen, nlen, tlen;
 739
 740	if (context_struct_to_string(p, ocontext, &o, &olen))
 741		goto out;
 742	if (context_struct_to_string(p, ncontext, &n, &nlen))
 743		goto out;
 744	if (context_struct_to_string(p, tcontext, &t, &tlen))
 745		goto out;
 746	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 747		  "op=security_validate_transition seresult=denied"
 748		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 749		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 750out:
 751	kfree(o);
 752	kfree(n);
 753	kfree(t);
 754
 755	if (!enforcing_enabled(state))
 756		return 0;
 757	return -EPERM;
 758}
 759
 760static int security_compute_validatetrans(struct selinux_state *state,
 761					  u32 oldsid, u32 newsid, u32 tasksid,
 762					  u16 orig_tclass, bool user)
 763{
 764	struct policydb *policydb;
 765	struct sidtab *sidtab;
 766	struct context *ocontext;
 767	struct context *ncontext;
 768	struct context *tcontext;
 769	struct class_datum *tclass_datum;
 770	struct constraint_node *constraint;
 771	u16 tclass;
 772	int rc = 0;
 773
 774
 775	if (!state->initialized)
 776		return 0;
 777
 778	read_lock(&state->ss->policy_rwlock);
 779
 780	policydb = &state->ss->policydb;
 781	sidtab = &state->ss->sidtab;
 782
 783	if (!user)
 784		tclass = unmap_class(&state->ss->map, orig_tclass);
 785	else
 786		tclass = orig_tclass;
 787
 788	if (!tclass || tclass > policydb->p_classes.nprim) {
 
 
 789		rc = -EINVAL;
 790		goto out;
 791	}
 792	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 793
 794	ocontext = sidtab_search(sidtab, oldsid);
 795	if (!ocontext) {
 796		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 797			__func__, oldsid);
 798		rc = -EINVAL;
 799		goto out;
 800	}
 801
 802	ncontext = sidtab_search(sidtab, newsid);
 803	if (!ncontext) {
 804		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 805			__func__, newsid);
 806		rc = -EINVAL;
 807		goto out;
 808	}
 809
 810	tcontext = sidtab_search(sidtab, tasksid);
 811	if (!tcontext) {
 812		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 813			__func__, tasksid);
 814		rc = -EINVAL;
 815		goto out;
 816	}
 817
 818	constraint = tclass_datum->validatetrans;
 819	while (constraint) {
 820		if (!constraint_expr_eval(policydb, ocontext, ncontext,
 821					  tcontext, constraint->expr)) {
 822			if (user)
 823				rc = -EPERM;
 824			else
 825				rc = security_validtrans_handle_fail(state,
 826								     ocontext,
 827								     ncontext,
 828								     tcontext,
 829								     tclass);
 830			goto out;
 831		}
 832		constraint = constraint->next;
 833	}
 834
 835out:
 836	read_unlock(&state->ss->policy_rwlock);
 837	return rc;
 838}
 839
 840int security_validate_transition_user(struct selinux_state *state,
 841				      u32 oldsid, u32 newsid, u32 tasksid,
 842				      u16 tclass)
 843{
 844	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 845					      tclass, true);
 846}
 847
 848int security_validate_transition(struct selinux_state *state,
 849				 u32 oldsid, u32 newsid, u32 tasksid,
 850				 u16 orig_tclass)
 851{
 852	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 853					      orig_tclass, false);
 854}
 855
 856/*
 857 * security_bounded_transition - check whether the given
 858 * transition is directed to bounded, or not.
 859 * It returns 0, if @newsid is bounded by @oldsid.
 860 * Otherwise, it returns error code.
 861 *
 862 * @oldsid : current security identifier
 863 * @newsid : destinated security identifier
 864 */
 865int security_bounded_transition(struct selinux_state *state,
 866				u32 old_sid, u32 new_sid)
 867{
 868	struct policydb *policydb;
 869	struct sidtab *sidtab;
 870	struct context *old_context, *new_context;
 871	struct type_datum *type;
 872	int index;
 873	int rc;
 874
 875	if (!state->initialized)
 876		return 0;
 877
 878	read_lock(&state->ss->policy_rwlock);
 879
 880	policydb = &state->ss->policydb;
 881	sidtab = &state->ss->sidtab;
 882
 883	rc = -EINVAL;
 884	old_context = sidtab_search(sidtab, old_sid);
 885	if (!old_context) {
 886		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 887		       __func__, old_sid);
 888		goto out;
 889	}
 890
 891	rc = -EINVAL;
 892	new_context = sidtab_search(sidtab, new_sid);
 893	if (!new_context) {
 894		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 895		       __func__, new_sid);
 896		goto out;
 897	}
 898
 899	rc = 0;
 900	/* type/domain unchanged */
 901	if (old_context->type == new_context->type)
 902		goto out;
 903
 904	index = new_context->type;
 905	while (true) {
 906		type = flex_array_get_ptr(policydb->type_val_to_struct_array,
 907					  index - 1);
 908		BUG_ON(!type);
 909
 910		/* not bounded anymore */
 911		rc = -EPERM;
 912		if (!type->bounds)
 913			break;
 914
 915		/* @newsid is bounded by @oldsid */
 916		rc = 0;
 917		if (type->bounds == old_context->type)
 918			break;
 919
 920		index = type->bounds;
 921	}
 922
 923	if (rc) {
 924		char *old_name = NULL;
 925		char *new_name = NULL;
 926		u32 length;
 927
 928		if (!context_struct_to_string(policydb, old_context,
 929					      &old_name, &length) &&
 930		    !context_struct_to_string(policydb, new_context,
 931					      &new_name, &length)) {
 932			audit_log(current->audit_context,
 933				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 934				  "op=security_bounded_transition "
 935				  "seresult=denied "
 936				  "oldcontext=%s newcontext=%s",
 937				  old_name, new_name);
 938		}
 939		kfree(new_name);
 940		kfree(old_name);
 941	}
 942out:
 943	read_unlock(&state->ss->policy_rwlock);
 944
 945	return rc;
 946}
 947
 948static void avd_init(struct selinux_state *state, struct av_decision *avd)
 949{
 950	avd->allowed = 0;
 951	avd->auditallow = 0;
 952	avd->auditdeny = 0xffffffff;
 953	avd->seqno = state->ss->latest_granting;
 954	avd->flags = 0;
 955}
 956
 957void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 958					struct avtab_node *node)
 959{
 960	unsigned int i;
 961
 962	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 963		if (xpermd->driver != node->datum.u.xperms->driver)
 964			return;
 965	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 966		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 967					xpermd->driver))
 968			return;
 969	} else {
 970		BUG();
 971	}
 972
 973	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 974		xpermd->used |= XPERMS_ALLOWED;
 975		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 976			memset(xpermd->allowed->p, 0xff,
 977					sizeof(xpermd->allowed->p));
 978		}
 979		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 980			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 981				xpermd->allowed->p[i] |=
 982					node->datum.u.xperms->perms.p[i];
 983		}
 984	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 985		xpermd->used |= XPERMS_AUDITALLOW;
 986		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 987			memset(xpermd->auditallow->p, 0xff,
 988					sizeof(xpermd->auditallow->p));
 989		}
 990		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 991			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 992				xpermd->auditallow->p[i] |=
 993					node->datum.u.xperms->perms.p[i];
 994		}
 995	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 996		xpermd->used |= XPERMS_DONTAUDIT;
 997		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 998			memset(xpermd->dontaudit->p, 0xff,
 999					sizeof(xpermd->dontaudit->p));
1000		}
1001		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1002			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1003				xpermd->dontaudit->p[i] |=
1004					node->datum.u.xperms->perms.p[i];
1005		}
1006	} else {
1007		BUG();
1008	}
1009}
1010
1011void security_compute_xperms_decision(struct selinux_state *state,
1012				      u32 ssid,
1013				      u32 tsid,
1014				      u16 orig_tclass,
1015				      u8 driver,
1016				      struct extended_perms_decision *xpermd)
1017{
1018	struct policydb *policydb;
1019	struct sidtab *sidtab;
1020	u16 tclass;
1021	struct context *scontext, *tcontext;
1022	struct avtab_key avkey;
1023	struct avtab_node *node;
1024	struct ebitmap *sattr, *tattr;
1025	struct ebitmap_node *snode, *tnode;
1026	unsigned int i, j;
1027
1028	xpermd->driver = driver;
1029	xpermd->used = 0;
1030	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1031	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1032	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1033
1034	read_lock(&state->ss->policy_rwlock);
1035	if (!state->initialized)
1036		goto allow;
1037
1038	policydb = &state->ss->policydb;
1039	sidtab = &state->ss->sidtab;
1040
1041	scontext = sidtab_search(sidtab, ssid);
1042	if (!scontext) {
1043		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1044		       __func__, ssid);
1045		goto out;
1046	}
1047
1048	tcontext = sidtab_search(sidtab, tsid);
1049	if (!tcontext) {
1050		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1051		       __func__, tsid);
1052		goto out;
1053	}
1054
1055	tclass = unmap_class(&state->ss->map, orig_tclass);
1056	if (unlikely(orig_tclass && !tclass)) {
1057		if (policydb->allow_unknown)
1058			goto allow;
1059		goto out;
1060	}
1061
1062
1063	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1064		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1065		goto out;
1066	}
1067
1068	avkey.target_class = tclass;
1069	avkey.specified = AVTAB_XPERMS;
1070	sattr = flex_array_get(policydb->type_attr_map_array,
1071				scontext->type - 1);
1072	BUG_ON(!sattr);
1073	tattr = flex_array_get(policydb->type_attr_map_array,
1074				tcontext->type - 1);
1075	BUG_ON(!tattr);
1076	ebitmap_for_each_positive_bit(sattr, snode, i) {
1077		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1078			avkey.source_type = i + 1;
1079			avkey.target_type = j + 1;
1080			for (node = avtab_search_node(&policydb->te_avtab,
1081						      &avkey);
1082			     node;
1083			     node = avtab_search_node_next(node, avkey.specified))
1084				services_compute_xperms_decision(xpermd, node);
1085
1086			cond_compute_xperms(&policydb->te_cond_avtab,
1087						&avkey, xpermd);
1088		}
1089	}
1090out:
1091	read_unlock(&state->ss->policy_rwlock);
1092	return;
1093allow:
1094	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1095	goto out;
1096}
1097
1098/**
1099 * security_compute_av - Compute access vector decisions.
1100 * @ssid: source security identifier
1101 * @tsid: target security identifier
1102 * @tclass: target security class
1103 * @avd: access vector decisions
1104 * @xperms: extended permissions
1105 *
1106 * Compute a set of access vector decisions based on the
1107 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1108 */
1109void security_compute_av(struct selinux_state *state,
1110			 u32 ssid,
1111			 u32 tsid,
1112			 u16 orig_tclass,
1113			 struct av_decision *avd,
1114			 struct extended_perms *xperms)
1115{
1116	struct policydb *policydb;
1117	struct sidtab *sidtab;
1118	u16 tclass;
1119	struct context *scontext = NULL, *tcontext = NULL;
1120
1121	read_lock(&state->ss->policy_rwlock);
1122	avd_init(state, avd);
1123	xperms->len = 0;
1124	if (!state->initialized)
1125		goto allow;
1126
1127	policydb = &state->ss->policydb;
1128	sidtab = &state->ss->sidtab;
1129
1130	scontext = sidtab_search(sidtab, ssid);
1131	if (!scontext) {
1132		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1133		       __func__, ssid);
1134		goto out;
1135	}
1136
1137	/* permissive domain? */
1138	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1139		avd->flags |= AVD_FLAGS_PERMISSIVE;
1140
1141	tcontext = sidtab_search(sidtab, tsid);
1142	if (!tcontext) {
1143		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1144		       __func__, tsid);
1145		goto out;
1146	}
1147
1148	tclass = unmap_class(&state->ss->map, orig_tclass);
1149	if (unlikely(orig_tclass && !tclass)) {
1150		if (policydb->allow_unknown)
1151			goto allow;
1152		goto out;
1153	}
1154	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1155				  xperms);
1156	map_decision(&state->ss->map, orig_tclass, avd,
1157		     policydb->allow_unknown);
1158out:
1159	read_unlock(&state->ss->policy_rwlock);
1160	return;
1161allow:
1162	avd->allowed = 0xffffffff;
1163	goto out;
1164}
1165
1166void security_compute_av_user(struct selinux_state *state,
1167			      u32 ssid,
1168			      u32 tsid,
1169			      u16 tclass,
1170			      struct av_decision *avd)
1171{
1172	struct policydb *policydb;
1173	struct sidtab *sidtab;
1174	struct context *scontext = NULL, *tcontext = NULL;
1175
1176	read_lock(&state->ss->policy_rwlock);
1177	avd_init(state, avd);
1178	if (!state->initialized)
1179		goto allow;
1180
1181	policydb = &state->ss->policydb;
1182	sidtab = &state->ss->sidtab;
1183
1184	scontext = sidtab_search(sidtab, ssid);
1185	if (!scontext) {
1186		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1187		       __func__, ssid);
1188		goto out;
1189	}
1190
1191	/* permissive domain? */
1192	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1193		avd->flags |= AVD_FLAGS_PERMISSIVE;
1194
1195	tcontext = sidtab_search(sidtab, tsid);
1196	if (!tcontext) {
1197		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1198		       __func__, tsid);
1199		goto out;
1200	}
1201
1202	if (unlikely(!tclass)) {
1203		if (policydb->allow_unknown)
1204			goto allow;
1205		goto out;
1206	}
1207
1208	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1209				  NULL);
1210 out:
1211	read_unlock(&state->ss->policy_rwlock);
1212	return;
1213allow:
1214	avd->allowed = 0xffffffff;
1215	goto out;
1216}
1217
1218/*
1219 * Write the security context string representation of
1220 * the context structure `context' into a dynamically
1221 * allocated string of the correct size.  Set `*scontext'
1222 * to point to this string and set `*scontext_len' to
1223 * the length of the string.
1224 */
1225static int context_struct_to_string(struct policydb *p,
1226				    struct context *context,
1227				    char **scontext, u32 *scontext_len)
1228{
1229	char *scontextp;
1230
1231	if (scontext)
1232		*scontext = NULL;
1233	*scontext_len = 0;
1234
1235	if (context->len) {
1236		*scontext_len = context->len;
1237		if (scontext) {
1238			*scontext = kstrdup(context->str, GFP_ATOMIC);
1239			if (!(*scontext))
1240				return -ENOMEM;
1241		}
1242		return 0;
1243	}
1244
1245	/* Compute the size of the context. */
1246	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1247	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1248	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1249	*scontext_len += mls_compute_context_len(p, context);
1250
1251	if (!scontext)
1252		return 0;
1253
1254	/* Allocate space for the context; caller must free this space. */
1255	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1256	if (!scontextp)
1257		return -ENOMEM;
1258	*scontext = scontextp;
1259
1260	/*
1261	 * Copy the user name, role name and type name into the context.
1262	 */
1263	scontextp += sprintf(scontextp, "%s:%s:%s",
1264		sym_name(p, SYM_USERS, context->user - 1),
1265		sym_name(p, SYM_ROLES, context->role - 1),
1266		sym_name(p, SYM_TYPES, context->type - 1));
 
 
 
1267
1268	mls_sid_to_context(p, context, &scontextp);
1269
1270	*scontextp = 0;
1271
1272	return 0;
1273}
1274
1275#include "initial_sid_to_string.h"
1276
1277const char *security_get_initial_sid_context(u32 sid)
1278{
1279	if (unlikely(sid > SECINITSID_NUM))
1280		return NULL;
1281	return initial_sid_to_string[sid];
1282}
1283
1284static int security_sid_to_context_core(struct selinux_state *state,
1285					u32 sid, char **scontext,
1286					u32 *scontext_len, int force)
1287{
1288	struct policydb *policydb;
1289	struct sidtab *sidtab;
1290	struct context *context;
1291	int rc = 0;
1292
1293	if (scontext)
1294		*scontext = NULL;
1295	*scontext_len  = 0;
1296
1297	if (!state->initialized) {
1298		if (sid <= SECINITSID_NUM) {
1299			char *scontextp;
1300
1301			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1302			if (!scontext)
1303				goto out;
1304			scontextp = kmemdup(initial_sid_to_string[sid],
1305					    *scontext_len, GFP_ATOMIC);
1306			if (!scontextp) {
1307				rc = -ENOMEM;
1308				goto out;
1309			}
 
1310			*scontext = scontextp;
1311			goto out;
1312		}
1313		printk(KERN_ERR "SELinux: %s:  called before initial "
1314		       "load_policy on unknown SID %d\n", __func__, sid);
1315		rc = -EINVAL;
1316		goto out;
1317	}
1318	read_lock(&state->ss->policy_rwlock);
1319	policydb = &state->ss->policydb;
1320	sidtab = &state->ss->sidtab;
1321	if (force)
1322		context = sidtab_search_force(sidtab, sid);
1323	else
1324		context = sidtab_search(sidtab, sid);
1325	if (!context) {
1326		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1327			__func__, sid);
1328		rc = -EINVAL;
1329		goto out_unlock;
1330	}
1331	rc = context_struct_to_string(policydb, context, scontext,
1332				      scontext_len);
1333out_unlock:
1334	read_unlock(&state->ss->policy_rwlock);
1335out:
1336	return rc;
1337
1338}
1339
1340/**
1341 * security_sid_to_context - Obtain a context for a given SID.
1342 * @sid: security identifier, SID
1343 * @scontext: security context
1344 * @scontext_len: length in bytes
1345 *
1346 * Write the string representation of the context associated with @sid
1347 * into a dynamically allocated string of the correct size.  Set @scontext
1348 * to point to this string and set @scontext_len to the length of the string.
1349 */
1350int security_sid_to_context(struct selinux_state *state,
1351			    u32 sid, char **scontext, u32 *scontext_len)
1352{
1353	return security_sid_to_context_core(state, sid, scontext,
1354					    scontext_len, 0);
1355}
1356
1357int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1358				  char **scontext, u32 *scontext_len)
1359{
1360	return security_sid_to_context_core(state, sid, scontext,
1361					    scontext_len, 1);
1362}
1363
1364/*
1365 * Caveat:  Mutates scontext.
1366 */
1367static int string_to_context_struct(struct policydb *pol,
1368				    struct sidtab *sidtabp,
1369				    char *scontext,
1370				    u32 scontext_len,
1371				    struct context *ctx,
1372				    u32 def_sid)
1373{
1374	struct role_datum *role;
1375	struct type_datum *typdatum;
1376	struct user_datum *usrdatum;
1377	char *scontextp, *p, oldc;
1378	int rc = 0;
1379
1380	context_init(ctx);
1381
1382	/* Parse the security context. */
1383
1384	rc = -EINVAL;
1385	scontextp = (char *) scontext;
1386
1387	/* Extract the user. */
1388	p = scontextp;
1389	while (*p && *p != ':')
1390		p++;
1391
1392	if (*p == 0)
1393		goto out;
1394
1395	*p++ = 0;
1396
1397	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1398	if (!usrdatum)
1399		goto out;
1400
1401	ctx->user = usrdatum->value;
1402
1403	/* Extract role. */
1404	scontextp = p;
1405	while (*p && *p != ':')
1406		p++;
1407
1408	if (*p == 0)
1409		goto out;
1410
1411	*p++ = 0;
1412
1413	role = hashtab_search(pol->p_roles.table, scontextp);
1414	if (!role)
1415		goto out;
1416	ctx->role = role->value;
1417
1418	/* Extract type. */
1419	scontextp = p;
1420	while (*p && *p != ':')
1421		p++;
1422	oldc = *p;
1423	*p++ = 0;
1424
1425	typdatum = hashtab_search(pol->p_types.table, scontextp);
1426	if (!typdatum || typdatum->attribute)
1427		goto out;
1428
1429	ctx->type = typdatum->value;
1430
1431	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1432	if (rc)
1433		goto out;
1434
1435	rc = -EINVAL;
1436	if ((p - scontext) < scontext_len)
1437		goto out;
1438
1439	/* Check the validity of the new context. */
1440	if (!policydb_context_isvalid(pol, ctx))
1441		goto out;
1442	rc = 0;
1443out:
1444	if (rc)
1445		context_destroy(ctx);
1446	return rc;
1447}
1448
1449static int security_context_to_sid_core(struct selinux_state *state,
1450					const char *scontext, u32 scontext_len,
1451					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1452					int force)
1453{
1454	struct policydb *policydb;
1455	struct sidtab *sidtab;
1456	char *scontext2, *str = NULL;
1457	struct context context;
1458	int rc = 0;
1459
1460	/* An empty security context is never valid. */
1461	if (!scontext_len)
1462		return -EINVAL;
1463
1464	/* Copy the string to allow changes and ensure a NUL terminator */
1465	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1466	if (!scontext2)
1467		return -ENOMEM;
1468
1469	if (!state->initialized) {
1470		int i;
1471
1472		for (i = 1; i < SECINITSID_NUM; i++) {
1473			if (!strcmp(initial_sid_to_string[i], scontext2)) {
1474				*sid = i;
1475				goto out;
1476			}
1477		}
1478		*sid = SECINITSID_KERNEL;
1479		goto out;
1480	}
1481	*sid = SECSID_NULL;
1482
 
 
 
 
 
 
 
1483	if (force) {
1484		/* Save another copy for storing in uninterpreted form */
1485		rc = -ENOMEM;
1486		str = kstrdup(scontext2, gfp_flags);
1487		if (!str)
1488			goto out;
1489	}
1490	read_lock(&state->ss->policy_rwlock);
1491	policydb = &state->ss->policydb;
1492	sidtab = &state->ss->sidtab;
1493	rc = string_to_context_struct(policydb, sidtab, scontext2,
1494				      scontext_len, &context, def_sid);
1495	if (rc == -EINVAL && force) {
1496		context.str = str;
1497		context.len = strlen(str) + 1;
1498		str = NULL;
1499	} else if (rc)
1500		goto out_unlock;
1501	rc = sidtab_context_to_sid(sidtab, &context, sid);
1502	context_destroy(&context);
1503out_unlock:
1504	read_unlock(&state->ss->policy_rwlock);
1505out:
1506	kfree(scontext2);
1507	kfree(str);
1508	return rc;
1509}
1510
1511/**
1512 * security_context_to_sid - Obtain a SID for a given security context.
1513 * @scontext: security context
1514 * @scontext_len: length in bytes
1515 * @sid: security identifier, SID
1516 * @gfp: context for the allocation
1517 *
1518 * Obtains a SID associated with the security context that
1519 * has the string representation specified by @scontext.
1520 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1521 * memory is available, or 0 on success.
1522 */
1523int security_context_to_sid(struct selinux_state *state,
1524			    const char *scontext, u32 scontext_len, u32 *sid,
1525			    gfp_t gfp)
1526{
1527	return security_context_to_sid_core(state, scontext, scontext_len,
1528					    sid, SECSID_NULL, gfp, 0);
1529}
1530
1531int security_context_str_to_sid(struct selinux_state *state,
1532				const char *scontext, u32 *sid, gfp_t gfp)
1533{
1534	return security_context_to_sid(state, scontext, strlen(scontext),
1535				       sid, gfp);
1536}
1537
1538/**
1539 * security_context_to_sid_default - Obtain a SID for a given security context,
1540 * falling back to specified default if needed.
1541 *
1542 * @scontext: security context
1543 * @scontext_len: length in bytes
1544 * @sid: security identifier, SID
1545 * @def_sid: default SID to assign on error
1546 *
1547 * Obtains a SID associated with the security context that
1548 * has the string representation specified by @scontext.
1549 * The default SID is passed to the MLS layer to be used to allow
1550 * kernel labeling of the MLS field if the MLS field is not present
1551 * (for upgrading to MLS without full relabel).
1552 * Implicitly forces adding of the context even if it cannot be mapped yet.
1553 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1554 * memory is available, or 0 on success.
1555 */
1556int security_context_to_sid_default(struct selinux_state *state,
1557				    const char *scontext, u32 scontext_len,
1558				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1559{
1560	return security_context_to_sid_core(state, scontext, scontext_len,
1561					    sid, def_sid, gfp_flags, 1);
1562}
1563
1564int security_context_to_sid_force(struct selinux_state *state,
1565				  const char *scontext, u32 scontext_len,
1566				  u32 *sid)
1567{
1568	return security_context_to_sid_core(state, scontext, scontext_len,
1569					    sid, SECSID_NULL, GFP_KERNEL, 1);
1570}
1571
1572static int compute_sid_handle_invalid_context(
1573	struct selinux_state *state,
1574	struct context *scontext,
1575	struct context *tcontext,
1576	u16 tclass,
1577	struct context *newcontext)
1578{
1579	struct policydb *policydb = &state->ss->policydb;
1580	char *s = NULL, *t = NULL, *n = NULL;
1581	u32 slen, tlen, nlen;
1582
1583	if (context_struct_to_string(policydb, scontext, &s, &slen))
1584		goto out;
1585	if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1586		goto out;
1587	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1588		goto out;
1589	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1590		  "op=security_compute_sid invalid_context=%s"
1591		  " scontext=%s"
1592		  " tcontext=%s"
1593		  " tclass=%s",
1594		  n, s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1595out:
1596	kfree(s);
1597	kfree(t);
1598	kfree(n);
1599	if (!enforcing_enabled(state))
1600		return 0;
1601	return -EACCES;
1602}
1603
1604static void filename_compute_type(struct policydb *policydb,
1605				  struct context *newcontext,
1606				  u32 stype, u32 ttype, u16 tclass,
1607				  const char *objname)
1608{
1609	struct filename_trans ft;
1610	struct filename_trans_datum *otype;
1611
1612	/*
1613	 * Most filename trans rules are going to live in specific directories
1614	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1615	 * if the ttype does not contain any rules.
1616	 */
1617	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1618		return;
1619
1620	ft.stype = stype;
1621	ft.ttype = ttype;
1622	ft.tclass = tclass;
1623	ft.name = objname;
1624
1625	otype = hashtab_search(policydb->filename_trans, &ft);
1626	if (otype)
1627		newcontext->type = otype->otype;
1628}
1629
1630static int security_compute_sid(struct selinux_state *state,
1631				u32 ssid,
1632				u32 tsid,
1633				u16 orig_tclass,
1634				u32 specified,
1635				const char *objname,
1636				u32 *out_sid,
1637				bool kern)
1638{
1639	struct policydb *policydb;
1640	struct sidtab *sidtab;
1641	struct class_datum *cladatum = NULL;
1642	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1643	struct role_trans *roletr = NULL;
1644	struct avtab_key avkey;
1645	struct avtab_datum *avdatum;
1646	struct avtab_node *node;
1647	u16 tclass;
1648	int rc = 0;
1649	bool sock;
1650
1651	if (!state->initialized) {
1652		switch (orig_tclass) {
1653		case SECCLASS_PROCESS: /* kernel value */
1654			*out_sid = ssid;
1655			break;
1656		default:
1657			*out_sid = tsid;
1658			break;
1659		}
1660		goto out;
1661	}
1662
1663	context_init(&newcontext);
1664
1665	read_lock(&state->ss->policy_rwlock);
1666
1667	if (kern) {
1668		tclass = unmap_class(&state->ss->map, orig_tclass);
1669		sock = security_is_socket_class(orig_tclass);
1670	} else {
1671		tclass = orig_tclass;
1672		sock = security_is_socket_class(map_class(&state->ss->map,
1673							  tclass));
1674	}
1675
1676	policydb = &state->ss->policydb;
1677	sidtab = &state->ss->sidtab;
1678
1679	scontext = sidtab_search(sidtab, ssid);
1680	if (!scontext) {
1681		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1682		       __func__, ssid);
1683		rc = -EINVAL;
1684		goto out_unlock;
1685	}
1686	tcontext = sidtab_search(sidtab, tsid);
1687	if (!tcontext) {
1688		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1689		       __func__, tsid);
1690		rc = -EINVAL;
1691		goto out_unlock;
1692	}
1693
1694	if (tclass && tclass <= policydb->p_classes.nprim)
1695		cladatum = policydb->class_val_to_struct[tclass - 1];
1696
1697	/* Set the user identity. */
1698	switch (specified) {
1699	case AVTAB_TRANSITION:
1700	case AVTAB_CHANGE:
1701		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1702			newcontext.user = tcontext->user;
1703		} else {
1704			/* notice this gets both DEFAULT_SOURCE and unset */
1705			/* Use the process user identity. */
1706			newcontext.user = scontext->user;
1707		}
1708		break;
1709	case AVTAB_MEMBER:
1710		/* Use the related object owner. */
1711		newcontext.user = tcontext->user;
1712		break;
1713	}
1714
1715	/* Set the role to default values. */
1716	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
 
1717		newcontext.role = scontext->role;
1718	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1719		newcontext.role = tcontext->role;
1720	} else {
1721		if ((tclass == policydb->process_class) || (sock == true))
1722			newcontext.role = scontext->role;
1723		else
1724			newcontext.role = OBJECT_R_VAL;
1725	}
1726
1727	/* Set the type to default values. */
1728	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1729		newcontext.type = scontext->type;
1730	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1731		newcontext.type = tcontext->type;
1732	} else {
1733		if ((tclass == policydb->process_class) || (sock == true)) {
1734			/* Use the type of process. */
1735			newcontext.type = scontext->type;
1736		} else {
1737			/* Use the type of the related object. */
1738			newcontext.type = tcontext->type;
1739		}
1740	}
1741
1742	/* Look for a type transition/member/change rule. */
1743	avkey.source_type = scontext->type;
1744	avkey.target_type = tcontext->type;
1745	avkey.target_class = tclass;
1746	avkey.specified = specified;
1747	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1748
1749	/* If no permanent rule, also check for enabled conditional rules */
1750	if (!avdatum) {
1751		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1752		for (; node; node = avtab_search_node_next(node, specified)) {
1753			if (node->key.specified & AVTAB_ENABLED) {
1754				avdatum = &node->datum;
1755				break;
1756			}
1757		}
1758	}
1759
1760	if (avdatum) {
1761		/* Use the type from the type transition/member/change rule. */
1762		newcontext.type = avdatum->u.data;
1763	}
1764
1765	/* if we have a objname this is a file trans check so check those rules */
1766	if (objname)
1767		filename_compute_type(policydb, &newcontext, scontext->type,
1768				      tcontext->type, tclass, objname);
1769
1770	/* Check for class-specific changes. */
1771	if (specified & AVTAB_TRANSITION) {
1772		/* Look for a role transition rule. */
1773		for (roletr = policydb->role_tr; roletr;
1774		     roletr = roletr->next) {
1775			if ((roletr->role == scontext->role) &&
1776			    (roletr->type == tcontext->type) &&
1777			    (roletr->tclass == tclass)) {
1778				/* Use the role transition rule. */
1779				newcontext.role = roletr->new_role;
1780				break;
1781			}
1782		}
1783	}
1784
1785	/* Set the MLS attributes.
1786	   This is done last because it may allocate memory. */
1787	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1788			     &newcontext, sock);
1789	if (rc)
1790		goto out_unlock;
1791
1792	/* Check the validity of the context. */
1793	if (!policydb_context_isvalid(policydb, &newcontext)) {
1794		rc = compute_sid_handle_invalid_context(state, scontext,
1795							tcontext,
1796							tclass,
1797							&newcontext);
1798		if (rc)
1799			goto out_unlock;
1800	}
1801	/* Obtain the sid for the context. */
1802	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1803out_unlock:
1804	read_unlock(&state->ss->policy_rwlock);
1805	context_destroy(&newcontext);
1806out:
1807	return rc;
1808}
1809
1810/**
1811 * security_transition_sid - Compute the SID for a new subject/object.
1812 * @ssid: source security identifier
1813 * @tsid: target security identifier
1814 * @tclass: target security class
1815 * @out_sid: security identifier for new subject/object
1816 *
1817 * Compute a SID to use for labeling a new subject or object in the
1818 * class @tclass based on a SID pair (@ssid, @tsid).
1819 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1820 * if insufficient memory is available, or %0 if the new SID was
1821 * computed successfully.
1822 */
1823int security_transition_sid(struct selinux_state *state,
1824			    u32 ssid, u32 tsid, u16 tclass,
1825			    const struct qstr *qstr, u32 *out_sid)
1826{
1827	return security_compute_sid(state, ssid, tsid, tclass,
1828				    AVTAB_TRANSITION,
1829				    qstr ? qstr->name : NULL, out_sid, true);
1830}
1831
1832int security_transition_sid_user(struct selinux_state *state,
1833				 u32 ssid, u32 tsid, u16 tclass,
1834				 const char *objname, u32 *out_sid)
1835{
1836	return security_compute_sid(state, ssid, tsid, tclass,
1837				    AVTAB_TRANSITION,
1838				    objname, out_sid, false);
1839}
1840
1841/**
1842 * security_member_sid - Compute the SID for member selection.
1843 * @ssid: source security identifier
1844 * @tsid: target security identifier
1845 * @tclass: target security class
1846 * @out_sid: security identifier for selected member
1847 *
1848 * Compute a SID to use when selecting a member of a polyinstantiated
1849 * object of class @tclass based on a SID pair (@ssid, @tsid).
1850 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1851 * if insufficient memory is available, or %0 if the SID was
1852 * computed successfully.
1853 */
1854int security_member_sid(struct selinux_state *state,
1855			u32 ssid,
1856			u32 tsid,
1857			u16 tclass,
1858			u32 *out_sid)
1859{
1860	return security_compute_sid(state, ssid, tsid, tclass,
1861				    AVTAB_MEMBER, NULL,
1862				    out_sid, false);
1863}
1864
1865/**
1866 * security_change_sid - Compute the SID for object relabeling.
1867 * @ssid: source security identifier
1868 * @tsid: target security identifier
1869 * @tclass: target security class
1870 * @out_sid: security identifier for selected member
1871 *
1872 * Compute a SID to use for relabeling an object of class @tclass
1873 * based on a SID pair (@ssid, @tsid).
1874 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1875 * if insufficient memory is available, or %0 if the SID was
1876 * computed successfully.
1877 */
1878int security_change_sid(struct selinux_state *state,
1879			u32 ssid,
1880			u32 tsid,
1881			u16 tclass,
1882			u32 *out_sid)
1883{
1884	return security_compute_sid(state,
1885				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1886				    out_sid, false);
1887}
1888
1889/* Clone the SID into the new SID table. */
1890static int clone_sid(u32 sid,
1891		     struct context *context,
1892		     void *arg)
1893{
1894	struct sidtab *s = arg;
1895
1896	if (sid > SECINITSID_NUM)
1897		return sidtab_insert(s, sid, context);
1898	else
1899		return 0;
1900}
1901
1902static inline int convert_context_handle_invalid_context(
1903	struct selinux_state *state,
1904	struct context *context)
1905{
1906	struct policydb *policydb = &state->ss->policydb;
1907	char *s;
1908	u32 len;
1909
1910	if (enforcing_enabled(state))
1911		return -EINVAL;
1912
1913	if (!context_struct_to_string(policydb, context, &s, &len)) {
1914		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1915		kfree(s);
1916	}
1917	return 0;
1918}
1919
1920struct convert_context_args {
1921	struct selinux_state *state;
1922	struct policydb *oldp;
1923	struct policydb *newp;
1924};
1925
1926/*
1927 * Convert the values in the security context
1928 * structure `c' from the values specified
1929 * in the policy `p->oldp' to the values specified
1930 * in the policy `p->newp'.  Verify that the
1931 * context is valid under the new policy.
1932 */
1933static int convert_context(u32 key,
1934			   struct context *c,
1935			   void *p)
1936{
1937	struct convert_context_args *args;
1938	struct context oldc;
1939	struct ocontext *oc;
1940	struct mls_range *range;
1941	struct role_datum *role;
1942	struct type_datum *typdatum;
1943	struct user_datum *usrdatum;
1944	char *s;
1945	u32 len;
1946	int rc = 0;
1947
1948	if (key <= SECINITSID_NUM)
1949		goto out;
1950
1951	args = p;
1952
1953	if (c->str) {
1954		struct context ctx;
1955
1956		rc = -ENOMEM;
1957		s = kstrdup(c->str, GFP_KERNEL);
1958		if (!s)
1959			goto out;
1960
1961		rc = string_to_context_struct(args->newp, NULL, s,
1962					      c->len, &ctx, SECSID_NULL);
1963		kfree(s);
1964		if (!rc) {
1965			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1966			       c->str);
1967			/* Replace string with mapped representation. */
1968			kfree(c->str);
1969			memcpy(c, &ctx, sizeof(*c));
1970			goto out;
1971		} else if (rc == -EINVAL) {
1972			/* Retain string representation for later mapping. */
1973			rc = 0;
1974			goto out;
1975		} else {
1976			/* Other error condition, e.g. ENOMEM. */
1977			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1978			       c->str, -rc);
1979			goto out;
1980		}
1981	}
1982
1983	rc = context_cpy(&oldc, c);
1984	if (rc)
1985		goto out;
1986
1987	/* Convert the user. */
1988	rc = -EINVAL;
1989	usrdatum = hashtab_search(args->newp->p_users.table,
1990				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1991	if (!usrdatum)
1992		goto bad;
1993	c->user = usrdatum->value;
1994
1995	/* Convert the role. */
1996	rc = -EINVAL;
1997	role = hashtab_search(args->newp->p_roles.table,
1998			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1999	if (!role)
2000		goto bad;
2001	c->role = role->value;
2002
2003	/* Convert the type. */
2004	rc = -EINVAL;
2005	typdatum = hashtab_search(args->newp->p_types.table,
2006				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
2007	if (!typdatum)
2008		goto bad;
2009	c->type = typdatum->value;
2010
2011	/* Convert the MLS fields if dealing with MLS policies */
2012	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2013		rc = mls_convert_context(args->oldp, args->newp, c);
2014		if (rc)
2015			goto bad;
2016	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
2017		/*
2018		 * Switching between MLS and non-MLS policy:
2019		 * free any storage used by the MLS fields in the
2020		 * context for all existing entries in the sidtab.
2021		 */
2022		mls_context_destroy(c);
2023	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2024		/*
2025		 * Switching between non-MLS and MLS policy:
2026		 * ensure that the MLS fields of the context for all
2027		 * existing entries in the sidtab are filled in with a
2028		 * suitable default value, likely taken from one of the
2029		 * initial SIDs.
2030		 */
2031		oc = args->newp->ocontexts[OCON_ISID];
2032		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2033			oc = oc->next;
2034		rc = -EINVAL;
2035		if (!oc) {
2036			printk(KERN_ERR "SELinux:  unable to look up"
2037				" the initial SIDs list\n");
2038			goto bad;
2039		}
2040		range = &oc->context[0].range;
2041		rc = mls_range_set(c, range);
2042		if (rc)
2043			goto bad;
2044	}
2045
2046	/* Check the validity of the new context. */
2047	if (!policydb_context_isvalid(args->newp, c)) {
2048		rc = convert_context_handle_invalid_context(args->state,
2049							    &oldc);
2050		if (rc)
2051			goto bad;
2052	}
2053
2054	context_destroy(&oldc);
2055
2056	rc = 0;
2057out:
2058	return rc;
2059bad:
2060	/* Map old representation to string and save it. */
2061	rc = context_struct_to_string(args->oldp, &oldc, &s, &len);
2062	if (rc)
2063		return rc;
2064	context_destroy(&oldc);
2065	context_destroy(c);
2066	c->str = s;
2067	c->len = len;
2068	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
2069	       c->str);
2070	rc = 0;
2071	goto out;
2072}
2073
2074static void security_load_policycaps(struct selinux_state *state)
2075{
2076	struct policydb *p = &state->ss->policydb;
2077	unsigned int i;
2078	struct ebitmap_node *node;
2079
2080	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2081		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2082
2083	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2084		pr_info("SELinux:  policy capability %s=%d\n",
2085			selinux_policycap_names[i],
2086			ebitmap_get_bit(&p->policycaps, i));
2087
2088	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2089		if (i >= ARRAY_SIZE(selinux_policycap_names))
2090			pr_info("SELinux:  unknown policy capability %u\n",
2091				i);
2092	}
2093}
2094
2095static int security_preserve_bools(struct selinux_state *state,
2096				   struct policydb *newpolicydb);
2097
2098/**
2099 * security_load_policy - Load a security policy configuration.
2100 * @data: binary policy data
2101 * @len: length of data in bytes
2102 *
2103 * Load a new set of security policy configuration data,
2104 * validate it and convert the SID table as necessary.
2105 * This function will flush the access vector cache after
2106 * loading the new policy.
2107 */
2108int security_load_policy(struct selinux_state *state, void *data, size_t len)
2109{
2110	struct policydb *policydb;
2111	struct sidtab *sidtab;
2112	struct policydb *oldpolicydb, *newpolicydb;
2113	struct sidtab oldsidtab, newsidtab;
2114	struct selinux_mapping *oldmapping;
2115	struct selinux_map newmap;
2116	struct convert_context_args args;
2117	u32 seqno;
 
2118	int rc = 0;
2119	struct policy_file file = { data, len }, *fp = &file;
2120
2121	oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2122	if (!oldpolicydb) {
2123		rc = -ENOMEM;
2124		goto out;
2125	}
2126	newpolicydb = oldpolicydb + 1;
2127
2128	policydb = &state->ss->policydb;
2129	sidtab = &state->ss->sidtab;
2130
2131	if (!state->initialized) {
2132		rc = policydb_read(policydb, fp);
2133		if (rc)
2134			goto out;
2135
2136		policydb->len = len;
2137		rc = selinux_set_mapping(policydb, secclass_map,
2138					 &state->ss->map);
 
2139		if (rc) {
2140			policydb_destroy(policydb);
2141			goto out;
 
2142		}
2143
2144		rc = policydb_load_isids(policydb, sidtab);
2145		if (rc) {
2146			policydb_destroy(policydb);
2147			goto out;
 
2148		}
2149
2150		security_load_policycaps(state);
2151		state->initialized = 1;
2152		seqno = ++state->ss->latest_granting;
2153		selinux_complete_init();
2154		avc_ss_reset(state->avc, seqno);
2155		selnl_notify_policyload(seqno);
2156		selinux_status_update_policyload(state, seqno);
2157		selinux_netlbl_cache_invalidate();
2158		selinux_xfrm_notify_policyload();
2159		goto out;
2160	}
2161
2162#if 0
2163	sidtab_hash_eval(sidtab, "sids");
2164#endif
2165
2166	rc = policydb_read(newpolicydb, fp);
2167	if (rc)
2168		goto out;
2169
2170	newpolicydb->len = len;
2171	/* If switching between different policy types, log MLS status */
2172	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2173		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2174	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2175		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2176
2177	rc = policydb_load_isids(newpolicydb, &newsidtab);
2178	if (rc) {
2179		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
2180		policydb_destroy(newpolicydb);
2181		goto out;
2182	}
2183
2184	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2185	if (rc)
2186		goto err;
2187
2188	rc = security_preserve_bools(state, newpolicydb);
2189	if (rc) {
2190		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
2191		goto err;
2192	}
2193
2194	/* Clone the SID table. */
2195	sidtab_shutdown(sidtab);
2196
2197	rc = sidtab_map(sidtab, clone_sid, &newsidtab);
2198	if (rc)
2199		goto err;
2200
2201	/*
2202	 * Convert the internal representations of contexts
2203	 * in the new SID table.
2204	 */
2205	args.state = state;
2206	args.oldp = policydb;
2207	args.newp = newpolicydb;
2208	rc = sidtab_map(&newsidtab, convert_context, &args);
2209	if (rc) {
2210		printk(KERN_ERR "SELinux:  unable to convert the internal"
2211			" representation of contexts in the new SID"
2212			" table\n");
2213		goto err;
2214	}
2215
2216	/* Save the old policydb and SID table to free later. */
2217	memcpy(oldpolicydb, policydb, sizeof(*policydb));
2218	sidtab_set(&oldsidtab, sidtab);
2219
2220	/* Install the new policydb and SID table. */
2221	write_lock_irq(&state->ss->policy_rwlock);
2222	memcpy(policydb, newpolicydb, sizeof(*policydb));
2223	sidtab_set(sidtab, &newsidtab);
2224	security_load_policycaps(state);
2225	oldmapping = state->ss->map.mapping;
2226	state->ss->map.mapping = newmap.mapping;
2227	state->ss->map.size = newmap.size;
2228	seqno = ++state->ss->latest_granting;
2229	write_unlock_irq(&state->ss->policy_rwlock);
2230
2231	/* Free the old policydb and SID table. */
2232	policydb_destroy(oldpolicydb);
2233	sidtab_destroy(&oldsidtab);
2234	kfree(oldmapping);
2235
2236	avc_ss_reset(state->avc, seqno);
2237	selnl_notify_policyload(seqno);
2238	selinux_status_update_policyload(state, seqno);
2239	selinux_netlbl_cache_invalidate();
2240	selinux_xfrm_notify_policyload();
2241
2242	rc = 0;
2243	goto out;
2244
2245err:
2246	kfree(newmap.mapping);
2247	sidtab_destroy(&newsidtab);
2248	policydb_destroy(newpolicydb);
 
2249
2250out:
2251	kfree(oldpolicydb);
2252	return rc;
2253}
2254
2255size_t security_policydb_len(struct selinux_state *state)
2256{
2257	struct policydb *p = &state->ss->policydb;
2258	size_t len;
2259
2260	read_lock(&state->ss->policy_rwlock);
2261	len = p->len;
2262	read_unlock(&state->ss->policy_rwlock);
2263
2264	return len;
2265}
2266
2267/**
2268 * security_port_sid - Obtain the SID for a port.
2269 * @protocol: protocol number
2270 * @port: port number
2271 * @out_sid: security identifier
2272 */
2273int security_port_sid(struct selinux_state *state,
2274		      u8 protocol, u16 port, u32 *out_sid)
2275{
2276	struct policydb *policydb;
2277	struct sidtab *sidtab;
2278	struct ocontext *c;
2279	int rc = 0;
2280
2281	read_lock(&state->ss->policy_rwlock);
2282
2283	policydb = &state->ss->policydb;
2284	sidtab = &state->ss->sidtab;
2285
2286	c = policydb->ocontexts[OCON_PORT];
2287	while (c) {
2288		if (c->u.port.protocol == protocol &&
2289		    c->u.port.low_port <= port &&
2290		    c->u.port.high_port >= port)
2291			break;
2292		c = c->next;
2293	}
2294
2295	if (c) {
2296		if (!c->sid[0]) {
2297			rc = sidtab_context_to_sid(sidtab,
2298						   &c->context[0],
2299						   &c->sid[0]);
2300			if (rc)
2301				goto out;
2302		}
2303		*out_sid = c->sid[0];
2304	} else {
2305		*out_sid = SECINITSID_PORT;
2306	}
2307
2308out:
2309	read_unlock(&state->ss->policy_rwlock);
2310	return rc;
2311}
2312
2313/**
2314 * security_pkey_sid - Obtain the SID for a pkey.
2315 * @subnet_prefix: Subnet Prefix
2316 * @pkey_num: pkey number
2317 * @out_sid: security identifier
2318 */
2319int security_ib_pkey_sid(struct selinux_state *state,
2320			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2321{
2322	struct policydb *policydb;
2323	struct sidtab *sidtab;
2324	struct ocontext *c;
2325	int rc = 0;
2326
2327	read_lock(&state->ss->policy_rwlock);
2328
2329	policydb = &state->ss->policydb;
2330	sidtab = &state->ss->sidtab;
2331
2332	c = policydb->ocontexts[OCON_IBPKEY];
2333	while (c) {
2334		if (c->u.ibpkey.low_pkey <= pkey_num &&
2335		    c->u.ibpkey.high_pkey >= pkey_num &&
2336		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2337			break;
2338
2339		c = c->next;
2340	}
2341
2342	if (c) {
2343		if (!c->sid[0]) {
2344			rc = sidtab_context_to_sid(sidtab,
2345						   &c->context[0],
2346						   &c->sid[0]);
2347			if (rc)
2348				goto out;
2349		}
2350		*out_sid = c->sid[0];
2351	} else
2352		*out_sid = SECINITSID_UNLABELED;
2353
2354out:
2355	read_unlock(&state->ss->policy_rwlock);
2356	return rc;
2357}
2358
2359/**
2360 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2361 * @dev_name: device name
2362 * @port: port number
2363 * @out_sid: security identifier
2364 */
2365int security_ib_endport_sid(struct selinux_state *state,
2366			    const char *dev_name, u8 port_num, u32 *out_sid)
2367{
2368	struct policydb *policydb;
2369	struct sidtab *sidtab;
2370	struct ocontext *c;
2371	int rc = 0;
2372
2373	read_lock(&state->ss->policy_rwlock);
2374
2375	policydb = &state->ss->policydb;
2376	sidtab = &state->ss->sidtab;
2377
2378	c = policydb->ocontexts[OCON_IBENDPORT];
2379	while (c) {
2380		if (c->u.ibendport.port == port_num &&
2381		    !strncmp(c->u.ibendport.dev_name,
2382			     dev_name,
2383			     IB_DEVICE_NAME_MAX))
2384			break;
2385
2386		c = c->next;
2387	}
2388
2389	if (c) {
2390		if (!c->sid[0]) {
2391			rc = sidtab_context_to_sid(sidtab,
2392						   &c->context[0],
2393						   &c->sid[0]);
2394			if (rc)
2395				goto out;
2396		}
2397		*out_sid = c->sid[0];
2398	} else
2399		*out_sid = SECINITSID_UNLABELED;
2400
2401out:
2402	read_unlock(&state->ss->policy_rwlock);
2403	return rc;
2404}
2405
2406/**
2407 * security_netif_sid - Obtain the SID for a network interface.
2408 * @name: interface name
2409 * @if_sid: interface SID
2410 */
2411int security_netif_sid(struct selinux_state *state,
2412		       char *name, u32 *if_sid)
2413{
2414	struct policydb *policydb;
2415	struct sidtab *sidtab;
2416	int rc = 0;
2417	struct ocontext *c;
2418
2419	read_lock(&state->ss->policy_rwlock);
2420
2421	policydb = &state->ss->policydb;
2422	sidtab = &state->ss->sidtab;
2423
2424	c = policydb->ocontexts[OCON_NETIF];
2425	while (c) {
2426		if (strcmp(name, c->u.name) == 0)
2427			break;
2428		c = c->next;
2429	}
2430
2431	if (c) {
2432		if (!c->sid[0] || !c->sid[1]) {
2433			rc = sidtab_context_to_sid(sidtab,
2434						  &c->context[0],
2435						  &c->sid[0]);
2436			if (rc)
2437				goto out;
2438			rc = sidtab_context_to_sid(sidtab,
2439						   &c->context[1],
2440						   &c->sid[1]);
2441			if (rc)
2442				goto out;
2443		}
2444		*if_sid = c->sid[0];
2445	} else
2446		*if_sid = SECINITSID_NETIF;
2447
2448out:
2449	read_unlock(&state->ss->policy_rwlock);
2450	return rc;
2451}
2452
2453static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2454{
2455	int i, fail = 0;
2456
2457	for (i = 0; i < 4; i++)
2458		if (addr[i] != (input[i] & mask[i])) {
2459			fail = 1;
2460			break;
2461		}
2462
2463	return !fail;
2464}
2465
2466/**
2467 * security_node_sid - Obtain the SID for a node (host).
2468 * @domain: communication domain aka address family
2469 * @addrp: address
2470 * @addrlen: address length in bytes
2471 * @out_sid: security identifier
2472 */
2473int security_node_sid(struct selinux_state *state,
2474		      u16 domain,
2475		      void *addrp,
2476		      u32 addrlen,
2477		      u32 *out_sid)
2478{
2479	struct policydb *policydb;
2480	struct sidtab *sidtab;
2481	int rc;
2482	struct ocontext *c;
2483
2484	read_lock(&state->ss->policy_rwlock);
2485
2486	policydb = &state->ss->policydb;
2487	sidtab = &state->ss->sidtab;
2488
2489	switch (domain) {
2490	case AF_INET: {
2491		u32 addr;
2492
2493		rc = -EINVAL;
2494		if (addrlen != sizeof(u32))
2495			goto out;
2496
2497		addr = *((u32 *)addrp);
2498
2499		c = policydb->ocontexts[OCON_NODE];
2500		while (c) {
2501			if (c->u.node.addr == (addr & c->u.node.mask))
2502				break;
2503			c = c->next;
2504		}
2505		break;
2506	}
2507
2508	case AF_INET6:
2509		rc = -EINVAL;
2510		if (addrlen != sizeof(u64) * 2)
2511			goto out;
2512		c = policydb->ocontexts[OCON_NODE6];
2513		while (c) {
2514			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2515						c->u.node6.mask))
2516				break;
2517			c = c->next;
2518		}
2519		break;
2520
2521	default:
2522		rc = 0;
2523		*out_sid = SECINITSID_NODE;
2524		goto out;
2525	}
2526
2527	if (c) {
2528		if (!c->sid[0]) {
2529			rc = sidtab_context_to_sid(sidtab,
2530						   &c->context[0],
2531						   &c->sid[0]);
2532			if (rc)
2533				goto out;
2534		}
2535		*out_sid = c->sid[0];
2536	} else {
2537		*out_sid = SECINITSID_NODE;
2538	}
2539
2540	rc = 0;
2541out:
2542	read_unlock(&state->ss->policy_rwlock);
2543	return rc;
2544}
2545
2546#define SIDS_NEL 25
2547
2548/**
2549 * security_get_user_sids - Obtain reachable SIDs for a user.
2550 * @fromsid: starting SID
2551 * @username: username
2552 * @sids: array of reachable SIDs for user
2553 * @nel: number of elements in @sids
2554 *
2555 * Generate the set of SIDs for legal security contexts
2556 * for a given user that can be reached by @fromsid.
2557 * Set *@sids to point to a dynamically allocated
2558 * array containing the set of SIDs.  Set *@nel to the
2559 * number of elements in the array.
2560 */
2561
2562int security_get_user_sids(struct selinux_state *state,
2563			   u32 fromsid,
2564			   char *username,
2565			   u32 **sids,
2566			   u32 *nel)
2567{
2568	struct policydb *policydb;
2569	struct sidtab *sidtab;
2570	struct context *fromcon, usercon;
2571	u32 *mysids = NULL, *mysids2, sid;
2572	u32 mynel = 0, maxnel = SIDS_NEL;
2573	struct user_datum *user;
2574	struct role_datum *role;
2575	struct ebitmap_node *rnode, *tnode;
2576	int rc = 0, i, j;
2577
2578	*sids = NULL;
2579	*nel = 0;
2580
2581	if (!state->initialized)
2582		goto out;
2583
2584	read_lock(&state->ss->policy_rwlock);
2585
2586	policydb = &state->ss->policydb;
2587	sidtab = &state->ss->sidtab;
2588
2589	context_init(&usercon);
2590
2591	rc = -EINVAL;
2592	fromcon = sidtab_search(sidtab, fromsid);
2593	if (!fromcon)
2594		goto out_unlock;
2595
2596	rc = -EINVAL;
2597	user = hashtab_search(policydb->p_users.table, username);
2598	if (!user)
2599		goto out_unlock;
2600
2601	usercon.user = user->value;
2602
2603	rc = -ENOMEM;
2604	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2605	if (!mysids)
2606		goto out_unlock;
2607
2608	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2609		role = policydb->role_val_to_struct[i];
2610		usercon.role = i + 1;
2611		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2612			usercon.type = j + 1;
2613
2614			if (mls_setup_user_range(policydb, fromcon, user,
2615						 &usercon))
2616				continue;
2617
2618			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2619			if (rc)
2620				goto out_unlock;
2621			if (mynel < maxnel) {
2622				mysids[mynel++] = sid;
2623			} else {
2624				rc = -ENOMEM;
2625				maxnel += SIDS_NEL;
2626				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2627				if (!mysids2)
2628					goto out_unlock;
2629				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2630				kfree(mysids);
2631				mysids = mysids2;
2632				mysids[mynel++] = sid;
2633			}
2634		}
2635	}
2636	rc = 0;
2637out_unlock:
2638	read_unlock(&state->ss->policy_rwlock);
2639	if (rc || !mynel) {
2640		kfree(mysids);
2641		goto out;
2642	}
2643
2644	rc = -ENOMEM;
2645	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2646	if (!mysids2) {
2647		kfree(mysids);
2648		goto out;
2649	}
2650	for (i = 0, j = 0; i < mynel; i++) {
2651		struct av_decision dummy_avd;
2652		rc = avc_has_perm_noaudit(state,
2653					  fromsid, mysids[i],
2654					  SECCLASS_PROCESS, /* kernel value */
2655					  PROCESS__TRANSITION, AVC_STRICT,
2656					  &dummy_avd);
2657		if (!rc)
2658			mysids2[j++] = mysids[i];
2659		cond_resched();
2660	}
2661	rc = 0;
2662	kfree(mysids);
2663	*sids = mysids2;
2664	*nel = j;
2665out:
2666	return rc;
2667}
2668
2669/**
2670 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2671 * @fstype: filesystem type
2672 * @path: path from root of mount
2673 * @sclass: file security class
2674 * @sid: SID for path
2675 *
2676 * Obtain a SID to use for a file in a filesystem that
2677 * cannot support xattr or use a fixed labeling behavior like
2678 * transition SIDs or task SIDs.
2679 *
2680 * The caller must acquire the policy_rwlock before calling this function.
2681 */
2682static inline int __security_genfs_sid(struct selinux_state *state,
2683				       const char *fstype,
2684				       char *path,
2685				       u16 orig_sclass,
2686				       u32 *sid)
2687{
2688	struct policydb *policydb = &state->ss->policydb;
2689	struct sidtab *sidtab = &state->ss->sidtab;
2690	int len;
2691	u16 sclass;
2692	struct genfs *genfs;
2693	struct ocontext *c;
2694	int rc, cmp = 0;
2695
2696	while (path[0] == '/' && path[1] == '/')
2697		path++;
2698
2699	sclass = unmap_class(&state->ss->map, orig_sclass);
 
 
2700	*sid = SECINITSID_UNLABELED;
2701
2702	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2703		cmp = strcmp(fstype, genfs->fstype);
2704		if (cmp <= 0)
2705			break;
2706	}
2707
2708	rc = -ENOENT;
2709	if (!genfs || cmp)
2710		goto out;
2711
2712	for (c = genfs->head; c; c = c->next) {
2713		len = strlen(c->u.name);
2714		if ((!c->v.sclass || sclass == c->v.sclass) &&
2715		    (strncmp(c->u.name, path, len) == 0))
2716			break;
2717	}
2718
2719	rc = -ENOENT;
2720	if (!c)
2721		goto out;
2722
2723	if (!c->sid[0]) {
2724		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2725		if (rc)
2726			goto out;
2727	}
2728
2729	*sid = c->sid[0];
2730	rc = 0;
2731out:
 
2732	return rc;
2733}
2734
2735/**
2736 * security_genfs_sid - Obtain a SID for a file in a filesystem
2737 * @fstype: filesystem type
2738 * @path: path from root of mount
2739 * @sclass: file security class
2740 * @sid: SID for path
2741 *
2742 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2743 * it afterward.
2744 */
2745int security_genfs_sid(struct selinux_state *state,
2746		       const char *fstype,
2747		       char *path,
2748		       u16 orig_sclass,
2749		       u32 *sid)
2750{
2751	int retval;
2752
2753	read_lock(&state->ss->policy_rwlock);
2754	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2755	read_unlock(&state->ss->policy_rwlock);
2756	return retval;
2757}
2758
2759/**
2760 * security_fs_use - Determine how to handle labeling for a filesystem.
2761 * @sb: superblock in question
2762 */
2763int security_fs_use(struct selinux_state *state, struct super_block *sb)
 
 
 
2764{
2765	struct policydb *policydb;
2766	struct sidtab *sidtab;
2767	int rc = 0;
2768	struct ocontext *c;
2769	struct superblock_security_struct *sbsec = sb->s_security;
2770	const char *fstype = sb->s_type->name;
2771
2772	read_lock(&state->ss->policy_rwlock);
2773
2774	policydb = &state->ss->policydb;
2775	sidtab = &state->ss->sidtab;
2776
2777	c = policydb->ocontexts[OCON_FSUSE];
2778	while (c) {
2779		if (strcmp(fstype, c->u.name) == 0)
2780			break;
2781		c = c->next;
2782	}
2783
2784	if (c) {
2785		sbsec->behavior = c->v.behavior;
2786		if (!c->sid[0]) {
2787			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2788						   &c->sid[0]);
2789			if (rc)
2790				goto out;
2791		}
2792		sbsec->sid = c->sid[0];
2793	} else {
2794		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2795					  &sbsec->sid);
2796		if (rc) {
2797			sbsec->behavior = SECURITY_FS_USE_NONE;
2798			rc = 0;
2799		} else {
2800			sbsec->behavior = SECURITY_FS_USE_GENFS;
2801		}
2802	}
2803
2804out:
2805	read_unlock(&state->ss->policy_rwlock);
2806	return rc;
2807}
2808
2809int security_get_bools(struct selinux_state *state,
2810		       int *len, char ***names, int **values)
2811{
2812	struct policydb *policydb;
2813	int i, rc;
2814
2815	if (!state->initialized) {
2816		*len = 0;
2817		*names = NULL;
2818		*values = NULL;
2819		return 0;
2820	}
2821
2822	read_lock(&state->ss->policy_rwlock);
2823
2824	policydb = &state->ss->policydb;
2825
2826	*names = NULL;
2827	*values = NULL;
2828
2829	rc = 0;
2830	*len = policydb->p_bools.nprim;
2831	if (!*len)
2832		goto out;
2833
2834	rc = -ENOMEM;
2835	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2836	if (!*names)
2837		goto err;
2838
2839	rc = -ENOMEM;
2840	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2841	if (!*values)
2842		goto err;
2843
2844	for (i = 0; i < *len; i++) {
2845		(*values)[i] = policydb->bool_val_to_struct[i]->state;
 
 
 
2846
2847		rc = -ENOMEM;
2848		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2849				      GFP_ATOMIC);
2850		if (!(*names)[i])
2851			goto err;
 
 
 
2852	}
2853	rc = 0;
2854out:
2855	read_unlock(&state->ss->policy_rwlock);
2856	return rc;
2857err:
2858	if (*names) {
2859		for (i = 0; i < *len; i++)
2860			kfree((*names)[i]);
2861	}
2862	kfree(*values);
2863	goto out;
2864}
2865
2866
2867int security_set_bools(struct selinux_state *state, int len, int *values)
2868{
2869	struct policydb *policydb;
2870	int i, rc;
2871	int lenp, seqno = 0;
2872	struct cond_node *cur;
2873
2874	write_lock_irq(&state->ss->policy_rwlock);
2875
2876	policydb = &state->ss->policydb;
2877
2878	rc = -EFAULT;
2879	lenp = policydb->p_bools.nprim;
2880	if (len != lenp)
2881		goto out;
2882
2883	for (i = 0; i < len; i++) {
2884		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2885			audit_log(current->audit_context, GFP_ATOMIC,
2886				AUDIT_MAC_CONFIG_CHANGE,
2887				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2888				sym_name(policydb, SYM_BOOLS, i),
2889				!!values[i],
2890				policydb->bool_val_to_struct[i]->state,
2891				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2892				audit_get_sessionid(current));
2893		}
2894		if (values[i])
2895			policydb->bool_val_to_struct[i]->state = 1;
2896		else
2897			policydb->bool_val_to_struct[i]->state = 0;
2898	}
2899
2900	for (cur = policydb->cond_list; cur; cur = cur->next) {
2901		rc = evaluate_cond_node(policydb, cur);
2902		if (rc)
2903			goto out;
2904	}
2905
2906	seqno = ++state->ss->latest_granting;
2907	rc = 0;
2908out:
2909	write_unlock_irq(&state->ss->policy_rwlock);
2910	if (!rc) {
2911		avc_ss_reset(state->avc, seqno);
2912		selnl_notify_policyload(seqno);
2913		selinux_status_update_policyload(state, seqno);
2914		selinux_xfrm_notify_policyload();
2915	}
2916	return rc;
2917}
2918
2919int security_get_bool_value(struct selinux_state *state,
2920			    int index)
2921{
2922	struct policydb *policydb;
2923	int rc;
2924	int len;
2925
2926	read_lock(&state->ss->policy_rwlock);
2927
2928	policydb = &state->ss->policydb;
2929
2930	rc = -EFAULT;
2931	len = policydb->p_bools.nprim;
2932	if (index >= len)
2933		goto out;
2934
2935	rc = policydb->bool_val_to_struct[index]->state;
2936out:
2937	read_unlock(&state->ss->policy_rwlock);
2938	return rc;
2939}
2940
2941static int security_preserve_bools(struct selinux_state *state,
2942				   struct policydb *policydb)
2943{
2944	int rc, nbools = 0, *bvalues = NULL, i;
2945	char **bnames = NULL;
2946	struct cond_bool_datum *booldatum;
2947	struct cond_node *cur;
2948
2949	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2950	if (rc)
2951		goto out;
2952	for (i = 0; i < nbools; i++) {
2953		booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2954		if (booldatum)
2955			booldatum->state = bvalues[i];
2956	}
2957	for (cur = policydb->cond_list; cur; cur = cur->next) {
2958		rc = evaluate_cond_node(policydb, cur);
2959		if (rc)
2960			goto out;
2961	}
2962
2963out:
2964	if (bnames) {
2965		for (i = 0; i < nbools; i++)
2966			kfree(bnames[i]);
2967	}
2968	kfree(bnames);
2969	kfree(bvalues);
2970	return rc;
2971}
2972
2973/*
2974 * security_sid_mls_copy() - computes a new sid based on the given
2975 * sid and the mls portion of mls_sid.
2976 */
2977int security_sid_mls_copy(struct selinux_state *state,
2978			  u32 sid, u32 mls_sid, u32 *new_sid)
2979{
2980	struct policydb *policydb = &state->ss->policydb;
2981	struct sidtab *sidtab = &state->ss->sidtab;
2982	struct context *context1;
2983	struct context *context2;
2984	struct context newcon;
2985	char *s;
2986	u32 len;
2987	int rc;
2988
2989	rc = 0;
2990	if (!state->initialized || !policydb->mls_enabled) {
2991		*new_sid = sid;
2992		goto out;
2993	}
2994
2995	context_init(&newcon);
2996
2997	read_lock(&state->ss->policy_rwlock);
2998
2999	rc = -EINVAL;
3000	context1 = sidtab_search(sidtab, sid);
3001	if (!context1) {
3002		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3003			__func__, sid);
3004		goto out_unlock;
3005	}
3006
3007	rc = -EINVAL;
3008	context2 = sidtab_search(sidtab, mls_sid);
3009	if (!context2) {
3010		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3011			__func__, mls_sid);
3012		goto out_unlock;
3013	}
3014
3015	newcon.user = context1->user;
3016	newcon.role = context1->role;
3017	newcon.type = context1->type;
3018	rc = mls_context_cpy(&newcon, context2);
3019	if (rc)
3020		goto out_unlock;
3021
3022	/* Check the validity of the new context. */
3023	if (!policydb_context_isvalid(policydb, &newcon)) {
3024		rc = convert_context_handle_invalid_context(state, &newcon);
3025		if (rc) {
3026			if (!context_struct_to_string(policydb, &newcon, &s,
3027						      &len)) {
3028				audit_log(current->audit_context,
3029					  GFP_ATOMIC, AUDIT_SELINUX_ERR,
3030					  "op=security_sid_mls_copy "
3031					  "invalid_context=%s", s);
3032				kfree(s);
3033			}
3034			goto out_unlock;
3035		}
3036	}
3037
3038	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3039out_unlock:
3040	read_unlock(&state->ss->policy_rwlock);
3041	context_destroy(&newcon);
3042out:
3043	return rc;
3044}
3045
3046/**
3047 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3048 * @nlbl_sid: NetLabel SID
3049 * @nlbl_type: NetLabel labeling protocol type
3050 * @xfrm_sid: XFRM SID
3051 *
3052 * Description:
3053 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3054 * resolved into a single SID it is returned via @peer_sid and the function
3055 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3056 * returns a negative value.  A table summarizing the behavior is below:
3057 *
3058 *                                 | function return |      @sid
3059 *   ------------------------------+-----------------+-----------------
3060 *   no peer labels                |        0        |    SECSID_NULL
3061 *   single peer label             |        0        |    <peer_label>
3062 *   multiple, consistent labels   |        0        |    <peer_label>
3063 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3064 *
3065 */
3066int security_net_peersid_resolve(struct selinux_state *state,
3067				 u32 nlbl_sid, u32 nlbl_type,
3068				 u32 xfrm_sid,
3069				 u32 *peer_sid)
3070{
3071	struct policydb *policydb = &state->ss->policydb;
3072	struct sidtab *sidtab = &state->ss->sidtab;
3073	int rc;
3074	struct context *nlbl_ctx;
3075	struct context *xfrm_ctx;
3076
3077	*peer_sid = SECSID_NULL;
3078
3079	/* handle the common (which also happens to be the set of easy) cases
3080	 * right away, these two if statements catch everything involving a
3081	 * single or absent peer SID/label */
3082	if (xfrm_sid == SECSID_NULL) {
3083		*peer_sid = nlbl_sid;
3084		return 0;
3085	}
3086	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3087	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3088	 * is present */
3089	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3090		*peer_sid = xfrm_sid;
3091		return 0;
3092	}
3093
3094	/*
3095	 * We don't need to check initialized here since the only way both
3096	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3097	 * security server was initialized and state->initialized was true.
3098	 */
3099	if (!policydb->mls_enabled)
3100		return 0;
3101
3102	read_lock(&state->ss->policy_rwlock);
3103
3104	rc = -EINVAL;
3105	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3106	if (!nlbl_ctx) {
3107		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3108		       __func__, nlbl_sid);
3109		goto out;
3110	}
3111	rc = -EINVAL;
3112	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3113	if (!xfrm_ctx) {
3114		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
3115		       __func__, xfrm_sid);
3116		goto out;
3117	}
3118	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3119	if (rc)
3120		goto out;
3121
3122	/* at present NetLabel SIDs/labels really only carry MLS
3123	 * information so if the MLS portion of the NetLabel SID
3124	 * matches the MLS portion of the labeled XFRM SID/label
3125	 * then pass along the XFRM SID as it is the most
3126	 * expressive */
3127	*peer_sid = xfrm_sid;
3128out:
3129	read_unlock(&state->ss->policy_rwlock);
3130	return rc;
3131}
3132
3133static int get_classes_callback(void *k, void *d, void *args)
3134{
3135	struct class_datum *datum = d;
3136	char *name = k, **classes = args;
3137	int value = datum->value - 1;
3138
3139	classes[value] = kstrdup(name, GFP_ATOMIC);
3140	if (!classes[value])
3141		return -ENOMEM;
3142
3143	return 0;
3144}
3145
3146int security_get_classes(struct selinux_state *state,
3147			 char ***classes, int *nclasses)
3148{
3149	struct policydb *policydb = &state->ss->policydb;
3150	int rc;
3151
3152	if (!state->initialized) {
3153		*nclasses = 0;
3154		*classes = NULL;
3155		return 0;
3156	}
3157
3158	read_lock(&state->ss->policy_rwlock);
3159
3160	rc = -ENOMEM;
3161	*nclasses = policydb->p_classes.nprim;
3162	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3163	if (!*classes)
3164		goto out;
3165
3166	rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3167			*classes);
3168	if (rc) {
3169		int i;
3170		for (i = 0; i < *nclasses; i++)
3171			kfree((*classes)[i]);
3172		kfree(*classes);
3173	}
3174
3175out:
3176	read_unlock(&state->ss->policy_rwlock);
3177	return rc;
3178}
3179
3180static int get_permissions_callback(void *k, void *d, void *args)
3181{
3182	struct perm_datum *datum = d;
3183	char *name = k, **perms = args;
3184	int value = datum->value - 1;
3185
3186	perms[value] = kstrdup(name, GFP_ATOMIC);
3187	if (!perms[value])
3188		return -ENOMEM;
3189
3190	return 0;
3191}
3192
3193int security_get_permissions(struct selinux_state *state,
3194			     char *class, char ***perms, int *nperms)
3195{
3196	struct policydb *policydb = &state->ss->policydb;
3197	int rc, i;
3198	struct class_datum *match;
3199
3200	read_lock(&state->ss->policy_rwlock);
3201
3202	rc = -EINVAL;
3203	match = hashtab_search(policydb->p_classes.table, class);
3204	if (!match) {
3205		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
3206			__func__, class);
3207		goto out;
3208	}
3209
3210	rc = -ENOMEM;
3211	*nperms = match->permissions.nprim;
3212	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3213	if (!*perms)
3214		goto out;
3215
3216	if (match->comdatum) {
3217		rc = hashtab_map(match->comdatum->permissions.table,
3218				get_permissions_callback, *perms);
3219		if (rc)
3220			goto err;
3221	}
3222
3223	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3224			*perms);
3225	if (rc)
3226		goto err;
3227
3228out:
3229	read_unlock(&state->ss->policy_rwlock);
3230	return rc;
3231
3232err:
3233	read_unlock(&state->ss->policy_rwlock);
3234	for (i = 0; i < *nperms; i++)
3235		kfree((*perms)[i]);
3236	kfree(*perms);
3237	return rc;
3238}
3239
3240int security_get_reject_unknown(struct selinux_state *state)
3241{
3242	return state->ss->policydb.reject_unknown;
3243}
3244
3245int security_get_allow_unknown(struct selinux_state *state)
3246{
3247	return state->ss->policydb.allow_unknown;
3248}
3249
3250/**
3251 * security_policycap_supported - Check for a specific policy capability
3252 * @req_cap: capability
3253 *
3254 * Description:
3255 * This function queries the currently loaded policy to see if it supports the
3256 * capability specified by @req_cap.  Returns true (1) if the capability is
3257 * supported, false (0) if it isn't supported.
3258 *
3259 */
3260int security_policycap_supported(struct selinux_state *state,
3261				 unsigned int req_cap)
3262{
3263	struct policydb *policydb = &state->ss->policydb;
3264	int rc;
3265
3266	read_lock(&state->ss->policy_rwlock);
3267	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3268	read_unlock(&state->ss->policy_rwlock);
3269
3270	return rc;
3271}
3272
3273struct selinux_audit_rule {
3274	u32 au_seqno;
3275	struct context au_ctxt;
3276};
3277
3278void selinux_audit_rule_free(void *vrule)
3279{
3280	struct selinux_audit_rule *rule = vrule;
3281
3282	if (rule) {
3283		context_destroy(&rule->au_ctxt);
3284		kfree(rule);
3285	}
3286}
3287
3288int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3289{
3290	struct selinux_state *state = &selinux_state;
3291	struct policydb *policydb = &state->ss->policydb;
3292	struct selinux_audit_rule *tmprule;
3293	struct role_datum *roledatum;
3294	struct type_datum *typedatum;
3295	struct user_datum *userdatum;
3296	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3297	int rc = 0;
3298
3299	*rule = NULL;
3300
3301	if (!state->initialized)
3302		return -EOPNOTSUPP;
3303
3304	switch (field) {
3305	case AUDIT_SUBJ_USER:
3306	case AUDIT_SUBJ_ROLE:
3307	case AUDIT_SUBJ_TYPE:
3308	case AUDIT_OBJ_USER:
3309	case AUDIT_OBJ_ROLE:
3310	case AUDIT_OBJ_TYPE:
3311		/* only 'equals' and 'not equals' fit user, role, and type */
3312		if (op != Audit_equal && op != Audit_not_equal)
3313			return -EINVAL;
3314		break;
3315	case AUDIT_SUBJ_SEN:
3316	case AUDIT_SUBJ_CLR:
3317	case AUDIT_OBJ_LEV_LOW:
3318	case AUDIT_OBJ_LEV_HIGH:
3319		/* we do not allow a range, indicated by the presence of '-' */
3320		if (strchr(rulestr, '-'))
3321			return -EINVAL;
3322		break;
3323	default:
3324		/* only the above fields are valid */
3325		return -EINVAL;
3326	}
3327
3328	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3329	if (!tmprule)
3330		return -ENOMEM;
3331
3332	context_init(&tmprule->au_ctxt);
3333
3334	read_lock(&state->ss->policy_rwlock);
3335
3336	tmprule->au_seqno = state->ss->latest_granting;
3337
3338	switch (field) {
3339	case AUDIT_SUBJ_USER:
3340	case AUDIT_OBJ_USER:
3341		rc = -EINVAL;
3342		userdatum = hashtab_search(policydb->p_users.table, rulestr);
3343		if (!userdatum)
3344			goto out;
3345		tmprule->au_ctxt.user = userdatum->value;
3346		break;
3347	case AUDIT_SUBJ_ROLE:
3348	case AUDIT_OBJ_ROLE:
3349		rc = -EINVAL;
3350		roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3351		if (!roledatum)
3352			goto out;
3353		tmprule->au_ctxt.role = roledatum->value;
3354		break;
3355	case AUDIT_SUBJ_TYPE:
3356	case AUDIT_OBJ_TYPE:
3357		rc = -EINVAL;
3358		typedatum = hashtab_search(policydb->p_types.table, rulestr);
3359		if (!typedatum)
3360			goto out;
3361		tmprule->au_ctxt.type = typedatum->value;
3362		break;
3363	case AUDIT_SUBJ_SEN:
3364	case AUDIT_SUBJ_CLR:
3365	case AUDIT_OBJ_LEV_LOW:
3366	case AUDIT_OBJ_LEV_HIGH:
3367		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3368				     GFP_ATOMIC);
3369		if (rc)
3370			goto out;
3371		break;
3372	}
3373	rc = 0;
3374out:
3375	read_unlock(&state->ss->policy_rwlock);
3376
3377	if (rc) {
3378		selinux_audit_rule_free(tmprule);
3379		tmprule = NULL;
3380	}
3381
3382	*rule = tmprule;
3383
3384	return rc;
3385}
3386
3387/* Check to see if the rule contains any selinux fields */
3388int selinux_audit_rule_known(struct audit_krule *rule)
3389{
3390	int i;
3391
3392	for (i = 0; i < rule->field_count; i++) {
3393		struct audit_field *f = &rule->fields[i];
3394		switch (f->type) {
3395		case AUDIT_SUBJ_USER:
3396		case AUDIT_SUBJ_ROLE:
3397		case AUDIT_SUBJ_TYPE:
3398		case AUDIT_SUBJ_SEN:
3399		case AUDIT_SUBJ_CLR:
3400		case AUDIT_OBJ_USER:
3401		case AUDIT_OBJ_ROLE:
3402		case AUDIT_OBJ_TYPE:
3403		case AUDIT_OBJ_LEV_LOW:
3404		case AUDIT_OBJ_LEV_HIGH:
3405			return 1;
3406		}
3407	}
3408
3409	return 0;
3410}
3411
3412int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3413			     struct audit_context *actx)
3414{
3415	struct selinux_state *state = &selinux_state;
3416	struct context *ctxt;
3417	struct mls_level *level;
3418	struct selinux_audit_rule *rule = vrule;
3419	int match = 0;
3420
3421	if (unlikely(!rule)) {
3422		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
 
3423		return -ENOENT;
3424	}
3425
3426	read_lock(&state->ss->policy_rwlock);
3427
3428	if (rule->au_seqno < state->ss->latest_granting) {
 
 
3429		match = -ESTALE;
3430		goto out;
3431	}
3432
3433	ctxt = sidtab_search(&state->ss->sidtab, sid);
3434	if (unlikely(!ctxt)) {
3435		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
 
3436			  sid);
3437		match = -ENOENT;
3438		goto out;
3439	}
3440
3441	/* a field/op pair that is not caught here will simply fall through
3442	   without a match */
3443	switch (field) {
3444	case AUDIT_SUBJ_USER:
3445	case AUDIT_OBJ_USER:
3446		switch (op) {
3447		case Audit_equal:
3448			match = (ctxt->user == rule->au_ctxt.user);
3449			break;
3450		case Audit_not_equal:
3451			match = (ctxt->user != rule->au_ctxt.user);
3452			break;
3453		}
3454		break;
3455	case AUDIT_SUBJ_ROLE:
3456	case AUDIT_OBJ_ROLE:
3457		switch (op) {
3458		case Audit_equal:
3459			match = (ctxt->role == rule->au_ctxt.role);
3460			break;
3461		case Audit_not_equal:
3462			match = (ctxt->role != rule->au_ctxt.role);
3463			break;
3464		}
3465		break;
3466	case AUDIT_SUBJ_TYPE:
3467	case AUDIT_OBJ_TYPE:
3468		switch (op) {
3469		case Audit_equal:
3470			match = (ctxt->type == rule->au_ctxt.type);
3471			break;
3472		case Audit_not_equal:
3473			match = (ctxt->type != rule->au_ctxt.type);
3474			break;
3475		}
3476		break;
3477	case AUDIT_SUBJ_SEN:
3478	case AUDIT_SUBJ_CLR:
3479	case AUDIT_OBJ_LEV_LOW:
3480	case AUDIT_OBJ_LEV_HIGH:
3481		level = ((field == AUDIT_SUBJ_SEN ||
3482			  field == AUDIT_OBJ_LEV_LOW) ?
3483			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3484		switch (op) {
3485		case Audit_equal:
3486			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3487					     level);
3488			break;
3489		case Audit_not_equal:
3490			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3491					      level);
3492			break;
3493		case Audit_lt:
3494			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3495					       level) &&
3496				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3497					       level));
3498			break;
3499		case Audit_le:
3500			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3501					      level);
3502			break;
3503		case Audit_gt:
3504			match = (mls_level_dom(level,
3505					      &rule->au_ctxt.range.level[0]) &&
3506				 !mls_level_eq(level,
3507					       &rule->au_ctxt.range.level[0]));
3508			break;
3509		case Audit_ge:
3510			match = mls_level_dom(level,
3511					      &rule->au_ctxt.range.level[0]);
3512			break;
3513		}
3514	}
3515
3516out:
3517	read_unlock(&state->ss->policy_rwlock);
3518	return match;
3519}
3520
3521static int (*aurule_callback)(void) = audit_update_lsm_rules;
3522
3523static int aurule_avc_callback(u32 event)
 
3524{
3525	int err = 0;
3526
3527	if (event == AVC_CALLBACK_RESET && aurule_callback)
3528		err = aurule_callback();
3529	return err;
3530}
3531
3532static int __init aurule_init(void)
3533{
3534	int err;
3535
3536	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
 
3537	if (err)
3538		panic("avc_add_callback() failed, error %d\n", err);
3539
3540	return err;
3541}
3542__initcall(aurule_init);
3543
3544#ifdef CONFIG_NETLABEL
3545/**
3546 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3547 * @secattr: the NetLabel packet security attributes
3548 * @sid: the SELinux SID
3549 *
3550 * Description:
3551 * Attempt to cache the context in @ctx, which was derived from the packet in
3552 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3553 * already been initialized.
3554 *
3555 */
3556static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3557				      u32 sid)
3558{
3559	u32 *sid_cache;
3560
3561	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3562	if (sid_cache == NULL)
3563		return;
3564	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3565	if (secattr->cache == NULL) {
3566		kfree(sid_cache);
3567		return;
3568	}
3569
3570	*sid_cache = sid;
3571	secattr->cache->free = kfree;
3572	secattr->cache->data = sid_cache;
3573	secattr->flags |= NETLBL_SECATTR_CACHE;
3574}
3575
3576/**
3577 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3578 * @secattr: the NetLabel packet security attributes
3579 * @sid: the SELinux SID
3580 *
3581 * Description:
3582 * Convert the given NetLabel security attributes in @secattr into a
3583 * SELinux SID.  If the @secattr field does not contain a full SELinux
3584 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3585 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3586 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3587 * conversion for future lookups.  Returns zero on success, negative values on
3588 * failure.
3589 *
3590 */
3591int security_netlbl_secattr_to_sid(struct selinux_state *state,
3592				   struct netlbl_lsm_secattr *secattr,
3593				   u32 *sid)
3594{
3595	struct policydb *policydb = &state->ss->policydb;
3596	struct sidtab *sidtab = &state->ss->sidtab;
3597	int rc;
3598	struct context *ctx;
3599	struct context ctx_new;
3600
3601	if (!state->initialized) {
3602		*sid = SECSID_NULL;
3603		return 0;
3604	}
3605
3606	read_lock(&state->ss->policy_rwlock);
3607
3608	if (secattr->flags & NETLBL_SECATTR_CACHE)
3609		*sid = *(u32 *)secattr->cache->data;
3610	else if (secattr->flags & NETLBL_SECATTR_SECID)
3611		*sid = secattr->attr.secid;
3612	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3613		rc = -EIDRM;
3614		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3615		if (ctx == NULL)
3616			goto out;
3617
3618		context_init(&ctx_new);
3619		ctx_new.user = ctx->user;
3620		ctx_new.role = ctx->role;
3621		ctx_new.type = ctx->type;
3622		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3623		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3624			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
 
3625			if (rc)
3626				goto out;
 
 
 
3627		}
3628		rc = -EIDRM;
3629		if (!mls_context_isvalid(policydb, &ctx_new))
3630			goto out_free;
3631
3632		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3633		if (rc)
3634			goto out_free;
3635
3636		security_netlbl_cache_add(secattr, *sid);
3637
3638		ebitmap_destroy(&ctx_new.range.level[0].cat);
3639	} else
3640		*sid = SECSID_NULL;
3641
3642	read_unlock(&state->ss->policy_rwlock);
3643	return 0;
3644out_free:
3645	ebitmap_destroy(&ctx_new.range.level[0].cat);
3646out:
3647	read_unlock(&state->ss->policy_rwlock);
3648	return rc;
3649}
3650
3651/**
3652 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3653 * @sid: the SELinux SID
3654 * @secattr: the NetLabel packet security attributes
3655 *
3656 * Description:
3657 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3658 * Returns zero on success, negative values on failure.
3659 *
3660 */
3661int security_netlbl_sid_to_secattr(struct selinux_state *state,
3662				   u32 sid, struct netlbl_lsm_secattr *secattr)
3663{
3664	struct policydb *policydb = &state->ss->policydb;
3665	int rc;
3666	struct context *ctx;
3667
3668	if (!state->initialized)
3669		return 0;
3670
3671	read_lock(&state->ss->policy_rwlock);
3672
3673	rc = -ENOENT;
3674	ctx = sidtab_search(&state->ss->sidtab, sid);
3675	if (ctx == NULL)
3676		goto out;
3677
3678	rc = -ENOMEM;
3679	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3680				  GFP_ATOMIC);
3681	if (secattr->domain == NULL)
3682		goto out;
3683
3684	secattr->attr.secid = sid;
3685	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3686	mls_export_netlbl_lvl(policydb, ctx, secattr);
3687	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3688out:
3689	read_unlock(&state->ss->policy_rwlock);
3690	return rc;
3691}
3692#endif /* CONFIG_NETLABEL */
3693
3694/**
3695 * security_read_policy - read the policy.
3696 * @data: binary policy data
3697 * @len: length of data in bytes
3698 *
3699 */
3700int security_read_policy(struct selinux_state *state,
3701			 void **data, size_t *len)
3702{
3703	struct policydb *policydb = &state->ss->policydb;
3704	int rc;
3705	struct policy_file fp;
3706
3707	if (!state->initialized)
3708		return -EINVAL;
3709
3710	*len = security_policydb_len(state);
3711
3712	*data = vmalloc_user(*len);
3713	if (!*data)
3714		return -ENOMEM;
3715
3716	fp.data = *data;
3717	fp.len = *len;
3718
3719	read_lock(&state->ss->policy_rwlock);
3720	rc = policydb_write(policydb, &fp);
3721	read_unlock(&state->ss->policy_rwlock);
3722
3723	if (rc)
3724		return rc;
3725
3726	*len = (unsigned long)fp.data - (unsigned long)*data;
3727	return 0;
3728
3729}