Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
  72
  73extern void selnl_notify_policyload(u32 seqno);
  74
  75int selinux_policycap_netpeer;
  76int selinux_policycap_openperm;
  77
  78static DEFINE_RWLOCK(policy_rwlock);
  79
  80static struct sidtab sidtab;
  81struct policydb policydb;
  82int ss_initialized;
  83
  84/*
  85 * The largest sequence number that has been used when
  86 * providing an access decision to the access vector cache.
  87 * The sequence number only changes when a policy change
  88 * occurs.
  89 */
  90static u32 latest_granting;
  91
  92/* Forward declaration. */
  93static int context_struct_to_string(struct context *context, char **scontext,
  94				    u32 *scontext_len);
  95
  96static void context_struct_compute_av(struct context *scontext,
  97				      struct context *tcontext,
  98				      u16 tclass,
  99				      struct av_decision *avd);
 100
 101struct selinux_mapping {
 102	u16 value; /* policy value */
 103	unsigned num_perms;
 104	u32 perms[sizeof(u32) * 8];
 105};
 106
 107static struct selinux_mapping *current_mapping;
 108static u16 current_mapping_size;
 109
 110static int selinux_set_mapping(struct policydb *pol,
 111			       struct security_class_mapping *map,
 112			       struct selinux_mapping **out_map_p,
 113			       u16 *out_map_size)
 114{
 115	struct selinux_mapping *out_map = NULL;
 116	size_t size = sizeof(struct selinux_mapping);
 117	u16 i, j;
 118	unsigned k;
 119	bool print_unknown_handle = false;
 120
 121	/* Find number of classes in the input mapping */
 122	if (!map)
 123		return -EINVAL;
 124	i = 0;
 125	while (map[i].name)
 126		i++;
 127
 128	/* Allocate space for the class records, plus one for class zero */
 129	out_map = kcalloc(++i, size, GFP_ATOMIC);
 130	if (!out_map)
 131		return -ENOMEM;
 132
 133	/* Store the raw class and permission values */
 134	j = 0;
 135	while (map[j].name) {
 136		struct security_class_mapping *p_in = map + (j++);
 137		struct selinux_mapping *p_out = out_map + j;
 138
 139		/* An empty class string skips ahead */
 140		if (!strcmp(p_in->name, "")) {
 141			p_out->num_perms = 0;
 142			continue;
 143		}
 144
 145		p_out->value = string_to_security_class(pol, p_in->name);
 146		if (!p_out->value) {
 147			printk(KERN_INFO
 148			       "SELinux:  Class %s not defined in policy.\n",
 149			       p_in->name);
 150			if (pol->reject_unknown)
 151				goto err;
 152			p_out->num_perms = 0;
 153			print_unknown_handle = true;
 154			continue;
 155		}
 156
 157		k = 0;
 158		while (p_in->perms && p_in->perms[k]) {
 159			/* An empty permission string skips ahead */
 160			if (!*p_in->perms[k]) {
 161				k++;
 162				continue;
 163			}
 164			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 165							    p_in->perms[k]);
 166			if (!p_out->perms[k]) {
 167				printk(KERN_INFO
 168				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 169				       p_in->perms[k], p_in->name);
 170				if (pol->reject_unknown)
 171					goto err;
 172				print_unknown_handle = true;
 173			}
 174
 175			k++;
 176		}
 177		p_out->num_perms = k;
 178	}
 179
 180	if (print_unknown_handle)
 181		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 182		       pol->allow_unknown ? "allowed" : "denied");
 183
 184	*out_map_p = out_map;
 185	*out_map_size = i;
 186	return 0;
 187err:
 188	kfree(out_map);
 189	return -EINVAL;
 190}
 191
 192/*
 193 * Get real, policy values from mapped values
 194 */
 195
 196static u16 unmap_class(u16 tclass)
 197{
 198	if (tclass < current_mapping_size)
 199		return current_mapping[tclass].value;
 200
 201	return tclass;
 202}
 203
 204/*
 205 * Get kernel value for class from its policy value
 206 */
 207static u16 map_class(u16 pol_value)
 208{
 209	u16 i;
 210
 211	for (i = 1; i < current_mapping_size; i++) {
 212		if (current_mapping[i].value == pol_value)
 213			return i;
 214	}
 215
 216	return SECCLASS_NULL;
 217}
 218
 219static void map_decision(u16 tclass, struct av_decision *avd,
 220			 int allow_unknown)
 221{
 222	if (tclass < current_mapping_size) {
 223		unsigned i, n = current_mapping[tclass].num_perms;
 224		u32 result;
 225
 226		for (i = 0, result = 0; i < n; i++) {
 227			if (avd->allowed & current_mapping[tclass].perms[i])
 228				result |= 1<<i;
 229			if (allow_unknown && !current_mapping[tclass].perms[i])
 230				result |= 1<<i;
 231		}
 232		avd->allowed = result;
 233
 234		for (i = 0, result = 0; i < n; i++)
 235			if (avd->auditallow & current_mapping[tclass].perms[i])
 236				result |= 1<<i;
 237		avd->auditallow = result;
 238
 239		for (i = 0, result = 0; i < n; i++) {
 240			if (avd->auditdeny & current_mapping[tclass].perms[i])
 241				result |= 1<<i;
 242			if (!allow_unknown && !current_mapping[tclass].perms[i])
 243				result |= 1<<i;
 244		}
 245		/*
 246		 * In case the kernel has a bug and requests a permission
 247		 * between num_perms and the maximum permission number, we
 248		 * should audit that denial
 249		 */
 250		for (; i < (sizeof(u32)*8); i++)
 251			result |= 1<<i;
 252		avd->auditdeny = result;
 253	}
 254}
 255
 256int security_mls_enabled(void)
 257{
 258	return policydb.mls_enabled;
 259}
 260
 261/*
 262 * Return the boolean value of a constraint expression
 263 * when it is applied to the specified source and target
 264 * security contexts.
 265 *
 266 * xcontext is a special beast...  It is used by the validatetrans rules
 267 * only.  For these rules, scontext is the context before the transition,
 268 * tcontext is the context after the transition, and xcontext is the context
 269 * of the process performing the transition.  All other callers of
 270 * constraint_expr_eval should pass in NULL for xcontext.
 271 */
 272static int constraint_expr_eval(struct context *scontext,
 273				struct context *tcontext,
 274				struct context *xcontext,
 275				struct constraint_expr *cexpr)
 276{
 277	u32 val1, val2;
 278	struct context *c;
 279	struct role_datum *r1, *r2;
 280	struct mls_level *l1, *l2;
 281	struct constraint_expr *e;
 282	int s[CEXPR_MAXDEPTH];
 283	int sp = -1;
 284
 285	for (e = cexpr; e; e = e->next) {
 286		switch (e->expr_type) {
 287		case CEXPR_NOT:
 288			BUG_ON(sp < 0);
 289			s[sp] = !s[sp];
 290			break;
 291		case CEXPR_AND:
 292			BUG_ON(sp < 1);
 293			sp--;
 294			s[sp] &= s[sp + 1];
 295			break;
 296		case CEXPR_OR:
 297			BUG_ON(sp < 1);
 298			sp--;
 299			s[sp] |= s[sp + 1];
 300			break;
 301		case CEXPR_ATTR:
 302			if (sp == (CEXPR_MAXDEPTH - 1))
 303				return 0;
 304			switch (e->attr) {
 305			case CEXPR_USER:
 306				val1 = scontext->user;
 307				val2 = tcontext->user;
 308				break;
 309			case CEXPR_TYPE:
 310				val1 = scontext->type;
 311				val2 = tcontext->type;
 312				break;
 313			case CEXPR_ROLE:
 314				val1 = scontext->role;
 315				val2 = tcontext->role;
 316				r1 = policydb.role_val_to_struct[val1 - 1];
 317				r2 = policydb.role_val_to_struct[val2 - 1];
 318				switch (e->op) {
 319				case CEXPR_DOM:
 320					s[++sp] = ebitmap_get_bit(&r1->dominates,
 321								  val2 - 1);
 322					continue;
 323				case CEXPR_DOMBY:
 324					s[++sp] = ebitmap_get_bit(&r2->dominates,
 325								  val1 - 1);
 326					continue;
 327				case CEXPR_INCOMP:
 328					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 329								    val2 - 1) &&
 330						   !ebitmap_get_bit(&r2->dominates,
 331								    val1 - 1));
 332					continue;
 333				default:
 334					break;
 335				}
 336				break;
 337			case CEXPR_L1L2:
 338				l1 = &(scontext->range.level[0]);
 339				l2 = &(tcontext->range.level[0]);
 340				goto mls_ops;
 341			case CEXPR_L1H2:
 342				l1 = &(scontext->range.level[0]);
 343				l2 = &(tcontext->range.level[1]);
 344				goto mls_ops;
 345			case CEXPR_H1L2:
 346				l1 = &(scontext->range.level[1]);
 347				l2 = &(tcontext->range.level[0]);
 348				goto mls_ops;
 349			case CEXPR_H1H2:
 350				l1 = &(scontext->range.level[1]);
 351				l2 = &(tcontext->range.level[1]);
 352				goto mls_ops;
 353			case CEXPR_L1H1:
 354				l1 = &(scontext->range.level[0]);
 355				l2 = &(scontext->range.level[1]);
 356				goto mls_ops;
 357			case CEXPR_L2H2:
 358				l1 = &(tcontext->range.level[0]);
 359				l2 = &(tcontext->range.level[1]);
 360				goto mls_ops;
 361mls_ops:
 362			switch (e->op) {
 363			case CEXPR_EQ:
 364				s[++sp] = mls_level_eq(l1, l2);
 365				continue;
 366			case CEXPR_NEQ:
 367				s[++sp] = !mls_level_eq(l1, l2);
 368				continue;
 369			case CEXPR_DOM:
 370				s[++sp] = mls_level_dom(l1, l2);
 371				continue;
 372			case CEXPR_DOMBY:
 373				s[++sp] = mls_level_dom(l2, l1);
 374				continue;
 375			case CEXPR_INCOMP:
 376				s[++sp] = mls_level_incomp(l2, l1);
 377				continue;
 378			default:
 379				BUG();
 380				return 0;
 381			}
 382			break;
 383			default:
 384				BUG();
 385				return 0;
 386			}
 387
 388			switch (e->op) {
 389			case CEXPR_EQ:
 390				s[++sp] = (val1 == val2);
 391				break;
 392			case CEXPR_NEQ:
 393				s[++sp] = (val1 != val2);
 394				break;
 395			default:
 396				BUG();
 397				return 0;
 398			}
 399			break;
 400		case CEXPR_NAMES:
 401			if (sp == (CEXPR_MAXDEPTH-1))
 402				return 0;
 403			c = scontext;
 404			if (e->attr & CEXPR_TARGET)
 405				c = tcontext;
 406			else if (e->attr & CEXPR_XTARGET) {
 407				c = xcontext;
 408				if (!c) {
 409					BUG();
 410					return 0;
 411				}
 412			}
 413			if (e->attr & CEXPR_USER)
 414				val1 = c->user;
 415			else if (e->attr & CEXPR_ROLE)
 416				val1 = c->role;
 417			else if (e->attr & CEXPR_TYPE)
 418				val1 = c->type;
 419			else {
 420				BUG();
 421				return 0;
 422			}
 423
 424			switch (e->op) {
 425			case CEXPR_EQ:
 426				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 427				break;
 428			case CEXPR_NEQ:
 429				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 430				break;
 431			default:
 432				BUG();
 433				return 0;
 434			}
 435			break;
 436		default:
 437			BUG();
 438			return 0;
 439		}
 440	}
 441
 442	BUG_ON(sp != 0);
 443	return s[0];
 444}
 445
 446/*
 447 * security_dump_masked_av - dumps masked permissions during
 448 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 449 */
 450static int dump_masked_av_helper(void *k, void *d, void *args)
 451{
 452	struct perm_datum *pdatum = d;
 453	char **permission_names = args;
 454
 455	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 456
 457	permission_names[pdatum->value - 1] = (char *)k;
 458
 459	return 0;
 460}
 461
 462static void security_dump_masked_av(struct context *scontext,
 463				    struct context *tcontext,
 464				    u16 tclass,
 465				    u32 permissions,
 466				    const char *reason)
 467{
 468	struct common_datum *common_dat;
 469	struct class_datum *tclass_dat;
 470	struct audit_buffer *ab;
 471	char *tclass_name;
 472	char *scontext_name = NULL;
 473	char *tcontext_name = NULL;
 474	char *permission_names[32];
 475	int index;
 476	u32 length;
 477	bool need_comma = false;
 478
 479	if (!permissions)
 480		return;
 481
 482	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 483	tclass_dat = policydb.class_val_to_struct[tclass - 1];
 484	common_dat = tclass_dat->comdatum;
 485
 486	/* init permission_names */
 487	if (common_dat &&
 488	    hashtab_map(common_dat->permissions.table,
 489			dump_masked_av_helper, permission_names) < 0)
 490		goto out;
 491
 492	if (hashtab_map(tclass_dat->permissions.table,
 493			dump_masked_av_helper, permission_names) < 0)
 494		goto out;
 495
 496	/* get scontext/tcontext in text form */
 497	if (context_struct_to_string(scontext,
 498				     &scontext_name, &length) < 0)
 499		goto out;
 500
 501	if (context_struct_to_string(tcontext,
 502				     &tcontext_name, &length) < 0)
 503		goto out;
 504
 505	/* audit a message */
 506	ab = audit_log_start(current->audit_context,
 507			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 508	if (!ab)
 509		goto out;
 510
 511	audit_log_format(ab, "op=security_compute_av reason=%s "
 512			 "scontext=%s tcontext=%s tclass=%s perms=",
 513			 reason, scontext_name, tcontext_name, tclass_name);
 514
 515	for (index = 0; index < 32; index++) {
 516		u32 mask = (1 << index);
 517
 518		if ((mask & permissions) == 0)
 519			continue;
 520
 521		audit_log_format(ab, "%s%s",
 522				 need_comma ? "," : "",
 523				 permission_names[index]
 524				 ? permission_names[index] : "????");
 525		need_comma = true;
 526	}
 527	audit_log_end(ab);
 528out:
 529	/* release scontext/tcontext */
 530	kfree(tcontext_name);
 531	kfree(scontext_name);
 532
 533	return;
 534}
 535
 536/*
 537 * security_boundary_permission - drops violated permissions
 538 * on boundary constraint.
 539 */
 540static void type_attribute_bounds_av(struct context *scontext,
 541				     struct context *tcontext,
 542				     u16 tclass,
 543				     struct av_decision *avd)
 544{
 545	struct context lo_scontext;
 546	struct context lo_tcontext;
 547	struct av_decision lo_avd;
 548	struct type_datum *source;
 549	struct type_datum *target;
 550	u32 masked = 0;
 551
 552	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 553				    scontext->type - 1);
 554	BUG_ON(!source);
 555
 556	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 557				    tcontext->type - 1);
 558	BUG_ON(!target);
 559
 560	if (source->bounds) {
 561		memset(&lo_avd, 0, sizeof(lo_avd));
 562
 563		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 564		lo_scontext.type = source->bounds;
 565
 566		context_struct_compute_av(&lo_scontext,
 567					  tcontext,
 568					  tclass,
 569					  &lo_avd);
 570		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 571			return;		/* no masked permission */
 572		masked = ~lo_avd.allowed & avd->allowed;
 573	}
 574
 575	if (target->bounds) {
 576		memset(&lo_avd, 0, sizeof(lo_avd));
 577
 578		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 579		lo_tcontext.type = target->bounds;
 580
 581		context_struct_compute_av(scontext,
 582					  &lo_tcontext,
 583					  tclass,
 584					  &lo_avd);
 585		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 586			return;		/* no masked permission */
 587		masked = ~lo_avd.allowed & avd->allowed;
 588	}
 589
 590	if (source->bounds && target->bounds) {
 591		memset(&lo_avd, 0, sizeof(lo_avd));
 592		/*
 593		 * lo_scontext and lo_tcontext are already
 594		 * set up.
 595		 */
 596
 597		context_struct_compute_av(&lo_scontext,
 598					  &lo_tcontext,
 599					  tclass,
 600					  &lo_avd);
 601		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 602			return;		/* no masked permission */
 603		masked = ~lo_avd.allowed & avd->allowed;
 604	}
 605
 606	if (masked) {
 607		/* mask violated permissions */
 608		avd->allowed &= ~masked;
 609
 610		/* audit masked permissions */
 611		security_dump_masked_av(scontext, tcontext,
 612					tclass, masked, "bounds");
 613	}
 614}
 615
 616/*
 617 * Compute access vectors based on a context structure pair for
 618 * the permissions in a particular class.
 619 */
 620static void context_struct_compute_av(struct context *scontext,
 621				      struct context *tcontext,
 622				      u16 tclass,
 623				      struct av_decision *avd)
 624{
 625	struct constraint_node *constraint;
 626	struct role_allow *ra;
 627	struct avtab_key avkey;
 628	struct avtab_node *node;
 629	struct class_datum *tclass_datum;
 630	struct ebitmap *sattr, *tattr;
 631	struct ebitmap_node *snode, *tnode;
 632	unsigned int i, j;
 633
 634	avd->allowed = 0;
 635	avd->auditallow = 0;
 636	avd->auditdeny = 0xffffffff;
 637
 638	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 639		if (printk_ratelimit())
 640			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 641		return;
 642	}
 643
 644	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 645
 646	/*
 647	 * If a specific type enforcement rule was defined for
 648	 * this permission check, then use it.
 649	 */
 650	avkey.target_class = tclass;
 651	avkey.specified = AVTAB_AV;
 652	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 653	BUG_ON(!sattr);
 654	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 655	BUG_ON(!tattr);
 656	ebitmap_for_each_positive_bit(sattr, snode, i) {
 657		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 658			avkey.source_type = i + 1;
 659			avkey.target_type = j + 1;
 660			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 661			     node;
 662			     node = avtab_search_node_next(node, avkey.specified)) {
 663				if (node->key.specified == AVTAB_ALLOWED)
 664					avd->allowed |= node->datum.data;
 665				else if (node->key.specified == AVTAB_AUDITALLOW)
 666					avd->auditallow |= node->datum.data;
 667				else if (node->key.specified == AVTAB_AUDITDENY)
 668					avd->auditdeny &= node->datum.data;
 669			}
 670
 671			/* Check conditional av table for additional permissions */
 672			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
 673
 674		}
 675	}
 676
 677	/*
 678	 * Remove any permissions prohibited by a constraint (this includes
 679	 * the MLS policy).
 680	 */
 681	constraint = tclass_datum->constraints;
 682	while (constraint) {
 683		if ((constraint->permissions & (avd->allowed)) &&
 684		    !constraint_expr_eval(scontext, tcontext, NULL,
 685					  constraint->expr)) {
 686			avd->allowed &= ~(constraint->permissions);
 687		}
 688		constraint = constraint->next;
 689	}
 690
 691	/*
 692	 * If checking process transition permission and the
 693	 * role is changing, then check the (current_role, new_role)
 694	 * pair.
 695	 */
 696	if (tclass == policydb.process_class &&
 697	    (avd->allowed & policydb.process_trans_perms) &&
 698	    scontext->role != tcontext->role) {
 699		for (ra = policydb.role_allow; ra; ra = ra->next) {
 700			if (scontext->role == ra->role &&
 701			    tcontext->role == ra->new_role)
 702				break;
 703		}
 704		if (!ra)
 705			avd->allowed &= ~policydb.process_trans_perms;
 706	}
 707
 708	/*
 709	 * If the given source and target types have boundary
 710	 * constraint, lazy checks have to mask any violated
 711	 * permission and notice it to userspace via audit.
 712	 */
 713	type_attribute_bounds_av(scontext, tcontext,
 714				 tclass, avd);
 715}
 716
 717static int security_validtrans_handle_fail(struct context *ocontext,
 718					   struct context *ncontext,
 719					   struct context *tcontext,
 720					   u16 tclass)
 721{
 722	char *o = NULL, *n = NULL, *t = NULL;
 723	u32 olen, nlen, tlen;
 724
 725	if (context_struct_to_string(ocontext, &o, &olen))
 726		goto out;
 727	if (context_struct_to_string(ncontext, &n, &nlen))
 728		goto out;
 729	if (context_struct_to_string(tcontext, &t, &tlen))
 730		goto out;
 731	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 732		  "security_validate_transition:  denied for"
 733		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 734		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 735out:
 736	kfree(o);
 737	kfree(n);
 738	kfree(t);
 739
 740	if (!selinux_enforcing)
 741		return 0;
 742	return -EPERM;
 743}
 744
 745int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 746				 u16 orig_tclass)
 747{
 748	struct context *ocontext;
 749	struct context *ncontext;
 750	struct context *tcontext;
 751	struct class_datum *tclass_datum;
 752	struct constraint_node *constraint;
 753	u16 tclass;
 754	int rc = 0;
 755
 756	if (!ss_initialized)
 757		return 0;
 758
 759	read_lock(&policy_rwlock);
 760
 761	tclass = unmap_class(orig_tclass);
 762
 763	if (!tclass || tclass > policydb.p_classes.nprim) {
 764		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
 765			__func__, tclass);
 766		rc = -EINVAL;
 767		goto out;
 768	}
 769	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 770
 771	ocontext = sidtab_search(&sidtab, oldsid);
 772	if (!ocontext) {
 773		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 774			__func__, oldsid);
 775		rc = -EINVAL;
 776		goto out;
 777	}
 778
 779	ncontext = sidtab_search(&sidtab, newsid);
 780	if (!ncontext) {
 781		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 782			__func__, newsid);
 783		rc = -EINVAL;
 784		goto out;
 785	}
 786
 787	tcontext = sidtab_search(&sidtab, tasksid);
 788	if (!tcontext) {
 789		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 790			__func__, tasksid);
 791		rc = -EINVAL;
 792		goto out;
 793	}
 794
 795	constraint = tclass_datum->validatetrans;
 796	while (constraint) {
 797		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 798					  constraint->expr)) {
 799			rc = security_validtrans_handle_fail(ocontext, ncontext,
 800							     tcontext, tclass);
 801			goto out;
 802		}
 803		constraint = constraint->next;
 804	}
 805
 806out:
 807	read_unlock(&policy_rwlock);
 808	return rc;
 809}
 810
 811/*
 812 * security_bounded_transition - check whether the given
 813 * transition is directed to bounded, or not.
 814 * It returns 0, if @newsid is bounded by @oldsid.
 815 * Otherwise, it returns error code.
 816 *
 817 * @oldsid : current security identifier
 818 * @newsid : destinated security identifier
 819 */
 820int security_bounded_transition(u32 old_sid, u32 new_sid)
 821{
 822	struct context *old_context, *new_context;
 823	struct type_datum *type;
 824	int index;
 825	int rc;
 826
 827	read_lock(&policy_rwlock);
 828
 829	rc = -EINVAL;
 830	old_context = sidtab_search(&sidtab, old_sid);
 831	if (!old_context) {
 832		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 833		       __func__, old_sid);
 834		goto out;
 835	}
 836
 837	rc = -EINVAL;
 838	new_context = sidtab_search(&sidtab, new_sid);
 839	if (!new_context) {
 840		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 841		       __func__, new_sid);
 842		goto out;
 843	}
 844
 845	rc = 0;
 846	/* type/domain unchanged */
 847	if (old_context->type == new_context->type)
 848		goto out;
 849
 850	index = new_context->type;
 851	while (true) {
 852		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 853					  index - 1);
 854		BUG_ON(!type);
 855
 856		/* not bounded anymore */
 857		rc = -EPERM;
 858		if (!type->bounds)
 859			break;
 860
 861		/* @newsid is bounded by @oldsid */
 862		rc = 0;
 863		if (type->bounds == old_context->type)
 864			break;
 865
 866		index = type->bounds;
 867	}
 868
 869	if (rc) {
 870		char *old_name = NULL;
 871		char *new_name = NULL;
 872		u32 length;
 873
 874		if (!context_struct_to_string(old_context,
 875					      &old_name, &length) &&
 876		    !context_struct_to_string(new_context,
 877					      &new_name, &length)) {
 878			audit_log(current->audit_context,
 879				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 880				  "op=security_bounded_transition "
 881				  "result=denied "
 882				  "oldcontext=%s newcontext=%s",
 883				  old_name, new_name);
 884		}
 885		kfree(new_name);
 886		kfree(old_name);
 887	}
 888out:
 889	read_unlock(&policy_rwlock);
 890
 891	return rc;
 892}
 893
 894static void avd_init(struct av_decision *avd)
 895{
 896	avd->allowed = 0;
 897	avd->auditallow = 0;
 898	avd->auditdeny = 0xffffffff;
 899	avd->seqno = latest_granting;
 900	avd->flags = 0;
 901}
 902
 903
 904/**
 905 * security_compute_av - Compute access vector decisions.
 906 * @ssid: source security identifier
 907 * @tsid: target security identifier
 908 * @tclass: target security class
 909 * @avd: access vector decisions
 910 *
 911 * Compute a set of access vector decisions based on the
 912 * SID pair (@ssid, @tsid) for the permissions in @tclass.
 913 */
 914void security_compute_av(u32 ssid,
 915			 u32 tsid,
 916			 u16 orig_tclass,
 917			 struct av_decision *avd)
 918{
 919	u16 tclass;
 920	struct context *scontext = NULL, *tcontext = NULL;
 921
 922	read_lock(&policy_rwlock);
 923	avd_init(avd);
 924	if (!ss_initialized)
 925		goto allow;
 926
 927	scontext = sidtab_search(&sidtab, ssid);
 928	if (!scontext) {
 929		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 930		       __func__, ssid);
 931		goto out;
 932	}
 933
 934	/* permissive domain? */
 935	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 936		avd->flags |= AVD_FLAGS_PERMISSIVE;
 937
 938	tcontext = sidtab_search(&sidtab, tsid);
 939	if (!tcontext) {
 940		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 941		       __func__, tsid);
 942		goto out;
 943	}
 944
 945	tclass = unmap_class(orig_tclass);
 946	if (unlikely(orig_tclass && !tclass)) {
 947		if (policydb.allow_unknown)
 948			goto allow;
 949		goto out;
 950	}
 951	context_struct_compute_av(scontext, tcontext, tclass, avd);
 952	map_decision(orig_tclass, avd, policydb.allow_unknown);
 953out:
 954	read_unlock(&policy_rwlock);
 955	return;
 956allow:
 957	avd->allowed = 0xffffffff;
 958	goto out;
 959}
 960
 961void security_compute_av_user(u32 ssid,
 962			      u32 tsid,
 963			      u16 tclass,
 964			      struct av_decision *avd)
 965{
 966	struct context *scontext = NULL, *tcontext = NULL;
 967
 968	read_lock(&policy_rwlock);
 969	avd_init(avd);
 970	if (!ss_initialized)
 971		goto allow;
 972
 973	scontext = sidtab_search(&sidtab, ssid);
 974	if (!scontext) {
 975		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 976		       __func__, ssid);
 977		goto out;
 978	}
 979
 980	/* permissive domain? */
 981	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 982		avd->flags |= AVD_FLAGS_PERMISSIVE;
 983
 984	tcontext = sidtab_search(&sidtab, tsid);
 985	if (!tcontext) {
 986		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 987		       __func__, tsid);
 988		goto out;
 989	}
 990
 991	if (unlikely(!tclass)) {
 992		if (policydb.allow_unknown)
 993			goto allow;
 994		goto out;
 995	}
 996
 997	context_struct_compute_av(scontext, tcontext, tclass, avd);
 998 out:
 999	read_unlock(&policy_rwlock);
1000	return;
1001allow:
1002	avd->allowed = 0xffffffff;
1003	goto out;
1004}
1005
1006/*
1007 * Write the security context string representation of
1008 * the context structure `context' into a dynamically
1009 * allocated string of the correct size.  Set `*scontext'
1010 * to point to this string and set `*scontext_len' to
1011 * the length of the string.
1012 */
1013static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1014{
1015	char *scontextp;
1016
1017	if (scontext)
1018		*scontext = NULL;
1019	*scontext_len = 0;
1020
1021	if (context->len) {
1022		*scontext_len = context->len;
1023		*scontext = kstrdup(context->str, GFP_ATOMIC);
1024		if (!(*scontext))
1025			return -ENOMEM;
 
 
1026		return 0;
1027	}
1028
1029	/* Compute the size of the context. */
1030	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1031	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1032	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1033	*scontext_len += mls_compute_context_len(context);
1034
1035	if (!scontext)
1036		return 0;
1037
1038	/* Allocate space for the context; caller must free this space. */
1039	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1040	if (!scontextp)
1041		return -ENOMEM;
1042	*scontext = scontextp;
1043
1044	/*
1045	 * Copy the user name, role name and type name into the context.
1046	 */
1047	sprintf(scontextp, "%s:%s:%s",
1048		sym_name(&policydb, SYM_USERS, context->user - 1),
1049		sym_name(&policydb, SYM_ROLES, context->role - 1),
1050		sym_name(&policydb, SYM_TYPES, context->type - 1));
1051	scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1052		     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1053		     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1054
1055	mls_sid_to_context(context, &scontextp);
1056
1057	*scontextp = 0;
1058
1059	return 0;
1060}
1061
1062#include "initial_sid_to_string.h"
1063
1064const char *security_get_initial_sid_context(u32 sid)
1065{
1066	if (unlikely(sid > SECINITSID_NUM))
1067		return NULL;
1068	return initial_sid_to_string[sid];
1069}
1070
1071static int security_sid_to_context_core(u32 sid, char **scontext,
1072					u32 *scontext_len, int force)
1073{
1074	struct context *context;
1075	int rc = 0;
1076
1077	if (scontext)
1078		*scontext = NULL;
1079	*scontext_len  = 0;
1080
1081	if (!ss_initialized) {
1082		if (sid <= SECINITSID_NUM) {
1083			char *scontextp;
1084
1085			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1086			if (!scontext)
1087				goto out;
1088			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1089			if (!scontextp) {
1090				rc = -ENOMEM;
1091				goto out;
1092			}
1093			strcpy(scontextp, initial_sid_to_string[sid]);
1094			*scontext = scontextp;
1095			goto out;
1096		}
1097		printk(KERN_ERR "SELinux: %s:  called before initial "
1098		       "load_policy on unknown SID %d\n", __func__, sid);
1099		rc = -EINVAL;
1100		goto out;
1101	}
1102	read_lock(&policy_rwlock);
1103	if (force)
1104		context = sidtab_search_force(&sidtab, sid);
1105	else
1106		context = sidtab_search(&sidtab, sid);
1107	if (!context) {
1108		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1109			__func__, sid);
1110		rc = -EINVAL;
1111		goto out_unlock;
1112	}
1113	rc = context_struct_to_string(context, scontext, scontext_len);
1114out_unlock:
1115	read_unlock(&policy_rwlock);
1116out:
1117	return rc;
1118
1119}
1120
1121/**
1122 * security_sid_to_context - Obtain a context for a given SID.
1123 * @sid: security identifier, SID
1124 * @scontext: security context
1125 * @scontext_len: length in bytes
1126 *
1127 * Write the string representation of the context associated with @sid
1128 * into a dynamically allocated string of the correct size.  Set @scontext
1129 * to point to this string and set @scontext_len to the length of the string.
1130 */
1131int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1132{
1133	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1134}
1135
1136int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1137{
1138	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1139}
1140
1141/*
1142 * Caveat:  Mutates scontext.
1143 */
1144static int string_to_context_struct(struct policydb *pol,
1145				    struct sidtab *sidtabp,
1146				    char *scontext,
1147				    u32 scontext_len,
1148				    struct context *ctx,
1149				    u32 def_sid)
1150{
1151	struct role_datum *role;
1152	struct type_datum *typdatum;
1153	struct user_datum *usrdatum;
1154	char *scontextp, *p, oldc;
1155	int rc = 0;
1156
1157	context_init(ctx);
1158
1159	/* Parse the security context. */
1160
1161	rc = -EINVAL;
1162	scontextp = (char *) scontext;
1163
1164	/* Extract the user. */
1165	p = scontextp;
1166	while (*p && *p != ':')
1167		p++;
1168
1169	if (*p == 0)
1170		goto out;
1171
1172	*p++ = 0;
1173
1174	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1175	if (!usrdatum)
1176		goto out;
1177
1178	ctx->user = usrdatum->value;
1179
1180	/* Extract role. */
1181	scontextp = p;
1182	while (*p && *p != ':')
1183		p++;
1184
1185	if (*p == 0)
1186		goto out;
1187
1188	*p++ = 0;
1189
1190	role = hashtab_search(pol->p_roles.table, scontextp);
1191	if (!role)
1192		goto out;
1193	ctx->role = role->value;
1194
1195	/* Extract type. */
1196	scontextp = p;
1197	while (*p && *p != ':')
1198		p++;
1199	oldc = *p;
1200	*p++ = 0;
1201
1202	typdatum = hashtab_search(pol->p_types.table, scontextp);
1203	if (!typdatum || typdatum->attribute)
1204		goto out;
1205
1206	ctx->type = typdatum->value;
1207
1208	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1209	if (rc)
1210		goto out;
1211
1212	rc = -EINVAL;
1213	if ((p - scontext) < scontext_len)
1214		goto out;
1215
1216	/* Check the validity of the new context. */
1217	if (!policydb_context_isvalid(pol, ctx))
1218		goto out;
1219	rc = 0;
1220out:
1221	if (rc)
1222		context_destroy(ctx);
1223	return rc;
1224}
1225
1226static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1227					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1228					int force)
1229{
1230	char *scontext2, *str = NULL;
1231	struct context context;
1232	int rc = 0;
1233
1234	if (!ss_initialized) {
1235		int i;
1236
1237		for (i = 1; i < SECINITSID_NUM; i++) {
1238			if (!strcmp(initial_sid_to_string[i], scontext)) {
1239				*sid = i;
1240				return 0;
1241			}
1242		}
1243		*sid = SECINITSID_KERNEL;
1244		return 0;
1245	}
1246	*sid = SECSID_NULL;
1247
1248	/* Copy the string so that we can modify the copy as we parse it. */
1249	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1250	if (!scontext2)
1251		return -ENOMEM;
1252	memcpy(scontext2, scontext, scontext_len);
1253	scontext2[scontext_len] = 0;
1254
1255	if (force) {
1256		/* Save another copy for storing in uninterpreted form */
1257		rc = -ENOMEM;
1258		str = kstrdup(scontext2, gfp_flags);
1259		if (!str)
1260			goto out;
1261	}
1262
1263	read_lock(&policy_rwlock);
1264	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1265				      scontext_len, &context, def_sid);
1266	if (rc == -EINVAL && force) {
1267		context.str = str;
1268		context.len = scontext_len;
1269		str = NULL;
1270	} else if (rc)
1271		goto out_unlock;
1272	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1273	context_destroy(&context);
1274out_unlock:
1275	read_unlock(&policy_rwlock);
1276out:
1277	kfree(scontext2);
1278	kfree(str);
1279	return rc;
1280}
1281
1282/**
1283 * security_context_to_sid - Obtain a SID for a given security context.
1284 * @scontext: security context
1285 * @scontext_len: length in bytes
1286 * @sid: security identifier, SID
1287 *
1288 * Obtains a SID associated with the security context that
1289 * has the string representation specified by @scontext.
1290 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1291 * memory is available, or 0 on success.
1292 */
1293int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1294{
1295	return security_context_to_sid_core(scontext, scontext_len,
1296					    sid, SECSID_NULL, GFP_KERNEL, 0);
1297}
1298
1299/**
1300 * security_context_to_sid_default - Obtain a SID for a given security context,
1301 * falling back to specified default if needed.
1302 *
1303 * @scontext: security context
1304 * @scontext_len: length in bytes
1305 * @sid: security identifier, SID
1306 * @def_sid: default SID to assign on error
1307 *
1308 * Obtains a SID associated with the security context that
1309 * has the string representation specified by @scontext.
1310 * The default SID is passed to the MLS layer to be used to allow
1311 * kernel labeling of the MLS field if the MLS field is not present
1312 * (for upgrading to MLS without full relabel).
1313 * Implicitly forces adding of the context even if it cannot be mapped yet.
1314 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1315 * memory is available, or 0 on success.
1316 */
1317int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1318				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1319{
1320	return security_context_to_sid_core(scontext, scontext_len,
1321					    sid, def_sid, gfp_flags, 1);
1322}
1323
1324int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1325				  u32 *sid)
1326{
1327	return security_context_to_sid_core(scontext, scontext_len,
1328					    sid, SECSID_NULL, GFP_KERNEL, 1);
1329}
1330
1331static int compute_sid_handle_invalid_context(
1332	struct context *scontext,
1333	struct context *tcontext,
1334	u16 tclass,
1335	struct context *newcontext)
1336{
1337	char *s = NULL, *t = NULL, *n = NULL;
1338	u32 slen, tlen, nlen;
1339
1340	if (context_struct_to_string(scontext, &s, &slen))
1341		goto out;
1342	if (context_struct_to_string(tcontext, &t, &tlen))
1343		goto out;
1344	if (context_struct_to_string(newcontext, &n, &nlen))
1345		goto out;
1346	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1347		  "security_compute_sid:  invalid context %s"
1348		  " for scontext=%s"
1349		  " tcontext=%s"
1350		  " tclass=%s",
1351		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1352out:
1353	kfree(s);
1354	kfree(t);
1355	kfree(n);
1356	if (!selinux_enforcing)
1357		return 0;
1358	return -EACCES;
1359}
1360
1361static void filename_compute_type(struct policydb *p, struct context *newcontext,
1362				  u32 stype, u32 ttype, u16 tclass,
1363				  const char *objname)
1364{
1365	struct filename_trans ft;
1366	struct filename_trans_datum *otype;
1367
1368	/*
1369	 * Most filename trans rules are going to live in specific directories
1370	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1371	 * if the ttype does not contain any rules.
1372	 */
1373	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1374		return;
1375
1376	ft.stype = stype;
1377	ft.ttype = ttype;
1378	ft.tclass = tclass;
1379	ft.name = objname;
1380
1381	otype = hashtab_search(p->filename_trans, &ft);
1382	if (otype)
1383		newcontext->type = otype->otype;
1384}
1385
1386static int security_compute_sid(u32 ssid,
1387				u32 tsid,
1388				u16 orig_tclass,
1389				u32 specified,
1390				const char *objname,
1391				u32 *out_sid,
1392				bool kern)
1393{
 
1394	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1395	struct role_trans *roletr = NULL;
1396	struct avtab_key avkey;
1397	struct avtab_datum *avdatum;
1398	struct avtab_node *node;
1399	u16 tclass;
1400	int rc = 0;
1401	bool sock;
1402
1403	if (!ss_initialized) {
1404		switch (orig_tclass) {
1405		case SECCLASS_PROCESS: /* kernel value */
1406			*out_sid = ssid;
1407			break;
1408		default:
1409			*out_sid = tsid;
1410			break;
1411		}
1412		goto out;
1413	}
1414
1415	context_init(&newcontext);
1416
1417	read_lock(&policy_rwlock);
1418
1419	if (kern) {
1420		tclass = unmap_class(orig_tclass);
1421		sock = security_is_socket_class(orig_tclass);
1422	} else {
1423		tclass = orig_tclass;
1424		sock = security_is_socket_class(map_class(tclass));
1425	}
1426
1427	scontext = sidtab_search(&sidtab, ssid);
1428	if (!scontext) {
1429		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1430		       __func__, ssid);
1431		rc = -EINVAL;
1432		goto out_unlock;
1433	}
1434	tcontext = sidtab_search(&sidtab, tsid);
1435	if (!tcontext) {
1436		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1437		       __func__, tsid);
1438		rc = -EINVAL;
1439		goto out_unlock;
1440	}
1441
 
 
 
1442	/* Set the user identity. */
1443	switch (specified) {
1444	case AVTAB_TRANSITION:
1445	case AVTAB_CHANGE:
1446		/* Use the process user identity. */
1447		newcontext.user = scontext->user;
 
 
 
 
 
1448		break;
1449	case AVTAB_MEMBER:
1450		/* Use the related object owner. */
1451		newcontext.user = tcontext->user;
1452		break;
1453	}
1454
1455	/* Set the role and type to default values. */
1456	if ((tclass == policydb.process_class) || (sock == true)) {
1457		/* Use the current role and type of process. */
1458		newcontext.role = scontext->role;
1459		newcontext.type = scontext->type;
 
1460	} else {
1461		/* Use the well-defined object role. */
1462		newcontext.role = OBJECT_R_VAL;
1463		/* Use the type of the related object. */
 
 
 
 
 
 
 
1464		newcontext.type = tcontext->type;
 
 
 
 
 
 
 
 
1465	}
1466
1467	/* Look for a type transition/member/change rule. */
1468	avkey.source_type = scontext->type;
1469	avkey.target_type = tcontext->type;
1470	avkey.target_class = tclass;
1471	avkey.specified = specified;
1472	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1473
1474	/* If no permanent rule, also check for enabled conditional rules */
1475	if (!avdatum) {
1476		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1477		for (; node; node = avtab_search_node_next(node, specified)) {
1478			if (node->key.specified & AVTAB_ENABLED) {
1479				avdatum = &node->datum;
1480				break;
1481			}
1482		}
1483	}
1484
1485	if (avdatum) {
1486		/* Use the type from the type transition/member/change rule. */
1487		newcontext.type = avdatum->data;
1488	}
1489
1490	/* if we have a objname this is a file trans check so check those rules */
1491	if (objname)
1492		filename_compute_type(&policydb, &newcontext, scontext->type,
1493				      tcontext->type, tclass, objname);
1494
1495	/* Check for class-specific changes. */
1496	if (specified & AVTAB_TRANSITION) {
1497		/* Look for a role transition rule. */
1498		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1499			if ((roletr->role == scontext->role) &&
1500			    (roletr->type == tcontext->type) &&
1501			    (roletr->tclass == tclass)) {
1502				/* Use the role transition rule. */
1503				newcontext.role = roletr->new_role;
1504				break;
1505			}
1506		}
1507	}
1508
1509	/* Set the MLS attributes.
1510	   This is done last because it may allocate memory. */
1511	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1512			     &newcontext, sock);
1513	if (rc)
1514		goto out_unlock;
1515
1516	/* Check the validity of the context. */
1517	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1518		rc = compute_sid_handle_invalid_context(scontext,
1519							tcontext,
1520							tclass,
1521							&newcontext);
1522		if (rc)
1523			goto out_unlock;
1524	}
1525	/* Obtain the sid for the context. */
1526	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1527out_unlock:
1528	read_unlock(&policy_rwlock);
1529	context_destroy(&newcontext);
1530out:
1531	return rc;
1532}
1533
1534/**
1535 * security_transition_sid - Compute the SID for a new subject/object.
1536 * @ssid: source security identifier
1537 * @tsid: target security identifier
1538 * @tclass: target security class
1539 * @out_sid: security identifier for new subject/object
1540 *
1541 * Compute a SID to use for labeling a new subject or object in the
1542 * class @tclass based on a SID pair (@ssid, @tsid).
1543 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1544 * if insufficient memory is available, or %0 if the new SID was
1545 * computed successfully.
1546 */
1547int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1548			    const struct qstr *qstr, u32 *out_sid)
1549{
1550	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1551				    qstr ? qstr->name : NULL, out_sid, true);
1552}
1553
1554int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1555				 const char *objname, u32 *out_sid)
1556{
1557	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1558				    objname, out_sid, false);
1559}
1560
1561/**
1562 * security_member_sid - Compute the SID for member selection.
1563 * @ssid: source security identifier
1564 * @tsid: target security identifier
1565 * @tclass: target security class
1566 * @out_sid: security identifier for selected member
1567 *
1568 * Compute a SID to use when selecting a member of a polyinstantiated
1569 * object of class @tclass based on a SID pair (@ssid, @tsid).
1570 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1571 * if insufficient memory is available, or %0 if the SID was
1572 * computed successfully.
1573 */
1574int security_member_sid(u32 ssid,
1575			u32 tsid,
1576			u16 tclass,
1577			u32 *out_sid)
1578{
1579	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1580				    out_sid, false);
1581}
1582
1583/**
1584 * security_change_sid - Compute the SID for object relabeling.
1585 * @ssid: source security identifier
1586 * @tsid: target security identifier
1587 * @tclass: target security class
1588 * @out_sid: security identifier for selected member
1589 *
1590 * Compute a SID to use for relabeling an object of class @tclass
1591 * based on a SID pair (@ssid, @tsid).
1592 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1593 * if insufficient memory is available, or %0 if the SID was
1594 * computed successfully.
1595 */
1596int security_change_sid(u32 ssid,
1597			u32 tsid,
1598			u16 tclass,
1599			u32 *out_sid)
1600{
1601	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1602				    out_sid, false);
1603}
1604
1605/* Clone the SID into the new SID table. */
1606static int clone_sid(u32 sid,
1607		     struct context *context,
1608		     void *arg)
1609{
1610	struct sidtab *s = arg;
1611
1612	if (sid > SECINITSID_NUM)
1613		return sidtab_insert(s, sid, context);
1614	else
1615		return 0;
1616}
1617
1618static inline int convert_context_handle_invalid_context(struct context *context)
1619{
1620	char *s;
1621	u32 len;
1622
1623	if (selinux_enforcing)
1624		return -EINVAL;
1625
1626	if (!context_struct_to_string(context, &s, &len)) {
1627		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1628		kfree(s);
1629	}
1630	return 0;
1631}
1632
1633struct convert_context_args {
1634	struct policydb *oldp;
1635	struct policydb *newp;
1636};
1637
1638/*
1639 * Convert the values in the security context
1640 * structure `c' from the values specified
1641 * in the policy `p->oldp' to the values specified
1642 * in the policy `p->newp'.  Verify that the
1643 * context is valid under the new policy.
1644 */
1645static int convert_context(u32 key,
1646			   struct context *c,
1647			   void *p)
1648{
1649	struct convert_context_args *args;
1650	struct context oldc;
1651	struct ocontext *oc;
1652	struct mls_range *range;
1653	struct role_datum *role;
1654	struct type_datum *typdatum;
1655	struct user_datum *usrdatum;
1656	char *s;
1657	u32 len;
1658	int rc = 0;
1659
1660	if (key <= SECINITSID_NUM)
1661		goto out;
1662
1663	args = p;
1664
1665	if (c->str) {
1666		struct context ctx;
1667
1668		rc = -ENOMEM;
1669		s = kstrdup(c->str, GFP_KERNEL);
1670		if (!s)
1671			goto out;
1672
1673		rc = string_to_context_struct(args->newp, NULL, s,
1674					      c->len, &ctx, SECSID_NULL);
1675		kfree(s);
1676		if (!rc) {
1677			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1678			       c->str);
1679			/* Replace string with mapped representation. */
1680			kfree(c->str);
1681			memcpy(c, &ctx, sizeof(*c));
1682			goto out;
1683		} else if (rc == -EINVAL) {
1684			/* Retain string representation for later mapping. */
1685			rc = 0;
1686			goto out;
1687		} else {
1688			/* Other error condition, e.g. ENOMEM. */
1689			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1690			       c->str, -rc);
1691			goto out;
1692		}
1693	}
1694
1695	rc = context_cpy(&oldc, c);
1696	if (rc)
1697		goto out;
1698
1699	/* Convert the user. */
1700	rc = -EINVAL;
1701	usrdatum = hashtab_search(args->newp->p_users.table,
1702				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1703	if (!usrdatum)
1704		goto bad;
1705	c->user = usrdatum->value;
1706
1707	/* Convert the role. */
1708	rc = -EINVAL;
1709	role = hashtab_search(args->newp->p_roles.table,
1710			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1711	if (!role)
1712		goto bad;
1713	c->role = role->value;
1714
1715	/* Convert the type. */
1716	rc = -EINVAL;
1717	typdatum = hashtab_search(args->newp->p_types.table,
1718				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1719	if (!typdatum)
1720		goto bad;
1721	c->type = typdatum->value;
1722
1723	/* Convert the MLS fields if dealing with MLS policies */
1724	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1725		rc = mls_convert_context(args->oldp, args->newp, c);
1726		if (rc)
1727			goto bad;
1728	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1729		/*
1730		 * Switching between MLS and non-MLS policy:
1731		 * free any storage used by the MLS fields in the
1732		 * context for all existing entries in the sidtab.
1733		 */
1734		mls_context_destroy(c);
1735	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1736		/*
1737		 * Switching between non-MLS and MLS policy:
1738		 * ensure that the MLS fields of the context for all
1739		 * existing entries in the sidtab are filled in with a
1740		 * suitable default value, likely taken from one of the
1741		 * initial SIDs.
1742		 */
1743		oc = args->newp->ocontexts[OCON_ISID];
1744		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1745			oc = oc->next;
1746		rc = -EINVAL;
1747		if (!oc) {
1748			printk(KERN_ERR "SELinux:  unable to look up"
1749				" the initial SIDs list\n");
1750			goto bad;
1751		}
1752		range = &oc->context[0].range;
1753		rc = mls_range_set(c, range);
1754		if (rc)
1755			goto bad;
1756	}
1757
1758	/* Check the validity of the new context. */
1759	if (!policydb_context_isvalid(args->newp, c)) {
1760		rc = convert_context_handle_invalid_context(&oldc);
1761		if (rc)
1762			goto bad;
1763	}
1764
1765	context_destroy(&oldc);
1766
1767	rc = 0;
1768out:
1769	return rc;
1770bad:
1771	/* Map old representation to string and save it. */
1772	rc = context_struct_to_string(&oldc, &s, &len);
1773	if (rc)
1774		return rc;
1775	context_destroy(&oldc);
1776	context_destroy(c);
1777	c->str = s;
1778	c->len = len;
1779	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1780	       c->str);
1781	rc = 0;
1782	goto out;
1783}
1784
1785static void security_load_policycaps(void)
1786{
1787	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1788						  POLICYDB_CAPABILITY_NETPEER);
1789	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1790						  POLICYDB_CAPABILITY_OPENPERM);
1791}
1792
1793extern void selinux_complete_init(void);
1794static int security_preserve_bools(struct policydb *p);
1795
1796/**
1797 * security_load_policy - Load a security policy configuration.
1798 * @data: binary policy data
1799 * @len: length of data in bytes
1800 *
1801 * Load a new set of security policy configuration data,
1802 * validate it and convert the SID table as necessary.
1803 * This function will flush the access vector cache after
1804 * loading the new policy.
1805 */
1806int security_load_policy(void *data, size_t len)
1807{
1808	struct policydb oldpolicydb, newpolicydb;
1809	struct sidtab oldsidtab, newsidtab;
1810	struct selinux_mapping *oldmap, *map = NULL;
1811	struct convert_context_args args;
1812	u32 seqno;
1813	u16 map_size;
1814	int rc = 0;
1815	struct policy_file file = { data, len }, *fp = &file;
1816
1817	if (!ss_initialized) {
1818		avtab_cache_init();
1819		rc = policydb_read(&policydb, fp);
1820		if (rc) {
1821			avtab_cache_destroy();
1822			return rc;
1823		}
1824
1825		policydb.len = len;
1826		rc = selinux_set_mapping(&policydb, secclass_map,
1827					 &current_mapping,
1828					 &current_mapping_size);
1829		if (rc) {
1830			policydb_destroy(&policydb);
1831			avtab_cache_destroy();
1832			return rc;
1833		}
1834
1835		rc = policydb_load_isids(&policydb, &sidtab);
1836		if (rc) {
1837			policydb_destroy(&policydb);
1838			avtab_cache_destroy();
1839			return rc;
1840		}
1841
1842		security_load_policycaps();
1843		ss_initialized = 1;
1844		seqno = ++latest_granting;
1845		selinux_complete_init();
1846		avc_ss_reset(seqno);
1847		selnl_notify_policyload(seqno);
1848		selinux_status_update_policyload(seqno);
1849		selinux_netlbl_cache_invalidate();
1850		selinux_xfrm_notify_policyload();
1851		return 0;
1852	}
1853
1854#if 0
1855	sidtab_hash_eval(&sidtab, "sids");
1856#endif
1857
1858	rc = policydb_read(&newpolicydb, fp);
1859	if (rc)
1860		return rc;
1861
1862	newpolicydb.len = len;
1863	/* If switching between different policy types, log MLS status */
1864	if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1865		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1866	else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1867		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1868
1869	rc = policydb_load_isids(&newpolicydb, &newsidtab);
1870	if (rc) {
1871		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1872		policydb_destroy(&newpolicydb);
1873		return rc;
1874	}
1875
1876	rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1877	if (rc)
1878		goto err;
1879
1880	rc = security_preserve_bools(&newpolicydb);
1881	if (rc) {
1882		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1883		goto err;
1884	}
1885
1886	/* Clone the SID table. */
1887	sidtab_shutdown(&sidtab);
1888
1889	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1890	if (rc)
1891		goto err;
1892
1893	/*
1894	 * Convert the internal representations of contexts
1895	 * in the new SID table.
1896	 */
1897	args.oldp = &policydb;
1898	args.newp = &newpolicydb;
1899	rc = sidtab_map(&newsidtab, convert_context, &args);
1900	if (rc) {
1901		printk(KERN_ERR "SELinux:  unable to convert the internal"
1902			" representation of contexts in the new SID"
1903			" table\n");
1904		goto err;
1905	}
1906
1907	/* Save the old policydb and SID table to free later. */
1908	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1909	sidtab_set(&oldsidtab, &sidtab);
1910
1911	/* Install the new policydb and SID table. */
1912	write_lock_irq(&policy_rwlock);
1913	memcpy(&policydb, &newpolicydb, sizeof policydb);
1914	sidtab_set(&sidtab, &newsidtab);
1915	security_load_policycaps();
1916	oldmap = current_mapping;
1917	current_mapping = map;
1918	current_mapping_size = map_size;
1919	seqno = ++latest_granting;
1920	write_unlock_irq(&policy_rwlock);
1921
1922	/* Free the old policydb and SID table. */
1923	policydb_destroy(&oldpolicydb);
1924	sidtab_destroy(&oldsidtab);
1925	kfree(oldmap);
1926
1927	avc_ss_reset(seqno);
1928	selnl_notify_policyload(seqno);
1929	selinux_status_update_policyload(seqno);
1930	selinux_netlbl_cache_invalidate();
1931	selinux_xfrm_notify_policyload();
1932
1933	return 0;
1934
1935err:
1936	kfree(map);
1937	sidtab_destroy(&newsidtab);
1938	policydb_destroy(&newpolicydb);
1939	return rc;
1940
1941}
1942
1943size_t security_policydb_len(void)
1944{
1945	size_t len;
1946
1947	read_lock(&policy_rwlock);
1948	len = policydb.len;
1949	read_unlock(&policy_rwlock);
1950
1951	return len;
1952}
1953
1954/**
1955 * security_port_sid - Obtain the SID for a port.
1956 * @protocol: protocol number
1957 * @port: port number
1958 * @out_sid: security identifier
1959 */
1960int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1961{
1962	struct ocontext *c;
1963	int rc = 0;
1964
1965	read_lock(&policy_rwlock);
1966
1967	c = policydb.ocontexts[OCON_PORT];
1968	while (c) {
1969		if (c->u.port.protocol == protocol &&
1970		    c->u.port.low_port <= port &&
1971		    c->u.port.high_port >= port)
1972			break;
1973		c = c->next;
1974	}
1975
1976	if (c) {
1977		if (!c->sid[0]) {
1978			rc = sidtab_context_to_sid(&sidtab,
1979						   &c->context[0],
1980						   &c->sid[0]);
1981			if (rc)
1982				goto out;
1983		}
1984		*out_sid = c->sid[0];
1985	} else {
1986		*out_sid = SECINITSID_PORT;
1987	}
1988
1989out:
1990	read_unlock(&policy_rwlock);
1991	return rc;
1992}
1993
1994/**
1995 * security_netif_sid - Obtain the SID for a network interface.
1996 * @name: interface name
1997 * @if_sid: interface SID
1998 */
1999int security_netif_sid(char *name, u32 *if_sid)
2000{
2001	int rc = 0;
2002	struct ocontext *c;
2003
2004	read_lock(&policy_rwlock);
2005
2006	c = policydb.ocontexts[OCON_NETIF];
2007	while (c) {
2008		if (strcmp(name, c->u.name) == 0)
2009			break;
2010		c = c->next;
2011	}
2012
2013	if (c) {
2014		if (!c->sid[0] || !c->sid[1]) {
2015			rc = sidtab_context_to_sid(&sidtab,
2016						  &c->context[0],
2017						  &c->sid[0]);
2018			if (rc)
2019				goto out;
2020			rc = sidtab_context_to_sid(&sidtab,
2021						   &c->context[1],
2022						   &c->sid[1]);
2023			if (rc)
2024				goto out;
2025		}
2026		*if_sid = c->sid[0];
2027	} else
2028		*if_sid = SECINITSID_NETIF;
2029
2030out:
2031	read_unlock(&policy_rwlock);
2032	return rc;
2033}
2034
2035static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2036{
2037	int i, fail = 0;
2038
2039	for (i = 0; i < 4; i++)
2040		if (addr[i] != (input[i] & mask[i])) {
2041			fail = 1;
2042			break;
2043		}
2044
2045	return !fail;
2046}
2047
2048/**
2049 * security_node_sid - Obtain the SID for a node (host).
2050 * @domain: communication domain aka address family
2051 * @addrp: address
2052 * @addrlen: address length in bytes
2053 * @out_sid: security identifier
2054 */
2055int security_node_sid(u16 domain,
2056		      void *addrp,
2057		      u32 addrlen,
2058		      u32 *out_sid)
2059{
2060	int rc;
2061	struct ocontext *c;
2062
2063	read_lock(&policy_rwlock);
2064
2065	switch (domain) {
2066	case AF_INET: {
2067		u32 addr;
2068
2069		rc = -EINVAL;
2070		if (addrlen != sizeof(u32))
2071			goto out;
2072
2073		addr = *((u32 *)addrp);
2074
2075		c = policydb.ocontexts[OCON_NODE];
2076		while (c) {
2077			if (c->u.node.addr == (addr & c->u.node.mask))
2078				break;
2079			c = c->next;
2080		}
2081		break;
2082	}
2083
2084	case AF_INET6:
2085		rc = -EINVAL;
2086		if (addrlen != sizeof(u64) * 2)
2087			goto out;
2088		c = policydb.ocontexts[OCON_NODE6];
2089		while (c) {
2090			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2091						c->u.node6.mask))
2092				break;
2093			c = c->next;
2094		}
2095		break;
2096
2097	default:
2098		rc = 0;
2099		*out_sid = SECINITSID_NODE;
2100		goto out;
2101	}
2102
2103	if (c) {
2104		if (!c->sid[0]) {
2105			rc = sidtab_context_to_sid(&sidtab,
2106						   &c->context[0],
2107						   &c->sid[0]);
2108			if (rc)
2109				goto out;
2110		}
2111		*out_sid = c->sid[0];
2112	} else {
2113		*out_sid = SECINITSID_NODE;
2114	}
2115
2116	rc = 0;
2117out:
2118	read_unlock(&policy_rwlock);
2119	return rc;
2120}
2121
2122#define SIDS_NEL 25
2123
2124/**
2125 * security_get_user_sids - Obtain reachable SIDs for a user.
2126 * @fromsid: starting SID
2127 * @username: username
2128 * @sids: array of reachable SIDs for user
2129 * @nel: number of elements in @sids
2130 *
2131 * Generate the set of SIDs for legal security contexts
2132 * for a given user that can be reached by @fromsid.
2133 * Set *@sids to point to a dynamically allocated
2134 * array containing the set of SIDs.  Set *@nel to the
2135 * number of elements in the array.
2136 */
2137
2138int security_get_user_sids(u32 fromsid,
2139			   char *username,
2140			   u32 **sids,
2141			   u32 *nel)
2142{
2143	struct context *fromcon, usercon;
2144	u32 *mysids = NULL, *mysids2, sid;
2145	u32 mynel = 0, maxnel = SIDS_NEL;
2146	struct user_datum *user;
2147	struct role_datum *role;
2148	struct ebitmap_node *rnode, *tnode;
2149	int rc = 0, i, j;
2150
2151	*sids = NULL;
2152	*nel = 0;
2153
2154	if (!ss_initialized)
2155		goto out;
2156
2157	read_lock(&policy_rwlock);
2158
2159	context_init(&usercon);
2160
2161	rc = -EINVAL;
2162	fromcon = sidtab_search(&sidtab, fromsid);
2163	if (!fromcon)
2164		goto out_unlock;
2165
2166	rc = -EINVAL;
2167	user = hashtab_search(policydb.p_users.table, username);
2168	if (!user)
2169		goto out_unlock;
2170
2171	usercon.user = user->value;
2172
2173	rc = -ENOMEM;
2174	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2175	if (!mysids)
2176		goto out_unlock;
2177
2178	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2179		role = policydb.role_val_to_struct[i];
2180		usercon.role = i + 1;
2181		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2182			usercon.type = j + 1;
2183
2184			if (mls_setup_user_range(fromcon, user, &usercon))
2185				continue;
2186
2187			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2188			if (rc)
2189				goto out_unlock;
2190			if (mynel < maxnel) {
2191				mysids[mynel++] = sid;
2192			} else {
2193				rc = -ENOMEM;
2194				maxnel += SIDS_NEL;
2195				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2196				if (!mysids2)
2197					goto out_unlock;
2198				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2199				kfree(mysids);
2200				mysids = mysids2;
2201				mysids[mynel++] = sid;
2202			}
2203		}
2204	}
2205	rc = 0;
2206out_unlock:
2207	read_unlock(&policy_rwlock);
2208	if (rc || !mynel) {
2209		kfree(mysids);
2210		goto out;
2211	}
2212
2213	rc = -ENOMEM;
2214	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2215	if (!mysids2) {
2216		kfree(mysids);
2217		goto out;
2218	}
2219	for (i = 0, j = 0; i < mynel; i++) {
2220		struct av_decision dummy_avd;
2221		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2222					  SECCLASS_PROCESS, /* kernel value */
2223					  PROCESS__TRANSITION, AVC_STRICT,
2224					  &dummy_avd);
2225		if (!rc)
2226			mysids2[j++] = mysids[i];
2227		cond_resched();
2228	}
2229	rc = 0;
2230	kfree(mysids);
2231	*sids = mysids2;
2232	*nel = j;
2233out:
2234	return rc;
2235}
2236
2237/**
2238 * security_genfs_sid - Obtain a SID for a file in a filesystem
2239 * @fstype: filesystem type
2240 * @path: path from root of mount
2241 * @sclass: file security class
2242 * @sid: SID for path
2243 *
2244 * Obtain a SID to use for a file in a filesystem that
2245 * cannot support xattr or use a fixed labeling behavior like
2246 * transition SIDs or task SIDs.
2247 */
2248int security_genfs_sid(const char *fstype,
2249		       char *path,
2250		       u16 orig_sclass,
2251		       u32 *sid)
2252{
2253	int len;
2254	u16 sclass;
2255	struct genfs *genfs;
2256	struct ocontext *c;
2257	int rc, cmp = 0;
2258
2259	while (path[0] == '/' && path[1] == '/')
2260		path++;
2261
2262	read_lock(&policy_rwlock);
2263
2264	sclass = unmap_class(orig_sclass);
2265	*sid = SECINITSID_UNLABELED;
2266
2267	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2268		cmp = strcmp(fstype, genfs->fstype);
2269		if (cmp <= 0)
2270			break;
2271	}
2272
2273	rc = -ENOENT;
2274	if (!genfs || cmp)
2275		goto out;
2276
2277	for (c = genfs->head; c; c = c->next) {
2278		len = strlen(c->u.name);
2279		if ((!c->v.sclass || sclass == c->v.sclass) &&
2280		    (strncmp(c->u.name, path, len) == 0))
2281			break;
2282	}
2283
2284	rc = -ENOENT;
2285	if (!c)
2286		goto out;
2287
2288	if (!c->sid[0]) {
2289		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2290		if (rc)
2291			goto out;
2292	}
2293
2294	*sid = c->sid[0];
2295	rc = 0;
2296out:
2297	read_unlock(&policy_rwlock);
2298	return rc;
2299}
2300
2301/**
2302 * security_fs_use - Determine how to handle labeling for a filesystem.
2303 * @fstype: filesystem type
2304 * @behavior: labeling behavior
2305 * @sid: SID for filesystem (superblock)
2306 */
2307int security_fs_use(
2308	const char *fstype,
2309	unsigned int *behavior,
2310	u32 *sid)
2311{
2312	int rc = 0;
2313	struct ocontext *c;
2314
2315	read_lock(&policy_rwlock);
2316
2317	c = policydb.ocontexts[OCON_FSUSE];
2318	while (c) {
2319		if (strcmp(fstype, c->u.name) == 0)
2320			break;
2321		c = c->next;
2322	}
2323
2324	if (c) {
2325		*behavior = c->v.behavior;
2326		if (!c->sid[0]) {
2327			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2328						   &c->sid[0]);
2329			if (rc)
2330				goto out;
2331		}
2332		*sid = c->sid[0];
2333	} else {
2334		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2335		if (rc) {
2336			*behavior = SECURITY_FS_USE_NONE;
2337			rc = 0;
2338		} else {
2339			*behavior = SECURITY_FS_USE_GENFS;
2340		}
2341	}
2342
2343out:
2344	read_unlock(&policy_rwlock);
2345	return rc;
2346}
2347
2348int security_get_bools(int *len, char ***names, int **values)
2349{
2350	int i, rc;
2351
2352	read_lock(&policy_rwlock);
2353	*names = NULL;
2354	*values = NULL;
2355
2356	rc = 0;
2357	*len = policydb.p_bools.nprim;
2358	if (!*len)
2359		goto out;
2360
2361	rc = -ENOMEM;
2362	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2363	if (!*names)
2364		goto err;
2365
2366	rc = -ENOMEM;
2367	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2368	if (!*values)
2369		goto err;
2370
2371	for (i = 0; i < *len; i++) {
2372		size_t name_len;
2373
2374		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2375		name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2376
2377		rc = -ENOMEM;
2378		(*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2379		if (!(*names)[i])
2380			goto err;
2381
2382		strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2383		(*names)[i][name_len - 1] = 0;
2384	}
2385	rc = 0;
2386out:
2387	read_unlock(&policy_rwlock);
2388	return rc;
2389err:
2390	if (*names) {
2391		for (i = 0; i < *len; i++)
2392			kfree((*names)[i]);
2393	}
2394	kfree(*values);
2395	goto out;
2396}
2397
2398
2399int security_set_bools(int len, int *values)
2400{
2401	int i, rc;
2402	int lenp, seqno = 0;
2403	struct cond_node *cur;
2404
2405	write_lock_irq(&policy_rwlock);
2406
2407	rc = -EFAULT;
2408	lenp = policydb.p_bools.nprim;
2409	if (len != lenp)
2410		goto out;
2411
2412	for (i = 0; i < len; i++) {
2413		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2414			audit_log(current->audit_context, GFP_ATOMIC,
2415				AUDIT_MAC_CONFIG_CHANGE,
2416				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2417				sym_name(&policydb, SYM_BOOLS, i),
2418				!!values[i],
2419				policydb.bool_val_to_struct[i]->state,
2420				audit_get_loginuid(current),
2421				audit_get_sessionid(current));
2422		}
2423		if (values[i])
2424			policydb.bool_val_to_struct[i]->state = 1;
2425		else
2426			policydb.bool_val_to_struct[i]->state = 0;
2427	}
2428
2429	for (cur = policydb.cond_list; cur; cur = cur->next) {
2430		rc = evaluate_cond_node(&policydb, cur);
2431		if (rc)
2432			goto out;
2433	}
2434
2435	seqno = ++latest_granting;
2436	rc = 0;
2437out:
2438	write_unlock_irq(&policy_rwlock);
2439	if (!rc) {
2440		avc_ss_reset(seqno);
2441		selnl_notify_policyload(seqno);
2442		selinux_status_update_policyload(seqno);
2443		selinux_xfrm_notify_policyload();
2444	}
2445	return rc;
2446}
2447
2448int security_get_bool_value(int bool)
2449{
2450	int rc;
2451	int len;
2452
2453	read_lock(&policy_rwlock);
2454
2455	rc = -EFAULT;
2456	len = policydb.p_bools.nprim;
2457	if (bool >= len)
2458		goto out;
2459
2460	rc = policydb.bool_val_to_struct[bool]->state;
2461out:
2462	read_unlock(&policy_rwlock);
2463	return rc;
2464}
2465
2466static int security_preserve_bools(struct policydb *p)
2467{
2468	int rc, nbools = 0, *bvalues = NULL, i;
2469	char **bnames = NULL;
2470	struct cond_bool_datum *booldatum;
2471	struct cond_node *cur;
2472
2473	rc = security_get_bools(&nbools, &bnames, &bvalues);
2474	if (rc)
2475		goto out;
2476	for (i = 0; i < nbools; i++) {
2477		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2478		if (booldatum)
2479			booldatum->state = bvalues[i];
2480	}
2481	for (cur = p->cond_list; cur; cur = cur->next) {
2482		rc = evaluate_cond_node(p, cur);
2483		if (rc)
2484			goto out;
2485	}
2486
2487out:
2488	if (bnames) {
2489		for (i = 0; i < nbools; i++)
2490			kfree(bnames[i]);
2491	}
2492	kfree(bnames);
2493	kfree(bvalues);
2494	return rc;
2495}
2496
2497/*
2498 * security_sid_mls_copy() - computes a new sid based on the given
2499 * sid and the mls portion of mls_sid.
2500 */
2501int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2502{
2503	struct context *context1;
2504	struct context *context2;
2505	struct context newcon;
2506	char *s;
2507	u32 len;
2508	int rc;
2509
2510	rc = 0;
2511	if (!ss_initialized || !policydb.mls_enabled) {
2512		*new_sid = sid;
2513		goto out;
2514	}
2515
2516	context_init(&newcon);
2517
2518	read_lock(&policy_rwlock);
2519
2520	rc = -EINVAL;
2521	context1 = sidtab_search(&sidtab, sid);
2522	if (!context1) {
2523		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2524			__func__, sid);
2525		goto out_unlock;
2526	}
2527
2528	rc = -EINVAL;
2529	context2 = sidtab_search(&sidtab, mls_sid);
2530	if (!context2) {
2531		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2532			__func__, mls_sid);
2533		goto out_unlock;
2534	}
2535
2536	newcon.user = context1->user;
2537	newcon.role = context1->role;
2538	newcon.type = context1->type;
2539	rc = mls_context_cpy(&newcon, context2);
2540	if (rc)
2541		goto out_unlock;
2542
2543	/* Check the validity of the new context. */
2544	if (!policydb_context_isvalid(&policydb, &newcon)) {
2545		rc = convert_context_handle_invalid_context(&newcon);
2546		if (rc) {
2547			if (!context_struct_to_string(&newcon, &s, &len)) {
2548				audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2549					  "security_sid_mls_copy: invalid context %s", s);
2550				kfree(s);
2551			}
2552			goto out_unlock;
2553		}
2554	}
2555
2556	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2557out_unlock:
2558	read_unlock(&policy_rwlock);
2559	context_destroy(&newcon);
2560out:
2561	return rc;
2562}
2563
2564/**
2565 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2566 * @nlbl_sid: NetLabel SID
2567 * @nlbl_type: NetLabel labeling protocol type
2568 * @xfrm_sid: XFRM SID
2569 *
2570 * Description:
2571 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2572 * resolved into a single SID it is returned via @peer_sid and the function
2573 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2574 * returns a negative value.  A table summarizing the behavior is below:
2575 *
2576 *                                 | function return |      @sid
2577 *   ------------------------------+-----------------+-----------------
2578 *   no peer labels                |        0        |    SECSID_NULL
2579 *   single peer label             |        0        |    <peer_label>
2580 *   multiple, consistent labels   |        0        |    <peer_label>
2581 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2582 *
2583 */
2584int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2585				 u32 xfrm_sid,
2586				 u32 *peer_sid)
2587{
2588	int rc;
2589	struct context *nlbl_ctx;
2590	struct context *xfrm_ctx;
2591
2592	*peer_sid = SECSID_NULL;
2593
2594	/* handle the common (which also happens to be the set of easy) cases
2595	 * right away, these two if statements catch everything involving a
2596	 * single or absent peer SID/label */
2597	if (xfrm_sid == SECSID_NULL) {
2598		*peer_sid = nlbl_sid;
2599		return 0;
2600	}
2601	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2602	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2603	 * is present */
2604	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2605		*peer_sid = xfrm_sid;
2606		return 0;
2607	}
2608
2609	/* we don't need to check ss_initialized here since the only way both
2610	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2611	 * security server was initialized and ss_initialized was true */
2612	if (!policydb.mls_enabled)
2613		return 0;
2614
2615	read_lock(&policy_rwlock);
2616
2617	rc = -EINVAL;
2618	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2619	if (!nlbl_ctx) {
2620		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2621		       __func__, nlbl_sid);
2622		goto out;
2623	}
2624	rc = -EINVAL;
2625	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2626	if (!xfrm_ctx) {
2627		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2628		       __func__, xfrm_sid);
2629		goto out;
2630	}
2631	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2632	if (rc)
2633		goto out;
2634
2635	/* at present NetLabel SIDs/labels really only carry MLS
2636	 * information so if the MLS portion of the NetLabel SID
2637	 * matches the MLS portion of the labeled XFRM SID/label
2638	 * then pass along the XFRM SID as it is the most
2639	 * expressive */
2640	*peer_sid = xfrm_sid;
2641out:
2642	read_unlock(&policy_rwlock);
2643	return rc;
2644}
2645
2646static int get_classes_callback(void *k, void *d, void *args)
2647{
2648	struct class_datum *datum = d;
2649	char *name = k, **classes = args;
2650	int value = datum->value - 1;
2651
2652	classes[value] = kstrdup(name, GFP_ATOMIC);
2653	if (!classes[value])
2654		return -ENOMEM;
2655
2656	return 0;
2657}
2658
2659int security_get_classes(char ***classes, int *nclasses)
2660{
2661	int rc;
2662
2663	read_lock(&policy_rwlock);
2664
2665	rc = -ENOMEM;
2666	*nclasses = policydb.p_classes.nprim;
2667	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2668	if (!*classes)
2669		goto out;
2670
2671	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2672			*classes);
2673	if (rc) {
2674		int i;
2675		for (i = 0; i < *nclasses; i++)
2676			kfree((*classes)[i]);
2677		kfree(*classes);
2678	}
2679
2680out:
2681	read_unlock(&policy_rwlock);
2682	return rc;
2683}
2684
2685static int get_permissions_callback(void *k, void *d, void *args)
2686{
2687	struct perm_datum *datum = d;
2688	char *name = k, **perms = args;
2689	int value = datum->value - 1;
2690
2691	perms[value] = kstrdup(name, GFP_ATOMIC);
2692	if (!perms[value])
2693		return -ENOMEM;
2694
2695	return 0;
2696}
2697
2698int security_get_permissions(char *class, char ***perms, int *nperms)
2699{
2700	int rc, i;
2701	struct class_datum *match;
2702
2703	read_lock(&policy_rwlock);
2704
2705	rc = -EINVAL;
2706	match = hashtab_search(policydb.p_classes.table, class);
2707	if (!match) {
2708		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2709			__func__, class);
2710		goto out;
2711	}
2712
2713	rc = -ENOMEM;
2714	*nperms = match->permissions.nprim;
2715	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2716	if (!*perms)
2717		goto out;
2718
2719	if (match->comdatum) {
2720		rc = hashtab_map(match->comdatum->permissions.table,
2721				get_permissions_callback, *perms);
2722		if (rc)
2723			goto err;
2724	}
2725
2726	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2727			*perms);
2728	if (rc)
2729		goto err;
2730
2731out:
2732	read_unlock(&policy_rwlock);
2733	return rc;
2734
2735err:
2736	read_unlock(&policy_rwlock);
2737	for (i = 0; i < *nperms; i++)
2738		kfree((*perms)[i]);
2739	kfree(*perms);
2740	return rc;
2741}
2742
2743int security_get_reject_unknown(void)
2744{
2745	return policydb.reject_unknown;
2746}
2747
2748int security_get_allow_unknown(void)
2749{
2750	return policydb.allow_unknown;
2751}
2752
2753/**
2754 * security_policycap_supported - Check for a specific policy capability
2755 * @req_cap: capability
2756 *
2757 * Description:
2758 * This function queries the currently loaded policy to see if it supports the
2759 * capability specified by @req_cap.  Returns true (1) if the capability is
2760 * supported, false (0) if it isn't supported.
2761 *
2762 */
2763int security_policycap_supported(unsigned int req_cap)
2764{
2765	int rc;
2766
2767	read_lock(&policy_rwlock);
2768	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2769	read_unlock(&policy_rwlock);
2770
2771	return rc;
2772}
2773
2774struct selinux_audit_rule {
2775	u32 au_seqno;
2776	struct context au_ctxt;
2777};
2778
2779void selinux_audit_rule_free(void *vrule)
2780{
2781	struct selinux_audit_rule *rule = vrule;
2782
2783	if (rule) {
2784		context_destroy(&rule->au_ctxt);
2785		kfree(rule);
2786	}
2787}
2788
2789int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2790{
2791	struct selinux_audit_rule *tmprule;
2792	struct role_datum *roledatum;
2793	struct type_datum *typedatum;
2794	struct user_datum *userdatum;
2795	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2796	int rc = 0;
2797
2798	*rule = NULL;
2799
2800	if (!ss_initialized)
2801		return -EOPNOTSUPP;
2802
2803	switch (field) {
2804	case AUDIT_SUBJ_USER:
2805	case AUDIT_SUBJ_ROLE:
2806	case AUDIT_SUBJ_TYPE:
2807	case AUDIT_OBJ_USER:
2808	case AUDIT_OBJ_ROLE:
2809	case AUDIT_OBJ_TYPE:
2810		/* only 'equals' and 'not equals' fit user, role, and type */
2811		if (op != Audit_equal && op != Audit_not_equal)
2812			return -EINVAL;
2813		break;
2814	case AUDIT_SUBJ_SEN:
2815	case AUDIT_SUBJ_CLR:
2816	case AUDIT_OBJ_LEV_LOW:
2817	case AUDIT_OBJ_LEV_HIGH:
2818		/* we do not allow a range, indicated by the presence of '-' */
2819		if (strchr(rulestr, '-'))
2820			return -EINVAL;
2821		break;
2822	default:
2823		/* only the above fields are valid */
2824		return -EINVAL;
2825	}
2826
2827	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2828	if (!tmprule)
2829		return -ENOMEM;
2830
2831	context_init(&tmprule->au_ctxt);
2832
2833	read_lock(&policy_rwlock);
2834
2835	tmprule->au_seqno = latest_granting;
2836
2837	switch (field) {
2838	case AUDIT_SUBJ_USER:
2839	case AUDIT_OBJ_USER:
2840		rc = -EINVAL;
2841		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2842		if (!userdatum)
2843			goto out;
2844		tmprule->au_ctxt.user = userdatum->value;
2845		break;
2846	case AUDIT_SUBJ_ROLE:
2847	case AUDIT_OBJ_ROLE:
2848		rc = -EINVAL;
2849		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2850		if (!roledatum)
2851			goto out;
2852		tmprule->au_ctxt.role = roledatum->value;
2853		break;
2854	case AUDIT_SUBJ_TYPE:
2855	case AUDIT_OBJ_TYPE:
2856		rc = -EINVAL;
2857		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2858		if (!typedatum)
2859			goto out;
2860		tmprule->au_ctxt.type = typedatum->value;
2861		break;
2862	case AUDIT_SUBJ_SEN:
2863	case AUDIT_SUBJ_CLR:
2864	case AUDIT_OBJ_LEV_LOW:
2865	case AUDIT_OBJ_LEV_HIGH:
2866		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2867		if (rc)
2868			goto out;
2869		break;
2870	}
2871	rc = 0;
2872out:
2873	read_unlock(&policy_rwlock);
2874
2875	if (rc) {
2876		selinux_audit_rule_free(tmprule);
2877		tmprule = NULL;
2878	}
2879
2880	*rule = tmprule;
2881
2882	return rc;
2883}
2884
2885/* Check to see if the rule contains any selinux fields */
2886int selinux_audit_rule_known(struct audit_krule *rule)
2887{
2888	int i;
2889
2890	for (i = 0; i < rule->field_count; i++) {
2891		struct audit_field *f = &rule->fields[i];
2892		switch (f->type) {
2893		case AUDIT_SUBJ_USER:
2894		case AUDIT_SUBJ_ROLE:
2895		case AUDIT_SUBJ_TYPE:
2896		case AUDIT_SUBJ_SEN:
2897		case AUDIT_SUBJ_CLR:
2898		case AUDIT_OBJ_USER:
2899		case AUDIT_OBJ_ROLE:
2900		case AUDIT_OBJ_TYPE:
2901		case AUDIT_OBJ_LEV_LOW:
2902		case AUDIT_OBJ_LEV_HIGH:
2903			return 1;
2904		}
2905	}
2906
2907	return 0;
2908}
2909
2910int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2911			     struct audit_context *actx)
2912{
2913	struct context *ctxt;
2914	struct mls_level *level;
2915	struct selinux_audit_rule *rule = vrule;
2916	int match = 0;
2917
2918	if (!rule) {
2919		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2920			  "selinux_audit_rule_match: missing rule\n");
2921		return -ENOENT;
2922	}
2923
2924	read_lock(&policy_rwlock);
2925
2926	if (rule->au_seqno < latest_granting) {
2927		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2928			  "selinux_audit_rule_match: stale rule\n");
2929		match = -ESTALE;
2930		goto out;
2931	}
2932
2933	ctxt = sidtab_search(&sidtab, sid);
2934	if (!ctxt) {
2935		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2936			  "selinux_audit_rule_match: unrecognized SID %d\n",
2937			  sid);
2938		match = -ENOENT;
2939		goto out;
2940	}
2941
2942	/* a field/op pair that is not caught here will simply fall through
2943	   without a match */
2944	switch (field) {
2945	case AUDIT_SUBJ_USER:
2946	case AUDIT_OBJ_USER:
2947		switch (op) {
2948		case Audit_equal:
2949			match = (ctxt->user == rule->au_ctxt.user);
2950			break;
2951		case Audit_not_equal:
2952			match = (ctxt->user != rule->au_ctxt.user);
2953			break;
2954		}
2955		break;
2956	case AUDIT_SUBJ_ROLE:
2957	case AUDIT_OBJ_ROLE:
2958		switch (op) {
2959		case Audit_equal:
2960			match = (ctxt->role == rule->au_ctxt.role);
2961			break;
2962		case Audit_not_equal:
2963			match = (ctxt->role != rule->au_ctxt.role);
2964			break;
2965		}
2966		break;
2967	case AUDIT_SUBJ_TYPE:
2968	case AUDIT_OBJ_TYPE:
2969		switch (op) {
2970		case Audit_equal:
2971			match = (ctxt->type == rule->au_ctxt.type);
2972			break;
2973		case Audit_not_equal:
2974			match = (ctxt->type != rule->au_ctxt.type);
2975			break;
2976		}
2977		break;
2978	case AUDIT_SUBJ_SEN:
2979	case AUDIT_SUBJ_CLR:
2980	case AUDIT_OBJ_LEV_LOW:
2981	case AUDIT_OBJ_LEV_HIGH:
2982		level = ((field == AUDIT_SUBJ_SEN ||
2983			  field == AUDIT_OBJ_LEV_LOW) ?
2984			 &ctxt->range.level[0] : &ctxt->range.level[1]);
2985		switch (op) {
2986		case Audit_equal:
2987			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2988					     level);
2989			break;
2990		case Audit_not_equal:
2991			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2992					      level);
2993			break;
2994		case Audit_lt:
2995			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2996					       level) &&
2997				 !mls_level_eq(&rule->au_ctxt.range.level[0],
2998					       level));
2999			break;
3000		case Audit_le:
3001			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3002					      level);
3003			break;
3004		case Audit_gt:
3005			match = (mls_level_dom(level,
3006					      &rule->au_ctxt.range.level[0]) &&
3007				 !mls_level_eq(level,
3008					       &rule->au_ctxt.range.level[0]));
3009			break;
3010		case Audit_ge:
3011			match = mls_level_dom(level,
3012					      &rule->au_ctxt.range.level[0]);
3013			break;
3014		}
3015	}
3016
3017out:
3018	read_unlock(&policy_rwlock);
3019	return match;
3020}
3021
3022static int (*aurule_callback)(void) = audit_update_lsm_rules;
3023
3024static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
3025			       u16 class, u32 perms, u32 *retained)
3026{
3027	int err = 0;
3028
3029	if (event == AVC_CALLBACK_RESET && aurule_callback)
3030		err = aurule_callback();
3031	return err;
3032}
3033
3034static int __init aurule_init(void)
3035{
3036	int err;
3037
3038	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
3039			       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
3040	if (err)
3041		panic("avc_add_callback() failed, error %d\n", err);
3042
3043	return err;
3044}
3045__initcall(aurule_init);
3046
3047#ifdef CONFIG_NETLABEL
3048/**
3049 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3050 * @secattr: the NetLabel packet security attributes
3051 * @sid: the SELinux SID
3052 *
3053 * Description:
3054 * Attempt to cache the context in @ctx, which was derived from the packet in
3055 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3056 * already been initialized.
3057 *
3058 */
3059static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3060				      u32 sid)
3061{
3062	u32 *sid_cache;
3063
3064	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3065	if (sid_cache == NULL)
3066		return;
3067	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3068	if (secattr->cache == NULL) {
3069		kfree(sid_cache);
3070		return;
3071	}
3072
3073	*sid_cache = sid;
3074	secattr->cache->free = kfree;
3075	secattr->cache->data = sid_cache;
3076	secattr->flags |= NETLBL_SECATTR_CACHE;
3077}
3078
3079/**
3080 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3081 * @secattr: the NetLabel packet security attributes
3082 * @sid: the SELinux SID
3083 *
3084 * Description:
3085 * Convert the given NetLabel security attributes in @secattr into a
3086 * SELinux SID.  If the @secattr field does not contain a full SELinux
3087 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3088 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3089 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3090 * conversion for future lookups.  Returns zero on success, negative values on
3091 * failure.
3092 *
3093 */
3094int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3095				   u32 *sid)
3096{
3097	int rc;
3098	struct context *ctx;
3099	struct context ctx_new;
3100
3101	if (!ss_initialized) {
3102		*sid = SECSID_NULL;
3103		return 0;
3104	}
3105
3106	read_lock(&policy_rwlock);
3107
3108	if (secattr->flags & NETLBL_SECATTR_CACHE)
3109		*sid = *(u32 *)secattr->cache->data;
3110	else if (secattr->flags & NETLBL_SECATTR_SECID)
3111		*sid = secattr->attr.secid;
3112	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3113		rc = -EIDRM;
3114		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3115		if (ctx == NULL)
3116			goto out;
3117
3118		context_init(&ctx_new);
3119		ctx_new.user = ctx->user;
3120		ctx_new.role = ctx->role;
3121		ctx_new.type = ctx->type;
3122		mls_import_netlbl_lvl(&ctx_new, secattr);
3123		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3124			rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3125						   secattr->attr.mls.cat);
3126			if (rc)
3127				goto out;
3128			memcpy(&ctx_new.range.level[1].cat,
3129			       &ctx_new.range.level[0].cat,
3130			       sizeof(ctx_new.range.level[0].cat));
3131		}
3132		rc = -EIDRM;
3133		if (!mls_context_isvalid(&policydb, &ctx_new))
3134			goto out_free;
3135
3136		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3137		if (rc)
3138			goto out_free;
3139
3140		security_netlbl_cache_add(secattr, *sid);
3141
3142		ebitmap_destroy(&ctx_new.range.level[0].cat);
3143	} else
3144		*sid = SECSID_NULL;
3145
3146	read_unlock(&policy_rwlock);
3147	return 0;
3148out_free:
3149	ebitmap_destroy(&ctx_new.range.level[0].cat);
3150out:
3151	read_unlock(&policy_rwlock);
3152	return rc;
3153}
3154
3155/**
3156 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3157 * @sid: the SELinux SID
3158 * @secattr: the NetLabel packet security attributes
3159 *
3160 * Description:
3161 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3162 * Returns zero on success, negative values on failure.
3163 *
3164 */
3165int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3166{
3167	int rc;
3168	struct context *ctx;
3169
3170	if (!ss_initialized)
3171		return 0;
3172
3173	read_lock(&policy_rwlock);
3174
3175	rc = -ENOENT;
3176	ctx = sidtab_search(&sidtab, sid);
3177	if (ctx == NULL)
3178		goto out;
3179
3180	rc = -ENOMEM;
3181	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3182				  GFP_ATOMIC);
3183	if (secattr->domain == NULL)
3184		goto out;
3185
3186	secattr->attr.secid = sid;
3187	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3188	mls_export_netlbl_lvl(ctx, secattr);
3189	rc = mls_export_netlbl_cat(ctx, secattr);
3190out:
3191	read_unlock(&policy_rwlock);
3192	return rc;
3193}
3194#endif /* CONFIG_NETLABEL */
3195
3196/**
3197 * security_read_policy - read the policy.
3198 * @data: binary policy data
3199 * @len: length of data in bytes
3200 *
3201 */
3202int security_read_policy(void **data, size_t *len)
3203{
3204	int rc;
3205	struct policy_file fp;
3206
3207	if (!ss_initialized)
3208		return -EINVAL;
3209
3210	*len = security_policydb_len();
3211
3212	*data = vmalloc_user(*len);
3213	if (!*data)
3214		return -ENOMEM;
3215
3216	fp.data = *data;
3217	fp.len = *len;
3218
3219	read_lock(&policy_rwlock);
3220	rc = policydb_write(&policydb, &fp);
3221	read_unlock(&policy_rwlock);
3222
3223	if (rc)
3224		return rc;
3225
3226	*len = (unsigned long)fp.data - (unsigned long)*data;
3227	return 0;
3228
3229}
v3.5.6
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
  72
 
 
  73int selinux_policycap_netpeer;
  74int selinux_policycap_openperm;
  75
  76static DEFINE_RWLOCK(policy_rwlock);
  77
  78static struct sidtab sidtab;
  79struct policydb policydb;
  80int ss_initialized;
  81
  82/*
  83 * The largest sequence number that has been used when
  84 * providing an access decision to the access vector cache.
  85 * The sequence number only changes when a policy change
  86 * occurs.
  87 */
  88static u32 latest_granting;
  89
  90/* Forward declaration. */
  91static int context_struct_to_string(struct context *context, char **scontext,
  92				    u32 *scontext_len);
  93
  94static void context_struct_compute_av(struct context *scontext,
  95				      struct context *tcontext,
  96				      u16 tclass,
  97				      struct av_decision *avd);
  98
  99struct selinux_mapping {
 100	u16 value; /* policy value */
 101	unsigned num_perms;
 102	u32 perms[sizeof(u32) * 8];
 103};
 104
 105static struct selinux_mapping *current_mapping;
 106static u16 current_mapping_size;
 107
 108static int selinux_set_mapping(struct policydb *pol,
 109			       struct security_class_mapping *map,
 110			       struct selinux_mapping **out_map_p,
 111			       u16 *out_map_size)
 112{
 113	struct selinux_mapping *out_map = NULL;
 114	size_t size = sizeof(struct selinux_mapping);
 115	u16 i, j;
 116	unsigned k;
 117	bool print_unknown_handle = false;
 118
 119	/* Find number of classes in the input mapping */
 120	if (!map)
 121		return -EINVAL;
 122	i = 0;
 123	while (map[i].name)
 124		i++;
 125
 126	/* Allocate space for the class records, plus one for class zero */
 127	out_map = kcalloc(++i, size, GFP_ATOMIC);
 128	if (!out_map)
 129		return -ENOMEM;
 130
 131	/* Store the raw class and permission values */
 132	j = 0;
 133	while (map[j].name) {
 134		struct security_class_mapping *p_in = map + (j++);
 135		struct selinux_mapping *p_out = out_map + j;
 136
 137		/* An empty class string skips ahead */
 138		if (!strcmp(p_in->name, "")) {
 139			p_out->num_perms = 0;
 140			continue;
 141		}
 142
 143		p_out->value = string_to_security_class(pol, p_in->name);
 144		if (!p_out->value) {
 145			printk(KERN_INFO
 146			       "SELinux:  Class %s not defined in policy.\n",
 147			       p_in->name);
 148			if (pol->reject_unknown)
 149				goto err;
 150			p_out->num_perms = 0;
 151			print_unknown_handle = true;
 152			continue;
 153		}
 154
 155		k = 0;
 156		while (p_in->perms && p_in->perms[k]) {
 157			/* An empty permission string skips ahead */
 158			if (!*p_in->perms[k]) {
 159				k++;
 160				continue;
 161			}
 162			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 163							    p_in->perms[k]);
 164			if (!p_out->perms[k]) {
 165				printk(KERN_INFO
 166				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 167				       p_in->perms[k], p_in->name);
 168				if (pol->reject_unknown)
 169					goto err;
 170				print_unknown_handle = true;
 171			}
 172
 173			k++;
 174		}
 175		p_out->num_perms = k;
 176	}
 177
 178	if (print_unknown_handle)
 179		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 180		       pol->allow_unknown ? "allowed" : "denied");
 181
 182	*out_map_p = out_map;
 183	*out_map_size = i;
 184	return 0;
 185err:
 186	kfree(out_map);
 187	return -EINVAL;
 188}
 189
 190/*
 191 * Get real, policy values from mapped values
 192 */
 193
 194static u16 unmap_class(u16 tclass)
 195{
 196	if (tclass < current_mapping_size)
 197		return current_mapping[tclass].value;
 198
 199	return tclass;
 200}
 201
 202/*
 203 * Get kernel value for class from its policy value
 204 */
 205static u16 map_class(u16 pol_value)
 206{
 207	u16 i;
 208
 209	for (i = 1; i < current_mapping_size; i++) {
 210		if (current_mapping[i].value == pol_value)
 211			return i;
 212	}
 213
 214	return SECCLASS_NULL;
 215}
 216
 217static void map_decision(u16 tclass, struct av_decision *avd,
 218			 int allow_unknown)
 219{
 220	if (tclass < current_mapping_size) {
 221		unsigned i, n = current_mapping[tclass].num_perms;
 222		u32 result;
 223
 224		for (i = 0, result = 0; i < n; i++) {
 225			if (avd->allowed & current_mapping[tclass].perms[i])
 226				result |= 1<<i;
 227			if (allow_unknown && !current_mapping[tclass].perms[i])
 228				result |= 1<<i;
 229		}
 230		avd->allowed = result;
 231
 232		for (i = 0, result = 0; i < n; i++)
 233			if (avd->auditallow & current_mapping[tclass].perms[i])
 234				result |= 1<<i;
 235		avd->auditallow = result;
 236
 237		for (i = 0, result = 0; i < n; i++) {
 238			if (avd->auditdeny & current_mapping[tclass].perms[i])
 239				result |= 1<<i;
 240			if (!allow_unknown && !current_mapping[tclass].perms[i])
 241				result |= 1<<i;
 242		}
 243		/*
 244		 * In case the kernel has a bug and requests a permission
 245		 * between num_perms and the maximum permission number, we
 246		 * should audit that denial
 247		 */
 248		for (; i < (sizeof(u32)*8); i++)
 249			result |= 1<<i;
 250		avd->auditdeny = result;
 251	}
 252}
 253
 254int security_mls_enabled(void)
 255{
 256	return policydb.mls_enabled;
 257}
 258
 259/*
 260 * Return the boolean value of a constraint expression
 261 * when it is applied to the specified source and target
 262 * security contexts.
 263 *
 264 * xcontext is a special beast...  It is used by the validatetrans rules
 265 * only.  For these rules, scontext is the context before the transition,
 266 * tcontext is the context after the transition, and xcontext is the context
 267 * of the process performing the transition.  All other callers of
 268 * constraint_expr_eval should pass in NULL for xcontext.
 269 */
 270static int constraint_expr_eval(struct context *scontext,
 271				struct context *tcontext,
 272				struct context *xcontext,
 273				struct constraint_expr *cexpr)
 274{
 275	u32 val1, val2;
 276	struct context *c;
 277	struct role_datum *r1, *r2;
 278	struct mls_level *l1, *l2;
 279	struct constraint_expr *e;
 280	int s[CEXPR_MAXDEPTH];
 281	int sp = -1;
 282
 283	for (e = cexpr; e; e = e->next) {
 284		switch (e->expr_type) {
 285		case CEXPR_NOT:
 286			BUG_ON(sp < 0);
 287			s[sp] = !s[sp];
 288			break;
 289		case CEXPR_AND:
 290			BUG_ON(sp < 1);
 291			sp--;
 292			s[sp] &= s[sp + 1];
 293			break;
 294		case CEXPR_OR:
 295			BUG_ON(sp < 1);
 296			sp--;
 297			s[sp] |= s[sp + 1];
 298			break;
 299		case CEXPR_ATTR:
 300			if (sp == (CEXPR_MAXDEPTH - 1))
 301				return 0;
 302			switch (e->attr) {
 303			case CEXPR_USER:
 304				val1 = scontext->user;
 305				val2 = tcontext->user;
 306				break;
 307			case CEXPR_TYPE:
 308				val1 = scontext->type;
 309				val2 = tcontext->type;
 310				break;
 311			case CEXPR_ROLE:
 312				val1 = scontext->role;
 313				val2 = tcontext->role;
 314				r1 = policydb.role_val_to_struct[val1 - 1];
 315				r2 = policydb.role_val_to_struct[val2 - 1];
 316				switch (e->op) {
 317				case CEXPR_DOM:
 318					s[++sp] = ebitmap_get_bit(&r1->dominates,
 319								  val2 - 1);
 320					continue;
 321				case CEXPR_DOMBY:
 322					s[++sp] = ebitmap_get_bit(&r2->dominates,
 323								  val1 - 1);
 324					continue;
 325				case CEXPR_INCOMP:
 326					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 327								    val2 - 1) &&
 328						   !ebitmap_get_bit(&r2->dominates,
 329								    val1 - 1));
 330					continue;
 331				default:
 332					break;
 333				}
 334				break;
 335			case CEXPR_L1L2:
 336				l1 = &(scontext->range.level[0]);
 337				l2 = &(tcontext->range.level[0]);
 338				goto mls_ops;
 339			case CEXPR_L1H2:
 340				l1 = &(scontext->range.level[0]);
 341				l2 = &(tcontext->range.level[1]);
 342				goto mls_ops;
 343			case CEXPR_H1L2:
 344				l1 = &(scontext->range.level[1]);
 345				l2 = &(tcontext->range.level[0]);
 346				goto mls_ops;
 347			case CEXPR_H1H2:
 348				l1 = &(scontext->range.level[1]);
 349				l2 = &(tcontext->range.level[1]);
 350				goto mls_ops;
 351			case CEXPR_L1H1:
 352				l1 = &(scontext->range.level[0]);
 353				l2 = &(scontext->range.level[1]);
 354				goto mls_ops;
 355			case CEXPR_L2H2:
 356				l1 = &(tcontext->range.level[0]);
 357				l2 = &(tcontext->range.level[1]);
 358				goto mls_ops;
 359mls_ops:
 360			switch (e->op) {
 361			case CEXPR_EQ:
 362				s[++sp] = mls_level_eq(l1, l2);
 363				continue;
 364			case CEXPR_NEQ:
 365				s[++sp] = !mls_level_eq(l1, l2);
 366				continue;
 367			case CEXPR_DOM:
 368				s[++sp] = mls_level_dom(l1, l2);
 369				continue;
 370			case CEXPR_DOMBY:
 371				s[++sp] = mls_level_dom(l2, l1);
 372				continue;
 373			case CEXPR_INCOMP:
 374				s[++sp] = mls_level_incomp(l2, l1);
 375				continue;
 376			default:
 377				BUG();
 378				return 0;
 379			}
 380			break;
 381			default:
 382				BUG();
 383				return 0;
 384			}
 385
 386			switch (e->op) {
 387			case CEXPR_EQ:
 388				s[++sp] = (val1 == val2);
 389				break;
 390			case CEXPR_NEQ:
 391				s[++sp] = (val1 != val2);
 392				break;
 393			default:
 394				BUG();
 395				return 0;
 396			}
 397			break;
 398		case CEXPR_NAMES:
 399			if (sp == (CEXPR_MAXDEPTH-1))
 400				return 0;
 401			c = scontext;
 402			if (e->attr & CEXPR_TARGET)
 403				c = tcontext;
 404			else if (e->attr & CEXPR_XTARGET) {
 405				c = xcontext;
 406				if (!c) {
 407					BUG();
 408					return 0;
 409				}
 410			}
 411			if (e->attr & CEXPR_USER)
 412				val1 = c->user;
 413			else if (e->attr & CEXPR_ROLE)
 414				val1 = c->role;
 415			else if (e->attr & CEXPR_TYPE)
 416				val1 = c->type;
 417			else {
 418				BUG();
 419				return 0;
 420			}
 421
 422			switch (e->op) {
 423			case CEXPR_EQ:
 424				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 425				break;
 426			case CEXPR_NEQ:
 427				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 428				break;
 429			default:
 430				BUG();
 431				return 0;
 432			}
 433			break;
 434		default:
 435			BUG();
 436			return 0;
 437		}
 438	}
 439
 440	BUG_ON(sp != 0);
 441	return s[0];
 442}
 443
 444/*
 445 * security_dump_masked_av - dumps masked permissions during
 446 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 447 */
 448static int dump_masked_av_helper(void *k, void *d, void *args)
 449{
 450	struct perm_datum *pdatum = d;
 451	char **permission_names = args;
 452
 453	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 454
 455	permission_names[pdatum->value - 1] = (char *)k;
 456
 457	return 0;
 458}
 459
 460static void security_dump_masked_av(struct context *scontext,
 461				    struct context *tcontext,
 462				    u16 tclass,
 463				    u32 permissions,
 464				    const char *reason)
 465{
 466	struct common_datum *common_dat;
 467	struct class_datum *tclass_dat;
 468	struct audit_buffer *ab;
 469	char *tclass_name;
 470	char *scontext_name = NULL;
 471	char *tcontext_name = NULL;
 472	char *permission_names[32];
 473	int index;
 474	u32 length;
 475	bool need_comma = false;
 476
 477	if (!permissions)
 478		return;
 479
 480	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 481	tclass_dat = policydb.class_val_to_struct[tclass - 1];
 482	common_dat = tclass_dat->comdatum;
 483
 484	/* init permission_names */
 485	if (common_dat &&
 486	    hashtab_map(common_dat->permissions.table,
 487			dump_masked_av_helper, permission_names) < 0)
 488		goto out;
 489
 490	if (hashtab_map(tclass_dat->permissions.table,
 491			dump_masked_av_helper, permission_names) < 0)
 492		goto out;
 493
 494	/* get scontext/tcontext in text form */
 495	if (context_struct_to_string(scontext,
 496				     &scontext_name, &length) < 0)
 497		goto out;
 498
 499	if (context_struct_to_string(tcontext,
 500				     &tcontext_name, &length) < 0)
 501		goto out;
 502
 503	/* audit a message */
 504	ab = audit_log_start(current->audit_context,
 505			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 506	if (!ab)
 507		goto out;
 508
 509	audit_log_format(ab, "op=security_compute_av reason=%s "
 510			 "scontext=%s tcontext=%s tclass=%s perms=",
 511			 reason, scontext_name, tcontext_name, tclass_name);
 512
 513	for (index = 0; index < 32; index++) {
 514		u32 mask = (1 << index);
 515
 516		if ((mask & permissions) == 0)
 517			continue;
 518
 519		audit_log_format(ab, "%s%s",
 520				 need_comma ? "," : "",
 521				 permission_names[index]
 522				 ? permission_names[index] : "????");
 523		need_comma = true;
 524	}
 525	audit_log_end(ab);
 526out:
 527	/* release scontext/tcontext */
 528	kfree(tcontext_name);
 529	kfree(scontext_name);
 530
 531	return;
 532}
 533
 534/*
 535 * security_boundary_permission - drops violated permissions
 536 * on boundary constraint.
 537 */
 538static void type_attribute_bounds_av(struct context *scontext,
 539				     struct context *tcontext,
 540				     u16 tclass,
 541				     struct av_decision *avd)
 542{
 543	struct context lo_scontext;
 544	struct context lo_tcontext;
 545	struct av_decision lo_avd;
 546	struct type_datum *source;
 547	struct type_datum *target;
 548	u32 masked = 0;
 549
 550	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 551				    scontext->type - 1);
 552	BUG_ON(!source);
 553
 554	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 555				    tcontext->type - 1);
 556	BUG_ON(!target);
 557
 558	if (source->bounds) {
 559		memset(&lo_avd, 0, sizeof(lo_avd));
 560
 561		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 562		lo_scontext.type = source->bounds;
 563
 564		context_struct_compute_av(&lo_scontext,
 565					  tcontext,
 566					  tclass,
 567					  &lo_avd);
 568		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 569			return;		/* no masked permission */
 570		masked = ~lo_avd.allowed & avd->allowed;
 571	}
 572
 573	if (target->bounds) {
 574		memset(&lo_avd, 0, sizeof(lo_avd));
 575
 576		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 577		lo_tcontext.type = target->bounds;
 578
 579		context_struct_compute_av(scontext,
 580					  &lo_tcontext,
 581					  tclass,
 582					  &lo_avd);
 583		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 584			return;		/* no masked permission */
 585		masked = ~lo_avd.allowed & avd->allowed;
 586	}
 587
 588	if (source->bounds && target->bounds) {
 589		memset(&lo_avd, 0, sizeof(lo_avd));
 590		/*
 591		 * lo_scontext and lo_tcontext are already
 592		 * set up.
 593		 */
 594
 595		context_struct_compute_av(&lo_scontext,
 596					  &lo_tcontext,
 597					  tclass,
 598					  &lo_avd);
 599		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 600			return;		/* no masked permission */
 601		masked = ~lo_avd.allowed & avd->allowed;
 602	}
 603
 604	if (masked) {
 605		/* mask violated permissions */
 606		avd->allowed &= ~masked;
 607
 608		/* audit masked permissions */
 609		security_dump_masked_av(scontext, tcontext,
 610					tclass, masked, "bounds");
 611	}
 612}
 613
 614/*
 615 * Compute access vectors based on a context structure pair for
 616 * the permissions in a particular class.
 617 */
 618static void context_struct_compute_av(struct context *scontext,
 619				      struct context *tcontext,
 620				      u16 tclass,
 621				      struct av_decision *avd)
 622{
 623	struct constraint_node *constraint;
 624	struct role_allow *ra;
 625	struct avtab_key avkey;
 626	struct avtab_node *node;
 627	struct class_datum *tclass_datum;
 628	struct ebitmap *sattr, *tattr;
 629	struct ebitmap_node *snode, *tnode;
 630	unsigned int i, j;
 631
 632	avd->allowed = 0;
 633	avd->auditallow = 0;
 634	avd->auditdeny = 0xffffffff;
 635
 636	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 637		if (printk_ratelimit())
 638			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 639		return;
 640	}
 641
 642	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 643
 644	/*
 645	 * If a specific type enforcement rule was defined for
 646	 * this permission check, then use it.
 647	 */
 648	avkey.target_class = tclass;
 649	avkey.specified = AVTAB_AV;
 650	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 651	BUG_ON(!sattr);
 652	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 653	BUG_ON(!tattr);
 654	ebitmap_for_each_positive_bit(sattr, snode, i) {
 655		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 656			avkey.source_type = i + 1;
 657			avkey.target_type = j + 1;
 658			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 659			     node;
 660			     node = avtab_search_node_next(node, avkey.specified)) {
 661				if (node->key.specified == AVTAB_ALLOWED)
 662					avd->allowed |= node->datum.data;
 663				else if (node->key.specified == AVTAB_AUDITALLOW)
 664					avd->auditallow |= node->datum.data;
 665				else if (node->key.specified == AVTAB_AUDITDENY)
 666					avd->auditdeny &= node->datum.data;
 667			}
 668
 669			/* Check conditional av table for additional permissions */
 670			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
 671
 672		}
 673	}
 674
 675	/*
 676	 * Remove any permissions prohibited by a constraint (this includes
 677	 * the MLS policy).
 678	 */
 679	constraint = tclass_datum->constraints;
 680	while (constraint) {
 681		if ((constraint->permissions & (avd->allowed)) &&
 682		    !constraint_expr_eval(scontext, tcontext, NULL,
 683					  constraint->expr)) {
 684			avd->allowed &= ~(constraint->permissions);
 685		}
 686		constraint = constraint->next;
 687	}
 688
 689	/*
 690	 * If checking process transition permission and the
 691	 * role is changing, then check the (current_role, new_role)
 692	 * pair.
 693	 */
 694	if (tclass == policydb.process_class &&
 695	    (avd->allowed & policydb.process_trans_perms) &&
 696	    scontext->role != tcontext->role) {
 697		for (ra = policydb.role_allow; ra; ra = ra->next) {
 698			if (scontext->role == ra->role &&
 699			    tcontext->role == ra->new_role)
 700				break;
 701		}
 702		if (!ra)
 703			avd->allowed &= ~policydb.process_trans_perms;
 704	}
 705
 706	/*
 707	 * If the given source and target types have boundary
 708	 * constraint, lazy checks have to mask any violated
 709	 * permission and notice it to userspace via audit.
 710	 */
 711	type_attribute_bounds_av(scontext, tcontext,
 712				 tclass, avd);
 713}
 714
 715static int security_validtrans_handle_fail(struct context *ocontext,
 716					   struct context *ncontext,
 717					   struct context *tcontext,
 718					   u16 tclass)
 719{
 720	char *o = NULL, *n = NULL, *t = NULL;
 721	u32 olen, nlen, tlen;
 722
 723	if (context_struct_to_string(ocontext, &o, &olen))
 724		goto out;
 725	if (context_struct_to_string(ncontext, &n, &nlen))
 726		goto out;
 727	if (context_struct_to_string(tcontext, &t, &tlen))
 728		goto out;
 729	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 730		  "security_validate_transition:  denied for"
 731		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 732		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 733out:
 734	kfree(o);
 735	kfree(n);
 736	kfree(t);
 737
 738	if (!selinux_enforcing)
 739		return 0;
 740	return -EPERM;
 741}
 742
 743int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 744				 u16 orig_tclass)
 745{
 746	struct context *ocontext;
 747	struct context *ncontext;
 748	struct context *tcontext;
 749	struct class_datum *tclass_datum;
 750	struct constraint_node *constraint;
 751	u16 tclass;
 752	int rc = 0;
 753
 754	if (!ss_initialized)
 755		return 0;
 756
 757	read_lock(&policy_rwlock);
 758
 759	tclass = unmap_class(orig_tclass);
 760
 761	if (!tclass || tclass > policydb.p_classes.nprim) {
 762		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
 763			__func__, tclass);
 764		rc = -EINVAL;
 765		goto out;
 766	}
 767	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 768
 769	ocontext = sidtab_search(&sidtab, oldsid);
 770	if (!ocontext) {
 771		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 772			__func__, oldsid);
 773		rc = -EINVAL;
 774		goto out;
 775	}
 776
 777	ncontext = sidtab_search(&sidtab, newsid);
 778	if (!ncontext) {
 779		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 780			__func__, newsid);
 781		rc = -EINVAL;
 782		goto out;
 783	}
 784
 785	tcontext = sidtab_search(&sidtab, tasksid);
 786	if (!tcontext) {
 787		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 788			__func__, tasksid);
 789		rc = -EINVAL;
 790		goto out;
 791	}
 792
 793	constraint = tclass_datum->validatetrans;
 794	while (constraint) {
 795		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 796					  constraint->expr)) {
 797			rc = security_validtrans_handle_fail(ocontext, ncontext,
 798							     tcontext, tclass);
 799			goto out;
 800		}
 801		constraint = constraint->next;
 802	}
 803
 804out:
 805	read_unlock(&policy_rwlock);
 806	return rc;
 807}
 808
 809/*
 810 * security_bounded_transition - check whether the given
 811 * transition is directed to bounded, or not.
 812 * It returns 0, if @newsid is bounded by @oldsid.
 813 * Otherwise, it returns error code.
 814 *
 815 * @oldsid : current security identifier
 816 * @newsid : destinated security identifier
 817 */
 818int security_bounded_transition(u32 old_sid, u32 new_sid)
 819{
 820	struct context *old_context, *new_context;
 821	struct type_datum *type;
 822	int index;
 823	int rc;
 824
 825	read_lock(&policy_rwlock);
 826
 827	rc = -EINVAL;
 828	old_context = sidtab_search(&sidtab, old_sid);
 829	if (!old_context) {
 830		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 831		       __func__, old_sid);
 832		goto out;
 833	}
 834
 835	rc = -EINVAL;
 836	new_context = sidtab_search(&sidtab, new_sid);
 837	if (!new_context) {
 838		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 839		       __func__, new_sid);
 840		goto out;
 841	}
 842
 843	rc = 0;
 844	/* type/domain unchanged */
 845	if (old_context->type == new_context->type)
 846		goto out;
 847
 848	index = new_context->type;
 849	while (true) {
 850		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 851					  index - 1);
 852		BUG_ON(!type);
 853
 854		/* not bounded anymore */
 855		rc = -EPERM;
 856		if (!type->bounds)
 857			break;
 858
 859		/* @newsid is bounded by @oldsid */
 860		rc = 0;
 861		if (type->bounds == old_context->type)
 862			break;
 863
 864		index = type->bounds;
 865	}
 866
 867	if (rc) {
 868		char *old_name = NULL;
 869		char *new_name = NULL;
 870		u32 length;
 871
 872		if (!context_struct_to_string(old_context,
 873					      &old_name, &length) &&
 874		    !context_struct_to_string(new_context,
 875					      &new_name, &length)) {
 876			audit_log(current->audit_context,
 877				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 878				  "op=security_bounded_transition "
 879				  "result=denied "
 880				  "oldcontext=%s newcontext=%s",
 881				  old_name, new_name);
 882		}
 883		kfree(new_name);
 884		kfree(old_name);
 885	}
 886out:
 887	read_unlock(&policy_rwlock);
 888
 889	return rc;
 890}
 891
 892static void avd_init(struct av_decision *avd)
 893{
 894	avd->allowed = 0;
 895	avd->auditallow = 0;
 896	avd->auditdeny = 0xffffffff;
 897	avd->seqno = latest_granting;
 898	avd->flags = 0;
 899}
 900
 901
 902/**
 903 * security_compute_av - Compute access vector decisions.
 904 * @ssid: source security identifier
 905 * @tsid: target security identifier
 906 * @tclass: target security class
 907 * @avd: access vector decisions
 908 *
 909 * Compute a set of access vector decisions based on the
 910 * SID pair (@ssid, @tsid) for the permissions in @tclass.
 911 */
 912void security_compute_av(u32 ssid,
 913			 u32 tsid,
 914			 u16 orig_tclass,
 915			 struct av_decision *avd)
 916{
 917	u16 tclass;
 918	struct context *scontext = NULL, *tcontext = NULL;
 919
 920	read_lock(&policy_rwlock);
 921	avd_init(avd);
 922	if (!ss_initialized)
 923		goto allow;
 924
 925	scontext = sidtab_search(&sidtab, ssid);
 926	if (!scontext) {
 927		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 928		       __func__, ssid);
 929		goto out;
 930	}
 931
 932	/* permissive domain? */
 933	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 934		avd->flags |= AVD_FLAGS_PERMISSIVE;
 935
 936	tcontext = sidtab_search(&sidtab, tsid);
 937	if (!tcontext) {
 938		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 939		       __func__, tsid);
 940		goto out;
 941	}
 942
 943	tclass = unmap_class(orig_tclass);
 944	if (unlikely(orig_tclass && !tclass)) {
 945		if (policydb.allow_unknown)
 946			goto allow;
 947		goto out;
 948	}
 949	context_struct_compute_av(scontext, tcontext, tclass, avd);
 950	map_decision(orig_tclass, avd, policydb.allow_unknown);
 951out:
 952	read_unlock(&policy_rwlock);
 953	return;
 954allow:
 955	avd->allowed = 0xffffffff;
 956	goto out;
 957}
 958
 959void security_compute_av_user(u32 ssid,
 960			      u32 tsid,
 961			      u16 tclass,
 962			      struct av_decision *avd)
 963{
 964	struct context *scontext = NULL, *tcontext = NULL;
 965
 966	read_lock(&policy_rwlock);
 967	avd_init(avd);
 968	if (!ss_initialized)
 969		goto allow;
 970
 971	scontext = sidtab_search(&sidtab, ssid);
 972	if (!scontext) {
 973		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 974		       __func__, ssid);
 975		goto out;
 976	}
 977
 978	/* permissive domain? */
 979	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 980		avd->flags |= AVD_FLAGS_PERMISSIVE;
 981
 982	tcontext = sidtab_search(&sidtab, tsid);
 983	if (!tcontext) {
 984		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 985		       __func__, tsid);
 986		goto out;
 987	}
 988
 989	if (unlikely(!tclass)) {
 990		if (policydb.allow_unknown)
 991			goto allow;
 992		goto out;
 993	}
 994
 995	context_struct_compute_av(scontext, tcontext, tclass, avd);
 996 out:
 997	read_unlock(&policy_rwlock);
 998	return;
 999allow:
1000	avd->allowed = 0xffffffff;
1001	goto out;
1002}
1003
1004/*
1005 * Write the security context string representation of
1006 * the context structure `context' into a dynamically
1007 * allocated string of the correct size.  Set `*scontext'
1008 * to point to this string and set `*scontext_len' to
1009 * the length of the string.
1010 */
1011static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1012{
1013	char *scontextp;
1014
1015	if (scontext)
1016		*scontext = NULL;
1017	*scontext_len = 0;
1018
1019	if (context->len) {
1020		*scontext_len = context->len;
1021		if (scontext) {
1022			*scontext = kstrdup(context->str, GFP_ATOMIC);
1023			if (!(*scontext))
1024				return -ENOMEM;
1025		}
1026		return 0;
1027	}
1028
1029	/* Compute the size of the context. */
1030	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1031	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1032	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1033	*scontext_len += mls_compute_context_len(context);
1034
1035	if (!scontext)
1036		return 0;
1037
1038	/* Allocate space for the context; caller must free this space. */
1039	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1040	if (!scontextp)
1041		return -ENOMEM;
1042	*scontext = scontextp;
1043
1044	/*
1045	 * Copy the user name, role name and type name into the context.
1046	 */
1047	sprintf(scontextp, "%s:%s:%s",
1048		sym_name(&policydb, SYM_USERS, context->user - 1),
1049		sym_name(&policydb, SYM_ROLES, context->role - 1),
1050		sym_name(&policydb, SYM_TYPES, context->type - 1));
1051	scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1052		     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1053		     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1054
1055	mls_sid_to_context(context, &scontextp);
1056
1057	*scontextp = 0;
1058
1059	return 0;
1060}
1061
1062#include "initial_sid_to_string.h"
1063
1064const char *security_get_initial_sid_context(u32 sid)
1065{
1066	if (unlikely(sid > SECINITSID_NUM))
1067		return NULL;
1068	return initial_sid_to_string[sid];
1069}
1070
1071static int security_sid_to_context_core(u32 sid, char **scontext,
1072					u32 *scontext_len, int force)
1073{
1074	struct context *context;
1075	int rc = 0;
1076
1077	if (scontext)
1078		*scontext = NULL;
1079	*scontext_len  = 0;
1080
1081	if (!ss_initialized) {
1082		if (sid <= SECINITSID_NUM) {
1083			char *scontextp;
1084
1085			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1086			if (!scontext)
1087				goto out;
1088			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1089			if (!scontextp) {
1090				rc = -ENOMEM;
1091				goto out;
1092			}
1093			strcpy(scontextp, initial_sid_to_string[sid]);
1094			*scontext = scontextp;
1095			goto out;
1096		}
1097		printk(KERN_ERR "SELinux: %s:  called before initial "
1098		       "load_policy on unknown SID %d\n", __func__, sid);
1099		rc = -EINVAL;
1100		goto out;
1101	}
1102	read_lock(&policy_rwlock);
1103	if (force)
1104		context = sidtab_search_force(&sidtab, sid);
1105	else
1106		context = sidtab_search(&sidtab, sid);
1107	if (!context) {
1108		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1109			__func__, sid);
1110		rc = -EINVAL;
1111		goto out_unlock;
1112	}
1113	rc = context_struct_to_string(context, scontext, scontext_len);
1114out_unlock:
1115	read_unlock(&policy_rwlock);
1116out:
1117	return rc;
1118
1119}
1120
1121/**
1122 * security_sid_to_context - Obtain a context for a given SID.
1123 * @sid: security identifier, SID
1124 * @scontext: security context
1125 * @scontext_len: length in bytes
1126 *
1127 * Write the string representation of the context associated with @sid
1128 * into a dynamically allocated string of the correct size.  Set @scontext
1129 * to point to this string and set @scontext_len to the length of the string.
1130 */
1131int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1132{
1133	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1134}
1135
1136int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1137{
1138	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1139}
1140
1141/*
1142 * Caveat:  Mutates scontext.
1143 */
1144static int string_to_context_struct(struct policydb *pol,
1145				    struct sidtab *sidtabp,
1146				    char *scontext,
1147				    u32 scontext_len,
1148				    struct context *ctx,
1149				    u32 def_sid)
1150{
1151	struct role_datum *role;
1152	struct type_datum *typdatum;
1153	struct user_datum *usrdatum;
1154	char *scontextp, *p, oldc;
1155	int rc = 0;
1156
1157	context_init(ctx);
1158
1159	/* Parse the security context. */
1160
1161	rc = -EINVAL;
1162	scontextp = (char *) scontext;
1163
1164	/* Extract the user. */
1165	p = scontextp;
1166	while (*p && *p != ':')
1167		p++;
1168
1169	if (*p == 0)
1170		goto out;
1171
1172	*p++ = 0;
1173
1174	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1175	if (!usrdatum)
1176		goto out;
1177
1178	ctx->user = usrdatum->value;
1179
1180	/* Extract role. */
1181	scontextp = p;
1182	while (*p && *p != ':')
1183		p++;
1184
1185	if (*p == 0)
1186		goto out;
1187
1188	*p++ = 0;
1189
1190	role = hashtab_search(pol->p_roles.table, scontextp);
1191	if (!role)
1192		goto out;
1193	ctx->role = role->value;
1194
1195	/* Extract type. */
1196	scontextp = p;
1197	while (*p && *p != ':')
1198		p++;
1199	oldc = *p;
1200	*p++ = 0;
1201
1202	typdatum = hashtab_search(pol->p_types.table, scontextp);
1203	if (!typdatum || typdatum->attribute)
1204		goto out;
1205
1206	ctx->type = typdatum->value;
1207
1208	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1209	if (rc)
1210		goto out;
1211
1212	rc = -EINVAL;
1213	if ((p - scontext) < scontext_len)
1214		goto out;
1215
1216	/* Check the validity of the new context. */
1217	if (!policydb_context_isvalid(pol, ctx))
1218		goto out;
1219	rc = 0;
1220out:
1221	if (rc)
1222		context_destroy(ctx);
1223	return rc;
1224}
1225
1226static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1227					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1228					int force)
1229{
1230	char *scontext2, *str = NULL;
1231	struct context context;
1232	int rc = 0;
1233
1234	if (!ss_initialized) {
1235		int i;
1236
1237		for (i = 1; i < SECINITSID_NUM; i++) {
1238			if (!strcmp(initial_sid_to_string[i], scontext)) {
1239				*sid = i;
1240				return 0;
1241			}
1242		}
1243		*sid = SECINITSID_KERNEL;
1244		return 0;
1245	}
1246	*sid = SECSID_NULL;
1247
1248	/* Copy the string so that we can modify the copy as we parse it. */
1249	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1250	if (!scontext2)
1251		return -ENOMEM;
1252	memcpy(scontext2, scontext, scontext_len);
1253	scontext2[scontext_len] = 0;
1254
1255	if (force) {
1256		/* Save another copy for storing in uninterpreted form */
1257		rc = -ENOMEM;
1258		str = kstrdup(scontext2, gfp_flags);
1259		if (!str)
1260			goto out;
1261	}
1262
1263	read_lock(&policy_rwlock);
1264	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1265				      scontext_len, &context, def_sid);
1266	if (rc == -EINVAL && force) {
1267		context.str = str;
1268		context.len = scontext_len;
1269		str = NULL;
1270	} else if (rc)
1271		goto out_unlock;
1272	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1273	context_destroy(&context);
1274out_unlock:
1275	read_unlock(&policy_rwlock);
1276out:
1277	kfree(scontext2);
1278	kfree(str);
1279	return rc;
1280}
1281
1282/**
1283 * security_context_to_sid - Obtain a SID for a given security context.
1284 * @scontext: security context
1285 * @scontext_len: length in bytes
1286 * @sid: security identifier, SID
1287 *
1288 * Obtains a SID associated with the security context that
1289 * has the string representation specified by @scontext.
1290 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1291 * memory is available, or 0 on success.
1292 */
1293int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1294{
1295	return security_context_to_sid_core(scontext, scontext_len,
1296					    sid, SECSID_NULL, GFP_KERNEL, 0);
1297}
1298
1299/**
1300 * security_context_to_sid_default - Obtain a SID for a given security context,
1301 * falling back to specified default if needed.
1302 *
1303 * @scontext: security context
1304 * @scontext_len: length in bytes
1305 * @sid: security identifier, SID
1306 * @def_sid: default SID to assign on error
1307 *
1308 * Obtains a SID associated with the security context that
1309 * has the string representation specified by @scontext.
1310 * The default SID is passed to the MLS layer to be used to allow
1311 * kernel labeling of the MLS field if the MLS field is not present
1312 * (for upgrading to MLS without full relabel).
1313 * Implicitly forces adding of the context even if it cannot be mapped yet.
1314 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1315 * memory is available, or 0 on success.
1316 */
1317int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1318				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1319{
1320	return security_context_to_sid_core(scontext, scontext_len,
1321					    sid, def_sid, gfp_flags, 1);
1322}
1323
1324int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1325				  u32 *sid)
1326{
1327	return security_context_to_sid_core(scontext, scontext_len,
1328					    sid, SECSID_NULL, GFP_KERNEL, 1);
1329}
1330
1331static int compute_sid_handle_invalid_context(
1332	struct context *scontext,
1333	struct context *tcontext,
1334	u16 tclass,
1335	struct context *newcontext)
1336{
1337	char *s = NULL, *t = NULL, *n = NULL;
1338	u32 slen, tlen, nlen;
1339
1340	if (context_struct_to_string(scontext, &s, &slen))
1341		goto out;
1342	if (context_struct_to_string(tcontext, &t, &tlen))
1343		goto out;
1344	if (context_struct_to_string(newcontext, &n, &nlen))
1345		goto out;
1346	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1347		  "security_compute_sid:  invalid context %s"
1348		  " for scontext=%s"
1349		  " tcontext=%s"
1350		  " tclass=%s",
1351		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1352out:
1353	kfree(s);
1354	kfree(t);
1355	kfree(n);
1356	if (!selinux_enforcing)
1357		return 0;
1358	return -EACCES;
1359}
1360
1361static void filename_compute_type(struct policydb *p, struct context *newcontext,
1362				  u32 stype, u32 ttype, u16 tclass,
1363				  const char *objname)
1364{
1365	struct filename_trans ft;
1366	struct filename_trans_datum *otype;
1367
1368	/*
1369	 * Most filename trans rules are going to live in specific directories
1370	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1371	 * if the ttype does not contain any rules.
1372	 */
1373	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1374		return;
1375
1376	ft.stype = stype;
1377	ft.ttype = ttype;
1378	ft.tclass = tclass;
1379	ft.name = objname;
1380
1381	otype = hashtab_search(p->filename_trans, &ft);
1382	if (otype)
1383		newcontext->type = otype->otype;
1384}
1385
1386static int security_compute_sid(u32 ssid,
1387				u32 tsid,
1388				u16 orig_tclass,
1389				u32 specified,
1390				const char *objname,
1391				u32 *out_sid,
1392				bool kern)
1393{
1394	struct class_datum *cladatum = NULL;
1395	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1396	struct role_trans *roletr = NULL;
1397	struct avtab_key avkey;
1398	struct avtab_datum *avdatum;
1399	struct avtab_node *node;
1400	u16 tclass;
1401	int rc = 0;
1402	bool sock;
1403
1404	if (!ss_initialized) {
1405		switch (orig_tclass) {
1406		case SECCLASS_PROCESS: /* kernel value */
1407			*out_sid = ssid;
1408			break;
1409		default:
1410			*out_sid = tsid;
1411			break;
1412		}
1413		goto out;
1414	}
1415
1416	context_init(&newcontext);
1417
1418	read_lock(&policy_rwlock);
1419
1420	if (kern) {
1421		tclass = unmap_class(orig_tclass);
1422		sock = security_is_socket_class(orig_tclass);
1423	} else {
1424		tclass = orig_tclass;
1425		sock = security_is_socket_class(map_class(tclass));
1426	}
1427
1428	scontext = sidtab_search(&sidtab, ssid);
1429	if (!scontext) {
1430		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1431		       __func__, ssid);
1432		rc = -EINVAL;
1433		goto out_unlock;
1434	}
1435	tcontext = sidtab_search(&sidtab, tsid);
1436	if (!tcontext) {
1437		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1438		       __func__, tsid);
1439		rc = -EINVAL;
1440		goto out_unlock;
1441	}
1442
1443	if (tclass && tclass <= policydb.p_classes.nprim)
1444		cladatum = policydb.class_val_to_struct[tclass - 1];
1445
1446	/* Set the user identity. */
1447	switch (specified) {
1448	case AVTAB_TRANSITION:
1449	case AVTAB_CHANGE:
1450		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1451			newcontext.user = tcontext->user;
1452		} else {
1453			/* notice this gets both DEFAULT_SOURCE and unset */
1454			/* Use the process user identity. */
1455			newcontext.user = scontext->user;
1456		}
1457		break;
1458	case AVTAB_MEMBER:
1459		/* Use the related object owner. */
1460		newcontext.user = tcontext->user;
1461		break;
1462	}
1463
1464	/* Set the role to default values. */
1465	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
 
1466		newcontext.role = scontext->role;
1467	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1468		newcontext.role = tcontext->role;
1469	} else {
1470		if ((tclass == policydb.process_class) || (sock == true))
1471			newcontext.role = scontext->role;
1472		else
1473			newcontext.role = OBJECT_R_VAL;
1474	}
1475
1476	/* Set the type to default values. */
1477	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1478		newcontext.type = scontext->type;
1479	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1480		newcontext.type = tcontext->type;
1481	} else {
1482		if ((tclass == policydb.process_class) || (sock == true)) {
1483			/* Use the type of process. */
1484			newcontext.type = scontext->type;
1485		} else {
1486			/* Use the type of the related object. */
1487			newcontext.type = tcontext->type;
1488		}
1489	}
1490
1491	/* Look for a type transition/member/change rule. */
1492	avkey.source_type = scontext->type;
1493	avkey.target_type = tcontext->type;
1494	avkey.target_class = tclass;
1495	avkey.specified = specified;
1496	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1497
1498	/* If no permanent rule, also check for enabled conditional rules */
1499	if (!avdatum) {
1500		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1501		for (; node; node = avtab_search_node_next(node, specified)) {
1502			if (node->key.specified & AVTAB_ENABLED) {
1503				avdatum = &node->datum;
1504				break;
1505			}
1506		}
1507	}
1508
1509	if (avdatum) {
1510		/* Use the type from the type transition/member/change rule. */
1511		newcontext.type = avdatum->data;
1512	}
1513
1514	/* if we have a objname this is a file trans check so check those rules */
1515	if (objname)
1516		filename_compute_type(&policydb, &newcontext, scontext->type,
1517				      tcontext->type, tclass, objname);
1518
1519	/* Check for class-specific changes. */
1520	if (specified & AVTAB_TRANSITION) {
1521		/* Look for a role transition rule. */
1522		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1523			if ((roletr->role == scontext->role) &&
1524			    (roletr->type == tcontext->type) &&
1525			    (roletr->tclass == tclass)) {
1526				/* Use the role transition rule. */
1527				newcontext.role = roletr->new_role;
1528				break;
1529			}
1530		}
1531	}
1532
1533	/* Set the MLS attributes.
1534	   This is done last because it may allocate memory. */
1535	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1536			     &newcontext, sock);
1537	if (rc)
1538		goto out_unlock;
1539
1540	/* Check the validity of the context. */
1541	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1542		rc = compute_sid_handle_invalid_context(scontext,
1543							tcontext,
1544							tclass,
1545							&newcontext);
1546		if (rc)
1547			goto out_unlock;
1548	}
1549	/* Obtain the sid for the context. */
1550	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1551out_unlock:
1552	read_unlock(&policy_rwlock);
1553	context_destroy(&newcontext);
1554out:
1555	return rc;
1556}
1557
1558/**
1559 * security_transition_sid - Compute the SID for a new subject/object.
1560 * @ssid: source security identifier
1561 * @tsid: target security identifier
1562 * @tclass: target security class
1563 * @out_sid: security identifier for new subject/object
1564 *
1565 * Compute a SID to use for labeling a new subject or object in the
1566 * class @tclass based on a SID pair (@ssid, @tsid).
1567 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1568 * if insufficient memory is available, or %0 if the new SID was
1569 * computed successfully.
1570 */
1571int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1572			    const struct qstr *qstr, u32 *out_sid)
1573{
1574	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1575				    qstr ? qstr->name : NULL, out_sid, true);
1576}
1577
1578int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1579				 const char *objname, u32 *out_sid)
1580{
1581	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1582				    objname, out_sid, false);
1583}
1584
1585/**
1586 * security_member_sid - Compute the SID for member selection.
1587 * @ssid: source security identifier
1588 * @tsid: target security identifier
1589 * @tclass: target security class
1590 * @out_sid: security identifier for selected member
1591 *
1592 * Compute a SID to use when selecting a member of a polyinstantiated
1593 * object of class @tclass based on a SID pair (@ssid, @tsid).
1594 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1595 * if insufficient memory is available, or %0 if the SID was
1596 * computed successfully.
1597 */
1598int security_member_sid(u32 ssid,
1599			u32 tsid,
1600			u16 tclass,
1601			u32 *out_sid)
1602{
1603	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1604				    out_sid, false);
1605}
1606
1607/**
1608 * security_change_sid - Compute the SID for object relabeling.
1609 * @ssid: source security identifier
1610 * @tsid: target security identifier
1611 * @tclass: target security class
1612 * @out_sid: security identifier for selected member
1613 *
1614 * Compute a SID to use for relabeling an object of class @tclass
1615 * based on a SID pair (@ssid, @tsid).
1616 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1617 * if insufficient memory is available, or %0 if the SID was
1618 * computed successfully.
1619 */
1620int security_change_sid(u32 ssid,
1621			u32 tsid,
1622			u16 tclass,
1623			u32 *out_sid)
1624{
1625	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1626				    out_sid, false);
1627}
1628
1629/* Clone the SID into the new SID table. */
1630static int clone_sid(u32 sid,
1631		     struct context *context,
1632		     void *arg)
1633{
1634	struct sidtab *s = arg;
1635
1636	if (sid > SECINITSID_NUM)
1637		return sidtab_insert(s, sid, context);
1638	else
1639		return 0;
1640}
1641
1642static inline int convert_context_handle_invalid_context(struct context *context)
1643{
1644	char *s;
1645	u32 len;
1646
1647	if (selinux_enforcing)
1648		return -EINVAL;
1649
1650	if (!context_struct_to_string(context, &s, &len)) {
1651		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1652		kfree(s);
1653	}
1654	return 0;
1655}
1656
1657struct convert_context_args {
1658	struct policydb *oldp;
1659	struct policydb *newp;
1660};
1661
1662/*
1663 * Convert the values in the security context
1664 * structure `c' from the values specified
1665 * in the policy `p->oldp' to the values specified
1666 * in the policy `p->newp'.  Verify that the
1667 * context is valid under the new policy.
1668 */
1669static int convert_context(u32 key,
1670			   struct context *c,
1671			   void *p)
1672{
1673	struct convert_context_args *args;
1674	struct context oldc;
1675	struct ocontext *oc;
1676	struct mls_range *range;
1677	struct role_datum *role;
1678	struct type_datum *typdatum;
1679	struct user_datum *usrdatum;
1680	char *s;
1681	u32 len;
1682	int rc = 0;
1683
1684	if (key <= SECINITSID_NUM)
1685		goto out;
1686
1687	args = p;
1688
1689	if (c->str) {
1690		struct context ctx;
1691
1692		rc = -ENOMEM;
1693		s = kstrdup(c->str, GFP_KERNEL);
1694		if (!s)
1695			goto out;
1696
1697		rc = string_to_context_struct(args->newp, NULL, s,
1698					      c->len, &ctx, SECSID_NULL);
1699		kfree(s);
1700		if (!rc) {
1701			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1702			       c->str);
1703			/* Replace string with mapped representation. */
1704			kfree(c->str);
1705			memcpy(c, &ctx, sizeof(*c));
1706			goto out;
1707		} else if (rc == -EINVAL) {
1708			/* Retain string representation for later mapping. */
1709			rc = 0;
1710			goto out;
1711		} else {
1712			/* Other error condition, e.g. ENOMEM. */
1713			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1714			       c->str, -rc);
1715			goto out;
1716		}
1717	}
1718
1719	rc = context_cpy(&oldc, c);
1720	if (rc)
1721		goto out;
1722
1723	/* Convert the user. */
1724	rc = -EINVAL;
1725	usrdatum = hashtab_search(args->newp->p_users.table,
1726				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1727	if (!usrdatum)
1728		goto bad;
1729	c->user = usrdatum->value;
1730
1731	/* Convert the role. */
1732	rc = -EINVAL;
1733	role = hashtab_search(args->newp->p_roles.table,
1734			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1735	if (!role)
1736		goto bad;
1737	c->role = role->value;
1738
1739	/* Convert the type. */
1740	rc = -EINVAL;
1741	typdatum = hashtab_search(args->newp->p_types.table,
1742				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1743	if (!typdatum)
1744		goto bad;
1745	c->type = typdatum->value;
1746
1747	/* Convert the MLS fields if dealing with MLS policies */
1748	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1749		rc = mls_convert_context(args->oldp, args->newp, c);
1750		if (rc)
1751			goto bad;
1752	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1753		/*
1754		 * Switching between MLS and non-MLS policy:
1755		 * free any storage used by the MLS fields in the
1756		 * context for all existing entries in the sidtab.
1757		 */
1758		mls_context_destroy(c);
1759	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1760		/*
1761		 * Switching between non-MLS and MLS policy:
1762		 * ensure that the MLS fields of the context for all
1763		 * existing entries in the sidtab are filled in with a
1764		 * suitable default value, likely taken from one of the
1765		 * initial SIDs.
1766		 */
1767		oc = args->newp->ocontexts[OCON_ISID];
1768		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1769			oc = oc->next;
1770		rc = -EINVAL;
1771		if (!oc) {
1772			printk(KERN_ERR "SELinux:  unable to look up"
1773				" the initial SIDs list\n");
1774			goto bad;
1775		}
1776		range = &oc->context[0].range;
1777		rc = mls_range_set(c, range);
1778		if (rc)
1779			goto bad;
1780	}
1781
1782	/* Check the validity of the new context. */
1783	if (!policydb_context_isvalid(args->newp, c)) {
1784		rc = convert_context_handle_invalid_context(&oldc);
1785		if (rc)
1786			goto bad;
1787	}
1788
1789	context_destroy(&oldc);
1790
1791	rc = 0;
1792out:
1793	return rc;
1794bad:
1795	/* Map old representation to string and save it. */
1796	rc = context_struct_to_string(&oldc, &s, &len);
1797	if (rc)
1798		return rc;
1799	context_destroy(&oldc);
1800	context_destroy(c);
1801	c->str = s;
1802	c->len = len;
1803	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1804	       c->str);
1805	rc = 0;
1806	goto out;
1807}
1808
1809static void security_load_policycaps(void)
1810{
1811	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1812						  POLICYDB_CAPABILITY_NETPEER);
1813	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1814						  POLICYDB_CAPABILITY_OPENPERM);
1815}
1816
 
1817static int security_preserve_bools(struct policydb *p);
1818
1819/**
1820 * security_load_policy - Load a security policy configuration.
1821 * @data: binary policy data
1822 * @len: length of data in bytes
1823 *
1824 * Load a new set of security policy configuration data,
1825 * validate it and convert the SID table as necessary.
1826 * This function will flush the access vector cache after
1827 * loading the new policy.
1828 */
1829int security_load_policy(void *data, size_t len)
1830{
1831	struct policydb oldpolicydb, newpolicydb;
1832	struct sidtab oldsidtab, newsidtab;
1833	struct selinux_mapping *oldmap, *map = NULL;
1834	struct convert_context_args args;
1835	u32 seqno;
1836	u16 map_size;
1837	int rc = 0;
1838	struct policy_file file = { data, len }, *fp = &file;
1839
1840	if (!ss_initialized) {
1841		avtab_cache_init();
1842		rc = policydb_read(&policydb, fp);
1843		if (rc) {
1844			avtab_cache_destroy();
1845			return rc;
1846		}
1847
1848		policydb.len = len;
1849		rc = selinux_set_mapping(&policydb, secclass_map,
1850					 &current_mapping,
1851					 &current_mapping_size);
1852		if (rc) {
1853			policydb_destroy(&policydb);
1854			avtab_cache_destroy();
1855			return rc;
1856		}
1857
1858		rc = policydb_load_isids(&policydb, &sidtab);
1859		if (rc) {
1860			policydb_destroy(&policydb);
1861			avtab_cache_destroy();
1862			return rc;
1863		}
1864
1865		security_load_policycaps();
1866		ss_initialized = 1;
1867		seqno = ++latest_granting;
1868		selinux_complete_init();
1869		avc_ss_reset(seqno);
1870		selnl_notify_policyload(seqno);
1871		selinux_status_update_policyload(seqno);
1872		selinux_netlbl_cache_invalidate();
1873		selinux_xfrm_notify_policyload();
1874		return 0;
1875	}
1876
1877#if 0
1878	sidtab_hash_eval(&sidtab, "sids");
1879#endif
1880
1881	rc = policydb_read(&newpolicydb, fp);
1882	if (rc)
1883		return rc;
1884
1885	newpolicydb.len = len;
1886	/* If switching between different policy types, log MLS status */
1887	if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1888		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1889	else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1890		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1891
1892	rc = policydb_load_isids(&newpolicydb, &newsidtab);
1893	if (rc) {
1894		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1895		policydb_destroy(&newpolicydb);
1896		return rc;
1897	}
1898
1899	rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1900	if (rc)
1901		goto err;
1902
1903	rc = security_preserve_bools(&newpolicydb);
1904	if (rc) {
1905		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1906		goto err;
1907	}
1908
1909	/* Clone the SID table. */
1910	sidtab_shutdown(&sidtab);
1911
1912	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1913	if (rc)
1914		goto err;
1915
1916	/*
1917	 * Convert the internal representations of contexts
1918	 * in the new SID table.
1919	 */
1920	args.oldp = &policydb;
1921	args.newp = &newpolicydb;
1922	rc = sidtab_map(&newsidtab, convert_context, &args);
1923	if (rc) {
1924		printk(KERN_ERR "SELinux:  unable to convert the internal"
1925			" representation of contexts in the new SID"
1926			" table\n");
1927		goto err;
1928	}
1929
1930	/* Save the old policydb and SID table to free later. */
1931	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1932	sidtab_set(&oldsidtab, &sidtab);
1933
1934	/* Install the new policydb and SID table. */
1935	write_lock_irq(&policy_rwlock);
1936	memcpy(&policydb, &newpolicydb, sizeof policydb);
1937	sidtab_set(&sidtab, &newsidtab);
1938	security_load_policycaps();
1939	oldmap = current_mapping;
1940	current_mapping = map;
1941	current_mapping_size = map_size;
1942	seqno = ++latest_granting;
1943	write_unlock_irq(&policy_rwlock);
1944
1945	/* Free the old policydb and SID table. */
1946	policydb_destroy(&oldpolicydb);
1947	sidtab_destroy(&oldsidtab);
1948	kfree(oldmap);
1949
1950	avc_ss_reset(seqno);
1951	selnl_notify_policyload(seqno);
1952	selinux_status_update_policyload(seqno);
1953	selinux_netlbl_cache_invalidate();
1954	selinux_xfrm_notify_policyload();
1955
1956	return 0;
1957
1958err:
1959	kfree(map);
1960	sidtab_destroy(&newsidtab);
1961	policydb_destroy(&newpolicydb);
1962	return rc;
1963
1964}
1965
1966size_t security_policydb_len(void)
1967{
1968	size_t len;
1969
1970	read_lock(&policy_rwlock);
1971	len = policydb.len;
1972	read_unlock(&policy_rwlock);
1973
1974	return len;
1975}
1976
1977/**
1978 * security_port_sid - Obtain the SID for a port.
1979 * @protocol: protocol number
1980 * @port: port number
1981 * @out_sid: security identifier
1982 */
1983int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1984{
1985	struct ocontext *c;
1986	int rc = 0;
1987
1988	read_lock(&policy_rwlock);
1989
1990	c = policydb.ocontexts[OCON_PORT];
1991	while (c) {
1992		if (c->u.port.protocol == protocol &&
1993		    c->u.port.low_port <= port &&
1994		    c->u.port.high_port >= port)
1995			break;
1996		c = c->next;
1997	}
1998
1999	if (c) {
2000		if (!c->sid[0]) {
2001			rc = sidtab_context_to_sid(&sidtab,
2002						   &c->context[0],
2003						   &c->sid[0]);
2004			if (rc)
2005				goto out;
2006		}
2007		*out_sid = c->sid[0];
2008	} else {
2009		*out_sid = SECINITSID_PORT;
2010	}
2011
2012out:
2013	read_unlock(&policy_rwlock);
2014	return rc;
2015}
2016
2017/**
2018 * security_netif_sid - Obtain the SID for a network interface.
2019 * @name: interface name
2020 * @if_sid: interface SID
2021 */
2022int security_netif_sid(char *name, u32 *if_sid)
2023{
2024	int rc = 0;
2025	struct ocontext *c;
2026
2027	read_lock(&policy_rwlock);
2028
2029	c = policydb.ocontexts[OCON_NETIF];
2030	while (c) {
2031		if (strcmp(name, c->u.name) == 0)
2032			break;
2033		c = c->next;
2034	}
2035
2036	if (c) {
2037		if (!c->sid[0] || !c->sid[1]) {
2038			rc = sidtab_context_to_sid(&sidtab,
2039						  &c->context[0],
2040						  &c->sid[0]);
2041			if (rc)
2042				goto out;
2043			rc = sidtab_context_to_sid(&sidtab,
2044						   &c->context[1],
2045						   &c->sid[1]);
2046			if (rc)
2047				goto out;
2048		}
2049		*if_sid = c->sid[0];
2050	} else
2051		*if_sid = SECINITSID_NETIF;
2052
2053out:
2054	read_unlock(&policy_rwlock);
2055	return rc;
2056}
2057
2058static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2059{
2060	int i, fail = 0;
2061
2062	for (i = 0; i < 4; i++)
2063		if (addr[i] != (input[i] & mask[i])) {
2064			fail = 1;
2065			break;
2066		}
2067
2068	return !fail;
2069}
2070
2071/**
2072 * security_node_sid - Obtain the SID for a node (host).
2073 * @domain: communication domain aka address family
2074 * @addrp: address
2075 * @addrlen: address length in bytes
2076 * @out_sid: security identifier
2077 */
2078int security_node_sid(u16 domain,
2079		      void *addrp,
2080		      u32 addrlen,
2081		      u32 *out_sid)
2082{
2083	int rc;
2084	struct ocontext *c;
2085
2086	read_lock(&policy_rwlock);
2087
2088	switch (domain) {
2089	case AF_INET: {
2090		u32 addr;
2091
2092		rc = -EINVAL;
2093		if (addrlen != sizeof(u32))
2094			goto out;
2095
2096		addr = *((u32 *)addrp);
2097
2098		c = policydb.ocontexts[OCON_NODE];
2099		while (c) {
2100			if (c->u.node.addr == (addr & c->u.node.mask))
2101				break;
2102			c = c->next;
2103		}
2104		break;
2105	}
2106
2107	case AF_INET6:
2108		rc = -EINVAL;
2109		if (addrlen != sizeof(u64) * 2)
2110			goto out;
2111		c = policydb.ocontexts[OCON_NODE6];
2112		while (c) {
2113			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2114						c->u.node6.mask))
2115				break;
2116			c = c->next;
2117		}
2118		break;
2119
2120	default:
2121		rc = 0;
2122		*out_sid = SECINITSID_NODE;
2123		goto out;
2124	}
2125
2126	if (c) {
2127		if (!c->sid[0]) {
2128			rc = sidtab_context_to_sid(&sidtab,
2129						   &c->context[0],
2130						   &c->sid[0]);
2131			if (rc)
2132				goto out;
2133		}
2134		*out_sid = c->sid[0];
2135	} else {
2136		*out_sid = SECINITSID_NODE;
2137	}
2138
2139	rc = 0;
2140out:
2141	read_unlock(&policy_rwlock);
2142	return rc;
2143}
2144
2145#define SIDS_NEL 25
2146
2147/**
2148 * security_get_user_sids - Obtain reachable SIDs for a user.
2149 * @fromsid: starting SID
2150 * @username: username
2151 * @sids: array of reachable SIDs for user
2152 * @nel: number of elements in @sids
2153 *
2154 * Generate the set of SIDs for legal security contexts
2155 * for a given user that can be reached by @fromsid.
2156 * Set *@sids to point to a dynamically allocated
2157 * array containing the set of SIDs.  Set *@nel to the
2158 * number of elements in the array.
2159 */
2160
2161int security_get_user_sids(u32 fromsid,
2162			   char *username,
2163			   u32 **sids,
2164			   u32 *nel)
2165{
2166	struct context *fromcon, usercon;
2167	u32 *mysids = NULL, *mysids2, sid;
2168	u32 mynel = 0, maxnel = SIDS_NEL;
2169	struct user_datum *user;
2170	struct role_datum *role;
2171	struct ebitmap_node *rnode, *tnode;
2172	int rc = 0, i, j;
2173
2174	*sids = NULL;
2175	*nel = 0;
2176
2177	if (!ss_initialized)
2178		goto out;
2179
2180	read_lock(&policy_rwlock);
2181
2182	context_init(&usercon);
2183
2184	rc = -EINVAL;
2185	fromcon = sidtab_search(&sidtab, fromsid);
2186	if (!fromcon)
2187		goto out_unlock;
2188
2189	rc = -EINVAL;
2190	user = hashtab_search(policydb.p_users.table, username);
2191	if (!user)
2192		goto out_unlock;
2193
2194	usercon.user = user->value;
2195
2196	rc = -ENOMEM;
2197	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2198	if (!mysids)
2199		goto out_unlock;
2200
2201	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2202		role = policydb.role_val_to_struct[i];
2203		usercon.role = i + 1;
2204		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2205			usercon.type = j + 1;
2206
2207			if (mls_setup_user_range(fromcon, user, &usercon))
2208				continue;
2209
2210			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2211			if (rc)
2212				goto out_unlock;
2213			if (mynel < maxnel) {
2214				mysids[mynel++] = sid;
2215			} else {
2216				rc = -ENOMEM;
2217				maxnel += SIDS_NEL;
2218				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2219				if (!mysids2)
2220					goto out_unlock;
2221				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2222				kfree(mysids);
2223				mysids = mysids2;
2224				mysids[mynel++] = sid;
2225			}
2226		}
2227	}
2228	rc = 0;
2229out_unlock:
2230	read_unlock(&policy_rwlock);
2231	if (rc || !mynel) {
2232		kfree(mysids);
2233		goto out;
2234	}
2235
2236	rc = -ENOMEM;
2237	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2238	if (!mysids2) {
2239		kfree(mysids);
2240		goto out;
2241	}
2242	for (i = 0, j = 0; i < mynel; i++) {
2243		struct av_decision dummy_avd;
2244		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2245					  SECCLASS_PROCESS, /* kernel value */
2246					  PROCESS__TRANSITION, AVC_STRICT,
2247					  &dummy_avd);
2248		if (!rc)
2249			mysids2[j++] = mysids[i];
2250		cond_resched();
2251	}
2252	rc = 0;
2253	kfree(mysids);
2254	*sids = mysids2;
2255	*nel = j;
2256out:
2257	return rc;
2258}
2259
2260/**
2261 * security_genfs_sid - Obtain a SID for a file in a filesystem
2262 * @fstype: filesystem type
2263 * @path: path from root of mount
2264 * @sclass: file security class
2265 * @sid: SID for path
2266 *
2267 * Obtain a SID to use for a file in a filesystem that
2268 * cannot support xattr or use a fixed labeling behavior like
2269 * transition SIDs or task SIDs.
2270 */
2271int security_genfs_sid(const char *fstype,
2272		       char *path,
2273		       u16 orig_sclass,
2274		       u32 *sid)
2275{
2276	int len;
2277	u16 sclass;
2278	struct genfs *genfs;
2279	struct ocontext *c;
2280	int rc, cmp = 0;
2281
2282	while (path[0] == '/' && path[1] == '/')
2283		path++;
2284
2285	read_lock(&policy_rwlock);
2286
2287	sclass = unmap_class(orig_sclass);
2288	*sid = SECINITSID_UNLABELED;
2289
2290	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2291		cmp = strcmp(fstype, genfs->fstype);
2292		if (cmp <= 0)
2293			break;
2294	}
2295
2296	rc = -ENOENT;
2297	if (!genfs || cmp)
2298		goto out;
2299
2300	for (c = genfs->head; c; c = c->next) {
2301		len = strlen(c->u.name);
2302		if ((!c->v.sclass || sclass == c->v.sclass) &&
2303		    (strncmp(c->u.name, path, len) == 0))
2304			break;
2305	}
2306
2307	rc = -ENOENT;
2308	if (!c)
2309		goto out;
2310
2311	if (!c->sid[0]) {
2312		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2313		if (rc)
2314			goto out;
2315	}
2316
2317	*sid = c->sid[0];
2318	rc = 0;
2319out:
2320	read_unlock(&policy_rwlock);
2321	return rc;
2322}
2323
2324/**
2325 * security_fs_use - Determine how to handle labeling for a filesystem.
2326 * @fstype: filesystem type
2327 * @behavior: labeling behavior
2328 * @sid: SID for filesystem (superblock)
2329 */
2330int security_fs_use(
2331	const char *fstype,
2332	unsigned int *behavior,
2333	u32 *sid)
2334{
2335	int rc = 0;
2336	struct ocontext *c;
2337
2338	read_lock(&policy_rwlock);
2339
2340	c = policydb.ocontexts[OCON_FSUSE];
2341	while (c) {
2342		if (strcmp(fstype, c->u.name) == 0)
2343			break;
2344		c = c->next;
2345	}
2346
2347	if (c) {
2348		*behavior = c->v.behavior;
2349		if (!c->sid[0]) {
2350			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2351						   &c->sid[0]);
2352			if (rc)
2353				goto out;
2354		}
2355		*sid = c->sid[0];
2356	} else {
2357		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2358		if (rc) {
2359			*behavior = SECURITY_FS_USE_NONE;
2360			rc = 0;
2361		} else {
2362			*behavior = SECURITY_FS_USE_GENFS;
2363		}
2364	}
2365
2366out:
2367	read_unlock(&policy_rwlock);
2368	return rc;
2369}
2370
2371int security_get_bools(int *len, char ***names, int **values)
2372{
2373	int i, rc;
2374
2375	read_lock(&policy_rwlock);
2376	*names = NULL;
2377	*values = NULL;
2378
2379	rc = 0;
2380	*len = policydb.p_bools.nprim;
2381	if (!*len)
2382		goto out;
2383
2384	rc = -ENOMEM;
2385	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2386	if (!*names)
2387		goto err;
2388
2389	rc = -ENOMEM;
2390	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2391	if (!*values)
2392		goto err;
2393
2394	for (i = 0; i < *len; i++) {
2395		size_t name_len;
2396
2397		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2398		name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2399
2400		rc = -ENOMEM;
2401		(*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2402		if (!(*names)[i])
2403			goto err;
2404
2405		strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2406		(*names)[i][name_len - 1] = 0;
2407	}
2408	rc = 0;
2409out:
2410	read_unlock(&policy_rwlock);
2411	return rc;
2412err:
2413	if (*names) {
2414		for (i = 0; i < *len; i++)
2415			kfree((*names)[i]);
2416	}
2417	kfree(*values);
2418	goto out;
2419}
2420
2421
2422int security_set_bools(int len, int *values)
2423{
2424	int i, rc;
2425	int lenp, seqno = 0;
2426	struct cond_node *cur;
2427
2428	write_lock_irq(&policy_rwlock);
2429
2430	rc = -EFAULT;
2431	lenp = policydb.p_bools.nprim;
2432	if (len != lenp)
2433		goto out;
2434
2435	for (i = 0; i < len; i++) {
2436		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2437			audit_log(current->audit_context, GFP_ATOMIC,
2438				AUDIT_MAC_CONFIG_CHANGE,
2439				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2440				sym_name(&policydb, SYM_BOOLS, i),
2441				!!values[i],
2442				policydb.bool_val_to_struct[i]->state,
2443				audit_get_loginuid(current),
2444				audit_get_sessionid(current));
2445		}
2446		if (values[i])
2447			policydb.bool_val_to_struct[i]->state = 1;
2448		else
2449			policydb.bool_val_to_struct[i]->state = 0;
2450	}
2451
2452	for (cur = policydb.cond_list; cur; cur = cur->next) {
2453		rc = evaluate_cond_node(&policydb, cur);
2454		if (rc)
2455			goto out;
2456	}
2457
2458	seqno = ++latest_granting;
2459	rc = 0;
2460out:
2461	write_unlock_irq(&policy_rwlock);
2462	if (!rc) {
2463		avc_ss_reset(seqno);
2464		selnl_notify_policyload(seqno);
2465		selinux_status_update_policyload(seqno);
2466		selinux_xfrm_notify_policyload();
2467	}
2468	return rc;
2469}
2470
2471int security_get_bool_value(int bool)
2472{
2473	int rc;
2474	int len;
2475
2476	read_lock(&policy_rwlock);
2477
2478	rc = -EFAULT;
2479	len = policydb.p_bools.nprim;
2480	if (bool >= len)
2481		goto out;
2482
2483	rc = policydb.bool_val_to_struct[bool]->state;
2484out:
2485	read_unlock(&policy_rwlock);
2486	return rc;
2487}
2488
2489static int security_preserve_bools(struct policydb *p)
2490{
2491	int rc, nbools = 0, *bvalues = NULL, i;
2492	char **bnames = NULL;
2493	struct cond_bool_datum *booldatum;
2494	struct cond_node *cur;
2495
2496	rc = security_get_bools(&nbools, &bnames, &bvalues);
2497	if (rc)
2498		goto out;
2499	for (i = 0; i < nbools; i++) {
2500		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2501		if (booldatum)
2502			booldatum->state = bvalues[i];
2503	}
2504	for (cur = p->cond_list; cur; cur = cur->next) {
2505		rc = evaluate_cond_node(p, cur);
2506		if (rc)
2507			goto out;
2508	}
2509
2510out:
2511	if (bnames) {
2512		for (i = 0; i < nbools; i++)
2513			kfree(bnames[i]);
2514	}
2515	kfree(bnames);
2516	kfree(bvalues);
2517	return rc;
2518}
2519
2520/*
2521 * security_sid_mls_copy() - computes a new sid based on the given
2522 * sid and the mls portion of mls_sid.
2523 */
2524int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2525{
2526	struct context *context1;
2527	struct context *context2;
2528	struct context newcon;
2529	char *s;
2530	u32 len;
2531	int rc;
2532
2533	rc = 0;
2534	if (!ss_initialized || !policydb.mls_enabled) {
2535		*new_sid = sid;
2536		goto out;
2537	}
2538
2539	context_init(&newcon);
2540
2541	read_lock(&policy_rwlock);
2542
2543	rc = -EINVAL;
2544	context1 = sidtab_search(&sidtab, sid);
2545	if (!context1) {
2546		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2547			__func__, sid);
2548		goto out_unlock;
2549	}
2550
2551	rc = -EINVAL;
2552	context2 = sidtab_search(&sidtab, mls_sid);
2553	if (!context2) {
2554		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2555			__func__, mls_sid);
2556		goto out_unlock;
2557	}
2558
2559	newcon.user = context1->user;
2560	newcon.role = context1->role;
2561	newcon.type = context1->type;
2562	rc = mls_context_cpy(&newcon, context2);
2563	if (rc)
2564		goto out_unlock;
2565
2566	/* Check the validity of the new context. */
2567	if (!policydb_context_isvalid(&policydb, &newcon)) {
2568		rc = convert_context_handle_invalid_context(&newcon);
2569		if (rc) {
2570			if (!context_struct_to_string(&newcon, &s, &len)) {
2571				audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2572					  "security_sid_mls_copy: invalid context %s", s);
2573				kfree(s);
2574			}
2575			goto out_unlock;
2576		}
2577	}
2578
2579	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2580out_unlock:
2581	read_unlock(&policy_rwlock);
2582	context_destroy(&newcon);
2583out:
2584	return rc;
2585}
2586
2587/**
2588 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2589 * @nlbl_sid: NetLabel SID
2590 * @nlbl_type: NetLabel labeling protocol type
2591 * @xfrm_sid: XFRM SID
2592 *
2593 * Description:
2594 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2595 * resolved into a single SID it is returned via @peer_sid and the function
2596 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2597 * returns a negative value.  A table summarizing the behavior is below:
2598 *
2599 *                                 | function return |      @sid
2600 *   ------------------------------+-----------------+-----------------
2601 *   no peer labels                |        0        |    SECSID_NULL
2602 *   single peer label             |        0        |    <peer_label>
2603 *   multiple, consistent labels   |        0        |    <peer_label>
2604 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2605 *
2606 */
2607int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2608				 u32 xfrm_sid,
2609				 u32 *peer_sid)
2610{
2611	int rc;
2612	struct context *nlbl_ctx;
2613	struct context *xfrm_ctx;
2614
2615	*peer_sid = SECSID_NULL;
2616
2617	/* handle the common (which also happens to be the set of easy) cases
2618	 * right away, these two if statements catch everything involving a
2619	 * single or absent peer SID/label */
2620	if (xfrm_sid == SECSID_NULL) {
2621		*peer_sid = nlbl_sid;
2622		return 0;
2623	}
2624	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2625	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2626	 * is present */
2627	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2628		*peer_sid = xfrm_sid;
2629		return 0;
2630	}
2631
2632	/* we don't need to check ss_initialized here since the only way both
2633	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2634	 * security server was initialized and ss_initialized was true */
2635	if (!policydb.mls_enabled)
2636		return 0;
2637
2638	read_lock(&policy_rwlock);
2639
2640	rc = -EINVAL;
2641	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2642	if (!nlbl_ctx) {
2643		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2644		       __func__, nlbl_sid);
2645		goto out;
2646	}
2647	rc = -EINVAL;
2648	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2649	if (!xfrm_ctx) {
2650		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2651		       __func__, xfrm_sid);
2652		goto out;
2653	}
2654	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2655	if (rc)
2656		goto out;
2657
2658	/* at present NetLabel SIDs/labels really only carry MLS
2659	 * information so if the MLS portion of the NetLabel SID
2660	 * matches the MLS portion of the labeled XFRM SID/label
2661	 * then pass along the XFRM SID as it is the most
2662	 * expressive */
2663	*peer_sid = xfrm_sid;
2664out:
2665	read_unlock(&policy_rwlock);
2666	return rc;
2667}
2668
2669static int get_classes_callback(void *k, void *d, void *args)
2670{
2671	struct class_datum *datum = d;
2672	char *name = k, **classes = args;
2673	int value = datum->value - 1;
2674
2675	classes[value] = kstrdup(name, GFP_ATOMIC);
2676	if (!classes[value])
2677		return -ENOMEM;
2678
2679	return 0;
2680}
2681
2682int security_get_classes(char ***classes, int *nclasses)
2683{
2684	int rc;
2685
2686	read_lock(&policy_rwlock);
2687
2688	rc = -ENOMEM;
2689	*nclasses = policydb.p_classes.nprim;
2690	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2691	if (!*classes)
2692		goto out;
2693
2694	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2695			*classes);
2696	if (rc) {
2697		int i;
2698		for (i = 0; i < *nclasses; i++)
2699			kfree((*classes)[i]);
2700		kfree(*classes);
2701	}
2702
2703out:
2704	read_unlock(&policy_rwlock);
2705	return rc;
2706}
2707
2708static int get_permissions_callback(void *k, void *d, void *args)
2709{
2710	struct perm_datum *datum = d;
2711	char *name = k, **perms = args;
2712	int value = datum->value - 1;
2713
2714	perms[value] = kstrdup(name, GFP_ATOMIC);
2715	if (!perms[value])
2716		return -ENOMEM;
2717
2718	return 0;
2719}
2720
2721int security_get_permissions(char *class, char ***perms, int *nperms)
2722{
2723	int rc, i;
2724	struct class_datum *match;
2725
2726	read_lock(&policy_rwlock);
2727
2728	rc = -EINVAL;
2729	match = hashtab_search(policydb.p_classes.table, class);
2730	if (!match) {
2731		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2732			__func__, class);
2733		goto out;
2734	}
2735
2736	rc = -ENOMEM;
2737	*nperms = match->permissions.nprim;
2738	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2739	if (!*perms)
2740		goto out;
2741
2742	if (match->comdatum) {
2743		rc = hashtab_map(match->comdatum->permissions.table,
2744				get_permissions_callback, *perms);
2745		if (rc)
2746			goto err;
2747	}
2748
2749	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2750			*perms);
2751	if (rc)
2752		goto err;
2753
2754out:
2755	read_unlock(&policy_rwlock);
2756	return rc;
2757
2758err:
2759	read_unlock(&policy_rwlock);
2760	for (i = 0; i < *nperms; i++)
2761		kfree((*perms)[i]);
2762	kfree(*perms);
2763	return rc;
2764}
2765
2766int security_get_reject_unknown(void)
2767{
2768	return policydb.reject_unknown;
2769}
2770
2771int security_get_allow_unknown(void)
2772{
2773	return policydb.allow_unknown;
2774}
2775
2776/**
2777 * security_policycap_supported - Check for a specific policy capability
2778 * @req_cap: capability
2779 *
2780 * Description:
2781 * This function queries the currently loaded policy to see if it supports the
2782 * capability specified by @req_cap.  Returns true (1) if the capability is
2783 * supported, false (0) if it isn't supported.
2784 *
2785 */
2786int security_policycap_supported(unsigned int req_cap)
2787{
2788	int rc;
2789
2790	read_lock(&policy_rwlock);
2791	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2792	read_unlock(&policy_rwlock);
2793
2794	return rc;
2795}
2796
2797struct selinux_audit_rule {
2798	u32 au_seqno;
2799	struct context au_ctxt;
2800};
2801
2802void selinux_audit_rule_free(void *vrule)
2803{
2804	struct selinux_audit_rule *rule = vrule;
2805
2806	if (rule) {
2807		context_destroy(&rule->au_ctxt);
2808		kfree(rule);
2809	}
2810}
2811
2812int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2813{
2814	struct selinux_audit_rule *tmprule;
2815	struct role_datum *roledatum;
2816	struct type_datum *typedatum;
2817	struct user_datum *userdatum;
2818	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2819	int rc = 0;
2820
2821	*rule = NULL;
2822
2823	if (!ss_initialized)
2824		return -EOPNOTSUPP;
2825
2826	switch (field) {
2827	case AUDIT_SUBJ_USER:
2828	case AUDIT_SUBJ_ROLE:
2829	case AUDIT_SUBJ_TYPE:
2830	case AUDIT_OBJ_USER:
2831	case AUDIT_OBJ_ROLE:
2832	case AUDIT_OBJ_TYPE:
2833		/* only 'equals' and 'not equals' fit user, role, and type */
2834		if (op != Audit_equal && op != Audit_not_equal)
2835			return -EINVAL;
2836		break;
2837	case AUDIT_SUBJ_SEN:
2838	case AUDIT_SUBJ_CLR:
2839	case AUDIT_OBJ_LEV_LOW:
2840	case AUDIT_OBJ_LEV_HIGH:
2841		/* we do not allow a range, indicated by the presence of '-' */
2842		if (strchr(rulestr, '-'))
2843			return -EINVAL;
2844		break;
2845	default:
2846		/* only the above fields are valid */
2847		return -EINVAL;
2848	}
2849
2850	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2851	if (!tmprule)
2852		return -ENOMEM;
2853
2854	context_init(&tmprule->au_ctxt);
2855
2856	read_lock(&policy_rwlock);
2857
2858	tmprule->au_seqno = latest_granting;
2859
2860	switch (field) {
2861	case AUDIT_SUBJ_USER:
2862	case AUDIT_OBJ_USER:
2863		rc = -EINVAL;
2864		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2865		if (!userdatum)
2866			goto out;
2867		tmprule->au_ctxt.user = userdatum->value;
2868		break;
2869	case AUDIT_SUBJ_ROLE:
2870	case AUDIT_OBJ_ROLE:
2871		rc = -EINVAL;
2872		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2873		if (!roledatum)
2874			goto out;
2875		tmprule->au_ctxt.role = roledatum->value;
2876		break;
2877	case AUDIT_SUBJ_TYPE:
2878	case AUDIT_OBJ_TYPE:
2879		rc = -EINVAL;
2880		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2881		if (!typedatum)
2882			goto out;
2883		tmprule->au_ctxt.type = typedatum->value;
2884		break;
2885	case AUDIT_SUBJ_SEN:
2886	case AUDIT_SUBJ_CLR:
2887	case AUDIT_OBJ_LEV_LOW:
2888	case AUDIT_OBJ_LEV_HIGH:
2889		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2890		if (rc)
2891			goto out;
2892		break;
2893	}
2894	rc = 0;
2895out:
2896	read_unlock(&policy_rwlock);
2897
2898	if (rc) {
2899		selinux_audit_rule_free(tmprule);
2900		tmprule = NULL;
2901	}
2902
2903	*rule = tmprule;
2904
2905	return rc;
2906}
2907
2908/* Check to see if the rule contains any selinux fields */
2909int selinux_audit_rule_known(struct audit_krule *rule)
2910{
2911	int i;
2912
2913	for (i = 0; i < rule->field_count; i++) {
2914		struct audit_field *f = &rule->fields[i];
2915		switch (f->type) {
2916		case AUDIT_SUBJ_USER:
2917		case AUDIT_SUBJ_ROLE:
2918		case AUDIT_SUBJ_TYPE:
2919		case AUDIT_SUBJ_SEN:
2920		case AUDIT_SUBJ_CLR:
2921		case AUDIT_OBJ_USER:
2922		case AUDIT_OBJ_ROLE:
2923		case AUDIT_OBJ_TYPE:
2924		case AUDIT_OBJ_LEV_LOW:
2925		case AUDIT_OBJ_LEV_HIGH:
2926			return 1;
2927		}
2928	}
2929
2930	return 0;
2931}
2932
2933int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2934			     struct audit_context *actx)
2935{
2936	struct context *ctxt;
2937	struct mls_level *level;
2938	struct selinux_audit_rule *rule = vrule;
2939	int match = 0;
2940
2941	if (!rule) {
2942		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2943			  "selinux_audit_rule_match: missing rule\n");
2944		return -ENOENT;
2945	}
2946
2947	read_lock(&policy_rwlock);
2948
2949	if (rule->au_seqno < latest_granting) {
2950		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2951			  "selinux_audit_rule_match: stale rule\n");
2952		match = -ESTALE;
2953		goto out;
2954	}
2955
2956	ctxt = sidtab_search(&sidtab, sid);
2957	if (!ctxt) {
2958		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2959			  "selinux_audit_rule_match: unrecognized SID %d\n",
2960			  sid);
2961		match = -ENOENT;
2962		goto out;
2963	}
2964
2965	/* a field/op pair that is not caught here will simply fall through
2966	   without a match */
2967	switch (field) {
2968	case AUDIT_SUBJ_USER:
2969	case AUDIT_OBJ_USER:
2970		switch (op) {
2971		case Audit_equal:
2972			match = (ctxt->user == rule->au_ctxt.user);
2973			break;
2974		case Audit_not_equal:
2975			match = (ctxt->user != rule->au_ctxt.user);
2976			break;
2977		}
2978		break;
2979	case AUDIT_SUBJ_ROLE:
2980	case AUDIT_OBJ_ROLE:
2981		switch (op) {
2982		case Audit_equal:
2983			match = (ctxt->role == rule->au_ctxt.role);
2984			break;
2985		case Audit_not_equal:
2986			match = (ctxt->role != rule->au_ctxt.role);
2987			break;
2988		}
2989		break;
2990	case AUDIT_SUBJ_TYPE:
2991	case AUDIT_OBJ_TYPE:
2992		switch (op) {
2993		case Audit_equal:
2994			match = (ctxt->type == rule->au_ctxt.type);
2995			break;
2996		case Audit_not_equal:
2997			match = (ctxt->type != rule->au_ctxt.type);
2998			break;
2999		}
3000		break;
3001	case AUDIT_SUBJ_SEN:
3002	case AUDIT_SUBJ_CLR:
3003	case AUDIT_OBJ_LEV_LOW:
3004	case AUDIT_OBJ_LEV_HIGH:
3005		level = ((field == AUDIT_SUBJ_SEN ||
3006			  field == AUDIT_OBJ_LEV_LOW) ?
3007			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3008		switch (op) {
3009		case Audit_equal:
3010			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3011					     level);
3012			break;
3013		case Audit_not_equal:
3014			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3015					      level);
3016			break;
3017		case Audit_lt:
3018			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3019					       level) &&
3020				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3021					       level));
3022			break;
3023		case Audit_le:
3024			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3025					      level);
3026			break;
3027		case Audit_gt:
3028			match = (mls_level_dom(level,
3029					      &rule->au_ctxt.range.level[0]) &&
3030				 !mls_level_eq(level,
3031					       &rule->au_ctxt.range.level[0]));
3032			break;
3033		case Audit_ge:
3034			match = mls_level_dom(level,
3035					      &rule->au_ctxt.range.level[0]);
3036			break;
3037		}
3038	}
3039
3040out:
3041	read_unlock(&policy_rwlock);
3042	return match;
3043}
3044
3045static int (*aurule_callback)(void) = audit_update_lsm_rules;
3046
3047static int aurule_avc_callback(u32 event)
 
3048{
3049	int err = 0;
3050
3051	if (event == AVC_CALLBACK_RESET && aurule_callback)
3052		err = aurule_callback();
3053	return err;
3054}
3055
3056static int __init aurule_init(void)
3057{
3058	int err;
3059
3060	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
 
3061	if (err)
3062		panic("avc_add_callback() failed, error %d\n", err);
3063
3064	return err;
3065}
3066__initcall(aurule_init);
3067
3068#ifdef CONFIG_NETLABEL
3069/**
3070 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3071 * @secattr: the NetLabel packet security attributes
3072 * @sid: the SELinux SID
3073 *
3074 * Description:
3075 * Attempt to cache the context in @ctx, which was derived from the packet in
3076 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3077 * already been initialized.
3078 *
3079 */
3080static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3081				      u32 sid)
3082{
3083	u32 *sid_cache;
3084
3085	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3086	if (sid_cache == NULL)
3087		return;
3088	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3089	if (secattr->cache == NULL) {
3090		kfree(sid_cache);
3091		return;
3092	}
3093
3094	*sid_cache = sid;
3095	secattr->cache->free = kfree;
3096	secattr->cache->data = sid_cache;
3097	secattr->flags |= NETLBL_SECATTR_CACHE;
3098}
3099
3100/**
3101 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3102 * @secattr: the NetLabel packet security attributes
3103 * @sid: the SELinux SID
3104 *
3105 * Description:
3106 * Convert the given NetLabel security attributes in @secattr into a
3107 * SELinux SID.  If the @secattr field does not contain a full SELinux
3108 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3109 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3110 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3111 * conversion for future lookups.  Returns zero on success, negative values on
3112 * failure.
3113 *
3114 */
3115int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3116				   u32 *sid)
3117{
3118	int rc;
3119	struct context *ctx;
3120	struct context ctx_new;
3121
3122	if (!ss_initialized) {
3123		*sid = SECSID_NULL;
3124		return 0;
3125	}
3126
3127	read_lock(&policy_rwlock);
3128
3129	if (secattr->flags & NETLBL_SECATTR_CACHE)
3130		*sid = *(u32 *)secattr->cache->data;
3131	else if (secattr->flags & NETLBL_SECATTR_SECID)
3132		*sid = secattr->attr.secid;
3133	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3134		rc = -EIDRM;
3135		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3136		if (ctx == NULL)
3137			goto out;
3138
3139		context_init(&ctx_new);
3140		ctx_new.user = ctx->user;
3141		ctx_new.role = ctx->role;
3142		ctx_new.type = ctx->type;
3143		mls_import_netlbl_lvl(&ctx_new, secattr);
3144		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3145			rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3146						   secattr->attr.mls.cat);
3147			if (rc)
3148				goto out;
3149			memcpy(&ctx_new.range.level[1].cat,
3150			       &ctx_new.range.level[0].cat,
3151			       sizeof(ctx_new.range.level[0].cat));
3152		}
3153		rc = -EIDRM;
3154		if (!mls_context_isvalid(&policydb, &ctx_new))
3155			goto out_free;
3156
3157		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3158		if (rc)
3159			goto out_free;
3160
3161		security_netlbl_cache_add(secattr, *sid);
3162
3163		ebitmap_destroy(&ctx_new.range.level[0].cat);
3164	} else
3165		*sid = SECSID_NULL;
3166
3167	read_unlock(&policy_rwlock);
3168	return 0;
3169out_free:
3170	ebitmap_destroy(&ctx_new.range.level[0].cat);
3171out:
3172	read_unlock(&policy_rwlock);
3173	return rc;
3174}
3175
3176/**
3177 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3178 * @sid: the SELinux SID
3179 * @secattr: the NetLabel packet security attributes
3180 *
3181 * Description:
3182 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3183 * Returns zero on success, negative values on failure.
3184 *
3185 */
3186int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3187{
3188	int rc;
3189	struct context *ctx;
3190
3191	if (!ss_initialized)
3192		return 0;
3193
3194	read_lock(&policy_rwlock);
3195
3196	rc = -ENOENT;
3197	ctx = sidtab_search(&sidtab, sid);
3198	if (ctx == NULL)
3199		goto out;
3200
3201	rc = -ENOMEM;
3202	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3203				  GFP_ATOMIC);
3204	if (secattr->domain == NULL)
3205		goto out;
3206
3207	secattr->attr.secid = sid;
3208	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3209	mls_export_netlbl_lvl(ctx, secattr);
3210	rc = mls_export_netlbl_cat(ctx, secattr);
3211out:
3212	read_unlock(&policy_rwlock);
3213	return rc;
3214}
3215#endif /* CONFIG_NETLABEL */
3216
3217/**
3218 * security_read_policy - read the policy.
3219 * @data: binary policy data
3220 * @len: length of data in bytes
3221 *
3222 */
3223int security_read_policy(void **data, size_t *len)
3224{
3225	int rc;
3226	struct policy_file fp;
3227
3228	if (!ss_initialized)
3229		return -EINVAL;
3230
3231	*len = security_policydb_len();
3232
3233	*data = vmalloc_user(*len);
3234	if (!*data)
3235		return -ENOMEM;
3236
3237	fp.data = *data;
3238	fp.len = *len;
3239
3240	read_lock(&policy_rwlock);
3241	rc = policydb_write(&policydb, &fp);
3242	read_unlock(&policy_rwlock);
3243
3244	if (rc)
3245		return rc;
3246
3247	*len = (unsigned long)fp.data - (unsigned long)*data;
3248	return 0;
3249
3250}