Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Generic socket support routines. Memory allocators, socket lock/release
   7 *		handler for protocols to use and generic option handler.
   8 *
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 *
  85 *
  86 *		This program is free software; you can redistribute it and/or
  87 *		modify it under the terms of the GNU General Public License
  88 *		as published by the Free Software Foundation; either version
  89 *		2 of the License, or (at your option) any later version.
  90 */
  91
 
 
 
  92#include <linux/capability.h>
  93#include <linux/errno.h>
 
  94#include <linux/types.h>
  95#include <linux/socket.h>
  96#include <linux/in.h>
  97#include <linux/kernel.h>
  98#include <linux/module.h>
  99#include <linux/proc_fs.h>
 100#include <linux/seq_file.h>
 101#include <linux/sched.h>
 
 102#include <linux/timer.h>
 103#include <linux/string.h>
 104#include <linux/sockios.h>
 105#include <linux/net.h>
 106#include <linux/mm.h>
 107#include <linux/slab.h>
 108#include <linux/interrupt.h>
 109#include <linux/poll.h>
 110#include <linux/tcp.h>
 111#include <linux/init.h>
 112#include <linux/highmem.h>
 113#include <linux/user_namespace.h>
 
 
 
 
 114
 115#include <asm/uaccess.h>
 116#include <asm/system.h>
 117
 118#include <linux/netdevice.h>
 119#include <net/protocol.h>
 120#include <linux/skbuff.h>
 121#include <net/net_namespace.h>
 122#include <net/request_sock.h>
 123#include <net/sock.h>
 124#include <linux/net_tstamp.h>
 125#include <net/xfrm.h>
 126#include <linux/ipsec.h>
 127#include <net/cls_cgroup.h>
 
 
 128
 129#include <linux/filter.h>
 
 
 130
 131#include <trace/events/sock.h>
 132
 133#ifdef CONFIG_INET
 134#include <net/tcp.h>
 135#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136
 137/*
 138 * Each address family might have different locking rules, so we have
 139 * one slock key per address family:
 
 140 */
 141static struct lock_class_key af_family_keys[AF_MAX];
 
 142static struct lock_class_key af_family_slock_keys[AF_MAX];
 
 143
 144/*
 145 * Make lock validator output more readable. (we pre-construct these
 146 * strings build-time, so that runtime initialization of socket
 147 * locks is fast):
 148 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149static const char *const af_family_key_strings[AF_MAX+1] = {
 150  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
 151  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
 152  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
 153  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
 154  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
 155  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
 156  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
 157  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
 158  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
 159  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
 160  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
 161  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
 162  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
 163  "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
 164};
 165static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 166  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
 167  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
 168  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
 169  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
 170  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
 171  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
 172  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
 173  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
 174  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
 175  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
 176  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
 177  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
 178  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
 179  "slock-AF_NFC"   , "slock-AF_MAX"
 180};
 181static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 182  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
 183  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
 184  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
 185  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
 186  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
 187  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
 188  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
 189  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
 190  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
 191  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
 192  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
 193  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
 194  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
 195  "clock-AF_NFC"   , "clock-AF_MAX"
 
 
 
 
 
 
 196};
 197
 198/*
 199 * sk_callback_lock locking rules are per-address-family,
 200 * so split the lock classes by using a per-AF key:
 201 */
 202static struct lock_class_key af_callback_keys[AF_MAX];
 203
 204/* Take into consideration the size of the struct sk_buff overhead in the
 205 * determination of these values, since that is non-constant across
 206 * platforms.  This makes socket queueing behavior and performance
 207 * not depend upon such differences.
 208 */
 209#define _SK_MEM_PACKETS		256
 210#define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
 211#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
 212#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
 213
 214/* Run time adjustable parameters. */
 215__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 
 216__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 
 217__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 218__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 219
 220/* Maximal space eaten by iovec or ancillary data plus some space */
 221int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 222EXPORT_SYMBOL(sysctl_optmem_max);
 223
 224#if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
 225int net_cls_subsys_id = -1;
 226EXPORT_SYMBOL_GPL(net_cls_subsys_id);
 227#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228
 229static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
 230{
 231	struct timeval tv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232
 233	if (optlen < sizeof(tv))
 234		return -EINVAL;
 235	if (copy_from_user(&tv, optval, sizeof(tv)))
 236		return -EFAULT;
 237	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 238		return -EDOM;
 239
 240	if (tv.tv_sec < 0) {
 241		static int warned __read_mostly;
 242
 243		*timeo_p = 0;
 244		if (warned < 10 && net_ratelimit()) {
 245			warned++;
 246			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
 247			       "tries to set negative timeout\n",
 248				current->comm, task_pid_nr(current));
 249		}
 250		return 0;
 251	}
 252	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 253	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 254		return 0;
 255	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
 256		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
 257	return 0;
 258}
 259
 260static void sock_warn_obsolete_bsdism(const char *name)
 261{
 262	static int warned;
 263	static char warncomm[TASK_COMM_LEN];
 264	if (strcmp(warncomm, current->comm) && warned < 5) {
 265		strcpy(warncomm,  current->comm);
 266		printk(KERN_WARNING "process `%s' is using obsolete "
 267		       "%s SO_BSDCOMPAT\n", warncomm, name);
 268		warned++;
 269	}
 270}
 271
 272static void sock_disable_timestamp(struct sock *sk, int flag)
 273{
 274	if (sock_flag(sk, flag)) {
 275		sock_reset_flag(sk, flag);
 276		if (!sock_flag(sk, SOCK_TIMESTAMP) &&
 277		    !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
 278			net_disable_timestamp();
 279		}
 280	}
 281}
 282
 283
 284int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 285{
 286	int err;
 287	int skb_len;
 288	unsigned long flags;
 289	struct sk_buff_head *list = &sk->sk_receive_queue;
 290
 291	/* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
 292	   number of warnings when compiling with -W --ANK
 293	 */
 294	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
 295	    (unsigned)sk->sk_rcvbuf) {
 296		atomic_inc(&sk->sk_drops);
 297		trace_sock_rcvqueue_full(sk, skb);
 298		return -ENOMEM;
 299	}
 300
 301	err = sk_filter(sk, skb);
 302	if (err)
 303		return err;
 304
 305	if (!sk_rmem_schedule(sk, skb->truesize)) {
 306		atomic_inc(&sk->sk_drops);
 307		return -ENOBUFS;
 308	}
 309
 310	skb->dev = NULL;
 311	skb_set_owner_r(skb, sk);
 312
 313	/* Cache the SKB length before we tack it onto the receive
 314	 * queue.  Once it is added it no longer belongs to us and
 315	 * may be freed by other threads of control pulling packets
 316	 * from the queue.
 317	 */
 318	skb_len = skb->len;
 319
 320	/* we escape from rcu protected region, make sure we dont leak
 321	 * a norefcounted dst
 322	 */
 323	skb_dst_force(skb);
 324
 325	spin_lock_irqsave(&list->lock, flags);
 326	skb->dropcount = atomic_read(&sk->sk_drops);
 327	__skb_queue_tail(list, skb);
 328	spin_unlock_irqrestore(&list->lock, flags);
 329
 330	if (!sock_flag(sk, SOCK_DEAD))
 331		sk->sk_data_ready(sk, skb_len);
 332	return 0;
 333}
 334EXPORT_SYMBOL(sock_queue_rcv_skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335
 336int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
 
 337{
 338	int rc = NET_RX_SUCCESS;
 339
 340	if (sk_filter(sk, skb))
 341		goto discard_and_relse;
 342
 343	skb->dev = NULL;
 344
 345	if (sk_rcvqueues_full(sk, skb)) {
 346		atomic_inc(&sk->sk_drops);
 347		goto discard_and_relse;
 348	}
 349	if (nested)
 350		bh_lock_sock_nested(sk);
 351	else
 352		bh_lock_sock(sk);
 353	if (!sock_owned_by_user(sk)) {
 354		/*
 355		 * trylock + unlock semantics:
 356		 */
 357		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 358
 359		rc = sk_backlog_rcv(sk, skb);
 360
 361		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
 362	} else if (sk_add_backlog(sk, skb)) {
 363		bh_unlock_sock(sk);
 364		atomic_inc(&sk->sk_drops);
 365		goto discard_and_relse;
 366	}
 367
 368	bh_unlock_sock(sk);
 369out:
 370	sock_put(sk);
 
 371	return rc;
 372discard_and_relse:
 373	kfree_skb(skb);
 374	goto out;
 375}
 376EXPORT_SYMBOL(sk_receive_skb);
 377
 378void sk_reset_txq(struct sock *sk)
 379{
 380	sk_tx_queue_clear(sk);
 381}
 382EXPORT_SYMBOL(sk_reset_txq);
 383
 
 
 
 
 384struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 385{
 386	struct dst_entry *dst = __sk_dst_get(sk);
 387
 388	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 
 
 389		sk_tx_queue_clear(sk);
 390		rcu_assign_pointer(sk->sk_dst_cache, NULL);
 
 391		dst_release(dst);
 392		return NULL;
 393	}
 394
 395	return dst;
 396}
 397EXPORT_SYMBOL(__sk_dst_check);
 398
 399struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 400{
 401	struct dst_entry *dst = sk_dst_get(sk);
 402
 403	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 
 
 404		sk_dst_reset(sk);
 405		dst_release(dst);
 406		return NULL;
 407	}
 408
 409	return dst;
 410}
 411EXPORT_SYMBOL(sk_dst_check);
 412
 413static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
 414{
 415	int ret = -ENOPROTOOPT;
 416#ifdef CONFIG_NETDEVICES
 417	struct net *net = sock_net(sk);
 418	char devname[IFNAMSIZ];
 419	int index;
 420
 421	/* Sorry... */
 422	ret = -EPERM;
 423	if (!capable(CAP_NET_RAW))
 424		goto out;
 425
 426	ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427	if (optlen < 0)
 428		goto out;
 429
 430	/* Bind this socket to a particular device like "eth0",
 431	 * as specified in the passed interface name. If the
 432	 * name is "" or the option length is zero the socket
 433	 * is not bound.
 434	 */
 435	if (optlen > IFNAMSIZ - 1)
 436		optlen = IFNAMSIZ - 1;
 437	memset(devname, 0, sizeof(devname));
 438
 439	ret = -EFAULT;
 440	if (copy_from_user(devname, optval, optlen))
 441		goto out;
 442
 443	index = 0;
 444	if (devname[0] != '\0') {
 445		struct net_device *dev;
 446
 447		rcu_read_lock();
 448		dev = dev_get_by_name_rcu(net, devname);
 449		if (dev)
 450			index = dev->ifindex;
 451		rcu_read_unlock();
 452		ret = -ENODEV;
 453		if (!dev)
 454			goto out;
 455	}
 456
 457	lock_sock(sk);
 458	sk->sk_bound_dev_if = index;
 459	sk_dst_reset(sk);
 460	release_sock(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461
 462	ret = 0;
 463
 464out:
 465#endif
 466
 467	return ret;
 468}
 469
 470static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471{
 472	if (valbool)
 473		sock_set_flag(sk, bit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 474	else
 475		sock_reset_flag(sk, bit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476}
 477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478/*
 479 *	This is meant for all protocols to use and covers goings on
 480 *	at the socket level. Everything here is generic.
 481 */
 482
 483int sock_setsockopt(struct socket *sock, int level, int optname,
 484		    char __user *optval, unsigned int optlen)
 485{
 486	struct sock *sk = sock->sk;
 
 
 487	int val;
 488	int valbool;
 489	struct linger ling;
 490	int ret = 0;
 491
 492	/*
 493	 *	Options without arguments
 494	 */
 495
 496	if (optname == SO_BINDTODEVICE)
 497		return sock_bindtodevice(sk, optval, optlen);
 498
 499	if (optlen < sizeof(int))
 500		return -EINVAL;
 501
 502	if (get_user(val, (int __user *)optval))
 503		return -EFAULT;
 504
 505	valbool = val ? 1 : 0;
 506
 507	lock_sock(sk);
 508
 509	switch (optname) {
 510	case SO_DEBUG:
 511		if (val && !capable(CAP_NET_ADMIN))
 512			ret = -EACCES;
 513		else
 514			sock_valbool_flag(sk, SOCK_DBG, valbool);
 515		break;
 516	case SO_REUSEADDR:
 517		sk->sk_reuse = valbool;
 
 
 
 518		break;
 519	case SO_TYPE:
 520	case SO_PROTOCOL:
 521	case SO_DOMAIN:
 522	case SO_ERROR:
 523		ret = -ENOPROTOOPT;
 524		break;
 525	case SO_DONTROUTE:
 526		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
 
 527		break;
 528	case SO_BROADCAST:
 529		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
 530		break;
 531	case SO_SNDBUF:
 532		/* Don't error on this BSD doesn't and if you think
 533		   about it this is right. Otherwise apps have to
 534		   play 'guess the biggest size' games. RCVBUF/SNDBUF
 535		   are treated in BSD as hints */
 536
 537		if (val > sysctl_wmem_max)
 538			val = sysctl_wmem_max;
 539set_sndbuf:
 540		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
 541		if ((val * 2) < SOCK_MIN_SNDBUF)
 542			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
 543		else
 544			sk->sk_sndbuf = val * 2;
 545
 546		/*
 547		 *	Wake up sending tasks if we
 548		 *	upped the value.
 549		 */
 
 
 
 
 
 550		sk->sk_write_space(sk);
 551		break;
 552
 553	case SO_SNDBUFFORCE:
 554		if (!capable(CAP_NET_ADMIN)) {
 555			ret = -EPERM;
 556			break;
 557		}
 
 
 
 
 
 
 558		goto set_sndbuf;
 559
 560	case SO_RCVBUF:
 561		/* Don't error on this BSD doesn't and if you think
 562		   about it this is right. Otherwise apps have to
 563		   play 'guess the biggest size' games. RCVBUF/SNDBUF
 564		   are treated in BSD as hints */
 565
 566		if (val > sysctl_rmem_max)
 567			val = sysctl_rmem_max;
 568set_rcvbuf:
 569		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 570		/*
 571		 * We double it on the way in to account for
 572		 * "struct sk_buff" etc. overhead.   Applications
 573		 * assume that the SO_RCVBUF setting they make will
 574		 * allow that much actual data to be received on that
 575		 * socket.
 576		 *
 577		 * Applications are unaware that "struct sk_buff" and
 578		 * other overheads allocate from the receive buffer
 579		 * during socket buffer allocation.
 580		 *
 581		 * And after considering the possible alternatives,
 582		 * returning the value we actually used in getsockopt
 583		 * is the most desirable behavior.
 584		 */
 585		if ((val * 2) < SOCK_MIN_RCVBUF)
 586			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
 587		else
 588			sk->sk_rcvbuf = val * 2;
 589		break;
 590
 591	case SO_RCVBUFFORCE:
 592		if (!capable(CAP_NET_ADMIN)) {
 593			ret = -EPERM;
 594			break;
 595		}
 596		goto set_rcvbuf;
 
 
 
 
 
 597
 598	case SO_KEEPALIVE:
 599#ifdef CONFIG_INET
 600		if (sk->sk_protocol == IPPROTO_TCP)
 601			tcp_set_keepalive(sk, valbool);
 602#endif
 603		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
 604		break;
 605
 606	case SO_OOBINLINE:
 607		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
 608		break;
 609
 610	case SO_NO_CHECK:
 611		sk->sk_no_check = valbool;
 612		break;
 613
 614	case SO_PRIORITY:
 615		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
 
 
 616			sk->sk_priority = val;
 617		else
 618			ret = -EPERM;
 619		break;
 620
 621	case SO_LINGER:
 622		if (optlen < sizeof(ling)) {
 623			ret = -EINVAL;	/* 1003.1g */
 624			break;
 625		}
 626		if (copy_from_user(&ling, optval, sizeof(ling))) {
 627			ret = -EFAULT;
 628			break;
 629		}
 630		if (!ling.l_onoff)
 631			sock_reset_flag(sk, SOCK_LINGER);
 632		else {
 633#if (BITS_PER_LONG == 32)
 634			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
 635				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 636			else
 637#endif
 638				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
 639			sock_set_flag(sk, SOCK_LINGER);
 640		}
 641		break;
 642
 643	case SO_BSDCOMPAT:
 644		sock_warn_obsolete_bsdism("setsockopt");
 645		break;
 646
 647	case SO_PASSCRED:
 648		if (valbool)
 649			set_bit(SOCK_PASSCRED, &sock->flags);
 650		else
 651			clear_bit(SOCK_PASSCRED, &sock->flags);
 652		break;
 653
 654	case SO_TIMESTAMP:
 655	case SO_TIMESTAMPNS:
 656		if (valbool)  {
 657			if (optname == SO_TIMESTAMP)
 658				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 659			else
 660				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
 661			sock_set_flag(sk, SOCK_RCVTSTAMP);
 662			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 663		} else {
 664			sock_reset_flag(sk, SOCK_RCVTSTAMP);
 665			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 666		}
 667		break;
 668
 669	case SO_TIMESTAMPING:
 670		if (val & ~SOF_TIMESTAMPING_MASK) {
 671			ret = -EINVAL;
 672			break;
 
 
 
 
 
 
 
 673		}
 674		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
 675				  val & SOF_TIMESTAMPING_TX_HARDWARE);
 676		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
 677				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
 678		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
 679				  val & SOF_TIMESTAMPING_RX_HARDWARE);
 680		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 681			sock_enable_timestamp(sk,
 682					      SOCK_TIMESTAMPING_RX_SOFTWARE);
 683		else
 684			sock_disable_timestamp(sk,
 685					       SOCK_TIMESTAMPING_RX_SOFTWARE);
 686		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
 687				  val & SOF_TIMESTAMPING_SOFTWARE);
 688		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
 689				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
 690		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
 691				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
 692		break;
 693
 694	case SO_RCVLOWAT:
 695		if (val < 0)
 696			val = INT_MAX;
 697		sk->sk_rcvlowat = val ? : 1;
 
 
 
 698		break;
 699
 700	case SO_RCVTIMEO:
 701		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
 
 
 702		break;
 703
 704	case SO_SNDTIMEO:
 705		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
 
 
 706		break;
 707
 708	case SO_ATTACH_FILTER:
 
 
 
 
 
 
 
 
 709		ret = -EINVAL;
 710		if (optlen == sizeof(struct sock_fprog)) {
 711			struct sock_fprog fprog;
 712
 713			ret = -EFAULT;
 714			if (copy_from_user(&fprog, optval, sizeof(fprog)))
 715				break;
 716
 717			ret = sk_attach_filter(&fprog, sk);
 718		}
 719		break;
 720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721	case SO_DETACH_FILTER:
 722		ret = sk_detach_filter(sk);
 723		break;
 724
 
 
 
 
 
 
 
 725	case SO_PASSSEC:
 726		if (valbool)
 727			set_bit(SOCK_PASSSEC, &sock->flags);
 728		else
 729			clear_bit(SOCK_PASSSEC, &sock->flags);
 730		break;
 731	case SO_MARK:
 732		if (!capable(CAP_NET_ADMIN))
 
 733			ret = -EPERM;
 734		else
 735			sk->sk_mark = val;
 
 
 
 
 
 
 
 
 
 
 
 736		break;
 737
 738		/* We implement the SO_SNDLOWAT etc to
 739		   not be settable (1003.1g 5.3) */
 740	case SO_RXQ_OVFL:
 741		if (valbool)
 742			sock_set_flag(sk, SOCK_RXQ_OVFL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 743		else
 744			sock_reset_flag(sk, SOCK_RXQ_OVFL);
 
 
 
 
 
 
 
 
 
 
 
 
 745		break;
 
 746	default:
 747		ret = -ENOPROTOOPT;
 748		break;
 749	}
 750	release_sock(sk);
 751	return ret;
 752}
 
 
 
 
 
 
 
 753EXPORT_SYMBOL(sock_setsockopt);
 754
 
 
 
 755
 756void cred_to_ucred(struct pid *pid, const struct cred *cred,
 757		   struct ucred *ucred)
 
 
 
 
 
 
 
 758{
 759	ucred->pid = pid_vnr(pid);
 760	ucred->uid = ucred->gid = -1;
 761	if (cred) {
 762		struct user_namespace *current_ns = current_user_ns();
 763
 764		ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
 765		ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
 766	}
 767}
 768EXPORT_SYMBOL_GPL(cred_to_ucred);
 769
 770int sock_getsockopt(struct socket *sock, int level, int optname,
 771		    char __user *optval, int __user *optlen)
 772{
 773	struct sock *sk = sock->sk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 774
 775	union {
 776		int val;
 
 
 777		struct linger ling;
 778		struct timeval tm;
 
 
 
 
 779	} v;
 780
 781	int lv = sizeof(int);
 782	int len;
 783
 784	if (get_user(len, optlen))
 785		return -EFAULT;
 786	if (len < 0)
 787		return -EINVAL;
 788
 789	memset(&v, 0, sizeof(v));
 790
 791	switch (optname) {
 792	case SO_DEBUG:
 793		v.val = sock_flag(sk, SOCK_DBG);
 794		break;
 795
 796	case SO_DONTROUTE:
 797		v.val = sock_flag(sk, SOCK_LOCALROUTE);
 798		break;
 799
 800	case SO_BROADCAST:
 801		v.val = !!sock_flag(sk, SOCK_BROADCAST);
 802		break;
 803
 804	case SO_SNDBUF:
 805		v.val = sk->sk_sndbuf;
 806		break;
 807
 808	case SO_RCVBUF:
 809		v.val = sk->sk_rcvbuf;
 810		break;
 811
 812	case SO_REUSEADDR:
 813		v.val = sk->sk_reuse;
 814		break;
 815
 
 
 
 
 816	case SO_KEEPALIVE:
 817		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
 818		break;
 819
 820	case SO_TYPE:
 821		v.val = sk->sk_type;
 822		break;
 823
 824	case SO_PROTOCOL:
 825		v.val = sk->sk_protocol;
 826		break;
 827
 828	case SO_DOMAIN:
 829		v.val = sk->sk_family;
 830		break;
 831
 832	case SO_ERROR:
 833		v.val = -sock_error(sk);
 834		if (v.val == 0)
 835			v.val = xchg(&sk->sk_err_soft, 0);
 836		break;
 837
 838	case SO_OOBINLINE:
 839		v.val = !!sock_flag(sk, SOCK_URGINLINE);
 840		break;
 841
 842	case SO_NO_CHECK:
 843		v.val = sk->sk_no_check;
 844		break;
 845
 846	case SO_PRIORITY:
 847		v.val = sk->sk_priority;
 848		break;
 849
 850	case SO_LINGER:
 851		lv		= sizeof(v.ling);
 852		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
 853		v.ling.l_linger	= sk->sk_lingertime / HZ;
 854		break;
 855
 856	case SO_BSDCOMPAT:
 857		sock_warn_obsolete_bsdism("getsockopt");
 858		break;
 859
 860	case SO_TIMESTAMP:
 861		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
 
 862				!sock_flag(sk, SOCK_RCVTSTAMPNS);
 863		break;
 864
 865	case SO_TIMESTAMPNS:
 866		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
 867		break;
 868
 869	case SO_TIMESTAMPING:
 870		v.val = 0;
 871		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
 872			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
 873		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
 874			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
 875		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
 876			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
 877		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
 878			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
 879		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
 880			v.val |= SOF_TIMESTAMPING_SOFTWARE;
 881		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
 882			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
 883		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
 884			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
 885		break;
 886
 887	case SO_RCVTIMEO:
 888		lv = sizeof(struct timeval);
 889		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
 890			v.tm.tv_sec = 0;
 891			v.tm.tv_usec = 0;
 892		} else {
 893			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
 894			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
 895		}
 896		break;
 897
 898	case SO_SNDTIMEO:
 899		lv = sizeof(struct timeval);
 900		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
 901			v.tm.tv_sec = 0;
 902			v.tm.tv_usec = 0;
 903		} else {
 904			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
 905			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
 906		}
 
 
 
 
 
 
 
 
 
 907		break;
 908
 909	case SO_RCVLOWAT:
 910		v.val = sk->sk_rcvlowat;
 911		break;
 912
 913	case SO_SNDLOWAT:
 914		v.val = 1;
 915		break;
 916
 917	case SO_PASSCRED:
 918		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
 919		break;
 920
 921	case SO_PEERCRED:
 922	{
 923		struct ucred peercred;
 924		if (len > sizeof(peercred))
 925			len = sizeof(peercred);
 
 
 926		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
 927		if (copy_to_user(optval, &peercred, len))
 
 
 928			return -EFAULT;
 929		goto lenout;
 930	}
 931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 932	case SO_PEERNAME:
 933	{
 934		char address[128];
 935
 936		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
 
 937			return -ENOTCONN;
 938		if (lv < len)
 939			return -EINVAL;
 940		if (copy_to_user(optval, address, len))
 941			return -EFAULT;
 942		goto lenout;
 943	}
 944
 945	/* Dubious BSD thing... Probably nobody even uses it, but
 946	 * the UNIX standard wants it for whatever reason... -DaveM
 947	 */
 948	case SO_ACCEPTCONN:
 949		v.val = sk->sk_state == TCP_LISTEN;
 950		break;
 951
 952	case SO_PASSSEC:
 953		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
 954		break;
 955
 956	case SO_PEERSEC:
 957		return security_socket_getpeersec_stream(sock, optval, optlen, len);
 
 958
 959	case SO_MARK:
 960		v.val = sk->sk_mark;
 961		break;
 962
 
 
 
 
 963	case SO_RXQ_OVFL:
 964		v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 965		break;
 966
 967	default:
 
 
 
 968		return -ENOPROTOOPT;
 969	}
 970
 971	if (len > lv)
 972		len = lv;
 973	if (copy_to_user(optval, &v, len))
 974		return -EFAULT;
 975lenout:
 976	if (put_user(len, optlen))
 977		return -EFAULT;
 978	return 0;
 979}
 980
 
 
 
 
 
 
 
 
 981/*
 982 * Initialize an sk_lock.
 983 *
 984 * (We also register the sk_lock with the lock validator.)
 985 */
 986static inline void sock_lock_init(struct sock *sk)
 987{
 988	sock_lock_init_class_and_name(sk,
 
 
 
 
 
 
 
 
 
 989			af_family_slock_key_strings[sk->sk_family],
 990			af_family_slock_keys + sk->sk_family,
 991			af_family_key_strings[sk->sk_family],
 992			af_family_keys + sk->sk_family);
 993}
 994
 995/*
 996 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
 997 * even temporarly, because of RCU lookups. sk_node should also be left as is.
 998 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
 999 */
1000static void sock_copy(struct sock *nsk, const struct sock *osk)
1001{
 
1002#ifdef CONFIG_SECURITY_NETWORK
1003	void *sptr = nsk->sk_security;
1004#endif
 
 
 
 
 
 
 
 
 
 
1005	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1006
1007	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1008	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1009
1010#ifdef CONFIG_SECURITY_NETWORK
1011	nsk->sk_security = sptr;
1012	security_sk_clone(osk, nsk);
1013#endif
1014}
1015
1016/*
1017 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1018 * un-modified. Special care is taken when initializing object to zero.
1019 */
1020static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1021{
1022	if (offsetof(struct sock, sk_node.next) != 0)
1023		memset(sk, 0, offsetof(struct sock, sk_node.next));
1024	memset(&sk->sk_node.pprev, 0,
1025	       size - offsetof(struct sock, sk_node.pprev));
1026}
1027
1028void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1029{
1030	unsigned long nulls1, nulls2;
1031
1032	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1033	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1034	if (nulls1 > nulls2)
1035		swap(nulls1, nulls2);
1036
1037	if (nulls1 != 0)
1038		memset((char *)sk, 0, nulls1);
1039	memset((char *)sk + nulls1 + sizeof(void *), 0,
1040	       nulls2 - nulls1 - sizeof(void *));
1041	memset((char *)sk + nulls2 + sizeof(void *), 0,
1042	       size - nulls2 - sizeof(void *));
1043}
1044EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1045
1046static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1047		int family)
1048{
1049	struct sock *sk;
1050	struct kmem_cache *slab;
1051
1052	slab = prot->slab;
1053	if (slab != NULL) {
1054		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1055		if (!sk)
1056			return sk;
1057		if (priority & __GFP_ZERO) {
1058			if (prot->clear_sk)
1059				prot->clear_sk(sk, prot->obj_size);
1060			else
1061				sk_prot_clear_nulls(sk, prot->obj_size);
1062		}
1063	} else
1064		sk = kmalloc(prot->obj_size, priority);
1065
1066	if (sk != NULL) {
1067		kmemcheck_annotate_bitfield(sk, flags);
1068
1069		if (security_sk_alloc(sk, family, priority))
1070			goto out_free;
1071
1072		if (!try_module_get(prot->owner))
1073			goto out_free_sec;
1074		sk_tx_queue_clear(sk);
1075	}
1076
1077	return sk;
1078
1079out_free_sec:
1080	security_sk_free(sk);
1081out_free:
1082	if (slab != NULL)
1083		kmem_cache_free(slab, sk);
1084	else
1085		kfree(sk);
1086	return NULL;
1087}
1088
1089static void sk_prot_free(struct proto *prot, struct sock *sk)
1090{
1091	struct kmem_cache *slab;
1092	struct module *owner;
1093
1094	owner = prot->owner;
1095	slab = prot->slab;
1096
 
 
1097	security_sk_free(sk);
1098	if (slab != NULL)
1099		kmem_cache_free(slab, sk);
1100	else
1101		kfree(sk);
1102	module_put(owner);
1103}
1104
1105#ifdef CONFIG_CGROUPS
1106void sock_update_classid(struct sock *sk)
1107{
1108	u32 classid;
1109
1110	rcu_read_lock();  /* doing current task, which cannot vanish. */
1111	classid = task_cls_classid(current);
1112	rcu_read_unlock();
1113	if (classid && classid != sk->sk_classid)
1114		sk->sk_classid = classid;
1115}
1116EXPORT_SYMBOL(sock_update_classid);
1117#endif
1118
1119/**
1120 *	sk_alloc - All socket objects are allocated here
1121 *	@net: the applicable net namespace
1122 *	@family: protocol family
1123 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1124 *	@prot: struct proto associated with this new sock instance
 
1125 */
1126struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1127		      struct proto *prot)
1128{
1129	struct sock *sk;
1130
1131	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1132	if (sk) {
1133		sk->sk_family = family;
1134		/*
1135		 * See comment in struct sock definition to understand
1136		 * why we need sk_prot_creator -acme
1137		 */
1138		sk->sk_prot = sk->sk_prot_creator = prot;
 
1139		sock_lock_init(sk);
1140		sock_net_set(sk, get_net(net));
1141		atomic_set(&sk->sk_wmem_alloc, 1);
 
 
 
 
 
 
 
 
 
1142
1143		sock_update_classid(sk);
 
 
 
 
1144	}
1145
1146	return sk;
1147}
1148EXPORT_SYMBOL(sk_alloc);
1149
1150static void __sk_free(struct sock *sk)
 
 
 
1151{
 
1152	struct sk_filter *filter;
1153
1154	if (sk->sk_destruct)
1155		sk->sk_destruct(sk);
1156
1157	filter = rcu_dereference_check(sk->sk_filter,
1158				       atomic_read(&sk->sk_wmem_alloc) == 0);
1159	if (filter) {
1160		sk_filter_uncharge(sk, filter);
1161		rcu_assign_pointer(sk->sk_filter, NULL);
1162	}
1163
1164	sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1165	sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
 
 
 
1166
1167	if (atomic_read(&sk->sk_omem_alloc))
1168		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1169		       __func__, atomic_read(&sk->sk_omem_alloc));
 
 
 
 
 
1170
1171	if (sk->sk_peer_cred)
1172		put_cred(sk->sk_peer_cred);
1173	put_pid(sk->sk_peer_pid);
1174	put_net(sock_net(sk));
 
 
 
 
 
1175	sk_prot_free(sk->sk_prot_creator, sk);
1176}
1177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178void sk_free(struct sock *sk)
1179{
1180	/*
1181	 * We subtract one from sk_wmem_alloc and can know if
1182	 * some packets are still in some tx queue.
1183	 * If not null, sock_wfree() will call __sk_free(sk) later
1184	 */
1185	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1186		__sk_free(sk);
1187}
1188EXPORT_SYMBOL(sk_free);
1189
1190/*
1191 * Last sock_put should drop reference to sk->sk_net. It has already
1192 * been dropped in sk_change_net. Taking reference to stopping namespace
1193 * is not an option.
1194 * Take reference to a socket to remove it from hash _alive_ and after that
1195 * destroy it in the context of init_net.
1196 */
1197void sk_release_kernel(struct sock *sk)
1198{
1199	if (sk == NULL || sk->sk_socket == NULL)
1200		return;
 
1201
1202	sock_hold(sk);
1203	sock_release(sk->sk_socket);
1204	release_net(sock_net(sk));
1205	sock_net_set(sk, get_net(&init_net));
1206	sock_put(sk);
 
 
 
 
 
 
 
 
1207}
1208EXPORT_SYMBOL(sk_release_kernel);
1209
1210struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
 
 
 
 
 
 
 
1211{
 
 
 
1212	struct sock *newsk;
1213
1214	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1215	if (newsk != NULL) {
1216		struct sk_filter *filter;
1217
1218		sock_copy(newsk, sk);
1219
1220		/* SANITY */
1221		get_net(sock_net(newsk));
1222		sk_node_init(&newsk->sk_node);
1223		sock_lock_init(newsk);
1224		bh_lock_sock(newsk);
1225		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1226		newsk->sk_backlog.len = 0;
1227
1228		atomic_set(&newsk->sk_rmem_alloc, 0);
1229		/*
1230		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1231		 */
1232		atomic_set(&newsk->sk_wmem_alloc, 1);
1233		atomic_set(&newsk->sk_omem_alloc, 0);
1234		skb_queue_head_init(&newsk->sk_receive_queue);
1235		skb_queue_head_init(&newsk->sk_write_queue);
1236#ifdef CONFIG_NET_DMA
1237		skb_queue_head_init(&newsk->sk_async_wait_queue);
1238#endif
1239
1240		spin_lock_init(&newsk->sk_dst_lock);
1241		rwlock_init(&newsk->sk_callback_lock);
1242		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1243				af_callback_keys + newsk->sk_family,
1244				af_family_clock_key_strings[newsk->sk_family]);
1245
1246		newsk->sk_dst_cache	= NULL;
1247		newsk->sk_wmem_queued	= 0;
1248		newsk->sk_forward_alloc = 0;
1249		newsk->sk_send_head	= NULL;
1250		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1251
1252		sock_reset_flag(newsk, SOCK_DONE);
1253		skb_queue_head_init(&newsk->sk_error_queue);
1254
1255		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1256		if (filter != NULL)
1257			sk_filter_charge(newsk, filter);
1258
1259		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1260			/* It is still raw copy of parent, so invalidate
1261			 * destructor and make plain sk_free() */
1262			newsk->sk_destruct = NULL;
1263			sk_free(newsk);
1264			newsk = NULL;
1265			goto out;
1266		}
1267
1268		newsk->sk_err	   = 0;
1269		newsk->sk_priority = 0;
1270		/*
1271		 * Before updating sk_refcnt, we must commit prior changes to memory
1272		 * (Documentation/RCU/rculist_nulls.txt for details)
 
 
 
 
1273		 */
1274		smp_wmb();
1275		atomic_set(&newsk->sk_refcnt, 2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1276
1277		/*
1278		 * Increment the counter in the same struct proto as the master
1279		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1280		 * is the same as sk->sk_prot->socks, as this field was copied
1281		 * with memcpy).
1282		 *
1283		 * This _changes_ the previous behaviour, where
1284		 * tcp_create_openreq_child always was incrementing the
1285		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1286		 * to be taken into account in all callers. -acme
 
 
 
1287		 */
1288		sk_refcnt_debug_inc(newsk);
1289		sk_set_socket(newsk, NULL);
1290		newsk->sk_wq = NULL;
1291
1292		if (newsk->sk_prot->sockets_allocated)
1293			percpu_counter_inc(newsk->sk_prot->sockets_allocated);
 
 
 
 
 
 
 
 
 
 
1294
1295		if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1296		    sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1297			net_enable_timestamp();
 
1298	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299out:
1300	return newsk;
1301}
1302EXPORT_SYMBOL_GPL(sk_clone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303
1304void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1305{
1306	__sk_dst_set(sk, dst);
 
 
1307	sk->sk_route_caps = dst->dev->features;
 
 
1308	if (sk->sk_route_caps & NETIF_F_GSO)
1309		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1310	sk->sk_route_caps &= ~sk->sk_route_nocaps;
 
1311	if (sk_can_gso(sk)) {
1312		if (dst->header_len) {
1313			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1314		} else {
1315			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1316			sk->sk_gso_max_size = dst->dev->gso_max_size;
 
 
 
 
 
1317		}
1318	}
 
1319}
1320EXPORT_SYMBOL_GPL(sk_setup_caps);
1321
1322void __init sk_init(void)
1323{
1324	if (totalram_pages <= 4096) {
1325		sysctl_wmem_max = 32767;
1326		sysctl_rmem_max = 32767;
1327		sysctl_wmem_default = 32767;
1328		sysctl_rmem_default = 32767;
1329	} else if (totalram_pages >= 131072) {
1330		sysctl_wmem_max = 131071;
1331		sysctl_rmem_max = 131071;
1332	}
1333}
1334
1335/*
1336 *	Simple resource managers for sockets.
1337 */
1338
1339
1340/*
1341 * Write buffer destructor automatically called from kfree_skb.
1342 */
1343void sock_wfree(struct sk_buff *skb)
1344{
1345	struct sock *sk = skb->sk;
1346	unsigned int len = skb->truesize;
 
1347
1348	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
 
 
 
 
 
 
 
 
 
 
 
1349		/*
1350		 * Keep a reference on sk_wmem_alloc, this will be released
1351		 * after sk_write_space() call
1352		 */
1353		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1354		sk->sk_write_space(sk);
1355		len = 1;
1356	}
1357	/*
1358	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1359	 * could not do because of in-flight packets
1360	 */
1361	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1362		__sk_free(sk);
1363}
1364EXPORT_SYMBOL(sock_wfree);
1365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1366/*
1367 * Read buffer destructor automatically called from kfree_skb.
1368 */
1369void sock_rfree(struct sk_buff *skb)
1370{
1371	struct sock *sk = skb->sk;
1372	unsigned int len = skb->truesize;
1373
1374	atomic_sub(len, &sk->sk_rmem_alloc);
1375	sk_mem_uncharge(sk, len);
1376}
1377EXPORT_SYMBOL(sock_rfree);
1378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379
1380int sock_i_uid(struct sock *sk)
1381{
1382	int uid;
1383
1384	read_lock_bh(&sk->sk_callback_lock);
1385	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1386	read_unlock_bh(&sk->sk_callback_lock);
1387	return uid;
1388}
1389EXPORT_SYMBOL(sock_i_uid);
1390
1391unsigned long sock_i_ino(struct sock *sk)
1392{
1393	unsigned long ino;
1394
1395	read_lock_bh(&sk->sk_callback_lock);
1396	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1397	read_unlock_bh(&sk->sk_callback_lock);
1398	return ino;
1399}
1400EXPORT_SYMBOL(sock_i_ino);
1401
1402/*
1403 * Allocate a skb from the socket's send buffer.
1404 */
1405struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1406			     gfp_t priority)
1407{
1408	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
 
1409		struct sk_buff *skb = alloc_skb(size, priority);
 
1410		if (skb) {
1411			skb_set_owner_w(skb, sk);
1412			return skb;
1413		}
1414	}
1415	return NULL;
1416}
1417EXPORT_SYMBOL(sock_wmalloc);
1418
1419/*
1420 * Allocate a skb from the socket's receive buffer.
1421 */
1422struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
 
 
 
 
1423			     gfp_t priority)
1424{
1425	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1426		struct sk_buff *skb = alloc_skb(size, priority);
1427		if (skb) {
1428			skb_set_owner_r(skb, sk);
1429			return skb;
1430		}
1431	}
1432	return NULL;
 
 
 
 
 
 
 
1433}
1434
1435/*
1436 * Allocate a memory block from the socket's option memory buffer.
1437 */
1438void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1439{
1440	if ((unsigned)size <= sysctl_optmem_max &&
1441	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
 
 
1442		void *mem;
1443		/* First do the add, to avoid the race if kmalloc
1444		 * might sleep.
1445		 */
1446		atomic_add(size, &sk->sk_omem_alloc);
1447		mem = kmalloc(size, priority);
1448		if (mem)
1449			return mem;
1450		atomic_sub(size, &sk->sk_omem_alloc);
1451	}
1452	return NULL;
1453}
1454EXPORT_SYMBOL(sock_kmalloc);
1455
1456/*
1457 * Free an option memory block.
 
1458 */
1459void sock_kfree_s(struct sock *sk, void *mem, int size)
 
1460{
1461	kfree(mem);
 
 
 
 
 
1462	atomic_sub(size, &sk->sk_omem_alloc);
1463}
 
 
 
 
 
1464EXPORT_SYMBOL(sock_kfree_s);
1465
 
 
 
 
 
 
1466/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1467   I think, these locks should be removed for datagram sockets.
1468 */
1469static long sock_wait_for_wmem(struct sock *sk, long timeo)
1470{
1471	DEFINE_WAIT(wait);
1472
1473	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1474	for (;;) {
1475		if (!timeo)
1476			break;
1477		if (signal_pending(current))
1478			break;
1479		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1480		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1481		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1482			break;
1483		if (sk->sk_shutdown & SEND_SHUTDOWN)
1484			break;
1485		if (sk->sk_err)
1486			break;
1487		timeo = schedule_timeout(timeo);
1488	}
1489	finish_wait(sk_sleep(sk), &wait);
1490	return timeo;
1491}
1492
1493
1494/*
1495 *	Generic send/receive buffer handlers
1496 */
1497
1498struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1499				     unsigned long data_len, int noblock,
1500				     int *errcode)
1501{
1502	struct sk_buff *skb;
1503	gfp_t gfp_mask;
1504	long timeo;
1505	int err;
1506
1507	gfp_mask = sk->sk_allocation;
1508	if (gfp_mask & __GFP_WAIT)
1509		gfp_mask |= __GFP_REPEAT;
1510
1511	timeo = sock_sndtimeo(sk, noblock);
1512	while (1) {
1513		err = sock_error(sk);
1514		if (err != 0)
1515			goto failure;
1516
1517		err = -EPIPE;
1518		if (sk->sk_shutdown & SEND_SHUTDOWN)
1519			goto failure;
1520
1521		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1522			skb = alloc_skb(header_len, gfp_mask);
1523			if (skb) {
1524				int npages;
1525				int i;
1526
1527				/* No pages, we're done... */
1528				if (!data_len)
1529					break;
1530
1531				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1532				skb->truesize += data_len;
1533				skb_shinfo(skb)->nr_frags = npages;
1534				for (i = 0; i < npages; i++) {
1535					struct page *page;
1536					skb_frag_t *frag;
1537
1538					page = alloc_pages(sk->sk_allocation, 0);
1539					if (!page) {
1540						err = -ENOBUFS;
1541						skb_shinfo(skb)->nr_frags = i;
1542						kfree_skb(skb);
1543						goto failure;
1544					}
1545
1546					frag = &skb_shinfo(skb)->frags[i];
1547					frag->page = page;
1548					frag->page_offset = 0;
1549					frag->size = (data_len >= PAGE_SIZE ?
1550						      PAGE_SIZE :
1551						      data_len);
1552					data_len -= PAGE_SIZE;
1553				}
1554
1555				/* Full success... */
1556				break;
1557			}
1558			err = -ENOBUFS;
1559			goto failure;
1560		}
1561		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1562		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1563		err = -EAGAIN;
1564		if (!timeo)
1565			goto failure;
1566		if (signal_pending(current))
1567			goto interrupted;
1568		timeo = sock_wait_for_wmem(sk, timeo);
1569	}
1570
1571	skb_set_owner_w(skb, sk);
 
 
1572	return skb;
1573
1574interrupted:
1575	err = sock_intr_errno(timeo);
1576failure:
1577	*errcode = err;
1578	return NULL;
1579}
1580EXPORT_SYMBOL(sock_alloc_send_pskb);
1581
1582struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1583				    int noblock, int *errcode)
1584{
1585	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586}
1587EXPORT_SYMBOL(sock_alloc_send_skb);
1588
1589static void __lock_sock(struct sock *sk)
1590	__releases(&sk->sk_lock.slock)
1591	__acquires(&sk->sk_lock.slock)
1592{
1593	DEFINE_WAIT(wait);
1594
1595	for (;;) {
1596		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1597					TASK_UNINTERRUPTIBLE);
1598		spin_unlock_bh(&sk->sk_lock.slock);
1599		schedule();
1600		spin_lock_bh(&sk->sk_lock.slock);
1601		if (!sock_owned_by_user(sk))
1602			break;
1603	}
1604	finish_wait(&sk->sk_lock.wq, &wait);
1605}
1606
1607static void __release_sock(struct sock *sk)
1608	__releases(&sk->sk_lock.slock)
1609	__acquires(&sk->sk_lock.slock)
1610{
1611	struct sk_buff *skb = sk->sk_backlog.head;
1612
1613	do {
1614		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1615		bh_unlock_sock(sk);
1616
1617		do {
1618			struct sk_buff *next = skb->next;
1619
1620			WARN_ON_ONCE(skb_dst_is_noref(skb));
1621			skb->next = NULL;
 
 
 
1622			sk_backlog_rcv(sk, skb);
1623
1624			/*
1625			 * We are in process context here with softirqs
1626			 * disabled, use cond_resched_softirq() to preempt.
1627			 * This is safe to do because we've taken the backlog
1628			 * queue private:
1629			 */
1630			cond_resched_softirq();
1631
1632			skb = next;
1633		} while (skb != NULL);
1634
1635		bh_lock_sock(sk);
1636	} while ((skb = sk->sk_backlog.head) != NULL);
1637
1638	/*
1639	 * Doing the zeroing here guarantee we can not loop forever
1640	 * while a wild producer attempts to flood us.
1641	 */
1642	sk->sk_backlog.len = 0;
1643}
1644
 
 
 
 
 
 
 
 
1645/**
1646 * sk_wait_data - wait for data to arrive at sk_receive_queue
1647 * @sk:    sock to wait on
1648 * @timeo: for how long
 
1649 *
1650 * Now socket state including sk->sk_err is changed only under lock,
1651 * hence we may omit checks after joining wait queue.
1652 * We check receive queue before schedule() only as optimization;
1653 * it is very likely that release_sock() added new data.
1654 */
1655int sk_wait_data(struct sock *sk, long *timeo)
1656{
 
1657	int rc;
1658	DEFINE_WAIT(wait);
1659
1660	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1661	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1662	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1663	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1664	finish_wait(sk_sleep(sk), &wait);
1665	return rc;
1666}
1667EXPORT_SYMBOL(sk_wait_data);
1668
1669/**
1670 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1671 *	@sk: socket
1672 *	@size: memory size to allocate
 
1673 *	@kind: allocation type
1674 *
1675 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1676 *	rmem allocation. This function assumes that protocols which have
1677 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1678 */
1679int __sk_mem_schedule(struct sock *sk, int size, int kind)
1680{
 
1681	struct proto *prot = sk->sk_prot;
1682	int amt = sk_mem_pages(size);
1683	long allocated;
1684
1685	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1686	allocated = atomic_long_add_return(amt, prot->memory_allocated);
 
 
 
 
1687
1688	/* Under limit. */
1689	if (allocated <= prot->sysctl_mem[0]) {
1690		if (prot->memory_pressure && *prot->memory_pressure)
1691			*prot->memory_pressure = 0;
1692		return 1;
1693	}
1694
1695	/* Under pressure. */
1696	if (allocated > prot->sysctl_mem[1])
1697		if (prot->enter_memory_pressure)
1698			prot->enter_memory_pressure(sk);
1699
1700	/* Over hard limit. */
1701	if (allocated > prot->sysctl_mem[2])
1702		goto suppress_allocation;
1703
1704	/* guarantee minimum buffer size under pressure */
1705	if (kind == SK_MEM_RECV) {
1706		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1707			return 1;
 
1708	} else { /* SK_MEM_SEND */
 
 
1709		if (sk->sk_type == SOCK_STREAM) {
1710			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1711				return 1;
1712		} else if (atomic_read(&sk->sk_wmem_alloc) <
1713			   prot->sysctl_wmem[0])
1714				return 1;
 
1715	}
1716
1717	if (prot->memory_pressure) {
1718		int alloc;
1719
1720		if (!*prot->memory_pressure)
1721			return 1;
1722		alloc = percpu_counter_read_positive(prot->sockets_allocated);
1723		if (prot->sysctl_mem[2] > alloc *
1724		    sk_mem_pages(sk->sk_wmem_queued +
1725				 atomic_read(&sk->sk_rmem_alloc) +
1726				 sk->sk_forward_alloc))
1727			return 1;
1728	}
1729
1730suppress_allocation:
1731
1732	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1733		sk_stream_moderate_sndbuf(sk);
1734
1735		/* Fail only if socket is _under_ its sndbuf.
1736		 * In this case we cannot block, so that we have to fail.
1737		 */
1738		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
 
 
 
 
 
1739			return 1;
 
1740	}
1741
1742	trace_sock_exceed_buf_limit(sk, prot, allocated);
 
 
 
 
 
 
1743
1744	/* Alas. Undo changes. */
1745	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1746	atomic_long_sub(amt, prot->memory_allocated);
1747	return 0;
1748}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1749EXPORT_SYMBOL(__sk_mem_schedule);
1750
1751/**
1752 *	__sk_reclaim - reclaim memory_allocated
1753 *	@sk: socket
 
 
 
1754 */
1755void __sk_mem_reclaim(struct sock *sk)
1756{
1757	struct proto *prot = sk->sk_prot;
 
 
 
1758
1759	atomic_long_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1760		   prot->memory_allocated);
1761	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1762
1763	if (prot->memory_pressure && *prot->memory_pressure &&
1764	    (atomic_long_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1765		*prot->memory_pressure = 0;
 
 
 
 
 
 
 
 
1766}
1767EXPORT_SYMBOL(__sk_mem_reclaim);
1768
 
 
 
 
 
 
1769
1770/*
1771 * Set of default routines for initialising struct proto_ops when
1772 * the protocol does not support a particular function. In certain
1773 * cases where it makes no sense for a protocol to have a "do nothing"
1774 * function, some default processing is provided.
1775 */
1776
1777int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1778{
1779	return -EOPNOTSUPP;
1780}
1781EXPORT_SYMBOL(sock_no_bind);
1782
1783int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1784		    int len, int flags)
1785{
1786	return -EOPNOTSUPP;
1787}
1788EXPORT_SYMBOL(sock_no_connect);
1789
1790int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1791{
1792	return -EOPNOTSUPP;
1793}
1794EXPORT_SYMBOL(sock_no_socketpair);
1795
1796int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
 
1797{
1798	return -EOPNOTSUPP;
1799}
1800EXPORT_SYMBOL(sock_no_accept);
1801
1802int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1803		    int *len, int peer)
1804{
1805	return -EOPNOTSUPP;
1806}
1807EXPORT_SYMBOL(sock_no_getname);
1808
1809unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1810{
1811	return 0;
1812}
1813EXPORT_SYMBOL(sock_no_poll);
1814
1815int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1816{
1817	return -EOPNOTSUPP;
1818}
1819EXPORT_SYMBOL(sock_no_ioctl);
1820
1821int sock_no_listen(struct socket *sock, int backlog)
1822{
1823	return -EOPNOTSUPP;
1824}
1825EXPORT_SYMBOL(sock_no_listen);
1826
1827int sock_no_shutdown(struct socket *sock, int how)
1828{
1829	return -EOPNOTSUPP;
1830}
1831EXPORT_SYMBOL(sock_no_shutdown);
1832
1833int sock_no_setsockopt(struct socket *sock, int level, int optname,
1834		    char __user *optval, unsigned int optlen)
1835{
1836	return -EOPNOTSUPP;
1837}
1838EXPORT_SYMBOL(sock_no_setsockopt);
1839
1840int sock_no_getsockopt(struct socket *sock, int level, int optname,
1841		    char __user *optval, int __user *optlen)
1842{
1843	return -EOPNOTSUPP;
1844}
1845EXPORT_SYMBOL(sock_no_getsockopt);
1846
1847int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1848		    size_t len)
1849{
1850	return -EOPNOTSUPP;
1851}
1852EXPORT_SYMBOL(sock_no_sendmsg);
1853
1854int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1855		    size_t len, int flags)
1856{
1857	return -EOPNOTSUPP;
1858}
1859EXPORT_SYMBOL(sock_no_recvmsg);
1860
1861int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1862{
1863	/* Mirror missing mmap method error code */
1864	return -ENODEV;
1865}
1866EXPORT_SYMBOL(sock_no_mmap);
1867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1868ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1869{
1870	ssize_t res;
1871	struct msghdr msg = {.msg_flags = flags};
1872	struct kvec iov;
1873	char *kaddr = kmap(page);
1874	iov.iov_base = kaddr + offset;
1875	iov.iov_len = size;
1876	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1877	kunmap(page);
1878	return res;
1879}
1880EXPORT_SYMBOL(sock_no_sendpage);
1881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1882/*
1883 *	Default Socket Callbacks
1884 */
1885
1886static void sock_def_wakeup(struct sock *sk)
1887{
1888	struct socket_wq *wq;
1889
1890	rcu_read_lock();
1891	wq = rcu_dereference(sk->sk_wq);
1892	if (wq_has_sleeper(wq))
1893		wake_up_interruptible_all(&wq->wait);
1894	rcu_read_unlock();
1895}
1896
1897static void sock_def_error_report(struct sock *sk)
1898{
1899	struct socket_wq *wq;
1900
1901	rcu_read_lock();
1902	wq = rcu_dereference(sk->sk_wq);
1903	if (wq_has_sleeper(wq))
1904		wake_up_interruptible_poll(&wq->wait, POLLERR);
1905	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1906	rcu_read_unlock();
1907}
1908
1909static void sock_def_readable(struct sock *sk, int len)
1910{
1911	struct socket_wq *wq;
1912
1913	rcu_read_lock();
1914	wq = rcu_dereference(sk->sk_wq);
1915	if (wq_has_sleeper(wq))
1916		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
1917						POLLRDNORM | POLLRDBAND);
1918	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1919	rcu_read_unlock();
1920}
1921
1922static void sock_def_write_space(struct sock *sk)
1923{
1924	struct socket_wq *wq;
1925
1926	rcu_read_lock();
1927
1928	/* Do not wake up a writer until he can make "significant"
1929	 * progress.  --DaveM
1930	 */
1931	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1932		wq = rcu_dereference(sk->sk_wq);
1933		if (wq_has_sleeper(wq))
1934			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1935						POLLWRNORM | POLLWRBAND);
1936
1937		/* Should agree with poll, otherwise some programs break */
1938		if (sock_writeable(sk))
1939			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1940	}
1941
1942	rcu_read_unlock();
1943}
1944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1945static void sock_def_destruct(struct sock *sk)
1946{
1947	kfree(sk->sk_protinfo);
1948}
1949
1950void sk_send_sigurg(struct sock *sk)
1951{
1952	if (sk->sk_socket && sk->sk_socket->file)
1953		if (send_sigurg(&sk->sk_socket->file->f_owner))
1954			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1955}
1956EXPORT_SYMBOL(sk_send_sigurg);
1957
1958void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1959		    unsigned long expires)
1960{
1961	if (!mod_timer(timer, expires))
1962		sock_hold(sk);
1963}
1964EXPORT_SYMBOL(sk_reset_timer);
1965
1966void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1967{
1968	if (timer_pending(timer) && del_timer(timer))
1969		__sock_put(sk);
1970}
1971EXPORT_SYMBOL(sk_stop_timer);
1972
1973void sock_init_data(struct socket *sock, struct sock *sk)
1974{
1975	skb_queue_head_init(&sk->sk_receive_queue);
1976	skb_queue_head_init(&sk->sk_write_queue);
1977	skb_queue_head_init(&sk->sk_error_queue);
1978#ifdef CONFIG_NET_DMA
1979	skb_queue_head_init(&sk->sk_async_wait_queue);
1980#endif
1981
 
 
 
1982	sk->sk_send_head	=	NULL;
1983
1984	init_timer(&sk->sk_timer);
1985
1986	sk->sk_allocation	=	GFP_KERNEL;
1987	sk->sk_rcvbuf		=	sysctl_rmem_default;
1988	sk->sk_sndbuf		=	sysctl_wmem_default;
1989	sk->sk_state		=	TCP_CLOSE;
 
1990	sk_set_socket(sk, sock);
1991
1992	sock_set_flag(sk, SOCK_ZAPPED);
1993
1994	if (sock) {
1995		sk->sk_type	=	sock->type;
1996		sk->sk_wq	=	sock->wq;
1997		sock->sk	=	sk;
1998	} else
1999		sk->sk_wq	=	NULL;
 
 
 
2000
2001	spin_lock_init(&sk->sk_dst_lock);
2002	rwlock_init(&sk->sk_callback_lock);
2003	lockdep_set_class_and_name(&sk->sk_callback_lock,
 
 
 
 
 
 
 
2004			af_callback_keys + sk->sk_family,
2005			af_family_clock_key_strings[sk->sk_family]);
2006
2007	sk->sk_state_change	=	sock_def_wakeup;
2008	sk->sk_data_ready	=	sock_def_readable;
2009	sk->sk_write_space	=	sock_def_write_space;
2010	sk->sk_error_report	=	sock_def_error_report;
2011	sk->sk_destruct		=	sock_def_destruct;
2012
2013	sk->sk_sndmsg_page	=	NULL;
2014	sk->sk_sndmsg_off	=	0;
 
2015
2016	sk->sk_peer_pid 	=	NULL;
2017	sk->sk_peer_cred	=	NULL;
 
 
2018	sk->sk_write_pending	=	0;
2019	sk->sk_rcvlowat		=	1;
2020	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2021	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2022
2023	sk->sk_stamp = ktime_set(-1L, 0);
 
 
 
 
2024
 
 
 
 
 
 
 
 
 
 
 
2025	/*
2026	 * Before updating sk_refcnt, we must commit prior changes to memory
2027	 * (Documentation/RCU/rculist_nulls.txt for details)
2028	 */
2029	smp_wmb();
2030	atomic_set(&sk->sk_refcnt, 1);
2031	atomic_set(&sk->sk_drops, 0);
2032}
2033EXPORT_SYMBOL(sock_init_data);
2034
2035void lock_sock_nested(struct sock *sk, int subclass)
2036{
 
 
 
2037	might_sleep();
2038	spin_lock_bh(&sk->sk_lock.slock);
2039	if (sk->sk_lock.owned)
2040		__lock_sock(sk);
2041	sk->sk_lock.owned = 1;
2042	spin_unlock(&sk->sk_lock.slock);
2043	/*
2044	 * The sk_lock has mutex_lock() semantics here:
2045	 */
2046	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2047	local_bh_enable();
2048}
2049EXPORT_SYMBOL(lock_sock_nested);
2050
2051void release_sock(struct sock *sk)
2052{
2053	/*
2054	 * The sk_lock has mutex_unlock() semantics:
2055	 */
2056	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2057
2058	spin_lock_bh(&sk->sk_lock.slock);
2059	if (sk->sk_backlog.tail)
2060		__release_sock(sk);
2061	sk->sk_lock.owned = 0;
 
 
 
 
 
 
 
2062	if (waitqueue_active(&sk->sk_lock.wq))
2063		wake_up(&sk->sk_lock.wq);
2064	spin_unlock_bh(&sk->sk_lock.slock);
2065}
2066EXPORT_SYMBOL(release_sock);
2067
2068/**
2069 * lock_sock_fast - fast version of lock_sock
2070 * @sk: socket
2071 *
2072 * This version should be used for very small section, where process wont block
2073 * return false if fast path is taken
2074 *   sk_lock.slock locked, owned = 0, BH disabled
2075 * return true if slow path is taken
2076 *   sk_lock.slock unlocked, owned = 1, BH enabled
2077 */
2078bool lock_sock_fast(struct sock *sk)
2079{
2080	might_sleep();
2081	spin_lock_bh(&sk->sk_lock.slock);
2082
2083	if (!sk->sk_lock.owned)
2084		/*
2085		 * Note : We must disable BH
 
 
 
 
 
 
 
 
 
 
 
 
2086		 */
2087		return false;
 
2088
2089	__lock_sock(sk);
2090	sk->sk_lock.owned = 1;
2091	spin_unlock(&sk->sk_lock.slock);
2092	/*
2093	 * The sk_lock has mutex_lock() semantics here:
2094	 */
2095	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2096	local_bh_enable();
2097	return true;
2098}
2099EXPORT_SYMBOL(lock_sock_fast);
2100
2101int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
 
2102{
2103	struct timeval tv;
2104	if (!sock_flag(sk, SOCK_TIMESTAMP))
2105		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2106	tv = ktime_to_timeval(sk->sk_stamp);
2107	if (tv.tv_sec == -1)
2108		return -ENOENT;
2109	if (tv.tv_sec == 0) {
2110		sk->sk_stamp = ktime_get_real();
2111		tv = ktime_to_timeval(sk->sk_stamp);
2112	}
2113	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2114}
2115EXPORT_SYMBOL(sock_get_timestamp);
2116
2117int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2118{
2119	struct timespec ts;
2120	if (!sock_flag(sk, SOCK_TIMESTAMP))
2121		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2122	ts = ktime_to_timespec(sk->sk_stamp);
2123	if (ts.tv_sec == -1)
2124		return -ENOENT;
2125	if (ts.tv_sec == 0) {
2126		sk->sk_stamp = ktime_get_real();
2127		ts = ktime_to_timespec(sk->sk_stamp);
 
2128	}
2129	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2130}
2131EXPORT_SYMBOL(sock_get_timestampns);
2132
2133void sock_enable_timestamp(struct sock *sk, int flag)
2134{
2135	if (!sock_flag(sk, flag)) {
 
 
2136		sock_set_flag(sk, flag);
2137		/*
2138		 * we just set one of the two flags which require net
2139		 * time stamping, but time stamping might have been on
2140		 * already because of the other one
2141		 */
2142		if (!sock_flag(sk,
2143				flag == SOCK_TIMESTAMP ?
2144				SOCK_TIMESTAMPING_RX_SOFTWARE :
2145				SOCK_TIMESTAMP))
2146			net_enable_timestamp();
2147	}
2148}
2149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2150/*
2151 *	Get a socket option on an socket.
2152 *
2153 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2154 *	asynchronous errors should be reported by getsockopt. We assume
2155 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2156 */
2157int sock_common_getsockopt(struct socket *sock, int level, int optname,
2158			   char __user *optval, int __user *optlen)
2159{
2160	struct sock *sk = sock->sk;
2161
2162	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
 
2163}
2164EXPORT_SYMBOL(sock_common_getsockopt);
2165
2166#ifdef CONFIG_COMPAT
2167int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2168				  char __user *optval, int __user *optlen)
2169{
2170	struct sock *sk = sock->sk;
2171
2172	if (sk->sk_prot->compat_getsockopt != NULL)
2173		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2174						      optval, optlen);
2175	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2176}
2177EXPORT_SYMBOL(compat_sock_common_getsockopt);
2178#endif
2179
2180int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2181			struct msghdr *msg, size_t size, int flags)
2182{
2183	struct sock *sk = sock->sk;
2184	int addr_len = 0;
2185	int err;
2186
2187	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2188				   flags & ~MSG_DONTWAIT, &addr_len);
2189	if (err >= 0)
2190		msg->msg_namelen = addr_len;
2191	return err;
2192}
2193EXPORT_SYMBOL(sock_common_recvmsg);
2194
2195/*
2196 *	Set socket options on an inet socket.
2197 */
2198int sock_common_setsockopt(struct socket *sock, int level, int optname,
2199			   char __user *optval, unsigned int optlen)
2200{
2201	struct sock *sk = sock->sk;
2202
2203	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
 
2204}
2205EXPORT_SYMBOL(sock_common_setsockopt);
2206
2207#ifdef CONFIG_COMPAT
2208int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2209				  char __user *optval, unsigned int optlen)
2210{
2211	struct sock *sk = sock->sk;
2212
2213	if (sk->sk_prot->compat_setsockopt != NULL)
2214		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2215						      optval, optlen);
2216	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2217}
2218EXPORT_SYMBOL(compat_sock_common_setsockopt);
2219#endif
2220
2221void sk_common_release(struct sock *sk)
2222{
2223	if (sk->sk_prot->destroy)
2224		sk->sk_prot->destroy(sk);
2225
2226	/*
2227	 * Observation: when sock_common_release is called, processes have
2228	 * no access to socket. But net still has.
2229	 * Step one, detach it from networking:
2230	 *
2231	 * A. Remove from hash tables.
2232	 */
2233
2234	sk->sk_prot->unhash(sk);
2235
2236	/*
2237	 * In this point socket cannot receive new packets, but it is possible
2238	 * that some packets are in flight because some CPU runs receiver and
2239	 * did hash table lookup before we unhashed socket. They will achieve
2240	 * receive queue and will be purged by socket destructor.
2241	 *
2242	 * Also we still have packets pending on receive queue and probably,
2243	 * our own packets waiting in device queues. sock_destroy will drain
2244	 * receive queue, but transmitted packets will delay socket destruction
2245	 * until the last reference will be released.
2246	 */
2247
2248	sock_orphan(sk);
2249
2250	xfrm_sk_free_policy(sk);
2251
2252	sk_refcnt_debug_release(sk);
 
2253	sock_put(sk);
2254}
2255EXPORT_SYMBOL(sk_common_release);
2256
2257static DEFINE_RWLOCK(proto_list_lock);
2258static LIST_HEAD(proto_list);
 
2259
2260#ifdef CONFIG_PROC_FS
2261#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2262struct prot_inuse {
2263	int val[PROTO_INUSE_NR];
2264};
 
 
 
 
 
2265
 
2266static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2267
2268#ifdef CONFIG_NET_NS
2269void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2270{
2271	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2272}
2273EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2274
2275int sock_prot_inuse_get(struct net *net, struct proto *prot)
2276{
2277	int cpu, idx = prot->inuse_idx;
2278	int res = 0;
2279
2280	for_each_possible_cpu(cpu)
2281		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2282
2283	return res >= 0 ? res : 0;
2284}
2285EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2286
 
 
 
 
 
 
 
 
 
 
 
 
2287static int __net_init sock_inuse_init_net(struct net *net)
2288{
2289	net->core.inuse = alloc_percpu(struct prot_inuse);
2290	return net->core.inuse ? 0 : -ENOMEM;
 
 
2291}
2292
2293static void __net_exit sock_inuse_exit_net(struct net *net)
2294{
2295	free_percpu(net->core.inuse);
2296}
2297
2298static struct pernet_operations net_inuse_ops = {
2299	.init = sock_inuse_init_net,
2300	.exit = sock_inuse_exit_net,
2301};
2302
2303static __init int net_inuse_init(void)
2304{
2305	if (register_pernet_subsys(&net_inuse_ops))
2306		panic("Cannot initialize net inuse counters");
2307
2308	return 0;
2309}
2310
2311core_initcall(net_inuse_init);
2312#else
2313static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2314
2315void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2316{
2317	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2318}
2319EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2320
2321int sock_prot_inuse_get(struct net *net, struct proto *prot)
2322{
2323	int cpu, idx = prot->inuse_idx;
2324	int res = 0;
2325
2326	for_each_possible_cpu(cpu)
2327		res += per_cpu(prot_inuse, cpu).val[idx];
2328
2329	return res >= 0 ? res : 0;
2330}
2331EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2332#endif
2333
2334static void assign_proto_idx(struct proto *prot)
2335{
2336	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2337
2338	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2339		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2340		return;
2341	}
2342
2343	set_bit(prot->inuse_idx, proto_inuse_idx);
 
2344}
2345
2346static void release_proto_idx(struct proto *prot)
2347{
2348	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2349		clear_bit(prot->inuse_idx, proto_inuse_idx);
2350}
2351#else
2352static inline void assign_proto_idx(struct proto *prot)
2353{
 
2354}
2355
2356static inline void release_proto_idx(struct proto *prot)
2357{
2358}
 
2359#endif
2360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2361int proto_register(struct proto *prot, int alloc_slab)
2362{
 
 
 
 
 
 
 
 
 
 
2363	if (alloc_slab) {
2364		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2365					SLAB_HWCACHE_ALIGN | prot->slab_flags,
 
 
 
2366					NULL);
2367
2368		if (prot->slab == NULL) {
2369			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2370			       prot->name);
2371			goto out;
2372		}
2373
2374		if (prot->rsk_prot != NULL) {
2375			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2376			if (prot->rsk_prot->slab_name == NULL)
2377				goto out_free_sock_slab;
2378
2379			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2380								 prot->rsk_prot->obj_size, 0,
2381								 SLAB_HWCACHE_ALIGN, NULL);
2382
2383			if (prot->rsk_prot->slab == NULL) {
2384				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2385				       prot->name);
2386				goto out_free_request_sock_slab_name;
2387			}
2388		}
2389
2390		if (prot->twsk_prot != NULL) {
2391			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2392
2393			if (prot->twsk_prot->twsk_slab_name == NULL)
2394				goto out_free_request_sock_slab;
2395
2396			prot->twsk_prot->twsk_slab =
2397				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2398						  prot->twsk_prot->twsk_obj_size,
2399						  0,
2400						  SLAB_HWCACHE_ALIGN |
2401							prot->slab_flags,
2402						  NULL);
2403			if (prot->twsk_prot->twsk_slab == NULL)
2404				goto out_free_timewait_sock_slab_name;
2405		}
2406	}
2407
2408	write_lock(&proto_list_lock);
 
 
 
 
 
2409	list_add(&prot->node, &proto_list);
2410	assign_proto_idx(prot);
2411	write_unlock(&proto_list_lock);
2412	return 0;
2413
2414out_free_timewait_sock_slab_name:
2415	kfree(prot->twsk_prot->twsk_slab_name);
 
2416out_free_request_sock_slab:
2417	if (prot->rsk_prot && prot->rsk_prot->slab) {
2418		kmem_cache_destroy(prot->rsk_prot->slab);
2419		prot->rsk_prot->slab = NULL;
2420	}
2421out_free_request_sock_slab_name:
2422	if (prot->rsk_prot)
2423		kfree(prot->rsk_prot->slab_name);
2424out_free_sock_slab:
2425	kmem_cache_destroy(prot->slab);
2426	prot->slab = NULL;
2427out:
2428	return -ENOBUFS;
2429}
2430EXPORT_SYMBOL(proto_register);
2431
2432void proto_unregister(struct proto *prot)
2433{
2434	write_lock(&proto_list_lock);
2435	release_proto_idx(prot);
2436	list_del(&prot->node);
2437	write_unlock(&proto_list_lock);
2438
2439	if (prot->slab != NULL) {
2440		kmem_cache_destroy(prot->slab);
2441		prot->slab = NULL;
2442	}
2443
2444	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2445		kmem_cache_destroy(prot->rsk_prot->slab);
2446		kfree(prot->rsk_prot->slab_name);
2447		prot->rsk_prot->slab = NULL;
2448	}
2449
2450	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2451		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2452		kfree(prot->twsk_prot->twsk_slab_name);
2453		prot->twsk_prot->twsk_slab = NULL;
 
 
 
 
2454	}
 
 
 
 
 
 
 
 
 
 
 
2455}
2456EXPORT_SYMBOL(proto_unregister);
2457
2458#ifdef CONFIG_PROC_FS
2459static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2460	__acquires(proto_list_lock)
2461{
2462	read_lock(&proto_list_lock);
2463	return seq_list_start_head(&proto_list, *pos);
2464}
2465
2466static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2467{
2468	return seq_list_next(v, &proto_list, pos);
2469}
2470
2471static void proto_seq_stop(struct seq_file *seq, void *v)
2472	__releases(proto_list_lock)
2473{
2474	read_unlock(&proto_list_lock);
2475}
2476
2477static char proto_method_implemented(const void *method)
2478{
2479	return method == NULL ? 'n' : 'y';
2480}
 
 
 
 
 
 
 
 
 
 
2481
2482static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2483{
 
2484	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2485			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2486		   proto->name,
2487		   proto->obj_size,
2488		   sock_prot_inuse_get(seq_file_net(seq), proto),
2489		   proto->memory_allocated != NULL ? atomic_long_read(proto->memory_allocated) : -1L,
2490		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2491		   proto->max_header,
2492		   proto->slab == NULL ? "no" : "yes",
2493		   module_name(proto->owner),
2494		   proto_method_implemented(proto->close),
2495		   proto_method_implemented(proto->connect),
2496		   proto_method_implemented(proto->disconnect),
2497		   proto_method_implemented(proto->accept),
2498		   proto_method_implemented(proto->ioctl),
2499		   proto_method_implemented(proto->init),
2500		   proto_method_implemented(proto->destroy),
2501		   proto_method_implemented(proto->shutdown),
2502		   proto_method_implemented(proto->setsockopt),
2503		   proto_method_implemented(proto->getsockopt),
2504		   proto_method_implemented(proto->sendmsg),
2505		   proto_method_implemented(proto->recvmsg),
2506		   proto_method_implemented(proto->sendpage),
2507		   proto_method_implemented(proto->bind),
2508		   proto_method_implemented(proto->backlog_rcv),
2509		   proto_method_implemented(proto->hash),
2510		   proto_method_implemented(proto->unhash),
2511		   proto_method_implemented(proto->get_port),
2512		   proto_method_implemented(proto->enter_memory_pressure));
2513}
2514
2515static int proto_seq_show(struct seq_file *seq, void *v)
2516{
2517	if (v == &proto_list)
2518		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2519			   "protocol",
2520			   "size",
2521			   "sockets",
2522			   "memory",
2523			   "press",
2524			   "maxhdr",
2525			   "slab",
2526			   "module",
2527			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2528	else
2529		proto_seq_printf(seq, list_entry(v, struct proto, node));
2530	return 0;
2531}
2532
2533static const struct seq_operations proto_seq_ops = {
2534	.start  = proto_seq_start,
2535	.next   = proto_seq_next,
2536	.stop   = proto_seq_stop,
2537	.show   = proto_seq_show,
2538};
2539
2540static int proto_seq_open(struct inode *inode, struct file *file)
2541{
2542	return seq_open_net(inode, file, &proto_seq_ops,
2543			    sizeof(struct seq_net_private));
2544}
2545
2546static const struct file_operations proto_seq_fops = {
2547	.owner		= THIS_MODULE,
2548	.open		= proto_seq_open,
2549	.read		= seq_read,
2550	.llseek		= seq_lseek,
2551	.release	= seq_release_net,
2552};
2553
2554static __net_init int proto_init_net(struct net *net)
2555{
2556	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
 
2557		return -ENOMEM;
2558
2559	return 0;
2560}
2561
2562static __net_exit void proto_exit_net(struct net *net)
2563{
2564	proc_net_remove(net, "protocols");
2565}
2566
2567
2568static __net_initdata struct pernet_operations proto_net_ops = {
2569	.init = proto_init_net,
2570	.exit = proto_exit_net,
2571};
2572
2573static int __init proto_init(void)
2574{
2575	return register_pernet_subsys(&proto_net_ops);
2576}
2577
2578subsys_initcall(proto_init);
2579
2580#endif /* PROC_FS */
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
 
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
 
 
 
 
 
 
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <asm/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 110#include <linux/init.h>
 111#include <linux/highmem.h>
 112#include <linux/user_namespace.h>
 113#include <linux/static_key.h>
 114#include <linux/memcontrol.h>
 115#include <linux/prefetch.h>
 116#include <linux/compat.h>
 117
 118#include <linux/uaccess.h>
 
 119
 120#include <linux/netdevice.h>
 121#include <net/protocol.h>
 122#include <linux/skbuff.h>
 123#include <net/net_namespace.h>
 124#include <net/request_sock.h>
 125#include <net/sock.h>
 126#include <linux/net_tstamp.h>
 127#include <net/xfrm.h>
 128#include <linux/ipsec.h>
 129#include <net/cls_cgroup.h>
 130#include <net/netprio_cgroup.h>
 131#include <linux/sock_diag.h>
 132
 133#include <linux/filter.h>
 134#include <net/sock_reuseport.h>
 135#include <net/bpf_sk_storage.h>
 136
 137#include <trace/events/sock.h>
 138
 
 139#include <net/tcp.h>
 140#include <net/busy_poll.h>
 141
 142#include <linux/ethtool.h>
 143
 144#include "dev.h"
 145
 146static DEFINE_MUTEX(proto_list_mutex);
 147static LIST_HEAD(proto_list);
 148
 149static void sock_def_write_space_wfree(struct sock *sk);
 150static void sock_def_write_space(struct sock *sk);
 151
 152/**
 153 * sk_ns_capable - General socket capability test
 154 * @sk: Socket to use a capability on or through
 155 * @user_ns: The user namespace of the capability to use
 156 * @cap: The capability to use
 157 *
 158 * Test to see if the opener of the socket had when the socket was
 159 * created and the current process has the capability @cap in the user
 160 * namespace @user_ns.
 161 */
 162bool sk_ns_capable(const struct sock *sk,
 163		   struct user_namespace *user_ns, int cap)
 164{
 165	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 166		ns_capable(user_ns, cap);
 167}
 168EXPORT_SYMBOL(sk_ns_capable);
 169
 170/**
 171 * sk_capable - Socket global capability test
 172 * @sk: Socket to use a capability on or through
 173 * @cap: The global capability to use
 174 *
 175 * Test to see if the opener of the socket had when the socket was
 176 * created and the current process has the capability @cap in all user
 177 * namespaces.
 178 */
 179bool sk_capable(const struct sock *sk, int cap)
 180{
 181	return sk_ns_capable(sk, &init_user_ns, cap);
 182}
 183EXPORT_SYMBOL(sk_capable);
 184
 185/**
 186 * sk_net_capable - Network namespace socket capability test
 187 * @sk: Socket to use a capability on or through
 188 * @cap: The capability to use
 189 *
 190 * Test to see if the opener of the socket had when the socket was created
 191 * and the current process has the capability @cap over the network namespace
 192 * the socket is a member of.
 193 */
 194bool sk_net_capable(const struct sock *sk, int cap)
 195{
 196	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 197}
 198EXPORT_SYMBOL(sk_net_capable);
 199
 200/*
 201 * Each address family might have different locking rules, so we have
 202 * one slock key per address family and separate keys for internal and
 203 * userspace sockets.
 204 */
 205static struct lock_class_key af_family_keys[AF_MAX];
 206static struct lock_class_key af_family_kern_keys[AF_MAX];
 207static struct lock_class_key af_family_slock_keys[AF_MAX];
 208static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 209
 210/*
 211 * Make lock validator output more readable. (we pre-construct these
 212 * strings build-time, so that runtime initialization of socket
 213 * locks is fast):
 214 */
 215
 216#define _sock_locks(x)						  \
 217  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 218  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 219  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 220  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 221  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 222  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 223  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 224  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 225  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 226  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 227  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 228  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 229  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 230  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 231  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 232  x "AF_MCTP"  , \
 233  x "AF_MAX"
 234
 235static const char *const af_family_key_strings[AF_MAX+1] = {
 236	_sock_locks("sk_lock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 237};
 238static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 239	_sock_locks("slock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 240};
 241static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 242	_sock_locks("clock-")
 243};
 244
 245static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 246	_sock_locks("k-sk_lock-")
 247};
 248static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 249	_sock_locks("k-slock-")
 250};
 251static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 252	_sock_locks("k-clock-")
 253};
 254static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 255	_sock_locks("rlock-")
 256};
 257static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 258	_sock_locks("wlock-")
 259};
 260static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 261	_sock_locks("elock-")
 262};
 263
 264/*
 265 * sk_callback_lock and sk queues locking rules are per-address-family,
 266 * so split the lock classes by using a per-AF key:
 267 */
 268static struct lock_class_key af_callback_keys[AF_MAX];
 269static struct lock_class_key af_rlock_keys[AF_MAX];
 270static struct lock_class_key af_wlock_keys[AF_MAX];
 271static struct lock_class_key af_elock_keys[AF_MAX];
 272static struct lock_class_key af_kern_callback_keys[AF_MAX];
 
 
 
 
 
 
 273
 274/* Run time adjustable parameters. */
 275__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 276EXPORT_SYMBOL(sysctl_wmem_max);
 277__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 278EXPORT_SYMBOL(sysctl_rmem_max);
 279__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 280__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 281
 282/* Maximal space eaten by iovec or ancillary data plus some space */
 283int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 284EXPORT_SYMBOL(sysctl_optmem_max);
 285
 286int sysctl_tstamp_allow_data __read_mostly = 1;
 287
 288DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 289EXPORT_SYMBOL_GPL(memalloc_socks_key);
 290
 291/**
 292 * sk_set_memalloc - sets %SOCK_MEMALLOC
 293 * @sk: socket to set it on
 294 *
 295 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 296 * It's the responsibility of the admin to adjust min_free_kbytes
 297 * to meet the requirements
 298 */
 299void sk_set_memalloc(struct sock *sk)
 300{
 301	sock_set_flag(sk, SOCK_MEMALLOC);
 302	sk->sk_allocation |= __GFP_MEMALLOC;
 303	static_branch_inc(&memalloc_socks_key);
 304}
 305EXPORT_SYMBOL_GPL(sk_set_memalloc);
 306
 307void sk_clear_memalloc(struct sock *sk)
 308{
 309	sock_reset_flag(sk, SOCK_MEMALLOC);
 310	sk->sk_allocation &= ~__GFP_MEMALLOC;
 311	static_branch_dec(&memalloc_socks_key);
 312
 313	/*
 314	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 315	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 316	 * it has rmem allocations due to the last swapfile being deactivated
 317	 * but there is a risk that the socket is unusable due to exceeding
 318	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 319	 */
 320	sk_mem_reclaim(sk);
 321}
 322EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 323
 324int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 325{
 326	int ret;
 327	unsigned int noreclaim_flag;
 328
 329	/* these should have been dropped before queueing */
 330	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 331
 332	noreclaim_flag = memalloc_noreclaim_save();
 333	ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
 334				 tcp_v6_do_rcv,
 335				 tcp_v4_do_rcv,
 336				 sk, skb);
 337	memalloc_noreclaim_restore(noreclaim_flag);
 338
 339	return ret;
 340}
 341EXPORT_SYMBOL(__sk_backlog_rcv);
 342
 343void sk_error_report(struct sock *sk)
 344{
 345	sk->sk_error_report(sk);
 346
 347	switch (sk->sk_family) {
 348	case AF_INET:
 349		fallthrough;
 350	case AF_INET6:
 351		trace_inet_sk_error_report(sk);
 352		break;
 353	default:
 354		break;
 355	}
 356}
 357EXPORT_SYMBOL(sk_error_report);
 358
 359int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 360{
 361	struct __kernel_sock_timeval tv;
 362
 363	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 364		tv.tv_sec = 0;
 365		tv.tv_usec = 0;
 366	} else {
 367		tv.tv_sec = timeo / HZ;
 368		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 369	}
 370
 371	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 372		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 373		*(struct old_timeval32 *)optval = tv32;
 374		return sizeof(tv32);
 375	}
 376
 377	if (old_timeval) {
 378		struct __kernel_old_timeval old_tv;
 379		old_tv.tv_sec = tv.tv_sec;
 380		old_tv.tv_usec = tv.tv_usec;
 381		*(struct __kernel_old_timeval *)optval = old_tv;
 382		return sizeof(old_tv);
 383	}
 384
 385	*(struct __kernel_sock_timeval *)optval = tv;
 386	return sizeof(tv);
 387}
 388EXPORT_SYMBOL(sock_get_timeout);
 389
 390int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
 391			   sockptr_t optval, int optlen, bool old_timeval)
 392{
 393	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 394		struct old_timeval32 tv32;
 395
 396		if (optlen < sizeof(tv32))
 397			return -EINVAL;
 398
 399		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
 400			return -EFAULT;
 401		tv->tv_sec = tv32.tv_sec;
 402		tv->tv_usec = tv32.tv_usec;
 403	} else if (old_timeval) {
 404		struct __kernel_old_timeval old_tv;
 405
 406		if (optlen < sizeof(old_tv))
 407			return -EINVAL;
 408		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
 409			return -EFAULT;
 410		tv->tv_sec = old_tv.tv_sec;
 411		tv->tv_usec = old_tv.tv_usec;
 412	} else {
 413		if (optlen < sizeof(*tv))
 414			return -EINVAL;
 415		if (copy_from_sockptr(tv, optval, sizeof(*tv)))
 416			return -EFAULT;
 417	}
 418
 419	return 0;
 420}
 421EXPORT_SYMBOL(sock_copy_user_timeval);
 422
 423static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
 424			    bool old_timeval)
 425{
 426	struct __kernel_sock_timeval tv;
 427	int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
 428
 429	if (err)
 430		return err;
 431
 
 
 
 
 432	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 433		return -EDOM;
 434
 435	if (tv.tv_sec < 0) {
 436		static int warned __read_mostly;
 437
 438		*timeo_p = 0;
 439		if (warned < 10 && net_ratelimit()) {
 440			warned++;
 441			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 442				__func__, current->comm, task_pid_nr(current));
 
 443		}
 444		return 0;
 445	}
 446	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 447	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 448		return 0;
 449	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
 450		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
 451	return 0;
 452}
 453
 454static bool sock_needs_netstamp(const struct sock *sk)
 455{
 456	switch (sk->sk_family) {
 457	case AF_UNSPEC:
 458	case AF_UNIX:
 459		return false;
 460	default:
 461		return true;
 
 462	}
 463}
 464
 465static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 466{
 467	if (sk->sk_flags & flags) {
 468		sk->sk_flags &= ~flags;
 469		if (sock_needs_netstamp(sk) &&
 470		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 471			net_disable_timestamp();
 
 472	}
 473}
 474
 475
 476int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 477{
 
 
 478	unsigned long flags;
 479	struct sk_buff_head *list = &sk->sk_receive_queue;
 480
 481	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 
 
 
 
 482		atomic_inc(&sk->sk_drops);
 483		trace_sock_rcvqueue_full(sk, skb);
 484		return -ENOMEM;
 485	}
 486
 487	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 
 
 
 
 488		atomic_inc(&sk->sk_drops);
 489		return -ENOBUFS;
 490	}
 491
 492	skb->dev = NULL;
 493	skb_set_owner_r(skb, sk);
 494
 
 
 
 
 
 
 
 495	/* we escape from rcu protected region, make sure we dont leak
 496	 * a norefcounted dst
 497	 */
 498	skb_dst_force(skb);
 499
 500	spin_lock_irqsave(&list->lock, flags);
 501	sock_skb_set_dropcount(sk, skb);
 502	__skb_queue_tail(list, skb);
 503	spin_unlock_irqrestore(&list->lock, flags);
 504
 505	if (!sock_flag(sk, SOCK_DEAD))
 506		sk->sk_data_ready(sk);
 507	return 0;
 508}
 509EXPORT_SYMBOL(__sock_queue_rcv_skb);
 510
 511int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
 512			      enum skb_drop_reason *reason)
 513{
 514	enum skb_drop_reason drop_reason;
 515	int err;
 516
 517	err = sk_filter(sk, skb);
 518	if (err) {
 519		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
 520		goto out;
 521	}
 522	err = __sock_queue_rcv_skb(sk, skb);
 523	switch (err) {
 524	case -ENOMEM:
 525		drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
 526		break;
 527	case -ENOBUFS:
 528		drop_reason = SKB_DROP_REASON_PROTO_MEM;
 529		break;
 530	default:
 531		drop_reason = SKB_NOT_DROPPED_YET;
 532		break;
 533	}
 534out:
 535	if (reason)
 536		*reason = drop_reason;
 537	return err;
 538}
 539EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
 540
 541int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 542		     const int nested, unsigned int trim_cap, bool refcounted)
 543{
 544	int rc = NET_RX_SUCCESS;
 545
 546	if (sk_filter_trim_cap(sk, skb, trim_cap))
 547		goto discard_and_relse;
 548
 549	skb->dev = NULL;
 550
 551	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 552		atomic_inc(&sk->sk_drops);
 553		goto discard_and_relse;
 554	}
 555	if (nested)
 556		bh_lock_sock_nested(sk);
 557	else
 558		bh_lock_sock(sk);
 559	if (!sock_owned_by_user(sk)) {
 560		/*
 561		 * trylock + unlock semantics:
 562		 */
 563		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 564
 565		rc = sk_backlog_rcv(sk, skb);
 566
 567		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
 568	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 569		bh_unlock_sock(sk);
 570		atomic_inc(&sk->sk_drops);
 571		goto discard_and_relse;
 572	}
 573
 574	bh_unlock_sock(sk);
 575out:
 576	if (refcounted)
 577		sock_put(sk);
 578	return rc;
 579discard_and_relse:
 580	kfree_skb(skb);
 581	goto out;
 582}
 583EXPORT_SYMBOL(__sk_receive_skb);
 
 
 
 
 
 
 584
 585INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
 586							  u32));
 587INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
 588							   u32));
 589struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 590{
 591	struct dst_entry *dst = __sk_dst_get(sk);
 592
 593	if (dst && dst->obsolete &&
 594	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 595			       dst, cookie) == NULL) {
 596		sk_tx_queue_clear(sk);
 597		sk->sk_dst_pending_confirm = 0;
 598		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 599		dst_release(dst);
 600		return NULL;
 601	}
 602
 603	return dst;
 604}
 605EXPORT_SYMBOL(__sk_dst_check);
 606
 607struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 608{
 609	struct dst_entry *dst = sk_dst_get(sk);
 610
 611	if (dst && dst->obsolete &&
 612	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 613			       dst, cookie) == NULL) {
 614		sk_dst_reset(sk);
 615		dst_release(dst);
 616		return NULL;
 617	}
 618
 619	return dst;
 620}
 621EXPORT_SYMBOL(sk_dst_check);
 622
 623static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
 624{
 625	int ret = -ENOPROTOOPT;
 626#ifdef CONFIG_NETDEVICES
 627	struct net *net = sock_net(sk);
 
 
 628
 629	/* Sorry... */
 630	ret = -EPERM;
 631	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
 632		goto out;
 633
 634	ret = -EINVAL;
 635	if (ifindex < 0)
 636		goto out;
 637
 638	/* Paired with all READ_ONCE() done locklessly. */
 639	WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
 640
 641	if (sk->sk_prot->rehash)
 642		sk->sk_prot->rehash(sk);
 643	sk_dst_reset(sk);
 644
 645	ret = 0;
 646
 647out:
 648#endif
 649
 650	return ret;
 651}
 652
 653int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
 654{
 655	int ret;
 656
 657	if (lock_sk)
 658		lock_sock(sk);
 659	ret = sock_bindtoindex_locked(sk, ifindex);
 660	if (lock_sk)
 661		release_sock(sk);
 662
 663	return ret;
 664}
 665EXPORT_SYMBOL(sock_bindtoindex);
 666
 667static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
 668{
 669	int ret = -ENOPROTOOPT;
 670#ifdef CONFIG_NETDEVICES
 671	struct net *net = sock_net(sk);
 672	char devname[IFNAMSIZ];
 673	int index;
 674
 675	ret = -EINVAL;
 676	if (optlen < 0)
 677		goto out;
 678
 679	/* Bind this socket to a particular device like "eth0",
 680	 * as specified in the passed interface name. If the
 681	 * name is "" or the option length is zero the socket
 682	 * is not bound.
 683	 */
 684	if (optlen > IFNAMSIZ - 1)
 685		optlen = IFNAMSIZ - 1;
 686	memset(devname, 0, sizeof(devname));
 687
 688	ret = -EFAULT;
 689	if (copy_from_sockptr(devname, optval, optlen))
 690		goto out;
 691
 692	index = 0;
 693	if (devname[0] != '\0') {
 694		struct net_device *dev;
 695
 696		rcu_read_lock();
 697		dev = dev_get_by_name_rcu(net, devname);
 698		if (dev)
 699			index = dev->ifindex;
 700		rcu_read_unlock();
 701		ret = -ENODEV;
 702		if (!dev)
 703			goto out;
 704	}
 705
 706	sockopt_lock_sock(sk);
 707	ret = sock_bindtoindex_locked(sk, index);
 708	sockopt_release_sock(sk);
 709out:
 710#endif
 711
 712	return ret;
 713}
 714
 715static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
 716				sockptr_t optlen, int len)
 717{
 718	int ret = -ENOPROTOOPT;
 719#ifdef CONFIG_NETDEVICES
 720	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
 721	struct net *net = sock_net(sk);
 722	char devname[IFNAMSIZ];
 723
 724	if (bound_dev_if == 0) {
 725		len = 0;
 726		goto zero;
 727	}
 728
 729	ret = -EINVAL;
 730	if (len < IFNAMSIZ)
 731		goto out;
 732
 733	ret = netdev_get_name(net, devname, bound_dev_if);
 734	if (ret)
 735		goto out;
 736
 737	len = strlen(devname) + 1;
 738
 739	ret = -EFAULT;
 740	if (copy_to_sockptr(optval, devname, len))
 741		goto out;
 742
 743zero:
 744	ret = -EFAULT;
 745	if (copy_to_sockptr(optlen, &len, sizeof(int)))
 746		goto out;
 747
 748	ret = 0;
 749
 750out:
 751#endif
 752
 753	return ret;
 754}
 755
 756bool sk_mc_loop(struct sock *sk)
 757{
 758	if (dev_recursion_level())
 759		return false;
 760	if (!sk)
 761		return true;
 762	switch (sk->sk_family) {
 763	case AF_INET:
 764		return inet_sk(sk)->mc_loop;
 765#if IS_ENABLED(CONFIG_IPV6)
 766	case AF_INET6:
 767		return inet6_sk(sk)->mc_loop;
 768#endif
 769	}
 770	WARN_ON_ONCE(1);
 771	return true;
 772}
 773EXPORT_SYMBOL(sk_mc_loop);
 774
 775void sock_set_reuseaddr(struct sock *sk)
 776{
 777	lock_sock(sk);
 778	sk->sk_reuse = SK_CAN_REUSE;
 779	release_sock(sk);
 780}
 781EXPORT_SYMBOL(sock_set_reuseaddr);
 782
 783void sock_set_reuseport(struct sock *sk)
 784{
 785	lock_sock(sk);
 786	sk->sk_reuseport = true;
 787	release_sock(sk);
 788}
 789EXPORT_SYMBOL(sock_set_reuseport);
 790
 791void sock_no_linger(struct sock *sk)
 792{
 793	lock_sock(sk);
 794	sk->sk_lingertime = 0;
 795	sock_set_flag(sk, SOCK_LINGER);
 796	release_sock(sk);
 797}
 798EXPORT_SYMBOL(sock_no_linger);
 799
 800void sock_set_priority(struct sock *sk, u32 priority)
 801{
 802	lock_sock(sk);
 803	sk->sk_priority = priority;
 804	release_sock(sk);
 805}
 806EXPORT_SYMBOL(sock_set_priority);
 807
 808void sock_set_sndtimeo(struct sock *sk, s64 secs)
 809{
 810	lock_sock(sk);
 811	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
 812		sk->sk_sndtimeo = secs * HZ;
 813	else
 814		sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
 815	release_sock(sk);
 816}
 817EXPORT_SYMBOL(sock_set_sndtimeo);
 818
 819static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
 820{
 821	if (val)  {
 822		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
 823		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
 824		sock_set_flag(sk, SOCK_RCVTSTAMP);
 825		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 826	} else {
 827		sock_reset_flag(sk, SOCK_RCVTSTAMP);
 828		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 829	}
 830}
 831
 832void sock_enable_timestamps(struct sock *sk)
 833{
 834	lock_sock(sk);
 835	__sock_set_timestamps(sk, true, false, true);
 836	release_sock(sk);
 837}
 838EXPORT_SYMBOL(sock_enable_timestamps);
 839
 840void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
 841{
 842	switch (optname) {
 843	case SO_TIMESTAMP_OLD:
 844		__sock_set_timestamps(sk, valbool, false, false);
 845		break;
 846	case SO_TIMESTAMP_NEW:
 847		__sock_set_timestamps(sk, valbool, true, false);
 848		break;
 849	case SO_TIMESTAMPNS_OLD:
 850		__sock_set_timestamps(sk, valbool, false, true);
 851		break;
 852	case SO_TIMESTAMPNS_NEW:
 853		__sock_set_timestamps(sk, valbool, true, true);
 854		break;
 855	}
 856}
 857
 858static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
 859{
 860	struct net *net = sock_net(sk);
 861	struct net_device *dev = NULL;
 862	bool match = false;
 863	int *vclock_index;
 864	int i, num;
 865
 866	if (sk->sk_bound_dev_if)
 867		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
 868
 869	if (!dev) {
 870		pr_err("%s: sock not bind to device\n", __func__);
 871		return -EOPNOTSUPP;
 872	}
 873
 874	num = ethtool_get_phc_vclocks(dev, &vclock_index);
 875	dev_put(dev);
 876
 877	for (i = 0; i < num; i++) {
 878		if (*(vclock_index + i) == phc_index) {
 879			match = true;
 880			break;
 881		}
 882	}
 883
 884	if (num > 0)
 885		kfree(vclock_index);
 886
 887	if (!match)
 888		return -EINVAL;
 889
 890	sk->sk_bind_phc = phc_index;
 891
 892	return 0;
 893}
 894
 895int sock_set_timestamping(struct sock *sk, int optname,
 896			  struct so_timestamping timestamping)
 897{
 898	int val = timestamping.flags;
 899	int ret;
 900
 901	if (val & ~SOF_TIMESTAMPING_MASK)
 902		return -EINVAL;
 903
 904	if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
 905	    !(val & SOF_TIMESTAMPING_OPT_ID))
 906		return -EINVAL;
 907
 908	if (val & SOF_TIMESTAMPING_OPT_ID &&
 909	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 910		if (sk_is_tcp(sk)) {
 911			if ((1 << sk->sk_state) &
 912			    (TCPF_CLOSE | TCPF_LISTEN))
 913				return -EINVAL;
 914			if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
 915				atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
 916			else
 917				atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
 918		} else {
 919			atomic_set(&sk->sk_tskey, 0);
 920		}
 921	}
 922
 923	if (val & SOF_TIMESTAMPING_OPT_STATS &&
 924	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
 925		return -EINVAL;
 926
 927	if (val & SOF_TIMESTAMPING_BIND_PHC) {
 928		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
 929		if (ret)
 930			return ret;
 931	}
 932
 933	sk->sk_tsflags = val;
 934	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
 935
 936	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 937		sock_enable_timestamp(sk,
 938				      SOCK_TIMESTAMPING_RX_SOFTWARE);
 939	else
 940		sock_disable_timestamp(sk,
 941				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 942	return 0;
 943}
 944
 945void sock_set_keepalive(struct sock *sk)
 946{
 947	lock_sock(sk);
 948	if (sk->sk_prot->keepalive)
 949		sk->sk_prot->keepalive(sk, true);
 950	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
 951	release_sock(sk);
 952}
 953EXPORT_SYMBOL(sock_set_keepalive);
 954
 955static void __sock_set_rcvbuf(struct sock *sk, int val)
 956{
 957	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
 958	 * as a negative value.
 959	 */
 960	val = min_t(int, val, INT_MAX / 2);
 961	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 962
 963	/* We double it on the way in to account for "struct sk_buff" etc.
 964	 * overhead.   Applications assume that the SO_RCVBUF setting they make
 965	 * will allow that much actual data to be received on that socket.
 966	 *
 967	 * Applications are unaware that "struct sk_buff" and other overheads
 968	 * allocate from the receive buffer during socket buffer allocation.
 969	 *
 970	 * And after considering the possible alternatives, returning the value
 971	 * we actually used in getsockopt is the most desirable behavior.
 972	 */
 973	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
 974}
 975
 976void sock_set_rcvbuf(struct sock *sk, int val)
 977{
 978	lock_sock(sk);
 979	__sock_set_rcvbuf(sk, val);
 980	release_sock(sk);
 981}
 982EXPORT_SYMBOL(sock_set_rcvbuf);
 983
 984static void __sock_set_mark(struct sock *sk, u32 val)
 985{
 986	if (val != sk->sk_mark) {
 987		sk->sk_mark = val;
 988		sk_dst_reset(sk);
 989	}
 990}
 991
 992void sock_set_mark(struct sock *sk, u32 val)
 993{
 994	lock_sock(sk);
 995	__sock_set_mark(sk, val);
 996	release_sock(sk);
 997}
 998EXPORT_SYMBOL(sock_set_mark);
 999
1000static void sock_release_reserved_memory(struct sock *sk, int bytes)
1001{
1002	/* Round down bytes to multiple of pages */
1003	bytes = round_down(bytes, PAGE_SIZE);
1004
1005	WARN_ON(bytes > sk->sk_reserved_mem);
1006	sk->sk_reserved_mem -= bytes;
1007	sk_mem_reclaim(sk);
1008}
1009
1010static int sock_reserve_memory(struct sock *sk, int bytes)
1011{
1012	long allocated;
1013	bool charged;
1014	int pages;
1015
1016	if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1017		return -EOPNOTSUPP;
1018
1019	if (!bytes)
1020		return 0;
1021
1022	pages = sk_mem_pages(bytes);
1023
1024	/* pre-charge to memcg */
1025	charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1026					  GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1027	if (!charged)
1028		return -ENOMEM;
1029
1030	/* pre-charge to forward_alloc */
1031	sk_memory_allocated_add(sk, pages);
1032	allocated = sk_memory_allocated(sk);
1033	/* If the system goes into memory pressure with this
1034	 * precharge, give up and return error.
1035	 */
1036	if (allocated > sk_prot_mem_limits(sk, 1)) {
1037		sk_memory_allocated_sub(sk, pages);
1038		mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1039		return -ENOMEM;
1040	}
1041	sk->sk_forward_alloc += pages << PAGE_SHIFT;
1042
1043	sk->sk_reserved_mem += pages << PAGE_SHIFT;
1044
1045	return 0;
1046}
1047
1048void sockopt_lock_sock(struct sock *sk)
1049{
1050	/* When current->bpf_ctx is set, the setsockopt is called from
1051	 * a bpf prog.  bpf has ensured the sk lock has been
1052	 * acquired before calling setsockopt().
1053	 */
1054	if (has_current_bpf_ctx())
1055		return;
1056
1057	lock_sock(sk);
1058}
1059EXPORT_SYMBOL(sockopt_lock_sock);
1060
1061void sockopt_release_sock(struct sock *sk)
1062{
1063	if (has_current_bpf_ctx())
1064		return;
1065
1066	release_sock(sk);
1067}
1068EXPORT_SYMBOL(sockopt_release_sock);
1069
1070bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1071{
1072	return has_current_bpf_ctx() || ns_capable(ns, cap);
1073}
1074EXPORT_SYMBOL(sockopt_ns_capable);
1075
1076bool sockopt_capable(int cap)
1077{
1078	return has_current_bpf_ctx() || capable(cap);
1079}
1080EXPORT_SYMBOL(sockopt_capable);
1081
1082/*
1083 *	This is meant for all protocols to use and covers goings on
1084 *	at the socket level. Everything here is generic.
1085 */
1086
1087int sk_setsockopt(struct sock *sk, int level, int optname,
1088		  sockptr_t optval, unsigned int optlen)
1089{
1090	struct so_timestamping timestamping;
1091	struct socket *sock = sk->sk_socket;
1092	struct sock_txtime sk_txtime;
1093	int val;
1094	int valbool;
1095	struct linger ling;
1096	int ret = 0;
1097
1098	/*
1099	 *	Options without arguments
1100	 */
1101
1102	if (optname == SO_BINDTODEVICE)
1103		return sock_setbindtodevice(sk, optval, optlen);
1104
1105	if (optlen < sizeof(int))
1106		return -EINVAL;
1107
1108	if (copy_from_sockptr(&val, optval, sizeof(val)))
1109		return -EFAULT;
1110
1111	valbool = val ? 1 : 0;
1112
1113	sockopt_lock_sock(sk);
1114
1115	switch (optname) {
1116	case SO_DEBUG:
1117		if (val && !sockopt_capable(CAP_NET_ADMIN))
1118			ret = -EACCES;
1119		else
1120			sock_valbool_flag(sk, SOCK_DBG, valbool);
1121		break;
1122	case SO_REUSEADDR:
1123		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1124		break;
1125	case SO_REUSEPORT:
1126		sk->sk_reuseport = valbool;
1127		break;
1128	case SO_TYPE:
1129	case SO_PROTOCOL:
1130	case SO_DOMAIN:
1131	case SO_ERROR:
1132		ret = -ENOPROTOOPT;
1133		break;
1134	case SO_DONTROUTE:
1135		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1136		sk_dst_reset(sk);
1137		break;
1138	case SO_BROADCAST:
1139		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1140		break;
1141	case SO_SNDBUF:
1142		/* Don't error on this BSD doesn't and if you think
1143		 * about it this is right. Otherwise apps have to
1144		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1145		 * are treated in BSD as hints
1146		 */
1147		val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
 
1148set_sndbuf:
1149		/* Ensure val * 2 fits into an int, to prevent max_t()
1150		 * from treating it as a negative value.
 
 
 
 
 
 
 
1151		 */
1152		val = min_t(int, val, INT_MAX / 2);
1153		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1154		WRITE_ONCE(sk->sk_sndbuf,
1155			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1156		/* Wake up sending tasks if we upped the value. */
1157		sk->sk_write_space(sk);
1158		break;
1159
1160	case SO_SNDBUFFORCE:
1161		if (!sockopt_capable(CAP_NET_ADMIN)) {
1162			ret = -EPERM;
1163			break;
1164		}
1165
1166		/* No negative values (to prevent underflow, as val will be
1167		 * multiplied by 2).
1168		 */
1169		if (val < 0)
1170			val = 0;
1171		goto set_sndbuf;
1172
1173	case SO_RCVBUF:
1174		/* Don't error on this BSD doesn't and if you think
1175		 * about it this is right. Otherwise apps have to
1176		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1177		 * are treated in BSD as hints
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178		 */
1179		__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
 
 
 
1180		break;
1181
1182	case SO_RCVBUFFORCE:
1183		if (!sockopt_capable(CAP_NET_ADMIN)) {
1184			ret = -EPERM;
1185			break;
1186		}
1187
1188		/* No negative values (to prevent underflow, as val will be
1189		 * multiplied by 2).
1190		 */
1191		__sock_set_rcvbuf(sk, max(val, 0));
1192		break;
1193
1194	case SO_KEEPALIVE:
1195		if (sk->sk_prot->keepalive)
1196			sk->sk_prot->keepalive(sk, valbool);
 
 
1197		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1198		break;
1199
1200	case SO_OOBINLINE:
1201		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1202		break;
1203
1204	case SO_NO_CHECK:
1205		sk->sk_no_check_tx = valbool;
1206		break;
1207
1208	case SO_PRIORITY:
1209		if ((val >= 0 && val <= 6) ||
1210		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1211		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1212			sk->sk_priority = val;
1213		else
1214			ret = -EPERM;
1215		break;
1216
1217	case SO_LINGER:
1218		if (optlen < sizeof(ling)) {
1219			ret = -EINVAL;	/* 1003.1g */
1220			break;
1221		}
1222		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1223			ret = -EFAULT;
1224			break;
1225		}
1226		if (!ling.l_onoff)
1227			sock_reset_flag(sk, SOCK_LINGER);
1228		else {
1229#if (BITS_PER_LONG == 32)
1230			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1231				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1232			else
1233#endif
1234				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1235			sock_set_flag(sk, SOCK_LINGER);
1236		}
1237		break;
1238
1239	case SO_BSDCOMPAT:
 
1240		break;
1241
1242	case SO_PASSCRED:
1243		if (valbool)
1244			set_bit(SOCK_PASSCRED, &sock->flags);
1245		else
1246			clear_bit(SOCK_PASSCRED, &sock->flags);
1247		break;
1248
1249	case SO_TIMESTAMP_OLD:
1250	case SO_TIMESTAMP_NEW:
1251	case SO_TIMESTAMPNS_OLD:
1252	case SO_TIMESTAMPNS_NEW:
1253		sock_set_timestamp(sk, optname, valbool);
 
 
 
 
 
 
 
 
1254		break;
1255
1256	case SO_TIMESTAMPING_NEW:
1257	case SO_TIMESTAMPING_OLD:
1258		if (optlen == sizeof(timestamping)) {
1259			if (copy_from_sockptr(&timestamping, optval,
1260					      sizeof(timestamping))) {
1261				ret = -EFAULT;
1262				break;
1263			}
1264		} else {
1265			memset(&timestamping, 0, sizeof(timestamping));
1266			timestamping.flags = val;
1267		}
1268		ret = sock_set_timestamping(sk, optname, timestamping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1269		break;
1270
1271	case SO_RCVLOWAT:
1272		if (val < 0)
1273			val = INT_MAX;
1274		if (sock && sock->ops->set_rcvlowat)
1275			ret = sock->ops->set_rcvlowat(sk, val);
1276		else
1277			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1278		break;
1279
1280	case SO_RCVTIMEO_OLD:
1281	case SO_RCVTIMEO_NEW:
1282		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1283				       optlen, optname == SO_RCVTIMEO_OLD);
1284		break;
1285
1286	case SO_SNDTIMEO_OLD:
1287	case SO_SNDTIMEO_NEW:
1288		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1289				       optlen, optname == SO_SNDTIMEO_OLD);
1290		break;
1291
1292	case SO_ATTACH_FILTER: {
1293		struct sock_fprog fprog;
1294
1295		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1296		if (!ret)
1297			ret = sk_attach_filter(&fprog, sk);
1298		break;
1299	}
1300	case SO_ATTACH_BPF:
1301		ret = -EINVAL;
1302		if (optlen == sizeof(u32)) {
1303			u32 ufd;
1304
1305			ret = -EFAULT;
1306			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1307				break;
1308
1309			ret = sk_attach_bpf(ufd, sk);
1310		}
1311		break;
1312
1313	case SO_ATTACH_REUSEPORT_CBPF: {
1314		struct sock_fprog fprog;
1315
1316		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1317		if (!ret)
1318			ret = sk_reuseport_attach_filter(&fprog, sk);
1319		break;
1320	}
1321	case SO_ATTACH_REUSEPORT_EBPF:
1322		ret = -EINVAL;
1323		if (optlen == sizeof(u32)) {
1324			u32 ufd;
1325
1326			ret = -EFAULT;
1327			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1328				break;
1329
1330			ret = sk_reuseport_attach_bpf(ufd, sk);
1331		}
1332		break;
1333
1334	case SO_DETACH_REUSEPORT_BPF:
1335		ret = reuseport_detach_prog(sk);
1336		break;
1337
1338	case SO_DETACH_FILTER:
1339		ret = sk_detach_filter(sk);
1340		break;
1341
1342	case SO_LOCK_FILTER:
1343		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1344			ret = -EPERM;
1345		else
1346			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1347		break;
1348
1349	case SO_PASSSEC:
1350		if (valbool)
1351			set_bit(SOCK_PASSSEC, &sock->flags);
1352		else
1353			clear_bit(SOCK_PASSSEC, &sock->flags);
1354		break;
1355	case SO_MARK:
1356		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1357		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1358			ret = -EPERM;
1359			break;
1360		}
1361
1362		__sock_set_mark(sk, val);
1363		break;
1364	case SO_RCVMARK:
1365		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1366		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1367			ret = -EPERM;
1368			break;
1369		}
1370
1371		sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1372		break;
1373
 
 
1374	case SO_RXQ_OVFL:
1375		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1376		break;
1377
1378	case SO_WIFI_STATUS:
1379		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1380		break;
1381
1382	case SO_PEEK_OFF:
1383		if (sock->ops->set_peek_off)
1384			ret = sock->ops->set_peek_off(sk, val);
1385		else
1386			ret = -EOPNOTSUPP;
1387		break;
1388
1389	case SO_NOFCS:
1390		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1391		break;
1392
1393	case SO_SELECT_ERR_QUEUE:
1394		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1395		break;
1396
1397#ifdef CONFIG_NET_RX_BUSY_POLL
1398	case SO_BUSY_POLL:
1399		/* allow unprivileged users to decrease the value */
1400		if ((val > sk->sk_ll_usec) && !sockopt_capable(CAP_NET_ADMIN))
1401			ret = -EPERM;
1402		else {
1403			if (val < 0)
1404				ret = -EINVAL;
1405			else
1406				WRITE_ONCE(sk->sk_ll_usec, val);
1407		}
1408		break;
1409	case SO_PREFER_BUSY_POLL:
1410		if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1411			ret = -EPERM;
1412		else
1413			WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1414		break;
1415	case SO_BUSY_POLL_BUDGET:
1416		if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) {
1417			ret = -EPERM;
1418		} else {
1419			if (val < 0 || val > U16_MAX)
1420				ret = -EINVAL;
1421			else
1422				WRITE_ONCE(sk->sk_busy_poll_budget, val);
1423		}
1424		break;
1425#endif
1426
1427	case SO_MAX_PACING_RATE:
1428		{
1429		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1430
1431		if (sizeof(ulval) != sizeof(val) &&
1432		    optlen >= sizeof(ulval) &&
1433		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1434			ret = -EFAULT;
1435			break;
1436		}
1437		if (ulval != ~0UL)
1438			cmpxchg(&sk->sk_pacing_status,
1439				SK_PACING_NONE,
1440				SK_PACING_NEEDED);
1441		sk->sk_max_pacing_rate = ulval;
1442		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1443		break;
1444		}
1445	case SO_INCOMING_CPU:
1446		reuseport_update_incoming_cpu(sk, val);
1447		break;
1448
1449	case SO_CNX_ADVICE:
1450		if (val == 1)
1451			dst_negative_advice(sk);
1452		break;
1453
1454	case SO_ZEROCOPY:
1455		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1456			if (!(sk_is_tcp(sk) ||
1457			      (sk->sk_type == SOCK_DGRAM &&
1458			       sk->sk_protocol == IPPROTO_UDP)))
1459				ret = -EOPNOTSUPP;
1460		} else if (sk->sk_family != PF_RDS) {
1461			ret = -EOPNOTSUPP;
1462		}
1463		if (!ret) {
1464			if (val < 0 || val > 1)
1465				ret = -EINVAL;
1466			else
1467				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1468		}
1469		break;
1470
1471	case SO_TXTIME:
1472		if (optlen != sizeof(struct sock_txtime)) {
1473			ret = -EINVAL;
1474			break;
1475		} else if (copy_from_sockptr(&sk_txtime, optval,
1476			   sizeof(struct sock_txtime))) {
1477			ret = -EFAULT;
1478			break;
1479		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1480			ret = -EINVAL;
1481			break;
1482		}
1483		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1484		 * scheduler has enough safe guards.
1485		 */
1486		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1487		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1488			ret = -EPERM;
1489			break;
1490		}
1491		sock_valbool_flag(sk, SOCK_TXTIME, true);
1492		sk->sk_clockid = sk_txtime.clockid;
1493		sk->sk_txtime_deadline_mode =
1494			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1495		sk->sk_txtime_report_errors =
1496			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1497		break;
1498
1499	case SO_BINDTOIFINDEX:
1500		ret = sock_bindtoindex_locked(sk, val);
1501		break;
1502
1503	case SO_BUF_LOCK:
1504		if (val & ~SOCK_BUF_LOCK_MASK) {
1505			ret = -EINVAL;
1506			break;
1507		}
1508		sk->sk_userlocks = val | (sk->sk_userlocks &
1509					  ~SOCK_BUF_LOCK_MASK);
1510		break;
1511
1512	case SO_RESERVE_MEM:
1513	{
1514		int delta;
1515
1516		if (val < 0) {
1517			ret = -EINVAL;
1518			break;
1519		}
1520
1521		delta = val - sk->sk_reserved_mem;
1522		if (delta < 0)
1523			sock_release_reserved_memory(sk, -delta);
1524		else
1525			ret = sock_reserve_memory(sk, delta);
1526		break;
1527	}
1528
1529	case SO_TXREHASH:
1530		if (val < -1 || val > 1) {
1531			ret = -EINVAL;
1532			break;
1533		}
1534		if ((u8)val == SOCK_TXREHASH_DEFAULT)
1535			val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1536		/* Paired with READ_ONCE() in tcp_rtx_synack() */
1537		WRITE_ONCE(sk->sk_txrehash, (u8)val);
1538		break;
1539
1540	default:
1541		ret = -ENOPROTOOPT;
1542		break;
1543	}
1544	sockopt_release_sock(sk);
1545	return ret;
1546}
1547
1548int sock_setsockopt(struct socket *sock, int level, int optname,
1549		    sockptr_t optval, unsigned int optlen)
1550{
1551	return sk_setsockopt(sock->sk, level, optname,
1552			     optval, optlen);
1553}
1554EXPORT_SYMBOL(sock_setsockopt);
1555
1556static const struct cred *sk_get_peer_cred(struct sock *sk)
1557{
1558	const struct cred *cred;
1559
1560	spin_lock(&sk->sk_peer_lock);
1561	cred = get_cred(sk->sk_peer_cred);
1562	spin_unlock(&sk->sk_peer_lock);
1563
1564	return cred;
1565}
1566
1567static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1568			  struct ucred *ucred)
1569{
1570	ucred->pid = pid_vnr(pid);
1571	ucred->uid = ucred->gid = -1;
1572	if (cred) {
1573		struct user_namespace *current_ns = current_user_ns();
1574
1575		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1576		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1577	}
1578}
 
1579
1580static int groups_to_user(sockptr_t dst, const struct group_info *src)
 
1581{
1582	struct user_namespace *user_ns = current_user_ns();
1583	int i;
1584
1585	for (i = 0; i < src->ngroups; i++) {
1586		gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1587
1588		if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1589			return -EFAULT;
1590	}
1591
1592	return 0;
1593}
1594
1595int sk_getsockopt(struct sock *sk, int level, int optname,
1596		  sockptr_t optval, sockptr_t optlen)
1597{
1598	struct socket *sock = sk->sk_socket;
1599
1600	union {
1601		int val;
1602		u64 val64;
1603		unsigned long ulval;
1604		struct linger ling;
1605		struct old_timeval32 tm32;
1606		struct __kernel_old_timeval tm;
1607		struct  __kernel_sock_timeval stm;
1608		struct sock_txtime txtime;
1609		struct so_timestamping timestamping;
1610	} v;
1611
1612	int lv = sizeof(int);
1613	int len;
1614
1615	if (copy_from_sockptr(&len, optlen, sizeof(int)))
1616		return -EFAULT;
1617	if (len < 0)
1618		return -EINVAL;
1619
1620	memset(&v, 0, sizeof(v));
1621
1622	switch (optname) {
1623	case SO_DEBUG:
1624		v.val = sock_flag(sk, SOCK_DBG);
1625		break;
1626
1627	case SO_DONTROUTE:
1628		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1629		break;
1630
1631	case SO_BROADCAST:
1632		v.val = sock_flag(sk, SOCK_BROADCAST);
1633		break;
1634
1635	case SO_SNDBUF:
1636		v.val = sk->sk_sndbuf;
1637		break;
1638
1639	case SO_RCVBUF:
1640		v.val = sk->sk_rcvbuf;
1641		break;
1642
1643	case SO_REUSEADDR:
1644		v.val = sk->sk_reuse;
1645		break;
1646
1647	case SO_REUSEPORT:
1648		v.val = sk->sk_reuseport;
1649		break;
1650
1651	case SO_KEEPALIVE:
1652		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1653		break;
1654
1655	case SO_TYPE:
1656		v.val = sk->sk_type;
1657		break;
1658
1659	case SO_PROTOCOL:
1660		v.val = sk->sk_protocol;
1661		break;
1662
1663	case SO_DOMAIN:
1664		v.val = sk->sk_family;
1665		break;
1666
1667	case SO_ERROR:
1668		v.val = -sock_error(sk);
1669		if (v.val == 0)
1670			v.val = xchg(&sk->sk_err_soft, 0);
1671		break;
1672
1673	case SO_OOBINLINE:
1674		v.val = sock_flag(sk, SOCK_URGINLINE);
1675		break;
1676
1677	case SO_NO_CHECK:
1678		v.val = sk->sk_no_check_tx;
1679		break;
1680
1681	case SO_PRIORITY:
1682		v.val = sk->sk_priority;
1683		break;
1684
1685	case SO_LINGER:
1686		lv		= sizeof(v.ling);
1687		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1688		v.ling.l_linger	= sk->sk_lingertime / HZ;
1689		break;
1690
1691	case SO_BSDCOMPAT:
 
1692		break;
1693
1694	case SO_TIMESTAMP_OLD:
1695		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1696				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1697				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1698		break;
1699
1700	case SO_TIMESTAMPNS_OLD:
1701		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1702		break;
1703
1704	case SO_TIMESTAMP_NEW:
1705		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1706		break;
1707
1708	case SO_TIMESTAMPNS_NEW:
1709		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1710		break;
1711
1712	case SO_TIMESTAMPING_OLD:
1713		lv = sizeof(v.timestamping);
1714		v.timestamping.flags = sk->sk_tsflags;
1715		v.timestamping.bind_phc = sk->sk_bind_phc;
1716		break;
1717
1718	case SO_RCVTIMEO_OLD:
1719	case SO_RCVTIMEO_NEW:
1720		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1721		break;
1722
1723	case SO_SNDTIMEO_OLD:
1724	case SO_SNDTIMEO_NEW:
1725		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1726		break;
1727
1728	case SO_RCVLOWAT:
1729		v.val = sk->sk_rcvlowat;
1730		break;
1731
1732	case SO_SNDLOWAT:
1733		v.val = 1;
1734		break;
1735
1736	case SO_PASSCRED:
1737		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1738		break;
1739
1740	case SO_PEERCRED:
1741	{
1742		struct ucred peercred;
1743		if (len > sizeof(peercred))
1744			len = sizeof(peercred);
1745
1746		spin_lock(&sk->sk_peer_lock);
1747		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1748		spin_unlock(&sk->sk_peer_lock);
1749
1750		if (copy_to_sockptr(optval, &peercred, len))
1751			return -EFAULT;
1752		goto lenout;
1753	}
1754
1755	case SO_PEERGROUPS:
1756	{
1757		const struct cred *cred;
1758		int ret, n;
1759
1760		cred = sk_get_peer_cred(sk);
1761		if (!cred)
1762			return -ENODATA;
1763
1764		n = cred->group_info->ngroups;
1765		if (len < n * sizeof(gid_t)) {
1766			len = n * sizeof(gid_t);
1767			put_cred(cred);
1768			return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1769		}
1770		len = n * sizeof(gid_t);
1771
1772		ret = groups_to_user(optval, cred->group_info);
1773		put_cred(cred);
1774		if (ret)
1775			return ret;
1776		goto lenout;
1777	}
1778
1779	case SO_PEERNAME:
1780	{
1781		char address[128];
1782
1783		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1784		if (lv < 0)
1785			return -ENOTCONN;
1786		if (lv < len)
1787			return -EINVAL;
1788		if (copy_to_sockptr(optval, address, len))
1789			return -EFAULT;
1790		goto lenout;
1791	}
1792
1793	/* Dubious BSD thing... Probably nobody even uses it, but
1794	 * the UNIX standard wants it for whatever reason... -DaveM
1795	 */
1796	case SO_ACCEPTCONN:
1797		v.val = sk->sk_state == TCP_LISTEN;
1798		break;
1799
1800	case SO_PASSSEC:
1801		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1802		break;
1803
1804	case SO_PEERSEC:
1805		return security_socket_getpeersec_stream(sock,
1806							 optval, optlen, len);
1807
1808	case SO_MARK:
1809		v.val = sk->sk_mark;
1810		break;
1811
1812	case SO_RCVMARK:
1813		v.val = sock_flag(sk, SOCK_RCVMARK);
1814		break;
1815
1816	case SO_RXQ_OVFL:
1817		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1818		break;
1819
1820	case SO_WIFI_STATUS:
1821		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1822		break;
1823
1824	case SO_PEEK_OFF:
1825		if (!sock->ops->set_peek_off)
1826			return -EOPNOTSUPP;
1827
1828		v.val = sk->sk_peek_off;
1829		break;
1830	case SO_NOFCS:
1831		v.val = sock_flag(sk, SOCK_NOFCS);
1832		break;
1833
1834	case SO_BINDTODEVICE:
1835		return sock_getbindtodevice(sk, optval, optlen, len);
1836
1837	case SO_GET_FILTER:
1838		len = sk_get_filter(sk, optval, len);
1839		if (len < 0)
1840			return len;
1841
1842		goto lenout;
1843
1844	case SO_LOCK_FILTER:
1845		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1846		break;
1847
1848	case SO_BPF_EXTENSIONS:
1849		v.val = bpf_tell_extensions();
1850		break;
1851
1852	case SO_SELECT_ERR_QUEUE:
1853		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1854		break;
1855
1856#ifdef CONFIG_NET_RX_BUSY_POLL
1857	case SO_BUSY_POLL:
1858		v.val = sk->sk_ll_usec;
1859		break;
1860	case SO_PREFER_BUSY_POLL:
1861		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1862		break;
1863#endif
1864
1865	case SO_MAX_PACING_RATE:
1866		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1867			lv = sizeof(v.ulval);
1868			v.ulval = sk->sk_max_pacing_rate;
1869		} else {
1870			/* 32bit version */
1871			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1872		}
1873		break;
1874
1875	case SO_INCOMING_CPU:
1876		v.val = READ_ONCE(sk->sk_incoming_cpu);
1877		break;
1878
1879	case SO_MEMINFO:
1880	{
1881		u32 meminfo[SK_MEMINFO_VARS];
1882
1883		sk_get_meminfo(sk, meminfo);
1884
1885		len = min_t(unsigned int, len, sizeof(meminfo));
1886		if (copy_to_sockptr(optval, &meminfo, len))
1887			return -EFAULT;
1888
1889		goto lenout;
1890	}
1891
1892#ifdef CONFIG_NET_RX_BUSY_POLL
1893	case SO_INCOMING_NAPI_ID:
1894		v.val = READ_ONCE(sk->sk_napi_id);
1895
1896		/* aggregate non-NAPI IDs down to 0 */
1897		if (v.val < MIN_NAPI_ID)
1898			v.val = 0;
1899
1900		break;
1901#endif
1902
1903	case SO_COOKIE:
1904		lv = sizeof(u64);
1905		if (len < lv)
1906			return -EINVAL;
1907		v.val64 = sock_gen_cookie(sk);
1908		break;
1909
1910	case SO_ZEROCOPY:
1911		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1912		break;
1913
1914	case SO_TXTIME:
1915		lv = sizeof(v.txtime);
1916		v.txtime.clockid = sk->sk_clockid;
1917		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1918				  SOF_TXTIME_DEADLINE_MODE : 0;
1919		v.txtime.flags |= sk->sk_txtime_report_errors ?
1920				  SOF_TXTIME_REPORT_ERRORS : 0;
1921		break;
1922
1923	case SO_BINDTOIFINDEX:
1924		v.val = READ_ONCE(sk->sk_bound_dev_if);
1925		break;
1926
1927	case SO_NETNS_COOKIE:
1928		lv = sizeof(u64);
1929		if (len != lv)
1930			return -EINVAL;
1931		v.val64 = sock_net(sk)->net_cookie;
1932		break;
1933
1934	case SO_BUF_LOCK:
1935		v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1936		break;
1937
1938	case SO_RESERVE_MEM:
1939		v.val = sk->sk_reserved_mem;
1940		break;
1941
1942	case SO_TXREHASH:
1943		v.val = sk->sk_txrehash;
1944		break;
1945
1946	default:
1947		/* We implement the SO_SNDLOWAT etc to not be settable
1948		 * (1003.1g 7).
1949		 */
1950		return -ENOPROTOOPT;
1951	}
1952
1953	if (len > lv)
1954		len = lv;
1955	if (copy_to_sockptr(optval, &v, len))
1956		return -EFAULT;
1957lenout:
1958	if (copy_to_sockptr(optlen, &len, sizeof(int)))
1959		return -EFAULT;
1960	return 0;
1961}
1962
1963int sock_getsockopt(struct socket *sock, int level, int optname,
1964		    char __user *optval, int __user *optlen)
1965{
1966	return sk_getsockopt(sock->sk, level, optname,
1967			     USER_SOCKPTR(optval),
1968			     USER_SOCKPTR(optlen));
1969}
1970
1971/*
1972 * Initialize an sk_lock.
1973 *
1974 * (We also register the sk_lock with the lock validator.)
1975 */
1976static inline void sock_lock_init(struct sock *sk)
1977{
1978	if (sk->sk_kern_sock)
1979		sock_lock_init_class_and_name(
1980			sk,
1981			af_family_kern_slock_key_strings[sk->sk_family],
1982			af_family_kern_slock_keys + sk->sk_family,
1983			af_family_kern_key_strings[sk->sk_family],
1984			af_family_kern_keys + sk->sk_family);
1985	else
1986		sock_lock_init_class_and_name(
1987			sk,
1988			af_family_slock_key_strings[sk->sk_family],
1989			af_family_slock_keys + sk->sk_family,
1990			af_family_key_strings[sk->sk_family],
1991			af_family_keys + sk->sk_family);
1992}
1993
1994/*
1995 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1996 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1997 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1998 */
1999static void sock_copy(struct sock *nsk, const struct sock *osk)
2000{
2001	const struct proto *prot = READ_ONCE(osk->sk_prot);
2002#ifdef CONFIG_SECURITY_NETWORK
2003	void *sptr = nsk->sk_security;
2004#endif
2005
2006	/* If we move sk_tx_queue_mapping out of the private section,
2007	 * we must check if sk_tx_queue_clear() is called after
2008	 * sock_copy() in sk_clone_lock().
2009	 */
2010	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2011		     offsetof(struct sock, sk_dontcopy_begin) ||
2012		     offsetof(struct sock, sk_tx_queue_mapping) >=
2013		     offsetof(struct sock, sk_dontcopy_end));
2014
2015	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2016
2017	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2018	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
2019
2020#ifdef CONFIG_SECURITY_NETWORK
2021	nsk->sk_security = sptr;
2022	security_sk_clone(osk, nsk);
2023#endif
2024}
2025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2026static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2027		int family)
2028{
2029	struct sock *sk;
2030	struct kmem_cache *slab;
2031
2032	slab = prot->slab;
2033	if (slab != NULL) {
2034		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2035		if (!sk)
2036			return sk;
2037		if (want_init_on_alloc(priority))
2038			sk_prot_clear_nulls(sk, prot->obj_size);
 
 
 
 
2039	} else
2040		sk = kmalloc(prot->obj_size, priority);
2041
2042	if (sk != NULL) {
 
 
2043		if (security_sk_alloc(sk, family, priority))
2044			goto out_free;
2045
2046		if (!try_module_get(prot->owner))
2047			goto out_free_sec;
 
2048	}
2049
2050	return sk;
2051
2052out_free_sec:
2053	security_sk_free(sk);
2054out_free:
2055	if (slab != NULL)
2056		kmem_cache_free(slab, sk);
2057	else
2058		kfree(sk);
2059	return NULL;
2060}
2061
2062static void sk_prot_free(struct proto *prot, struct sock *sk)
2063{
2064	struct kmem_cache *slab;
2065	struct module *owner;
2066
2067	owner = prot->owner;
2068	slab = prot->slab;
2069
2070	cgroup_sk_free(&sk->sk_cgrp_data);
2071	mem_cgroup_sk_free(sk);
2072	security_sk_free(sk);
2073	if (slab != NULL)
2074		kmem_cache_free(slab, sk);
2075	else
2076		kfree(sk);
2077	module_put(owner);
2078}
2079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2080/**
2081 *	sk_alloc - All socket objects are allocated here
2082 *	@net: the applicable net namespace
2083 *	@family: protocol family
2084 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2085 *	@prot: struct proto associated with this new sock instance
2086 *	@kern: is this to be a kernel socket?
2087 */
2088struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2089		      struct proto *prot, int kern)
2090{
2091	struct sock *sk;
2092
2093	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2094	if (sk) {
2095		sk->sk_family = family;
2096		/*
2097		 * See comment in struct sock definition to understand
2098		 * why we need sk_prot_creator -acme
2099		 */
2100		sk->sk_prot = sk->sk_prot_creator = prot;
2101		sk->sk_kern_sock = kern;
2102		sock_lock_init(sk);
2103		sk->sk_net_refcnt = kern ? 0 : 1;
2104		if (likely(sk->sk_net_refcnt)) {
2105			get_net_track(net, &sk->ns_tracker, priority);
2106			sock_inuse_add(net, 1);
2107		} else {
2108			__netns_tracker_alloc(net, &sk->ns_tracker,
2109					      false, priority);
2110		}
2111
2112		sock_net_set(sk, net);
2113		refcount_set(&sk->sk_wmem_alloc, 1);
2114
2115		mem_cgroup_sk_alloc(sk);
2116		cgroup_sk_alloc(&sk->sk_cgrp_data);
2117		sock_update_classid(&sk->sk_cgrp_data);
2118		sock_update_netprioidx(&sk->sk_cgrp_data);
2119		sk_tx_queue_clear(sk);
2120	}
2121
2122	return sk;
2123}
2124EXPORT_SYMBOL(sk_alloc);
2125
2126/* Sockets having SOCK_RCU_FREE will call this function after one RCU
2127 * grace period. This is the case for UDP sockets and TCP listeners.
2128 */
2129static void __sk_destruct(struct rcu_head *head)
2130{
2131	struct sock *sk = container_of(head, struct sock, sk_rcu);
2132	struct sk_filter *filter;
2133
2134	if (sk->sk_destruct)
2135		sk->sk_destruct(sk);
2136
2137	filter = rcu_dereference_check(sk->sk_filter,
2138				       refcount_read(&sk->sk_wmem_alloc) == 0);
2139	if (filter) {
2140		sk_filter_uncharge(sk, filter);
2141		RCU_INIT_POINTER(sk->sk_filter, NULL);
2142	}
2143
2144	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2145
2146#ifdef CONFIG_BPF_SYSCALL
2147	bpf_sk_storage_free(sk);
2148#endif
2149
2150	if (atomic_read(&sk->sk_omem_alloc))
2151		pr_debug("%s: optmem leakage (%d bytes) detected\n",
2152			 __func__, atomic_read(&sk->sk_omem_alloc));
2153
2154	if (sk->sk_frag.page) {
2155		put_page(sk->sk_frag.page);
2156		sk->sk_frag.page = NULL;
2157	}
2158
2159	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2160	put_cred(sk->sk_peer_cred);
2161	put_pid(sk->sk_peer_pid);
2162
2163	if (likely(sk->sk_net_refcnt))
2164		put_net_track(sock_net(sk), &sk->ns_tracker);
2165	else
2166		__netns_tracker_free(sock_net(sk), &sk->ns_tracker, false);
2167
2168	sk_prot_free(sk->sk_prot_creator, sk);
2169}
2170
2171void sk_destruct(struct sock *sk)
2172{
2173	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2174
2175	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2176		reuseport_detach_sock(sk);
2177		use_call_rcu = true;
2178	}
2179
2180	if (use_call_rcu)
2181		call_rcu(&sk->sk_rcu, __sk_destruct);
2182	else
2183		__sk_destruct(&sk->sk_rcu);
2184}
2185
2186static void __sk_free(struct sock *sk)
2187{
2188	if (likely(sk->sk_net_refcnt))
2189		sock_inuse_add(sock_net(sk), -1);
2190
2191	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2192		sock_diag_broadcast_destroy(sk);
2193	else
2194		sk_destruct(sk);
2195}
2196
2197void sk_free(struct sock *sk)
2198{
2199	/*
2200	 * We subtract one from sk_wmem_alloc and can know if
2201	 * some packets are still in some tx queue.
2202	 * If not null, sock_wfree() will call __sk_free(sk) later
2203	 */
2204	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2205		__sk_free(sk);
2206}
2207EXPORT_SYMBOL(sk_free);
2208
2209static void sk_init_common(struct sock *sk)
 
 
 
 
 
 
 
2210{
2211	skb_queue_head_init(&sk->sk_receive_queue);
2212	skb_queue_head_init(&sk->sk_write_queue);
2213	skb_queue_head_init(&sk->sk_error_queue);
2214
2215	rwlock_init(&sk->sk_callback_lock);
2216	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2217			af_rlock_keys + sk->sk_family,
2218			af_family_rlock_key_strings[sk->sk_family]);
2219	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2220			af_wlock_keys + sk->sk_family,
2221			af_family_wlock_key_strings[sk->sk_family]);
2222	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2223			af_elock_keys + sk->sk_family,
2224			af_family_elock_key_strings[sk->sk_family]);
2225	lockdep_set_class_and_name(&sk->sk_callback_lock,
2226			af_callback_keys + sk->sk_family,
2227			af_family_clock_key_strings[sk->sk_family]);
2228}
 
2229
2230/**
2231 *	sk_clone_lock - clone a socket, and lock its clone
2232 *	@sk: the socket to clone
2233 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2234 *
2235 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2236 */
2237struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2238{
2239	struct proto *prot = READ_ONCE(sk->sk_prot);
2240	struct sk_filter *filter;
2241	bool is_charged = true;
2242	struct sock *newsk;
2243
2244	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2245	if (!newsk)
2246		goto out;
 
 
 
 
 
 
 
 
 
 
2247
2248	sock_copy(newsk, sk);
 
 
 
 
 
 
 
 
 
 
2249
2250	newsk->sk_prot_creator = prot;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2251
2252	/* SANITY */
2253	if (likely(newsk->sk_net_refcnt)) {
2254		get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2255		sock_inuse_add(sock_net(newsk), 1);
2256	} else {
2257		/* Kernel sockets are not elevating the struct net refcount.
2258		 * Instead, use a tracker to more easily detect if a layer
2259		 * is not properly dismantling its kernel sockets at netns
2260		 * destroy time.
2261		 */
2262		__netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2263				      false, priority);
2264	}
2265	sk_node_init(&newsk->sk_node);
2266	sock_lock_init(newsk);
2267	bh_lock_sock(newsk);
2268	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2269	newsk->sk_backlog.len = 0;
2270
2271	atomic_set(&newsk->sk_rmem_alloc, 0);
2272
2273	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2274	refcount_set(&newsk->sk_wmem_alloc, 1);
2275
2276	atomic_set(&newsk->sk_omem_alloc, 0);
2277	sk_init_common(newsk);
2278
2279	newsk->sk_dst_cache	= NULL;
2280	newsk->sk_dst_pending_confirm = 0;
2281	newsk->sk_wmem_queued	= 0;
2282	newsk->sk_forward_alloc = 0;
2283	newsk->sk_reserved_mem  = 0;
2284	atomic_set(&newsk->sk_drops, 0);
2285	newsk->sk_send_head	= NULL;
2286	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2287	atomic_set(&newsk->sk_zckey, 0);
2288
2289	sock_reset_flag(newsk, SOCK_DONE);
2290
2291	/* sk->sk_memcg will be populated at accept() time */
2292	newsk->sk_memcg = NULL;
2293
2294	cgroup_sk_clone(&newsk->sk_cgrp_data);
2295
2296	rcu_read_lock();
2297	filter = rcu_dereference(sk->sk_filter);
2298	if (filter != NULL)
2299		/* though it's an empty new sock, the charging may fail
2300		 * if sysctl_optmem_max was changed between creation of
2301		 * original socket and cloning
2302		 */
2303		is_charged = sk_filter_charge(newsk, filter);
2304	RCU_INIT_POINTER(newsk->sk_filter, filter);
2305	rcu_read_unlock();
2306
2307	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2308		/* We need to make sure that we don't uncharge the new
2309		 * socket if we couldn't charge it in the first place
2310		 * as otherwise we uncharge the parent's filter.
2311		 */
2312		if (!is_charged)
2313			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2314		sk_free_unlock_clone(newsk);
2315		newsk = NULL;
2316		goto out;
2317	}
2318	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2319
2320	if (bpf_sk_storage_clone(sk, newsk)) {
2321		sk_free_unlock_clone(newsk);
2322		newsk = NULL;
2323		goto out;
2324	}
2325
2326	/* Clear sk_user_data if parent had the pointer tagged
2327	 * as not suitable for copying when cloning.
2328	 */
2329	if (sk_user_data_is_nocopy(newsk))
2330		newsk->sk_user_data = NULL;
2331
2332	newsk->sk_err	   = 0;
2333	newsk->sk_err_soft = 0;
2334	newsk->sk_priority = 0;
2335	newsk->sk_incoming_cpu = raw_smp_processor_id();
2336
2337	/* Before updating sk_refcnt, we must commit prior changes to memory
2338	 * (Documentation/RCU/rculist_nulls.rst for details)
2339	 */
2340	smp_wmb();
2341	refcount_set(&newsk->sk_refcnt, 2);
2342
2343	/* Increment the counter in the same struct proto as the master
2344	 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2345	 * is the same as sk->sk_prot->socks, as this field was copied
2346	 * with memcpy).
2347	 *
2348	 * This _changes_ the previous behaviour, where
2349	 * tcp_create_openreq_child always was incrementing the
2350	 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2351	 * to be taken into account in all callers. -acme
2352	 */
2353	sk_refcnt_debug_inc(newsk);
2354	sk_set_socket(newsk, NULL);
2355	sk_tx_queue_clear(newsk);
2356	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2357
2358	if (newsk->sk_prot->sockets_allocated)
2359		sk_sockets_allocated_inc(newsk);
2360
2361	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2362		net_enable_timestamp();
2363out:
2364	return newsk;
2365}
2366EXPORT_SYMBOL_GPL(sk_clone_lock);
2367
2368void sk_free_unlock_clone(struct sock *sk)
2369{
2370	/* It is still raw copy of parent, so invalidate
2371	 * destructor and make plain sk_free() */
2372	sk->sk_destruct = NULL;
2373	bh_unlock_sock(sk);
2374	sk_free(sk);
2375}
2376EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2377
2378static void sk_trim_gso_size(struct sock *sk)
2379{
2380	if (sk->sk_gso_max_size <= GSO_LEGACY_MAX_SIZE)
2381		return;
2382#if IS_ENABLED(CONFIG_IPV6)
2383	if (sk->sk_family == AF_INET6 &&
2384	    sk_is_tcp(sk) &&
2385	    !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
2386		return;
2387#endif
2388	sk->sk_gso_max_size = GSO_LEGACY_MAX_SIZE;
2389}
2390
2391void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2392{
2393	u32 max_segs = 1;
2394
2395	sk_dst_set(sk, dst);
2396	sk->sk_route_caps = dst->dev->features;
2397	if (sk_is_tcp(sk))
2398		sk->sk_route_caps |= NETIF_F_GSO;
2399	if (sk->sk_route_caps & NETIF_F_GSO)
2400		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2401	if (unlikely(sk->sk_gso_disabled))
2402		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2403	if (sk_can_gso(sk)) {
2404		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2405			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2406		} else {
2407			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2408			/* pairs with the WRITE_ONCE() in netif_set_gso_max_size() */
2409			sk->sk_gso_max_size = READ_ONCE(dst->dev->gso_max_size);
2410			sk_trim_gso_size(sk);
2411			sk->sk_gso_max_size -= (MAX_TCP_HEADER + 1);
2412			/* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2413			max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2414		}
2415	}
2416	sk->sk_gso_max_segs = max_segs;
2417}
2418EXPORT_SYMBOL_GPL(sk_setup_caps);
2419
 
 
 
 
 
 
 
 
 
 
 
 
 
2420/*
2421 *	Simple resource managers for sockets.
2422 */
2423
2424
2425/*
2426 * Write buffer destructor automatically called from kfree_skb.
2427 */
2428void sock_wfree(struct sk_buff *skb)
2429{
2430	struct sock *sk = skb->sk;
2431	unsigned int len = skb->truesize;
2432	bool free;
2433
2434	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2435		if (sock_flag(sk, SOCK_RCU_FREE) &&
2436		    sk->sk_write_space == sock_def_write_space) {
2437			rcu_read_lock();
2438			free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2439			sock_def_write_space_wfree(sk);
2440			rcu_read_unlock();
2441			if (unlikely(free))
2442				__sk_free(sk);
2443			return;
2444		}
2445
2446		/*
2447		 * Keep a reference on sk_wmem_alloc, this will be released
2448		 * after sk_write_space() call
2449		 */
2450		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2451		sk->sk_write_space(sk);
2452		len = 1;
2453	}
2454	/*
2455	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2456	 * could not do because of in-flight packets
2457	 */
2458	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2459		__sk_free(sk);
2460}
2461EXPORT_SYMBOL(sock_wfree);
2462
2463/* This variant of sock_wfree() is used by TCP,
2464 * since it sets SOCK_USE_WRITE_QUEUE.
2465 */
2466void __sock_wfree(struct sk_buff *skb)
2467{
2468	struct sock *sk = skb->sk;
2469
2470	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2471		__sk_free(sk);
2472}
2473
2474void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2475{
2476	skb_orphan(skb);
2477	skb->sk = sk;
2478#ifdef CONFIG_INET
2479	if (unlikely(!sk_fullsock(sk))) {
2480		skb->destructor = sock_edemux;
2481		sock_hold(sk);
2482		return;
2483	}
2484#endif
2485	skb->destructor = sock_wfree;
2486	skb_set_hash_from_sk(skb, sk);
2487	/*
2488	 * We used to take a refcount on sk, but following operation
2489	 * is enough to guarantee sk_free() wont free this sock until
2490	 * all in-flight packets are completed
2491	 */
2492	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2493}
2494EXPORT_SYMBOL(skb_set_owner_w);
2495
2496static bool can_skb_orphan_partial(const struct sk_buff *skb)
2497{
2498#ifdef CONFIG_TLS_DEVICE
2499	/* Drivers depend on in-order delivery for crypto offload,
2500	 * partial orphan breaks out-of-order-OK logic.
2501	 */
2502	if (skb->decrypted)
2503		return false;
2504#endif
2505	return (skb->destructor == sock_wfree ||
2506		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2507}
2508
2509/* This helper is used by netem, as it can hold packets in its
2510 * delay queue. We want to allow the owner socket to send more
2511 * packets, as if they were already TX completed by a typical driver.
2512 * But we also want to keep skb->sk set because some packet schedulers
2513 * rely on it (sch_fq for example).
2514 */
2515void skb_orphan_partial(struct sk_buff *skb)
2516{
2517	if (skb_is_tcp_pure_ack(skb))
2518		return;
2519
2520	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2521		return;
2522
2523	skb_orphan(skb);
2524}
2525EXPORT_SYMBOL(skb_orphan_partial);
2526
2527/*
2528 * Read buffer destructor automatically called from kfree_skb.
2529 */
2530void sock_rfree(struct sk_buff *skb)
2531{
2532	struct sock *sk = skb->sk;
2533	unsigned int len = skb->truesize;
2534
2535	atomic_sub(len, &sk->sk_rmem_alloc);
2536	sk_mem_uncharge(sk, len);
2537}
2538EXPORT_SYMBOL(sock_rfree);
2539
2540/*
2541 * Buffer destructor for skbs that are not used directly in read or write
2542 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2543 */
2544void sock_efree(struct sk_buff *skb)
2545{
2546	sock_put(skb->sk);
2547}
2548EXPORT_SYMBOL(sock_efree);
2549
2550/* Buffer destructor for prefetch/receive path where reference count may
2551 * not be held, e.g. for listen sockets.
2552 */
2553#ifdef CONFIG_INET
2554void sock_pfree(struct sk_buff *skb)
2555{
2556	if (sk_is_refcounted(skb->sk))
2557		sock_gen_put(skb->sk);
2558}
2559EXPORT_SYMBOL(sock_pfree);
2560#endif /* CONFIG_INET */
2561
2562kuid_t sock_i_uid(struct sock *sk)
2563{
2564	kuid_t uid;
2565
2566	read_lock_bh(&sk->sk_callback_lock);
2567	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2568	read_unlock_bh(&sk->sk_callback_lock);
2569	return uid;
2570}
2571EXPORT_SYMBOL(sock_i_uid);
2572
2573unsigned long sock_i_ino(struct sock *sk)
2574{
2575	unsigned long ino;
2576
2577	read_lock_bh(&sk->sk_callback_lock);
2578	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2579	read_unlock_bh(&sk->sk_callback_lock);
2580	return ino;
2581}
2582EXPORT_SYMBOL(sock_i_ino);
2583
2584/*
2585 * Allocate a skb from the socket's send buffer.
2586 */
2587struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2588			     gfp_t priority)
2589{
2590	if (force ||
2591	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2592		struct sk_buff *skb = alloc_skb(size, priority);
2593
2594		if (skb) {
2595			skb_set_owner_w(skb, sk);
2596			return skb;
2597		}
2598	}
2599	return NULL;
2600}
2601EXPORT_SYMBOL(sock_wmalloc);
2602
2603static void sock_ofree(struct sk_buff *skb)
2604{
2605	struct sock *sk = skb->sk;
2606
2607	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2608}
2609
2610struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2611			     gfp_t priority)
2612{
2613	struct sk_buff *skb;
2614
2615	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2616	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2617	    READ_ONCE(sysctl_optmem_max))
2618		return NULL;
2619
2620	skb = alloc_skb(size, priority);
2621	if (!skb)
2622		return NULL;
2623
2624	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2625	skb->sk = sk;
2626	skb->destructor = sock_ofree;
2627	return skb;
2628}
2629
2630/*
2631 * Allocate a memory block from the socket's option memory buffer.
2632 */
2633void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2634{
2635	int optmem_max = READ_ONCE(sysctl_optmem_max);
2636
2637	if ((unsigned int)size <= optmem_max &&
2638	    atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2639		void *mem;
2640		/* First do the add, to avoid the race if kmalloc
2641		 * might sleep.
2642		 */
2643		atomic_add(size, &sk->sk_omem_alloc);
2644		mem = kmalloc(size, priority);
2645		if (mem)
2646			return mem;
2647		atomic_sub(size, &sk->sk_omem_alloc);
2648	}
2649	return NULL;
2650}
2651EXPORT_SYMBOL(sock_kmalloc);
2652
2653/* Free an option memory block. Note, we actually want the inline
2654 * here as this allows gcc to detect the nullify and fold away the
2655 * condition entirely.
2656 */
2657static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2658				  const bool nullify)
2659{
2660	if (WARN_ON_ONCE(!mem))
2661		return;
2662	if (nullify)
2663		kfree_sensitive(mem);
2664	else
2665		kfree(mem);
2666	atomic_sub(size, &sk->sk_omem_alloc);
2667}
2668
2669void sock_kfree_s(struct sock *sk, void *mem, int size)
2670{
2671	__sock_kfree_s(sk, mem, size, false);
2672}
2673EXPORT_SYMBOL(sock_kfree_s);
2674
2675void sock_kzfree_s(struct sock *sk, void *mem, int size)
2676{
2677	__sock_kfree_s(sk, mem, size, true);
2678}
2679EXPORT_SYMBOL(sock_kzfree_s);
2680
2681/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2682   I think, these locks should be removed for datagram sockets.
2683 */
2684static long sock_wait_for_wmem(struct sock *sk, long timeo)
2685{
2686	DEFINE_WAIT(wait);
2687
2688	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2689	for (;;) {
2690		if (!timeo)
2691			break;
2692		if (signal_pending(current))
2693			break;
2694		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2695		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2696		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2697			break;
2698		if (sk->sk_shutdown & SEND_SHUTDOWN)
2699			break;
2700		if (sk->sk_err)
2701			break;
2702		timeo = schedule_timeout(timeo);
2703	}
2704	finish_wait(sk_sleep(sk), &wait);
2705	return timeo;
2706}
2707
2708
2709/*
2710 *	Generic send/receive buffer handlers
2711 */
2712
2713struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2714				     unsigned long data_len, int noblock,
2715				     int *errcode, int max_page_order)
2716{
2717	struct sk_buff *skb;
 
2718	long timeo;
2719	int err;
2720
 
 
 
 
2721	timeo = sock_sndtimeo(sk, noblock);
2722	for (;;) {
2723		err = sock_error(sk);
2724		if (err != 0)
2725			goto failure;
2726
2727		err = -EPIPE;
2728		if (sk->sk_shutdown & SEND_SHUTDOWN)
2729			goto failure;
2730
2731		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2732			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2733
2734		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 
 
 
 
 
 
2735		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2736		err = -EAGAIN;
2737		if (!timeo)
2738			goto failure;
2739		if (signal_pending(current))
2740			goto interrupted;
2741		timeo = sock_wait_for_wmem(sk, timeo);
2742	}
2743	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2744				   errcode, sk->sk_allocation);
2745	if (skb)
2746		skb_set_owner_w(skb, sk);
2747	return skb;
2748
2749interrupted:
2750	err = sock_intr_errno(timeo);
2751failure:
2752	*errcode = err;
2753	return NULL;
2754}
2755EXPORT_SYMBOL(sock_alloc_send_pskb);
2756
2757int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2758		     struct sockcm_cookie *sockc)
2759{
2760	u32 tsflags;
2761
2762	switch (cmsg->cmsg_type) {
2763	case SO_MARK:
2764		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2765		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2766			return -EPERM;
2767		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2768			return -EINVAL;
2769		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2770		break;
2771	case SO_TIMESTAMPING_OLD:
2772		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2773			return -EINVAL;
2774
2775		tsflags = *(u32 *)CMSG_DATA(cmsg);
2776		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2777			return -EINVAL;
2778
2779		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2780		sockc->tsflags |= tsflags;
2781		break;
2782	case SCM_TXTIME:
2783		if (!sock_flag(sk, SOCK_TXTIME))
2784			return -EINVAL;
2785		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2786			return -EINVAL;
2787		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2788		break;
2789	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2790	case SCM_RIGHTS:
2791	case SCM_CREDENTIALS:
2792		break;
2793	default:
2794		return -EINVAL;
2795	}
2796	return 0;
2797}
2798EXPORT_SYMBOL(__sock_cmsg_send);
2799
2800int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2801		   struct sockcm_cookie *sockc)
2802{
2803	struct cmsghdr *cmsg;
2804	int ret;
2805
2806	for_each_cmsghdr(cmsg, msg) {
2807		if (!CMSG_OK(msg, cmsg))
2808			return -EINVAL;
2809		if (cmsg->cmsg_level != SOL_SOCKET)
2810			continue;
2811		ret = __sock_cmsg_send(sk, cmsg, sockc);
2812		if (ret)
2813			return ret;
2814	}
2815	return 0;
2816}
2817EXPORT_SYMBOL(sock_cmsg_send);
2818
2819static void sk_enter_memory_pressure(struct sock *sk)
2820{
2821	if (!sk->sk_prot->enter_memory_pressure)
2822		return;
2823
2824	sk->sk_prot->enter_memory_pressure(sk);
2825}
2826
2827static void sk_leave_memory_pressure(struct sock *sk)
2828{
2829	if (sk->sk_prot->leave_memory_pressure) {
2830		sk->sk_prot->leave_memory_pressure(sk);
2831	} else {
2832		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2833
2834		if (memory_pressure && READ_ONCE(*memory_pressure))
2835			WRITE_ONCE(*memory_pressure, 0);
2836	}
2837}
2838
2839DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2840
2841/**
2842 * skb_page_frag_refill - check that a page_frag contains enough room
2843 * @sz: minimum size of the fragment we want to get
2844 * @pfrag: pointer to page_frag
2845 * @gfp: priority for memory allocation
2846 *
2847 * Note: While this allocator tries to use high order pages, there is
2848 * no guarantee that allocations succeed. Therefore, @sz MUST be
2849 * less or equal than PAGE_SIZE.
2850 */
2851bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2852{
2853	if (pfrag->page) {
2854		if (page_ref_count(pfrag->page) == 1) {
2855			pfrag->offset = 0;
2856			return true;
2857		}
2858		if (pfrag->offset + sz <= pfrag->size)
2859			return true;
2860		put_page(pfrag->page);
2861	}
2862
2863	pfrag->offset = 0;
2864	if (SKB_FRAG_PAGE_ORDER &&
2865	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2866		/* Avoid direct reclaim but allow kswapd to wake */
2867		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2868					  __GFP_COMP | __GFP_NOWARN |
2869					  __GFP_NORETRY,
2870					  SKB_FRAG_PAGE_ORDER);
2871		if (likely(pfrag->page)) {
2872			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2873			return true;
2874		}
2875	}
2876	pfrag->page = alloc_page(gfp);
2877	if (likely(pfrag->page)) {
2878		pfrag->size = PAGE_SIZE;
2879		return true;
2880	}
2881	return false;
2882}
2883EXPORT_SYMBOL(skb_page_frag_refill);
2884
2885bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2886{
2887	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2888		return true;
2889
2890	sk_enter_memory_pressure(sk);
2891	sk_stream_moderate_sndbuf(sk);
2892	return false;
2893}
2894EXPORT_SYMBOL(sk_page_frag_refill);
2895
2896void __lock_sock(struct sock *sk)
2897	__releases(&sk->sk_lock.slock)
2898	__acquires(&sk->sk_lock.slock)
2899{
2900	DEFINE_WAIT(wait);
2901
2902	for (;;) {
2903		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2904					TASK_UNINTERRUPTIBLE);
2905		spin_unlock_bh(&sk->sk_lock.slock);
2906		schedule();
2907		spin_lock_bh(&sk->sk_lock.slock);
2908		if (!sock_owned_by_user(sk))
2909			break;
2910	}
2911	finish_wait(&sk->sk_lock.wq, &wait);
2912}
2913
2914void __release_sock(struct sock *sk)
2915	__releases(&sk->sk_lock.slock)
2916	__acquires(&sk->sk_lock.slock)
2917{
2918	struct sk_buff *skb, *next;
2919
2920	while ((skb = sk->sk_backlog.head) != NULL) {
2921		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
 
2922
2923		spin_unlock_bh(&sk->sk_lock.slock);
 
2924
2925		do {
2926			next = skb->next;
2927			prefetch(next);
2928			DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
2929			skb_mark_not_on_list(skb);
2930			sk_backlog_rcv(sk, skb);
2931
2932			cond_resched();
 
 
 
 
 
 
2933
2934			skb = next;
2935		} while (skb != NULL);
2936
2937		spin_lock_bh(&sk->sk_lock.slock);
2938	}
2939
2940	/*
2941	 * Doing the zeroing here guarantee we can not loop forever
2942	 * while a wild producer attempts to flood us.
2943	 */
2944	sk->sk_backlog.len = 0;
2945}
2946
2947void __sk_flush_backlog(struct sock *sk)
2948{
2949	spin_lock_bh(&sk->sk_lock.slock);
2950	__release_sock(sk);
2951	spin_unlock_bh(&sk->sk_lock.slock);
2952}
2953EXPORT_SYMBOL_GPL(__sk_flush_backlog);
2954
2955/**
2956 * sk_wait_data - wait for data to arrive at sk_receive_queue
2957 * @sk:    sock to wait on
2958 * @timeo: for how long
2959 * @skb:   last skb seen on sk_receive_queue
2960 *
2961 * Now socket state including sk->sk_err is changed only under lock,
2962 * hence we may omit checks after joining wait queue.
2963 * We check receive queue before schedule() only as optimization;
2964 * it is very likely that release_sock() added new data.
2965 */
2966int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2967{
2968	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2969	int rc;
 
2970
2971	add_wait_queue(sk_sleep(sk), &wait);
2972	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2973	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2974	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2975	remove_wait_queue(sk_sleep(sk), &wait);
2976	return rc;
2977}
2978EXPORT_SYMBOL(sk_wait_data);
2979
2980/**
2981 *	__sk_mem_raise_allocated - increase memory_allocated
2982 *	@sk: socket
2983 *	@size: memory size to allocate
2984 *	@amt: pages to allocate
2985 *	@kind: allocation type
2986 *
2987 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
 
 
2988 */
2989int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2990{
2991	bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg;
2992	struct proto *prot = sk->sk_prot;
2993	bool charged = true;
2994	long allocated;
2995
2996	sk_memory_allocated_add(sk, amt);
2997	allocated = sk_memory_allocated(sk);
2998	if (memcg_charge &&
2999	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3000						gfp_memcg_charge())))
3001		goto suppress_allocation;
3002
3003	/* Under limit. */
3004	if (allocated <= sk_prot_mem_limits(sk, 0)) {
3005		sk_leave_memory_pressure(sk);
 
3006		return 1;
3007	}
3008
3009	/* Under pressure. */
3010	if (allocated > sk_prot_mem_limits(sk, 1))
3011		sk_enter_memory_pressure(sk);
 
3012
3013	/* Over hard limit. */
3014	if (allocated > sk_prot_mem_limits(sk, 2))
3015		goto suppress_allocation;
3016
3017	/* guarantee minimum buffer size under pressure */
3018	if (kind == SK_MEM_RECV) {
3019		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3020			return 1;
3021
3022	} else { /* SK_MEM_SEND */
3023		int wmem0 = sk_get_wmem0(sk, prot);
3024
3025		if (sk->sk_type == SOCK_STREAM) {
3026			if (sk->sk_wmem_queued < wmem0)
3027				return 1;
3028		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
 
3029				return 1;
3030		}
3031	}
3032
3033	if (sk_has_memory_pressure(sk)) {
3034		u64 alloc;
3035
3036		if (!sk_under_memory_pressure(sk))
3037			return 1;
3038		alloc = sk_sockets_allocated_read_positive(sk);
3039		if (sk_prot_mem_limits(sk, 2) > alloc *
3040		    sk_mem_pages(sk->sk_wmem_queued +
3041				 atomic_read(&sk->sk_rmem_alloc) +
3042				 sk->sk_forward_alloc))
3043			return 1;
3044	}
3045
3046suppress_allocation:
3047
3048	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3049		sk_stream_moderate_sndbuf(sk);
3050
3051		/* Fail only if socket is _under_ its sndbuf.
3052		 * In this case we cannot block, so that we have to fail.
3053		 */
3054		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3055			/* Force charge with __GFP_NOFAIL */
3056			if (memcg_charge && !charged) {
3057				mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3058					gfp_memcg_charge() | __GFP_NOFAIL);
3059			}
3060			return 1;
3061		}
3062	}
3063
3064	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3065		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3066
3067	sk_memory_allocated_sub(sk, amt);
3068
3069	if (memcg_charge && charged)
3070		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
3071
 
 
 
3072	return 0;
3073}
3074
3075/**
3076 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3077 *	@sk: socket
3078 *	@size: memory size to allocate
3079 *	@kind: allocation type
3080 *
3081 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3082 *	rmem allocation. This function assumes that protocols which have
3083 *	memory_pressure use sk_wmem_queued as write buffer accounting.
3084 */
3085int __sk_mem_schedule(struct sock *sk, int size, int kind)
3086{
3087	int ret, amt = sk_mem_pages(size);
3088
3089	sk->sk_forward_alloc += amt << PAGE_SHIFT;
3090	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3091	if (!ret)
3092		sk->sk_forward_alloc -= amt << PAGE_SHIFT;
3093	return ret;
3094}
3095EXPORT_SYMBOL(__sk_mem_schedule);
3096
3097/**
3098 *	__sk_mem_reduce_allocated - reclaim memory_allocated
3099 *	@sk: socket
3100 *	@amount: number of quanta
3101 *
3102 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3103 */
3104void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3105{
3106	sk_memory_allocated_sub(sk, amount);
3107
3108	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3109		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3110
3111	if (sk_under_memory_pressure(sk) &&
3112	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3113		sk_leave_memory_pressure(sk);
3114}
3115
3116/**
3117 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3118 *	@sk: socket
3119 *	@amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3120 */
3121void __sk_mem_reclaim(struct sock *sk, int amount)
3122{
3123	amount >>= PAGE_SHIFT;
3124	sk->sk_forward_alloc -= amount << PAGE_SHIFT;
3125	__sk_mem_reduce_allocated(sk, amount);
3126}
3127EXPORT_SYMBOL(__sk_mem_reclaim);
3128
3129int sk_set_peek_off(struct sock *sk, int val)
3130{
3131	sk->sk_peek_off = val;
3132	return 0;
3133}
3134EXPORT_SYMBOL_GPL(sk_set_peek_off);
3135
3136/*
3137 * Set of default routines for initialising struct proto_ops when
3138 * the protocol does not support a particular function. In certain
3139 * cases where it makes no sense for a protocol to have a "do nothing"
3140 * function, some default processing is provided.
3141 */
3142
3143int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3144{
3145	return -EOPNOTSUPP;
3146}
3147EXPORT_SYMBOL(sock_no_bind);
3148
3149int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3150		    int len, int flags)
3151{
3152	return -EOPNOTSUPP;
3153}
3154EXPORT_SYMBOL(sock_no_connect);
3155
3156int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3157{
3158	return -EOPNOTSUPP;
3159}
3160EXPORT_SYMBOL(sock_no_socketpair);
3161
3162int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3163		   bool kern)
3164{
3165	return -EOPNOTSUPP;
3166}
3167EXPORT_SYMBOL(sock_no_accept);
3168
3169int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3170		    int peer)
3171{
3172	return -EOPNOTSUPP;
3173}
3174EXPORT_SYMBOL(sock_no_getname);
3175
 
 
 
 
 
 
3176int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3177{
3178	return -EOPNOTSUPP;
3179}
3180EXPORT_SYMBOL(sock_no_ioctl);
3181
3182int sock_no_listen(struct socket *sock, int backlog)
3183{
3184	return -EOPNOTSUPP;
3185}
3186EXPORT_SYMBOL(sock_no_listen);
3187
3188int sock_no_shutdown(struct socket *sock, int how)
3189{
3190	return -EOPNOTSUPP;
3191}
3192EXPORT_SYMBOL(sock_no_shutdown);
3193
3194int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
 
3195{
3196	return -EOPNOTSUPP;
3197}
3198EXPORT_SYMBOL(sock_no_sendmsg);
 
 
 
 
 
 
 
3199
3200int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
 
3201{
3202	return -EOPNOTSUPP;
3203}
3204EXPORT_SYMBOL(sock_no_sendmsg_locked);
3205
3206int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3207		    int flags)
3208{
3209	return -EOPNOTSUPP;
3210}
3211EXPORT_SYMBOL(sock_no_recvmsg);
3212
3213int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3214{
3215	/* Mirror missing mmap method error code */
3216	return -ENODEV;
3217}
3218EXPORT_SYMBOL(sock_no_mmap);
3219
3220/*
3221 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3222 * various sock-based usage counts.
3223 */
3224void __receive_sock(struct file *file)
3225{
3226	struct socket *sock;
3227
3228	sock = sock_from_file(file);
3229	if (sock) {
3230		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3231		sock_update_classid(&sock->sk->sk_cgrp_data);
3232	}
3233}
3234
3235ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
3236{
3237	ssize_t res;
3238	struct msghdr msg = {.msg_flags = flags};
3239	struct kvec iov;
3240	char *kaddr = kmap(page);
3241	iov.iov_base = kaddr + offset;
3242	iov.iov_len = size;
3243	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
3244	kunmap(page);
3245	return res;
3246}
3247EXPORT_SYMBOL(sock_no_sendpage);
3248
3249ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
3250				int offset, size_t size, int flags)
3251{
3252	ssize_t res;
3253	struct msghdr msg = {.msg_flags = flags};
3254	struct kvec iov;
3255	char *kaddr = kmap(page);
3256
3257	iov.iov_base = kaddr + offset;
3258	iov.iov_len = size;
3259	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
3260	kunmap(page);
3261	return res;
3262}
3263EXPORT_SYMBOL(sock_no_sendpage_locked);
3264
3265/*
3266 *	Default Socket Callbacks
3267 */
3268
3269static void sock_def_wakeup(struct sock *sk)
3270{
3271	struct socket_wq *wq;
3272
3273	rcu_read_lock();
3274	wq = rcu_dereference(sk->sk_wq);
3275	if (skwq_has_sleeper(wq))
3276		wake_up_interruptible_all(&wq->wait);
3277	rcu_read_unlock();
3278}
3279
3280static void sock_def_error_report(struct sock *sk)
3281{
3282	struct socket_wq *wq;
3283
3284	rcu_read_lock();
3285	wq = rcu_dereference(sk->sk_wq);
3286	if (skwq_has_sleeper(wq))
3287		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3288	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3289	rcu_read_unlock();
3290}
3291
3292void sock_def_readable(struct sock *sk)
3293{
3294	struct socket_wq *wq;
3295
3296	rcu_read_lock();
3297	wq = rcu_dereference(sk->sk_wq);
3298	if (skwq_has_sleeper(wq))
3299		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3300						EPOLLRDNORM | EPOLLRDBAND);
3301	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3302	rcu_read_unlock();
3303}
3304
3305static void sock_def_write_space(struct sock *sk)
3306{
3307	struct socket_wq *wq;
3308
3309	rcu_read_lock();
3310
3311	/* Do not wake up a writer until he can make "significant"
3312	 * progress.  --DaveM
3313	 */
3314	if (sock_writeable(sk)) {
3315		wq = rcu_dereference(sk->sk_wq);
3316		if (skwq_has_sleeper(wq))
3317			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3318						EPOLLWRNORM | EPOLLWRBAND);
3319
3320		/* Should agree with poll, otherwise some programs break */
3321		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
 
3322	}
3323
3324	rcu_read_unlock();
3325}
3326
3327/* An optimised version of sock_def_write_space(), should only be called
3328 * for SOCK_RCU_FREE sockets under RCU read section and after putting
3329 * ->sk_wmem_alloc.
3330 */
3331static void sock_def_write_space_wfree(struct sock *sk)
3332{
3333	/* Do not wake up a writer until he can make "significant"
3334	 * progress.  --DaveM
3335	 */
3336	if (sock_writeable(sk)) {
3337		struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3338
3339		/* rely on refcount_sub from sock_wfree() */
3340		smp_mb__after_atomic();
3341		if (wq && waitqueue_active(&wq->wait))
3342			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3343						EPOLLWRNORM | EPOLLWRBAND);
3344
3345		/* Should agree with poll, otherwise some programs break */
3346		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3347	}
3348}
3349
3350static void sock_def_destruct(struct sock *sk)
3351{
 
3352}
3353
3354void sk_send_sigurg(struct sock *sk)
3355{
3356	if (sk->sk_socket && sk->sk_socket->file)
3357		if (send_sigurg(&sk->sk_socket->file->f_owner))
3358			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3359}
3360EXPORT_SYMBOL(sk_send_sigurg);
3361
3362void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3363		    unsigned long expires)
3364{
3365	if (!mod_timer(timer, expires))
3366		sock_hold(sk);
3367}
3368EXPORT_SYMBOL(sk_reset_timer);
3369
3370void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3371{
3372	if (del_timer(timer))
3373		__sock_put(sk);
3374}
3375EXPORT_SYMBOL(sk_stop_timer);
3376
3377void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3378{
3379	if (del_timer_sync(timer))
3380		__sock_put(sk);
3381}
3382EXPORT_SYMBOL(sk_stop_timer_sync);
 
 
3383
3384void sock_init_data(struct socket *sock, struct sock *sk)
3385{
3386	sk_init_common(sk);
3387	sk->sk_send_head	=	NULL;
3388
3389	timer_setup(&sk->sk_timer, NULL, 0);
3390
3391	sk->sk_allocation	=	GFP_KERNEL;
3392	sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default);
3393	sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default);
3394	sk->sk_state		=	TCP_CLOSE;
3395	sk->sk_use_task_frag	=	true;
3396	sk_set_socket(sk, sock);
3397
3398	sock_set_flag(sk, SOCK_ZAPPED);
3399
3400	if (sock) {
3401		sk->sk_type	=	sock->type;
3402		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3403		sock->sk	=	sk;
3404		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
3405	} else {
3406		RCU_INIT_POINTER(sk->sk_wq, NULL);
3407		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
3408	}
3409
 
3410	rwlock_init(&sk->sk_callback_lock);
3411	if (sk->sk_kern_sock)
3412		lockdep_set_class_and_name(
3413			&sk->sk_callback_lock,
3414			af_kern_callback_keys + sk->sk_family,
3415			af_family_kern_clock_key_strings[sk->sk_family]);
3416	else
3417		lockdep_set_class_and_name(
3418			&sk->sk_callback_lock,
3419			af_callback_keys + sk->sk_family,
3420			af_family_clock_key_strings[sk->sk_family]);
3421
3422	sk->sk_state_change	=	sock_def_wakeup;
3423	sk->sk_data_ready	=	sock_def_readable;
3424	sk->sk_write_space	=	sock_def_write_space;
3425	sk->sk_error_report	=	sock_def_error_report;
3426	sk->sk_destruct		=	sock_def_destruct;
3427
3428	sk->sk_frag.page	=	NULL;
3429	sk->sk_frag.offset	=	0;
3430	sk->sk_peek_off		=	-1;
3431
3432	sk->sk_peer_pid 	=	NULL;
3433	sk->sk_peer_cred	=	NULL;
3434	spin_lock_init(&sk->sk_peer_lock);
3435
3436	sk->sk_write_pending	=	0;
3437	sk->sk_rcvlowat		=	1;
3438	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3439	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3440
3441	sk->sk_stamp = SK_DEFAULT_STAMP;
3442#if BITS_PER_LONG==32
3443	seqlock_init(&sk->sk_stamp_seq);
3444#endif
3445	atomic_set(&sk->sk_zckey, 0);
3446
3447#ifdef CONFIG_NET_RX_BUSY_POLL
3448	sk->sk_napi_id		=	0;
3449	sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read);
3450#endif
3451
3452	sk->sk_max_pacing_rate = ~0UL;
3453	sk->sk_pacing_rate = ~0UL;
3454	WRITE_ONCE(sk->sk_pacing_shift, 10);
3455	sk->sk_incoming_cpu = -1;
3456
3457	sk_rx_queue_clear(sk);
3458	/*
3459	 * Before updating sk_refcnt, we must commit prior changes to memory
3460	 * (Documentation/RCU/rculist_nulls.rst for details)
3461	 */
3462	smp_wmb();
3463	refcount_set(&sk->sk_refcnt, 1);
3464	atomic_set(&sk->sk_drops, 0);
3465}
3466EXPORT_SYMBOL(sock_init_data);
3467
3468void lock_sock_nested(struct sock *sk, int subclass)
3469{
3470	/* The sk_lock has mutex_lock() semantics here. */
3471	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3472
3473	might_sleep();
3474	spin_lock_bh(&sk->sk_lock.slock);
3475	if (sock_owned_by_user_nocheck(sk))
3476		__lock_sock(sk);
3477	sk->sk_lock.owned = 1;
3478	spin_unlock_bh(&sk->sk_lock.slock);
 
 
 
 
 
3479}
3480EXPORT_SYMBOL(lock_sock_nested);
3481
3482void release_sock(struct sock *sk)
3483{
 
 
 
 
 
3484	spin_lock_bh(&sk->sk_lock.slock);
3485	if (sk->sk_backlog.tail)
3486		__release_sock(sk);
3487
3488	/* Warning : release_cb() might need to release sk ownership,
3489	 * ie call sock_release_ownership(sk) before us.
3490	 */
3491	if (sk->sk_prot->release_cb)
3492		sk->sk_prot->release_cb(sk);
3493
3494	sock_release_ownership(sk);
3495	if (waitqueue_active(&sk->sk_lock.wq))
3496		wake_up(&sk->sk_lock.wq);
3497	spin_unlock_bh(&sk->sk_lock.slock);
3498}
3499EXPORT_SYMBOL(release_sock);
3500
3501bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
 
 
 
 
 
 
 
 
 
 
3502{
3503	might_sleep();
3504	spin_lock_bh(&sk->sk_lock.slock);
3505
3506	if (!sock_owned_by_user_nocheck(sk)) {
3507		/*
3508		 * Fast path return with bottom halves disabled and
3509		 * sock::sk_lock.slock held.
3510		 *
3511		 * The 'mutex' is not contended and holding
3512		 * sock::sk_lock.slock prevents all other lockers to
3513		 * proceed so the corresponding unlock_sock_fast() can
3514		 * avoid the slow path of release_sock() completely and
3515		 * just release slock.
3516		 *
3517		 * From a semantical POV this is equivalent to 'acquiring'
3518		 * the 'mutex', hence the corresponding lockdep
3519		 * mutex_release() has to happen in the fast path of
3520		 * unlock_sock_fast().
3521		 */
3522		return false;
3523	}
3524
3525	__lock_sock(sk);
3526	sk->sk_lock.owned = 1;
3527	__acquire(&sk->sk_lock.slock);
3528	spin_unlock_bh(&sk->sk_lock.slock);
 
 
 
 
3529	return true;
3530}
3531EXPORT_SYMBOL(__lock_sock_fast);
3532
3533int sock_gettstamp(struct socket *sock, void __user *userstamp,
3534		   bool timeval, bool time32)
3535{
3536	struct sock *sk = sock->sk;
3537	struct timespec64 ts;
 
 
 
 
 
 
 
 
 
 
 
3538
3539	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3540	ts = ktime_to_timespec64(sock_read_timestamp(sk));
 
 
 
 
3541	if (ts.tv_sec == -1)
3542		return -ENOENT;
3543	if (ts.tv_sec == 0) {
3544		ktime_t kt = ktime_get_real();
3545		sock_write_timestamp(sk, kt);
3546		ts = ktime_to_timespec64(kt);
3547	}
3548
3549	if (timeval)
3550		ts.tv_nsec /= 1000;
3551
3552#ifdef CONFIG_COMPAT_32BIT_TIME
3553	if (time32)
3554		return put_old_timespec32(&ts, userstamp);
3555#endif
3556#ifdef CONFIG_SPARC64
3557	/* beware of padding in sparc64 timeval */
3558	if (timeval && !in_compat_syscall()) {
3559		struct __kernel_old_timeval __user tv = {
3560			.tv_sec = ts.tv_sec,
3561			.tv_usec = ts.tv_nsec,
3562		};
3563		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3564			return -EFAULT;
3565		return 0;
3566	}
3567#endif
3568	return put_timespec64(&ts, userstamp);
3569}
3570EXPORT_SYMBOL(sock_gettstamp);
3571
3572void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3573{
3574	if (!sock_flag(sk, flag)) {
3575		unsigned long previous_flags = sk->sk_flags;
3576
3577		sock_set_flag(sk, flag);
3578		/*
3579		 * we just set one of the two flags which require net
3580		 * time stamping, but time stamping might have been on
3581		 * already because of the other one
3582		 */
3583		if (sock_needs_netstamp(sk) &&
3584		    !(previous_flags & SK_FLAGS_TIMESTAMP))
 
 
3585			net_enable_timestamp();
3586	}
3587}
3588
3589int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3590		       int level, int type)
3591{
3592	struct sock_exterr_skb *serr;
3593	struct sk_buff *skb;
3594	int copied, err;
3595
3596	err = -EAGAIN;
3597	skb = sock_dequeue_err_skb(sk);
3598	if (skb == NULL)
3599		goto out;
3600
3601	copied = skb->len;
3602	if (copied > len) {
3603		msg->msg_flags |= MSG_TRUNC;
3604		copied = len;
3605	}
3606	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3607	if (err)
3608		goto out_free_skb;
3609
3610	sock_recv_timestamp(msg, sk, skb);
3611
3612	serr = SKB_EXT_ERR(skb);
3613	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3614
3615	msg->msg_flags |= MSG_ERRQUEUE;
3616	err = copied;
3617
3618out_free_skb:
3619	kfree_skb(skb);
3620out:
3621	return err;
3622}
3623EXPORT_SYMBOL(sock_recv_errqueue);
3624
3625/*
3626 *	Get a socket option on an socket.
3627 *
3628 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3629 *	asynchronous errors should be reported by getsockopt. We assume
3630 *	this means if you specify SO_ERROR (otherwise whats the point of it).
3631 */
3632int sock_common_getsockopt(struct socket *sock, int level, int optname,
3633			   char __user *optval, int __user *optlen)
3634{
3635	struct sock *sk = sock->sk;
3636
3637	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3638	return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3639}
3640EXPORT_SYMBOL(sock_common_getsockopt);
3641
3642int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3643			int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3644{
3645	struct sock *sk = sock->sk;
3646	int addr_len = 0;
3647	int err;
3648
3649	err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
 
3650	if (err >= 0)
3651		msg->msg_namelen = addr_len;
3652	return err;
3653}
3654EXPORT_SYMBOL(sock_common_recvmsg);
3655
3656/*
3657 *	Set socket options on an inet socket.
3658 */
3659int sock_common_setsockopt(struct socket *sock, int level, int optname,
3660			   sockptr_t optval, unsigned int optlen)
3661{
3662	struct sock *sk = sock->sk;
3663
3664	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3665	return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3666}
3667EXPORT_SYMBOL(sock_common_setsockopt);
3668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3669void sk_common_release(struct sock *sk)
3670{
3671	if (sk->sk_prot->destroy)
3672		sk->sk_prot->destroy(sk);
3673
3674	/*
3675	 * Observation: when sk_common_release is called, processes have
3676	 * no access to socket. But net still has.
3677	 * Step one, detach it from networking:
3678	 *
3679	 * A. Remove from hash tables.
3680	 */
3681
3682	sk->sk_prot->unhash(sk);
3683
3684	/*
3685	 * In this point socket cannot receive new packets, but it is possible
3686	 * that some packets are in flight because some CPU runs receiver and
3687	 * did hash table lookup before we unhashed socket. They will achieve
3688	 * receive queue and will be purged by socket destructor.
3689	 *
3690	 * Also we still have packets pending on receive queue and probably,
3691	 * our own packets waiting in device queues. sock_destroy will drain
3692	 * receive queue, but transmitted packets will delay socket destruction
3693	 * until the last reference will be released.
3694	 */
3695
3696	sock_orphan(sk);
3697
3698	xfrm_sk_free_policy(sk);
3699
3700	sk_refcnt_debug_release(sk);
3701
3702	sock_put(sk);
3703}
3704EXPORT_SYMBOL(sk_common_release);
3705
3706void sk_get_meminfo(const struct sock *sk, u32 *mem)
3707{
3708	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3709
3710	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3711	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3712	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3713	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3714	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3715	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3716	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3717	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3718	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3719}
3720
3721#ifdef CONFIG_PROC_FS
3722static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3723
 
 
 
 
 
 
 
3724int sock_prot_inuse_get(struct net *net, struct proto *prot)
3725{
3726	int cpu, idx = prot->inuse_idx;
3727	int res = 0;
3728
3729	for_each_possible_cpu(cpu)
3730		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3731
3732	return res >= 0 ? res : 0;
3733}
3734EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3735
3736int sock_inuse_get(struct net *net)
3737{
3738	int cpu, res = 0;
3739
3740	for_each_possible_cpu(cpu)
3741		res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3742
3743	return res;
3744}
3745
3746EXPORT_SYMBOL_GPL(sock_inuse_get);
3747
3748static int __net_init sock_inuse_init_net(struct net *net)
3749{
3750	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3751	if (net->core.prot_inuse == NULL)
3752		return -ENOMEM;
3753	return 0;
3754}
3755
3756static void __net_exit sock_inuse_exit_net(struct net *net)
3757{
3758	free_percpu(net->core.prot_inuse);
3759}
3760
3761static struct pernet_operations net_inuse_ops = {
3762	.init = sock_inuse_init_net,
3763	.exit = sock_inuse_exit_net,
3764};
3765
3766static __init int net_inuse_init(void)
3767{
3768	if (register_pernet_subsys(&net_inuse_ops))
3769		panic("Cannot initialize net inuse counters");
3770
3771	return 0;
3772}
3773
3774core_initcall(net_inuse_init);
 
 
3775
3776static int assign_proto_idx(struct proto *prot)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3777{
3778	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3779
3780	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3781		pr_err("PROTO_INUSE_NR exhausted\n");
3782		return -ENOSPC;
3783	}
3784
3785	set_bit(prot->inuse_idx, proto_inuse_idx);
3786	return 0;
3787}
3788
3789static void release_proto_idx(struct proto *prot)
3790{
3791	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3792		clear_bit(prot->inuse_idx, proto_inuse_idx);
3793}
3794#else
3795static inline int assign_proto_idx(struct proto *prot)
3796{
3797	return 0;
3798}
3799
3800static inline void release_proto_idx(struct proto *prot)
3801{
3802}
3803
3804#endif
3805
3806static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3807{
3808	if (!twsk_prot)
3809		return;
3810	kfree(twsk_prot->twsk_slab_name);
3811	twsk_prot->twsk_slab_name = NULL;
3812	kmem_cache_destroy(twsk_prot->twsk_slab);
3813	twsk_prot->twsk_slab = NULL;
3814}
3815
3816static int tw_prot_init(const struct proto *prot)
3817{
3818	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3819
3820	if (!twsk_prot)
3821		return 0;
3822
3823	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3824					      prot->name);
3825	if (!twsk_prot->twsk_slab_name)
3826		return -ENOMEM;
3827
3828	twsk_prot->twsk_slab =
3829		kmem_cache_create(twsk_prot->twsk_slab_name,
3830				  twsk_prot->twsk_obj_size, 0,
3831				  SLAB_ACCOUNT | prot->slab_flags,
3832				  NULL);
3833	if (!twsk_prot->twsk_slab) {
3834		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3835			prot->name);
3836		return -ENOMEM;
3837	}
3838
3839	return 0;
3840}
3841
3842static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3843{
3844	if (!rsk_prot)
3845		return;
3846	kfree(rsk_prot->slab_name);
3847	rsk_prot->slab_name = NULL;
3848	kmem_cache_destroy(rsk_prot->slab);
3849	rsk_prot->slab = NULL;
3850}
3851
3852static int req_prot_init(const struct proto *prot)
3853{
3854	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3855
3856	if (!rsk_prot)
3857		return 0;
3858
3859	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3860					prot->name);
3861	if (!rsk_prot->slab_name)
3862		return -ENOMEM;
3863
3864	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3865					   rsk_prot->obj_size, 0,
3866					   SLAB_ACCOUNT | prot->slab_flags,
3867					   NULL);
3868
3869	if (!rsk_prot->slab) {
3870		pr_crit("%s: Can't create request sock SLAB cache!\n",
3871			prot->name);
3872		return -ENOMEM;
3873	}
3874	return 0;
3875}
3876
3877int proto_register(struct proto *prot, int alloc_slab)
3878{
3879	int ret = -ENOBUFS;
3880
3881	if (prot->memory_allocated && !prot->sysctl_mem) {
3882		pr_err("%s: missing sysctl_mem\n", prot->name);
3883		return -EINVAL;
3884	}
3885	if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
3886		pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
3887		return -EINVAL;
3888	}
3889	if (alloc_slab) {
3890		prot->slab = kmem_cache_create_usercopy(prot->name,
3891					prot->obj_size, 0,
3892					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3893					prot->slab_flags,
3894					prot->useroffset, prot->usersize,
3895					NULL);
3896
3897		if (prot->slab == NULL) {
3898			pr_crit("%s: Can't create sock SLAB cache!\n",
3899				prot->name);
3900			goto out;
3901		}
3902
3903		if (req_prot_init(prot))
3904			goto out_free_request_sock_slab;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3905
3906		if (tw_prot_init(prot))
3907			goto out_free_timewait_sock_slab;
 
 
 
 
 
 
 
 
 
 
 
3908	}
3909
3910	mutex_lock(&proto_list_mutex);
3911	ret = assign_proto_idx(prot);
3912	if (ret) {
3913		mutex_unlock(&proto_list_mutex);
3914		goto out_free_timewait_sock_slab;
3915	}
3916	list_add(&prot->node, &proto_list);
3917	mutex_unlock(&proto_list_mutex);
3918	return ret;
 
3919
3920out_free_timewait_sock_slab:
3921	if (alloc_slab)
3922		tw_prot_cleanup(prot->twsk_prot);
3923out_free_request_sock_slab:
3924	if (alloc_slab) {
3925		req_prot_cleanup(prot->rsk_prot);
3926
3927		kmem_cache_destroy(prot->slab);
3928		prot->slab = NULL;
3929	}
 
 
 
 
3930out:
3931	return ret;
3932}
3933EXPORT_SYMBOL(proto_register);
3934
3935void proto_unregister(struct proto *prot)
3936{
3937	mutex_lock(&proto_list_mutex);
3938	release_proto_idx(prot);
3939	list_del(&prot->node);
3940	mutex_unlock(&proto_list_mutex);
3941
3942	kmem_cache_destroy(prot->slab);
3943	prot->slab = NULL;
 
 
3944
3945	req_prot_cleanup(prot->rsk_prot);
3946	tw_prot_cleanup(prot->twsk_prot);
3947}
3948EXPORT_SYMBOL(proto_unregister);
 
3949
3950int sock_load_diag_module(int family, int protocol)
3951{
3952	if (!protocol) {
3953		if (!sock_is_registered(family))
3954			return -ENOENT;
3955
3956		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3957				      NETLINK_SOCK_DIAG, family);
3958	}
3959
3960#ifdef CONFIG_INET
3961	if (family == AF_INET &&
3962	    protocol != IPPROTO_RAW &&
3963	    protocol < MAX_INET_PROTOS &&
3964	    !rcu_access_pointer(inet_protos[protocol]))
3965		return -ENOENT;
3966#endif
3967
3968	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3969			      NETLINK_SOCK_DIAG, family, protocol);
3970}
3971EXPORT_SYMBOL(sock_load_diag_module);
3972
3973#ifdef CONFIG_PROC_FS
3974static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3975	__acquires(proto_list_mutex)
3976{
3977	mutex_lock(&proto_list_mutex);
3978	return seq_list_start_head(&proto_list, *pos);
3979}
3980
3981static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3982{
3983	return seq_list_next(v, &proto_list, pos);
3984}
3985
3986static void proto_seq_stop(struct seq_file *seq, void *v)
3987	__releases(proto_list_mutex)
3988{
3989	mutex_unlock(&proto_list_mutex);
3990}
3991
3992static char proto_method_implemented(const void *method)
3993{
3994	return method == NULL ? 'n' : 'y';
3995}
3996static long sock_prot_memory_allocated(struct proto *proto)
3997{
3998	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3999}
4000
4001static const char *sock_prot_memory_pressure(struct proto *proto)
4002{
4003	return proto->memory_pressure != NULL ?
4004	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4005}
4006
4007static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4008{
4009
4010	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
4011			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4012		   proto->name,
4013		   proto->obj_size,
4014		   sock_prot_inuse_get(seq_file_net(seq), proto),
4015		   sock_prot_memory_allocated(proto),
4016		   sock_prot_memory_pressure(proto),
4017		   proto->max_header,
4018		   proto->slab == NULL ? "no" : "yes",
4019		   module_name(proto->owner),
4020		   proto_method_implemented(proto->close),
4021		   proto_method_implemented(proto->connect),
4022		   proto_method_implemented(proto->disconnect),
4023		   proto_method_implemented(proto->accept),
4024		   proto_method_implemented(proto->ioctl),
4025		   proto_method_implemented(proto->init),
4026		   proto_method_implemented(proto->destroy),
4027		   proto_method_implemented(proto->shutdown),
4028		   proto_method_implemented(proto->setsockopt),
4029		   proto_method_implemented(proto->getsockopt),
4030		   proto_method_implemented(proto->sendmsg),
4031		   proto_method_implemented(proto->recvmsg),
4032		   proto_method_implemented(proto->sendpage),
4033		   proto_method_implemented(proto->bind),
4034		   proto_method_implemented(proto->backlog_rcv),
4035		   proto_method_implemented(proto->hash),
4036		   proto_method_implemented(proto->unhash),
4037		   proto_method_implemented(proto->get_port),
4038		   proto_method_implemented(proto->enter_memory_pressure));
4039}
4040
4041static int proto_seq_show(struct seq_file *seq, void *v)
4042{
4043	if (v == &proto_list)
4044		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4045			   "protocol",
4046			   "size",
4047			   "sockets",
4048			   "memory",
4049			   "press",
4050			   "maxhdr",
4051			   "slab",
4052			   "module",
4053			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
4054	else
4055		proto_seq_printf(seq, list_entry(v, struct proto, node));
4056	return 0;
4057}
4058
4059static const struct seq_operations proto_seq_ops = {
4060	.start  = proto_seq_start,
4061	.next   = proto_seq_next,
4062	.stop   = proto_seq_stop,
4063	.show   = proto_seq_show,
4064};
4065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4066static __net_init int proto_init_net(struct net *net)
4067{
4068	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4069			sizeof(struct seq_net_private)))
4070		return -ENOMEM;
4071
4072	return 0;
4073}
4074
4075static __net_exit void proto_exit_net(struct net *net)
4076{
4077	remove_proc_entry("protocols", net->proc_net);
4078}
4079
4080
4081static __net_initdata struct pernet_operations proto_net_ops = {
4082	.init = proto_init_net,
4083	.exit = proto_exit_net,
4084};
4085
4086static int __init proto_init(void)
4087{
4088	return register_pernet_subsys(&proto_net_ops);
4089}
4090
4091subsys_initcall(proto_init);
4092
4093#endif /* PROC_FS */
4094
4095#ifdef CONFIG_NET_RX_BUSY_POLL
4096bool sk_busy_loop_end(void *p, unsigned long start_time)
4097{
4098	struct sock *sk = p;
4099
4100	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
4101	       sk_busy_loop_timeout(sk, start_time);
4102}
4103EXPORT_SYMBOL(sk_busy_loop_end);
4104#endif /* CONFIG_NET_RX_BUSY_POLL */
4105
4106int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4107{
4108	if (!sk->sk_prot->bind_add)
4109		return -EOPNOTSUPP;
4110	return sk->sk_prot->bind_add(sk, addr, addr_len);
4111}
4112EXPORT_SYMBOL(sock_bind_add);