Loading...
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92#include <linux/capability.h>
93#include <linux/errno.h>
94#include <linux/types.h>
95#include <linux/socket.h>
96#include <linux/in.h>
97#include <linux/kernel.h>
98#include <linux/module.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/sched.h>
102#include <linux/timer.h>
103#include <linux/string.h>
104#include <linux/sockios.h>
105#include <linux/net.h>
106#include <linux/mm.h>
107#include <linux/slab.h>
108#include <linux/interrupt.h>
109#include <linux/poll.h>
110#include <linux/tcp.h>
111#include <linux/init.h>
112#include <linux/highmem.h>
113#include <linux/user_namespace.h>
114
115#include <asm/uaccess.h>
116#include <asm/system.h>
117
118#include <linux/netdevice.h>
119#include <net/protocol.h>
120#include <linux/skbuff.h>
121#include <net/net_namespace.h>
122#include <net/request_sock.h>
123#include <net/sock.h>
124#include <linux/net_tstamp.h>
125#include <net/xfrm.h>
126#include <linux/ipsec.h>
127#include <net/cls_cgroup.h>
128
129#include <linux/filter.h>
130
131#include <trace/events/sock.h>
132
133#ifdef CONFIG_INET
134#include <net/tcp.h>
135#endif
136
137/*
138 * Each address family might have different locking rules, so we have
139 * one slock key per address family:
140 */
141static struct lock_class_key af_family_keys[AF_MAX];
142static struct lock_class_key af_family_slock_keys[AF_MAX];
143
144/*
145 * Make lock validator output more readable. (we pre-construct these
146 * strings build-time, so that runtime initialization of socket
147 * locks is fast):
148 */
149static const char *const af_family_key_strings[AF_MAX+1] = {
150 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
151 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
152 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
153 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
154 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
155 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
156 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
157 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
158 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
159 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
160 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
161 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
162 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
163 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
164};
165static const char *const af_family_slock_key_strings[AF_MAX+1] = {
166 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
167 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
168 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
169 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
170 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
171 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
172 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
173 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
174 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
175 "slock-27" , "slock-28" , "slock-AF_CAN" ,
176 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
177 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
178 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
179 "slock-AF_NFC" , "slock-AF_MAX"
180};
181static const char *const af_family_clock_key_strings[AF_MAX+1] = {
182 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
183 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
184 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
185 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
186 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
187 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
188 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
189 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
190 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
191 "clock-27" , "clock-28" , "clock-AF_CAN" ,
192 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
193 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
194 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
195 "clock-AF_NFC" , "clock-AF_MAX"
196};
197
198/*
199 * sk_callback_lock locking rules are per-address-family,
200 * so split the lock classes by using a per-AF key:
201 */
202static struct lock_class_key af_callback_keys[AF_MAX];
203
204/* Take into consideration the size of the struct sk_buff overhead in the
205 * determination of these values, since that is non-constant across
206 * platforms. This makes socket queueing behavior and performance
207 * not depend upon such differences.
208 */
209#define _SK_MEM_PACKETS 256
210#define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
211#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
212#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
213
214/* Run time adjustable parameters. */
215__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
216__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
217__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
218__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
219
220/* Maximal space eaten by iovec or ancillary data plus some space */
221int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
222EXPORT_SYMBOL(sysctl_optmem_max);
223
224#if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
225int net_cls_subsys_id = -1;
226EXPORT_SYMBOL_GPL(net_cls_subsys_id);
227#endif
228
229static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
230{
231 struct timeval tv;
232
233 if (optlen < sizeof(tv))
234 return -EINVAL;
235 if (copy_from_user(&tv, optval, sizeof(tv)))
236 return -EFAULT;
237 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
238 return -EDOM;
239
240 if (tv.tv_sec < 0) {
241 static int warned __read_mostly;
242
243 *timeo_p = 0;
244 if (warned < 10 && net_ratelimit()) {
245 warned++;
246 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
247 "tries to set negative timeout\n",
248 current->comm, task_pid_nr(current));
249 }
250 return 0;
251 }
252 *timeo_p = MAX_SCHEDULE_TIMEOUT;
253 if (tv.tv_sec == 0 && tv.tv_usec == 0)
254 return 0;
255 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
256 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
257 return 0;
258}
259
260static void sock_warn_obsolete_bsdism(const char *name)
261{
262 static int warned;
263 static char warncomm[TASK_COMM_LEN];
264 if (strcmp(warncomm, current->comm) && warned < 5) {
265 strcpy(warncomm, current->comm);
266 printk(KERN_WARNING "process `%s' is using obsolete "
267 "%s SO_BSDCOMPAT\n", warncomm, name);
268 warned++;
269 }
270}
271
272static void sock_disable_timestamp(struct sock *sk, int flag)
273{
274 if (sock_flag(sk, flag)) {
275 sock_reset_flag(sk, flag);
276 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
277 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
278 net_disable_timestamp();
279 }
280 }
281}
282
283
284int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
285{
286 int err;
287 int skb_len;
288 unsigned long flags;
289 struct sk_buff_head *list = &sk->sk_receive_queue;
290
291 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
292 number of warnings when compiling with -W --ANK
293 */
294 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
295 (unsigned)sk->sk_rcvbuf) {
296 atomic_inc(&sk->sk_drops);
297 trace_sock_rcvqueue_full(sk, skb);
298 return -ENOMEM;
299 }
300
301 err = sk_filter(sk, skb);
302 if (err)
303 return err;
304
305 if (!sk_rmem_schedule(sk, skb->truesize)) {
306 atomic_inc(&sk->sk_drops);
307 return -ENOBUFS;
308 }
309
310 skb->dev = NULL;
311 skb_set_owner_r(skb, sk);
312
313 /* Cache the SKB length before we tack it onto the receive
314 * queue. Once it is added it no longer belongs to us and
315 * may be freed by other threads of control pulling packets
316 * from the queue.
317 */
318 skb_len = skb->len;
319
320 /* we escape from rcu protected region, make sure we dont leak
321 * a norefcounted dst
322 */
323 skb_dst_force(skb);
324
325 spin_lock_irqsave(&list->lock, flags);
326 skb->dropcount = atomic_read(&sk->sk_drops);
327 __skb_queue_tail(list, skb);
328 spin_unlock_irqrestore(&list->lock, flags);
329
330 if (!sock_flag(sk, SOCK_DEAD))
331 sk->sk_data_ready(sk, skb_len);
332 return 0;
333}
334EXPORT_SYMBOL(sock_queue_rcv_skb);
335
336int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
337{
338 int rc = NET_RX_SUCCESS;
339
340 if (sk_filter(sk, skb))
341 goto discard_and_relse;
342
343 skb->dev = NULL;
344
345 if (sk_rcvqueues_full(sk, skb)) {
346 atomic_inc(&sk->sk_drops);
347 goto discard_and_relse;
348 }
349 if (nested)
350 bh_lock_sock_nested(sk);
351 else
352 bh_lock_sock(sk);
353 if (!sock_owned_by_user(sk)) {
354 /*
355 * trylock + unlock semantics:
356 */
357 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
358
359 rc = sk_backlog_rcv(sk, skb);
360
361 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
362 } else if (sk_add_backlog(sk, skb)) {
363 bh_unlock_sock(sk);
364 atomic_inc(&sk->sk_drops);
365 goto discard_and_relse;
366 }
367
368 bh_unlock_sock(sk);
369out:
370 sock_put(sk);
371 return rc;
372discard_and_relse:
373 kfree_skb(skb);
374 goto out;
375}
376EXPORT_SYMBOL(sk_receive_skb);
377
378void sk_reset_txq(struct sock *sk)
379{
380 sk_tx_queue_clear(sk);
381}
382EXPORT_SYMBOL(sk_reset_txq);
383
384struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
385{
386 struct dst_entry *dst = __sk_dst_get(sk);
387
388 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
389 sk_tx_queue_clear(sk);
390 rcu_assign_pointer(sk->sk_dst_cache, NULL);
391 dst_release(dst);
392 return NULL;
393 }
394
395 return dst;
396}
397EXPORT_SYMBOL(__sk_dst_check);
398
399struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
400{
401 struct dst_entry *dst = sk_dst_get(sk);
402
403 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
404 sk_dst_reset(sk);
405 dst_release(dst);
406 return NULL;
407 }
408
409 return dst;
410}
411EXPORT_SYMBOL(sk_dst_check);
412
413static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
414{
415 int ret = -ENOPROTOOPT;
416#ifdef CONFIG_NETDEVICES
417 struct net *net = sock_net(sk);
418 char devname[IFNAMSIZ];
419 int index;
420
421 /* Sorry... */
422 ret = -EPERM;
423 if (!capable(CAP_NET_RAW))
424 goto out;
425
426 ret = -EINVAL;
427 if (optlen < 0)
428 goto out;
429
430 /* Bind this socket to a particular device like "eth0",
431 * as specified in the passed interface name. If the
432 * name is "" or the option length is zero the socket
433 * is not bound.
434 */
435 if (optlen > IFNAMSIZ - 1)
436 optlen = IFNAMSIZ - 1;
437 memset(devname, 0, sizeof(devname));
438
439 ret = -EFAULT;
440 if (copy_from_user(devname, optval, optlen))
441 goto out;
442
443 index = 0;
444 if (devname[0] != '\0') {
445 struct net_device *dev;
446
447 rcu_read_lock();
448 dev = dev_get_by_name_rcu(net, devname);
449 if (dev)
450 index = dev->ifindex;
451 rcu_read_unlock();
452 ret = -ENODEV;
453 if (!dev)
454 goto out;
455 }
456
457 lock_sock(sk);
458 sk->sk_bound_dev_if = index;
459 sk_dst_reset(sk);
460 release_sock(sk);
461
462 ret = 0;
463
464out:
465#endif
466
467 return ret;
468}
469
470static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
471{
472 if (valbool)
473 sock_set_flag(sk, bit);
474 else
475 sock_reset_flag(sk, bit);
476}
477
478/*
479 * This is meant for all protocols to use and covers goings on
480 * at the socket level. Everything here is generic.
481 */
482
483int sock_setsockopt(struct socket *sock, int level, int optname,
484 char __user *optval, unsigned int optlen)
485{
486 struct sock *sk = sock->sk;
487 int val;
488 int valbool;
489 struct linger ling;
490 int ret = 0;
491
492 /*
493 * Options without arguments
494 */
495
496 if (optname == SO_BINDTODEVICE)
497 return sock_bindtodevice(sk, optval, optlen);
498
499 if (optlen < sizeof(int))
500 return -EINVAL;
501
502 if (get_user(val, (int __user *)optval))
503 return -EFAULT;
504
505 valbool = val ? 1 : 0;
506
507 lock_sock(sk);
508
509 switch (optname) {
510 case SO_DEBUG:
511 if (val && !capable(CAP_NET_ADMIN))
512 ret = -EACCES;
513 else
514 sock_valbool_flag(sk, SOCK_DBG, valbool);
515 break;
516 case SO_REUSEADDR:
517 sk->sk_reuse = valbool;
518 break;
519 case SO_TYPE:
520 case SO_PROTOCOL:
521 case SO_DOMAIN:
522 case SO_ERROR:
523 ret = -ENOPROTOOPT;
524 break;
525 case SO_DONTROUTE:
526 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
527 break;
528 case SO_BROADCAST:
529 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
530 break;
531 case SO_SNDBUF:
532 /* Don't error on this BSD doesn't and if you think
533 about it this is right. Otherwise apps have to
534 play 'guess the biggest size' games. RCVBUF/SNDBUF
535 are treated in BSD as hints */
536
537 if (val > sysctl_wmem_max)
538 val = sysctl_wmem_max;
539set_sndbuf:
540 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
541 if ((val * 2) < SOCK_MIN_SNDBUF)
542 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
543 else
544 sk->sk_sndbuf = val * 2;
545
546 /*
547 * Wake up sending tasks if we
548 * upped the value.
549 */
550 sk->sk_write_space(sk);
551 break;
552
553 case SO_SNDBUFFORCE:
554 if (!capable(CAP_NET_ADMIN)) {
555 ret = -EPERM;
556 break;
557 }
558 goto set_sndbuf;
559
560 case SO_RCVBUF:
561 /* Don't error on this BSD doesn't and if you think
562 about it this is right. Otherwise apps have to
563 play 'guess the biggest size' games. RCVBUF/SNDBUF
564 are treated in BSD as hints */
565
566 if (val > sysctl_rmem_max)
567 val = sysctl_rmem_max;
568set_rcvbuf:
569 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
570 /*
571 * We double it on the way in to account for
572 * "struct sk_buff" etc. overhead. Applications
573 * assume that the SO_RCVBUF setting they make will
574 * allow that much actual data to be received on that
575 * socket.
576 *
577 * Applications are unaware that "struct sk_buff" and
578 * other overheads allocate from the receive buffer
579 * during socket buffer allocation.
580 *
581 * And after considering the possible alternatives,
582 * returning the value we actually used in getsockopt
583 * is the most desirable behavior.
584 */
585 if ((val * 2) < SOCK_MIN_RCVBUF)
586 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
587 else
588 sk->sk_rcvbuf = val * 2;
589 break;
590
591 case SO_RCVBUFFORCE:
592 if (!capable(CAP_NET_ADMIN)) {
593 ret = -EPERM;
594 break;
595 }
596 goto set_rcvbuf;
597
598 case SO_KEEPALIVE:
599#ifdef CONFIG_INET
600 if (sk->sk_protocol == IPPROTO_TCP)
601 tcp_set_keepalive(sk, valbool);
602#endif
603 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
604 break;
605
606 case SO_OOBINLINE:
607 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
608 break;
609
610 case SO_NO_CHECK:
611 sk->sk_no_check = valbool;
612 break;
613
614 case SO_PRIORITY:
615 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
616 sk->sk_priority = val;
617 else
618 ret = -EPERM;
619 break;
620
621 case SO_LINGER:
622 if (optlen < sizeof(ling)) {
623 ret = -EINVAL; /* 1003.1g */
624 break;
625 }
626 if (copy_from_user(&ling, optval, sizeof(ling))) {
627 ret = -EFAULT;
628 break;
629 }
630 if (!ling.l_onoff)
631 sock_reset_flag(sk, SOCK_LINGER);
632 else {
633#if (BITS_PER_LONG == 32)
634 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
635 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
636 else
637#endif
638 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
639 sock_set_flag(sk, SOCK_LINGER);
640 }
641 break;
642
643 case SO_BSDCOMPAT:
644 sock_warn_obsolete_bsdism("setsockopt");
645 break;
646
647 case SO_PASSCRED:
648 if (valbool)
649 set_bit(SOCK_PASSCRED, &sock->flags);
650 else
651 clear_bit(SOCK_PASSCRED, &sock->flags);
652 break;
653
654 case SO_TIMESTAMP:
655 case SO_TIMESTAMPNS:
656 if (valbool) {
657 if (optname == SO_TIMESTAMP)
658 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
659 else
660 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
661 sock_set_flag(sk, SOCK_RCVTSTAMP);
662 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
663 } else {
664 sock_reset_flag(sk, SOCK_RCVTSTAMP);
665 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
666 }
667 break;
668
669 case SO_TIMESTAMPING:
670 if (val & ~SOF_TIMESTAMPING_MASK) {
671 ret = -EINVAL;
672 break;
673 }
674 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
675 val & SOF_TIMESTAMPING_TX_HARDWARE);
676 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
677 val & SOF_TIMESTAMPING_TX_SOFTWARE);
678 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
679 val & SOF_TIMESTAMPING_RX_HARDWARE);
680 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
681 sock_enable_timestamp(sk,
682 SOCK_TIMESTAMPING_RX_SOFTWARE);
683 else
684 sock_disable_timestamp(sk,
685 SOCK_TIMESTAMPING_RX_SOFTWARE);
686 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
687 val & SOF_TIMESTAMPING_SOFTWARE);
688 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
689 val & SOF_TIMESTAMPING_SYS_HARDWARE);
690 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
691 val & SOF_TIMESTAMPING_RAW_HARDWARE);
692 break;
693
694 case SO_RCVLOWAT:
695 if (val < 0)
696 val = INT_MAX;
697 sk->sk_rcvlowat = val ? : 1;
698 break;
699
700 case SO_RCVTIMEO:
701 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
702 break;
703
704 case SO_SNDTIMEO:
705 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
706 break;
707
708 case SO_ATTACH_FILTER:
709 ret = -EINVAL;
710 if (optlen == sizeof(struct sock_fprog)) {
711 struct sock_fprog fprog;
712
713 ret = -EFAULT;
714 if (copy_from_user(&fprog, optval, sizeof(fprog)))
715 break;
716
717 ret = sk_attach_filter(&fprog, sk);
718 }
719 break;
720
721 case SO_DETACH_FILTER:
722 ret = sk_detach_filter(sk);
723 break;
724
725 case SO_PASSSEC:
726 if (valbool)
727 set_bit(SOCK_PASSSEC, &sock->flags);
728 else
729 clear_bit(SOCK_PASSSEC, &sock->flags);
730 break;
731 case SO_MARK:
732 if (!capable(CAP_NET_ADMIN))
733 ret = -EPERM;
734 else
735 sk->sk_mark = val;
736 break;
737
738 /* We implement the SO_SNDLOWAT etc to
739 not be settable (1003.1g 5.3) */
740 case SO_RXQ_OVFL:
741 if (valbool)
742 sock_set_flag(sk, SOCK_RXQ_OVFL);
743 else
744 sock_reset_flag(sk, SOCK_RXQ_OVFL);
745 break;
746 default:
747 ret = -ENOPROTOOPT;
748 break;
749 }
750 release_sock(sk);
751 return ret;
752}
753EXPORT_SYMBOL(sock_setsockopt);
754
755
756void cred_to_ucred(struct pid *pid, const struct cred *cred,
757 struct ucred *ucred)
758{
759 ucred->pid = pid_vnr(pid);
760 ucred->uid = ucred->gid = -1;
761 if (cred) {
762 struct user_namespace *current_ns = current_user_ns();
763
764 ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
765 ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
766 }
767}
768EXPORT_SYMBOL_GPL(cred_to_ucred);
769
770int sock_getsockopt(struct socket *sock, int level, int optname,
771 char __user *optval, int __user *optlen)
772{
773 struct sock *sk = sock->sk;
774
775 union {
776 int val;
777 struct linger ling;
778 struct timeval tm;
779 } v;
780
781 int lv = sizeof(int);
782 int len;
783
784 if (get_user(len, optlen))
785 return -EFAULT;
786 if (len < 0)
787 return -EINVAL;
788
789 memset(&v, 0, sizeof(v));
790
791 switch (optname) {
792 case SO_DEBUG:
793 v.val = sock_flag(sk, SOCK_DBG);
794 break;
795
796 case SO_DONTROUTE:
797 v.val = sock_flag(sk, SOCK_LOCALROUTE);
798 break;
799
800 case SO_BROADCAST:
801 v.val = !!sock_flag(sk, SOCK_BROADCAST);
802 break;
803
804 case SO_SNDBUF:
805 v.val = sk->sk_sndbuf;
806 break;
807
808 case SO_RCVBUF:
809 v.val = sk->sk_rcvbuf;
810 break;
811
812 case SO_REUSEADDR:
813 v.val = sk->sk_reuse;
814 break;
815
816 case SO_KEEPALIVE:
817 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
818 break;
819
820 case SO_TYPE:
821 v.val = sk->sk_type;
822 break;
823
824 case SO_PROTOCOL:
825 v.val = sk->sk_protocol;
826 break;
827
828 case SO_DOMAIN:
829 v.val = sk->sk_family;
830 break;
831
832 case SO_ERROR:
833 v.val = -sock_error(sk);
834 if (v.val == 0)
835 v.val = xchg(&sk->sk_err_soft, 0);
836 break;
837
838 case SO_OOBINLINE:
839 v.val = !!sock_flag(sk, SOCK_URGINLINE);
840 break;
841
842 case SO_NO_CHECK:
843 v.val = sk->sk_no_check;
844 break;
845
846 case SO_PRIORITY:
847 v.val = sk->sk_priority;
848 break;
849
850 case SO_LINGER:
851 lv = sizeof(v.ling);
852 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
853 v.ling.l_linger = sk->sk_lingertime / HZ;
854 break;
855
856 case SO_BSDCOMPAT:
857 sock_warn_obsolete_bsdism("getsockopt");
858 break;
859
860 case SO_TIMESTAMP:
861 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
862 !sock_flag(sk, SOCK_RCVTSTAMPNS);
863 break;
864
865 case SO_TIMESTAMPNS:
866 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
867 break;
868
869 case SO_TIMESTAMPING:
870 v.val = 0;
871 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
872 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
873 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
874 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
875 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
876 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
877 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
878 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
879 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
880 v.val |= SOF_TIMESTAMPING_SOFTWARE;
881 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
882 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
883 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
884 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
885 break;
886
887 case SO_RCVTIMEO:
888 lv = sizeof(struct timeval);
889 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
890 v.tm.tv_sec = 0;
891 v.tm.tv_usec = 0;
892 } else {
893 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
894 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
895 }
896 break;
897
898 case SO_SNDTIMEO:
899 lv = sizeof(struct timeval);
900 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
901 v.tm.tv_sec = 0;
902 v.tm.tv_usec = 0;
903 } else {
904 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
905 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
906 }
907 break;
908
909 case SO_RCVLOWAT:
910 v.val = sk->sk_rcvlowat;
911 break;
912
913 case SO_SNDLOWAT:
914 v.val = 1;
915 break;
916
917 case SO_PASSCRED:
918 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
919 break;
920
921 case SO_PEERCRED:
922 {
923 struct ucred peercred;
924 if (len > sizeof(peercred))
925 len = sizeof(peercred);
926 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
927 if (copy_to_user(optval, &peercred, len))
928 return -EFAULT;
929 goto lenout;
930 }
931
932 case SO_PEERNAME:
933 {
934 char address[128];
935
936 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
937 return -ENOTCONN;
938 if (lv < len)
939 return -EINVAL;
940 if (copy_to_user(optval, address, len))
941 return -EFAULT;
942 goto lenout;
943 }
944
945 /* Dubious BSD thing... Probably nobody even uses it, but
946 * the UNIX standard wants it for whatever reason... -DaveM
947 */
948 case SO_ACCEPTCONN:
949 v.val = sk->sk_state == TCP_LISTEN;
950 break;
951
952 case SO_PASSSEC:
953 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
954 break;
955
956 case SO_PEERSEC:
957 return security_socket_getpeersec_stream(sock, optval, optlen, len);
958
959 case SO_MARK:
960 v.val = sk->sk_mark;
961 break;
962
963 case SO_RXQ_OVFL:
964 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
965 break;
966
967 default:
968 return -ENOPROTOOPT;
969 }
970
971 if (len > lv)
972 len = lv;
973 if (copy_to_user(optval, &v, len))
974 return -EFAULT;
975lenout:
976 if (put_user(len, optlen))
977 return -EFAULT;
978 return 0;
979}
980
981/*
982 * Initialize an sk_lock.
983 *
984 * (We also register the sk_lock with the lock validator.)
985 */
986static inline void sock_lock_init(struct sock *sk)
987{
988 sock_lock_init_class_and_name(sk,
989 af_family_slock_key_strings[sk->sk_family],
990 af_family_slock_keys + sk->sk_family,
991 af_family_key_strings[sk->sk_family],
992 af_family_keys + sk->sk_family);
993}
994
995/*
996 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
997 * even temporarly, because of RCU lookups. sk_node should also be left as is.
998 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
999 */
1000static void sock_copy(struct sock *nsk, const struct sock *osk)
1001{
1002#ifdef CONFIG_SECURITY_NETWORK
1003 void *sptr = nsk->sk_security;
1004#endif
1005 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1006
1007 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1008 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1009
1010#ifdef CONFIG_SECURITY_NETWORK
1011 nsk->sk_security = sptr;
1012 security_sk_clone(osk, nsk);
1013#endif
1014}
1015
1016/*
1017 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1018 * un-modified. Special care is taken when initializing object to zero.
1019 */
1020static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1021{
1022 if (offsetof(struct sock, sk_node.next) != 0)
1023 memset(sk, 0, offsetof(struct sock, sk_node.next));
1024 memset(&sk->sk_node.pprev, 0,
1025 size - offsetof(struct sock, sk_node.pprev));
1026}
1027
1028void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1029{
1030 unsigned long nulls1, nulls2;
1031
1032 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1033 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1034 if (nulls1 > nulls2)
1035 swap(nulls1, nulls2);
1036
1037 if (nulls1 != 0)
1038 memset((char *)sk, 0, nulls1);
1039 memset((char *)sk + nulls1 + sizeof(void *), 0,
1040 nulls2 - nulls1 - sizeof(void *));
1041 memset((char *)sk + nulls2 + sizeof(void *), 0,
1042 size - nulls2 - sizeof(void *));
1043}
1044EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1045
1046static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1047 int family)
1048{
1049 struct sock *sk;
1050 struct kmem_cache *slab;
1051
1052 slab = prot->slab;
1053 if (slab != NULL) {
1054 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1055 if (!sk)
1056 return sk;
1057 if (priority & __GFP_ZERO) {
1058 if (prot->clear_sk)
1059 prot->clear_sk(sk, prot->obj_size);
1060 else
1061 sk_prot_clear_nulls(sk, prot->obj_size);
1062 }
1063 } else
1064 sk = kmalloc(prot->obj_size, priority);
1065
1066 if (sk != NULL) {
1067 kmemcheck_annotate_bitfield(sk, flags);
1068
1069 if (security_sk_alloc(sk, family, priority))
1070 goto out_free;
1071
1072 if (!try_module_get(prot->owner))
1073 goto out_free_sec;
1074 sk_tx_queue_clear(sk);
1075 }
1076
1077 return sk;
1078
1079out_free_sec:
1080 security_sk_free(sk);
1081out_free:
1082 if (slab != NULL)
1083 kmem_cache_free(slab, sk);
1084 else
1085 kfree(sk);
1086 return NULL;
1087}
1088
1089static void sk_prot_free(struct proto *prot, struct sock *sk)
1090{
1091 struct kmem_cache *slab;
1092 struct module *owner;
1093
1094 owner = prot->owner;
1095 slab = prot->slab;
1096
1097 security_sk_free(sk);
1098 if (slab != NULL)
1099 kmem_cache_free(slab, sk);
1100 else
1101 kfree(sk);
1102 module_put(owner);
1103}
1104
1105#ifdef CONFIG_CGROUPS
1106void sock_update_classid(struct sock *sk)
1107{
1108 u32 classid;
1109
1110 rcu_read_lock(); /* doing current task, which cannot vanish. */
1111 classid = task_cls_classid(current);
1112 rcu_read_unlock();
1113 if (classid && classid != sk->sk_classid)
1114 sk->sk_classid = classid;
1115}
1116EXPORT_SYMBOL(sock_update_classid);
1117#endif
1118
1119/**
1120 * sk_alloc - All socket objects are allocated here
1121 * @net: the applicable net namespace
1122 * @family: protocol family
1123 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1124 * @prot: struct proto associated with this new sock instance
1125 */
1126struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1127 struct proto *prot)
1128{
1129 struct sock *sk;
1130
1131 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1132 if (sk) {
1133 sk->sk_family = family;
1134 /*
1135 * See comment in struct sock definition to understand
1136 * why we need sk_prot_creator -acme
1137 */
1138 sk->sk_prot = sk->sk_prot_creator = prot;
1139 sock_lock_init(sk);
1140 sock_net_set(sk, get_net(net));
1141 atomic_set(&sk->sk_wmem_alloc, 1);
1142
1143 sock_update_classid(sk);
1144 }
1145
1146 return sk;
1147}
1148EXPORT_SYMBOL(sk_alloc);
1149
1150static void __sk_free(struct sock *sk)
1151{
1152 struct sk_filter *filter;
1153
1154 if (sk->sk_destruct)
1155 sk->sk_destruct(sk);
1156
1157 filter = rcu_dereference_check(sk->sk_filter,
1158 atomic_read(&sk->sk_wmem_alloc) == 0);
1159 if (filter) {
1160 sk_filter_uncharge(sk, filter);
1161 rcu_assign_pointer(sk->sk_filter, NULL);
1162 }
1163
1164 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1165 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1166
1167 if (atomic_read(&sk->sk_omem_alloc))
1168 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1169 __func__, atomic_read(&sk->sk_omem_alloc));
1170
1171 if (sk->sk_peer_cred)
1172 put_cred(sk->sk_peer_cred);
1173 put_pid(sk->sk_peer_pid);
1174 put_net(sock_net(sk));
1175 sk_prot_free(sk->sk_prot_creator, sk);
1176}
1177
1178void sk_free(struct sock *sk)
1179{
1180 /*
1181 * We subtract one from sk_wmem_alloc and can know if
1182 * some packets are still in some tx queue.
1183 * If not null, sock_wfree() will call __sk_free(sk) later
1184 */
1185 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1186 __sk_free(sk);
1187}
1188EXPORT_SYMBOL(sk_free);
1189
1190/*
1191 * Last sock_put should drop reference to sk->sk_net. It has already
1192 * been dropped in sk_change_net. Taking reference to stopping namespace
1193 * is not an option.
1194 * Take reference to a socket to remove it from hash _alive_ and after that
1195 * destroy it in the context of init_net.
1196 */
1197void sk_release_kernel(struct sock *sk)
1198{
1199 if (sk == NULL || sk->sk_socket == NULL)
1200 return;
1201
1202 sock_hold(sk);
1203 sock_release(sk->sk_socket);
1204 release_net(sock_net(sk));
1205 sock_net_set(sk, get_net(&init_net));
1206 sock_put(sk);
1207}
1208EXPORT_SYMBOL(sk_release_kernel);
1209
1210struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1211{
1212 struct sock *newsk;
1213
1214 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1215 if (newsk != NULL) {
1216 struct sk_filter *filter;
1217
1218 sock_copy(newsk, sk);
1219
1220 /* SANITY */
1221 get_net(sock_net(newsk));
1222 sk_node_init(&newsk->sk_node);
1223 sock_lock_init(newsk);
1224 bh_lock_sock(newsk);
1225 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1226 newsk->sk_backlog.len = 0;
1227
1228 atomic_set(&newsk->sk_rmem_alloc, 0);
1229 /*
1230 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1231 */
1232 atomic_set(&newsk->sk_wmem_alloc, 1);
1233 atomic_set(&newsk->sk_omem_alloc, 0);
1234 skb_queue_head_init(&newsk->sk_receive_queue);
1235 skb_queue_head_init(&newsk->sk_write_queue);
1236#ifdef CONFIG_NET_DMA
1237 skb_queue_head_init(&newsk->sk_async_wait_queue);
1238#endif
1239
1240 spin_lock_init(&newsk->sk_dst_lock);
1241 rwlock_init(&newsk->sk_callback_lock);
1242 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1243 af_callback_keys + newsk->sk_family,
1244 af_family_clock_key_strings[newsk->sk_family]);
1245
1246 newsk->sk_dst_cache = NULL;
1247 newsk->sk_wmem_queued = 0;
1248 newsk->sk_forward_alloc = 0;
1249 newsk->sk_send_head = NULL;
1250 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1251
1252 sock_reset_flag(newsk, SOCK_DONE);
1253 skb_queue_head_init(&newsk->sk_error_queue);
1254
1255 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1256 if (filter != NULL)
1257 sk_filter_charge(newsk, filter);
1258
1259 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1260 /* It is still raw copy of parent, so invalidate
1261 * destructor and make plain sk_free() */
1262 newsk->sk_destruct = NULL;
1263 sk_free(newsk);
1264 newsk = NULL;
1265 goto out;
1266 }
1267
1268 newsk->sk_err = 0;
1269 newsk->sk_priority = 0;
1270 /*
1271 * Before updating sk_refcnt, we must commit prior changes to memory
1272 * (Documentation/RCU/rculist_nulls.txt for details)
1273 */
1274 smp_wmb();
1275 atomic_set(&newsk->sk_refcnt, 2);
1276
1277 /*
1278 * Increment the counter in the same struct proto as the master
1279 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1280 * is the same as sk->sk_prot->socks, as this field was copied
1281 * with memcpy).
1282 *
1283 * This _changes_ the previous behaviour, where
1284 * tcp_create_openreq_child always was incrementing the
1285 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1286 * to be taken into account in all callers. -acme
1287 */
1288 sk_refcnt_debug_inc(newsk);
1289 sk_set_socket(newsk, NULL);
1290 newsk->sk_wq = NULL;
1291
1292 if (newsk->sk_prot->sockets_allocated)
1293 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1294
1295 if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1296 sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1297 net_enable_timestamp();
1298 }
1299out:
1300 return newsk;
1301}
1302EXPORT_SYMBOL_GPL(sk_clone);
1303
1304void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1305{
1306 __sk_dst_set(sk, dst);
1307 sk->sk_route_caps = dst->dev->features;
1308 if (sk->sk_route_caps & NETIF_F_GSO)
1309 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1310 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1311 if (sk_can_gso(sk)) {
1312 if (dst->header_len) {
1313 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1314 } else {
1315 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1316 sk->sk_gso_max_size = dst->dev->gso_max_size;
1317 }
1318 }
1319}
1320EXPORT_SYMBOL_GPL(sk_setup_caps);
1321
1322void __init sk_init(void)
1323{
1324 if (totalram_pages <= 4096) {
1325 sysctl_wmem_max = 32767;
1326 sysctl_rmem_max = 32767;
1327 sysctl_wmem_default = 32767;
1328 sysctl_rmem_default = 32767;
1329 } else if (totalram_pages >= 131072) {
1330 sysctl_wmem_max = 131071;
1331 sysctl_rmem_max = 131071;
1332 }
1333}
1334
1335/*
1336 * Simple resource managers for sockets.
1337 */
1338
1339
1340/*
1341 * Write buffer destructor automatically called from kfree_skb.
1342 */
1343void sock_wfree(struct sk_buff *skb)
1344{
1345 struct sock *sk = skb->sk;
1346 unsigned int len = skb->truesize;
1347
1348 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1349 /*
1350 * Keep a reference on sk_wmem_alloc, this will be released
1351 * after sk_write_space() call
1352 */
1353 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1354 sk->sk_write_space(sk);
1355 len = 1;
1356 }
1357 /*
1358 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1359 * could not do because of in-flight packets
1360 */
1361 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1362 __sk_free(sk);
1363}
1364EXPORT_SYMBOL(sock_wfree);
1365
1366/*
1367 * Read buffer destructor automatically called from kfree_skb.
1368 */
1369void sock_rfree(struct sk_buff *skb)
1370{
1371 struct sock *sk = skb->sk;
1372 unsigned int len = skb->truesize;
1373
1374 atomic_sub(len, &sk->sk_rmem_alloc);
1375 sk_mem_uncharge(sk, len);
1376}
1377EXPORT_SYMBOL(sock_rfree);
1378
1379
1380int sock_i_uid(struct sock *sk)
1381{
1382 int uid;
1383
1384 read_lock_bh(&sk->sk_callback_lock);
1385 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1386 read_unlock_bh(&sk->sk_callback_lock);
1387 return uid;
1388}
1389EXPORT_SYMBOL(sock_i_uid);
1390
1391unsigned long sock_i_ino(struct sock *sk)
1392{
1393 unsigned long ino;
1394
1395 read_lock_bh(&sk->sk_callback_lock);
1396 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1397 read_unlock_bh(&sk->sk_callback_lock);
1398 return ino;
1399}
1400EXPORT_SYMBOL(sock_i_ino);
1401
1402/*
1403 * Allocate a skb from the socket's send buffer.
1404 */
1405struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1406 gfp_t priority)
1407{
1408 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1409 struct sk_buff *skb = alloc_skb(size, priority);
1410 if (skb) {
1411 skb_set_owner_w(skb, sk);
1412 return skb;
1413 }
1414 }
1415 return NULL;
1416}
1417EXPORT_SYMBOL(sock_wmalloc);
1418
1419/*
1420 * Allocate a skb from the socket's receive buffer.
1421 */
1422struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1423 gfp_t priority)
1424{
1425 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1426 struct sk_buff *skb = alloc_skb(size, priority);
1427 if (skb) {
1428 skb_set_owner_r(skb, sk);
1429 return skb;
1430 }
1431 }
1432 return NULL;
1433}
1434
1435/*
1436 * Allocate a memory block from the socket's option memory buffer.
1437 */
1438void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1439{
1440 if ((unsigned)size <= sysctl_optmem_max &&
1441 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1442 void *mem;
1443 /* First do the add, to avoid the race if kmalloc
1444 * might sleep.
1445 */
1446 atomic_add(size, &sk->sk_omem_alloc);
1447 mem = kmalloc(size, priority);
1448 if (mem)
1449 return mem;
1450 atomic_sub(size, &sk->sk_omem_alloc);
1451 }
1452 return NULL;
1453}
1454EXPORT_SYMBOL(sock_kmalloc);
1455
1456/*
1457 * Free an option memory block.
1458 */
1459void sock_kfree_s(struct sock *sk, void *mem, int size)
1460{
1461 kfree(mem);
1462 atomic_sub(size, &sk->sk_omem_alloc);
1463}
1464EXPORT_SYMBOL(sock_kfree_s);
1465
1466/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1467 I think, these locks should be removed for datagram sockets.
1468 */
1469static long sock_wait_for_wmem(struct sock *sk, long timeo)
1470{
1471 DEFINE_WAIT(wait);
1472
1473 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1474 for (;;) {
1475 if (!timeo)
1476 break;
1477 if (signal_pending(current))
1478 break;
1479 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1480 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1481 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1482 break;
1483 if (sk->sk_shutdown & SEND_SHUTDOWN)
1484 break;
1485 if (sk->sk_err)
1486 break;
1487 timeo = schedule_timeout(timeo);
1488 }
1489 finish_wait(sk_sleep(sk), &wait);
1490 return timeo;
1491}
1492
1493
1494/*
1495 * Generic send/receive buffer handlers
1496 */
1497
1498struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1499 unsigned long data_len, int noblock,
1500 int *errcode)
1501{
1502 struct sk_buff *skb;
1503 gfp_t gfp_mask;
1504 long timeo;
1505 int err;
1506
1507 gfp_mask = sk->sk_allocation;
1508 if (gfp_mask & __GFP_WAIT)
1509 gfp_mask |= __GFP_REPEAT;
1510
1511 timeo = sock_sndtimeo(sk, noblock);
1512 while (1) {
1513 err = sock_error(sk);
1514 if (err != 0)
1515 goto failure;
1516
1517 err = -EPIPE;
1518 if (sk->sk_shutdown & SEND_SHUTDOWN)
1519 goto failure;
1520
1521 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1522 skb = alloc_skb(header_len, gfp_mask);
1523 if (skb) {
1524 int npages;
1525 int i;
1526
1527 /* No pages, we're done... */
1528 if (!data_len)
1529 break;
1530
1531 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1532 skb->truesize += data_len;
1533 skb_shinfo(skb)->nr_frags = npages;
1534 for (i = 0; i < npages; i++) {
1535 struct page *page;
1536 skb_frag_t *frag;
1537
1538 page = alloc_pages(sk->sk_allocation, 0);
1539 if (!page) {
1540 err = -ENOBUFS;
1541 skb_shinfo(skb)->nr_frags = i;
1542 kfree_skb(skb);
1543 goto failure;
1544 }
1545
1546 frag = &skb_shinfo(skb)->frags[i];
1547 frag->page = page;
1548 frag->page_offset = 0;
1549 frag->size = (data_len >= PAGE_SIZE ?
1550 PAGE_SIZE :
1551 data_len);
1552 data_len -= PAGE_SIZE;
1553 }
1554
1555 /* Full success... */
1556 break;
1557 }
1558 err = -ENOBUFS;
1559 goto failure;
1560 }
1561 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1562 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1563 err = -EAGAIN;
1564 if (!timeo)
1565 goto failure;
1566 if (signal_pending(current))
1567 goto interrupted;
1568 timeo = sock_wait_for_wmem(sk, timeo);
1569 }
1570
1571 skb_set_owner_w(skb, sk);
1572 return skb;
1573
1574interrupted:
1575 err = sock_intr_errno(timeo);
1576failure:
1577 *errcode = err;
1578 return NULL;
1579}
1580EXPORT_SYMBOL(sock_alloc_send_pskb);
1581
1582struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1583 int noblock, int *errcode)
1584{
1585 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1586}
1587EXPORT_SYMBOL(sock_alloc_send_skb);
1588
1589static void __lock_sock(struct sock *sk)
1590 __releases(&sk->sk_lock.slock)
1591 __acquires(&sk->sk_lock.slock)
1592{
1593 DEFINE_WAIT(wait);
1594
1595 for (;;) {
1596 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1597 TASK_UNINTERRUPTIBLE);
1598 spin_unlock_bh(&sk->sk_lock.slock);
1599 schedule();
1600 spin_lock_bh(&sk->sk_lock.slock);
1601 if (!sock_owned_by_user(sk))
1602 break;
1603 }
1604 finish_wait(&sk->sk_lock.wq, &wait);
1605}
1606
1607static void __release_sock(struct sock *sk)
1608 __releases(&sk->sk_lock.slock)
1609 __acquires(&sk->sk_lock.slock)
1610{
1611 struct sk_buff *skb = sk->sk_backlog.head;
1612
1613 do {
1614 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1615 bh_unlock_sock(sk);
1616
1617 do {
1618 struct sk_buff *next = skb->next;
1619
1620 WARN_ON_ONCE(skb_dst_is_noref(skb));
1621 skb->next = NULL;
1622 sk_backlog_rcv(sk, skb);
1623
1624 /*
1625 * We are in process context here with softirqs
1626 * disabled, use cond_resched_softirq() to preempt.
1627 * This is safe to do because we've taken the backlog
1628 * queue private:
1629 */
1630 cond_resched_softirq();
1631
1632 skb = next;
1633 } while (skb != NULL);
1634
1635 bh_lock_sock(sk);
1636 } while ((skb = sk->sk_backlog.head) != NULL);
1637
1638 /*
1639 * Doing the zeroing here guarantee we can not loop forever
1640 * while a wild producer attempts to flood us.
1641 */
1642 sk->sk_backlog.len = 0;
1643}
1644
1645/**
1646 * sk_wait_data - wait for data to arrive at sk_receive_queue
1647 * @sk: sock to wait on
1648 * @timeo: for how long
1649 *
1650 * Now socket state including sk->sk_err is changed only under lock,
1651 * hence we may omit checks after joining wait queue.
1652 * We check receive queue before schedule() only as optimization;
1653 * it is very likely that release_sock() added new data.
1654 */
1655int sk_wait_data(struct sock *sk, long *timeo)
1656{
1657 int rc;
1658 DEFINE_WAIT(wait);
1659
1660 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1661 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1662 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1663 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1664 finish_wait(sk_sleep(sk), &wait);
1665 return rc;
1666}
1667EXPORT_SYMBOL(sk_wait_data);
1668
1669/**
1670 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1671 * @sk: socket
1672 * @size: memory size to allocate
1673 * @kind: allocation type
1674 *
1675 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1676 * rmem allocation. This function assumes that protocols which have
1677 * memory_pressure use sk_wmem_queued as write buffer accounting.
1678 */
1679int __sk_mem_schedule(struct sock *sk, int size, int kind)
1680{
1681 struct proto *prot = sk->sk_prot;
1682 int amt = sk_mem_pages(size);
1683 long allocated;
1684
1685 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1686 allocated = atomic_long_add_return(amt, prot->memory_allocated);
1687
1688 /* Under limit. */
1689 if (allocated <= prot->sysctl_mem[0]) {
1690 if (prot->memory_pressure && *prot->memory_pressure)
1691 *prot->memory_pressure = 0;
1692 return 1;
1693 }
1694
1695 /* Under pressure. */
1696 if (allocated > prot->sysctl_mem[1])
1697 if (prot->enter_memory_pressure)
1698 prot->enter_memory_pressure(sk);
1699
1700 /* Over hard limit. */
1701 if (allocated > prot->sysctl_mem[2])
1702 goto suppress_allocation;
1703
1704 /* guarantee minimum buffer size under pressure */
1705 if (kind == SK_MEM_RECV) {
1706 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1707 return 1;
1708 } else { /* SK_MEM_SEND */
1709 if (sk->sk_type == SOCK_STREAM) {
1710 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1711 return 1;
1712 } else if (atomic_read(&sk->sk_wmem_alloc) <
1713 prot->sysctl_wmem[0])
1714 return 1;
1715 }
1716
1717 if (prot->memory_pressure) {
1718 int alloc;
1719
1720 if (!*prot->memory_pressure)
1721 return 1;
1722 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1723 if (prot->sysctl_mem[2] > alloc *
1724 sk_mem_pages(sk->sk_wmem_queued +
1725 atomic_read(&sk->sk_rmem_alloc) +
1726 sk->sk_forward_alloc))
1727 return 1;
1728 }
1729
1730suppress_allocation:
1731
1732 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1733 sk_stream_moderate_sndbuf(sk);
1734
1735 /* Fail only if socket is _under_ its sndbuf.
1736 * In this case we cannot block, so that we have to fail.
1737 */
1738 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1739 return 1;
1740 }
1741
1742 trace_sock_exceed_buf_limit(sk, prot, allocated);
1743
1744 /* Alas. Undo changes. */
1745 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1746 atomic_long_sub(amt, prot->memory_allocated);
1747 return 0;
1748}
1749EXPORT_SYMBOL(__sk_mem_schedule);
1750
1751/**
1752 * __sk_reclaim - reclaim memory_allocated
1753 * @sk: socket
1754 */
1755void __sk_mem_reclaim(struct sock *sk)
1756{
1757 struct proto *prot = sk->sk_prot;
1758
1759 atomic_long_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1760 prot->memory_allocated);
1761 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1762
1763 if (prot->memory_pressure && *prot->memory_pressure &&
1764 (atomic_long_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1765 *prot->memory_pressure = 0;
1766}
1767EXPORT_SYMBOL(__sk_mem_reclaim);
1768
1769
1770/*
1771 * Set of default routines for initialising struct proto_ops when
1772 * the protocol does not support a particular function. In certain
1773 * cases where it makes no sense for a protocol to have a "do nothing"
1774 * function, some default processing is provided.
1775 */
1776
1777int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1778{
1779 return -EOPNOTSUPP;
1780}
1781EXPORT_SYMBOL(sock_no_bind);
1782
1783int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1784 int len, int flags)
1785{
1786 return -EOPNOTSUPP;
1787}
1788EXPORT_SYMBOL(sock_no_connect);
1789
1790int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1791{
1792 return -EOPNOTSUPP;
1793}
1794EXPORT_SYMBOL(sock_no_socketpair);
1795
1796int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1797{
1798 return -EOPNOTSUPP;
1799}
1800EXPORT_SYMBOL(sock_no_accept);
1801
1802int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1803 int *len, int peer)
1804{
1805 return -EOPNOTSUPP;
1806}
1807EXPORT_SYMBOL(sock_no_getname);
1808
1809unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1810{
1811 return 0;
1812}
1813EXPORT_SYMBOL(sock_no_poll);
1814
1815int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1816{
1817 return -EOPNOTSUPP;
1818}
1819EXPORT_SYMBOL(sock_no_ioctl);
1820
1821int sock_no_listen(struct socket *sock, int backlog)
1822{
1823 return -EOPNOTSUPP;
1824}
1825EXPORT_SYMBOL(sock_no_listen);
1826
1827int sock_no_shutdown(struct socket *sock, int how)
1828{
1829 return -EOPNOTSUPP;
1830}
1831EXPORT_SYMBOL(sock_no_shutdown);
1832
1833int sock_no_setsockopt(struct socket *sock, int level, int optname,
1834 char __user *optval, unsigned int optlen)
1835{
1836 return -EOPNOTSUPP;
1837}
1838EXPORT_SYMBOL(sock_no_setsockopt);
1839
1840int sock_no_getsockopt(struct socket *sock, int level, int optname,
1841 char __user *optval, int __user *optlen)
1842{
1843 return -EOPNOTSUPP;
1844}
1845EXPORT_SYMBOL(sock_no_getsockopt);
1846
1847int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1848 size_t len)
1849{
1850 return -EOPNOTSUPP;
1851}
1852EXPORT_SYMBOL(sock_no_sendmsg);
1853
1854int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1855 size_t len, int flags)
1856{
1857 return -EOPNOTSUPP;
1858}
1859EXPORT_SYMBOL(sock_no_recvmsg);
1860
1861int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1862{
1863 /* Mirror missing mmap method error code */
1864 return -ENODEV;
1865}
1866EXPORT_SYMBOL(sock_no_mmap);
1867
1868ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1869{
1870 ssize_t res;
1871 struct msghdr msg = {.msg_flags = flags};
1872 struct kvec iov;
1873 char *kaddr = kmap(page);
1874 iov.iov_base = kaddr + offset;
1875 iov.iov_len = size;
1876 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1877 kunmap(page);
1878 return res;
1879}
1880EXPORT_SYMBOL(sock_no_sendpage);
1881
1882/*
1883 * Default Socket Callbacks
1884 */
1885
1886static void sock_def_wakeup(struct sock *sk)
1887{
1888 struct socket_wq *wq;
1889
1890 rcu_read_lock();
1891 wq = rcu_dereference(sk->sk_wq);
1892 if (wq_has_sleeper(wq))
1893 wake_up_interruptible_all(&wq->wait);
1894 rcu_read_unlock();
1895}
1896
1897static void sock_def_error_report(struct sock *sk)
1898{
1899 struct socket_wq *wq;
1900
1901 rcu_read_lock();
1902 wq = rcu_dereference(sk->sk_wq);
1903 if (wq_has_sleeper(wq))
1904 wake_up_interruptible_poll(&wq->wait, POLLERR);
1905 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1906 rcu_read_unlock();
1907}
1908
1909static void sock_def_readable(struct sock *sk, int len)
1910{
1911 struct socket_wq *wq;
1912
1913 rcu_read_lock();
1914 wq = rcu_dereference(sk->sk_wq);
1915 if (wq_has_sleeper(wq))
1916 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
1917 POLLRDNORM | POLLRDBAND);
1918 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1919 rcu_read_unlock();
1920}
1921
1922static void sock_def_write_space(struct sock *sk)
1923{
1924 struct socket_wq *wq;
1925
1926 rcu_read_lock();
1927
1928 /* Do not wake up a writer until he can make "significant"
1929 * progress. --DaveM
1930 */
1931 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1932 wq = rcu_dereference(sk->sk_wq);
1933 if (wq_has_sleeper(wq))
1934 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1935 POLLWRNORM | POLLWRBAND);
1936
1937 /* Should agree with poll, otherwise some programs break */
1938 if (sock_writeable(sk))
1939 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1940 }
1941
1942 rcu_read_unlock();
1943}
1944
1945static void sock_def_destruct(struct sock *sk)
1946{
1947 kfree(sk->sk_protinfo);
1948}
1949
1950void sk_send_sigurg(struct sock *sk)
1951{
1952 if (sk->sk_socket && sk->sk_socket->file)
1953 if (send_sigurg(&sk->sk_socket->file->f_owner))
1954 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1955}
1956EXPORT_SYMBOL(sk_send_sigurg);
1957
1958void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1959 unsigned long expires)
1960{
1961 if (!mod_timer(timer, expires))
1962 sock_hold(sk);
1963}
1964EXPORT_SYMBOL(sk_reset_timer);
1965
1966void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1967{
1968 if (timer_pending(timer) && del_timer(timer))
1969 __sock_put(sk);
1970}
1971EXPORT_SYMBOL(sk_stop_timer);
1972
1973void sock_init_data(struct socket *sock, struct sock *sk)
1974{
1975 skb_queue_head_init(&sk->sk_receive_queue);
1976 skb_queue_head_init(&sk->sk_write_queue);
1977 skb_queue_head_init(&sk->sk_error_queue);
1978#ifdef CONFIG_NET_DMA
1979 skb_queue_head_init(&sk->sk_async_wait_queue);
1980#endif
1981
1982 sk->sk_send_head = NULL;
1983
1984 init_timer(&sk->sk_timer);
1985
1986 sk->sk_allocation = GFP_KERNEL;
1987 sk->sk_rcvbuf = sysctl_rmem_default;
1988 sk->sk_sndbuf = sysctl_wmem_default;
1989 sk->sk_state = TCP_CLOSE;
1990 sk_set_socket(sk, sock);
1991
1992 sock_set_flag(sk, SOCK_ZAPPED);
1993
1994 if (sock) {
1995 sk->sk_type = sock->type;
1996 sk->sk_wq = sock->wq;
1997 sock->sk = sk;
1998 } else
1999 sk->sk_wq = NULL;
2000
2001 spin_lock_init(&sk->sk_dst_lock);
2002 rwlock_init(&sk->sk_callback_lock);
2003 lockdep_set_class_and_name(&sk->sk_callback_lock,
2004 af_callback_keys + sk->sk_family,
2005 af_family_clock_key_strings[sk->sk_family]);
2006
2007 sk->sk_state_change = sock_def_wakeup;
2008 sk->sk_data_ready = sock_def_readable;
2009 sk->sk_write_space = sock_def_write_space;
2010 sk->sk_error_report = sock_def_error_report;
2011 sk->sk_destruct = sock_def_destruct;
2012
2013 sk->sk_sndmsg_page = NULL;
2014 sk->sk_sndmsg_off = 0;
2015
2016 sk->sk_peer_pid = NULL;
2017 sk->sk_peer_cred = NULL;
2018 sk->sk_write_pending = 0;
2019 sk->sk_rcvlowat = 1;
2020 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2021 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2022
2023 sk->sk_stamp = ktime_set(-1L, 0);
2024
2025 /*
2026 * Before updating sk_refcnt, we must commit prior changes to memory
2027 * (Documentation/RCU/rculist_nulls.txt for details)
2028 */
2029 smp_wmb();
2030 atomic_set(&sk->sk_refcnt, 1);
2031 atomic_set(&sk->sk_drops, 0);
2032}
2033EXPORT_SYMBOL(sock_init_data);
2034
2035void lock_sock_nested(struct sock *sk, int subclass)
2036{
2037 might_sleep();
2038 spin_lock_bh(&sk->sk_lock.slock);
2039 if (sk->sk_lock.owned)
2040 __lock_sock(sk);
2041 sk->sk_lock.owned = 1;
2042 spin_unlock(&sk->sk_lock.slock);
2043 /*
2044 * The sk_lock has mutex_lock() semantics here:
2045 */
2046 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2047 local_bh_enable();
2048}
2049EXPORT_SYMBOL(lock_sock_nested);
2050
2051void release_sock(struct sock *sk)
2052{
2053 /*
2054 * The sk_lock has mutex_unlock() semantics:
2055 */
2056 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2057
2058 spin_lock_bh(&sk->sk_lock.slock);
2059 if (sk->sk_backlog.tail)
2060 __release_sock(sk);
2061 sk->sk_lock.owned = 0;
2062 if (waitqueue_active(&sk->sk_lock.wq))
2063 wake_up(&sk->sk_lock.wq);
2064 spin_unlock_bh(&sk->sk_lock.slock);
2065}
2066EXPORT_SYMBOL(release_sock);
2067
2068/**
2069 * lock_sock_fast - fast version of lock_sock
2070 * @sk: socket
2071 *
2072 * This version should be used for very small section, where process wont block
2073 * return false if fast path is taken
2074 * sk_lock.slock locked, owned = 0, BH disabled
2075 * return true if slow path is taken
2076 * sk_lock.slock unlocked, owned = 1, BH enabled
2077 */
2078bool lock_sock_fast(struct sock *sk)
2079{
2080 might_sleep();
2081 spin_lock_bh(&sk->sk_lock.slock);
2082
2083 if (!sk->sk_lock.owned)
2084 /*
2085 * Note : We must disable BH
2086 */
2087 return false;
2088
2089 __lock_sock(sk);
2090 sk->sk_lock.owned = 1;
2091 spin_unlock(&sk->sk_lock.slock);
2092 /*
2093 * The sk_lock has mutex_lock() semantics here:
2094 */
2095 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2096 local_bh_enable();
2097 return true;
2098}
2099EXPORT_SYMBOL(lock_sock_fast);
2100
2101int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2102{
2103 struct timeval tv;
2104 if (!sock_flag(sk, SOCK_TIMESTAMP))
2105 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2106 tv = ktime_to_timeval(sk->sk_stamp);
2107 if (tv.tv_sec == -1)
2108 return -ENOENT;
2109 if (tv.tv_sec == 0) {
2110 sk->sk_stamp = ktime_get_real();
2111 tv = ktime_to_timeval(sk->sk_stamp);
2112 }
2113 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2114}
2115EXPORT_SYMBOL(sock_get_timestamp);
2116
2117int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2118{
2119 struct timespec ts;
2120 if (!sock_flag(sk, SOCK_TIMESTAMP))
2121 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2122 ts = ktime_to_timespec(sk->sk_stamp);
2123 if (ts.tv_sec == -1)
2124 return -ENOENT;
2125 if (ts.tv_sec == 0) {
2126 sk->sk_stamp = ktime_get_real();
2127 ts = ktime_to_timespec(sk->sk_stamp);
2128 }
2129 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2130}
2131EXPORT_SYMBOL(sock_get_timestampns);
2132
2133void sock_enable_timestamp(struct sock *sk, int flag)
2134{
2135 if (!sock_flag(sk, flag)) {
2136 sock_set_flag(sk, flag);
2137 /*
2138 * we just set one of the two flags which require net
2139 * time stamping, but time stamping might have been on
2140 * already because of the other one
2141 */
2142 if (!sock_flag(sk,
2143 flag == SOCK_TIMESTAMP ?
2144 SOCK_TIMESTAMPING_RX_SOFTWARE :
2145 SOCK_TIMESTAMP))
2146 net_enable_timestamp();
2147 }
2148}
2149
2150/*
2151 * Get a socket option on an socket.
2152 *
2153 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2154 * asynchronous errors should be reported by getsockopt. We assume
2155 * this means if you specify SO_ERROR (otherwise whats the point of it).
2156 */
2157int sock_common_getsockopt(struct socket *sock, int level, int optname,
2158 char __user *optval, int __user *optlen)
2159{
2160 struct sock *sk = sock->sk;
2161
2162 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2163}
2164EXPORT_SYMBOL(sock_common_getsockopt);
2165
2166#ifdef CONFIG_COMPAT
2167int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2168 char __user *optval, int __user *optlen)
2169{
2170 struct sock *sk = sock->sk;
2171
2172 if (sk->sk_prot->compat_getsockopt != NULL)
2173 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2174 optval, optlen);
2175 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2176}
2177EXPORT_SYMBOL(compat_sock_common_getsockopt);
2178#endif
2179
2180int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2181 struct msghdr *msg, size_t size, int flags)
2182{
2183 struct sock *sk = sock->sk;
2184 int addr_len = 0;
2185 int err;
2186
2187 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2188 flags & ~MSG_DONTWAIT, &addr_len);
2189 if (err >= 0)
2190 msg->msg_namelen = addr_len;
2191 return err;
2192}
2193EXPORT_SYMBOL(sock_common_recvmsg);
2194
2195/*
2196 * Set socket options on an inet socket.
2197 */
2198int sock_common_setsockopt(struct socket *sock, int level, int optname,
2199 char __user *optval, unsigned int optlen)
2200{
2201 struct sock *sk = sock->sk;
2202
2203 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2204}
2205EXPORT_SYMBOL(sock_common_setsockopt);
2206
2207#ifdef CONFIG_COMPAT
2208int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2209 char __user *optval, unsigned int optlen)
2210{
2211 struct sock *sk = sock->sk;
2212
2213 if (sk->sk_prot->compat_setsockopt != NULL)
2214 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2215 optval, optlen);
2216 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2217}
2218EXPORT_SYMBOL(compat_sock_common_setsockopt);
2219#endif
2220
2221void sk_common_release(struct sock *sk)
2222{
2223 if (sk->sk_prot->destroy)
2224 sk->sk_prot->destroy(sk);
2225
2226 /*
2227 * Observation: when sock_common_release is called, processes have
2228 * no access to socket. But net still has.
2229 * Step one, detach it from networking:
2230 *
2231 * A. Remove from hash tables.
2232 */
2233
2234 sk->sk_prot->unhash(sk);
2235
2236 /*
2237 * In this point socket cannot receive new packets, but it is possible
2238 * that some packets are in flight because some CPU runs receiver and
2239 * did hash table lookup before we unhashed socket. They will achieve
2240 * receive queue and will be purged by socket destructor.
2241 *
2242 * Also we still have packets pending on receive queue and probably,
2243 * our own packets waiting in device queues. sock_destroy will drain
2244 * receive queue, but transmitted packets will delay socket destruction
2245 * until the last reference will be released.
2246 */
2247
2248 sock_orphan(sk);
2249
2250 xfrm_sk_free_policy(sk);
2251
2252 sk_refcnt_debug_release(sk);
2253 sock_put(sk);
2254}
2255EXPORT_SYMBOL(sk_common_release);
2256
2257static DEFINE_RWLOCK(proto_list_lock);
2258static LIST_HEAD(proto_list);
2259
2260#ifdef CONFIG_PROC_FS
2261#define PROTO_INUSE_NR 64 /* should be enough for the first time */
2262struct prot_inuse {
2263 int val[PROTO_INUSE_NR];
2264};
2265
2266static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2267
2268#ifdef CONFIG_NET_NS
2269void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2270{
2271 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2272}
2273EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2274
2275int sock_prot_inuse_get(struct net *net, struct proto *prot)
2276{
2277 int cpu, idx = prot->inuse_idx;
2278 int res = 0;
2279
2280 for_each_possible_cpu(cpu)
2281 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2282
2283 return res >= 0 ? res : 0;
2284}
2285EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2286
2287static int __net_init sock_inuse_init_net(struct net *net)
2288{
2289 net->core.inuse = alloc_percpu(struct prot_inuse);
2290 return net->core.inuse ? 0 : -ENOMEM;
2291}
2292
2293static void __net_exit sock_inuse_exit_net(struct net *net)
2294{
2295 free_percpu(net->core.inuse);
2296}
2297
2298static struct pernet_operations net_inuse_ops = {
2299 .init = sock_inuse_init_net,
2300 .exit = sock_inuse_exit_net,
2301};
2302
2303static __init int net_inuse_init(void)
2304{
2305 if (register_pernet_subsys(&net_inuse_ops))
2306 panic("Cannot initialize net inuse counters");
2307
2308 return 0;
2309}
2310
2311core_initcall(net_inuse_init);
2312#else
2313static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2314
2315void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2316{
2317 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2318}
2319EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2320
2321int sock_prot_inuse_get(struct net *net, struct proto *prot)
2322{
2323 int cpu, idx = prot->inuse_idx;
2324 int res = 0;
2325
2326 for_each_possible_cpu(cpu)
2327 res += per_cpu(prot_inuse, cpu).val[idx];
2328
2329 return res >= 0 ? res : 0;
2330}
2331EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2332#endif
2333
2334static void assign_proto_idx(struct proto *prot)
2335{
2336 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2337
2338 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2339 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2340 return;
2341 }
2342
2343 set_bit(prot->inuse_idx, proto_inuse_idx);
2344}
2345
2346static void release_proto_idx(struct proto *prot)
2347{
2348 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2349 clear_bit(prot->inuse_idx, proto_inuse_idx);
2350}
2351#else
2352static inline void assign_proto_idx(struct proto *prot)
2353{
2354}
2355
2356static inline void release_proto_idx(struct proto *prot)
2357{
2358}
2359#endif
2360
2361int proto_register(struct proto *prot, int alloc_slab)
2362{
2363 if (alloc_slab) {
2364 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2365 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2366 NULL);
2367
2368 if (prot->slab == NULL) {
2369 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2370 prot->name);
2371 goto out;
2372 }
2373
2374 if (prot->rsk_prot != NULL) {
2375 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2376 if (prot->rsk_prot->slab_name == NULL)
2377 goto out_free_sock_slab;
2378
2379 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2380 prot->rsk_prot->obj_size, 0,
2381 SLAB_HWCACHE_ALIGN, NULL);
2382
2383 if (prot->rsk_prot->slab == NULL) {
2384 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2385 prot->name);
2386 goto out_free_request_sock_slab_name;
2387 }
2388 }
2389
2390 if (prot->twsk_prot != NULL) {
2391 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2392
2393 if (prot->twsk_prot->twsk_slab_name == NULL)
2394 goto out_free_request_sock_slab;
2395
2396 prot->twsk_prot->twsk_slab =
2397 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2398 prot->twsk_prot->twsk_obj_size,
2399 0,
2400 SLAB_HWCACHE_ALIGN |
2401 prot->slab_flags,
2402 NULL);
2403 if (prot->twsk_prot->twsk_slab == NULL)
2404 goto out_free_timewait_sock_slab_name;
2405 }
2406 }
2407
2408 write_lock(&proto_list_lock);
2409 list_add(&prot->node, &proto_list);
2410 assign_proto_idx(prot);
2411 write_unlock(&proto_list_lock);
2412 return 0;
2413
2414out_free_timewait_sock_slab_name:
2415 kfree(prot->twsk_prot->twsk_slab_name);
2416out_free_request_sock_slab:
2417 if (prot->rsk_prot && prot->rsk_prot->slab) {
2418 kmem_cache_destroy(prot->rsk_prot->slab);
2419 prot->rsk_prot->slab = NULL;
2420 }
2421out_free_request_sock_slab_name:
2422 if (prot->rsk_prot)
2423 kfree(prot->rsk_prot->slab_name);
2424out_free_sock_slab:
2425 kmem_cache_destroy(prot->slab);
2426 prot->slab = NULL;
2427out:
2428 return -ENOBUFS;
2429}
2430EXPORT_SYMBOL(proto_register);
2431
2432void proto_unregister(struct proto *prot)
2433{
2434 write_lock(&proto_list_lock);
2435 release_proto_idx(prot);
2436 list_del(&prot->node);
2437 write_unlock(&proto_list_lock);
2438
2439 if (prot->slab != NULL) {
2440 kmem_cache_destroy(prot->slab);
2441 prot->slab = NULL;
2442 }
2443
2444 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2445 kmem_cache_destroy(prot->rsk_prot->slab);
2446 kfree(prot->rsk_prot->slab_name);
2447 prot->rsk_prot->slab = NULL;
2448 }
2449
2450 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2451 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2452 kfree(prot->twsk_prot->twsk_slab_name);
2453 prot->twsk_prot->twsk_slab = NULL;
2454 }
2455}
2456EXPORT_SYMBOL(proto_unregister);
2457
2458#ifdef CONFIG_PROC_FS
2459static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2460 __acquires(proto_list_lock)
2461{
2462 read_lock(&proto_list_lock);
2463 return seq_list_start_head(&proto_list, *pos);
2464}
2465
2466static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2467{
2468 return seq_list_next(v, &proto_list, pos);
2469}
2470
2471static void proto_seq_stop(struct seq_file *seq, void *v)
2472 __releases(proto_list_lock)
2473{
2474 read_unlock(&proto_list_lock);
2475}
2476
2477static char proto_method_implemented(const void *method)
2478{
2479 return method == NULL ? 'n' : 'y';
2480}
2481
2482static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2483{
2484 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2485 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2486 proto->name,
2487 proto->obj_size,
2488 sock_prot_inuse_get(seq_file_net(seq), proto),
2489 proto->memory_allocated != NULL ? atomic_long_read(proto->memory_allocated) : -1L,
2490 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2491 proto->max_header,
2492 proto->slab == NULL ? "no" : "yes",
2493 module_name(proto->owner),
2494 proto_method_implemented(proto->close),
2495 proto_method_implemented(proto->connect),
2496 proto_method_implemented(proto->disconnect),
2497 proto_method_implemented(proto->accept),
2498 proto_method_implemented(proto->ioctl),
2499 proto_method_implemented(proto->init),
2500 proto_method_implemented(proto->destroy),
2501 proto_method_implemented(proto->shutdown),
2502 proto_method_implemented(proto->setsockopt),
2503 proto_method_implemented(proto->getsockopt),
2504 proto_method_implemented(proto->sendmsg),
2505 proto_method_implemented(proto->recvmsg),
2506 proto_method_implemented(proto->sendpage),
2507 proto_method_implemented(proto->bind),
2508 proto_method_implemented(proto->backlog_rcv),
2509 proto_method_implemented(proto->hash),
2510 proto_method_implemented(proto->unhash),
2511 proto_method_implemented(proto->get_port),
2512 proto_method_implemented(proto->enter_memory_pressure));
2513}
2514
2515static int proto_seq_show(struct seq_file *seq, void *v)
2516{
2517 if (v == &proto_list)
2518 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2519 "protocol",
2520 "size",
2521 "sockets",
2522 "memory",
2523 "press",
2524 "maxhdr",
2525 "slab",
2526 "module",
2527 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2528 else
2529 proto_seq_printf(seq, list_entry(v, struct proto, node));
2530 return 0;
2531}
2532
2533static const struct seq_operations proto_seq_ops = {
2534 .start = proto_seq_start,
2535 .next = proto_seq_next,
2536 .stop = proto_seq_stop,
2537 .show = proto_seq_show,
2538};
2539
2540static int proto_seq_open(struct inode *inode, struct file *file)
2541{
2542 return seq_open_net(inode, file, &proto_seq_ops,
2543 sizeof(struct seq_net_private));
2544}
2545
2546static const struct file_operations proto_seq_fops = {
2547 .owner = THIS_MODULE,
2548 .open = proto_seq_open,
2549 .read = seq_read,
2550 .llseek = seq_lseek,
2551 .release = seq_release_net,
2552};
2553
2554static __net_init int proto_init_net(struct net *net)
2555{
2556 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2557 return -ENOMEM;
2558
2559 return 0;
2560}
2561
2562static __net_exit void proto_exit_net(struct net *net)
2563{
2564 proc_net_remove(net, "protocols");
2565}
2566
2567
2568static __net_initdata struct pernet_operations proto_net_ops = {
2569 .init = proto_init_net,
2570 .exit = proto_exit_net,
2571};
2572
2573static int __init proto_init(void)
2574{
2575 return register_pernet_subsys(&proto_net_ops);
2576}
2577
2578subsys_initcall(proto_init);
2579
2580#endif /* PROC_FS */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88#include <asm/unaligned.h>
89#include <linux/capability.h>
90#include <linux/errno.h>
91#include <linux/errqueue.h>
92#include <linux/types.h>
93#include <linux/socket.h>
94#include <linux/in.h>
95#include <linux/kernel.h>
96#include <linux/module.h>
97#include <linux/proc_fs.h>
98#include <linux/seq_file.h>
99#include <linux/sched.h>
100#include <linux/sched/mm.h>
101#include <linux/timer.h>
102#include <linux/string.h>
103#include <linux/sockios.h>
104#include <linux/net.h>
105#include <linux/mm.h>
106#include <linux/slab.h>
107#include <linux/interrupt.h>
108#include <linux/poll.h>
109#include <linux/tcp.h>
110#include <linux/init.h>
111#include <linux/highmem.h>
112#include <linux/user_namespace.h>
113#include <linux/static_key.h>
114#include <linux/memcontrol.h>
115#include <linux/prefetch.h>
116#include <linux/compat.h>
117
118#include <linux/uaccess.h>
119
120#include <linux/netdevice.h>
121#include <net/protocol.h>
122#include <linux/skbuff.h>
123#include <net/net_namespace.h>
124#include <net/request_sock.h>
125#include <net/sock.h>
126#include <linux/net_tstamp.h>
127#include <net/xfrm.h>
128#include <linux/ipsec.h>
129#include <net/cls_cgroup.h>
130#include <net/netprio_cgroup.h>
131#include <linux/sock_diag.h>
132
133#include <linux/filter.h>
134#include <net/sock_reuseport.h>
135#include <net/bpf_sk_storage.h>
136
137#include <trace/events/sock.h>
138
139#include <net/tcp.h>
140#include <net/busy_poll.h>
141
142#include <linux/ethtool.h>
143
144#include "dev.h"
145
146static DEFINE_MUTEX(proto_list_mutex);
147static LIST_HEAD(proto_list);
148
149static void sock_def_write_space_wfree(struct sock *sk);
150static void sock_def_write_space(struct sock *sk);
151
152/**
153 * sk_ns_capable - General socket capability test
154 * @sk: Socket to use a capability on or through
155 * @user_ns: The user namespace of the capability to use
156 * @cap: The capability to use
157 *
158 * Test to see if the opener of the socket had when the socket was
159 * created and the current process has the capability @cap in the user
160 * namespace @user_ns.
161 */
162bool sk_ns_capable(const struct sock *sk,
163 struct user_namespace *user_ns, int cap)
164{
165 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
166 ns_capable(user_ns, cap);
167}
168EXPORT_SYMBOL(sk_ns_capable);
169
170/**
171 * sk_capable - Socket global capability test
172 * @sk: Socket to use a capability on or through
173 * @cap: The global capability to use
174 *
175 * Test to see if the opener of the socket had when the socket was
176 * created and the current process has the capability @cap in all user
177 * namespaces.
178 */
179bool sk_capable(const struct sock *sk, int cap)
180{
181 return sk_ns_capable(sk, &init_user_ns, cap);
182}
183EXPORT_SYMBOL(sk_capable);
184
185/**
186 * sk_net_capable - Network namespace socket capability test
187 * @sk: Socket to use a capability on or through
188 * @cap: The capability to use
189 *
190 * Test to see if the opener of the socket had when the socket was created
191 * and the current process has the capability @cap over the network namespace
192 * the socket is a member of.
193 */
194bool sk_net_capable(const struct sock *sk, int cap)
195{
196 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
197}
198EXPORT_SYMBOL(sk_net_capable);
199
200/*
201 * Each address family might have different locking rules, so we have
202 * one slock key per address family and separate keys for internal and
203 * userspace sockets.
204 */
205static struct lock_class_key af_family_keys[AF_MAX];
206static struct lock_class_key af_family_kern_keys[AF_MAX];
207static struct lock_class_key af_family_slock_keys[AF_MAX];
208static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
209
210/*
211 * Make lock validator output more readable. (we pre-construct these
212 * strings build-time, so that runtime initialization of socket
213 * locks is fast):
214 */
215
216#define _sock_locks(x) \
217 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
218 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
219 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
220 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
221 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
222 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
223 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
224 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
225 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
226 x "27" , x "28" , x "AF_CAN" , \
227 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
228 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
229 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
230 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
231 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
232 x "AF_MCTP" , \
233 x "AF_MAX"
234
235static const char *const af_family_key_strings[AF_MAX+1] = {
236 _sock_locks("sk_lock-")
237};
238static const char *const af_family_slock_key_strings[AF_MAX+1] = {
239 _sock_locks("slock-")
240};
241static const char *const af_family_clock_key_strings[AF_MAX+1] = {
242 _sock_locks("clock-")
243};
244
245static const char *const af_family_kern_key_strings[AF_MAX+1] = {
246 _sock_locks("k-sk_lock-")
247};
248static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
249 _sock_locks("k-slock-")
250};
251static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
252 _sock_locks("k-clock-")
253};
254static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
255 _sock_locks("rlock-")
256};
257static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
258 _sock_locks("wlock-")
259};
260static const char *const af_family_elock_key_strings[AF_MAX+1] = {
261 _sock_locks("elock-")
262};
263
264/*
265 * sk_callback_lock and sk queues locking rules are per-address-family,
266 * so split the lock classes by using a per-AF key:
267 */
268static struct lock_class_key af_callback_keys[AF_MAX];
269static struct lock_class_key af_rlock_keys[AF_MAX];
270static struct lock_class_key af_wlock_keys[AF_MAX];
271static struct lock_class_key af_elock_keys[AF_MAX];
272static struct lock_class_key af_kern_callback_keys[AF_MAX];
273
274/* Run time adjustable parameters. */
275__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
276EXPORT_SYMBOL(sysctl_wmem_max);
277__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
278EXPORT_SYMBOL(sysctl_rmem_max);
279__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
280__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
281
282/* Maximal space eaten by iovec or ancillary data plus some space */
283int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
284EXPORT_SYMBOL(sysctl_optmem_max);
285
286int sysctl_tstamp_allow_data __read_mostly = 1;
287
288DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
289EXPORT_SYMBOL_GPL(memalloc_socks_key);
290
291/**
292 * sk_set_memalloc - sets %SOCK_MEMALLOC
293 * @sk: socket to set it on
294 *
295 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
296 * It's the responsibility of the admin to adjust min_free_kbytes
297 * to meet the requirements
298 */
299void sk_set_memalloc(struct sock *sk)
300{
301 sock_set_flag(sk, SOCK_MEMALLOC);
302 sk->sk_allocation |= __GFP_MEMALLOC;
303 static_branch_inc(&memalloc_socks_key);
304}
305EXPORT_SYMBOL_GPL(sk_set_memalloc);
306
307void sk_clear_memalloc(struct sock *sk)
308{
309 sock_reset_flag(sk, SOCK_MEMALLOC);
310 sk->sk_allocation &= ~__GFP_MEMALLOC;
311 static_branch_dec(&memalloc_socks_key);
312
313 /*
314 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
315 * progress of swapping. SOCK_MEMALLOC may be cleared while
316 * it has rmem allocations due to the last swapfile being deactivated
317 * but there is a risk that the socket is unusable due to exceeding
318 * the rmem limits. Reclaim the reserves and obey rmem limits again.
319 */
320 sk_mem_reclaim(sk);
321}
322EXPORT_SYMBOL_GPL(sk_clear_memalloc);
323
324int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
325{
326 int ret;
327 unsigned int noreclaim_flag;
328
329 /* these should have been dropped before queueing */
330 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
331
332 noreclaim_flag = memalloc_noreclaim_save();
333 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
334 tcp_v6_do_rcv,
335 tcp_v4_do_rcv,
336 sk, skb);
337 memalloc_noreclaim_restore(noreclaim_flag);
338
339 return ret;
340}
341EXPORT_SYMBOL(__sk_backlog_rcv);
342
343void sk_error_report(struct sock *sk)
344{
345 sk->sk_error_report(sk);
346
347 switch (sk->sk_family) {
348 case AF_INET:
349 fallthrough;
350 case AF_INET6:
351 trace_inet_sk_error_report(sk);
352 break;
353 default:
354 break;
355 }
356}
357EXPORT_SYMBOL(sk_error_report);
358
359int sock_get_timeout(long timeo, void *optval, bool old_timeval)
360{
361 struct __kernel_sock_timeval tv;
362
363 if (timeo == MAX_SCHEDULE_TIMEOUT) {
364 tv.tv_sec = 0;
365 tv.tv_usec = 0;
366 } else {
367 tv.tv_sec = timeo / HZ;
368 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
369 }
370
371 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
372 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
373 *(struct old_timeval32 *)optval = tv32;
374 return sizeof(tv32);
375 }
376
377 if (old_timeval) {
378 struct __kernel_old_timeval old_tv;
379 old_tv.tv_sec = tv.tv_sec;
380 old_tv.tv_usec = tv.tv_usec;
381 *(struct __kernel_old_timeval *)optval = old_tv;
382 return sizeof(old_tv);
383 }
384
385 *(struct __kernel_sock_timeval *)optval = tv;
386 return sizeof(tv);
387}
388EXPORT_SYMBOL(sock_get_timeout);
389
390int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
391 sockptr_t optval, int optlen, bool old_timeval)
392{
393 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
394 struct old_timeval32 tv32;
395
396 if (optlen < sizeof(tv32))
397 return -EINVAL;
398
399 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
400 return -EFAULT;
401 tv->tv_sec = tv32.tv_sec;
402 tv->tv_usec = tv32.tv_usec;
403 } else if (old_timeval) {
404 struct __kernel_old_timeval old_tv;
405
406 if (optlen < sizeof(old_tv))
407 return -EINVAL;
408 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
409 return -EFAULT;
410 tv->tv_sec = old_tv.tv_sec;
411 tv->tv_usec = old_tv.tv_usec;
412 } else {
413 if (optlen < sizeof(*tv))
414 return -EINVAL;
415 if (copy_from_sockptr(tv, optval, sizeof(*tv)))
416 return -EFAULT;
417 }
418
419 return 0;
420}
421EXPORT_SYMBOL(sock_copy_user_timeval);
422
423static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
424 bool old_timeval)
425{
426 struct __kernel_sock_timeval tv;
427 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
428
429 if (err)
430 return err;
431
432 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
433 return -EDOM;
434
435 if (tv.tv_sec < 0) {
436 static int warned __read_mostly;
437
438 *timeo_p = 0;
439 if (warned < 10 && net_ratelimit()) {
440 warned++;
441 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
442 __func__, current->comm, task_pid_nr(current));
443 }
444 return 0;
445 }
446 *timeo_p = MAX_SCHEDULE_TIMEOUT;
447 if (tv.tv_sec == 0 && tv.tv_usec == 0)
448 return 0;
449 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
450 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
451 return 0;
452}
453
454static bool sock_needs_netstamp(const struct sock *sk)
455{
456 switch (sk->sk_family) {
457 case AF_UNSPEC:
458 case AF_UNIX:
459 return false;
460 default:
461 return true;
462 }
463}
464
465static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
466{
467 if (sk->sk_flags & flags) {
468 sk->sk_flags &= ~flags;
469 if (sock_needs_netstamp(sk) &&
470 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
471 net_disable_timestamp();
472 }
473}
474
475
476int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
477{
478 unsigned long flags;
479 struct sk_buff_head *list = &sk->sk_receive_queue;
480
481 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
482 atomic_inc(&sk->sk_drops);
483 trace_sock_rcvqueue_full(sk, skb);
484 return -ENOMEM;
485 }
486
487 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
488 atomic_inc(&sk->sk_drops);
489 return -ENOBUFS;
490 }
491
492 skb->dev = NULL;
493 skb_set_owner_r(skb, sk);
494
495 /* we escape from rcu protected region, make sure we dont leak
496 * a norefcounted dst
497 */
498 skb_dst_force(skb);
499
500 spin_lock_irqsave(&list->lock, flags);
501 sock_skb_set_dropcount(sk, skb);
502 __skb_queue_tail(list, skb);
503 spin_unlock_irqrestore(&list->lock, flags);
504
505 if (!sock_flag(sk, SOCK_DEAD))
506 sk->sk_data_ready(sk);
507 return 0;
508}
509EXPORT_SYMBOL(__sock_queue_rcv_skb);
510
511int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
512 enum skb_drop_reason *reason)
513{
514 enum skb_drop_reason drop_reason;
515 int err;
516
517 err = sk_filter(sk, skb);
518 if (err) {
519 drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
520 goto out;
521 }
522 err = __sock_queue_rcv_skb(sk, skb);
523 switch (err) {
524 case -ENOMEM:
525 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
526 break;
527 case -ENOBUFS:
528 drop_reason = SKB_DROP_REASON_PROTO_MEM;
529 break;
530 default:
531 drop_reason = SKB_NOT_DROPPED_YET;
532 break;
533 }
534out:
535 if (reason)
536 *reason = drop_reason;
537 return err;
538}
539EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
540
541int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
542 const int nested, unsigned int trim_cap, bool refcounted)
543{
544 int rc = NET_RX_SUCCESS;
545
546 if (sk_filter_trim_cap(sk, skb, trim_cap))
547 goto discard_and_relse;
548
549 skb->dev = NULL;
550
551 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
552 atomic_inc(&sk->sk_drops);
553 goto discard_and_relse;
554 }
555 if (nested)
556 bh_lock_sock_nested(sk);
557 else
558 bh_lock_sock(sk);
559 if (!sock_owned_by_user(sk)) {
560 /*
561 * trylock + unlock semantics:
562 */
563 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
564
565 rc = sk_backlog_rcv(sk, skb);
566
567 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
568 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
569 bh_unlock_sock(sk);
570 atomic_inc(&sk->sk_drops);
571 goto discard_and_relse;
572 }
573
574 bh_unlock_sock(sk);
575out:
576 if (refcounted)
577 sock_put(sk);
578 return rc;
579discard_and_relse:
580 kfree_skb(skb);
581 goto out;
582}
583EXPORT_SYMBOL(__sk_receive_skb);
584
585INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
586 u32));
587INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
588 u32));
589struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
590{
591 struct dst_entry *dst = __sk_dst_get(sk);
592
593 if (dst && dst->obsolete &&
594 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
595 dst, cookie) == NULL) {
596 sk_tx_queue_clear(sk);
597 sk->sk_dst_pending_confirm = 0;
598 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
599 dst_release(dst);
600 return NULL;
601 }
602
603 return dst;
604}
605EXPORT_SYMBOL(__sk_dst_check);
606
607struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
608{
609 struct dst_entry *dst = sk_dst_get(sk);
610
611 if (dst && dst->obsolete &&
612 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
613 dst, cookie) == NULL) {
614 sk_dst_reset(sk);
615 dst_release(dst);
616 return NULL;
617 }
618
619 return dst;
620}
621EXPORT_SYMBOL(sk_dst_check);
622
623static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
624{
625 int ret = -ENOPROTOOPT;
626#ifdef CONFIG_NETDEVICES
627 struct net *net = sock_net(sk);
628
629 /* Sorry... */
630 ret = -EPERM;
631 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
632 goto out;
633
634 ret = -EINVAL;
635 if (ifindex < 0)
636 goto out;
637
638 /* Paired with all READ_ONCE() done locklessly. */
639 WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
640
641 if (sk->sk_prot->rehash)
642 sk->sk_prot->rehash(sk);
643 sk_dst_reset(sk);
644
645 ret = 0;
646
647out:
648#endif
649
650 return ret;
651}
652
653int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
654{
655 int ret;
656
657 if (lock_sk)
658 lock_sock(sk);
659 ret = sock_bindtoindex_locked(sk, ifindex);
660 if (lock_sk)
661 release_sock(sk);
662
663 return ret;
664}
665EXPORT_SYMBOL(sock_bindtoindex);
666
667static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
668{
669 int ret = -ENOPROTOOPT;
670#ifdef CONFIG_NETDEVICES
671 struct net *net = sock_net(sk);
672 char devname[IFNAMSIZ];
673 int index;
674
675 ret = -EINVAL;
676 if (optlen < 0)
677 goto out;
678
679 /* Bind this socket to a particular device like "eth0",
680 * as specified in the passed interface name. If the
681 * name is "" or the option length is zero the socket
682 * is not bound.
683 */
684 if (optlen > IFNAMSIZ - 1)
685 optlen = IFNAMSIZ - 1;
686 memset(devname, 0, sizeof(devname));
687
688 ret = -EFAULT;
689 if (copy_from_sockptr(devname, optval, optlen))
690 goto out;
691
692 index = 0;
693 if (devname[0] != '\0') {
694 struct net_device *dev;
695
696 rcu_read_lock();
697 dev = dev_get_by_name_rcu(net, devname);
698 if (dev)
699 index = dev->ifindex;
700 rcu_read_unlock();
701 ret = -ENODEV;
702 if (!dev)
703 goto out;
704 }
705
706 sockopt_lock_sock(sk);
707 ret = sock_bindtoindex_locked(sk, index);
708 sockopt_release_sock(sk);
709out:
710#endif
711
712 return ret;
713}
714
715static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
716 sockptr_t optlen, int len)
717{
718 int ret = -ENOPROTOOPT;
719#ifdef CONFIG_NETDEVICES
720 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
721 struct net *net = sock_net(sk);
722 char devname[IFNAMSIZ];
723
724 if (bound_dev_if == 0) {
725 len = 0;
726 goto zero;
727 }
728
729 ret = -EINVAL;
730 if (len < IFNAMSIZ)
731 goto out;
732
733 ret = netdev_get_name(net, devname, bound_dev_if);
734 if (ret)
735 goto out;
736
737 len = strlen(devname) + 1;
738
739 ret = -EFAULT;
740 if (copy_to_sockptr(optval, devname, len))
741 goto out;
742
743zero:
744 ret = -EFAULT;
745 if (copy_to_sockptr(optlen, &len, sizeof(int)))
746 goto out;
747
748 ret = 0;
749
750out:
751#endif
752
753 return ret;
754}
755
756bool sk_mc_loop(struct sock *sk)
757{
758 if (dev_recursion_level())
759 return false;
760 if (!sk)
761 return true;
762 switch (sk->sk_family) {
763 case AF_INET:
764 return inet_sk(sk)->mc_loop;
765#if IS_ENABLED(CONFIG_IPV6)
766 case AF_INET6:
767 return inet6_sk(sk)->mc_loop;
768#endif
769 }
770 WARN_ON_ONCE(1);
771 return true;
772}
773EXPORT_SYMBOL(sk_mc_loop);
774
775void sock_set_reuseaddr(struct sock *sk)
776{
777 lock_sock(sk);
778 sk->sk_reuse = SK_CAN_REUSE;
779 release_sock(sk);
780}
781EXPORT_SYMBOL(sock_set_reuseaddr);
782
783void sock_set_reuseport(struct sock *sk)
784{
785 lock_sock(sk);
786 sk->sk_reuseport = true;
787 release_sock(sk);
788}
789EXPORT_SYMBOL(sock_set_reuseport);
790
791void sock_no_linger(struct sock *sk)
792{
793 lock_sock(sk);
794 sk->sk_lingertime = 0;
795 sock_set_flag(sk, SOCK_LINGER);
796 release_sock(sk);
797}
798EXPORT_SYMBOL(sock_no_linger);
799
800void sock_set_priority(struct sock *sk, u32 priority)
801{
802 lock_sock(sk);
803 sk->sk_priority = priority;
804 release_sock(sk);
805}
806EXPORT_SYMBOL(sock_set_priority);
807
808void sock_set_sndtimeo(struct sock *sk, s64 secs)
809{
810 lock_sock(sk);
811 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
812 sk->sk_sndtimeo = secs * HZ;
813 else
814 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
815 release_sock(sk);
816}
817EXPORT_SYMBOL(sock_set_sndtimeo);
818
819static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
820{
821 if (val) {
822 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
823 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
824 sock_set_flag(sk, SOCK_RCVTSTAMP);
825 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
826 } else {
827 sock_reset_flag(sk, SOCK_RCVTSTAMP);
828 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
829 }
830}
831
832void sock_enable_timestamps(struct sock *sk)
833{
834 lock_sock(sk);
835 __sock_set_timestamps(sk, true, false, true);
836 release_sock(sk);
837}
838EXPORT_SYMBOL(sock_enable_timestamps);
839
840void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
841{
842 switch (optname) {
843 case SO_TIMESTAMP_OLD:
844 __sock_set_timestamps(sk, valbool, false, false);
845 break;
846 case SO_TIMESTAMP_NEW:
847 __sock_set_timestamps(sk, valbool, true, false);
848 break;
849 case SO_TIMESTAMPNS_OLD:
850 __sock_set_timestamps(sk, valbool, false, true);
851 break;
852 case SO_TIMESTAMPNS_NEW:
853 __sock_set_timestamps(sk, valbool, true, true);
854 break;
855 }
856}
857
858static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
859{
860 struct net *net = sock_net(sk);
861 struct net_device *dev = NULL;
862 bool match = false;
863 int *vclock_index;
864 int i, num;
865
866 if (sk->sk_bound_dev_if)
867 dev = dev_get_by_index(net, sk->sk_bound_dev_if);
868
869 if (!dev) {
870 pr_err("%s: sock not bind to device\n", __func__);
871 return -EOPNOTSUPP;
872 }
873
874 num = ethtool_get_phc_vclocks(dev, &vclock_index);
875 dev_put(dev);
876
877 for (i = 0; i < num; i++) {
878 if (*(vclock_index + i) == phc_index) {
879 match = true;
880 break;
881 }
882 }
883
884 if (num > 0)
885 kfree(vclock_index);
886
887 if (!match)
888 return -EINVAL;
889
890 sk->sk_bind_phc = phc_index;
891
892 return 0;
893}
894
895int sock_set_timestamping(struct sock *sk, int optname,
896 struct so_timestamping timestamping)
897{
898 int val = timestamping.flags;
899 int ret;
900
901 if (val & ~SOF_TIMESTAMPING_MASK)
902 return -EINVAL;
903
904 if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
905 !(val & SOF_TIMESTAMPING_OPT_ID))
906 return -EINVAL;
907
908 if (val & SOF_TIMESTAMPING_OPT_ID &&
909 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
910 if (sk_is_tcp(sk)) {
911 if ((1 << sk->sk_state) &
912 (TCPF_CLOSE | TCPF_LISTEN))
913 return -EINVAL;
914 if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
915 atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
916 else
917 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
918 } else {
919 atomic_set(&sk->sk_tskey, 0);
920 }
921 }
922
923 if (val & SOF_TIMESTAMPING_OPT_STATS &&
924 !(val & SOF_TIMESTAMPING_OPT_TSONLY))
925 return -EINVAL;
926
927 if (val & SOF_TIMESTAMPING_BIND_PHC) {
928 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
929 if (ret)
930 return ret;
931 }
932
933 sk->sk_tsflags = val;
934 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
935
936 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
937 sock_enable_timestamp(sk,
938 SOCK_TIMESTAMPING_RX_SOFTWARE);
939 else
940 sock_disable_timestamp(sk,
941 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
942 return 0;
943}
944
945void sock_set_keepalive(struct sock *sk)
946{
947 lock_sock(sk);
948 if (sk->sk_prot->keepalive)
949 sk->sk_prot->keepalive(sk, true);
950 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
951 release_sock(sk);
952}
953EXPORT_SYMBOL(sock_set_keepalive);
954
955static void __sock_set_rcvbuf(struct sock *sk, int val)
956{
957 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
958 * as a negative value.
959 */
960 val = min_t(int, val, INT_MAX / 2);
961 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
962
963 /* We double it on the way in to account for "struct sk_buff" etc.
964 * overhead. Applications assume that the SO_RCVBUF setting they make
965 * will allow that much actual data to be received on that socket.
966 *
967 * Applications are unaware that "struct sk_buff" and other overheads
968 * allocate from the receive buffer during socket buffer allocation.
969 *
970 * And after considering the possible alternatives, returning the value
971 * we actually used in getsockopt is the most desirable behavior.
972 */
973 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
974}
975
976void sock_set_rcvbuf(struct sock *sk, int val)
977{
978 lock_sock(sk);
979 __sock_set_rcvbuf(sk, val);
980 release_sock(sk);
981}
982EXPORT_SYMBOL(sock_set_rcvbuf);
983
984static void __sock_set_mark(struct sock *sk, u32 val)
985{
986 if (val != sk->sk_mark) {
987 sk->sk_mark = val;
988 sk_dst_reset(sk);
989 }
990}
991
992void sock_set_mark(struct sock *sk, u32 val)
993{
994 lock_sock(sk);
995 __sock_set_mark(sk, val);
996 release_sock(sk);
997}
998EXPORT_SYMBOL(sock_set_mark);
999
1000static void sock_release_reserved_memory(struct sock *sk, int bytes)
1001{
1002 /* Round down bytes to multiple of pages */
1003 bytes = round_down(bytes, PAGE_SIZE);
1004
1005 WARN_ON(bytes > sk->sk_reserved_mem);
1006 sk->sk_reserved_mem -= bytes;
1007 sk_mem_reclaim(sk);
1008}
1009
1010static int sock_reserve_memory(struct sock *sk, int bytes)
1011{
1012 long allocated;
1013 bool charged;
1014 int pages;
1015
1016 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1017 return -EOPNOTSUPP;
1018
1019 if (!bytes)
1020 return 0;
1021
1022 pages = sk_mem_pages(bytes);
1023
1024 /* pre-charge to memcg */
1025 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1026 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1027 if (!charged)
1028 return -ENOMEM;
1029
1030 /* pre-charge to forward_alloc */
1031 sk_memory_allocated_add(sk, pages);
1032 allocated = sk_memory_allocated(sk);
1033 /* If the system goes into memory pressure with this
1034 * precharge, give up and return error.
1035 */
1036 if (allocated > sk_prot_mem_limits(sk, 1)) {
1037 sk_memory_allocated_sub(sk, pages);
1038 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1039 return -ENOMEM;
1040 }
1041 sk->sk_forward_alloc += pages << PAGE_SHIFT;
1042
1043 sk->sk_reserved_mem += pages << PAGE_SHIFT;
1044
1045 return 0;
1046}
1047
1048void sockopt_lock_sock(struct sock *sk)
1049{
1050 /* When current->bpf_ctx is set, the setsockopt is called from
1051 * a bpf prog. bpf has ensured the sk lock has been
1052 * acquired before calling setsockopt().
1053 */
1054 if (has_current_bpf_ctx())
1055 return;
1056
1057 lock_sock(sk);
1058}
1059EXPORT_SYMBOL(sockopt_lock_sock);
1060
1061void sockopt_release_sock(struct sock *sk)
1062{
1063 if (has_current_bpf_ctx())
1064 return;
1065
1066 release_sock(sk);
1067}
1068EXPORT_SYMBOL(sockopt_release_sock);
1069
1070bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1071{
1072 return has_current_bpf_ctx() || ns_capable(ns, cap);
1073}
1074EXPORT_SYMBOL(sockopt_ns_capable);
1075
1076bool sockopt_capable(int cap)
1077{
1078 return has_current_bpf_ctx() || capable(cap);
1079}
1080EXPORT_SYMBOL(sockopt_capable);
1081
1082/*
1083 * This is meant for all protocols to use and covers goings on
1084 * at the socket level. Everything here is generic.
1085 */
1086
1087int sk_setsockopt(struct sock *sk, int level, int optname,
1088 sockptr_t optval, unsigned int optlen)
1089{
1090 struct so_timestamping timestamping;
1091 struct socket *sock = sk->sk_socket;
1092 struct sock_txtime sk_txtime;
1093 int val;
1094 int valbool;
1095 struct linger ling;
1096 int ret = 0;
1097
1098 /*
1099 * Options without arguments
1100 */
1101
1102 if (optname == SO_BINDTODEVICE)
1103 return sock_setbindtodevice(sk, optval, optlen);
1104
1105 if (optlen < sizeof(int))
1106 return -EINVAL;
1107
1108 if (copy_from_sockptr(&val, optval, sizeof(val)))
1109 return -EFAULT;
1110
1111 valbool = val ? 1 : 0;
1112
1113 sockopt_lock_sock(sk);
1114
1115 switch (optname) {
1116 case SO_DEBUG:
1117 if (val && !sockopt_capable(CAP_NET_ADMIN))
1118 ret = -EACCES;
1119 else
1120 sock_valbool_flag(sk, SOCK_DBG, valbool);
1121 break;
1122 case SO_REUSEADDR:
1123 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1124 break;
1125 case SO_REUSEPORT:
1126 sk->sk_reuseport = valbool;
1127 break;
1128 case SO_TYPE:
1129 case SO_PROTOCOL:
1130 case SO_DOMAIN:
1131 case SO_ERROR:
1132 ret = -ENOPROTOOPT;
1133 break;
1134 case SO_DONTROUTE:
1135 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1136 sk_dst_reset(sk);
1137 break;
1138 case SO_BROADCAST:
1139 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1140 break;
1141 case SO_SNDBUF:
1142 /* Don't error on this BSD doesn't and if you think
1143 * about it this is right. Otherwise apps have to
1144 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1145 * are treated in BSD as hints
1146 */
1147 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1148set_sndbuf:
1149 /* Ensure val * 2 fits into an int, to prevent max_t()
1150 * from treating it as a negative value.
1151 */
1152 val = min_t(int, val, INT_MAX / 2);
1153 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1154 WRITE_ONCE(sk->sk_sndbuf,
1155 max_t(int, val * 2, SOCK_MIN_SNDBUF));
1156 /* Wake up sending tasks if we upped the value. */
1157 sk->sk_write_space(sk);
1158 break;
1159
1160 case SO_SNDBUFFORCE:
1161 if (!sockopt_capable(CAP_NET_ADMIN)) {
1162 ret = -EPERM;
1163 break;
1164 }
1165
1166 /* No negative values (to prevent underflow, as val will be
1167 * multiplied by 2).
1168 */
1169 if (val < 0)
1170 val = 0;
1171 goto set_sndbuf;
1172
1173 case SO_RCVBUF:
1174 /* Don't error on this BSD doesn't and if you think
1175 * about it this is right. Otherwise apps have to
1176 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1177 * are treated in BSD as hints
1178 */
1179 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1180 break;
1181
1182 case SO_RCVBUFFORCE:
1183 if (!sockopt_capable(CAP_NET_ADMIN)) {
1184 ret = -EPERM;
1185 break;
1186 }
1187
1188 /* No negative values (to prevent underflow, as val will be
1189 * multiplied by 2).
1190 */
1191 __sock_set_rcvbuf(sk, max(val, 0));
1192 break;
1193
1194 case SO_KEEPALIVE:
1195 if (sk->sk_prot->keepalive)
1196 sk->sk_prot->keepalive(sk, valbool);
1197 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1198 break;
1199
1200 case SO_OOBINLINE:
1201 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1202 break;
1203
1204 case SO_NO_CHECK:
1205 sk->sk_no_check_tx = valbool;
1206 break;
1207
1208 case SO_PRIORITY:
1209 if ((val >= 0 && val <= 6) ||
1210 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1211 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1212 sk->sk_priority = val;
1213 else
1214 ret = -EPERM;
1215 break;
1216
1217 case SO_LINGER:
1218 if (optlen < sizeof(ling)) {
1219 ret = -EINVAL; /* 1003.1g */
1220 break;
1221 }
1222 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1223 ret = -EFAULT;
1224 break;
1225 }
1226 if (!ling.l_onoff)
1227 sock_reset_flag(sk, SOCK_LINGER);
1228 else {
1229#if (BITS_PER_LONG == 32)
1230 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1231 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1232 else
1233#endif
1234 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1235 sock_set_flag(sk, SOCK_LINGER);
1236 }
1237 break;
1238
1239 case SO_BSDCOMPAT:
1240 break;
1241
1242 case SO_PASSCRED:
1243 if (valbool)
1244 set_bit(SOCK_PASSCRED, &sock->flags);
1245 else
1246 clear_bit(SOCK_PASSCRED, &sock->flags);
1247 break;
1248
1249 case SO_TIMESTAMP_OLD:
1250 case SO_TIMESTAMP_NEW:
1251 case SO_TIMESTAMPNS_OLD:
1252 case SO_TIMESTAMPNS_NEW:
1253 sock_set_timestamp(sk, optname, valbool);
1254 break;
1255
1256 case SO_TIMESTAMPING_NEW:
1257 case SO_TIMESTAMPING_OLD:
1258 if (optlen == sizeof(timestamping)) {
1259 if (copy_from_sockptr(×tamping, optval,
1260 sizeof(timestamping))) {
1261 ret = -EFAULT;
1262 break;
1263 }
1264 } else {
1265 memset(×tamping, 0, sizeof(timestamping));
1266 timestamping.flags = val;
1267 }
1268 ret = sock_set_timestamping(sk, optname, timestamping);
1269 break;
1270
1271 case SO_RCVLOWAT:
1272 if (val < 0)
1273 val = INT_MAX;
1274 if (sock && sock->ops->set_rcvlowat)
1275 ret = sock->ops->set_rcvlowat(sk, val);
1276 else
1277 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1278 break;
1279
1280 case SO_RCVTIMEO_OLD:
1281 case SO_RCVTIMEO_NEW:
1282 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1283 optlen, optname == SO_RCVTIMEO_OLD);
1284 break;
1285
1286 case SO_SNDTIMEO_OLD:
1287 case SO_SNDTIMEO_NEW:
1288 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1289 optlen, optname == SO_SNDTIMEO_OLD);
1290 break;
1291
1292 case SO_ATTACH_FILTER: {
1293 struct sock_fprog fprog;
1294
1295 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1296 if (!ret)
1297 ret = sk_attach_filter(&fprog, sk);
1298 break;
1299 }
1300 case SO_ATTACH_BPF:
1301 ret = -EINVAL;
1302 if (optlen == sizeof(u32)) {
1303 u32 ufd;
1304
1305 ret = -EFAULT;
1306 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1307 break;
1308
1309 ret = sk_attach_bpf(ufd, sk);
1310 }
1311 break;
1312
1313 case SO_ATTACH_REUSEPORT_CBPF: {
1314 struct sock_fprog fprog;
1315
1316 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1317 if (!ret)
1318 ret = sk_reuseport_attach_filter(&fprog, sk);
1319 break;
1320 }
1321 case SO_ATTACH_REUSEPORT_EBPF:
1322 ret = -EINVAL;
1323 if (optlen == sizeof(u32)) {
1324 u32 ufd;
1325
1326 ret = -EFAULT;
1327 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1328 break;
1329
1330 ret = sk_reuseport_attach_bpf(ufd, sk);
1331 }
1332 break;
1333
1334 case SO_DETACH_REUSEPORT_BPF:
1335 ret = reuseport_detach_prog(sk);
1336 break;
1337
1338 case SO_DETACH_FILTER:
1339 ret = sk_detach_filter(sk);
1340 break;
1341
1342 case SO_LOCK_FILTER:
1343 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1344 ret = -EPERM;
1345 else
1346 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1347 break;
1348
1349 case SO_PASSSEC:
1350 if (valbool)
1351 set_bit(SOCK_PASSSEC, &sock->flags);
1352 else
1353 clear_bit(SOCK_PASSSEC, &sock->flags);
1354 break;
1355 case SO_MARK:
1356 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1357 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1358 ret = -EPERM;
1359 break;
1360 }
1361
1362 __sock_set_mark(sk, val);
1363 break;
1364 case SO_RCVMARK:
1365 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1366 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1367 ret = -EPERM;
1368 break;
1369 }
1370
1371 sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1372 break;
1373
1374 case SO_RXQ_OVFL:
1375 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1376 break;
1377
1378 case SO_WIFI_STATUS:
1379 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1380 break;
1381
1382 case SO_PEEK_OFF:
1383 if (sock->ops->set_peek_off)
1384 ret = sock->ops->set_peek_off(sk, val);
1385 else
1386 ret = -EOPNOTSUPP;
1387 break;
1388
1389 case SO_NOFCS:
1390 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1391 break;
1392
1393 case SO_SELECT_ERR_QUEUE:
1394 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1395 break;
1396
1397#ifdef CONFIG_NET_RX_BUSY_POLL
1398 case SO_BUSY_POLL:
1399 /* allow unprivileged users to decrease the value */
1400 if ((val > sk->sk_ll_usec) && !sockopt_capable(CAP_NET_ADMIN))
1401 ret = -EPERM;
1402 else {
1403 if (val < 0)
1404 ret = -EINVAL;
1405 else
1406 WRITE_ONCE(sk->sk_ll_usec, val);
1407 }
1408 break;
1409 case SO_PREFER_BUSY_POLL:
1410 if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1411 ret = -EPERM;
1412 else
1413 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1414 break;
1415 case SO_BUSY_POLL_BUDGET:
1416 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) {
1417 ret = -EPERM;
1418 } else {
1419 if (val < 0 || val > U16_MAX)
1420 ret = -EINVAL;
1421 else
1422 WRITE_ONCE(sk->sk_busy_poll_budget, val);
1423 }
1424 break;
1425#endif
1426
1427 case SO_MAX_PACING_RATE:
1428 {
1429 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1430
1431 if (sizeof(ulval) != sizeof(val) &&
1432 optlen >= sizeof(ulval) &&
1433 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1434 ret = -EFAULT;
1435 break;
1436 }
1437 if (ulval != ~0UL)
1438 cmpxchg(&sk->sk_pacing_status,
1439 SK_PACING_NONE,
1440 SK_PACING_NEEDED);
1441 sk->sk_max_pacing_rate = ulval;
1442 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1443 break;
1444 }
1445 case SO_INCOMING_CPU:
1446 reuseport_update_incoming_cpu(sk, val);
1447 break;
1448
1449 case SO_CNX_ADVICE:
1450 if (val == 1)
1451 dst_negative_advice(sk);
1452 break;
1453
1454 case SO_ZEROCOPY:
1455 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1456 if (!(sk_is_tcp(sk) ||
1457 (sk->sk_type == SOCK_DGRAM &&
1458 sk->sk_protocol == IPPROTO_UDP)))
1459 ret = -EOPNOTSUPP;
1460 } else if (sk->sk_family != PF_RDS) {
1461 ret = -EOPNOTSUPP;
1462 }
1463 if (!ret) {
1464 if (val < 0 || val > 1)
1465 ret = -EINVAL;
1466 else
1467 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1468 }
1469 break;
1470
1471 case SO_TXTIME:
1472 if (optlen != sizeof(struct sock_txtime)) {
1473 ret = -EINVAL;
1474 break;
1475 } else if (copy_from_sockptr(&sk_txtime, optval,
1476 sizeof(struct sock_txtime))) {
1477 ret = -EFAULT;
1478 break;
1479 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1480 ret = -EINVAL;
1481 break;
1482 }
1483 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1484 * scheduler has enough safe guards.
1485 */
1486 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1487 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1488 ret = -EPERM;
1489 break;
1490 }
1491 sock_valbool_flag(sk, SOCK_TXTIME, true);
1492 sk->sk_clockid = sk_txtime.clockid;
1493 sk->sk_txtime_deadline_mode =
1494 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1495 sk->sk_txtime_report_errors =
1496 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1497 break;
1498
1499 case SO_BINDTOIFINDEX:
1500 ret = sock_bindtoindex_locked(sk, val);
1501 break;
1502
1503 case SO_BUF_LOCK:
1504 if (val & ~SOCK_BUF_LOCK_MASK) {
1505 ret = -EINVAL;
1506 break;
1507 }
1508 sk->sk_userlocks = val | (sk->sk_userlocks &
1509 ~SOCK_BUF_LOCK_MASK);
1510 break;
1511
1512 case SO_RESERVE_MEM:
1513 {
1514 int delta;
1515
1516 if (val < 0) {
1517 ret = -EINVAL;
1518 break;
1519 }
1520
1521 delta = val - sk->sk_reserved_mem;
1522 if (delta < 0)
1523 sock_release_reserved_memory(sk, -delta);
1524 else
1525 ret = sock_reserve_memory(sk, delta);
1526 break;
1527 }
1528
1529 case SO_TXREHASH:
1530 if (val < -1 || val > 1) {
1531 ret = -EINVAL;
1532 break;
1533 }
1534 if ((u8)val == SOCK_TXREHASH_DEFAULT)
1535 val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1536 /* Paired with READ_ONCE() in tcp_rtx_synack() */
1537 WRITE_ONCE(sk->sk_txrehash, (u8)val);
1538 break;
1539
1540 default:
1541 ret = -ENOPROTOOPT;
1542 break;
1543 }
1544 sockopt_release_sock(sk);
1545 return ret;
1546}
1547
1548int sock_setsockopt(struct socket *sock, int level, int optname,
1549 sockptr_t optval, unsigned int optlen)
1550{
1551 return sk_setsockopt(sock->sk, level, optname,
1552 optval, optlen);
1553}
1554EXPORT_SYMBOL(sock_setsockopt);
1555
1556static const struct cred *sk_get_peer_cred(struct sock *sk)
1557{
1558 const struct cred *cred;
1559
1560 spin_lock(&sk->sk_peer_lock);
1561 cred = get_cred(sk->sk_peer_cred);
1562 spin_unlock(&sk->sk_peer_lock);
1563
1564 return cred;
1565}
1566
1567static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1568 struct ucred *ucred)
1569{
1570 ucred->pid = pid_vnr(pid);
1571 ucred->uid = ucred->gid = -1;
1572 if (cred) {
1573 struct user_namespace *current_ns = current_user_ns();
1574
1575 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1576 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1577 }
1578}
1579
1580static int groups_to_user(sockptr_t dst, const struct group_info *src)
1581{
1582 struct user_namespace *user_ns = current_user_ns();
1583 int i;
1584
1585 for (i = 0; i < src->ngroups; i++) {
1586 gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1587
1588 if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1589 return -EFAULT;
1590 }
1591
1592 return 0;
1593}
1594
1595int sk_getsockopt(struct sock *sk, int level, int optname,
1596 sockptr_t optval, sockptr_t optlen)
1597{
1598 struct socket *sock = sk->sk_socket;
1599
1600 union {
1601 int val;
1602 u64 val64;
1603 unsigned long ulval;
1604 struct linger ling;
1605 struct old_timeval32 tm32;
1606 struct __kernel_old_timeval tm;
1607 struct __kernel_sock_timeval stm;
1608 struct sock_txtime txtime;
1609 struct so_timestamping timestamping;
1610 } v;
1611
1612 int lv = sizeof(int);
1613 int len;
1614
1615 if (copy_from_sockptr(&len, optlen, sizeof(int)))
1616 return -EFAULT;
1617 if (len < 0)
1618 return -EINVAL;
1619
1620 memset(&v, 0, sizeof(v));
1621
1622 switch (optname) {
1623 case SO_DEBUG:
1624 v.val = sock_flag(sk, SOCK_DBG);
1625 break;
1626
1627 case SO_DONTROUTE:
1628 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1629 break;
1630
1631 case SO_BROADCAST:
1632 v.val = sock_flag(sk, SOCK_BROADCAST);
1633 break;
1634
1635 case SO_SNDBUF:
1636 v.val = sk->sk_sndbuf;
1637 break;
1638
1639 case SO_RCVBUF:
1640 v.val = sk->sk_rcvbuf;
1641 break;
1642
1643 case SO_REUSEADDR:
1644 v.val = sk->sk_reuse;
1645 break;
1646
1647 case SO_REUSEPORT:
1648 v.val = sk->sk_reuseport;
1649 break;
1650
1651 case SO_KEEPALIVE:
1652 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1653 break;
1654
1655 case SO_TYPE:
1656 v.val = sk->sk_type;
1657 break;
1658
1659 case SO_PROTOCOL:
1660 v.val = sk->sk_protocol;
1661 break;
1662
1663 case SO_DOMAIN:
1664 v.val = sk->sk_family;
1665 break;
1666
1667 case SO_ERROR:
1668 v.val = -sock_error(sk);
1669 if (v.val == 0)
1670 v.val = xchg(&sk->sk_err_soft, 0);
1671 break;
1672
1673 case SO_OOBINLINE:
1674 v.val = sock_flag(sk, SOCK_URGINLINE);
1675 break;
1676
1677 case SO_NO_CHECK:
1678 v.val = sk->sk_no_check_tx;
1679 break;
1680
1681 case SO_PRIORITY:
1682 v.val = sk->sk_priority;
1683 break;
1684
1685 case SO_LINGER:
1686 lv = sizeof(v.ling);
1687 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1688 v.ling.l_linger = sk->sk_lingertime / HZ;
1689 break;
1690
1691 case SO_BSDCOMPAT:
1692 break;
1693
1694 case SO_TIMESTAMP_OLD:
1695 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1696 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1697 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1698 break;
1699
1700 case SO_TIMESTAMPNS_OLD:
1701 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1702 break;
1703
1704 case SO_TIMESTAMP_NEW:
1705 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1706 break;
1707
1708 case SO_TIMESTAMPNS_NEW:
1709 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1710 break;
1711
1712 case SO_TIMESTAMPING_OLD:
1713 lv = sizeof(v.timestamping);
1714 v.timestamping.flags = sk->sk_tsflags;
1715 v.timestamping.bind_phc = sk->sk_bind_phc;
1716 break;
1717
1718 case SO_RCVTIMEO_OLD:
1719 case SO_RCVTIMEO_NEW:
1720 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1721 break;
1722
1723 case SO_SNDTIMEO_OLD:
1724 case SO_SNDTIMEO_NEW:
1725 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1726 break;
1727
1728 case SO_RCVLOWAT:
1729 v.val = sk->sk_rcvlowat;
1730 break;
1731
1732 case SO_SNDLOWAT:
1733 v.val = 1;
1734 break;
1735
1736 case SO_PASSCRED:
1737 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1738 break;
1739
1740 case SO_PEERCRED:
1741 {
1742 struct ucred peercred;
1743 if (len > sizeof(peercred))
1744 len = sizeof(peercred);
1745
1746 spin_lock(&sk->sk_peer_lock);
1747 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1748 spin_unlock(&sk->sk_peer_lock);
1749
1750 if (copy_to_sockptr(optval, &peercred, len))
1751 return -EFAULT;
1752 goto lenout;
1753 }
1754
1755 case SO_PEERGROUPS:
1756 {
1757 const struct cred *cred;
1758 int ret, n;
1759
1760 cred = sk_get_peer_cred(sk);
1761 if (!cred)
1762 return -ENODATA;
1763
1764 n = cred->group_info->ngroups;
1765 if (len < n * sizeof(gid_t)) {
1766 len = n * sizeof(gid_t);
1767 put_cred(cred);
1768 return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1769 }
1770 len = n * sizeof(gid_t);
1771
1772 ret = groups_to_user(optval, cred->group_info);
1773 put_cred(cred);
1774 if (ret)
1775 return ret;
1776 goto lenout;
1777 }
1778
1779 case SO_PEERNAME:
1780 {
1781 char address[128];
1782
1783 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1784 if (lv < 0)
1785 return -ENOTCONN;
1786 if (lv < len)
1787 return -EINVAL;
1788 if (copy_to_sockptr(optval, address, len))
1789 return -EFAULT;
1790 goto lenout;
1791 }
1792
1793 /* Dubious BSD thing... Probably nobody even uses it, but
1794 * the UNIX standard wants it for whatever reason... -DaveM
1795 */
1796 case SO_ACCEPTCONN:
1797 v.val = sk->sk_state == TCP_LISTEN;
1798 break;
1799
1800 case SO_PASSSEC:
1801 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1802 break;
1803
1804 case SO_PEERSEC:
1805 return security_socket_getpeersec_stream(sock,
1806 optval, optlen, len);
1807
1808 case SO_MARK:
1809 v.val = sk->sk_mark;
1810 break;
1811
1812 case SO_RCVMARK:
1813 v.val = sock_flag(sk, SOCK_RCVMARK);
1814 break;
1815
1816 case SO_RXQ_OVFL:
1817 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1818 break;
1819
1820 case SO_WIFI_STATUS:
1821 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1822 break;
1823
1824 case SO_PEEK_OFF:
1825 if (!sock->ops->set_peek_off)
1826 return -EOPNOTSUPP;
1827
1828 v.val = sk->sk_peek_off;
1829 break;
1830 case SO_NOFCS:
1831 v.val = sock_flag(sk, SOCK_NOFCS);
1832 break;
1833
1834 case SO_BINDTODEVICE:
1835 return sock_getbindtodevice(sk, optval, optlen, len);
1836
1837 case SO_GET_FILTER:
1838 len = sk_get_filter(sk, optval, len);
1839 if (len < 0)
1840 return len;
1841
1842 goto lenout;
1843
1844 case SO_LOCK_FILTER:
1845 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1846 break;
1847
1848 case SO_BPF_EXTENSIONS:
1849 v.val = bpf_tell_extensions();
1850 break;
1851
1852 case SO_SELECT_ERR_QUEUE:
1853 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1854 break;
1855
1856#ifdef CONFIG_NET_RX_BUSY_POLL
1857 case SO_BUSY_POLL:
1858 v.val = sk->sk_ll_usec;
1859 break;
1860 case SO_PREFER_BUSY_POLL:
1861 v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1862 break;
1863#endif
1864
1865 case SO_MAX_PACING_RATE:
1866 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1867 lv = sizeof(v.ulval);
1868 v.ulval = sk->sk_max_pacing_rate;
1869 } else {
1870 /* 32bit version */
1871 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1872 }
1873 break;
1874
1875 case SO_INCOMING_CPU:
1876 v.val = READ_ONCE(sk->sk_incoming_cpu);
1877 break;
1878
1879 case SO_MEMINFO:
1880 {
1881 u32 meminfo[SK_MEMINFO_VARS];
1882
1883 sk_get_meminfo(sk, meminfo);
1884
1885 len = min_t(unsigned int, len, sizeof(meminfo));
1886 if (copy_to_sockptr(optval, &meminfo, len))
1887 return -EFAULT;
1888
1889 goto lenout;
1890 }
1891
1892#ifdef CONFIG_NET_RX_BUSY_POLL
1893 case SO_INCOMING_NAPI_ID:
1894 v.val = READ_ONCE(sk->sk_napi_id);
1895
1896 /* aggregate non-NAPI IDs down to 0 */
1897 if (v.val < MIN_NAPI_ID)
1898 v.val = 0;
1899
1900 break;
1901#endif
1902
1903 case SO_COOKIE:
1904 lv = sizeof(u64);
1905 if (len < lv)
1906 return -EINVAL;
1907 v.val64 = sock_gen_cookie(sk);
1908 break;
1909
1910 case SO_ZEROCOPY:
1911 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1912 break;
1913
1914 case SO_TXTIME:
1915 lv = sizeof(v.txtime);
1916 v.txtime.clockid = sk->sk_clockid;
1917 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1918 SOF_TXTIME_DEADLINE_MODE : 0;
1919 v.txtime.flags |= sk->sk_txtime_report_errors ?
1920 SOF_TXTIME_REPORT_ERRORS : 0;
1921 break;
1922
1923 case SO_BINDTOIFINDEX:
1924 v.val = READ_ONCE(sk->sk_bound_dev_if);
1925 break;
1926
1927 case SO_NETNS_COOKIE:
1928 lv = sizeof(u64);
1929 if (len != lv)
1930 return -EINVAL;
1931 v.val64 = sock_net(sk)->net_cookie;
1932 break;
1933
1934 case SO_BUF_LOCK:
1935 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1936 break;
1937
1938 case SO_RESERVE_MEM:
1939 v.val = sk->sk_reserved_mem;
1940 break;
1941
1942 case SO_TXREHASH:
1943 v.val = sk->sk_txrehash;
1944 break;
1945
1946 default:
1947 /* We implement the SO_SNDLOWAT etc to not be settable
1948 * (1003.1g 7).
1949 */
1950 return -ENOPROTOOPT;
1951 }
1952
1953 if (len > lv)
1954 len = lv;
1955 if (copy_to_sockptr(optval, &v, len))
1956 return -EFAULT;
1957lenout:
1958 if (copy_to_sockptr(optlen, &len, sizeof(int)))
1959 return -EFAULT;
1960 return 0;
1961}
1962
1963int sock_getsockopt(struct socket *sock, int level, int optname,
1964 char __user *optval, int __user *optlen)
1965{
1966 return sk_getsockopt(sock->sk, level, optname,
1967 USER_SOCKPTR(optval),
1968 USER_SOCKPTR(optlen));
1969}
1970
1971/*
1972 * Initialize an sk_lock.
1973 *
1974 * (We also register the sk_lock with the lock validator.)
1975 */
1976static inline void sock_lock_init(struct sock *sk)
1977{
1978 if (sk->sk_kern_sock)
1979 sock_lock_init_class_and_name(
1980 sk,
1981 af_family_kern_slock_key_strings[sk->sk_family],
1982 af_family_kern_slock_keys + sk->sk_family,
1983 af_family_kern_key_strings[sk->sk_family],
1984 af_family_kern_keys + sk->sk_family);
1985 else
1986 sock_lock_init_class_and_name(
1987 sk,
1988 af_family_slock_key_strings[sk->sk_family],
1989 af_family_slock_keys + sk->sk_family,
1990 af_family_key_strings[sk->sk_family],
1991 af_family_keys + sk->sk_family);
1992}
1993
1994/*
1995 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1996 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1997 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1998 */
1999static void sock_copy(struct sock *nsk, const struct sock *osk)
2000{
2001 const struct proto *prot = READ_ONCE(osk->sk_prot);
2002#ifdef CONFIG_SECURITY_NETWORK
2003 void *sptr = nsk->sk_security;
2004#endif
2005
2006 /* If we move sk_tx_queue_mapping out of the private section,
2007 * we must check if sk_tx_queue_clear() is called after
2008 * sock_copy() in sk_clone_lock().
2009 */
2010 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2011 offsetof(struct sock, sk_dontcopy_begin) ||
2012 offsetof(struct sock, sk_tx_queue_mapping) >=
2013 offsetof(struct sock, sk_dontcopy_end));
2014
2015 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2016
2017 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2018 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
2019
2020#ifdef CONFIG_SECURITY_NETWORK
2021 nsk->sk_security = sptr;
2022 security_sk_clone(osk, nsk);
2023#endif
2024}
2025
2026static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2027 int family)
2028{
2029 struct sock *sk;
2030 struct kmem_cache *slab;
2031
2032 slab = prot->slab;
2033 if (slab != NULL) {
2034 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2035 if (!sk)
2036 return sk;
2037 if (want_init_on_alloc(priority))
2038 sk_prot_clear_nulls(sk, prot->obj_size);
2039 } else
2040 sk = kmalloc(prot->obj_size, priority);
2041
2042 if (sk != NULL) {
2043 if (security_sk_alloc(sk, family, priority))
2044 goto out_free;
2045
2046 if (!try_module_get(prot->owner))
2047 goto out_free_sec;
2048 }
2049
2050 return sk;
2051
2052out_free_sec:
2053 security_sk_free(sk);
2054out_free:
2055 if (slab != NULL)
2056 kmem_cache_free(slab, sk);
2057 else
2058 kfree(sk);
2059 return NULL;
2060}
2061
2062static void sk_prot_free(struct proto *prot, struct sock *sk)
2063{
2064 struct kmem_cache *slab;
2065 struct module *owner;
2066
2067 owner = prot->owner;
2068 slab = prot->slab;
2069
2070 cgroup_sk_free(&sk->sk_cgrp_data);
2071 mem_cgroup_sk_free(sk);
2072 security_sk_free(sk);
2073 if (slab != NULL)
2074 kmem_cache_free(slab, sk);
2075 else
2076 kfree(sk);
2077 module_put(owner);
2078}
2079
2080/**
2081 * sk_alloc - All socket objects are allocated here
2082 * @net: the applicable net namespace
2083 * @family: protocol family
2084 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2085 * @prot: struct proto associated with this new sock instance
2086 * @kern: is this to be a kernel socket?
2087 */
2088struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2089 struct proto *prot, int kern)
2090{
2091 struct sock *sk;
2092
2093 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2094 if (sk) {
2095 sk->sk_family = family;
2096 /*
2097 * See comment in struct sock definition to understand
2098 * why we need sk_prot_creator -acme
2099 */
2100 sk->sk_prot = sk->sk_prot_creator = prot;
2101 sk->sk_kern_sock = kern;
2102 sock_lock_init(sk);
2103 sk->sk_net_refcnt = kern ? 0 : 1;
2104 if (likely(sk->sk_net_refcnt)) {
2105 get_net_track(net, &sk->ns_tracker, priority);
2106 sock_inuse_add(net, 1);
2107 } else {
2108 __netns_tracker_alloc(net, &sk->ns_tracker,
2109 false, priority);
2110 }
2111
2112 sock_net_set(sk, net);
2113 refcount_set(&sk->sk_wmem_alloc, 1);
2114
2115 mem_cgroup_sk_alloc(sk);
2116 cgroup_sk_alloc(&sk->sk_cgrp_data);
2117 sock_update_classid(&sk->sk_cgrp_data);
2118 sock_update_netprioidx(&sk->sk_cgrp_data);
2119 sk_tx_queue_clear(sk);
2120 }
2121
2122 return sk;
2123}
2124EXPORT_SYMBOL(sk_alloc);
2125
2126/* Sockets having SOCK_RCU_FREE will call this function after one RCU
2127 * grace period. This is the case for UDP sockets and TCP listeners.
2128 */
2129static void __sk_destruct(struct rcu_head *head)
2130{
2131 struct sock *sk = container_of(head, struct sock, sk_rcu);
2132 struct sk_filter *filter;
2133
2134 if (sk->sk_destruct)
2135 sk->sk_destruct(sk);
2136
2137 filter = rcu_dereference_check(sk->sk_filter,
2138 refcount_read(&sk->sk_wmem_alloc) == 0);
2139 if (filter) {
2140 sk_filter_uncharge(sk, filter);
2141 RCU_INIT_POINTER(sk->sk_filter, NULL);
2142 }
2143
2144 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2145
2146#ifdef CONFIG_BPF_SYSCALL
2147 bpf_sk_storage_free(sk);
2148#endif
2149
2150 if (atomic_read(&sk->sk_omem_alloc))
2151 pr_debug("%s: optmem leakage (%d bytes) detected\n",
2152 __func__, atomic_read(&sk->sk_omem_alloc));
2153
2154 if (sk->sk_frag.page) {
2155 put_page(sk->sk_frag.page);
2156 sk->sk_frag.page = NULL;
2157 }
2158
2159 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2160 put_cred(sk->sk_peer_cred);
2161 put_pid(sk->sk_peer_pid);
2162
2163 if (likely(sk->sk_net_refcnt))
2164 put_net_track(sock_net(sk), &sk->ns_tracker);
2165 else
2166 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false);
2167
2168 sk_prot_free(sk->sk_prot_creator, sk);
2169}
2170
2171void sk_destruct(struct sock *sk)
2172{
2173 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2174
2175 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2176 reuseport_detach_sock(sk);
2177 use_call_rcu = true;
2178 }
2179
2180 if (use_call_rcu)
2181 call_rcu(&sk->sk_rcu, __sk_destruct);
2182 else
2183 __sk_destruct(&sk->sk_rcu);
2184}
2185
2186static void __sk_free(struct sock *sk)
2187{
2188 if (likely(sk->sk_net_refcnt))
2189 sock_inuse_add(sock_net(sk), -1);
2190
2191 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2192 sock_diag_broadcast_destroy(sk);
2193 else
2194 sk_destruct(sk);
2195}
2196
2197void sk_free(struct sock *sk)
2198{
2199 /*
2200 * We subtract one from sk_wmem_alloc and can know if
2201 * some packets are still in some tx queue.
2202 * If not null, sock_wfree() will call __sk_free(sk) later
2203 */
2204 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2205 __sk_free(sk);
2206}
2207EXPORT_SYMBOL(sk_free);
2208
2209static void sk_init_common(struct sock *sk)
2210{
2211 skb_queue_head_init(&sk->sk_receive_queue);
2212 skb_queue_head_init(&sk->sk_write_queue);
2213 skb_queue_head_init(&sk->sk_error_queue);
2214
2215 rwlock_init(&sk->sk_callback_lock);
2216 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2217 af_rlock_keys + sk->sk_family,
2218 af_family_rlock_key_strings[sk->sk_family]);
2219 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2220 af_wlock_keys + sk->sk_family,
2221 af_family_wlock_key_strings[sk->sk_family]);
2222 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2223 af_elock_keys + sk->sk_family,
2224 af_family_elock_key_strings[sk->sk_family]);
2225 lockdep_set_class_and_name(&sk->sk_callback_lock,
2226 af_callback_keys + sk->sk_family,
2227 af_family_clock_key_strings[sk->sk_family]);
2228}
2229
2230/**
2231 * sk_clone_lock - clone a socket, and lock its clone
2232 * @sk: the socket to clone
2233 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2234 *
2235 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2236 */
2237struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2238{
2239 struct proto *prot = READ_ONCE(sk->sk_prot);
2240 struct sk_filter *filter;
2241 bool is_charged = true;
2242 struct sock *newsk;
2243
2244 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2245 if (!newsk)
2246 goto out;
2247
2248 sock_copy(newsk, sk);
2249
2250 newsk->sk_prot_creator = prot;
2251
2252 /* SANITY */
2253 if (likely(newsk->sk_net_refcnt)) {
2254 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2255 sock_inuse_add(sock_net(newsk), 1);
2256 } else {
2257 /* Kernel sockets are not elevating the struct net refcount.
2258 * Instead, use a tracker to more easily detect if a layer
2259 * is not properly dismantling its kernel sockets at netns
2260 * destroy time.
2261 */
2262 __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2263 false, priority);
2264 }
2265 sk_node_init(&newsk->sk_node);
2266 sock_lock_init(newsk);
2267 bh_lock_sock(newsk);
2268 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
2269 newsk->sk_backlog.len = 0;
2270
2271 atomic_set(&newsk->sk_rmem_alloc, 0);
2272
2273 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2274 refcount_set(&newsk->sk_wmem_alloc, 1);
2275
2276 atomic_set(&newsk->sk_omem_alloc, 0);
2277 sk_init_common(newsk);
2278
2279 newsk->sk_dst_cache = NULL;
2280 newsk->sk_dst_pending_confirm = 0;
2281 newsk->sk_wmem_queued = 0;
2282 newsk->sk_forward_alloc = 0;
2283 newsk->sk_reserved_mem = 0;
2284 atomic_set(&newsk->sk_drops, 0);
2285 newsk->sk_send_head = NULL;
2286 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2287 atomic_set(&newsk->sk_zckey, 0);
2288
2289 sock_reset_flag(newsk, SOCK_DONE);
2290
2291 /* sk->sk_memcg will be populated at accept() time */
2292 newsk->sk_memcg = NULL;
2293
2294 cgroup_sk_clone(&newsk->sk_cgrp_data);
2295
2296 rcu_read_lock();
2297 filter = rcu_dereference(sk->sk_filter);
2298 if (filter != NULL)
2299 /* though it's an empty new sock, the charging may fail
2300 * if sysctl_optmem_max was changed between creation of
2301 * original socket and cloning
2302 */
2303 is_charged = sk_filter_charge(newsk, filter);
2304 RCU_INIT_POINTER(newsk->sk_filter, filter);
2305 rcu_read_unlock();
2306
2307 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2308 /* We need to make sure that we don't uncharge the new
2309 * socket if we couldn't charge it in the first place
2310 * as otherwise we uncharge the parent's filter.
2311 */
2312 if (!is_charged)
2313 RCU_INIT_POINTER(newsk->sk_filter, NULL);
2314 sk_free_unlock_clone(newsk);
2315 newsk = NULL;
2316 goto out;
2317 }
2318 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2319
2320 if (bpf_sk_storage_clone(sk, newsk)) {
2321 sk_free_unlock_clone(newsk);
2322 newsk = NULL;
2323 goto out;
2324 }
2325
2326 /* Clear sk_user_data if parent had the pointer tagged
2327 * as not suitable for copying when cloning.
2328 */
2329 if (sk_user_data_is_nocopy(newsk))
2330 newsk->sk_user_data = NULL;
2331
2332 newsk->sk_err = 0;
2333 newsk->sk_err_soft = 0;
2334 newsk->sk_priority = 0;
2335 newsk->sk_incoming_cpu = raw_smp_processor_id();
2336
2337 /* Before updating sk_refcnt, we must commit prior changes to memory
2338 * (Documentation/RCU/rculist_nulls.rst for details)
2339 */
2340 smp_wmb();
2341 refcount_set(&newsk->sk_refcnt, 2);
2342
2343 /* Increment the counter in the same struct proto as the master
2344 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2345 * is the same as sk->sk_prot->socks, as this field was copied
2346 * with memcpy).
2347 *
2348 * This _changes_ the previous behaviour, where
2349 * tcp_create_openreq_child always was incrementing the
2350 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2351 * to be taken into account in all callers. -acme
2352 */
2353 sk_refcnt_debug_inc(newsk);
2354 sk_set_socket(newsk, NULL);
2355 sk_tx_queue_clear(newsk);
2356 RCU_INIT_POINTER(newsk->sk_wq, NULL);
2357
2358 if (newsk->sk_prot->sockets_allocated)
2359 sk_sockets_allocated_inc(newsk);
2360
2361 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2362 net_enable_timestamp();
2363out:
2364 return newsk;
2365}
2366EXPORT_SYMBOL_GPL(sk_clone_lock);
2367
2368void sk_free_unlock_clone(struct sock *sk)
2369{
2370 /* It is still raw copy of parent, so invalidate
2371 * destructor and make plain sk_free() */
2372 sk->sk_destruct = NULL;
2373 bh_unlock_sock(sk);
2374 sk_free(sk);
2375}
2376EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2377
2378static void sk_trim_gso_size(struct sock *sk)
2379{
2380 if (sk->sk_gso_max_size <= GSO_LEGACY_MAX_SIZE)
2381 return;
2382#if IS_ENABLED(CONFIG_IPV6)
2383 if (sk->sk_family == AF_INET6 &&
2384 sk_is_tcp(sk) &&
2385 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
2386 return;
2387#endif
2388 sk->sk_gso_max_size = GSO_LEGACY_MAX_SIZE;
2389}
2390
2391void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2392{
2393 u32 max_segs = 1;
2394
2395 sk_dst_set(sk, dst);
2396 sk->sk_route_caps = dst->dev->features;
2397 if (sk_is_tcp(sk))
2398 sk->sk_route_caps |= NETIF_F_GSO;
2399 if (sk->sk_route_caps & NETIF_F_GSO)
2400 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2401 if (unlikely(sk->sk_gso_disabled))
2402 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2403 if (sk_can_gso(sk)) {
2404 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2405 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2406 } else {
2407 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2408 /* pairs with the WRITE_ONCE() in netif_set_gso_max_size() */
2409 sk->sk_gso_max_size = READ_ONCE(dst->dev->gso_max_size);
2410 sk_trim_gso_size(sk);
2411 sk->sk_gso_max_size -= (MAX_TCP_HEADER + 1);
2412 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2413 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2414 }
2415 }
2416 sk->sk_gso_max_segs = max_segs;
2417}
2418EXPORT_SYMBOL_GPL(sk_setup_caps);
2419
2420/*
2421 * Simple resource managers for sockets.
2422 */
2423
2424
2425/*
2426 * Write buffer destructor automatically called from kfree_skb.
2427 */
2428void sock_wfree(struct sk_buff *skb)
2429{
2430 struct sock *sk = skb->sk;
2431 unsigned int len = skb->truesize;
2432 bool free;
2433
2434 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2435 if (sock_flag(sk, SOCK_RCU_FREE) &&
2436 sk->sk_write_space == sock_def_write_space) {
2437 rcu_read_lock();
2438 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2439 sock_def_write_space_wfree(sk);
2440 rcu_read_unlock();
2441 if (unlikely(free))
2442 __sk_free(sk);
2443 return;
2444 }
2445
2446 /*
2447 * Keep a reference on sk_wmem_alloc, this will be released
2448 * after sk_write_space() call
2449 */
2450 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2451 sk->sk_write_space(sk);
2452 len = 1;
2453 }
2454 /*
2455 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2456 * could not do because of in-flight packets
2457 */
2458 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2459 __sk_free(sk);
2460}
2461EXPORT_SYMBOL(sock_wfree);
2462
2463/* This variant of sock_wfree() is used by TCP,
2464 * since it sets SOCK_USE_WRITE_QUEUE.
2465 */
2466void __sock_wfree(struct sk_buff *skb)
2467{
2468 struct sock *sk = skb->sk;
2469
2470 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2471 __sk_free(sk);
2472}
2473
2474void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2475{
2476 skb_orphan(skb);
2477 skb->sk = sk;
2478#ifdef CONFIG_INET
2479 if (unlikely(!sk_fullsock(sk))) {
2480 skb->destructor = sock_edemux;
2481 sock_hold(sk);
2482 return;
2483 }
2484#endif
2485 skb->destructor = sock_wfree;
2486 skb_set_hash_from_sk(skb, sk);
2487 /*
2488 * We used to take a refcount on sk, but following operation
2489 * is enough to guarantee sk_free() wont free this sock until
2490 * all in-flight packets are completed
2491 */
2492 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2493}
2494EXPORT_SYMBOL(skb_set_owner_w);
2495
2496static bool can_skb_orphan_partial(const struct sk_buff *skb)
2497{
2498#ifdef CONFIG_TLS_DEVICE
2499 /* Drivers depend on in-order delivery for crypto offload,
2500 * partial orphan breaks out-of-order-OK logic.
2501 */
2502 if (skb->decrypted)
2503 return false;
2504#endif
2505 return (skb->destructor == sock_wfree ||
2506 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2507}
2508
2509/* This helper is used by netem, as it can hold packets in its
2510 * delay queue. We want to allow the owner socket to send more
2511 * packets, as if they were already TX completed by a typical driver.
2512 * But we also want to keep skb->sk set because some packet schedulers
2513 * rely on it (sch_fq for example).
2514 */
2515void skb_orphan_partial(struct sk_buff *skb)
2516{
2517 if (skb_is_tcp_pure_ack(skb))
2518 return;
2519
2520 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2521 return;
2522
2523 skb_orphan(skb);
2524}
2525EXPORT_SYMBOL(skb_orphan_partial);
2526
2527/*
2528 * Read buffer destructor automatically called from kfree_skb.
2529 */
2530void sock_rfree(struct sk_buff *skb)
2531{
2532 struct sock *sk = skb->sk;
2533 unsigned int len = skb->truesize;
2534
2535 atomic_sub(len, &sk->sk_rmem_alloc);
2536 sk_mem_uncharge(sk, len);
2537}
2538EXPORT_SYMBOL(sock_rfree);
2539
2540/*
2541 * Buffer destructor for skbs that are not used directly in read or write
2542 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2543 */
2544void sock_efree(struct sk_buff *skb)
2545{
2546 sock_put(skb->sk);
2547}
2548EXPORT_SYMBOL(sock_efree);
2549
2550/* Buffer destructor for prefetch/receive path where reference count may
2551 * not be held, e.g. for listen sockets.
2552 */
2553#ifdef CONFIG_INET
2554void sock_pfree(struct sk_buff *skb)
2555{
2556 if (sk_is_refcounted(skb->sk))
2557 sock_gen_put(skb->sk);
2558}
2559EXPORT_SYMBOL(sock_pfree);
2560#endif /* CONFIG_INET */
2561
2562kuid_t sock_i_uid(struct sock *sk)
2563{
2564 kuid_t uid;
2565
2566 read_lock_bh(&sk->sk_callback_lock);
2567 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2568 read_unlock_bh(&sk->sk_callback_lock);
2569 return uid;
2570}
2571EXPORT_SYMBOL(sock_i_uid);
2572
2573unsigned long sock_i_ino(struct sock *sk)
2574{
2575 unsigned long ino;
2576
2577 read_lock_bh(&sk->sk_callback_lock);
2578 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2579 read_unlock_bh(&sk->sk_callback_lock);
2580 return ino;
2581}
2582EXPORT_SYMBOL(sock_i_ino);
2583
2584/*
2585 * Allocate a skb from the socket's send buffer.
2586 */
2587struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2588 gfp_t priority)
2589{
2590 if (force ||
2591 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2592 struct sk_buff *skb = alloc_skb(size, priority);
2593
2594 if (skb) {
2595 skb_set_owner_w(skb, sk);
2596 return skb;
2597 }
2598 }
2599 return NULL;
2600}
2601EXPORT_SYMBOL(sock_wmalloc);
2602
2603static void sock_ofree(struct sk_buff *skb)
2604{
2605 struct sock *sk = skb->sk;
2606
2607 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2608}
2609
2610struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2611 gfp_t priority)
2612{
2613 struct sk_buff *skb;
2614
2615 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2616 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2617 READ_ONCE(sysctl_optmem_max))
2618 return NULL;
2619
2620 skb = alloc_skb(size, priority);
2621 if (!skb)
2622 return NULL;
2623
2624 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2625 skb->sk = sk;
2626 skb->destructor = sock_ofree;
2627 return skb;
2628}
2629
2630/*
2631 * Allocate a memory block from the socket's option memory buffer.
2632 */
2633void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2634{
2635 int optmem_max = READ_ONCE(sysctl_optmem_max);
2636
2637 if ((unsigned int)size <= optmem_max &&
2638 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2639 void *mem;
2640 /* First do the add, to avoid the race if kmalloc
2641 * might sleep.
2642 */
2643 atomic_add(size, &sk->sk_omem_alloc);
2644 mem = kmalloc(size, priority);
2645 if (mem)
2646 return mem;
2647 atomic_sub(size, &sk->sk_omem_alloc);
2648 }
2649 return NULL;
2650}
2651EXPORT_SYMBOL(sock_kmalloc);
2652
2653/* Free an option memory block. Note, we actually want the inline
2654 * here as this allows gcc to detect the nullify and fold away the
2655 * condition entirely.
2656 */
2657static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2658 const bool nullify)
2659{
2660 if (WARN_ON_ONCE(!mem))
2661 return;
2662 if (nullify)
2663 kfree_sensitive(mem);
2664 else
2665 kfree(mem);
2666 atomic_sub(size, &sk->sk_omem_alloc);
2667}
2668
2669void sock_kfree_s(struct sock *sk, void *mem, int size)
2670{
2671 __sock_kfree_s(sk, mem, size, false);
2672}
2673EXPORT_SYMBOL(sock_kfree_s);
2674
2675void sock_kzfree_s(struct sock *sk, void *mem, int size)
2676{
2677 __sock_kfree_s(sk, mem, size, true);
2678}
2679EXPORT_SYMBOL(sock_kzfree_s);
2680
2681/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2682 I think, these locks should be removed for datagram sockets.
2683 */
2684static long sock_wait_for_wmem(struct sock *sk, long timeo)
2685{
2686 DEFINE_WAIT(wait);
2687
2688 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2689 for (;;) {
2690 if (!timeo)
2691 break;
2692 if (signal_pending(current))
2693 break;
2694 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2695 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2696 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2697 break;
2698 if (sk->sk_shutdown & SEND_SHUTDOWN)
2699 break;
2700 if (sk->sk_err)
2701 break;
2702 timeo = schedule_timeout(timeo);
2703 }
2704 finish_wait(sk_sleep(sk), &wait);
2705 return timeo;
2706}
2707
2708
2709/*
2710 * Generic send/receive buffer handlers
2711 */
2712
2713struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2714 unsigned long data_len, int noblock,
2715 int *errcode, int max_page_order)
2716{
2717 struct sk_buff *skb;
2718 long timeo;
2719 int err;
2720
2721 timeo = sock_sndtimeo(sk, noblock);
2722 for (;;) {
2723 err = sock_error(sk);
2724 if (err != 0)
2725 goto failure;
2726
2727 err = -EPIPE;
2728 if (sk->sk_shutdown & SEND_SHUTDOWN)
2729 goto failure;
2730
2731 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2732 break;
2733
2734 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2735 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2736 err = -EAGAIN;
2737 if (!timeo)
2738 goto failure;
2739 if (signal_pending(current))
2740 goto interrupted;
2741 timeo = sock_wait_for_wmem(sk, timeo);
2742 }
2743 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2744 errcode, sk->sk_allocation);
2745 if (skb)
2746 skb_set_owner_w(skb, sk);
2747 return skb;
2748
2749interrupted:
2750 err = sock_intr_errno(timeo);
2751failure:
2752 *errcode = err;
2753 return NULL;
2754}
2755EXPORT_SYMBOL(sock_alloc_send_pskb);
2756
2757int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2758 struct sockcm_cookie *sockc)
2759{
2760 u32 tsflags;
2761
2762 switch (cmsg->cmsg_type) {
2763 case SO_MARK:
2764 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2765 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2766 return -EPERM;
2767 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2768 return -EINVAL;
2769 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2770 break;
2771 case SO_TIMESTAMPING_OLD:
2772 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2773 return -EINVAL;
2774
2775 tsflags = *(u32 *)CMSG_DATA(cmsg);
2776 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2777 return -EINVAL;
2778
2779 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2780 sockc->tsflags |= tsflags;
2781 break;
2782 case SCM_TXTIME:
2783 if (!sock_flag(sk, SOCK_TXTIME))
2784 return -EINVAL;
2785 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2786 return -EINVAL;
2787 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2788 break;
2789 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2790 case SCM_RIGHTS:
2791 case SCM_CREDENTIALS:
2792 break;
2793 default:
2794 return -EINVAL;
2795 }
2796 return 0;
2797}
2798EXPORT_SYMBOL(__sock_cmsg_send);
2799
2800int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2801 struct sockcm_cookie *sockc)
2802{
2803 struct cmsghdr *cmsg;
2804 int ret;
2805
2806 for_each_cmsghdr(cmsg, msg) {
2807 if (!CMSG_OK(msg, cmsg))
2808 return -EINVAL;
2809 if (cmsg->cmsg_level != SOL_SOCKET)
2810 continue;
2811 ret = __sock_cmsg_send(sk, cmsg, sockc);
2812 if (ret)
2813 return ret;
2814 }
2815 return 0;
2816}
2817EXPORT_SYMBOL(sock_cmsg_send);
2818
2819static void sk_enter_memory_pressure(struct sock *sk)
2820{
2821 if (!sk->sk_prot->enter_memory_pressure)
2822 return;
2823
2824 sk->sk_prot->enter_memory_pressure(sk);
2825}
2826
2827static void sk_leave_memory_pressure(struct sock *sk)
2828{
2829 if (sk->sk_prot->leave_memory_pressure) {
2830 sk->sk_prot->leave_memory_pressure(sk);
2831 } else {
2832 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2833
2834 if (memory_pressure && READ_ONCE(*memory_pressure))
2835 WRITE_ONCE(*memory_pressure, 0);
2836 }
2837}
2838
2839DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2840
2841/**
2842 * skb_page_frag_refill - check that a page_frag contains enough room
2843 * @sz: minimum size of the fragment we want to get
2844 * @pfrag: pointer to page_frag
2845 * @gfp: priority for memory allocation
2846 *
2847 * Note: While this allocator tries to use high order pages, there is
2848 * no guarantee that allocations succeed. Therefore, @sz MUST be
2849 * less or equal than PAGE_SIZE.
2850 */
2851bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2852{
2853 if (pfrag->page) {
2854 if (page_ref_count(pfrag->page) == 1) {
2855 pfrag->offset = 0;
2856 return true;
2857 }
2858 if (pfrag->offset + sz <= pfrag->size)
2859 return true;
2860 put_page(pfrag->page);
2861 }
2862
2863 pfrag->offset = 0;
2864 if (SKB_FRAG_PAGE_ORDER &&
2865 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2866 /* Avoid direct reclaim but allow kswapd to wake */
2867 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2868 __GFP_COMP | __GFP_NOWARN |
2869 __GFP_NORETRY,
2870 SKB_FRAG_PAGE_ORDER);
2871 if (likely(pfrag->page)) {
2872 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2873 return true;
2874 }
2875 }
2876 pfrag->page = alloc_page(gfp);
2877 if (likely(pfrag->page)) {
2878 pfrag->size = PAGE_SIZE;
2879 return true;
2880 }
2881 return false;
2882}
2883EXPORT_SYMBOL(skb_page_frag_refill);
2884
2885bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2886{
2887 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2888 return true;
2889
2890 sk_enter_memory_pressure(sk);
2891 sk_stream_moderate_sndbuf(sk);
2892 return false;
2893}
2894EXPORT_SYMBOL(sk_page_frag_refill);
2895
2896void __lock_sock(struct sock *sk)
2897 __releases(&sk->sk_lock.slock)
2898 __acquires(&sk->sk_lock.slock)
2899{
2900 DEFINE_WAIT(wait);
2901
2902 for (;;) {
2903 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2904 TASK_UNINTERRUPTIBLE);
2905 spin_unlock_bh(&sk->sk_lock.slock);
2906 schedule();
2907 spin_lock_bh(&sk->sk_lock.slock);
2908 if (!sock_owned_by_user(sk))
2909 break;
2910 }
2911 finish_wait(&sk->sk_lock.wq, &wait);
2912}
2913
2914void __release_sock(struct sock *sk)
2915 __releases(&sk->sk_lock.slock)
2916 __acquires(&sk->sk_lock.slock)
2917{
2918 struct sk_buff *skb, *next;
2919
2920 while ((skb = sk->sk_backlog.head) != NULL) {
2921 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2922
2923 spin_unlock_bh(&sk->sk_lock.slock);
2924
2925 do {
2926 next = skb->next;
2927 prefetch(next);
2928 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
2929 skb_mark_not_on_list(skb);
2930 sk_backlog_rcv(sk, skb);
2931
2932 cond_resched();
2933
2934 skb = next;
2935 } while (skb != NULL);
2936
2937 spin_lock_bh(&sk->sk_lock.slock);
2938 }
2939
2940 /*
2941 * Doing the zeroing here guarantee we can not loop forever
2942 * while a wild producer attempts to flood us.
2943 */
2944 sk->sk_backlog.len = 0;
2945}
2946
2947void __sk_flush_backlog(struct sock *sk)
2948{
2949 spin_lock_bh(&sk->sk_lock.slock);
2950 __release_sock(sk);
2951 spin_unlock_bh(&sk->sk_lock.slock);
2952}
2953EXPORT_SYMBOL_GPL(__sk_flush_backlog);
2954
2955/**
2956 * sk_wait_data - wait for data to arrive at sk_receive_queue
2957 * @sk: sock to wait on
2958 * @timeo: for how long
2959 * @skb: last skb seen on sk_receive_queue
2960 *
2961 * Now socket state including sk->sk_err is changed only under lock,
2962 * hence we may omit checks after joining wait queue.
2963 * We check receive queue before schedule() only as optimization;
2964 * it is very likely that release_sock() added new data.
2965 */
2966int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2967{
2968 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2969 int rc;
2970
2971 add_wait_queue(sk_sleep(sk), &wait);
2972 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2973 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2974 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2975 remove_wait_queue(sk_sleep(sk), &wait);
2976 return rc;
2977}
2978EXPORT_SYMBOL(sk_wait_data);
2979
2980/**
2981 * __sk_mem_raise_allocated - increase memory_allocated
2982 * @sk: socket
2983 * @size: memory size to allocate
2984 * @amt: pages to allocate
2985 * @kind: allocation type
2986 *
2987 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2988 */
2989int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2990{
2991 bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg;
2992 struct proto *prot = sk->sk_prot;
2993 bool charged = true;
2994 long allocated;
2995
2996 sk_memory_allocated_add(sk, amt);
2997 allocated = sk_memory_allocated(sk);
2998 if (memcg_charge &&
2999 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3000 gfp_memcg_charge())))
3001 goto suppress_allocation;
3002
3003 /* Under limit. */
3004 if (allocated <= sk_prot_mem_limits(sk, 0)) {
3005 sk_leave_memory_pressure(sk);
3006 return 1;
3007 }
3008
3009 /* Under pressure. */
3010 if (allocated > sk_prot_mem_limits(sk, 1))
3011 sk_enter_memory_pressure(sk);
3012
3013 /* Over hard limit. */
3014 if (allocated > sk_prot_mem_limits(sk, 2))
3015 goto suppress_allocation;
3016
3017 /* guarantee minimum buffer size under pressure */
3018 if (kind == SK_MEM_RECV) {
3019 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3020 return 1;
3021
3022 } else { /* SK_MEM_SEND */
3023 int wmem0 = sk_get_wmem0(sk, prot);
3024
3025 if (sk->sk_type == SOCK_STREAM) {
3026 if (sk->sk_wmem_queued < wmem0)
3027 return 1;
3028 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3029 return 1;
3030 }
3031 }
3032
3033 if (sk_has_memory_pressure(sk)) {
3034 u64 alloc;
3035
3036 if (!sk_under_memory_pressure(sk))
3037 return 1;
3038 alloc = sk_sockets_allocated_read_positive(sk);
3039 if (sk_prot_mem_limits(sk, 2) > alloc *
3040 sk_mem_pages(sk->sk_wmem_queued +
3041 atomic_read(&sk->sk_rmem_alloc) +
3042 sk->sk_forward_alloc))
3043 return 1;
3044 }
3045
3046suppress_allocation:
3047
3048 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3049 sk_stream_moderate_sndbuf(sk);
3050
3051 /* Fail only if socket is _under_ its sndbuf.
3052 * In this case we cannot block, so that we have to fail.
3053 */
3054 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3055 /* Force charge with __GFP_NOFAIL */
3056 if (memcg_charge && !charged) {
3057 mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3058 gfp_memcg_charge() | __GFP_NOFAIL);
3059 }
3060 return 1;
3061 }
3062 }
3063
3064 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3065 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3066
3067 sk_memory_allocated_sub(sk, amt);
3068
3069 if (memcg_charge && charged)
3070 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
3071
3072 return 0;
3073}
3074
3075/**
3076 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3077 * @sk: socket
3078 * @size: memory size to allocate
3079 * @kind: allocation type
3080 *
3081 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3082 * rmem allocation. This function assumes that protocols which have
3083 * memory_pressure use sk_wmem_queued as write buffer accounting.
3084 */
3085int __sk_mem_schedule(struct sock *sk, int size, int kind)
3086{
3087 int ret, amt = sk_mem_pages(size);
3088
3089 sk->sk_forward_alloc += amt << PAGE_SHIFT;
3090 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3091 if (!ret)
3092 sk->sk_forward_alloc -= amt << PAGE_SHIFT;
3093 return ret;
3094}
3095EXPORT_SYMBOL(__sk_mem_schedule);
3096
3097/**
3098 * __sk_mem_reduce_allocated - reclaim memory_allocated
3099 * @sk: socket
3100 * @amount: number of quanta
3101 *
3102 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3103 */
3104void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3105{
3106 sk_memory_allocated_sub(sk, amount);
3107
3108 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3109 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3110
3111 if (sk_under_memory_pressure(sk) &&
3112 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3113 sk_leave_memory_pressure(sk);
3114}
3115
3116/**
3117 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3118 * @sk: socket
3119 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3120 */
3121void __sk_mem_reclaim(struct sock *sk, int amount)
3122{
3123 amount >>= PAGE_SHIFT;
3124 sk->sk_forward_alloc -= amount << PAGE_SHIFT;
3125 __sk_mem_reduce_allocated(sk, amount);
3126}
3127EXPORT_SYMBOL(__sk_mem_reclaim);
3128
3129int sk_set_peek_off(struct sock *sk, int val)
3130{
3131 sk->sk_peek_off = val;
3132 return 0;
3133}
3134EXPORT_SYMBOL_GPL(sk_set_peek_off);
3135
3136/*
3137 * Set of default routines for initialising struct proto_ops when
3138 * the protocol does not support a particular function. In certain
3139 * cases where it makes no sense for a protocol to have a "do nothing"
3140 * function, some default processing is provided.
3141 */
3142
3143int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3144{
3145 return -EOPNOTSUPP;
3146}
3147EXPORT_SYMBOL(sock_no_bind);
3148
3149int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3150 int len, int flags)
3151{
3152 return -EOPNOTSUPP;
3153}
3154EXPORT_SYMBOL(sock_no_connect);
3155
3156int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3157{
3158 return -EOPNOTSUPP;
3159}
3160EXPORT_SYMBOL(sock_no_socketpair);
3161
3162int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3163 bool kern)
3164{
3165 return -EOPNOTSUPP;
3166}
3167EXPORT_SYMBOL(sock_no_accept);
3168
3169int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3170 int peer)
3171{
3172 return -EOPNOTSUPP;
3173}
3174EXPORT_SYMBOL(sock_no_getname);
3175
3176int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3177{
3178 return -EOPNOTSUPP;
3179}
3180EXPORT_SYMBOL(sock_no_ioctl);
3181
3182int sock_no_listen(struct socket *sock, int backlog)
3183{
3184 return -EOPNOTSUPP;
3185}
3186EXPORT_SYMBOL(sock_no_listen);
3187
3188int sock_no_shutdown(struct socket *sock, int how)
3189{
3190 return -EOPNOTSUPP;
3191}
3192EXPORT_SYMBOL(sock_no_shutdown);
3193
3194int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3195{
3196 return -EOPNOTSUPP;
3197}
3198EXPORT_SYMBOL(sock_no_sendmsg);
3199
3200int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3201{
3202 return -EOPNOTSUPP;
3203}
3204EXPORT_SYMBOL(sock_no_sendmsg_locked);
3205
3206int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3207 int flags)
3208{
3209 return -EOPNOTSUPP;
3210}
3211EXPORT_SYMBOL(sock_no_recvmsg);
3212
3213int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3214{
3215 /* Mirror missing mmap method error code */
3216 return -ENODEV;
3217}
3218EXPORT_SYMBOL(sock_no_mmap);
3219
3220/*
3221 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3222 * various sock-based usage counts.
3223 */
3224void __receive_sock(struct file *file)
3225{
3226 struct socket *sock;
3227
3228 sock = sock_from_file(file);
3229 if (sock) {
3230 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3231 sock_update_classid(&sock->sk->sk_cgrp_data);
3232 }
3233}
3234
3235ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
3236{
3237 ssize_t res;
3238 struct msghdr msg = {.msg_flags = flags};
3239 struct kvec iov;
3240 char *kaddr = kmap(page);
3241 iov.iov_base = kaddr + offset;
3242 iov.iov_len = size;
3243 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
3244 kunmap(page);
3245 return res;
3246}
3247EXPORT_SYMBOL(sock_no_sendpage);
3248
3249ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
3250 int offset, size_t size, int flags)
3251{
3252 ssize_t res;
3253 struct msghdr msg = {.msg_flags = flags};
3254 struct kvec iov;
3255 char *kaddr = kmap(page);
3256
3257 iov.iov_base = kaddr + offset;
3258 iov.iov_len = size;
3259 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
3260 kunmap(page);
3261 return res;
3262}
3263EXPORT_SYMBOL(sock_no_sendpage_locked);
3264
3265/*
3266 * Default Socket Callbacks
3267 */
3268
3269static void sock_def_wakeup(struct sock *sk)
3270{
3271 struct socket_wq *wq;
3272
3273 rcu_read_lock();
3274 wq = rcu_dereference(sk->sk_wq);
3275 if (skwq_has_sleeper(wq))
3276 wake_up_interruptible_all(&wq->wait);
3277 rcu_read_unlock();
3278}
3279
3280static void sock_def_error_report(struct sock *sk)
3281{
3282 struct socket_wq *wq;
3283
3284 rcu_read_lock();
3285 wq = rcu_dereference(sk->sk_wq);
3286 if (skwq_has_sleeper(wq))
3287 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3288 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3289 rcu_read_unlock();
3290}
3291
3292void sock_def_readable(struct sock *sk)
3293{
3294 struct socket_wq *wq;
3295
3296 rcu_read_lock();
3297 wq = rcu_dereference(sk->sk_wq);
3298 if (skwq_has_sleeper(wq))
3299 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3300 EPOLLRDNORM | EPOLLRDBAND);
3301 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3302 rcu_read_unlock();
3303}
3304
3305static void sock_def_write_space(struct sock *sk)
3306{
3307 struct socket_wq *wq;
3308
3309 rcu_read_lock();
3310
3311 /* Do not wake up a writer until he can make "significant"
3312 * progress. --DaveM
3313 */
3314 if (sock_writeable(sk)) {
3315 wq = rcu_dereference(sk->sk_wq);
3316 if (skwq_has_sleeper(wq))
3317 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3318 EPOLLWRNORM | EPOLLWRBAND);
3319
3320 /* Should agree with poll, otherwise some programs break */
3321 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3322 }
3323
3324 rcu_read_unlock();
3325}
3326
3327/* An optimised version of sock_def_write_space(), should only be called
3328 * for SOCK_RCU_FREE sockets under RCU read section and after putting
3329 * ->sk_wmem_alloc.
3330 */
3331static void sock_def_write_space_wfree(struct sock *sk)
3332{
3333 /* Do not wake up a writer until he can make "significant"
3334 * progress. --DaveM
3335 */
3336 if (sock_writeable(sk)) {
3337 struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3338
3339 /* rely on refcount_sub from sock_wfree() */
3340 smp_mb__after_atomic();
3341 if (wq && waitqueue_active(&wq->wait))
3342 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3343 EPOLLWRNORM | EPOLLWRBAND);
3344
3345 /* Should agree with poll, otherwise some programs break */
3346 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3347 }
3348}
3349
3350static void sock_def_destruct(struct sock *sk)
3351{
3352}
3353
3354void sk_send_sigurg(struct sock *sk)
3355{
3356 if (sk->sk_socket && sk->sk_socket->file)
3357 if (send_sigurg(&sk->sk_socket->file->f_owner))
3358 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3359}
3360EXPORT_SYMBOL(sk_send_sigurg);
3361
3362void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3363 unsigned long expires)
3364{
3365 if (!mod_timer(timer, expires))
3366 sock_hold(sk);
3367}
3368EXPORT_SYMBOL(sk_reset_timer);
3369
3370void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3371{
3372 if (del_timer(timer))
3373 __sock_put(sk);
3374}
3375EXPORT_SYMBOL(sk_stop_timer);
3376
3377void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3378{
3379 if (del_timer_sync(timer))
3380 __sock_put(sk);
3381}
3382EXPORT_SYMBOL(sk_stop_timer_sync);
3383
3384void sock_init_data(struct socket *sock, struct sock *sk)
3385{
3386 sk_init_common(sk);
3387 sk->sk_send_head = NULL;
3388
3389 timer_setup(&sk->sk_timer, NULL, 0);
3390
3391 sk->sk_allocation = GFP_KERNEL;
3392 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default);
3393 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
3394 sk->sk_state = TCP_CLOSE;
3395 sk->sk_use_task_frag = true;
3396 sk_set_socket(sk, sock);
3397
3398 sock_set_flag(sk, SOCK_ZAPPED);
3399
3400 if (sock) {
3401 sk->sk_type = sock->type;
3402 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3403 sock->sk = sk;
3404 sk->sk_uid = SOCK_INODE(sock)->i_uid;
3405 } else {
3406 RCU_INIT_POINTER(sk->sk_wq, NULL);
3407 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
3408 }
3409
3410 rwlock_init(&sk->sk_callback_lock);
3411 if (sk->sk_kern_sock)
3412 lockdep_set_class_and_name(
3413 &sk->sk_callback_lock,
3414 af_kern_callback_keys + sk->sk_family,
3415 af_family_kern_clock_key_strings[sk->sk_family]);
3416 else
3417 lockdep_set_class_and_name(
3418 &sk->sk_callback_lock,
3419 af_callback_keys + sk->sk_family,
3420 af_family_clock_key_strings[sk->sk_family]);
3421
3422 sk->sk_state_change = sock_def_wakeup;
3423 sk->sk_data_ready = sock_def_readable;
3424 sk->sk_write_space = sock_def_write_space;
3425 sk->sk_error_report = sock_def_error_report;
3426 sk->sk_destruct = sock_def_destruct;
3427
3428 sk->sk_frag.page = NULL;
3429 sk->sk_frag.offset = 0;
3430 sk->sk_peek_off = -1;
3431
3432 sk->sk_peer_pid = NULL;
3433 sk->sk_peer_cred = NULL;
3434 spin_lock_init(&sk->sk_peer_lock);
3435
3436 sk->sk_write_pending = 0;
3437 sk->sk_rcvlowat = 1;
3438 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3439 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3440
3441 sk->sk_stamp = SK_DEFAULT_STAMP;
3442#if BITS_PER_LONG==32
3443 seqlock_init(&sk->sk_stamp_seq);
3444#endif
3445 atomic_set(&sk->sk_zckey, 0);
3446
3447#ifdef CONFIG_NET_RX_BUSY_POLL
3448 sk->sk_napi_id = 0;
3449 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read);
3450#endif
3451
3452 sk->sk_max_pacing_rate = ~0UL;
3453 sk->sk_pacing_rate = ~0UL;
3454 WRITE_ONCE(sk->sk_pacing_shift, 10);
3455 sk->sk_incoming_cpu = -1;
3456
3457 sk_rx_queue_clear(sk);
3458 /*
3459 * Before updating sk_refcnt, we must commit prior changes to memory
3460 * (Documentation/RCU/rculist_nulls.rst for details)
3461 */
3462 smp_wmb();
3463 refcount_set(&sk->sk_refcnt, 1);
3464 atomic_set(&sk->sk_drops, 0);
3465}
3466EXPORT_SYMBOL(sock_init_data);
3467
3468void lock_sock_nested(struct sock *sk, int subclass)
3469{
3470 /* The sk_lock has mutex_lock() semantics here. */
3471 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3472
3473 might_sleep();
3474 spin_lock_bh(&sk->sk_lock.slock);
3475 if (sock_owned_by_user_nocheck(sk))
3476 __lock_sock(sk);
3477 sk->sk_lock.owned = 1;
3478 spin_unlock_bh(&sk->sk_lock.slock);
3479}
3480EXPORT_SYMBOL(lock_sock_nested);
3481
3482void release_sock(struct sock *sk)
3483{
3484 spin_lock_bh(&sk->sk_lock.slock);
3485 if (sk->sk_backlog.tail)
3486 __release_sock(sk);
3487
3488 /* Warning : release_cb() might need to release sk ownership,
3489 * ie call sock_release_ownership(sk) before us.
3490 */
3491 if (sk->sk_prot->release_cb)
3492 sk->sk_prot->release_cb(sk);
3493
3494 sock_release_ownership(sk);
3495 if (waitqueue_active(&sk->sk_lock.wq))
3496 wake_up(&sk->sk_lock.wq);
3497 spin_unlock_bh(&sk->sk_lock.slock);
3498}
3499EXPORT_SYMBOL(release_sock);
3500
3501bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3502{
3503 might_sleep();
3504 spin_lock_bh(&sk->sk_lock.slock);
3505
3506 if (!sock_owned_by_user_nocheck(sk)) {
3507 /*
3508 * Fast path return with bottom halves disabled and
3509 * sock::sk_lock.slock held.
3510 *
3511 * The 'mutex' is not contended and holding
3512 * sock::sk_lock.slock prevents all other lockers to
3513 * proceed so the corresponding unlock_sock_fast() can
3514 * avoid the slow path of release_sock() completely and
3515 * just release slock.
3516 *
3517 * From a semantical POV this is equivalent to 'acquiring'
3518 * the 'mutex', hence the corresponding lockdep
3519 * mutex_release() has to happen in the fast path of
3520 * unlock_sock_fast().
3521 */
3522 return false;
3523 }
3524
3525 __lock_sock(sk);
3526 sk->sk_lock.owned = 1;
3527 __acquire(&sk->sk_lock.slock);
3528 spin_unlock_bh(&sk->sk_lock.slock);
3529 return true;
3530}
3531EXPORT_SYMBOL(__lock_sock_fast);
3532
3533int sock_gettstamp(struct socket *sock, void __user *userstamp,
3534 bool timeval, bool time32)
3535{
3536 struct sock *sk = sock->sk;
3537 struct timespec64 ts;
3538
3539 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3540 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3541 if (ts.tv_sec == -1)
3542 return -ENOENT;
3543 if (ts.tv_sec == 0) {
3544 ktime_t kt = ktime_get_real();
3545 sock_write_timestamp(sk, kt);
3546 ts = ktime_to_timespec64(kt);
3547 }
3548
3549 if (timeval)
3550 ts.tv_nsec /= 1000;
3551
3552#ifdef CONFIG_COMPAT_32BIT_TIME
3553 if (time32)
3554 return put_old_timespec32(&ts, userstamp);
3555#endif
3556#ifdef CONFIG_SPARC64
3557 /* beware of padding in sparc64 timeval */
3558 if (timeval && !in_compat_syscall()) {
3559 struct __kernel_old_timeval __user tv = {
3560 .tv_sec = ts.tv_sec,
3561 .tv_usec = ts.tv_nsec,
3562 };
3563 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3564 return -EFAULT;
3565 return 0;
3566 }
3567#endif
3568 return put_timespec64(&ts, userstamp);
3569}
3570EXPORT_SYMBOL(sock_gettstamp);
3571
3572void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3573{
3574 if (!sock_flag(sk, flag)) {
3575 unsigned long previous_flags = sk->sk_flags;
3576
3577 sock_set_flag(sk, flag);
3578 /*
3579 * we just set one of the two flags which require net
3580 * time stamping, but time stamping might have been on
3581 * already because of the other one
3582 */
3583 if (sock_needs_netstamp(sk) &&
3584 !(previous_flags & SK_FLAGS_TIMESTAMP))
3585 net_enable_timestamp();
3586 }
3587}
3588
3589int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3590 int level, int type)
3591{
3592 struct sock_exterr_skb *serr;
3593 struct sk_buff *skb;
3594 int copied, err;
3595
3596 err = -EAGAIN;
3597 skb = sock_dequeue_err_skb(sk);
3598 if (skb == NULL)
3599 goto out;
3600
3601 copied = skb->len;
3602 if (copied > len) {
3603 msg->msg_flags |= MSG_TRUNC;
3604 copied = len;
3605 }
3606 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3607 if (err)
3608 goto out_free_skb;
3609
3610 sock_recv_timestamp(msg, sk, skb);
3611
3612 serr = SKB_EXT_ERR(skb);
3613 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3614
3615 msg->msg_flags |= MSG_ERRQUEUE;
3616 err = copied;
3617
3618out_free_skb:
3619 kfree_skb(skb);
3620out:
3621 return err;
3622}
3623EXPORT_SYMBOL(sock_recv_errqueue);
3624
3625/*
3626 * Get a socket option on an socket.
3627 *
3628 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3629 * asynchronous errors should be reported by getsockopt. We assume
3630 * this means if you specify SO_ERROR (otherwise whats the point of it).
3631 */
3632int sock_common_getsockopt(struct socket *sock, int level, int optname,
3633 char __user *optval, int __user *optlen)
3634{
3635 struct sock *sk = sock->sk;
3636
3637 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3638 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3639}
3640EXPORT_SYMBOL(sock_common_getsockopt);
3641
3642int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3643 int flags)
3644{
3645 struct sock *sk = sock->sk;
3646 int addr_len = 0;
3647 int err;
3648
3649 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3650 if (err >= 0)
3651 msg->msg_namelen = addr_len;
3652 return err;
3653}
3654EXPORT_SYMBOL(sock_common_recvmsg);
3655
3656/*
3657 * Set socket options on an inet socket.
3658 */
3659int sock_common_setsockopt(struct socket *sock, int level, int optname,
3660 sockptr_t optval, unsigned int optlen)
3661{
3662 struct sock *sk = sock->sk;
3663
3664 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3665 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3666}
3667EXPORT_SYMBOL(sock_common_setsockopt);
3668
3669void sk_common_release(struct sock *sk)
3670{
3671 if (sk->sk_prot->destroy)
3672 sk->sk_prot->destroy(sk);
3673
3674 /*
3675 * Observation: when sk_common_release is called, processes have
3676 * no access to socket. But net still has.
3677 * Step one, detach it from networking:
3678 *
3679 * A. Remove from hash tables.
3680 */
3681
3682 sk->sk_prot->unhash(sk);
3683
3684 /*
3685 * In this point socket cannot receive new packets, but it is possible
3686 * that some packets are in flight because some CPU runs receiver and
3687 * did hash table lookup before we unhashed socket. They will achieve
3688 * receive queue and will be purged by socket destructor.
3689 *
3690 * Also we still have packets pending on receive queue and probably,
3691 * our own packets waiting in device queues. sock_destroy will drain
3692 * receive queue, but transmitted packets will delay socket destruction
3693 * until the last reference will be released.
3694 */
3695
3696 sock_orphan(sk);
3697
3698 xfrm_sk_free_policy(sk);
3699
3700 sk_refcnt_debug_release(sk);
3701
3702 sock_put(sk);
3703}
3704EXPORT_SYMBOL(sk_common_release);
3705
3706void sk_get_meminfo(const struct sock *sk, u32 *mem)
3707{
3708 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3709
3710 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3711 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3712 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3713 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3714 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3715 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3716 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3717 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3718 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3719}
3720
3721#ifdef CONFIG_PROC_FS
3722static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3723
3724int sock_prot_inuse_get(struct net *net, struct proto *prot)
3725{
3726 int cpu, idx = prot->inuse_idx;
3727 int res = 0;
3728
3729 for_each_possible_cpu(cpu)
3730 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3731
3732 return res >= 0 ? res : 0;
3733}
3734EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3735
3736int sock_inuse_get(struct net *net)
3737{
3738 int cpu, res = 0;
3739
3740 for_each_possible_cpu(cpu)
3741 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3742
3743 return res;
3744}
3745
3746EXPORT_SYMBOL_GPL(sock_inuse_get);
3747
3748static int __net_init sock_inuse_init_net(struct net *net)
3749{
3750 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3751 if (net->core.prot_inuse == NULL)
3752 return -ENOMEM;
3753 return 0;
3754}
3755
3756static void __net_exit sock_inuse_exit_net(struct net *net)
3757{
3758 free_percpu(net->core.prot_inuse);
3759}
3760
3761static struct pernet_operations net_inuse_ops = {
3762 .init = sock_inuse_init_net,
3763 .exit = sock_inuse_exit_net,
3764};
3765
3766static __init int net_inuse_init(void)
3767{
3768 if (register_pernet_subsys(&net_inuse_ops))
3769 panic("Cannot initialize net inuse counters");
3770
3771 return 0;
3772}
3773
3774core_initcall(net_inuse_init);
3775
3776static int assign_proto_idx(struct proto *prot)
3777{
3778 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3779
3780 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3781 pr_err("PROTO_INUSE_NR exhausted\n");
3782 return -ENOSPC;
3783 }
3784
3785 set_bit(prot->inuse_idx, proto_inuse_idx);
3786 return 0;
3787}
3788
3789static void release_proto_idx(struct proto *prot)
3790{
3791 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3792 clear_bit(prot->inuse_idx, proto_inuse_idx);
3793}
3794#else
3795static inline int assign_proto_idx(struct proto *prot)
3796{
3797 return 0;
3798}
3799
3800static inline void release_proto_idx(struct proto *prot)
3801{
3802}
3803
3804#endif
3805
3806static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3807{
3808 if (!twsk_prot)
3809 return;
3810 kfree(twsk_prot->twsk_slab_name);
3811 twsk_prot->twsk_slab_name = NULL;
3812 kmem_cache_destroy(twsk_prot->twsk_slab);
3813 twsk_prot->twsk_slab = NULL;
3814}
3815
3816static int tw_prot_init(const struct proto *prot)
3817{
3818 struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3819
3820 if (!twsk_prot)
3821 return 0;
3822
3823 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3824 prot->name);
3825 if (!twsk_prot->twsk_slab_name)
3826 return -ENOMEM;
3827
3828 twsk_prot->twsk_slab =
3829 kmem_cache_create(twsk_prot->twsk_slab_name,
3830 twsk_prot->twsk_obj_size, 0,
3831 SLAB_ACCOUNT | prot->slab_flags,
3832 NULL);
3833 if (!twsk_prot->twsk_slab) {
3834 pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3835 prot->name);
3836 return -ENOMEM;
3837 }
3838
3839 return 0;
3840}
3841
3842static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3843{
3844 if (!rsk_prot)
3845 return;
3846 kfree(rsk_prot->slab_name);
3847 rsk_prot->slab_name = NULL;
3848 kmem_cache_destroy(rsk_prot->slab);
3849 rsk_prot->slab = NULL;
3850}
3851
3852static int req_prot_init(const struct proto *prot)
3853{
3854 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3855
3856 if (!rsk_prot)
3857 return 0;
3858
3859 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3860 prot->name);
3861 if (!rsk_prot->slab_name)
3862 return -ENOMEM;
3863
3864 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3865 rsk_prot->obj_size, 0,
3866 SLAB_ACCOUNT | prot->slab_flags,
3867 NULL);
3868
3869 if (!rsk_prot->slab) {
3870 pr_crit("%s: Can't create request sock SLAB cache!\n",
3871 prot->name);
3872 return -ENOMEM;
3873 }
3874 return 0;
3875}
3876
3877int proto_register(struct proto *prot, int alloc_slab)
3878{
3879 int ret = -ENOBUFS;
3880
3881 if (prot->memory_allocated && !prot->sysctl_mem) {
3882 pr_err("%s: missing sysctl_mem\n", prot->name);
3883 return -EINVAL;
3884 }
3885 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
3886 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
3887 return -EINVAL;
3888 }
3889 if (alloc_slab) {
3890 prot->slab = kmem_cache_create_usercopy(prot->name,
3891 prot->obj_size, 0,
3892 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3893 prot->slab_flags,
3894 prot->useroffset, prot->usersize,
3895 NULL);
3896
3897 if (prot->slab == NULL) {
3898 pr_crit("%s: Can't create sock SLAB cache!\n",
3899 prot->name);
3900 goto out;
3901 }
3902
3903 if (req_prot_init(prot))
3904 goto out_free_request_sock_slab;
3905
3906 if (tw_prot_init(prot))
3907 goto out_free_timewait_sock_slab;
3908 }
3909
3910 mutex_lock(&proto_list_mutex);
3911 ret = assign_proto_idx(prot);
3912 if (ret) {
3913 mutex_unlock(&proto_list_mutex);
3914 goto out_free_timewait_sock_slab;
3915 }
3916 list_add(&prot->node, &proto_list);
3917 mutex_unlock(&proto_list_mutex);
3918 return ret;
3919
3920out_free_timewait_sock_slab:
3921 if (alloc_slab)
3922 tw_prot_cleanup(prot->twsk_prot);
3923out_free_request_sock_slab:
3924 if (alloc_slab) {
3925 req_prot_cleanup(prot->rsk_prot);
3926
3927 kmem_cache_destroy(prot->slab);
3928 prot->slab = NULL;
3929 }
3930out:
3931 return ret;
3932}
3933EXPORT_SYMBOL(proto_register);
3934
3935void proto_unregister(struct proto *prot)
3936{
3937 mutex_lock(&proto_list_mutex);
3938 release_proto_idx(prot);
3939 list_del(&prot->node);
3940 mutex_unlock(&proto_list_mutex);
3941
3942 kmem_cache_destroy(prot->slab);
3943 prot->slab = NULL;
3944
3945 req_prot_cleanup(prot->rsk_prot);
3946 tw_prot_cleanup(prot->twsk_prot);
3947}
3948EXPORT_SYMBOL(proto_unregister);
3949
3950int sock_load_diag_module(int family, int protocol)
3951{
3952 if (!protocol) {
3953 if (!sock_is_registered(family))
3954 return -ENOENT;
3955
3956 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3957 NETLINK_SOCK_DIAG, family);
3958 }
3959
3960#ifdef CONFIG_INET
3961 if (family == AF_INET &&
3962 protocol != IPPROTO_RAW &&
3963 protocol < MAX_INET_PROTOS &&
3964 !rcu_access_pointer(inet_protos[protocol]))
3965 return -ENOENT;
3966#endif
3967
3968 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3969 NETLINK_SOCK_DIAG, family, protocol);
3970}
3971EXPORT_SYMBOL(sock_load_diag_module);
3972
3973#ifdef CONFIG_PROC_FS
3974static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3975 __acquires(proto_list_mutex)
3976{
3977 mutex_lock(&proto_list_mutex);
3978 return seq_list_start_head(&proto_list, *pos);
3979}
3980
3981static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3982{
3983 return seq_list_next(v, &proto_list, pos);
3984}
3985
3986static void proto_seq_stop(struct seq_file *seq, void *v)
3987 __releases(proto_list_mutex)
3988{
3989 mutex_unlock(&proto_list_mutex);
3990}
3991
3992static char proto_method_implemented(const void *method)
3993{
3994 return method == NULL ? 'n' : 'y';
3995}
3996static long sock_prot_memory_allocated(struct proto *proto)
3997{
3998 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3999}
4000
4001static const char *sock_prot_memory_pressure(struct proto *proto)
4002{
4003 return proto->memory_pressure != NULL ?
4004 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4005}
4006
4007static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4008{
4009
4010 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
4011 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4012 proto->name,
4013 proto->obj_size,
4014 sock_prot_inuse_get(seq_file_net(seq), proto),
4015 sock_prot_memory_allocated(proto),
4016 sock_prot_memory_pressure(proto),
4017 proto->max_header,
4018 proto->slab == NULL ? "no" : "yes",
4019 module_name(proto->owner),
4020 proto_method_implemented(proto->close),
4021 proto_method_implemented(proto->connect),
4022 proto_method_implemented(proto->disconnect),
4023 proto_method_implemented(proto->accept),
4024 proto_method_implemented(proto->ioctl),
4025 proto_method_implemented(proto->init),
4026 proto_method_implemented(proto->destroy),
4027 proto_method_implemented(proto->shutdown),
4028 proto_method_implemented(proto->setsockopt),
4029 proto_method_implemented(proto->getsockopt),
4030 proto_method_implemented(proto->sendmsg),
4031 proto_method_implemented(proto->recvmsg),
4032 proto_method_implemented(proto->sendpage),
4033 proto_method_implemented(proto->bind),
4034 proto_method_implemented(proto->backlog_rcv),
4035 proto_method_implemented(proto->hash),
4036 proto_method_implemented(proto->unhash),
4037 proto_method_implemented(proto->get_port),
4038 proto_method_implemented(proto->enter_memory_pressure));
4039}
4040
4041static int proto_seq_show(struct seq_file *seq, void *v)
4042{
4043 if (v == &proto_list)
4044 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4045 "protocol",
4046 "size",
4047 "sockets",
4048 "memory",
4049 "press",
4050 "maxhdr",
4051 "slab",
4052 "module",
4053 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
4054 else
4055 proto_seq_printf(seq, list_entry(v, struct proto, node));
4056 return 0;
4057}
4058
4059static const struct seq_operations proto_seq_ops = {
4060 .start = proto_seq_start,
4061 .next = proto_seq_next,
4062 .stop = proto_seq_stop,
4063 .show = proto_seq_show,
4064};
4065
4066static __net_init int proto_init_net(struct net *net)
4067{
4068 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4069 sizeof(struct seq_net_private)))
4070 return -ENOMEM;
4071
4072 return 0;
4073}
4074
4075static __net_exit void proto_exit_net(struct net *net)
4076{
4077 remove_proc_entry("protocols", net->proc_net);
4078}
4079
4080
4081static __net_initdata struct pernet_operations proto_net_ops = {
4082 .init = proto_init_net,
4083 .exit = proto_exit_net,
4084};
4085
4086static int __init proto_init(void)
4087{
4088 return register_pernet_subsys(&proto_net_ops);
4089}
4090
4091subsys_initcall(proto_init);
4092
4093#endif /* PROC_FS */
4094
4095#ifdef CONFIG_NET_RX_BUSY_POLL
4096bool sk_busy_loop_end(void *p, unsigned long start_time)
4097{
4098 struct sock *sk = p;
4099
4100 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
4101 sk_busy_loop_timeout(sk, start_time);
4102}
4103EXPORT_SYMBOL(sk_busy_loop_end);
4104#endif /* CONFIG_NET_RX_BUSY_POLL */
4105
4106int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4107{
4108 if (!sk->sk_prot->bind_add)
4109 return -EOPNOTSUPP;
4110 return sk->sk_prot->bind_add(sk, addr, addr_len);
4111}
4112EXPORT_SYMBOL(sock_bind_add);