Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Generic socket support routines. Memory allocators, socket lock/release
   7 *		handler for protocols to use and generic option handler.
   8 *
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 *
  85 *
  86 *		This program is free software; you can redistribute it and/or
  87 *		modify it under the terms of the GNU General Public License
  88 *		as published by the Free Software Foundation; either version
  89 *		2 of the License, or (at your option) any later version.
  90 */
  91
 
 
  92#include <linux/capability.h>
  93#include <linux/errno.h>
 
  94#include <linux/types.h>
  95#include <linux/socket.h>
  96#include <linux/in.h>
  97#include <linux/kernel.h>
  98#include <linux/module.h>
  99#include <linux/proc_fs.h>
 100#include <linux/seq_file.h>
 101#include <linux/sched.h>
 
 102#include <linux/timer.h>
 103#include <linux/string.h>
 104#include <linux/sockios.h>
 105#include <linux/net.h>
 106#include <linux/mm.h>
 107#include <linux/slab.h>
 108#include <linux/interrupt.h>
 109#include <linux/poll.h>
 110#include <linux/tcp.h>
 111#include <linux/init.h>
 112#include <linux/highmem.h>
 113#include <linux/user_namespace.h>
 
 
 
 114
 115#include <asm/uaccess.h>
 116#include <asm/system.h>
 117
 118#include <linux/netdevice.h>
 119#include <net/protocol.h>
 120#include <linux/skbuff.h>
 121#include <net/net_namespace.h>
 122#include <net/request_sock.h>
 123#include <net/sock.h>
 124#include <linux/net_tstamp.h>
 125#include <net/xfrm.h>
 126#include <linux/ipsec.h>
 127#include <net/cls_cgroup.h>
 
 
 128
 129#include <linux/filter.h>
 
 130
 131#include <trace/events/sock.h>
 132
 133#ifdef CONFIG_INET
 134#include <net/tcp.h>
 135#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136
 137/*
 138 * Each address family might have different locking rules, so we have
 139 * one slock key per address family:
 
 140 */
 141static struct lock_class_key af_family_keys[AF_MAX];
 
 142static struct lock_class_key af_family_slock_keys[AF_MAX];
 
 143
 144/*
 145 * Make lock validator output more readable. (we pre-construct these
 146 * strings build-time, so that runtime initialization of socket
 147 * locks is fast):
 148 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149static const char *const af_family_key_strings[AF_MAX+1] = {
 150  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
 151  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
 152  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
 153  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
 154  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
 155  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
 156  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
 157  "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
 158  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
 159  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
 160  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
 161  "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
 162  "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
 163  "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
 164};
 165static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 166  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
 167  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
 168  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
 169  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
 170  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
 171  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
 172  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
 173  "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
 174  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
 175  "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
 176  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
 177  "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
 178  "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
 179  "slock-AF_NFC"   , "slock-AF_MAX"
 180};
 181static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 182  "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
 183  "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
 184  "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
 185  "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
 186  "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
 187  "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
 188  "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
 189  "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
 190  "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
 191  "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
 192  "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
 193  "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
 194  "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
 195  "clock-AF_NFC"   , "clock-AF_MAX"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 196};
 197
 198/*
 199 * sk_callback_lock locking rules are per-address-family,
 200 * so split the lock classes by using a per-AF key:
 201 */
 202static struct lock_class_key af_callback_keys[AF_MAX];
 203
 204/* Take into consideration the size of the struct sk_buff overhead in the
 205 * determination of these values, since that is non-constant across
 206 * platforms.  This makes socket queueing behavior and performance
 207 * not depend upon such differences.
 208 */
 209#define _SK_MEM_PACKETS		256
 210#define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
 211#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
 212#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
 213
 214/* Run time adjustable parameters. */
 215__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 
 216__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 
 217__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 218__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 219
 220/* Maximal space eaten by iovec or ancillary data plus some space */
 221int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 222EXPORT_SYMBOL(sysctl_optmem_max);
 223
 224#if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
 225int net_cls_subsys_id = -1;
 226EXPORT_SYMBOL_GPL(net_cls_subsys_id);
 227#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228
 229static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
 230{
 231	struct timeval tv;
 232
 233	if (optlen < sizeof(tv))
 234		return -EINVAL;
 235	if (copy_from_user(&tv, optval, sizeof(tv)))
 236		return -EFAULT;
 237	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 238		return -EDOM;
 239
 240	if (tv.tv_sec < 0) {
 241		static int warned __read_mostly;
 242
 243		*timeo_p = 0;
 244		if (warned < 10 && net_ratelimit()) {
 245			warned++;
 246			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
 247			       "tries to set negative timeout\n",
 248				current->comm, task_pid_nr(current));
 249		}
 250		return 0;
 251	}
 252	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 253	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 254		return 0;
 255	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
 256		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
 257	return 0;
 258}
 259
 260static void sock_warn_obsolete_bsdism(const char *name)
 261{
 262	static int warned;
 263	static char warncomm[TASK_COMM_LEN];
 264	if (strcmp(warncomm, current->comm) && warned < 5) {
 265		strcpy(warncomm,  current->comm);
 266		printk(KERN_WARNING "process `%s' is using obsolete "
 267		       "%s SO_BSDCOMPAT\n", warncomm, name);
 268		warned++;
 269	}
 270}
 271
 272static void sock_disable_timestamp(struct sock *sk, int flag)
 
 
 
 
 
 
 
 
 
 
 
 273{
 274	if (sock_flag(sk, flag)) {
 275		sock_reset_flag(sk, flag);
 276		if (!sock_flag(sk, SOCK_TIMESTAMP) &&
 277		    !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
 278			net_disable_timestamp();
 279		}
 280	}
 281}
 282
 283
 284int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 285{
 286	int err;
 287	int skb_len;
 288	unsigned long flags;
 289	struct sk_buff_head *list = &sk->sk_receive_queue;
 290
 291	/* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
 292	   number of warnings when compiling with -W --ANK
 293	 */
 294	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
 295	    (unsigned)sk->sk_rcvbuf) {
 296		atomic_inc(&sk->sk_drops);
 297		trace_sock_rcvqueue_full(sk, skb);
 298		return -ENOMEM;
 299	}
 300
 301	err = sk_filter(sk, skb);
 302	if (err)
 303		return err;
 304
 305	if (!sk_rmem_schedule(sk, skb->truesize)) {
 306		atomic_inc(&sk->sk_drops);
 307		return -ENOBUFS;
 308	}
 309
 310	skb->dev = NULL;
 311	skb_set_owner_r(skb, sk);
 312
 313	/* Cache the SKB length before we tack it onto the receive
 314	 * queue.  Once it is added it no longer belongs to us and
 315	 * may be freed by other threads of control pulling packets
 316	 * from the queue.
 317	 */
 318	skb_len = skb->len;
 319
 320	/* we escape from rcu protected region, make sure we dont leak
 321	 * a norefcounted dst
 322	 */
 323	skb_dst_force(skb);
 324
 325	spin_lock_irqsave(&list->lock, flags);
 326	skb->dropcount = atomic_read(&sk->sk_drops);
 327	__skb_queue_tail(list, skb);
 328	spin_unlock_irqrestore(&list->lock, flags);
 329
 330	if (!sock_flag(sk, SOCK_DEAD))
 331		sk->sk_data_ready(sk, skb_len);
 332	return 0;
 333}
 
 
 
 
 
 
 
 
 
 
 
 
 334EXPORT_SYMBOL(sock_queue_rcv_skb);
 335
 336int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
 
 337{
 338	int rc = NET_RX_SUCCESS;
 339
 340	if (sk_filter(sk, skb))
 341		goto discard_and_relse;
 342
 343	skb->dev = NULL;
 344
 345	if (sk_rcvqueues_full(sk, skb)) {
 346		atomic_inc(&sk->sk_drops);
 347		goto discard_and_relse;
 348	}
 349	if (nested)
 350		bh_lock_sock_nested(sk);
 351	else
 352		bh_lock_sock(sk);
 353	if (!sock_owned_by_user(sk)) {
 354		/*
 355		 * trylock + unlock semantics:
 356		 */
 357		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 358
 359		rc = sk_backlog_rcv(sk, skb);
 360
 361		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
 362	} else if (sk_add_backlog(sk, skb)) {
 363		bh_unlock_sock(sk);
 364		atomic_inc(&sk->sk_drops);
 365		goto discard_and_relse;
 366	}
 367
 368	bh_unlock_sock(sk);
 369out:
 370	sock_put(sk);
 
 371	return rc;
 372discard_and_relse:
 373	kfree_skb(skb);
 374	goto out;
 375}
 376EXPORT_SYMBOL(sk_receive_skb);
 377
 378void sk_reset_txq(struct sock *sk)
 379{
 380	sk_tx_queue_clear(sk);
 381}
 382EXPORT_SYMBOL(sk_reset_txq);
 383
 384struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 385{
 386	struct dst_entry *dst = __sk_dst_get(sk);
 387
 388	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 389		sk_tx_queue_clear(sk);
 390		rcu_assign_pointer(sk->sk_dst_cache, NULL);
 
 391		dst_release(dst);
 392		return NULL;
 393	}
 394
 395	return dst;
 396}
 397EXPORT_SYMBOL(__sk_dst_check);
 398
 399struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 400{
 401	struct dst_entry *dst = sk_dst_get(sk);
 402
 403	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 404		sk_dst_reset(sk);
 405		dst_release(dst);
 406		return NULL;
 407	}
 408
 409	return dst;
 410}
 411EXPORT_SYMBOL(sk_dst_check);
 412
 413static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
 
 414{
 415	int ret = -ENOPROTOOPT;
 416#ifdef CONFIG_NETDEVICES
 417	struct net *net = sock_net(sk);
 418	char devname[IFNAMSIZ];
 419	int index;
 420
 421	/* Sorry... */
 422	ret = -EPERM;
 423	if (!capable(CAP_NET_RAW))
 424		goto out;
 425
 426	ret = -EINVAL;
 427	if (optlen < 0)
 428		goto out;
 429
 430	/* Bind this socket to a particular device like "eth0",
 431	 * as specified in the passed interface name. If the
 432	 * name is "" or the option length is zero the socket
 433	 * is not bound.
 434	 */
 435	if (optlen > IFNAMSIZ - 1)
 436		optlen = IFNAMSIZ - 1;
 437	memset(devname, 0, sizeof(devname));
 438
 439	ret = -EFAULT;
 440	if (copy_from_user(devname, optval, optlen))
 441		goto out;
 442
 443	index = 0;
 444	if (devname[0] != '\0') {
 445		struct net_device *dev;
 446
 447		rcu_read_lock();
 448		dev = dev_get_by_name_rcu(net, devname);
 449		if (dev)
 450			index = dev->ifindex;
 451		rcu_read_unlock();
 452		ret = -ENODEV;
 453		if (!dev)
 454			goto out;
 455	}
 456
 457	lock_sock(sk);
 458	sk->sk_bound_dev_if = index;
 459	sk_dst_reset(sk);
 460	release_sock(sk);
 461
 462	ret = 0;
 463
 464out:
 465#endif
 466
 467	return ret;
 468}
 469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 470static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
 471{
 472	if (valbool)
 473		sock_set_flag(sk, bit);
 474	else
 475		sock_reset_flag(sk, bit);
 476}
 477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478/*
 479 *	This is meant for all protocols to use and covers goings on
 480 *	at the socket level. Everything here is generic.
 481 */
 482
 483int sock_setsockopt(struct socket *sock, int level, int optname,
 484		    char __user *optval, unsigned int optlen)
 485{
 486	struct sock *sk = sock->sk;
 487	int val;
 488	int valbool;
 489	struct linger ling;
 490	int ret = 0;
 491
 492	/*
 493	 *	Options without arguments
 494	 */
 495
 496	if (optname == SO_BINDTODEVICE)
 497		return sock_bindtodevice(sk, optval, optlen);
 498
 499	if (optlen < sizeof(int))
 500		return -EINVAL;
 501
 502	if (get_user(val, (int __user *)optval))
 503		return -EFAULT;
 504
 505	valbool = val ? 1 : 0;
 506
 507	lock_sock(sk);
 508
 509	switch (optname) {
 510	case SO_DEBUG:
 511		if (val && !capable(CAP_NET_ADMIN))
 512			ret = -EACCES;
 513		else
 514			sock_valbool_flag(sk, SOCK_DBG, valbool);
 515		break;
 516	case SO_REUSEADDR:
 517		sk->sk_reuse = valbool;
 
 
 
 518		break;
 519	case SO_TYPE:
 520	case SO_PROTOCOL:
 521	case SO_DOMAIN:
 522	case SO_ERROR:
 523		ret = -ENOPROTOOPT;
 524		break;
 525	case SO_DONTROUTE:
 526		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
 527		break;
 528	case SO_BROADCAST:
 529		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
 530		break;
 531	case SO_SNDBUF:
 532		/* Don't error on this BSD doesn't and if you think
 533		   about it this is right. Otherwise apps have to
 534		   play 'guess the biggest size' games. RCVBUF/SNDBUF
 535		   are treated in BSD as hints */
 536
 537		if (val > sysctl_wmem_max)
 538			val = sysctl_wmem_max;
 539set_sndbuf:
 540		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
 541		if ((val * 2) < SOCK_MIN_SNDBUF)
 542			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
 543		else
 544			sk->sk_sndbuf = val * 2;
 545
 546		/*
 547		 *	Wake up sending tasks if we
 548		 *	upped the value.
 549		 */
 550		sk->sk_write_space(sk);
 551		break;
 552
 553	case SO_SNDBUFFORCE:
 554		if (!capable(CAP_NET_ADMIN)) {
 555			ret = -EPERM;
 556			break;
 557		}
 558		goto set_sndbuf;
 559
 560	case SO_RCVBUF:
 561		/* Don't error on this BSD doesn't and if you think
 562		   about it this is right. Otherwise apps have to
 563		   play 'guess the biggest size' games. RCVBUF/SNDBUF
 564		   are treated in BSD as hints */
 565
 566		if (val > sysctl_rmem_max)
 567			val = sysctl_rmem_max;
 568set_rcvbuf:
 569		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 570		/*
 571		 * We double it on the way in to account for
 572		 * "struct sk_buff" etc. overhead.   Applications
 573		 * assume that the SO_RCVBUF setting they make will
 574		 * allow that much actual data to be received on that
 575		 * socket.
 576		 *
 577		 * Applications are unaware that "struct sk_buff" and
 578		 * other overheads allocate from the receive buffer
 579		 * during socket buffer allocation.
 580		 *
 581		 * And after considering the possible alternatives,
 582		 * returning the value we actually used in getsockopt
 583		 * is the most desirable behavior.
 584		 */
 585		if ((val * 2) < SOCK_MIN_RCVBUF)
 586			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
 587		else
 588			sk->sk_rcvbuf = val * 2;
 589		break;
 590
 591	case SO_RCVBUFFORCE:
 592		if (!capable(CAP_NET_ADMIN)) {
 593			ret = -EPERM;
 594			break;
 595		}
 596		goto set_rcvbuf;
 597
 598	case SO_KEEPALIVE:
 599#ifdef CONFIG_INET
 600		if (sk->sk_protocol == IPPROTO_TCP)
 601			tcp_set_keepalive(sk, valbool);
 602#endif
 603		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
 604		break;
 605
 606	case SO_OOBINLINE:
 607		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
 608		break;
 609
 610	case SO_NO_CHECK:
 611		sk->sk_no_check = valbool;
 612		break;
 613
 614	case SO_PRIORITY:
 615		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
 
 616			sk->sk_priority = val;
 617		else
 618			ret = -EPERM;
 619		break;
 620
 621	case SO_LINGER:
 622		if (optlen < sizeof(ling)) {
 623			ret = -EINVAL;	/* 1003.1g */
 624			break;
 625		}
 626		if (copy_from_user(&ling, optval, sizeof(ling))) {
 627			ret = -EFAULT;
 628			break;
 629		}
 630		if (!ling.l_onoff)
 631			sock_reset_flag(sk, SOCK_LINGER);
 632		else {
 633#if (BITS_PER_LONG == 32)
 634			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
 635				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 636			else
 637#endif
 638				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
 639			sock_set_flag(sk, SOCK_LINGER);
 640		}
 641		break;
 642
 643	case SO_BSDCOMPAT:
 644		sock_warn_obsolete_bsdism("setsockopt");
 645		break;
 646
 647	case SO_PASSCRED:
 648		if (valbool)
 649			set_bit(SOCK_PASSCRED, &sock->flags);
 650		else
 651			clear_bit(SOCK_PASSCRED, &sock->flags);
 652		break;
 653
 654	case SO_TIMESTAMP:
 655	case SO_TIMESTAMPNS:
 656		if (valbool)  {
 657			if (optname == SO_TIMESTAMP)
 658				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 659			else
 660				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
 661			sock_set_flag(sk, SOCK_RCVTSTAMP);
 662			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 663		} else {
 664			sock_reset_flag(sk, SOCK_RCVTSTAMP);
 665			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 666		}
 667		break;
 668
 669	case SO_TIMESTAMPING:
 670		if (val & ~SOF_TIMESTAMPING_MASK) {
 671			ret = -EINVAL;
 672			break;
 673		}
 674		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
 675				  val & SOF_TIMESTAMPING_TX_HARDWARE);
 676		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
 677				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
 678		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
 679				  val & SOF_TIMESTAMPING_RX_HARDWARE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 680		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 681			sock_enable_timestamp(sk,
 682					      SOCK_TIMESTAMPING_RX_SOFTWARE);
 683		else
 684			sock_disable_timestamp(sk,
 685					       SOCK_TIMESTAMPING_RX_SOFTWARE);
 686		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
 687				  val & SOF_TIMESTAMPING_SOFTWARE);
 688		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
 689				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
 690		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
 691				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
 692		break;
 693
 694	case SO_RCVLOWAT:
 695		if (val < 0)
 696			val = INT_MAX;
 697		sk->sk_rcvlowat = val ? : 1;
 698		break;
 699
 700	case SO_RCVTIMEO:
 701		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
 702		break;
 703
 704	case SO_SNDTIMEO:
 705		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
 706		break;
 707
 708	case SO_ATTACH_FILTER:
 709		ret = -EINVAL;
 710		if (optlen == sizeof(struct sock_fprog)) {
 711			struct sock_fprog fprog;
 712
 713			ret = -EFAULT;
 714			if (copy_from_user(&fprog, optval, sizeof(fprog)))
 715				break;
 716
 717			ret = sk_attach_filter(&fprog, sk);
 718		}
 719		break;
 720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721	case SO_DETACH_FILTER:
 722		ret = sk_detach_filter(sk);
 723		break;
 724
 
 
 
 
 
 
 
 725	case SO_PASSSEC:
 726		if (valbool)
 727			set_bit(SOCK_PASSSEC, &sock->flags);
 728		else
 729			clear_bit(SOCK_PASSSEC, &sock->flags);
 730		break;
 731	case SO_MARK:
 732		if (!capable(CAP_NET_ADMIN))
 733			ret = -EPERM;
 734		else
 735			sk->sk_mark = val;
 736		break;
 737
 738		/* We implement the SO_SNDLOWAT etc to
 739		   not be settable (1003.1g 5.3) */
 740	case SO_RXQ_OVFL:
 741		if (valbool)
 742			sock_set_flag(sk, SOCK_RXQ_OVFL);
 
 
 
 
 
 
 
 
 743		else
 744			sock_reset_flag(sk, SOCK_RXQ_OVFL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 745		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 746	default:
 747		ret = -ENOPROTOOPT;
 748		break;
 749	}
 750	release_sock(sk);
 751	return ret;
 752}
 753EXPORT_SYMBOL(sock_setsockopt);
 754
 755
 756void cred_to_ucred(struct pid *pid, const struct cred *cred,
 757		   struct ucred *ucred)
 758{
 759	ucred->pid = pid_vnr(pid);
 760	ucred->uid = ucred->gid = -1;
 761	if (cred) {
 762		struct user_namespace *current_ns = current_user_ns();
 763
 764		ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
 765		ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
 766	}
 767}
 768EXPORT_SYMBOL_GPL(cred_to_ucred);
 
 
 
 
 
 
 
 
 
 
 
 769
 770int sock_getsockopt(struct socket *sock, int level, int optname,
 771		    char __user *optval, int __user *optlen)
 772{
 773	struct sock *sk = sock->sk;
 774
 775	union {
 776		int val;
 
 777		struct linger ling;
 778		struct timeval tm;
 779	} v;
 780
 781	int lv = sizeof(int);
 782	int len;
 783
 784	if (get_user(len, optlen))
 785		return -EFAULT;
 786	if (len < 0)
 787		return -EINVAL;
 788
 789	memset(&v, 0, sizeof(v));
 790
 791	switch (optname) {
 792	case SO_DEBUG:
 793		v.val = sock_flag(sk, SOCK_DBG);
 794		break;
 795
 796	case SO_DONTROUTE:
 797		v.val = sock_flag(sk, SOCK_LOCALROUTE);
 798		break;
 799
 800	case SO_BROADCAST:
 801		v.val = !!sock_flag(sk, SOCK_BROADCAST);
 802		break;
 803
 804	case SO_SNDBUF:
 805		v.val = sk->sk_sndbuf;
 806		break;
 807
 808	case SO_RCVBUF:
 809		v.val = sk->sk_rcvbuf;
 810		break;
 811
 812	case SO_REUSEADDR:
 813		v.val = sk->sk_reuse;
 814		break;
 815
 
 
 
 
 816	case SO_KEEPALIVE:
 817		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
 818		break;
 819
 820	case SO_TYPE:
 821		v.val = sk->sk_type;
 822		break;
 823
 824	case SO_PROTOCOL:
 825		v.val = sk->sk_protocol;
 826		break;
 827
 828	case SO_DOMAIN:
 829		v.val = sk->sk_family;
 830		break;
 831
 832	case SO_ERROR:
 833		v.val = -sock_error(sk);
 834		if (v.val == 0)
 835			v.val = xchg(&sk->sk_err_soft, 0);
 836		break;
 837
 838	case SO_OOBINLINE:
 839		v.val = !!sock_flag(sk, SOCK_URGINLINE);
 840		break;
 841
 842	case SO_NO_CHECK:
 843		v.val = sk->sk_no_check;
 844		break;
 845
 846	case SO_PRIORITY:
 847		v.val = sk->sk_priority;
 848		break;
 849
 850	case SO_LINGER:
 851		lv		= sizeof(v.ling);
 852		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
 853		v.ling.l_linger	= sk->sk_lingertime / HZ;
 854		break;
 855
 856	case SO_BSDCOMPAT:
 857		sock_warn_obsolete_bsdism("getsockopt");
 858		break;
 859
 860	case SO_TIMESTAMP:
 861		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
 862				!sock_flag(sk, SOCK_RCVTSTAMPNS);
 863		break;
 864
 865	case SO_TIMESTAMPNS:
 866		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
 867		break;
 868
 869	case SO_TIMESTAMPING:
 870		v.val = 0;
 871		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
 872			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
 873		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
 874			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
 875		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
 876			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
 877		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
 878			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
 879		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
 880			v.val |= SOF_TIMESTAMPING_SOFTWARE;
 881		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
 882			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
 883		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
 884			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
 885		break;
 886
 887	case SO_RCVTIMEO:
 888		lv = sizeof(struct timeval);
 889		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
 890			v.tm.tv_sec = 0;
 891			v.tm.tv_usec = 0;
 892		} else {
 893			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
 894			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
 895		}
 896		break;
 897
 898	case SO_SNDTIMEO:
 899		lv = sizeof(struct timeval);
 900		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
 901			v.tm.tv_sec = 0;
 902			v.tm.tv_usec = 0;
 903		} else {
 904			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
 905			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
 906		}
 907		break;
 908
 909	case SO_RCVLOWAT:
 910		v.val = sk->sk_rcvlowat;
 911		break;
 912
 913	case SO_SNDLOWAT:
 914		v.val = 1;
 915		break;
 916
 917	case SO_PASSCRED:
 918		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
 919		break;
 920
 921	case SO_PEERCRED:
 922	{
 923		struct ucred peercred;
 924		if (len > sizeof(peercred))
 925			len = sizeof(peercred);
 926		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
 927		if (copy_to_user(optval, &peercred, len))
 928			return -EFAULT;
 929		goto lenout;
 930	}
 931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 932	case SO_PEERNAME:
 933	{
 934		char address[128];
 935
 936		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
 
 937			return -ENOTCONN;
 938		if (lv < len)
 939			return -EINVAL;
 940		if (copy_to_user(optval, address, len))
 941			return -EFAULT;
 942		goto lenout;
 943	}
 944
 945	/* Dubious BSD thing... Probably nobody even uses it, but
 946	 * the UNIX standard wants it for whatever reason... -DaveM
 947	 */
 948	case SO_ACCEPTCONN:
 949		v.val = sk->sk_state == TCP_LISTEN;
 950		break;
 951
 952	case SO_PASSSEC:
 953		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
 954		break;
 955
 956	case SO_PEERSEC:
 957		return security_socket_getpeersec_stream(sock, optval, optlen, len);
 958
 959	case SO_MARK:
 960		v.val = sk->sk_mark;
 961		break;
 962
 963	case SO_RXQ_OVFL:
 964		v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 965		break;
 966
 967	default:
 
 
 
 968		return -ENOPROTOOPT;
 969	}
 970
 971	if (len > lv)
 972		len = lv;
 973	if (copy_to_user(optval, &v, len))
 974		return -EFAULT;
 975lenout:
 976	if (put_user(len, optlen))
 977		return -EFAULT;
 978	return 0;
 979}
 980
 981/*
 982 * Initialize an sk_lock.
 983 *
 984 * (We also register the sk_lock with the lock validator.)
 985 */
 986static inline void sock_lock_init(struct sock *sk)
 987{
 988	sock_lock_init_class_and_name(sk,
 
 
 
 
 
 
 
 
 
 989			af_family_slock_key_strings[sk->sk_family],
 990			af_family_slock_keys + sk->sk_family,
 991			af_family_key_strings[sk->sk_family],
 992			af_family_keys + sk->sk_family);
 993}
 994
 995/*
 996 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
 997 * even temporarly, because of RCU lookups. sk_node should also be left as is.
 998 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
 999 */
1000static void sock_copy(struct sock *nsk, const struct sock *osk)
1001{
1002#ifdef CONFIG_SECURITY_NETWORK
1003	void *sptr = nsk->sk_security;
1004#endif
1005	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1006
1007	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1008	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1009
1010#ifdef CONFIG_SECURITY_NETWORK
1011	nsk->sk_security = sptr;
1012	security_sk_clone(osk, nsk);
1013#endif
1014}
1015
1016/*
1017 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1018 * un-modified. Special care is taken when initializing object to zero.
1019 */
1020static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1021{
1022	if (offsetof(struct sock, sk_node.next) != 0)
1023		memset(sk, 0, offsetof(struct sock, sk_node.next));
1024	memset(&sk->sk_node.pprev, 0,
1025	       size - offsetof(struct sock, sk_node.pprev));
1026}
1027
1028void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1029{
1030	unsigned long nulls1, nulls2;
1031
1032	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1033	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1034	if (nulls1 > nulls2)
1035		swap(nulls1, nulls2);
1036
1037	if (nulls1 != 0)
1038		memset((char *)sk, 0, nulls1);
1039	memset((char *)sk + nulls1 + sizeof(void *), 0,
1040	       nulls2 - nulls1 - sizeof(void *));
1041	memset((char *)sk + nulls2 + sizeof(void *), 0,
1042	       size - nulls2 - sizeof(void *));
1043}
1044EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1045
1046static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1047		int family)
1048{
1049	struct sock *sk;
1050	struct kmem_cache *slab;
1051
1052	slab = prot->slab;
1053	if (slab != NULL) {
1054		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1055		if (!sk)
1056			return sk;
1057		if (priority & __GFP_ZERO) {
1058			if (prot->clear_sk)
1059				prot->clear_sk(sk, prot->obj_size);
1060			else
1061				sk_prot_clear_nulls(sk, prot->obj_size);
1062		}
1063	} else
1064		sk = kmalloc(prot->obj_size, priority);
1065
1066	if (sk != NULL) {
1067		kmemcheck_annotate_bitfield(sk, flags);
1068
1069		if (security_sk_alloc(sk, family, priority))
1070			goto out_free;
1071
1072		if (!try_module_get(prot->owner))
1073			goto out_free_sec;
1074		sk_tx_queue_clear(sk);
1075	}
1076
1077	return sk;
1078
1079out_free_sec:
1080	security_sk_free(sk);
1081out_free:
1082	if (slab != NULL)
1083		kmem_cache_free(slab, sk);
1084	else
1085		kfree(sk);
1086	return NULL;
1087}
1088
1089static void sk_prot_free(struct proto *prot, struct sock *sk)
1090{
1091	struct kmem_cache *slab;
1092	struct module *owner;
1093
1094	owner = prot->owner;
1095	slab = prot->slab;
1096
 
 
1097	security_sk_free(sk);
1098	if (slab != NULL)
1099		kmem_cache_free(slab, sk);
1100	else
1101		kfree(sk);
1102	module_put(owner);
1103}
1104
1105#ifdef CONFIG_CGROUPS
1106void sock_update_classid(struct sock *sk)
1107{
1108	u32 classid;
1109
1110	rcu_read_lock();  /* doing current task, which cannot vanish. */
1111	classid = task_cls_classid(current);
1112	rcu_read_unlock();
1113	if (classid && classid != sk->sk_classid)
1114		sk->sk_classid = classid;
1115}
1116EXPORT_SYMBOL(sock_update_classid);
1117#endif
1118
1119/**
1120 *	sk_alloc - All socket objects are allocated here
1121 *	@net: the applicable net namespace
1122 *	@family: protocol family
1123 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1124 *	@prot: struct proto associated with this new sock instance
 
1125 */
1126struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1127		      struct proto *prot)
1128{
1129	struct sock *sk;
1130
1131	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1132	if (sk) {
1133		sk->sk_family = family;
1134		/*
1135		 * See comment in struct sock definition to understand
1136		 * why we need sk_prot_creator -acme
1137		 */
1138		sk->sk_prot = sk->sk_prot_creator = prot;
 
1139		sock_lock_init(sk);
1140		sock_net_set(sk, get_net(net));
1141		atomic_set(&sk->sk_wmem_alloc, 1);
 
 
 
1142
1143		sock_update_classid(sk);
 
 
 
 
 
 
1144	}
1145
1146	return sk;
1147}
1148EXPORT_SYMBOL(sk_alloc);
1149
1150static void __sk_free(struct sock *sk)
 
 
 
1151{
 
1152	struct sk_filter *filter;
1153
1154	if (sk->sk_destruct)
1155		sk->sk_destruct(sk);
1156
1157	filter = rcu_dereference_check(sk->sk_filter,
1158				       atomic_read(&sk->sk_wmem_alloc) == 0);
1159	if (filter) {
1160		sk_filter_uncharge(sk, filter);
1161		rcu_assign_pointer(sk->sk_filter, NULL);
1162	}
 
 
1163
1164	sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1165	sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1166
1167	if (atomic_read(&sk->sk_omem_alloc))
1168		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1169		       __func__, atomic_read(&sk->sk_omem_alloc));
 
 
 
 
 
1170
1171	if (sk->sk_peer_cred)
1172		put_cred(sk->sk_peer_cred);
1173	put_pid(sk->sk_peer_pid);
1174	put_net(sock_net(sk));
 
1175	sk_prot_free(sk->sk_prot_creator, sk);
1176}
1177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178void sk_free(struct sock *sk)
1179{
1180	/*
1181	 * We subtract one from sk_wmem_alloc and can know if
1182	 * some packets are still in some tx queue.
1183	 * If not null, sock_wfree() will call __sk_free(sk) later
1184	 */
1185	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1186		__sk_free(sk);
1187}
1188EXPORT_SYMBOL(sk_free);
1189
1190/*
1191 * Last sock_put should drop reference to sk->sk_net. It has already
1192 * been dropped in sk_change_net. Taking reference to stopping namespace
1193 * is not an option.
1194 * Take reference to a socket to remove it from hash _alive_ and after that
1195 * destroy it in the context of init_net.
1196 */
1197void sk_release_kernel(struct sock *sk)
1198{
1199	if (sk == NULL || sk->sk_socket == NULL)
1200		return;
 
1201
1202	sock_hold(sk);
1203	sock_release(sk->sk_socket);
1204	release_net(sock_net(sk));
1205	sock_net_set(sk, get_net(&init_net));
1206	sock_put(sk);
 
 
 
 
 
 
 
 
1207}
1208EXPORT_SYMBOL(sk_release_kernel);
1209
1210struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
 
 
 
 
 
 
 
1211{
1212	struct sock *newsk;
 
1213
1214	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1215	if (newsk != NULL) {
1216		struct sk_filter *filter;
1217
1218		sock_copy(newsk, sk);
1219
 
 
1220		/* SANITY */
1221		get_net(sock_net(newsk));
 
1222		sk_node_init(&newsk->sk_node);
1223		sock_lock_init(newsk);
1224		bh_lock_sock(newsk);
1225		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1226		newsk->sk_backlog.len = 0;
1227
1228		atomic_set(&newsk->sk_rmem_alloc, 0);
1229		/*
1230		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1231		 */
1232		atomic_set(&newsk->sk_wmem_alloc, 1);
1233		atomic_set(&newsk->sk_omem_alloc, 0);
1234		skb_queue_head_init(&newsk->sk_receive_queue);
1235		skb_queue_head_init(&newsk->sk_write_queue);
1236#ifdef CONFIG_NET_DMA
1237		skb_queue_head_init(&newsk->sk_async_wait_queue);
1238#endif
1239
1240		spin_lock_init(&newsk->sk_dst_lock);
1241		rwlock_init(&newsk->sk_callback_lock);
1242		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1243				af_callback_keys + newsk->sk_family,
1244				af_family_clock_key_strings[newsk->sk_family]);
1245
1246		newsk->sk_dst_cache	= NULL;
 
1247		newsk->sk_wmem_queued	= 0;
1248		newsk->sk_forward_alloc = 0;
 
1249		newsk->sk_send_head	= NULL;
1250		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
 
1251
1252		sock_reset_flag(newsk, SOCK_DONE);
1253		skb_queue_head_init(&newsk->sk_error_queue);
 
1254
1255		filter = rcu_dereference_protected(newsk->sk_filter, 1);
 
1256		if (filter != NULL)
1257			sk_filter_charge(newsk, filter);
 
 
 
 
 
 
1258
1259		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1260			/* It is still raw copy of parent, so invalidate
1261			 * destructor and make plain sk_free() */
1262			newsk->sk_destruct = NULL;
1263			sk_free(newsk);
 
 
 
1264			newsk = NULL;
1265			goto out;
1266		}
 
1267
1268		newsk->sk_err	   = 0;
 
1269		newsk->sk_priority = 0;
 
 
 
 
 
1270		/*
1271		 * Before updating sk_refcnt, we must commit prior changes to memory
1272		 * (Documentation/RCU/rculist_nulls.txt for details)
1273		 */
1274		smp_wmb();
1275		atomic_set(&newsk->sk_refcnt, 2);
1276
1277		/*
1278		 * Increment the counter in the same struct proto as the master
1279		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1280		 * is the same as sk->sk_prot->socks, as this field was copied
1281		 * with memcpy).
1282		 *
1283		 * This _changes_ the previous behaviour, where
1284		 * tcp_create_openreq_child always was incrementing the
1285		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1286		 * to be taken into account in all callers. -acme
1287		 */
1288		sk_refcnt_debug_inc(newsk);
1289		sk_set_socket(newsk, NULL);
1290		newsk->sk_wq = NULL;
1291
1292		if (newsk->sk_prot->sockets_allocated)
1293			percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1294
1295		if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1296		    sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1297			net_enable_timestamp();
1298	}
1299out:
1300	return newsk;
1301}
1302EXPORT_SYMBOL_GPL(sk_clone);
 
 
 
 
 
 
 
 
 
 
1303
1304void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1305{
1306	__sk_dst_set(sk, dst);
1307	sk->sk_route_caps = dst->dev->features;
 
 
1308	if (sk->sk_route_caps & NETIF_F_GSO)
1309		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1310	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1311	if (sk_can_gso(sk)) {
1312		if (dst->header_len) {
1313			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1314		} else {
1315			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1316			sk->sk_gso_max_size = dst->dev->gso_max_size;
 
1317		}
1318	}
 
1319}
1320EXPORT_SYMBOL_GPL(sk_setup_caps);
1321
1322void __init sk_init(void)
1323{
1324	if (totalram_pages <= 4096) {
1325		sysctl_wmem_max = 32767;
1326		sysctl_rmem_max = 32767;
1327		sysctl_wmem_default = 32767;
1328		sysctl_rmem_default = 32767;
1329	} else if (totalram_pages >= 131072) {
1330		sysctl_wmem_max = 131071;
1331		sysctl_rmem_max = 131071;
1332	}
1333}
1334
1335/*
1336 *	Simple resource managers for sockets.
1337 */
1338
1339
1340/*
1341 * Write buffer destructor automatically called from kfree_skb.
1342 */
1343void sock_wfree(struct sk_buff *skb)
1344{
1345	struct sock *sk = skb->sk;
1346	unsigned int len = skb->truesize;
1347
1348	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1349		/*
1350		 * Keep a reference on sk_wmem_alloc, this will be released
1351		 * after sk_write_space() call
1352		 */
1353		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1354		sk->sk_write_space(sk);
1355		len = 1;
1356	}
1357	/*
1358	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1359	 * could not do because of in-flight packets
1360	 */
1361	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1362		__sk_free(sk);
1363}
1364EXPORT_SYMBOL(sock_wfree);
1365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1366/*
1367 * Read buffer destructor automatically called from kfree_skb.
1368 */
1369void sock_rfree(struct sk_buff *skb)
1370{
1371	struct sock *sk = skb->sk;
1372	unsigned int len = skb->truesize;
1373
1374	atomic_sub(len, &sk->sk_rmem_alloc);
1375	sk_mem_uncharge(sk, len);
1376}
1377EXPORT_SYMBOL(sock_rfree);
1378
 
 
 
 
 
 
 
 
 
1379
1380int sock_i_uid(struct sock *sk)
1381{
1382	int uid;
1383
1384	read_lock_bh(&sk->sk_callback_lock);
1385	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1386	read_unlock_bh(&sk->sk_callback_lock);
1387	return uid;
1388}
1389EXPORT_SYMBOL(sock_i_uid);
1390
1391unsigned long sock_i_ino(struct sock *sk)
1392{
1393	unsigned long ino;
1394
1395	read_lock_bh(&sk->sk_callback_lock);
1396	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1397	read_unlock_bh(&sk->sk_callback_lock);
1398	return ino;
1399}
1400EXPORT_SYMBOL(sock_i_ino);
1401
1402/*
1403 * Allocate a skb from the socket's send buffer.
1404 */
1405struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1406			     gfp_t priority)
1407{
1408	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1409		struct sk_buff *skb = alloc_skb(size, priority);
1410		if (skb) {
1411			skb_set_owner_w(skb, sk);
1412			return skb;
1413		}
1414	}
1415	return NULL;
1416}
1417EXPORT_SYMBOL(sock_wmalloc);
1418
1419/*
1420 * Allocate a skb from the socket's receive buffer.
1421 */
1422struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
 
 
 
 
1423			     gfp_t priority)
1424{
1425	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1426		struct sk_buff *skb = alloc_skb(size, priority);
1427		if (skb) {
1428			skb_set_owner_r(skb, sk);
1429			return skb;
1430		}
1431	}
1432	return NULL;
 
 
 
 
 
 
 
1433}
1434
1435/*
1436 * Allocate a memory block from the socket's option memory buffer.
1437 */
1438void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1439{
1440	if ((unsigned)size <= sysctl_optmem_max &&
1441	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1442		void *mem;
1443		/* First do the add, to avoid the race if kmalloc
1444		 * might sleep.
1445		 */
1446		atomic_add(size, &sk->sk_omem_alloc);
1447		mem = kmalloc(size, priority);
1448		if (mem)
1449			return mem;
1450		atomic_sub(size, &sk->sk_omem_alloc);
1451	}
1452	return NULL;
1453}
1454EXPORT_SYMBOL(sock_kmalloc);
1455
1456/*
1457 * Free an option memory block.
 
1458 */
1459void sock_kfree_s(struct sock *sk, void *mem, int size)
 
1460{
1461	kfree(mem);
 
 
 
 
 
1462	atomic_sub(size, &sk->sk_omem_alloc);
1463}
 
 
 
 
 
1464EXPORT_SYMBOL(sock_kfree_s);
1465
 
 
 
 
 
 
1466/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1467   I think, these locks should be removed for datagram sockets.
1468 */
1469static long sock_wait_for_wmem(struct sock *sk, long timeo)
1470{
1471	DEFINE_WAIT(wait);
1472
1473	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1474	for (;;) {
1475		if (!timeo)
1476			break;
1477		if (signal_pending(current))
1478			break;
1479		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1480		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1481		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1482			break;
1483		if (sk->sk_shutdown & SEND_SHUTDOWN)
1484			break;
1485		if (sk->sk_err)
1486			break;
1487		timeo = schedule_timeout(timeo);
1488	}
1489	finish_wait(sk_sleep(sk), &wait);
1490	return timeo;
1491}
1492
1493
1494/*
1495 *	Generic send/receive buffer handlers
1496 */
1497
1498struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1499				     unsigned long data_len, int noblock,
1500				     int *errcode)
1501{
1502	struct sk_buff *skb;
1503	gfp_t gfp_mask;
1504	long timeo;
1505	int err;
1506
1507	gfp_mask = sk->sk_allocation;
1508	if (gfp_mask & __GFP_WAIT)
1509		gfp_mask |= __GFP_REPEAT;
1510
1511	timeo = sock_sndtimeo(sk, noblock);
1512	while (1) {
1513		err = sock_error(sk);
1514		if (err != 0)
1515			goto failure;
1516
1517		err = -EPIPE;
1518		if (sk->sk_shutdown & SEND_SHUTDOWN)
1519			goto failure;
1520
1521		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1522			skb = alloc_skb(header_len, gfp_mask);
1523			if (skb) {
1524				int npages;
1525				int i;
1526
1527				/* No pages, we're done... */
1528				if (!data_len)
1529					break;
1530
1531				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1532				skb->truesize += data_len;
1533				skb_shinfo(skb)->nr_frags = npages;
1534				for (i = 0; i < npages; i++) {
1535					struct page *page;
1536					skb_frag_t *frag;
1537
1538					page = alloc_pages(sk->sk_allocation, 0);
1539					if (!page) {
1540						err = -ENOBUFS;
1541						skb_shinfo(skb)->nr_frags = i;
1542						kfree_skb(skb);
1543						goto failure;
1544					}
1545
1546					frag = &skb_shinfo(skb)->frags[i];
1547					frag->page = page;
1548					frag->page_offset = 0;
1549					frag->size = (data_len >= PAGE_SIZE ?
1550						      PAGE_SIZE :
1551						      data_len);
1552					data_len -= PAGE_SIZE;
1553				}
1554
1555				/* Full success... */
1556				break;
1557			}
1558			err = -ENOBUFS;
1559			goto failure;
1560		}
1561		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1562		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1563		err = -EAGAIN;
1564		if (!timeo)
1565			goto failure;
1566		if (signal_pending(current))
1567			goto interrupted;
1568		timeo = sock_wait_for_wmem(sk, timeo);
1569	}
1570
1571	skb_set_owner_w(skb, sk);
 
 
1572	return skb;
1573
1574interrupted:
1575	err = sock_intr_errno(timeo);
1576failure:
1577	*errcode = err;
1578	return NULL;
1579}
1580EXPORT_SYMBOL(sock_alloc_send_pskb);
1581
1582struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1583				    int noblock, int *errcode)
1584{
1585	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1586}
1587EXPORT_SYMBOL(sock_alloc_send_skb);
1588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1589static void __lock_sock(struct sock *sk)
1590	__releases(&sk->sk_lock.slock)
1591	__acquires(&sk->sk_lock.slock)
1592{
1593	DEFINE_WAIT(wait);
1594
1595	for (;;) {
1596		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1597					TASK_UNINTERRUPTIBLE);
1598		spin_unlock_bh(&sk->sk_lock.slock);
1599		schedule();
1600		spin_lock_bh(&sk->sk_lock.slock);
1601		if (!sock_owned_by_user(sk))
1602			break;
1603	}
1604	finish_wait(&sk->sk_lock.wq, &wait);
1605}
1606
1607static void __release_sock(struct sock *sk)
1608	__releases(&sk->sk_lock.slock)
1609	__acquires(&sk->sk_lock.slock)
1610{
1611	struct sk_buff *skb = sk->sk_backlog.head;
1612
1613	do {
1614		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1615		bh_unlock_sock(sk);
1616
1617		do {
1618			struct sk_buff *next = skb->next;
1619
 
 
 
1620			WARN_ON_ONCE(skb_dst_is_noref(skb));
1621			skb->next = NULL;
1622			sk_backlog_rcv(sk, skb);
1623
1624			/*
1625			 * We are in process context here with softirqs
1626			 * disabled, use cond_resched_softirq() to preempt.
1627			 * This is safe to do because we've taken the backlog
1628			 * queue private:
1629			 */
1630			cond_resched_softirq();
1631
1632			skb = next;
1633		} while (skb != NULL);
1634
1635		bh_lock_sock(sk);
1636	} while ((skb = sk->sk_backlog.head) != NULL);
1637
1638	/*
1639	 * Doing the zeroing here guarantee we can not loop forever
1640	 * while a wild producer attempts to flood us.
1641	 */
1642	sk->sk_backlog.len = 0;
1643}
1644
 
 
 
 
 
 
 
1645/**
1646 * sk_wait_data - wait for data to arrive at sk_receive_queue
1647 * @sk:    sock to wait on
1648 * @timeo: for how long
 
1649 *
1650 * Now socket state including sk->sk_err is changed only under lock,
1651 * hence we may omit checks after joining wait queue.
1652 * We check receive queue before schedule() only as optimization;
1653 * it is very likely that release_sock() added new data.
1654 */
1655int sk_wait_data(struct sock *sk, long *timeo)
1656{
 
1657	int rc;
1658	DEFINE_WAIT(wait);
1659
1660	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1661	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1662	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1663	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1664	finish_wait(sk_sleep(sk), &wait);
1665	return rc;
1666}
1667EXPORT_SYMBOL(sk_wait_data);
1668
1669/**
1670 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1671 *	@sk: socket
1672 *	@size: memory size to allocate
 
1673 *	@kind: allocation type
1674 *
1675 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1676 *	rmem allocation. This function assumes that protocols which have
1677 *	memory_pressure use sk_wmem_queued as write buffer accounting.
1678 */
1679int __sk_mem_schedule(struct sock *sk, int size, int kind)
1680{
1681	struct proto *prot = sk->sk_prot;
1682	int amt = sk_mem_pages(size);
1683	long allocated;
1684
1685	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1686	allocated = atomic_long_add_return(amt, prot->memory_allocated);
 
1687
1688	/* Under limit. */
1689	if (allocated <= prot->sysctl_mem[0]) {
1690		if (prot->memory_pressure && *prot->memory_pressure)
1691			*prot->memory_pressure = 0;
1692		return 1;
1693	}
1694
1695	/* Under pressure. */
1696	if (allocated > prot->sysctl_mem[1])
1697		if (prot->enter_memory_pressure)
1698			prot->enter_memory_pressure(sk);
1699
1700	/* Over hard limit. */
1701	if (allocated > prot->sysctl_mem[2])
1702		goto suppress_allocation;
1703
1704	/* guarantee minimum buffer size under pressure */
1705	if (kind == SK_MEM_RECV) {
1706		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1707			return 1;
 
1708	} else { /* SK_MEM_SEND */
 
 
1709		if (sk->sk_type == SOCK_STREAM) {
1710			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1711				return 1;
1712		} else if (atomic_read(&sk->sk_wmem_alloc) <
1713			   prot->sysctl_wmem[0])
1714				return 1;
 
1715	}
1716
1717	if (prot->memory_pressure) {
1718		int alloc;
1719
1720		if (!*prot->memory_pressure)
1721			return 1;
1722		alloc = percpu_counter_read_positive(prot->sockets_allocated);
1723		if (prot->sysctl_mem[2] > alloc *
1724		    sk_mem_pages(sk->sk_wmem_queued +
1725				 atomic_read(&sk->sk_rmem_alloc) +
1726				 sk->sk_forward_alloc))
1727			return 1;
1728	}
1729
1730suppress_allocation:
1731
1732	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1733		sk_stream_moderate_sndbuf(sk);
1734
1735		/* Fail only if socket is _under_ its sndbuf.
1736		 * In this case we cannot block, so that we have to fail.
1737		 */
1738		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1739			return 1;
1740	}
1741
1742	trace_sock_exceed_buf_limit(sk, prot, allocated);
1743
1744	/* Alas. Undo changes. */
1745	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1746	atomic_long_sub(amt, prot->memory_allocated);
 
 
1747	return 0;
1748}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1749EXPORT_SYMBOL(__sk_mem_schedule);
1750
1751/**
1752 *	__sk_reclaim - reclaim memory_allocated
1753 *	@sk: socket
 
 
 
1754 */
1755void __sk_mem_reclaim(struct sock *sk)
1756{
1757	struct proto *prot = sk->sk_prot;
1758
1759	atomic_long_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1760		   prot->memory_allocated);
1761	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1762
1763	if (prot->memory_pressure && *prot->memory_pressure &&
1764	    (atomic_long_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1765		*prot->memory_pressure = 0;
 
 
 
 
 
 
 
 
 
 
 
 
1766}
1767EXPORT_SYMBOL(__sk_mem_reclaim);
1768
 
 
 
 
 
 
1769
1770/*
1771 * Set of default routines for initialising struct proto_ops when
1772 * the protocol does not support a particular function. In certain
1773 * cases where it makes no sense for a protocol to have a "do nothing"
1774 * function, some default processing is provided.
1775 */
1776
1777int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1778{
1779	return -EOPNOTSUPP;
1780}
1781EXPORT_SYMBOL(sock_no_bind);
1782
1783int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1784		    int len, int flags)
1785{
1786	return -EOPNOTSUPP;
1787}
1788EXPORT_SYMBOL(sock_no_connect);
1789
1790int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1791{
1792	return -EOPNOTSUPP;
1793}
1794EXPORT_SYMBOL(sock_no_socketpair);
1795
1796int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
 
1797{
1798	return -EOPNOTSUPP;
1799}
1800EXPORT_SYMBOL(sock_no_accept);
1801
1802int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1803		    int *len, int peer)
1804{
1805	return -EOPNOTSUPP;
1806}
1807EXPORT_SYMBOL(sock_no_getname);
1808
1809unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1810{
1811	return 0;
1812}
1813EXPORT_SYMBOL(sock_no_poll);
1814
1815int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1816{
1817	return -EOPNOTSUPP;
1818}
1819EXPORT_SYMBOL(sock_no_ioctl);
1820
1821int sock_no_listen(struct socket *sock, int backlog)
1822{
1823	return -EOPNOTSUPP;
1824}
1825EXPORT_SYMBOL(sock_no_listen);
1826
1827int sock_no_shutdown(struct socket *sock, int how)
1828{
1829	return -EOPNOTSUPP;
1830}
1831EXPORT_SYMBOL(sock_no_shutdown);
1832
1833int sock_no_setsockopt(struct socket *sock, int level, int optname,
1834		    char __user *optval, unsigned int optlen)
1835{
1836	return -EOPNOTSUPP;
1837}
1838EXPORT_SYMBOL(sock_no_setsockopt);
1839
1840int sock_no_getsockopt(struct socket *sock, int level, int optname,
1841		    char __user *optval, int __user *optlen)
1842{
1843	return -EOPNOTSUPP;
1844}
1845EXPORT_SYMBOL(sock_no_getsockopt);
1846
1847int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1848		    size_t len)
1849{
1850	return -EOPNOTSUPP;
1851}
1852EXPORT_SYMBOL(sock_no_sendmsg);
1853
1854int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1855		    size_t len, int flags)
 
 
 
 
 
 
1856{
1857	return -EOPNOTSUPP;
1858}
1859EXPORT_SYMBOL(sock_no_recvmsg);
1860
1861int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1862{
1863	/* Mirror missing mmap method error code */
1864	return -ENODEV;
1865}
1866EXPORT_SYMBOL(sock_no_mmap);
1867
1868ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1869{
1870	ssize_t res;
1871	struct msghdr msg = {.msg_flags = flags};
1872	struct kvec iov;
1873	char *kaddr = kmap(page);
1874	iov.iov_base = kaddr + offset;
1875	iov.iov_len = size;
1876	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1877	kunmap(page);
1878	return res;
1879}
1880EXPORT_SYMBOL(sock_no_sendpage);
1881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1882/*
1883 *	Default Socket Callbacks
1884 */
1885
1886static void sock_def_wakeup(struct sock *sk)
1887{
1888	struct socket_wq *wq;
1889
1890	rcu_read_lock();
1891	wq = rcu_dereference(sk->sk_wq);
1892	if (wq_has_sleeper(wq))
1893		wake_up_interruptible_all(&wq->wait);
1894	rcu_read_unlock();
1895}
1896
1897static void sock_def_error_report(struct sock *sk)
1898{
1899	struct socket_wq *wq;
1900
1901	rcu_read_lock();
1902	wq = rcu_dereference(sk->sk_wq);
1903	if (wq_has_sleeper(wq))
1904		wake_up_interruptible_poll(&wq->wait, POLLERR);
1905	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1906	rcu_read_unlock();
1907}
1908
1909static void sock_def_readable(struct sock *sk, int len)
1910{
1911	struct socket_wq *wq;
1912
1913	rcu_read_lock();
1914	wq = rcu_dereference(sk->sk_wq);
1915	if (wq_has_sleeper(wq))
1916		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
1917						POLLRDNORM | POLLRDBAND);
1918	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1919	rcu_read_unlock();
1920}
1921
1922static void sock_def_write_space(struct sock *sk)
1923{
1924	struct socket_wq *wq;
1925
1926	rcu_read_lock();
1927
1928	/* Do not wake up a writer until he can make "significant"
1929	 * progress.  --DaveM
1930	 */
1931	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1932		wq = rcu_dereference(sk->sk_wq);
1933		if (wq_has_sleeper(wq))
1934			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1935						POLLWRNORM | POLLWRBAND);
1936
1937		/* Should agree with poll, otherwise some programs break */
1938		if (sock_writeable(sk))
1939			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1940	}
1941
1942	rcu_read_unlock();
1943}
1944
1945static void sock_def_destruct(struct sock *sk)
1946{
1947	kfree(sk->sk_protinfo);
1948}
1949
1950void sk_send_sigurg(struct sock *sk)
1951{
1952	if (sk->sk_socket && sk->sk_socket->file)
1953		if (send_sigurg(&sk->sk_socket->file->f_owner))
1954			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1955}
1956EXPORT_SYMBOL(sk_send_sigurg);
1957
1958void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1959		    unsigned long expires)
1960{
1961	if (!mod_timer(timer, expires))
1962		sock_hold(sk);
1963}
1964EXPORT_SYMBOL(sk_reset_timer);
1965
1966void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1967{
1968	if (timer_pending(timer) && del_timer(timer))
1969		__sock_put(sk);
1970}
1971EXPORT_SYMBOL(sk_stop_timer);
1972
1973void sock_init_data(struct socket *sock, struct sock *sk)
1974{
1975	skb_queue_head_init(&sk->sk_receive_queue);
1976	skb_queue_head_init(&sk->sk_write_queue);
1977	skb_queue_head_init(&sk->sk_error_queue);
1978#ifdef CONFIG_NET_DMA
1979	skb_queue_head_init(&sk->sk_async_wait_queue);
1980#endif
1981
1982	sk->sk_send_head	=	NULL;
1983
1984	init_timer(&sk->sk_timer);
1985
1986	sk->sk_allocation	=	GFP_KERNEL;
1987	sk->sk_rcvbuf		=	sysctl_rmem_default;
1988	sk->sk_sndbuf		=	sysctl_wmem_default;
1989	sk->sk_state		=	TCP_CLOSE;
1990	sk_set_socket(sk, sock);
1991
1992	sock_set_flag(sk, SOCK_ZAPPED);
1993
1994	if (sock) {
1995		sk->sk_type	=	sock->type;
1996		sk->sk_wq	=	sock->wq;
1997		sock->sk	=	sk;
1998	} else
 
1999		sk->sk_wq	=	NULL;
 
 
2000
2001	spin_lock_init(&sk->sk_dst_lock);
2002	rwlock_init(&sk->sk_callback_lock);
2003	lockdep_set_class_and_name(&sk->sk_callback_lock,
 
 
 
 
 
 
 
2004			af_callback_keys + sk->sk_family,
2005			af_family_clock_key_strings[sk->sk_family]);
2006
2007	sk->sk_state_change	=	sock_def_wakeup;
2008	sk->sk_data_ready	=	sock_def_readable;
2009	sk->sk_write_space	=	sock_def_write_space;
2010	sk->sk_error_report	=	sock_def_error_report;
2011	sk->sk_destruct		=	sock_def_destruct;
2012
2013	sk->sk_sndmsg_page	=	NULL;
2014	sk->sk_sndmsg_off	=	0;
 
2015
2016	sk->sk_peer_pid 	=	NULL;
2017	sk->sk_peer_cred	=	NULL;
2018	sk->sk_write_pending	=	0;
2019	sk->sk_rcvlowat		=	1;
2020	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2021	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2022
2023	sk->sk_stamp = ktime_set(-1L, 0);
 
 
 
 
 
 
2024
 
 
 
 
2025	/*
2026	 * Before updating sk_refcnt, we must commit prior changes to memory
2027	 * (Documentation/RCU/rculist_nulls.txt for details)
2028	 */
2029	smp_wmb();
2030	atomic_set(&sk->sk_refcnt, 1);
2031	atomic_set(&sk->sk_drops, 0);
2032}
2033EXPORT_SYMBOL(sock_init_data);
2034
2035void lock_sock_nested(struct sock *sk, int subclass)
2036{
2037	might_sleep();
2038	spin_lock_bh(&sk->sk_lock.slock);
2039	if (sk->sk_lock.owned)
2040		__lock_sock(sk);
2041	sk->sk_lock.owned = 1;
2042	spin_unlock(&sk->sk_lock.slock);
2043	/*
2044	 * The sk_lock has mutex_lock() semantics here:
2045	 */
2046	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2047	local_bh_enable();
2048}
2049EXPORT_SYMBOL(lock_sock_nested);
2050
2051void release_sock(struct sock *sk)
2052{
2053	/*
2054	 * The sk_lock has mutex_unlock() semantics:
2055	 */
2056	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2057
2058	spin_lock_bh(&sk->sk_lock.slock);
2059	if (sk->sk_backlog.tail)
2060		__release_sock(sk);
2061	sk->sk_lock.owned = 0;
 
 
 
 
 
 
 
2062	if (waitqueue_active(&sk->sk_lock.wq))
2063		wake_up(&sk->sk_lock.wq);
2064	spin_unlock_bh(&sk->sk_lock.slock);
2065}
2066EXPORT_SYMBOL(release_sock);
2067
2068/**
2069 * lock_sock_fast - fast version of lock_sock
2070 * @sk: socket
2071 *
2072 * This version should be used for very small section, where process wont block
2073 * return false if fast path is taken
 
2074 *   sk_lock.slock locked, owned = 0, BH disabled
2075 * return true if slow path is taken
 
 
2076 *   sk_lock.slock unlocked, owned = 1, BH enabled
2077 */
2078bool lock_sock_fast(struct sock *sk)
2079{
2080	might_sleep();
2081	spin_lock_bh(&sk->sk_lock.slock);
2082
2083	if (!sk->sk_lock.owned)
2084		/*
2085		 * Note : We must disable BH
2086		 */
2087		return false;
2088
2089	__lock_sock(sk);
2090	sk->sk_lock.owned = 1;
2091	spin_unlock(&sk->sk_lock.slock);
2092	/*
2093	 * The sk_lock has mutex_lock() semantics here:
2094	 */
2095	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2096	local_bh_enable();
2097	return true;
2098}
2099EXPORT_SYMBOL(lock_sock_fast);
2100
2101int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2102{
2103	struct timeval tv;
2104	if (!sock_flag(sk, SOCK_TIMESTAMP))
2105		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2106	tv = ktime_to_timeval(sk->sk_stamp);
2107	if (tv.tv_sec == -1)
2108		return -ENOENT;
2109	if (tv.tv_sec == 0) {
2110		sk->sk_stamp = ktime_get_real();
2111		tv = ktime_to_timeval(sk->sk_stamp);
2112	}
2113	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2114}
2115EXPORT_SYMBOL(sock_get_timestamp);
2116
2117int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2118{
2119	struct timespec ts;
2120	if (!sock_flag(sk, SOCK_TIMESTAMP))
2121		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2122	ts = ktime_to_timespec(sk->sk_stamp);
2123	if (ts.tv_sec == -1)
2124		return -ENOENT;
2125	if (ts.tv_sec == 0) {
2126		sk->sk_stamp = ktime_get_real();
2127		ts = ktime_to_timespec(sk->sk_stamp);
2128	}
2129	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2130}
2131EXPORT_SYMBOL(sock_get_timestampns);
2132
2133void sock_enable_timestamp(struct sock *sk, int flag)
2134{
2135	if (!sock_flag(sk, flag)) {
 
 
2136		sock_set_flag(sk, flag);
2137		/*
2138		 * we just set one of the two flags which require net
2139		 * time stamping, but time stamping might have been on
2140		 * already because of the other one
2141		 */
2142		if (!sock_flag(sk,
2143				flag == SOCK_TIMESTAMP ?
2144				SOCK_TIMESTAMPING_RX_SOFTWARE :
2145				SOCK_TIMESTAMP))
2146			net_enable_timestamp();
2147	}
2148}
2149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2150/*
2151 *	Get a socket option on an socket.
2152 *
2153 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2154 *	asynchronous errors should be reported by getsockopt. We assume
2155 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2156 */
2157int sock_common_getsockopt(struct socket *sock, int level, int optname,
2158			   char __user *optval, int __user *optlen)
2159{
2160	struct sock *sk = sock->sk;
2161
2162	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2163}
2164EXPORT_SYMBOL(sock_common_getsockopt);
2165
2166#ifdef CONFIG_COMPAT
2167int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2168				  char __user *optval, int __user *optlen)
2169{
2170	struct sock *sk = sock->sk;
2171
2172	if (sk->sk_prot->compat_getsockopt != NULL)
2173		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2174						      optval, optlen);
2175	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2176}
2177EXPORT_SYMBOL(compat_sock_common_getsockopt);
2178#endif
2179
2180int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2181			struct msghdr *msg, size_t size, int flags)
2182{
2183	struct sock *sk = sock->sk;
2184	int addr_len = 0;
2185	int err;
2186
2187	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2188				   flags & ~MSG_DONTWAIT, &addr_len);
2189	if (err >= 0)
2190		msg->msg_namelen = addr_len;
2191	return err;
2192}
2193EXPORT_SYMBOL(sock_common_recvmsg);
2194
2195/*
2196 *	Set socket options on an inet socket.
2197 */
2198int sock_common_setsockopt(struct socket *sock, int level, int optname,
2199			   char __user *optval, unsigned int optlen)
2200{
2201	struct sock *sk = sock->sk;
2202
2203	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2204}
2205EXPORT_SYMBOL(sock_common_setsockopt);
2206
2207#ifdef CONFIG_COMPAT
2208int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2209				  char __user *optval, unsigned int optlen)
2210{
2211	struct sock *sk = sock->sk;
2212
2213	if (sk->sk_prot->compat_setsockopt != NULL)
2214		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2215						      optval, optlen);
2216	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2217}
2218EXPORT_SYMBOL(compat_sock_common_setsockopt);
2219#endif
2220
2221void sk_common_release(struct sock *sk)
2222{
2223	if (sk->sk_prot->destroy)
2224		sk->sk_prot->destroy(sk);
2225
2226	/*
2227	 * Observation: when sock_common_release is called, processes have
2228	 * no access to socket. But net still has.
2229	 * Step one, detach it from networking:
2230	 *
2231	 * A. Remove from hash tables.
2232	 */
2233
2234	sk->sk_prot->unhash(sk);
2235
2236	/*
2237	 * In this point socket cannot receive new packets, but it is possible
2238	 * that some packets are in flight because some CPU runs receiver and
2239	 * did hash table lookup before we unhashed socket. They will achieve
2240	 * receive queue and will be purged by socket destructor.
2241	 *
2242	 * Also we still have packets pending on receive queue and probably,
2243	 * our own packets waiting in device queues. sock_destroy will drain
2244	 * receive queue, but transmitted packets will delay socket destruction
2245	 * until the last reference will be released.
2246	 */
2247
2248	sock_orphan(sk);
2249
2250	xfrm_sk_free_policy(sk);
2251
2252	sk_refcnt_debug_release(sk);
 
2253	sock_put(sk);
2254}
2255EXPORT_SYMBOL(sk_common_release);
2256
2257static DEFINE_RWLOCK(proto_list_lock);
2258static LIST_HEAD(proto_list);
 
 
 
 
 
 
 
 
 
 
 
 
2259
2260#ifdef CONFIG_PROC_FS
2261#define PROTO_INUSE_NR	64	/* should be enough for the first time */
2262struct prot_inuse {
2263	int val[PROTO_INUSE_NR];
2264};
2265
2266static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2267
2268#ifdef CONFIG_NET_NS
2269void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2270{
2271	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2272}
2273EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2274
2275int sock_prot_inuse_get(struct net *net, struct proto *prot)
2276{
2277	int cpu, idx = prot->inuse_idx;
2278	int res = 0;
2279
2280	for_each_possible_cpu(cpu)
2281		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2282
2283	return res >= 0 ? res : 0;
2284}
2285EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2287static int __net_init sock_inuse_init_net(struct net *net)
2288{
2289	net->core.inuse = alloc_percpu(struct prot_inuse);
2290	return net->core.inuse ? 0 : -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
2291}
2292
2293static void __net_exit sock_inuse_exit_net(struct net *net)
2294{
2295	free_percpu(net->core.inuse);
 
2296}
2297
2298static struct pernet_operations net_inuse_ops = {
2299	.init = sock_inuse_init_net,
2300	.exit = sock_inuse_exit_net,
2301};
2302
2303static __init int net_inuse_init(void)
2304{
2305	if (register_pernet_subsys(&net_inuse_ops))
2306		panic("Cannot initialize net inuse counters");
2307
2308	return 0;
2309}
2310
2311core_initcall(net_inuse_init);
2312#else
2313static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2314
2315void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2316{
2317	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2318}
2319EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2320
2321int sock_prot_inuse_get(struct net *net, struct proto *prot)
2322{
2323	int cpu, idx = prot->inuse_idx;
2324	int res = 0;
2325
2326	for_each_possible_cpu(cpu)
2327		res += per_cpu(prot_inuse, cpu).val[idx];
2328
2329	return res >= 0 ? res : 0;
2330}
2331EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2332#endif
2333
2334static void assign_proto_idx(struct proto *prot)
2335{
2336	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2337
2338	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2339		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2340		return;
2341	}
2342
2343	set_bit(prot->inuse_idx, proto_inuse_idx);
2344}
2345
2346static void release_proto_idx(struct proto *prot)
2347{
2348	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2349		clear_bit(prot->inuse_idx, proto_inuse_idx);
2350}
2351#else
2352static inline void assign_proto_idx(struct proto *prot)
2353{
2354}
2355
2356static inline void release_proto_idx(struct proto *prot)
2357{
2358}
 
 
 
 
2359#endif
2360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2361int proto_register(struct proto *prot, int alloc_slab)
2362{
2363	if (alloc_slab) {
2364		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
 
2365					SLAB_HWCACHE_ALIGN | prot->slab_flags,
 
2366					NULL);
2367
2368		if (prot->slab == NULL) {
2369			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2370			       prot->name);
2371			goto out;
2372		}
2373
2374		if (prot->rsk_prot != NULL) {
2375			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2376			if (prot->rsk_prot->slab_name == NULL)
2377				goto out_free_sock_slab;
2378
2379			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2380								 prot->rsk_prot->obj_size, 0,
2381								 SLAB_HWCACHE_ALIGN, NULL);
2382
2383			if (prot->rsk_prot->slab == NULL) {
2384				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2385				       prot->name);
2386				goto out_free_request_sock_slab_name;
2387			}
2388		}
2389
2390		if (prot->twsk_prot != NULL) {
2391			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2392
2393			if (prot->twsk_prot->twsk_slab_name == NULL)
2394				goto out_free_request_sock_slab;
2395
2396			prot->twsk_prot->twsk_slab =
2397				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2398						  prot->twsk_prot->twsk_obj_size,
2399						  0,
2400						  SLAB_HWCACHE_ALIGN |
2401							prot->slab_flags,
2402						  NULL);
2403			if (prot->twsk_prot->twsk_slab == NULL)
2404				goto out_free_timewait_sock_slab_name;
2405		}
2406	}
2407
2408	write_lock(&proto_list_lock);
2409	list_add(&prot->node, &proto_list);
2410	assign_proto_idx(prot);
2411	write_unlock(&proto_list_lock);
2412	return 0;
2413
2414out_free_timewait_sock_slab_name:
2415	kfree(prot->twsk_prot->twsk_slab_name);
2416out_free_request_sock_slab:
2417	if (prot->rsk_prot && prot->rsk_prot->slab) {
2418		kmem_cache_destroy(prot->rsk_prot->slab);
2419		prot->rsk_prot->slab = NULL;
2420	}
2421out_free_request_sock_slab_name:
2422	if (prot->rsk_prot)
2423		kfree(prot->rsk_prot->slab_name);
2424out_free_sock_slab:
2425	kmem_cache_destroy(prot->slab);
2426	prot->slab = NULL;
2427out:
2428	return -ENOBUFS;
2429}
2430EXPORT_SYMBOL(proto_register);
2431
2432void proto_unregister(struct proto *prot)
2433{
2434	write_lock(&proto_list_lock);
2435	release_proto_idx(prot);
2436	list_del(&prot->node);
2437	write_unlock(&proto_list_lock);
2438
2439	if (prot->slab != NULL) {
2440		kmem_cache_destroy(prot->slab);
2441		prot->slab = NULL;
2442	}
2443
2444	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2445		kmem_cache_destroy(prot->rsk_prot->slab);
2446		kfree(prot->rsk_prot->slab_name);
2447		prot->rsk_prot->slab = NULL;
2448	}
2449
2450	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2451		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2452		kfree(prot->twsk_prot->twsk_slab_name);
2453		prot->twsk_prot->twsk_slab = NULL;
2454	}
2455}
2456EXPORT_SYMBOL(proto_unregister);
2457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2458#ifdef CONFIG_PROC_FS
2459static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2460	__acquires(proto_list_lock)
2461{
2462	read_lock(&proto_list_lock);
2463	return seq_list_start_head(&proto_list, *pos);
2464}
2465
2466static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2467{
2468	return seq_list_next(v, &proto_list, pos);
2469}
2470
2471static void proto_seq_stop(struct seq_file *seq, void *v)
2472	__releases(proto_list_lock)
2473{
2474	read_unlock(&proto_list_lock);
2475}
2476
2477static char proto_method_implemented(const void *method)
2478{
2479	return method == NULL ? 'n' : 'y';
2480}
 
 
 
 
 
 
 
 
 
 
2481
2482static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2483{
 
2484	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2485			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2486		   proto->name,
2487		   proto->obj_size,
2488		   sock_prot_inuse_get(seq_file_net(seq), proto),
2489		   proto->memory_allocated != NULL ? atomic_long_read(proto->memory_allocated) : -1L,
2490		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2491		   proto->max_header,
2492		   proto->slab == NULL ? "no" : "yes",
2493		   module_name(proto->owner),
2494		   proto_method_implemented(proto->close),
2495		   proto_method_implemented(proto->connect),
2496		   proto_method_implemented(proto->disconnect),
2497		   proto_method_implemented(proto->accept),
2498		   proto_method_implemented(proto->ioctl),
2499		   proto_method_implemented(proto->init),
2500		   proto_method_implemented(proto->destroy),
2501		   proto_method_implemented(proto->shutdown),
2502		   proto_method_implemented(proto->setsockopt),
2503		   proto_method_implemented(proto->getsockopt),
2504		   proto_method_implemented(proto->sendmsg),
2505		   proto_method_implemented(proto->recvmsg),
2506		   proto_method_implemented(proto->sendpage),
2507		   proto_method_implemented(proto->bind),
2508		   proto_method_implemented(proto->backlog_rcv),
2509		   proto_method_implemented(proto->hash),
2510		   proto_method_implemented(proto->unhash),
2511		   proto_method_implemented(proto->get_port),
2512		   proto_method_implemented(proto->enter_memory_pressure));
2513}
2514
2515static int proto_seq_show(struct seq_file *seq, void *v)
2516{
2517	if (v == &proto_list)
2518		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2519			   "protocol",
2520			   "size",
2521			   "sockets",
2522			   "memory",
2523			   "press",
2524			   "maxhdr",
2525			   "slab",
2526			   "module",
2527			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2528	else
2529		proto_seq_printf(seq, list_entry(v, struct proto, node));
2530	return 0;
2531}
2532
2533static const struct seq_operations proto_seq_ops = {
2534	.start  = proto_seq_start,
2535	.next   = proto_seq_next,
2536	.stop   = proto_seq_stop,
2537	.show   = proto_seq_show,
2538};
2539
2540static int proto_seq_open(struct inode *inode, struct file *file)
2541{
2542	return seq_open_net(inode, file, &proto_seq_ops,
2543			    sizeof(struct seq_net_private));
2544}
2545
2546static const struct file_operations proto_seq_fops = {
2547	.owner		= THIS_MODULE,
2548	.open		= proto_seq_open,
2549	.read		= seq_read,
2550	.llseek		= seq_lseek,
2551	.release	= seq_release_net,
2552};
2553
2554static __net_init int proto_init_net(struct net *net)
2555{
2556	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2557		return -ENOMEM;
2558
2559	return 0;
2560}
2561
2562static __net_exit void proto_exit_net(struct net *net)
2563{
2564	proc_net_remove(net, "protocols");
2565}
2566
2567
2568static __net_initdata struct pernet_operations proto_net_ops = {
2569	.init = proto_init_net,
2570	.exit = proto_exit_net,
2571};
2572
2573static int __init proto_init(void)
2574{
2575	return register_pernet_subsys(&proto_net_ops);
2576}
2577
2578subsys_initcall(proto_init);
2579
2580#endif /* PROC_FS */
v4.17
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Generic socket support routines. Memory allocators, socket lock/release
   7 *		handler for protocols to use and generic option handler.
   8 *
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 *
  85 *
  86 *		This program is free software; you can redistribute it and/or
  87 *		modify it under the terms of the GNU General Public License
  88 *		as published by the Free Software Foundation; either version
  89 *		2 of the License, or (at your option) any later version.
  90 */
  91
  92#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  93
  94#include <linux/capability.h>
  95#include <linux/errno.h>
  96#include <linux/errqueue.h>
  97#include <linux/types.h>
  98#include <linux/socket.h>
  99#include <linux/in.h>
 100#include <linux/kernel.h>
 101#include <linux/module.h>
 102#include <linux/proc_fs.h>
 103#include <linux/seq_file.h>
 104#include <linux/sched.h>
 105#include <linux/sched/mm.h>
 106#include <linux/timer.h>
 107#include <linux/string.h>
 108#include <linux/sockios.h>
 109#include <linux/net.h>
 110#include <linux/mm.h>
 111#include <linux/slab.h>
 112#include <linux/interrupt.h>
 113#include <linux/poll.h>
 114#include <linux/tcp.h>
 115#include <linux/init.h>
 116#include <linux/highmem.h>
 117#include <linux/user_namespace.h>
 118#include <linux/static_key.h>
 119#include <linux/memcontrol.h>
 120#include <linux/prefetch.h>
 121
 122#include <linux/uaccess.h>
 
 123
 124#include <linux/netdevice.h>
 125#include <net/protocol.h>
 126#include <linux/skbuff.h>
 127#include <net/net_namespace.h>
 128#include <net/request_sock.h>
 129#include <net/sock.h>
 130#include <linux/net_tstamp.h>
 131#include <net/xfrm.h>
 132#include <linux/ipsec.h>
 133#include <net/cls_cgroup.h>
 134#include <net/netprio_cgroup.h>
 135#include <linux/sock_diag.h>
 136
 137#include <linux/filter.h>
 138#include <net/sock_reuseport.h>
 139
 140#include <trace/events/sock.h>
 141
 
 142#include <net/tcp.h>
 143#include <net/busy_poll.h>
 144
 145static DEFINE_MUTEX(proto_list_mutex);
 146static LIST_HEAD(proto_list);
 147
 148static void sock_inuse_add(struct net *net, int val);
 149
 150/**
 151 * sk_ns_capable - General socket capability test
 152 * @sk: Socket to use a capability on or through
 153 * @user_ns: The user namespace of the capability to use
 154 * @cap: The capability to use
 155 *
 156 * Test to see if the opener of the socket had when the socket was
 157 * created and the current process has the capability @cap in the user
 158 * namespace @user_ns.
 159 */
 160bool sk_ns_capable(const struct sock *sk,
 161		   struct user_namespace *user_ns, int cap)
 162{
 163	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 164		ns_capable(user_ns, cap);
 165}
 166EXPORT_SYMBOL(sk_ns_capable);
 167
 168/**
 169 * sk_capable - Socket global capability test
 170 * @sk: Socket to use a capability on or through
 171 * @cap: The global capability to use
 172 *
 173 * Test to see if the opener of the socket had when the socket was
 174 * created and the current process has the capability @cap in all user
 175 * namespaces.
 176 */
 177bool sk_capable(const struct sock *sk, int cap)
 178{
 179	return sk_ns_capable(sk, &init_user_ns, cap);
 180}
 181EXPORT_SYMBOL(sk_capable);
 182
 183/**
 184 * sk_net_capable - Network namespace socket capability test
 185 * @sk: Socket to use a capability on or through
 186 * @cap: The capability to use
 187 *
 188 * Test to see if the opener of the socket had when the socket was created
 189 * and the current process has the capability @cap over the network namespace
 190 * the socket is a member of.
 191 */
 192bool sk_net_capable(const struct sock *sk, int cap)
 193{
 194	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 195}
 196EXPORT_SYMBOL(sk_net_capable);
 197
 198/*
 199 * Each address family might have different locking rules, so we have
 200 * one slock key per address family and separate keys for internal and
 201 * userspace sockets.
 202 */
 203static struct lock_class_key af_family_keys[AF_MAX];
 204static struct lock_class_key af_family_kern_keys[AF_MAX];
 205static struct lock_class_key af_family_slock_keys[AF_MAX];
 206static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 207
 208/*
 209 * Make lock validator output more readable. (we pre-construct these
 210 * strings build-time, so that runtime initialization of socket
 211 * locks is fast):
 212 */
 213
 214#define _sock_locks(x)						  \
 215  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 216  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 217  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 218  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 219  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 220  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 221  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 222  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 223  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 224  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 225  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 226  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 227  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 228  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 229  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_MAX"
 230
 231static const char *const af_family_key_strings[AF_MAX+1] = {
 232	_sock_locks("sk_lock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 233};
 234static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 235	_sock_locks("slock-")
 
 
 
 
 
 
 
 
 
 
 
 
 
 236};
 237static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 238	_sock_locks("clock-")
 239};
 240
 241static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 242	_sock_locks("k-sk_lock-")
 243};
 244static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 245	_sock_locks("k-slock-")
 246};
 247static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 248	_sock_locks("k-clock-")
 249};
 250static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 251  "rlock-AF_UNSPEC", "rlock-AF_UNIX"     , "rlock-AF_INET"     ,
 252  "rlock-AF_AX25"  , "rlock-AF_IPX"      , "rlock-AF_APPLETALK",
 253  "rlock-AF_NETROM", "rlock-AF_BRIDGE"   , "rlock-AF_ATMPVC"   ,
 254  "rlock-AF_X25"   , "rlock-AF_INET6"    , "rlock-AF_ROSE"     ,
 255  "rlock-AF_DECnet", "rlock-AF_NETBEUI"  , "rlock-AF_SECURITY" ,
 256  "rlock-AF_KEY"   , "rlock-AF_NETLINK"  , "rlock-AF_PACKET"   ,
 257  "rlock-AF_ASH"   , "rlock-AF_ECONET"   , "rlock-AF_ATMSVC"   ,
 258  "rlock-AF_RDS"   , "rlock-AF_SNA"      , "rlock-AF_IRDA"     ,
 259  "rlock-AF_PPPOX" , "rlock-AF_WANPIPE"  , "rlock-AF_LLC"      ,
 260  "rlock-27"       , "rlock-28"          , "rlock-AF_CAN"      ,
 261  "rlock-AF_TIPC"  , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV"     ,
 262  "rlock-AF_RXRPC" , "rlock-AF_ISDN"     , "rlock-AF_PHONET"   ,
 263  "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG"      ,
 264  "rlock-AF_NFC"   , "rlock-AF_VSOCK"    , "rlock-AF_KCM"      ,
 265  "rlock-AF_QIPCRTR", "rlock-AF_SMC"     , "rlock-AF_MAX"
 266};
 267static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 268  "wlock-AF_UNSPEC", "wlock-AF_UNIX"     , "wlock-AF_INET"     ,
 269  "wlock-AF_AX25"  , "wlock-AF_IPX"      , "wlock-AF_APPLETALK",
 270  "wlock-AF_NETROM", "wlock-AF_BRIDGE"   , "wlock-AF_ATMPVC"   ,
 271  "wlock-AF_X25"   , "wlock-AF_INET6"    , "wlock-AF_ROSE"     ,
 272  "wlock-AF_DECnet", "wlock-AF_NETBEUI"  , "wlock-AF_SECURITY" ,
 273  "wlock-AF_KEY"   , "wlock-AF_NETLINK"  , "wlock-AF_PACKET"   ,
 274  "wlock-AF_ASH"   , "wlock-AF_ECONET"   , "wlock-AF_ATMSVC"   ,
 275  "wlock-AF_RDS"   , "wlock-AF_SNA"      , "wlock-AF_IRDA"     ,
 276  "wlock-AF_PPPOX" , "wlock-AF_WANPIPE"  , "wlock-AF_LLC"      ,
 277  "wlock-27"       , "wlock-28"          , "wlock-AF_CAN"      ,
 278  "wlock-AF_TIPC"  , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV"     ,
 279  "wlock-AF_RXRPC" , "wlock-AF_ISDN"     , "wlock-AF_PHONET"   ,
 280  "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG"      ,
 281  "wlock-AF_NFC"   , "wlock-AF_VSOCK"    , "wlock-AF_KCM"      ,
 282  "wlock-AF_QIPCRTR", "wlock-AF_SMC"     , "wlock-AF_MAX"
 283};
 284static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 285  "elock-AF_UNSPEC", "elock-AF_UNIX"     , "elock-AF_INET"     ,
 286  "elock-AF_AX25"  , "elock-AF_IPX"      , "elock-AF_APPLETALK",
 287  "elock-AF_NETROM", "elock-AF_BRIDGE"   , "elock-AF_ATMPVC"   ,
 288  "elock-AF_X25"   , "elock-AF_INET6"    , "elock-AF_ROSE"     ,
 289  "elock-AF_DECnet", "elock-AF_NETBEUI"  , "elock-AF_SECURITY" ,
 290  "elock-AF_KEY"   , "elock-AF_NETLINK"  , "elock-AF_PACKET"   ,
 291  "elock-AF_ASH"   , "elock-AF_ECONET"   , "elock-AF_ATMSVC"   ,
 292  "elock-AF_RDS"   , "elock-AF_SNA"      , "elock-AF_IRDA"     ,
 293  "elock-AF_PPPOX" , "elock-AF_WANPIPE"  , "elock-AF_LLC"      ,
 294  "elock-27"       , "elock-28"          , "elock-AF_CAN"      ,
 295  "elock-AF_TIPC"  , "elock-AF_BLUETOOTH", "elock-AF_IUCV"     ,
 296  "elock-AF_RXRPC" , "elock-AF_ISDN"     , "elock-AF_PHONET"   ,
 297  "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG"      ,
 298  "elock-AF_NFC"   , "elock-AF_VSOCK"    , "elock-AF_KCM"      ,
 299  "elock-AF_QIPCRTR", "elock-AF_SMC"     , "elock-AF_MAX"
 300};
 301
 302/*
 303 * sk_callback_lock and sk queues locking rules are per-address-family,
 304 * so split the lock classes by using a per-AF key:
 305 */
 306static struct lock_class_key af_callback_keys[AF_MAX];
 307static struct lock_class_key af_rlock_keys[AF_MAX];
 308static struct lock_class_key af_wlock_keys[AF_MAX];
 309static struct lock_class_key af_elock_keys[AF_MAX];
 310static struct lock_class_key af_kern_callback_keys[AF_MAX];
 
 
 
 
 
 
 311
 312/* Run time adjustable parameters. */
 313__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 314EXPORT_SYMBOL(sysctl_wmem_max);
 315__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 316EXPORT_SYMBOL(sysctl_rmem_max);
 317__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 318__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 319
 320/* Maximal space eaten by iovec or ancillary data plus some space */
 321int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
 322EXPORT_SYMBOL(sysctl_optmem_max);
 323
 324int sysctl_tstamp_allow_data __read_mostly = 1;
 325
 326struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
 327EXPORT_SYMBOL_GPL(memalloc_socks);
 328
 329/**
 330 * sk_set_memalloc - sets %SOCK_MEMALLOC
 331 * @sk: socket to set it on
 332 *
 333 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 334 * It's the responsibility of the admin to adjust min_free_kbytes
 335 * to meet the requirements
 336 */
 337void sk_set_memalloc(struct sock *sk)
 338{
 339	sock_set_flag(sk, SOCK_MEMALLOC);
 340	sk->sk_allocation |= __GFP_MEMALLOC;
 341	static_key_slow_inc(&memalloc_socks);
 342}
 343EXPORT_SYMBOL_GPL(sk_set_memalloc);
 344
 345void sk_clear_memalloc(struct sock *sk)
 346{
 347	sock_reset_flag(sk, SOCK_MEMALLOC);
 348	sk->sk_allocation &= ~__GFP_MEMALLOC;
 349	static_key_slow_dec(&memalloc_socks);
 350
 351	/*
 352	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 353	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 354	 * it has rmem allocations due to the last swapfile being deactivated
 355	 * but there is a risk that the socket is unusable due to exceeding
 356	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 357	 */
 358	sk_mem_reclaim(sk);
 359}
 360EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 361
 362int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 363{
 364	int ret;
 365	unsigned int noreclaim_flag;
 366
 367	/* these should have been dropped before queueing */
 368	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 369
 370	noreclaim_flag = memalloc_noreclaim_save();
 371	ret = sk->sk_backlog_rcv(sk, skb);
 372	memalloc_noreclaim_restore(noreclaim_flag);
 373
 374	return ret;
 375}
 376EXPORT_SYMBOL(__sk_backlog_rcv);
 377
 378static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
 379{
 380	struct timeval tv;
 381
 382	if (optlen < sizeof(tv))
 383		return -EINVAL;
 384	if (copy_from_user(&tv, optval, sizeof(tv)))
 385		return -EFAULT;
 386	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 387		return -EDOM;
 388
 389	if (tv.tv_sec < 0) {
 390		static int warned __read_mostly;
 391
 392		*timeo_p = 0;
 393		if (warned < 10 && net_ratelimit()) {
 394			warned++;
 395			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 396				__func__, current->comm, task_pid_nr(current));
 
 397		}
 398		return 0;
 399	}
 400	*timeo_p = MAX_SCHEDULE_TIMEOUT;
 401	if (tv.tv_sec == 0 && tv.tv_usec == 0)
 402		return 0;
 403	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
 404		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
 405	return 0;
 406}
 407
 408static void sock_warn_obsolete_bsdism(const char *name)
 409{
 410	static int warned;
 411	static char warncomm[TASK_COMM_LEN];
 412	if (strcmp(warncomm, current->comm) && warned < 5) {
 413		strcpy(warncomm,  current->comm);
 414		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
 415			warncomm, name);
 416		warned++;
 417	}
 418}
 419
 420static bool sock_needs_netstamp(const struct sock *sk)
 421{
 422	switch (sk->sk_family) {
 423	case AF_UNSPEC:
 424	case AF_UNIX:
 425		return false;
 426	default:
 427		return true;
 428	}
 429}
 430
 431static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 432{
 433	if (sk->sk_flags & flags) {
 434		sk->sk_flags &= ~flags;
 435		if (sock_needs_netstamp(sk) &&
 436		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 437			net_disable_timestamp();
 
 438	}
 439}
 440
 441
 442int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 443{
 
 
 444	unsigned long flags;
 445	struct sk_buff_head *list = &sk->sk_receive_queue;
 446
 447	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 
 
 
 
 448		atomic_inc(&sk->sk_drops);
 449		trace_sock_rcvqueue_full(sk, skb);
 450		return -ENOMEM;
 451	}
 452
 453	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 
 
 
 
 454		atomic_inc(&sk->sk_drops);
 455		return -ENOBUFS;
 456	}
 457
 458	skb->dev = NULL;
 459	skb_set_owner_r(skb, sk);
 460
 
 
 
 
 
 
 
 461	/* we escape from rcu protected region, make sure we dont leak
 462	 * a norefcounted dst
 463	 */
 464	skb_dst_force(skb);
 465
 466	spin_lock_irqsave(&list->lock, flags);
 467	sock_skb_set_dropcount(sk, skb);
 468	__skb_queue_tail(list, skb);
 469	spin_unlock_irqrestore(&list->lock, flags);
 470
 471	if (!sock_flag(sk, SOCK_DEAD))
 472		sk->sk_data_ready(sk);
 473	return 0;
 474}
 475EXPORT_SYMBOL(__sock_queue_rcv_skb);
 476
 477int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 478{
 479	int err;
 480
 481	err = sk_filter(sk, skb);
 482	if (err)
 483		return err;
 484
 485	return __sock_queue_rcv_skb(sk, skb);
 486}
 487EXPORT_SYMBOL(sock_queue_rcv_skb);
 488
 489int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 490		     const int nested, unsigned int trim_cap, bool refcounted)
 491{
 492	int rc = NET_RX_SUCCESS;
 493
 494	if (sk_filter_trim_cap(sk, skb, trim_cap))
 495		goto discard_and_relse;
 496
 497	skb->dev = NULL;
 498
 499	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 500		atomic_inc(&sk->sk_drops);
 501		goto discard_and_relse;
 502	}
 503	if (nested)
 504		bh_lock_sock_nested(sk);
 505	else
 506		bh_lock_sock(sk);
 507	if (!sock_owned_by_user(sk)) {
 508		/*
 509		 * trylock + unlock semantics:
 510		 */
 511		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 512
 513		rc = sk_backlog_rcv(sk, skb);
 514
 515		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
 516	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
 517		bh_unlock_sock(sk);
 518		atomic_inc(&sk->sk_drops);
 519		goto discard_and_relse;
 520	}
 521
 522	bh_unlock_sock(sk);
 523out:
 524	if (refcounted)
 525		sock_put(sk);
 526	return rc;
 527discard_and_relse:
 528	kfree_skb(skb);
 529	goto out;
 530}
 531EXPORT_SYMBOL(__sk_receive_skb);
 
 
 
 
 
 
 532
 533struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 534{
 535	struct dst_entry *dst = __sk_dst_get(sk);
 536
 537	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 538		sk_tx_queue_clear(sk);
 539		sk->sk_dst_pending_confirm = 0;
 540		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 541		dst_release(dst);
 542		return NULL;
 543	}
 544
 545	return dst;
 546}
 547EXPORT_SYMBOL(__sk_dst_check);
 548
 549struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 550{
 551	struct dst_entry *dst = sk_dst_get(sk);
 552
 553	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
 554		sk_dst_reset(sk);
 555		dst_release(dst);
 556		return NULL;
 557	}
 558
 559	return dst;
 560}
 561EXPORT_SYMBOL(sk_dst_check);
 562
 563static int sock_setbindtodevice(struct sock *sk, char __user *optval,
 564				int optlen)
 565{
 566	int ret = -ENOPROTOOPT;
 567#ifdef CONFIG_NETDEVICES
 568	struct net *net = sock_net(sk);
 569	char devname[IFNAMSIZ];
 570	int index;
 571
 572	/* Sorry... */
 573	ret = -EPERM;
 574	if (!ns_capable(net->user_ns, CAP_NET_RAW))
 575		goto out;
 576
 577	ret = -EINVAL;
 578	if (optlen < 0)
 579		goto out;
 580
 581	/* Bind this socket to a particular device like "eth0",
 582	 * as specified in the passed interface name. If the
 583	 * name is "" or the option length is zero the socket
 584	 * is not bound.
 585	 */
 586	if (optlen > IFNAMSIZ - 1)
 587		optlen = IFNAMSIZ - 1;
 588	memset(devname, 0, sizeof(devname));
 589
 590	ret = -EFAULT;
 591	if (copy_from_user(devname, optval, optlen))
 592		goto out;
 593
 594	index = 0;
 595	if (devname[0] != '\0') {
 596		struct net_device *dev;
 597
 598		rcu_read_lock();
 599		dev = dev_get_by_name_rcu(net, devname);
 600		if (dev)
 601			index = dev->ifindex;
 602		rcu_read_unlock();
 603		ret = -ENODEV;
 604		if (!dev)
 605			goto out;
 606	}
 607
 608	lock_sock(sk);
 609	sk->sk_bound_dev_if = index;
 610	sk_dst_reset(sk);
 611	release_sock(sk);
 612
 613	ret = 0;
 614
 615out:
 616#endif
 617
 618	return ret;
 619}
 620
 621static int sock_getbindtodevice(struct sock *sk, char __user *optval,
 622				int __user *optlen, int len)
 623{
 624	int ret = -ENOPROTOOPT;
 625#ifdef CONFIG_NETDEVICES
 626	struct net *net = sock_net(sk);
 627	char devname[IFNAMSIZ];
 628
 629	if (sk->sk_bound_dev_if == 0) {
 630		len = 0;
 631		goto zero;
 632	}
 633
 634	ret = -EINVAL;
 635	if (len < IFNAMSIZ)
 636		goto out;
 637
 638	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
 639	if (ret)
 640		goto out;
 641
 642	len = strlen(devname) + 1;
 643
 644	ret = -EFAULT;
 645	if (copy_to_user(optval, devname, len))
 646		goto out;
 647
 648zero:
 649	ret = -EFAULT;
 650	if (put_user(len, optlen))
 651		goto out;
 652
 653	ret = 0;
 654
 655out:
 656#endif
 657
 658	return ret;
 659}
 660
 661static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
 662{
 663	if (valbool)
 664		sock_set_flag(sk, bit);
 665	else
 666		sock_reset_flag(sk, bit);
 667}
 668
 669bool sk_mc_loop(struct sock *sk)
 670{
 671	if (dev_recursion_level())
 672		return false;
 673	if (!sk)
 674		return true;
 675	switch (sk->sk_family) {
 676	case AF_INET:
 677		return inet_sk(sk)->mc_loop;
 678#if IS_ENABLED(CONFIG_IPV6)
 679	case AF_INET6:
 680		return inet6_sk(sk)->mc_loop;
 681#endif
 682	}
 683	WARN_ON(1);
 684	return true;
 685}
 686EXPORT_SYMBOL(sk_mc_loop);
 687
 688/*
 689 *	This is meant for all protocols to use and covers goings on
 690 *	at the socket level. Everything here is generic.
 691 */
 692
 693int sock_setsockopt(struct socket *sock, int level, int optname,
 694		    char __user *optval, unsigned int optlen)
 695{
 696	struct sock *sk = sock->sk;
 697	int val;
 698	int valbool;
 699	struct linger ling;
 700	int ret = 0;
 701
 702	/*
 703	 *	Options without arguments
 704	 */
 705
 706	if (optname == SO_BINDTODEVICE)
 707		return sock_setbindtodevice(sk, optval, optlen);
 708
 709	if (optlen < sizeof(int))
 710		return -EINVAL;
 711
 712	if (get_user(val, (int __user *)optval))
 713		return -EFAULT;
 714
 715	valbool = val ? 1 : 0;
 716
 717	lock_sock(sk);
 718
 719	switch (optname) {
 720	case SO_DEBUG:
 721		if (val && !capable(CAP_NET_ADMIN))
 722			ret = -EACCES;
 723		else
 724			sock_valbool_flag(sk, SOCK_DBG, valbool);
 725		break;
 726	case SO_REUSEADDR:
 727		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
 728		break;
 729	case SO_REUSEPORT:
 730		sk->sk_reuseport = valbool;
 731		break;
 732	case SO_TYPE:
 733	case SO_PROTOCOL:
 734	case SO_DOMAIN:
 735	case SO_ERROR:
 736		ret = -ENOPROTOOPT;
 737		break;
 738	case SO_DONTROUTE:
 739		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
 740		break;
 741	case SO_BROADCAST:
 742		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
 743		break;
 744	case SO_SNDBUF:
 745		/* Don't error on this BSD doesn't and if you think
 746		 * about it this is right. Otherwise apps have to
 747		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 748		 * are treated in BSD as hints
 749		 */
 750		val = min_t(u32, val, sysctl_wmem_max);
 
 751set_sndbuf:
 752		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
 753		sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
 754		/* Wake up sending tasks if we upped the value. */
 
 
 
 
 
 
 
 755		sk->sk_write_space(sk);
 756		break;
 757
 758	case SO_SNDBUFFORCE:
 759		if (!capable(CAP_NET_ADMIN)) {
 760			ret = -EPERM;
 761			break;
 762		}
 763		goto set_sndbuf;
 764
 765	case SO_RCVBUF:
 766		/* Don't error on this BSD doesn't and if you think
 767		 * about it this is right. Otherwise apps have to
 768		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
 769		 * are treated in BSD as hints
 770		 */
 771		val = min_t(u32, val, sysctl_rmem_max);
 
 772set_rcvbuf:
 773		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 774		/*
 775		 * We double it on the way in to account for
 776		 * "struct sk_buff" etc. overhead.   Applications
 777		 * assume that the SO_RCVBUF setting they make will
 778		 * allow that much actual data to be received on that
 779		 * socket.
 780		 *
 781		 * Applications are unaware that "struct sk_buff" and
 782		 * other overheads allocate from the receive buffer
 783		 * during socket buffer allocation.
 784		 *
 785		 * And after considering the possible alternatives,
 786		 * returning the value we actually used in getsockopt
 787		 * is the most desirable behavior.
 788		 */
 789		sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
 
 
 
 790		break;
 791
 792	case SO_RCVBUFFORCE:
 793		if (!capable(CAP_NET_ADMIN)) {
 794			ret = -EPERM;
 795			break;
 796		}
 797		goto set_rcvbuf;
 798
 799	case SO_KEEPALIVE:
 800		if (sk->sk_prot->keepalive)
 801			sk->sk_prot->keepalive(sk, valbool);
 
 
 802		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
 803		break;
 804
 805	case SO_OOBINLINE:
 806		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
 807		break;
 808
 809	case SO_NO_CHECK:
 810		sk->sk_no_check_tx = valbool;
 811		break;
 812
 813	case SO_PRIORITY:
 814		if ((val >= 0 && val <= 6) ||
 815		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 816			sk->sk_priority = val;
 817		else
 818			ret = -EPERM;
 819		break;
 820
 821	case SO_LINGER:
 822		if (optlen < sizeof(ling)) {
 823			ret = -EINVAL;	/* 1003.1g */
 824			break;
 825		}
 826		if (copy_from_user(&ling, optval, sizeof(ling))) {
 827			ret = -EFAULT;
 828			break;
 829		}
 830		if (!ling.l_onoff)
 831			sock_reset_flag(sk, SOCK_LINGER);
 832		else {
 833#if (BITS_PER_LONG == 32)
 834			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
 835				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
 836			else
 837#endif
 838				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
 839			sock_set_flag(sk, SOCK_LINGER);
 840		}
 841		break;
 842
 843	case SO_BSDCOMPAT:
 844		sock_warn_obsolete_bsdism("setsockopt");
 845		break;
 846
 847	case SO_PASSCRED:
 848		if (valbool)
 849			set_bit(SOCK_PASSCRED, &sock->flags);
 850		else
 851			clear_bit(SOCK_PASSCRED, &sock->flags);
 852		break;
 853
 854	case SO_TIMESTAMP:
 855	case SO_TIMESTAMPNS:
 856		if (valbool)  {
 857			if (optname == SO_TIMESTAMP)
 858				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 859			else
 860				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
 861			sock_set_flag(sk, SOCK_RCVTSTAMP);
 862			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 863		} else {
 864			sock_reset_flag(sk, SOCK_RCVTSTAMP);
 865			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 866		}
 867		break;
 868
 869	case SO_TIMESTAMPING:
 870		if (val & ~SOF_TIMESTAMPING_MASK) {
 871			ret = -EINVAL;
 872			break;
 873		}
 874
 875		if (val & SOF_TIMESTAMPING_OPT_ID &&
 876		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 877			if (sk->sk_protocol == IPPROTO_TCP &&
 878			    sk->sk_type == SOCK_STREAM) {
 879				if ((1 << sk->sk_state) &
 880				    (TCPF_CLOSE | TCPF_LISTEN)) {
 881					ret = -EINVAL;
 882					break;
 883				}
 884				sk->sk_tskey = tcp_sk(sk)->snd_una;
 885			} else {
 886				sk->sk_tskey = 0;
 887			}
 888		}
 889
 890		if (val & SOF_TIMESTAMPING_OPT_STATS &&
 891		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
 892			ret = -EINVAL;
 893			break;
 894		}
 895
 896		sk->sk_tsflags = val;
 897		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 898			sock_enable_timestamp(sk,
 899					      SOCK_TIMESTAMPING_RX_SOFTWARE);
 900		else
 901			sock_disable_timestamp(sk,
 902					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 
 
 
 
 
 
 903		break;
 904
 905	case SO_RCVLOWAT:
 906		if (val < 0)
 907			val = INT_MAX;
 908		sk->sk_rcvlowat = val ? : 1;
 909		break;
 910
 911	case SO_RCVTIMEO:
 912		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
 913		break;
 914
 915	case SO_SNDTIMEO:
 916		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
 917		break;
 918
 919	case SO_ATTACH_FILTER:
 920		ret = -EINVAL;
 921		if (optlen == sizeof(struct sock_fprog)) {
 922			struct sock_fprog fprog;
 923
 924			ret = -EFAULT;
 925			if (copy_from_user(&fprog, optval, sizeof(fprog)))
 926				break;
 927
 928			ret = sk_attach_filter(&fprog, sk);
 929		}
 930		break;
 931
 932	case SO_ATTACH_BPF:
 933		ret = -EINVAL;
 934		if (optlen == sizeof(u32)) {
 935			u32 ufd;
 936
 937			ret = -EFAULT;
 938			if (copy_from_user(&ufd, optval, sizeof(ufd)))
 939				break;
 940
 941			ret = sk_attach_bpf(ufd, sk);
 942		}
 943		break;
 944
 945	case SO_ATTACH_REUSEPORT_CBPF:
 946		ret = -EINVAL;
 947		if (optlen == sizeof(struct sock_fprog)) {
 948			struct sock_fprog fprog;
 949
 950			ret = -EFAULT;
 951			if (copy_from_user(&fprog, optval, sizeof(fprog)))
 952				break;
 953
 954			ret = sk_reuseport_attach_filter(&fprog, sk);
 955		}
 956		break;
 957
 958	case SO_ATTACH_REUSEPORT_EBPF:
 959		ret = -EINVAL;
 960		if (optlen == sizeof(u32)) {
 961			u32 ufd;
 962
 963			ret = -EFAULT;
 964			if (copy_from_user(&ufd, optval, sizeof(ufd)))
 965				break;
 966
 967			ret = sk_reuseport_attach_bpf(ufd, sk);
 968		}
 969		break;
 970
 971	case SO_DETACH_FILTER:
 972		ret = sk_detach_filter(sk);
 973		break;
 974
 975	case SO_LOCK_FILTER:
 976		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
 977			ret = -EPERM;
 978		else
 979			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
 980		break;
 981
 982	case SO_PASSSEC:
 983		if (valbool)
 984			set_bit(SOCK_PASSSEC, &sock->flags);
 985		else
 986			clear_bit(SOCK_PASSSEC, &sock->flags);
 987		break;
 988	case SO_MARK:
 989		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
 990			ret = -EPERM;
 991		else
 992			sk->sk_mark = val;
 993		break;
 994
 
 
 995	case SO_RXQ_OVFL:
 996		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
 997		break;
 998
 999	case SO_WIFI_STATUS:
1000		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1001		break;
1002
1003	case SO_PEEK_OFF:
1004		if (sock->ops->set_peek_off)
1005			ret = sock->ops->set_peek_off(sk, val);
1006		else
1007			ret = -EOPNOTSUPP;
1008		break;
1009
1010	case SO_NOFCS:
1011		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1012		break;
1013
1014	case SO_SELECT_ERR_QUEUE:
1015		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1016		break;
1017
1018#ifdef CONFIG_NET_RX_BUSY_POLL
1019	case SO_BUSY_POLL:
1020		/* allow unprivileged users to decrease the value */
1021		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1022			ret = -EPERM;
1023		else {
1024			if (val < 0)
1025				ret = -EINVAL;
1026			else
1027				sk->sk_ll_usec = val;
1028		}
1029		break;
1030#endif
1031
1032	case SO_MAX_PACING_RATE:
1033		if (val != ~0U)
1034			cmpxchg(&sk->sk_pacing_status,
1035				SK_PACING_NONE,
1036				SK_PACING_NEEDED);
1037		sk->sk_max_pacing_rate = val;
1038		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1039					 sk->sk_max_pacing_rate);
1040		break;
1041
1042	case SO_INCOMING_CPU:
1043		sk->sk_incoming_cpu = val;
1044		break;
1045
1046	case SO_CNX_ADVICE:
1047		if (val == 1)
1048			dst_negative_advice(sk);
1049		break;
1050
1051	case SO_ZEROCOPY:
1052		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1053			if (sk->sk_protocol != IPPROTO_TCP)
1054				ret = -ENOTSUPP;
1055		} else if (sk->sk_family != PF_RDS) {
1056			ret = -ENOTSUPP;
1057		}
1058		if (!ret) {
1059			if (val < 0 || val > 1)
1060				ret = -EINVAL;
1061			else
1062				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1063		}
1064		break;
1065
1066	default:
1067		ret = -ENOPROTOOPT;
1068		break;
1069	}
1070	release_sock(sk);
1071	return ret;
1072}
1073EXPORT_SYMBOL(sock_setsockopt);
1074
1075
1076static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1077			  struct ucred *ucred)
1078{
1079	ucred->pid = pid_vnr(pid);
1080	ucred->uid = ucred->gid = -1;
1081	if (cred) {
1082		struct user_namespace *current_ns = current_user_ns();
1083
1084		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1085		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1086	}
1087}
1088
1089static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1090{
1091	struct user_namespace *user_ns = current_user_ns();
1092	int i;
1093
1094	for (i = 0; i < src->ngroups; i++)
1095		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1096			return -EFAULT;
1097
1098	return 0;
1099}
1100
1101int sock_getsockopt(struct socket *sock, int level, int optname,
1102		    char __user *optval, int __user *optlen)
1103{
1104	struct sock *sk = sock->sk;
1105
1106	union {
1107		int val;
1108		u64 val64;
1109		struct linger ling;
1110		struct timeval tm;
1111	} v;
1112
1113	int lv = sizeof(int);
1114	int len;
1115
1116	if (get_user(len, optlen))
1117		return -EFAULT;
1118	if (len < 0)
1119		return -EINVAL;
1120
1121	memset(&v, 0, sizeof(v));
1122
1123	switch (optname) {
1124	case SO_DEBUG:
1125		v.val = sock_flag(sk, SOCK_DBG);
1126		break;
1127
1128	case SO_DONTROUTE:
1129		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1130		break;
1131
1132	case SO_BROADCAST:
1133		v.val = sock_flag(sk, SOCK_BROADCAST);
1134		break;
1135
1136	case SO_SNDBUF:
1137		v.val = sk->sk_sndbuf;
1138		break;
1139
1140	case SO_RCVBUF:
1141		v.val = sk->sk_rcvbuf;
1142		break;
1143
1144	case SO_REUSEADDR:
1145		v.val = sk->sk_reuse;
1146		break;
1147
1148	case SO_REUSEPORT:
1149		v.val = sk->sk_reuseport;
1150		break;
1151
1152	case SO_KEEPALIVE:
1153		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1154		break;
1155
1156	case SO_TYPE:
1157		v.val = sk->sk_type;
1158		break;
1159
1160	case SO_PROTOCOL:
1161		v.val = sk->sk_protocol;
1162		break;
1163
1164	case SO_DOMAIN:
1165		v.val = sk->sk_family;
1166		break;
1167
1168	case SO_ERROR:
1169		v.val = -sock_error(sk);
1170		if (v.val == 0)
1171			v.val = xchg(&sk->sk_err_soft, 0);
1172		break;
1173
1174	case SO_OOBINLINE:
1175		v.val = sock_flag(sk, SOCK_URGINLINE);
1176		break;
1177
1178	case SO_NO_CHECK:
1179		v.val = sk->sk_no_check_tx;
1180		break;
1181
1182	case SO_PRIORITY:
1183		v.val = sk->sk_priority;
1184		break;
1185
1186	case SO_LINGER:
1187		lv		= sizeof(v.ling);
1188		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1189		v.ling.l_linger	= sk->sk_lingertime / HZ;
1190		break;
1191
1192	case SO_BSDCOMPAT:
1193		sock_warn_obsolete_bsdism("getsockopt");
1194		break;
1195
1196	case SO_TIMESTAMP:
1197		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1198				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1199		break;
1200
1201	case SO_TIMESTAMPNS:
1202		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1203		break;
1204
1205	case SO_TIMESTAMPING:
1206		v.val = sk->sk_tsflags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1207		break;
1208
1209	case SO_RCVTIMEO:
1210		lv = sizeof(struct timeval);
1211		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1212			v.tm.tv_sec = 0;
1213			v.tm.tv_usec = 0;
1214		} else {
1215			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1216			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1217		}
1218		break;
1219
1220	case SO_SNDTIMEO:
1221		lv = sizeof(struct timeval);
1222		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1223			v.tm.tv_sec = 0;
1224			v.tm.tv_usec = 0;
1225		} else {
1226			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1227			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1228		}
1229		break;
1230
1231	case SO_RCVLOWAT:
1232		v.val = sk->sk_rcvlowat;
1233		break;
1234
1235	case SO_SNDLOWAT:
1236		v.val = 1;
1237		break;
1238
1239	case SO_PASSCRED:
1240		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1241		break;
1242
1243	case SO_PEERCRED:
1244	{
1245		struct ucred peercred;
1246		if (len > sizeof(peercred))
1247			len = sizeof(peercred);
1248		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1249		if (copy_to_user(optval, &peercred, len))
1250			return -EFAULT;
1251		goto lenout;
1252	}
1253
1254	case SO_PEERGROUPS:
1255	{
1256		int ret, n;
1257
1258		if (!sk->sk_peer_cred)
1259			return -ENODATA;
1260
1261		n = sk->sk_peer_cred->group_info->ngroups;
1262		if (len < n * sizeof(gid_t)) {
1263			len = n * sizeof(gid_t);
1264			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1265		}
1266		len = n * sizeof(gid_t);
1267
1268		ret = groups_to_user((gid_t __user *)optval,
1269				     sk->sk_peer_cred->group_info);
1270		if (ret)
1271			return ret;
1272		goto lenout;
1273	}
1274
1275	case SO_PEERNAME:
1276	{
1277		char address[128];
1278
1279		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1280		if (lv < 0)
1281			return -ENOTCONN;
1282		if (lv < len)
1283			return -EINVAL;
1284		if (copy_to_user(optval, address, len))
1285			return -EFAULT;
1286		goto lenout;
1287	}
1288
1289	/* Dubious BSD thing... Probably nobody even uses it, but
1290	 * the UNIX standard wants it for whatever reason... -DaveM
1291	 */
1292	case SO_ACCEPTCONN:
1293		v.val = sk->sk_state == TCP_LISTEN;
1294		break;
1295
1296	case SO_PASSSEC:
1297		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1298		break;
1299
1300	case SO_PEERSEC:
1301		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1302
1303	case SO_MARK:
1304		v.val = sk->sk_mark;
1305		break;
1306
1307	case SO_RXQ_OVFL:
1308		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1309		break;
1310
1311	case SO_WIFI_STATUS:
1312		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1313		break;
1314
1315	case SO_PEEK_OFF:
1316		if (!sock->ops->set_peek_off)
1317			return -EOPNOTSUPP;
1318
1319		v.val = sk->sk_peek_off;
1320		break;
1321	case SO_NOFCS:
1322		v.val = sock_flag(sk, SOCK_NOFCS);
1323		break;
1324
1325	case SO_BINDTODEVICE:
1326		return sock_getbindtodevice(sk, optval, optlen, len);
1327
1328	case SO_GET_FILTER:
1329		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1330		if (len < 0)
1331			return len;
1332
1333		goto lenout;
1334
1335	case SO_LOCK_FILTER:
1336		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1337		break;
1338
1339	case SO_BPF_EXTENSIONS:
1340		v.val = bpf_tell_extensions();
1341		break;
1342
1343	case SO_SELECT_ERR_QUEUE:
1344		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1345		break;
1346
1347#ifdef CONFIG_NET_RX_BUSY_POLL
1348	case SO_BUSY_POLL:
1349		v.val = sk->sk_ll_usec;
1350		break;
1351#endif
1352
1353	case SO_MAX_PACING_RATE:
1354		v.val = sk->sk_max_pacing_rate;
1355		break;
1356
1357	case SO_INCOMING_CPU:
1358		v.val = sk->sk_incoming_cpu;
1359		break;
1360
1361	case SO_MEMINFO:
1362	{
1363		u32 meminfo[SK_MEMINFO_VARS];
1364
1365		if (get_user(len, optlen))
1366			return -EFAULT;
1367
1368		sk_get_meminfo(sk, meminfo);
1369
1370		len = min_t(unsigned int, len, sizeof(meminfo));
1371		if (copy_to_user(optval, &meminfo, len))
1372			return -EFAULT;
1373
1374		goto lenout;
1375	}
1376
1377#ifdef CONFIG_NET_RX_BUSY_POLL
1378	case SO_INCOMING_NAPI_ID:
1379		v.val = READ_ONCE(sk->sk_napi_id);
1380
1381		/* aggregate non-NAPI IDs down to 0 */
1382		if (v.val < MIN_NAPI_ID)
1383			v.val = 0;
1384
1385		break;
1386#endif
1387
1388	case SO_COOKIE:
1389		lv = sizeof(u64);
1390		if (len < lv)
1391			return -EINVAL;
1392		v.val64 = sock_gen_cookie(sk);
1393		break;
1394
1395	case SO_ZEROCOPY:
1396		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1397		break;
1398
1399	default:
1400		/* We implement the SO_SNDLOWAT etc to not be settable
1401		 * (1003.1g 7).
1402		 */
1403		return -ENOPROTOOPT;
1404	}
1405
1406	if (len > lv)
1407		len = lv;
1408	if (copy_to_user(optval, &v, len))
1409		return -EFAULT;
1410lenout:
1411	if (put_user(len, optlen))
1412		return -EFAULT;
1413	return 0;
1414}
1415
1416/*
1417 * Initialize an sk_lock.
1418 *
1419 * (We also register the sk_lock with the lock validator.)
1420 */
1421static inline void sock_lock_init(struct sock *sk)
1422{
1423	if (sk->sk_kern_sock)
1424		sock_lock_init_class_and_name(
1425			sk,
1426			af_family_kern_slock_key_strings[sk->sk_family],
1427			af_family_kern_slock_keys + sk->sk_family,
1428			af_family_kern_key_strings[sk->sk_family],
1429			af_family_kern_keys + sk->sk_family);
1430	else
1431		sock_lock_init_class_and_name(
1432			sk,
1433			af_family_slock_key_strings[sk->sk_family],
1434			af_family_slock_keys + sk->sk_family,
1435			af_family_key_strings[sk->sk_family],
1436			af_family_keys + sk->sk_family);
1437}
1438
1439/*
1440 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1441 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1442 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1443 */
1444static void sock_copy(struct sock *nsk, const struct sock *osk)
1445{
1446#ifdef CONFIG_SECURITY_NETWORK
1447	void *sptr = nsk->sk_security;
1448#endif
1449	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1450
1451	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1452	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1453
1454#ifdef CONFIG_SECURITY_NETWORK
1455	nsk->sk_security = sptr;
1456	security_sk_clone(osk, nsk);
1457#endif
1458}
1459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1461		int family)
1462{
1463	struct sock *sk;
1464	struct kmem_cache *slab;
1465
1466	slab = prot->slab;
1467	if (slab != NULL) {
1468		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1469		if (!sk)
1470			return sk;
1471		if (priority & __GFP_ZERO)
1472			sk_prot_clear_nulls(sk, prot->obj_size);
 
 
 
 
1473	} else
1474		sk = kmalloc(prot->obj_size, priority);
1475
1476	if (sk != NULL) {
 
 
1477		if (security_sk_alloc(sk, family, priority))
1478			goto out_free;
1479
1480		if (!try_module_get(prot->owner))
1481			goto out_free_sec;
1482		sk_tx_queue_clear(sk);
1483	}
1484
1485	return sk;
1486
1487out_free_sec:
1488	security_sk_free(sk);
1489out_free:
1490	if (slab != NULL)
1491		kmem_cache_free(slab, sk);
1492	else
1493		kfree(sk);
1494	return NULL;
1495}
1496
1497static void sk_prot_free(struct proto *prot, struct sock *sk)
1498{
1499	struct kmem_cache *slab;
1500	struct module *owner;
1501
1502	owner = prot->owner;
1503	slab = prot->slab;
1504
1505	cgroup_sk_free(&sk->sk_cgrp_data);
1506	mem_cgroup_sk_free(sk);
1507	security_sk_free(sk);
1508	if (slab != NULL)
1509		kmem_cache_free(slab, sk);
1510	else
1511		kfree(sk);
1512	module_put(owner);
1513}
1514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1515/**
1516 *	sk_alloc - All socket objects are allocated here
1517 *	@net: the applicable net namespace
1518 *	@family: protocol family
1519 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1520 *	@prot: struct proto associated with this new sock instance
1521 *	@kern: is this to be a kernel socket?
1522 */
1523struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1524		      struct proto *prot, int kern)
1525{
1526	struct sock *sk;
1527
1528	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1529	if (sk) {
1530		sk->sk_family = family;
1531		/*
1532		 * See comment in struct sock definition to understand
1533		 * why we need sk_prot_creator -acme
1534		 */
1535		sk->sk_prot = sk->sk_prot_creator = prot;
1536		sk->sk_kern_sock = kern;
1537		sock_lock_init(sk);
1538		sk->sk_net_refcnt = kern ? 0 : 1;
1539		if (likely(sk->sk_net_refcnt)) {
1540			get_net(net);
1541			sock_inuse_add(net, 1);
1542		}
1543
1544		sock_net_set(sk, net);
1545		refcount_set(&sk->sk_wmem_alloc, 1);
1546
1547		mem_cgroup_sk_alloc(sk);
1548		cgroup_sk_alloc(&sk->sk_cgrp_data);
1549		sock_update_classid(&sk->sk_cgrp_data);
1550		sock_update_netprioidx(&sk->sk_cgrp_data);
1551	}
1552
1553	return sk;
1554}
1555EXPORT_SYMBOL(sk_alloc);
1556
1557/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1558 * grace period. This is the case for UDP sockets and TCP listeners.
1559 */
1560static void __sk_destruct(struct rcu_head *head)
1561{
1562	struct sock *sk = container_of(head, struct sock, sk_rcu);
1563	struct sk_filter *filter;
1564
1565	if (sk->sk_destruct)
1566		sk->sk_destruct(sk);
1567
1568	filter = rcu_dereference_check(sk->sk_filter,
1569				       refcount_read(&sk->sk_wmem_alloc) == 0);
1570	if (filter) {
1571		sk_filter_uncharge(sk, filter);
1572		RCU_INIT_POINTER(sk->sk_filter, NULL);
1573	}
1574	if (rcu_access_pointer(sk->sk_reuseport_cb))
1575		reuseport_detach_sock(sk);
1576
1577	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
 
1578
1579	if (atomic_read(&sk->sk_omem_alloc))
1580		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1581			 __func__, atomic_read(&sk->sk_omem_alloc));
1582
1583	if (sk->sk_frag.page) {
1584		put_page(sk->sk_frag.page);
1585		sk->sk_frag.page = NULL;
1586	}
1587
1588	if (sk->sk_peer_cred)
1589		put_cred(sk->sk_peer_cred);
1590	put_pid(sk->sk_peer_pid);
1591	if (likely(sk->sk_net_refcnt))
1592		put_net(sock_net(sk));
1593	sk_prot_free(sk->sk_prot_creator, sk);
1594}
1595
1596void sk_destruct(struct sock *sk)
1597{
1598	if (sock_flag(sk, SOCK_RCU_FREE))
1599		call_rcu(&sk->sk_rcu, __sk_destruct);
1600	else
1601		__sk_destruct(&sk->sk_rcu);
1602}
1603
1604static void __sk_free(struct sock *sk)
1605{
1606	if (likely(sk->sk_net_refcnt))
1607		sock_inuse_add(sock_net(sk), -1);
1608
1609	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1610		sock_diag_broadcast_destroy(sk);
1611	else
1612		sk_destruct(sk);
1613}
1614
1615void sk_free(struct sock *sk)
1616{
1617	/*
1618	 * We subtract one from sk_wmem_alloc and can know if
1619	 * some packets are still in some tx queue.
1620	 * If not null, sock_wfree() will call __sk_free(sk) later
1621	 */
1622	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1623		__sk_free(sk);
1624}
1625EXPORT_SYMBOL(sk_free);
1626
1627static void sk_init_common(struct sock *sk)
 
 
 
 
 
 
 
1628{
1629	skb_queue_head_init(&sk->sk_receive_queue);
1630	skb_queue_head_init(&sk->sk_write_queue);
1631	skb_queue_head_init(&sk->sk_error_queue);
1632
1633	rwlock_init(&sk->sk_callback_lock);
1634	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1635			af_rlock_keys + sk->sk_family,
1636			af_family_rlock_key_strings[sk->sk_family]);
1637	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1638			af_wlock_keys + sk->sk_family,
1639			af_family_wlock_key_strings[sk->sk_family]);
1640	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1641			af_elock_keys + sk->sk_family,
1642			af_family_elock_key_strings[sk->sk_family]);
1643	lockdep_set_class_and_name(&sk->sk_callback_lock,
1644			af_callback_keys + sk->sk_family,
1645			af_family_clock_key_strings[sk->sk_family]);
1646}
 
1647
1648/**
1649 *	sk_clone_lock - clone a socket, and lock its clone
1650 *	@sk: the socket to clone
1651 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1652 *
1653 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1654 */
1655struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1656{
1657	struct sock *newsk;
1658	bool is_charged = true;
1659
1660	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1661	if (newsk != NULL) {
1662		struct sk_filter *filter;
1663
1664		sock_copy(newsk, sk);
1665
1666		newsk->sk_prot_creator = sk->sk_prot;
1667
1668		/* SANITY */
1669		if (likely(newsk->sk_net_refcnt))
1670			get_net(sock_net(newsk));
1671		sk_node_init(&newsk->sk_node);
1672		sock_lock_init(newsk);
1673		bh_lock_sock(newsk);
1674		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1675		newsk->sk_backlog.len = 0;
1676
1677		atomic_set(&newsk->sk_rmem_alloc, 0);
1678		/*
1679		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1680		 */
1681		refcount_set(&newsk->sk_wmem_alloc, 1);
1682		atomic_set(&newsk->sk_omem_alloc, 0);
1683		sk_init_common(newsk);
 
 
 
 
 
 
 
 
 
 
1684
1685		newsk->sk_dst_cache	= NULL;
1686		newsk->sk_dst_pending_confirm = 0;
1687		newsk->sk_wmem_queued	= 0;
1688		newsk->sk_forward_alloc = 0;
1689		atomic_set(&newsk->sk_drops, 0);
1690		newsk->sk_send_head	= NULL;
1691		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1692		atomic_set(&newsk->sk_zckey, 0);
1693
1694		sock_reset_flag(newsk, SOCK_DONE);
1695		mem_cgroup_sk_alloc(newsk);
1696		cgroup_sk_alloc(&newsk->sk_cgrp_data);
1697
1698		rcu_read_lock();
1699		filter = rcu_dereference(sk->sk_filter);
1700		if (filter != NULL)
1701			/* though it's an empty new sock, the charging may fail
1702			 * if sysctl_optmem_max was changed between creation of
1703			 * original socket and cloning
1704			 */
1705			is_charged = sk_filter_charge(newsk, filter);
1706		RCU_INIT_POINTER(newsk->sk_filter, filter);
1707		rcu_read_unlock();
1708
1709		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1710			/* We need to make sure that we don't uncharge the new
1711			 * socket if we couldn't charge it in the first place
1712			 * as otherwise we uncharge the parent's filter.
1713			 */
1714			if (!is_charged)
1715				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1716			sk_free_unlock_clone(newsk);
1717			newsk = NULL;
1718			goto out;
1719		}
1720		RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1721
1722		newsk->sk_err	   = 0;
1723		newsk->sk_err_soft = 0;
1724		newsk->sk_priority = 0;
1725		newsk->sk_incoming_cpu = raw_smp_processor_id();
1726		atomic64_set(&newsk->sk_cookie, 0);
1727		if (likely(newsk->sk_net_refcnt))
1728			sock_inuse_add(sock_net(newsk), 1);
1729
1730		/*
1731		 * Before updating sk_refcnt, we must commit prior changes to memory
1732		 * (Documentation/RCU/rculist_nulls.txt for details)
1733		 */
1734		smp_wmb();
1735		refcount_set(&newsk->sk_refcnt, 2);
1736
1737		/*
1738		 * Increment the counter in the same struct proto as the master
1739		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1740		 * is the same as sk->sk_prot->socks, as this field was copied
1741		 * with memcpy).
1742		 *
1743		 * This _changes_ the previous behaviour, where
1744		 * tcp_create_openreq_child always was incrementing the
1745		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1746		 * to be taken into account in all callers. -acme
1747		 */
1748		sk_refcnt_debug_inc(newsk);
1749		sk_set_socket(newsk, NULL);
1750		newsk->sk_wq = NULL;
1751
1752		if (newsk->sk_prot->sockets_allocated)
1753			sk_sockets_allocated_inc(newsk);
1754
1755		if (sock_needs_netstamp(sk) &&
1756		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1757			net_enable_timestamp();
1758	}
1759out:
1760	return newsk;
1761}
1762EXPORT_SYMBOL_GPL(sk_clone_lock);
1763
1764void sk_free_unlock_clone(struct sock *sk)
1765{
1766	/* It is still raw copy of parent, so invalidate
1767	 * destructor and make plain sk_free() */
1768	sk->sk_destruct = NULL;
1769	bh_unlock_sock(sk);
1770	sk_free(sk);
1771}
1772EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1773
1774void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1775{
1776	u32 max_segs = 1;
1777
1778	sk_dst_set(sk, dst);
1779	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1780	if (sk->sk_route_caps & NETIF_F_GSO)
1781		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1782	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1783	if (sk_can_gso(sk)) {
1784		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1785			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1786		} else {
1787			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1788			sk->sk_gso_max_size = dst->dev->gso_max_size;
1789			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1790		}
1791	}
1792	sk->sk_gso_max_segs = max_segs;
1793}
1794EXPORT_SYMBOL_GPL(sk_setup_caps);
1795
 
 
 
 
 
 
 
 
 
 
 
 
 
1796/*
1797 *	Simple resource managers for sockets.
1798 */
1799
1800
1801/*
1802 * Write buffer destructor automatically called from kfree_skb.
1803 */
1804void sock_wfree(struct sk_buff *skb)
1805{
1806	struct sock *sk = skb->sk;
1807	unsigned int len = skb->truesize;
1808
1809	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1810		/*
1811		 * Keep a reference on sk_wmem_alloc, this will be released
1812		 * after sk_write_space() call
1813		 */
1814		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1815		sk->sk_write_space(sk);
1816		len = 1;
1817	}
1818	/*
1819	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1820	 * could not do because of in-flight packets
1821	 */
1822	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1823		__sk_free(sk);
1824}
1825EXPORT_SYMBOL(sock_wfree);
1826
1827/* This variant of sock_wfree() is used by TCP,
1828 * since it sets SOCK_USE_WRITE_QUEUE.
1829 */
1830void __sock_wfree(struct sk_buff *skb)
1831{
1832	struct sock *sk = skb->sk;
1833
1834	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1835		__sk_free(sk);
1836}
1837
1838void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1839{
1840	skb_orphan(skb);
1841	skb->sk = sk;
1842#ifdef CONFIG_INET
1843	if (unlikely(!sk_fullsock(sk))) {
1844		skb->destructor = sock_edemux;
1845		sock_hold(sk);
1846		return;
1847	}
1848#endif
1849	skb->destructor = sock_wfree;
1850	skb_set_hash_from_sk(skb, sk);
1851	/*
1852	 * We used to take a refcount on sk, but following operation
1853	 * is enough to guarantee sk_free() wont free this sock until
1854	 * all in-flight packets are completed
1855	 */
1856	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1857}
1858EXPORT_SYMBOL(skb_set_owner_w);
1859
1860/* This helper is used by netem, as it can hold packets in its
1861 * delay queue. We want to allow the owner socket to send more
1862 * packets, as if they were already TX completed by a typical driver.
1863 * But we also want to keep skb->sk set because some packet schedulers
1864 * rely on it (sch_fq for example).
1865 */
1866void skb_orphan_partial(struct sk_buff *skb)
1867{
1868	if (skb_is_tcp_pure_ack(skb))
1869		return;
1870
1871	if (skb->destructor == sock_wfree
1872#ifdef CONFIG_INET
1873	    || skb->destructor == tcp_wfree
1874#endif
1875		) {
1876		struct sock *sk = skb->sk;
1877
1878		if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1879			WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
1880			skb->destructor = sock_efree;
1881		}
1882	} else {
1883		skb_orphan(skb);
1884	}
1885}
1886EXPORT_SYMBOL(skb_orphan_partial);
1887
1888/*
1889 * Read buffer destructor automatically called from kfree_skb.
1890 */
1891void sock_rfree(struct sk_buff *skb)
1892{
1893	struct sock *sk = skb->sk;
1894	unsigned int len = skb->truesize;
1895
1896	atomic_sub(len, &sk->sk_rmem_alloc);
1897	sk_mem_uncharge(sk, len);
1898}
1899EXPORT_SYMBOL(sock_rfree);
1900
1901/*
1902 * Buffer destructor for skbs that are not used directly in read or write
1903 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1904 */
1905void sock_efree(struct sk_buff *skb)
1906{
1907	sock_put(skb->sk);
1908}
1909EXPORT_SYMBOL(sock_efree);
1910
1911kuid_t sock_i_uid(struct sock *sk)
1912{
1913	kuid_t uid;
1914
1915	read_lock_bh(&sk->sk_callback_lock);
1916	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1917	read_unlock_bh(&sk->sk_callback_lock);
1918	return uid;
1919}
1920EXPORT_SYMBOL(sock_i_uid);
1921
1922unsigned long sock_i_ino(struct sock *sk)
1923{
1924	unsigned long ino;
1925
1926	read_lock_bh(&sk->sk_callback_lock);
1927	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1928	read_unlock_bh(&sk->sk_callback_lock);
1929	return ino;
1930}
1931EXPORT_SYMBOL(sock_i_ino);
1932
1933/*
1934 * Allocate a skb from the socket's send buffer.
1935 */
1936struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1937			     gfp_t priority)
1938{
1939	if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1940		struct sk_buff *skb = alloc_skb(size, priority);
1941		if (skb) {
1942			skb_set_owner_w(skb, sk);
1943			return skb;
1944		}
1945	}
1946	return NULL;
1947}
1948EXPORT_SYMBOL(sock_wmalloc);
1949
1950static void sock_ofree(struct sk_buff *skb)
1951{
1952	struct sock *sk = skb->sk;
1953
1954	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
1955}
1956
1957struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1958			     gfp_t priority)
1959{
1960	struct sk_buff *skb;
1961
1962	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1963	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
1964	    sysctl_optmem_max)
1965		return NULL;
1966
1967	skb = alloc_skb(size, priority);
1968	if (!skb)
1969		return NULL;
1970
1971	atomic_add(skb->truesize, &sk->sk_omem_alloc);
1972	skb->sk = sk;
1973	skb->destructor = sock_ofree;
1974	return skb;
1975}
1976
1977/*
1978 * Allocate a memory block from the socket's option memory buffer.
1979 */
1980void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1981{
1982	if ((unsigned int)size <= sysctl_optmem_max &&
1983	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1984		void *mem;
1985		/* First do the add, to avoid the race if kmalloc
1986		 * might sleep.
1987		 */
1988		atomic_add(size, &sk->sk_omem_alloc);
1989		mem = kmalloc(size, priority);
1990		if (mem)
1991			return mem;
1992		atomic_sub(size, &sk->sk_omem_alloc);
1993	}
1994	return NULL;
1995}
1996EXPORT_SYMBOL(sock_kmalloc);
1997
1998/* Free an option memory block. Note, we actually want the inline
1999 * here as this allows gcc to detect the nullify and fold away the
2000 * condition entirely.
2001 */
2002static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2003				  const bool nullify)
2004{
2005	if (WARN_ON_ONCE(!mem))
2006		return;
2007	if (nullify)
2008		kzfree(mem);
2009	else
2010		kfree(mem);
2011	atomic_sub(size, &sk->sk_omem_alloc);
2012}
2013
2014void sock_kfree_s(struct sock *sk, void *mem, int size)
2015{
2016	__sock_kfree_s(sk, mem, size, false);
2017}
2018EXPORT_SYMBOL(sock_kfree_s);
2019
2020void sock_kzfree_s(struct sock *sk, void *mem, int size)
2021{
2022	__sock_kfree_s(sk, mem, size, true);
2023}
2024EXPORT_SYMBOL(sock_kzfree_s);
2025
2026/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2027   I think, these locks should be removed for datagram sockets.
2028 */
2029static long sock_wait_for_wmem(struct sock *sk, long timeo)
2030{
2031	DEFINE_WAIT(wait);
2032
2033	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2034	for (;;) {
2035		if (!timeo)
2036			break;
2037		if (signal_pending(current))
2038			break;
2039		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2040		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2041		if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2042			break;
2043		if (sk->sk_shutdown & SEND_SHUTDOWN)
2044			break;
2045		if (sk->sk_err)
2046			break;
2047		timeo = schedule_timeout(timeo);
2048	}
2049	finish_wait(sk_sleep(sk), &wait);
2050	return timeo;
2051}
2052
2053
2054/*
2055 *	Generic send/receive buffer handlers
2056 */
2057
2058struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2059				     unsigned long data_len, int noblock,
2060				     int *errcode, int max_page_order)
2061{
2062	struct sk_buff *skb;
 
2063	long timeo;
2064	int err;
2065
 
 
 
 
2066	timeo = sock_sndtimeo(sk, noblock);
2067	for (;;) {
2068		err = sock_error(sk);
2069		if (err != 0)
2070			goto failure;
2071
2072		err = -EPIPE;
2073		if (sk->sk_shutdown & SEND_SHUTDOWN)
2074			goto failure;
2075
2076		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2077			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2078
2079		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 
 
 
 
 
 
2080		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2081		err = -EAGAIN;
2082		if (!timeo)
2083			goto failure;
2084		if (signal_pending(current))
2085			goto interrupted;
2086		timeo = sock_wait_for_wmem(sk, timeo);
2087	}
2088	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2089				   errcode, sk->sk_allocation);
2090	if (skb)
2091		skb_set_owner_w(skb, sk);
2092	return skb;
2093
2094interrupted:
2095	err = sock_intr_errno(timeo);
2096failure:
2097	*errcode = err;
2098	return NULL;
2099}
2100EXPORT_SYMBOL(sock_alloc_send_pskb);
2101
2102struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2103				    int noblock, int *errcode)
2104{
2105	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2106}
2107EXPORT_SYMBOL(sock_alloc_send_skb);
2108
2109int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2110		     struct sockcm_cookie *sockc)
2111{
2112	u32 tsflags;
2113
2114	switch (cmsg->cmsg_type) {
2115	case SO_MARK:
2116		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2117			return -EPERM;
2118		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2119			return -EINVAL;
2120		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2121		break;
2122	case SO_TIMESTAMPING:
2123		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2124			return -EINVAL;
2125
2126		tsflags = *(u32 *)CMSG_DATA(cmsg);
2127		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2128			return -EINVAL;
2129
2130		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2131		sockc->tsflags |= tsflags;
2132		break;
2133	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2134	case SCM_RIGHTS:
2135	case SCM_CREDENTIALS:
2136		break;
2137	default:
2138		return -EINVAL;
2139	}
2140	return 0;
2141}
2142EXPORT_SYMBOL(__sock_cmsg_send);
2143
2144int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2145		   struct sockcm_cookie *sockc)
2146{
2147	struct cmsghdr *cmsg;
2148	int ret;
2149
2150	for_each_cmsghdr(cmsg, msg) {
2151		if (!CMSG_OK(msg, cmsg))
2152			return -EINVAL;
2153		if (cmsg->cmsg_level != SOL_SOCKET)
2154			continue;
2155		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2156		if (ret)
2157			return ret;
2158	}
2159	return 0;
2160}
2161EXPORT_SYMBOL(sock_cmsg_send);
2162
2163static void sk_enter_memory_pressure(struct sock *sk)
2164{
2165	if (!sk->sk_prot->enter_memory_pressure)
2166		return;
2167
2168	sk->sk_prot->enter_memory_pressure(sk);
2169}
2170
2171static void sk_leave_memory_pressure(struct sock *sk)
2172{
2173	if (sk->sk_prot->leave_memory_pressure) {
2174		sk->sk_prot->leave_memory_pressure(sk);
2175	} else {
2176		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2177
2178		if (memory_pressure && *memory_pressure)
2179			*memory_pressure = 0;
2180	}
2181}
2182
2183/* On 32bit arches, an skb frag is limited to 2^15 */
2184#define SKB_FRAG_PAGE_ORDER	get_order(32768)
2185
2186/**
2187 * skb_page_frag_refill - check that a page_frag contains enough room
2188 * @sz: minimum size of the fragment we want to get
2189 * @pfrag: pointer to page_frag
2190 * @gfp: priority for memory allocation
2191 *
2192 * Note: While this allocator tries to use high order pages, there is
2193 * no guarantee that allocations succeed. Therefore, @sz MUST be
2194 * less or equal than PAGE_SIZE.
2195 */
2196bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2197{
2198	if (pfrag->page) {
2199		if (page_ref_count(pfrag->page) == 1) {
2200			pfrag->offset = 0;
2201			return true;
2202		}
2203		if (pfrag->offset + sz <= pfrag->size)
2204			return true;
2205		put_page(pfrag->page);
2206	}
2207
2208	pfrag->offset = 0;
2209	if (SKB_FRAG_PAGE_ORDER) {
2210		/* Avoid direct reclaim but allow kswapd to wake */
2211		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2212					  __GFP_COMP | __GFP_NOWARN |
2213					  __GFP_NORETRY,
2214					  SKB_FRAG_PAGE_ORDER);
2215		if (likely(pfrag->page)) {
2216			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2217			return true;
2218		}
2219	}
2220	pfrag->page = alloc_page(gfp);
2221	if (likely(pfrag->page)) {
2222		pfrag->size = PAGE_SIZE;
2223		return true;
2224	}
2225	return false;
2226}
2227EXPORT_SYMBOL(skb_page_frag_refill);
2228
2229bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2230{
2231	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2232		return true;
2233
2234	sk_enter_memory_pressure(sk);
2235	sk_stream_moderate_sndbuf(sk);
2236	return false;
2237}
2238EXPORT_SYMBOL(sk_page_frag_refill);
2239
2240int sk_alloc_sg(struct sock *sk, int len, struct scatterlist *sg,
2241		int sg_start, int *sg_curr_index, unsigned int *sg_curr_size,
2242		int first_coalesce)
2243{
2244	int sg_curr = *sg_curr_index, use = 0, rc = 0;
2245	unsigned int size = *sg_curr_size;
2246	struct page_frag *pfrag;
2247	struct scatterlist *sge;
2248
2249	len -= size;
2250	pfrag = sk_page_frag(sk);
2251
2252	while (len > 0) {
2253		unsigned int orig_offset;
2254
2255		if (!sk_page_frag_refill(sk, pfrag)) {
2256			rc = -ENOMEM;
2257			goto out;
2258		}
2259
2260		use = min_t(int, len, pfrag->size - pfrag->offset);
2261
2262		if (!sk_wmem_schedule(sk, use)) {
2263			rc = -ENOMEM;
2264			goto out;
2265		}
2266
2267		sk_mem_charge(sk, use);
2268		size += use;
2269		orig_offset = pfrag->offset;
2270		pfrag->offset += use;
2271
2272		sge = sg + sg_curr - 1;
2273		if (sg_curr > first_coalesce && sg_page(sg) == pfrag->page &&
2274		    sg->offset + sg->length == orig_offset) {
2275			sg->length += use;
2276		} else {
2277			sge = sg + sg_curr;
2278			sg_unmark_end(sge);
2279			sg_set_page(sge, pfrag->page, use, orig_offset);
2280			get_page(pfrag->page);
2281			sg_curr++;
2282
2283			if (sg_curr == MAX_SKB_FRAGS)
2284				sg_curr = 0;
2285
2286			if (sg_curr == sg_start) {
2287				rc = -ENOSPC;
2288				break;
2289			}
2290		}
2291
2292		len -= use;
2293	}
2294out:
2295	*sg_curr_size = size;
2296	*sg_curr_index = sg_curr;
2297	return rc;
2298}
2299EXPORT_SYMBOL(sk_alloc_sg);
2300
2301static void __lock_sock(struct sock *sk)
2302	__releases(&sk->sk_lock.slock)
2303	__acquires(&sk->sk_lock.slock)
2304{
2305	DEFINE_WAIT(wait);
2306
2307	for (;;) {
2308		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2309					TASK_UNINTERRUPTIBLE);
2310		spin_unlock_bh(&sk->sk_lock.slock);
2311		schedule();
2312		spin_lock_bh(&sk->sk_lock.slock);
2313		if (!sock_owned_by_user(sk))
2314			break;
2315	}
2316	finish_wait(&sk->sk_lock.wq, &wait);
2317}
2318
2319static void __release_sock(struct sock *sk)
2320	__releases(&sk->sk_lock.slock)
2321	__acquires(&sk->sk_lock.slock)
2322{
2323	struct sk_buff *skb, *next;
2324
2325	while ((skb = sk->sk_backlog.head) != NULL) {
2326		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
 
2327
2328		spin_unlock_bh(&sk->sk_lock.slock);
 
2329
2330		do {
2331			next = skb->next;
2332			prefetch(next);
2333			WARN_ON_ONCE(skb_dst_is_noref(skb));
2334			skb->next = NULL;
2335			sk_backlog_rcv(sk, skb);
2336
2337			cond_resched();
 
 
 
 
 
 
2338
2339			skb = next;
2340		} while (skb != NULL);
2341
2342		spin_lock_bh(&sk->sk_lock.slock);
2343	}
2344
2345	/*
2346	 * Doing the zeroing here guarantee we can not loop forever
2347	 * while a wild producer attempts to flood us.
2348	 */
2349	sk->sk_backlog.len = 0;
2350}
2351
2352void __sk_flush_backlog(struct sock *sk)
2353{
2354	spin_lock_bh(&sk->sk_lock.slock);
2355	__release_sock(sk);
2356	spin_unlock_bh(&sk->sk_lock.slock);
2357}
2358
2359/**
2360 * sk_wait_data - wait for data to arrive at sk_receive_queue
2361 * @sk:    sock to wait on
2362 * @timeo: for how long
2363 * @skb:   last skb seen on sk_receive_queue
2364 *
2365 * Now socket state including sk->sk_err is changed only under lock,
2366 * hence we may omit checks after joining wait queue.
2367 * We check receive queue before schedule() only as optimization;
2368 * it is very likely that release_sock() added new data.
2369 */
2370int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2371{
2372	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2373	int rc;
 
2374
2375	add_wait_queue(sk_sleep(sk), &wait);
2376	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2377	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2378	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2379	remove_wait_queue(sk_sleep(sk), &wait);
2380	return rc;
2381}
2382EXPORT_SYMBOL(sk_wait_data);
2383
2384/**
2385 *	__sk_mem_raise_allocated - increase memory_allocated
2386 *	@sk: socket
2387 *	@size: memory size to allocate
2388 *	@amt: pages to allocate
2389 *	@kind: allocation type
2390 *
2391 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
 
 
2392 */
2393int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2394{
2395	struct proto *prot = sk->sk_prot;
2396	long allocated = sk_memory_allocated_add(sk, amt);
 
2397
2398	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2399	    !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2400		goto suppress_allocation;
2401
2402	/* Under limit. */
2403	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2404		sk_leave_memory_pressure(sk);
 
2405		return 1;
2406	}
2407
2408	/* Under pressure. */
2409	if (allocated > sk_prot_mem_limits(sk, 1))
2410		sk_enter_memory_pressure(sk);
 
2411
2412	/* Over hard limit. */
2413	if (allocated > sk_prot_mem_limits(sk, 2))
2414		goto suppress_allocation;
2415
2416	/* guarantee minimum buffer size under pressure */
2417	if (kind == SK_MEM_RECV) {
2418		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2419			return 1;
2420
2421	} else { /* SK_MEM_SEND */
2422		int wmem0 = sk_get_wmem0(sk, prot);
2423
2424		if (sk->sk_type == SOCK_STREAM) {
2425			if (sk->sk_wmem_queued < wmem0)
2426				return 1;
2427		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
 
2428				return 1;
2429		}
2430	}
2431
2432	if (sk_has_memory_pressure(sk)) {
2433		int alloc;
2434
2435		if (!sk_under_memory_pressure(sk))
2436			return 1;
2437		alloc = sk_sockets_allocated_read_positive(sk);
2438		if (sk_prot_mem_limits(sk, 2) > alloc *
2439		    sk_mem_pages(sk->sk_wmem_queued +
2440				 atomic_read(&sk->sk_rmem_alloc) +
2441				 sk->sk_forward_alloc))
2442			return 1;
2443	}
2444
2445suppress_allocation:
2446
2447	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2448		sk_stream_moderate_sndbuf(sk);
2449
2450		/* Fail only if socket is _under_ its sndbuf.
2451		 * In this case we cannot block, so that we have to fail.
2452		 */
2453		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2454			return 1;
2455	}
2456
2457	trace_sock_exceed_buf_limit(sk, prot, allocated);
2458
2459	sk_memory_allocated_sub(sk, amt);
2460
2461	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2462		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2463
2464	return 0;
2465}
2466EXPORT_SYMBOL(__sk_mem_raise_allocated);
2467
2468/**
2469 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2470 *	@sk: socket
2471 *	@size: memory size to allocate
2472 *	@kind: allocation type
2473 *
2474 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2475 *	rmem allocation. This function assumes that protocols which have
2476 *	memory_pressure use sk_wmem_queued as write buffer accounting.
2477 */
2478int __sk_mem_schedule(struct sock *sk, int size, int kind)
2479{
2480	int ret, amt = sk_mem_pages(size);
2481
2482	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2483	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2484	if (!ret)
2485		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2486	return ret;
2487}
2488EXPORT_SYMBOL(__sk_mem_schedule);
2489
2490/**
2491 *	__sk_mem_reduce_allocated - reclaim memory_allocated
2492 *	@sk: socket
2493 *	@amount: number of quanta
2494 *
2495 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2496 */
2497void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2498{
2499	sk_memory_allocated_sub(sk, amount);
2500
2501	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2502		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2503
2504	if (sk_under_memory_pressure(sk) &&
2505	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2506		sk_leave_memory_pressure(sk);
2507}
2508EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2509
2510/**
2511 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2512 *	@sk: socket
2513 *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2514 */
2515void __sk_mem_reclaim(struct sock *sk, int amount)
2516{
2517	amount >>= SK_MEM_QUANTUM_SHIFT;
2518	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2519	__sk_mem_reduce_allocated(sk, amount);
2520}
2521EXPORT_SYMBOL(__sk_mem_reclaim);
2522
2523int sk_set_peek_off(struct sock *sk, int val)
2524{
2525	sk->sk_peek_off = val;
2526	return 0;
2527}
2528EXPORT_SYMBOL_GPL(sk_set_peek_off);
2529
2530/*
2531 * Set of default routines for initialising struct proto_ops when
2532 * the protocol does not support a particular function. In certain
2533 * cases where it makes no sense for a protocol to have a "do nothing"
2534 * function, some default processing is provided.
2535 */
2536
2537int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2538{
2539	return -EOPNOTSUPP;
2540}
2541EXPORT_SYMBOL(sock_no_bind);
2542
2543int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2544		    int len, int flags)
2545{
2546	return -EOPNOTSUPP;
2547}
2548EXPORT_SYMBOL(sock_no_connect);
2549
2550int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2551{
2552	return -EOPNOTSUPP;
2553}
2554EXPORT_SYMBOL(sock_no_socketpair);
2555
2556int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2557		   bool kern)
2558{
2559	return -EOPNOTSUPP;
2560}
2561EXPORT_SYMBOL(sock_no_accept);
2562
2563int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2564		    int peer)
2565{
2566	return -EOPNOTSUPP;
2567}
2568EXPORT_SYMBOL(sock_no_getname);
2569
2570__poll_t sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2571{
2572	return 0;
2573}
2574EXPORT_SYMBOL(sock_no_poll);
2575
2576int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2577{
2578	return -EOPNOTSUPP;
2579}
2580EXPORT_SYMBOL(sock_no_ioctl);
2581
2582int sock_no_listen(struct socket *sock, int backlog)
2583{
2584	return -EOPNOTSUPP;
2585}
2586EXPORT_SYMBOL(sock_no_listen);
2587
2588int sock_no_shutdown(struct socket *sock, int how)
2589{
2590	return -EOPNOTSUPP;
2591}
2592EXPORT_SYMBOL(sock_no_shutdown);
2593
2594int sock_no_setsockopt(struct socket *sock, int level, int optname,
2595		    char __user *optval, unsigned int optlen)
2596{
2597	return -EOPNOTSUPP;
2598}
2599EXPORT_SYMBOL(sock_no_setsockopt);
2600
2601int sock_no_getsockopt(struct socket *sock, int level, int optname,
2602		    char __user *optval, int __user *optlen)
2603{
2604	return -EOPNOTSUPP;
2605}
2606EXPORT_SYMBOL(sock_no_getsockopt);
2607
2608int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
 
2609{
2610	return -EOPNOTSUPP;
2611}
2612EXPORT_SYMBOL(sock_no_sendmsg);
2613
2614int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2615{
2616	return -EOPNOTSUPP;
2617}
2618EXPORT_SYMBOL(sock_no_sendmsg_locked);
2619
2620int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2621		    int flags)
2622{
2623	return -EOPNOTSUPP;
2624}
2625EXPORT_SYMBOL(sock_no_recvmsg);
2626
2627int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2628{
2629	/* Mirror missing mmap method error code */
2630	return -ENODEV;
2631}
2632EXPORT_SYMBOL(sock_no_mmap);
2633
2634ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2635{
2636	ssize_t res;
2637	struct msghdr msg = {.msg_flags = flags};
2638	struct kvec iov;
2639	char *kaddr = kmap(page);
2640	iov.iov_base = kaddr + offset;
2641	iov.iov_len = size;
2642	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2643	kunmap(page);
2644	return res;
2645}
2646EXPORT_SYMBOL(sock_no_sendpage);
2647
2648ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2649				int offset, size_t size, int flags)
2650{
2651	ssize_t res;
2652	struct msghdr msg = {.msg_flags = flags};
2653	struct kvec iov;
2654	char *kaddr = kmap(page);
2655
2656	iov.iov_base = kaddr + offset;
2657	iov.iov_len = size;
2658	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2659	kunmap(page);
2660	return res;
2661}
2662EXPORT_SYMBOL(sock_no_sendpage_locked);
2663
2664/*
2665 *	Default Socket Callbacks
2666 */
2667
2668static void sock_def_wakeup(struct sock *sk)
2669{
2670	struct socket_wq *wq;
2671
2672	rcu_read_lock();
2673	wq = rcu_dereference(sk->sk_wq);
2674	if (skwq_has_sleeper(wq))
2675		wake_up_interruptible_all(&wq->wait);
2676	rcu_read_unlock();
2677}
2678
2679static void sock_def_error_report(struct sock *sk)
2680{
2681	struct socket_wq *wq;
2682
2683	rcu_read_lock();
2684	wq = rcu_dereference(sk->sk_wq);
2685	if (skwq_has_sleeper(wq))
2686		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2687	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2688	rcu_read_unlock();
2689}
2690
2691static void sock_def_readable(struct sock *sk)
2692{
2693	struct socket_wq *wq;
2694
2695	rcu_read_lock();
2696	wq = rcu_dereference(sk->sk_wq);
2697	if (skwq_has_sleeper(wq))
2698		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2699						EPOLLRDNORM | EPOLLRDBAND);
2700	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2701	rcu_read_unlock();
2702}
2703
2704static void sock_def_write_space(struct sock *sk)
2705{
2706	struct socket_wq *wq;
2707
2708	rcu_read_lock();
2709
2710	/* Do not wake up a writer until he can make "significant"
2711	 * progress.  --DaveM
2712	 */
2713	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2714		wq = rcu_dereference(sk->sk_wq);
2715		if (skwq_has_sleeper(wq))
2716			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2717						EPOLLWRNORM | EPOLLWRBAND);
2718
2719		/* Should agree with poll, otherwise some programs break */
2720		if (sock_writeable(sk))
2721			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2722	}
2723
2724	rcu_read_unlock();
2725}
2726
2727static void sock_def_destruct(struct sock *sk)
2728{
 
2729}
2730
2731void sk_send_sigurg(struct sock *sk)
2732{
2733	if (sk->sk_socket && sk->sk_socket->file)
2734		if (send_sigurg(&sk->sk_socket->file->f_owner))
2735			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2736}
2737EXPORT_SYMBOL(sk_send_sigurg);
2738
2739void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2740		    unsigned long expires)
2741{
2742	if (!mod_timer(timer, expires))
2743		sock_hold(sk);
2744}
2745EXPORT_SYMBOL(sk_reset_timer);
2746
2747void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2748{
2749	if (del_timer(timer))
2750		__sock_put(sk);
2751}
2752EXPORT_SYMBOL(sk_stop_timer);
2753
2754void sock_init_data(struct socket *sock, struct sock *sk)
2755{
2756	sk_init_common(sk);
 
 
 
 
 
 
2757	sk->sk_send_head	=	NULL;
2758
2759	timer_setup(&sk->sk_timer, NULL, 0);
2760
2761	sk->sk_allocation	=	GFP_KERNEL;
2762	sk->sk_rcvbuf		=	sysctl_rmem_default;
2763	sk->sk_sndbuf		=	sysctl_wmem_default;
2764	sk->sk_state		=	TCP_CLOSE;
2765	sk_set_socket(sk, sock);
2766
2767	sock_set_flag(sk, SOCK_ZAPPED);
2768
2769	if (sock) {
2770		sk->sk_type	=	sock->type;
2771		sk->sk_wq	=	sock->wq;
2772		sock->sk	=	sk;
2773		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2774	} else {
2775		sk->sk_wq	=	NULL;
2776		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2777	}
2778
 
2779	rwlock_init(&sk->sk_callback_lock);
2780	if (sk->sk_kern_sock)
2781		lockdep_set_class_and_name(
2782			&sk->sk_callback_lock,
2783			af_kern_callback_keys + sk->sk_family,
2784			af_family_kern_clock_key_strings[sk->sk_family]);
2785	else
2786		lockdep_set_class_and_name(
2787			&sk->sk_callback_lock,
2788			af_callback_keys + sk->sk_family,
2789			af_family_clock_key_strings[sk->sk_family]);
2790
2791	sk->sk_state_change	=	sock_def_wakeup;
2792	sk->sk_data_ready	=	sock_def_readable;
2793	sk->sk_write_space	=	sock_def_write_space;
2794	sk->sk_error_report	=	sock_def_error_report;
2795	sk->sk_destruct		=	sock_def_destruct;
2796
2797	sk->sk_frag.page	=	NULL;
2798	sk->sk_frag.offset	=	0;
2799	sk->sk_peek_off		=	-1;
2800
2801	sk->sk_peer_pid 	=	NULL;
2802	sk->sk_peer_cred	=	NULL;
2803	sk->sk_write_pending	=	0;
2804	sk->sk_rcvlowat		=	1;
2805	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2806	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2807
2808	sk->sk_stamp = SK_DEFAULT_STAMP;
2809	atomic_set(&sk->sk_zckey, 0);
2810
2811#ifdef CONFIG_NET_RX_BUSY_POLL
2812	sk->sk_napi_id		=	0;
2813	sk->sk_ll_usec		=	sysctl_net_busy_read;
2814#endif
2815
2816	sk->sk_max_pacing_rate = ~0U;
2817	sk->sk_pacing_rate = ~0U;
2818	sk->sk_pacing_shift = 10;
2819	sk->sk_incoming_cpu = -1;
2820	/*
2821	 * Before updating sk_refcnt, we must commit prior changes to memory
2822	 * (Documentation/RCU/rculist_nulls.txt for details)
2823	 */
2824	smp_wmb();
2825	refcount_set(&sk->sk_refcnt, 1);
2826	atomic_set(&sk->sk_drops, 0);
2827}
2828EXPORT_SYMBOL(sock_init_data);
2829
2830void lock_sock_nested(struct sock *sk, int subclass)
2831{
2832	might_sleep();
2833	spin_lock_bh(&sk->sk_lock.slock);
2834	if (sk->sk_lock.owned)
2835		__lock_sock(sk);
2836	sk->sk_lock.owned = 1;
2837	spin_unlock(&sk->sk_lock.slock);
2838	/*
2839	 * The sk_lock has mutex_lock() semantics here:
2840	 */
2841	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2842	local_bh_enable();
2843}
2844EXPORT_SYMBOL(lock_sock_nested);
2845
2846void release_sock(struct sock *sk)
2847{
 
 
 
 
 
2848	spin_lock_bh(&sk->sk_lock.slock);
2849	if (sk->sk_backlog.tail)
2850		__release_sock(sk);
2851
2852	/* Warning : release_cb() might need to release sk ownership,
2853	 * ie call sock_release_ownership(sk) before us.
2854	 */
2855	if (sk->sk_prot->release_cb)
2856		sk->sk_prot->release_cb(sk);
2857
2858	sock_release_ownership(sk);
2859	if (waitqueue_active(&sk->sk_lock.wq))
2860		wake_up(&sk->sk_lock.wq);
2861	spin_unlock_bh(&sk->sk_lock.slock);
2862}
2863EXPORT_SYMBOL(release_sock);
2864
2865/**
2866 * lock_sock_fast - fast version of lock_sock
2867 * @sk: socket
2868 *
2869 * This version should be used for very small section, where process wont block
2870 * return false if fast path is taken:
2871 *
2872 *   sk_lock.slock locked, owned = 0, BH disabled
2873 *
2874 * return true if slow path is taken:
2875 *
2876 *   sk_lock.slock unlocked, owned = 1, BH enabled
2877 */
2878bool lock_sock_fast(struct sock *sk)
2879{
2880	might_sleep();
2881	spin_lock_bh(&sk->sk_lock.slock);
2882
2883	if (!sk->sk_lock.owned)
2884		/*
2885		 * Note : We must disable BH
2886		 */
2887		return false;
2888
2889	__lock_sock(sk);
2890	sk->sk_lock.owned = 1;
2891	spin_unlock(&sk->sk_lock.slock);
2892	/*
2893	 * The sk_lock has mutex_lock() semantics here:
2894	 */
2895	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2896	local_bh_enable();
2897	return true;
2898}
2899EXPORT_SYMBOL(lock_sock_fast);
2900
2901int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2902{
2903	struct timeval tv;
2904	if (!sock_flag(sk, SOCK_TIMESTAMP))
2905		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2906	tv = ktime_to_timeval(sk->sk_stamp);
2907	if (tv.tv_sec == -1)
2908		return -ENOENT;
2909	if (tv.tv_sec == 0) {
2910		sk->sk_stamp = ktime_get_real();
2911		tv = ktime_to_timeval(sk->sk_stamp);
2912	}
2913	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2914}
2915EXPORT_SYMBOL(sock_get_timestamp);
2916
2917int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2918{
2919	struct timespec ts;
2920	if (!sock_flag(sk, SOCK_TIMESTAMP))
2921		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2922	ts = ktime_to_timespec(sk->sk_stamp);
2923	if (ts.tv_sec == -1)
2924		return -ENOENT;
2925	if (ts.tv_sec == 0) {
2926		sk->sk_stamp = ktime_get_real();
2927		ts = ktime_to_timespec(sk->sk_stamp);
2928	}
2929	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2930}
2931EXPORT_SYMBOL(sock_get_timestampns);
2932
2933void sock_enable_timestamp(struct sock *sk, int flag)
2934{
2935	if (!sock_flag(sk, flag)) {
2936		unsigned long previous_flags = sk->sk_flags;
2937
2938		sock_set_flag(sk, flag);
2939		/*
2940		 * we just set one of the two flags which require net
2941		 * time stamping, but time stamping might have been on
2942		 * already because of the other one
2943		 */
2944		if (sock_needs_netstamp(sk) &&
2945		    !(previous_flags & SK_FLAGS_TIMESTAMP))
 
 
2946			net_enable_timestamp();
2947	}
2948}
2949
2950int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2951		       int level, int type)
2952{
2953	struct sock_exterr_skb *serr;
2954	struct sk_buff *skb;
2955	int copied, err;
2956
2957	err = -EAGAIN;
2958	skb = sock_dequeue_err_skb(sk);
2959	if (skb == NULL)
2960		goto out;
2961
2962	copied = skb->len;
2963	if (copied > len) {
2964		msg->msg_flags |= MSG_TRUNC;
2965		copied = len;
2966	}
2967	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2968	if (err)
2969		goto out_free_skb;
2970
2971	sock_recv_timestamp(msg, sk, skb);
2972
2973	serr = SKB_EXT_ERR(skb);
2974	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2975
2976	msg->msg_flags |= MSG_ERRQUEUE;
2977	err = copied;
2978
2979out_free_skb:
2980	kfree_skb(skb);
2981out:
2982	return err;
2983}
2984EXPORT_SYMBOL(sock_recv_errqueue);
2985
2986/*
2987 *	Get a socket option on an socket.
2988 *
2989 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2990 *	asynchronous errors should be reported by getsockopt. We assume
2991 *	this means if you specify SO_ERROR (otherwise whats the point of it).
2992 */
2993int sock_common_getsockopt(struct socket *sock, int level, int optname,
2994			   char __user *optval, int __user *optlen)
2995{
2996	struct sock *sk = sock->sk;
2997
2998	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2999}
3000EXPORT_SYMBOL(sock_common_getsockopt);
3001
3002#ifdef CONFIG_COMPAT
3003int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3004				  char __user *optval, int __user *optlen)
3005{
3006	struct sock *sk = sock->sk;
3007
3008	if (sk->sk_prot->compat_getsockopt != NULL)
3009		return sk->sk_prot->compat_getsockopt(sk, level, optname,
3010						      optval, optlen);
3011	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3012}
3013EXPORT_SYMBOL(compat_sock_common_getsockopt);
3014#endif
3015
3016int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3017			int flags)
3018{
3019	struct sock *sk = sock->sk;
3020	int addr_len = 0;
3021	int err;
3022
3023	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3024				   flags & ~MSG_DONTWAIT, &addr_len);
3025	if (err >= 0)
3026		msg->msg_namelen = addr_len;
3027	return err;
3028}
3029EXPORT_SYMBOL(sock_common_recvmsg);
3030
3031/*
3032 *	Set socket options on an inet socket.
3033 */
3034int sock_common_setsockopt(struct socket *sock, int level, int optname,
3035			   char __user *optval, unsigned int optlen)
3036{
3037	struct sock *sk = sock->sk;
3038
3039	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3040}
3041EXPORT_SYMBOL(sock_common_setsockopt);
3042
3043#ifdef CONFIG_COMPAT
3044int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3045				  char __user *optval, unsigned int optlen)
3046{
3047	struct sock *sk = sock->sk;
3048
3049	if (sk->sk_prot->compat_setsockopt != NULL)
3050		return sk->sk_prot->compat_setsockopt(sk, level, optname,
3051						      optval, optlen);
3052	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3053}
3054EXPORT_SYMBOL(compat_sock_common_setsockopt);
3055#endif
3056
3057void sk_common_release(struct sock *sk)
3058{
3059	if (sk->sk_prot->destroy)
3060		sk->sk_prot->destroy(sk);
3061
3062	/*
3063	 * Observation: when sock_common_release is called, processes have
3064	 * no access to socket. But net still has.
3065	 * Step one, detach it from networking:
3066	 *
3067	 * A. Remove from hash tables.
3068	 */
3069
3070	sk->sk_prot->unhash(sk);
3071
3072	/*
3073	 * In this point socket cannot receive new packets, but it is possible
3074	 * that some packets are in flight because some CPU runs receiver and
3075	 * did hash table lookup before we unhashed socket. They will achieve
3076	 * receive queue and will be purged by socket destructor.
3077	 *
3078	 * Also we still have packets pending on receive queue and probably,
3079	 * our own packets waiting in device queues. sock_destroy will drain
3080	 * receive queue, but transmitted packets will delay socket destruction
3081	 * until the last reference will be released.
3082	 */
3083
3084	sock_orphan(sk);
3085
3086	xfrm_sk_free_policy(sk);
3087
3088	sk_refcnt_debug_release(sk);
3089
3090	sock_put(sk);
3091}
3092EXPORT_SYMBOL(sk_common_release);
3093
3094void sk_get_meminfo(const struct sock *sk, u32 *mem)
3095{
3096	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3097
3098	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3099	mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3100	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3101	mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3102	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3103	mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3104	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3105	mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3106	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3107}
3108
3109#ifdef CONFIG_PROC_FS
3110#define PROTO_INUSE_NR	64	/* should be enough for the first time */
3111struct prot_inuse {
3112	int val[PROTO_INUSE_NR];
3113};
3114
3115static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3116
 
3117void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3118{
3119	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3120}
3121EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3122
3123int sock_prot_inuse_get(struct net *net, struct proto *prot)
3124{
3125	int cpu, idx = prot->inuse_idx;
3126	int res = 0;
3127
3128	for_each_possible_cpu(cpu)
3129		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3130
3131	return res >= 0 ? res : 0;
3132}
3133EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3134
3135static void sock_inuse_add(struct net *net, int val)
3136{
3137	this_cpu_add(*net->core.sock_inuse, val);
3138}
3139
3140int sock_inuse_get(struct net *net)
3141{
3142	int cpu, res = 0;
3143
3144	for_each_possible_cpu(cpu)
3145		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3146
3147	return res;
3148}
3149
3150EXPORT_SYMBOL_GPL(sock_inuse_get);
3151
3152static int __net_init sock_inuse_init_net(struct net *net)
3153{
3154	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3155	if (net->core.prot_inuse == NULL)
3156		return -ENOMEM;
3157
3158	net->core.sock_inuse = alloc_percpu(int);
3159	if (net->core.sock_inuse == NULL)
3160		goto out;
3161
3162	return 0;
3163
3164out:
3165	free_percpu(net->core.prot_inuse);
3166	return -ENOMEM;
3167}
3168
3169static void __net_exit sock_inuse_exit_net(struct net *net)
3170{
3171	free_percpu(net->core.prot_inuse);
3172	free_percpu(net->core.sock_inuse);
3173}
3174
3175static struct pernet_operations net_inuse_ops = {
3176	.init = sock_inuse_init_net,
3177	.exit = sock_inuse_exit_net,
3178};
3179
3180static __init int net_inuse_init(void)
3181{
3182	if (register_pernet_subsys(&net_inuse_ops))
3183		panic("Cannot initialize net inuse counters");
3184
3185	return 0;
3186}
3187
3188core_initcall(net_inuse_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3189
3190static void assign_proto_idx(struct proto *prot)
3191{
3192	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3193
3194	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3195		pr_err("PROTO_INUSE_NR exhausted\n");
3196		return;
3197	}
3198
3199	set_bit(prot->inuse_idx, proto_inuse_idx);
3200}
3201
3202static void release_proto_idx(struct proto *prot)
3203{
3204	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3205		clear_bit(prot->inuse_idx, proto_inuse_idx);
3206}
3207#else
3208static inline void assign_proto_idx(struct proto *prot)
3209{
3210}
3211
3212static inline void release_proto_idx(struct proto *prot)
3213{
3214}
3215
3216static void sock_inuse_add(struct net *net, int val)
3217{
3218}
3219#endif
3220
3221static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3222{
3223	if (!rsk_prot)
3224		return;
3225	kfree(rsk_prot->slab_name);
3226	rsk_prot->slab_name = NULL;
3227	kmem_cache_destroy(rsk_prot->slab);
3228	rsk_prot->slab = NULL;
3229}
3230
3231static int req_prot_init(const struct proto *prot)
3232{
3233	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3234
3235	if (!rsk_prot)
3236		return 0;
3237
3238	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3239					prot->name);
3240	if (!rsk_prot->slab_name)
3241		return -ENOMEM;
3242
3243	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3244					   rsk_prot->obj_size, 0,
3245					   prot->slab_flags, NULL);
3246
3247	if (!rsk_prot->slab) {
3248		pr_crit("%s: Can't create request sock SLAB cache!\n",
3249			prot->name);
3250		return -ENOMEM;
3251	}
3252	return 0;
3253}
3254
3255int proto_register(struct proto *prot, int alloc_slab)
3256{
3257	if (alloc_slab) {
3258		prot->slab = kmem_cache_create_usercopy(prot->name,
3259					prot->obj_size, 0,
3260					SLAB_HWCACHE_ALIGN | prot->slab_flags,
3261					prot->useroffset, prot->usersize,
3262					NULL);
3263
3264		if (prot->slab == NULL) {
3265			pr_crit("%s: Can't create sock SLAB cache!\n",
3266				prot->name);
3267			goto out;
3268		}
3269
3270		if (req_prot_init(prot))
3271			goto out_free_request_sock_slab;
 
 
 
 
 
 
 
 
 
 
 
 
 
3272
3273		if (prot->twsk_prot != NULL) {
3274			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3275
3276			if (prot->twsk_prot->twsk_slab_name == NULL)
3277				goto out_free_request_sock_slab;
3278
3279			prot->twsk_prot->twsk_slab =
3280				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3281						  prot->twsk_prot->twsk_obj_size,
3282						  0,
3283						  prot->slab_flags,
 
3284						  NULL);
3285			if (prot->twsk_prot->twsk_slab == NULL)
3286				goto out_free_timewait_sock_slab_name;
3287		}
3288	}
3289
3290	mutex_lock(&proto_list_mutex);
3291	list_add(&prot->node, &proto_list);
3292	assign_proto_idx(prot);
3293	mutex_unlock(&proto_list_mutex);
3294	return 0;
3295
3296out_free_timewait_sock_slab_name:
3297	kfree(prot->twsk_prot->twsk_slab_name);
3298out_free_request_sock_slab:
3299	req_prot_cleanup(prot->rsk_prot);
3300
 
 
 
 
 
 
3301	kmem_cache_destroy(prot->slab);
3302	prot->slab = NULL;
3303out:
3304	return -ENOBUFS;
3305}
3306EXPORT_SYMBOL(proto_register);
3307
3308void proto_unregister(struct proto *prot)
3309{
3310	mutex_lock(&proto_list_mutex);
3311	release_proto_idx(prot);
3312	list_del(&prot->node);
3313	mutex_unlock(&proto_list_mutex);
3314
3315	kmem_cache_destroy(prot->slab);
3316	prot->slab = NULL;
 
 
3317
3318	req_prot_cleanup(prot->rsk_prot);
 
 
 
 
3319
3320	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3321		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3322		kfree(prot->twsk_prot->twsk_slab_name);
3323		prot->twsk_prot->twsk_slab = NULL;
3324	}
3325}
3326EXPORT_SYMBOL(proto_unregister);
3327
3328int sock_load_diag_module(int family, int protocol)
3329{
3330	if (!protocol) {
3331		if (!sock_is_registered(family))
3332			return -ENOENT;
3333
3334		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3335				      NETLINK_SOCK_DIAG, family);
3336	}
3337
3338#ifdef CONFIG_INET
3339	if (family == AF_INET &&
3340	    !rcu_access_pointer(inet_protos[protocol]))
3341		return -ENOENT;
3342#endif
3343
3344	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3345			      NETLINK_SOCK_DIAG, family, protocol);
3346}
3347EXPORT_SYMBOL(sock_load_diag_module);
3348
3349#ifdef CONFIG_PROC_FS
3350static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3351	__acquires(proto_list_mutex)
3352{
3353	mutex_lock(&proto_list_mutex);
3354	return seq_list_start_head(&proto_list, *pos);
3355}
3356
3357static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3358{
3359	return seq_list_next(v, &proto_list, pos);
3360}
3361
3362static void proto_seq_stop(struct seq_file *seq, void *v)
3363	__releases(proto_list_mutex)
3364{
3365	mutex_unlock(&proto_list_mutex);
3366}
3367
3368static char proto_method_implemented(const void *method)
3369{
3370	return method == NULL ? 'n' : 'y';
3371}
3372static long sock_prot_memory_allocated(struct proto *proto)
3373{
3374	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3375}
3376
3377static char *sock_prot_memory_pressure(struct proto *proto)
3378{
3379	return proto->memory_pressure != NULL ?
3380	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3381}
3382
3383static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3384{
3385
3386	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3387			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3388		   proto->name,
3389		   proto->obj_size,
3390		   sock_prot_inuse_get(seq_file_net(seq), proto),
3391		   sock_prot_memory_allocated(proto),
3392		   sock_prot_memory_pressure(proto),
3393		   proto->max_header,
3394		   proto->slab == NULL ? "no" : "yes",
3395		   module_name(proto->owner),
3396		   proto_method_implemented(proto->close),
3397		   proto_method_implemented(proto->connect),
3398		   proto_method_implemented(proto->disconnect),
3399		   proto_method_implemented(proto->accept),
3400		   proto_method_implemented(proto->ioctl),
3401		   proto_method_implemented(proto->init),
3402		   proto_method_implemented(proto->destroy),
3403		   proto_method_implemented(proto->shutdown),
3404		   proto_method_implemented(proto->setsockopt),
3405		   proto_method_implemented(proto->getsockopt),
3406		   proto_method_implemented(proto->sendmsg),
3407		   proto_method_implemented(proto->recvmsg),
3408		   proto_method_implemented(proto->sendpage),
3409		   proto_method_implemented(proto->bind),
3410		   proto_method_implemented(proto->backlog_rcv),
3411		   proto_method_implemented(proto->hash),
3412		   proto_method_implemented(proto->unhash),
3413		   proto_method_implemented(proto->get_port),
3414		   proto_method_implemented(proto->enter_memory_pressure));
3415}
3416
3417static int proto_seq_show(struct seq_file *seq, void *v)
3418{
3419	if (v == &proto_list)
3420		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3421			   "protocol",
3422			   "size",
3423			   "sockets",
3424			   "memory",
3425			   "press",
3426			   "maxhdr",
3427			   "slab",
3428			   "module",
3429			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3430	else
3431		proto_seq_printf(seq, list_entry(v, struct proto, node));
3432	return 0;
3433}
3434
3435static const struct seq_operations proto_seq_ops = {
3436	.start  = proto_seq_start,
3437	.next   = proto_seq_next,
3438	.stop   = proto_seq_stop,
3439	.show   = proto_seq_show,
3440};
3441
3442static int proto_seq_open(struct inode *inode, struct file *file)
3443{
3444	return seq_open_net(inode, file, &proto_seq_ops,
3445			    sizeof(struct seq_net_private));
3446}
3447
3448static const struct file_operations proto_seq_fops = {
 
3449	.open		= proto_seq_open,
3450	.read		= seq_read,
3451	.llseek		= seq_lseek,
3452	.release	= seq_release_net,
3453};
3454
3455static __net_init int proto_init_net(struct net *net)
3456{
3457	if (!proc_create("protocols", 0444, net->proc_net, &proto_seq_fops))
3458		return -ENOMEM;
3459
3460	return 0;
3461}
3462
3463static __net_exit void proto_exit_net(struct net *net)
3464{
3465	remove_proc_entry("protocols", net->proc_net);
3466}
3467
3468
3469static __net_initdata struct pernet_operations proto_net_ops = {
3470	.init = proto_init_net,
3471	.exit = proto_exit_net,
3472};
3473
3474static int __init proto_init(void)
3475{
3476	return register_pernet_subsys(&proto_net_ops);
3477}
3478
3479subsys_initcall(proto_init);
3480
3481#endif /* PROC_FS */
3482
3483#ifdef CONFIG_NET_RX_BUSY_POLL
3484bool sk_busy_loop_end(void *p, unsigned long start_time)
3485{
3486	struct sock *sk = p;
3487
3488	return !skb_queue_empty(&sk->sk_receive_queue) ||
3489	       sk_busy_loop_timeout(sk, start_time);
3490}
3491EXPORT_SYMBOL(sk_busy_loop_end);
3492#endif /* CONFIG_NET_RX_BUSY_POLL */