Loading...
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92#include <linux/capability.h>
93#include <linux/errno.h>
94#include <linux/types.h>
95#include <linux/socket.h>
96#include <linux/in.h>
97#include <linux/kernel.h>
98#include <linux/module.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/sched.h>
102#include <linux/timer.h>
103#include <linux/string.h>
104#include <linux/sockios.h>
105#include <linux/net.h>
106#include <linux/mm.h>
107#include <linux/slab.h>
108#include <linux/interrupt.h>
109#include <linux/poll.h>
110#include <linux/tcp.h>
111#include <linux/init.h>
112#include <linux/highmem.h>
113#include <linux/user_namespace.h>
114
115#include <asm/uaccess.h>
116#include <asm/system.h>
117
118#include <linux/netdevice.h>
119#include <net/protocol.h>
120#include <linux/skbuff.h>
121#include <net/net_namespace.h>
122#include <net/request_sock.h>
123#include <net/sock.h>
124#include <linux/net_tstamp.h>
125#include <net/xfrm.h>
126#include <linux/ipsec.h>
127#include <net/cls_cgroup.h>
128
129#include <linux/filter.h>
130
131#include <trace/events/sock.h>
132
133#ifdef CONFIG_INET
134#include <net/tcp.h>
135#endif
136
137/*
138 * Each address family might have different locking rules, so we have
139 * one slock key per address family:
140 */
141static struct lock_class_key af_family_keys[AF_MAX];
142static struct lock_class_key af_family_slock_keys[AF_MAX];
143
144/*
145 * Make lock validator output more readable. (we pre-construct these
146 * strings build-time, so that runtime initialization of socket
147 * locks is fast):
148 */
149static const char *const af_family_key_strings[AF_MAX+1] = {
150 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
151 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
152 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
153 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
154 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
155 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
156 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
157 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
158 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
159 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
160 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
161 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
162 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
163 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
164};
165static const char *const af_family_slock_key_strings[AF_MAX+1] = {
166 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
167 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
168 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
169 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
170 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
171 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
172 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
173 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
174 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
175 "slock-27" , "slock-28" , "slock-AF_CAN" ,
176 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
177 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
178 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
179 "slock-AF_NFC" , "slock-AF_MAX"
180};
181static const char *const af_family_clock_key_strings[AF_MAX+1] = {
182 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
183 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
184 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
185 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
186 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
187 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
188 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
189 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
190 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
191 "clock-27" , "clock-28" , "clock-AF_CAN" ,
192 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
193 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
194 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
195 "clock-AF_NFC" , "clock-AF_MAX"
196};
197
198/*
199 * sk_callback_lock locking rules are per-address-family,
200 * so split the lock classes by using a per-AF key:
201 */
202static struct lock_class_key af_callback_keys[AF_MAX];
203
204/* Take into consideration the size of the struct sk_buff overhead in the
205 * determination of these values, since that is non-constant across
206 * platforms. This makes socket queueing behavior and performance
207 * not depend upon such differences.
208 */
209#define _SK_MEM_PACKETS 256
210#define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
211#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
212#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
213
214/* Run time adjustable parameters. */
215__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
216__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
217__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
218__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
219
220/* Maximal space eaten by iovec or ancillary data plus some space */
221int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
222EXPORT_SYMBOL(sysctl_optmem_max);
223
224#if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
225int net_cls_subsys_id = -1;
226EXPORT_SYMBOL_GPL(net_cls_subsys_id);
227#endif
228
229static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
230{
231 struct timeval tv;
232
233 if (optlen < sizeof(tv))
234 return -EINVAL;
235 if (copy_from_user(&tv, optval, sizeof(tv)))
236 return -EFAULT;
237 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
238 return -EDOM;
239
240 if (tv.tv_sec < 0) {
241 static int warned __read_mostly;
242
243 *timeo_p = 0;
244 if (warned < 10 && net_ratelimit()) {
245 warned++;
246 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
247 "tries to set negative timeout\n",
248 current->comm, task_pid_nr(current));
249 }
250 return 0;
251 }
252 *timeo_p = MAX_SCHEDULE_TIMEOUT;
253 if (tv.tv_sec == 0 && tv.tv_usec == 0)
254 return 0;
255 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
256 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
257 return 0;
258}
259
260static void sock_warn_obsolete_bsdism(const char *name)
261{
262 static int warned;
263 static char warncomm[TASK_COMM_LEN];
264 if (strcmp(warncomm, current->comm) && warned < 5) {
265 strcpy(warncomm, current->comm);
266 printk(KERN_WARNING "process `%s' is using obsolete "
267 "%s SO_BSDCOMPAT\n", warncomm, name);
268 warned++;
269 }
270}
271
272static void sock_disable_timestamp(struct sock *sk, int flag)
273{
274 if (sock_flag(sk, flag)) {
275 sock_reset_flag(sk, flag);
276 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
277 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
278 net_disable_timestamp();
279 }
280 }
281}
282
283
284int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
285{
286 int err;
287 int skb_len;
288 unsigned long flags;
289 struct sk_buff_head *list = &sk->sk_receive_queue;
290
291 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
292 number of warnings when compiling with -W --ANK
293 */
294 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
295 (unsigned)sk->sk_rcvbuf) {
296 atomic_inc(&sk->sk_drops);
297 trace_sock_rcvqueue_full(sk, skb);
298 return -ENOMEM;
299 }
300
301 err = sk_filter(sk, skb);
302 if (err)
303 return err;
304
305 if (!sk_rmem_schedule(sk, skb->truesize)) {
306 atomic_inc(&sk->sk_drops);
307 return -ENOBUFS;
308 }
309
310 skb->dev = NULL;
311 skb_set_owner_r(skb, sk);
312
313 /* Cache the SKB length before we tack it onto the receive
314 * queue. Once it is added it no longer belongs to us and
315 * may be freed by other threads of control pulling packets
316 * from the queue.
317 */
318 skb_len = skb->len;
319
320 /* we escape from rcu protected region, make sure we dont leak
321 * a norefcounted dst
322 */
323 skb_dst_force(skb);
324
325 spin_lock_irqsave(&list->lock, flags);
326 skb->dropcount = atomic_read(&sk->sk_drops);
327 __skb_queue_tail(list, skb);
328 spin_unlock_irqrestore(&list->lock, flags);
329
330 if (!sock_flag(sk, SOCK_DEAD))
331 sk->sk_data_ready(sk, skb_len);
332 return 0;
333}
334EXPORT_SYMBOL(sock_queue_rcv_skb);
335
336int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
337{
338 int rc = NET_RX_SUCCESS;
339
340 if (sk_filter(sk, skb))
341 goto discard_and_relse;
342
343 skb->dev = NULL;
344
345 if (sk_rcvqueues_full(sk, skb)) {
346 atomic_inc(&sk->sk_drops);
347 goto discard_and_relse;
348 }
349 if (nested)
350 bh_lock_sock_nested(sk);
351 else
352 bh_lock_sock(sk);
353 if (!sock_owned_by_user(sk)) {
354 /*
355 * trylock + unlock semantics:
356 */
357 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
358
359 rc = sk_backlog_rcv(sk, skb);
360
361 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
362 } else if (sk_add_backlog(sk, skb)) {
363 bh_unlock_sock(sk);
364 atomic_inc(&sk->sk_drops);
365 goto discard_and_relse;
366 }
367
368 bh_unlock_sock(sk);
369out:
370 sock_put(sk);
371 return rc;
372discard_and_relse:
373 kfree_skb(skb);
374 goto out;
375}
376EXPORT_SYMBOL(sk_receive_skb);
377
378void sk_reset_txq(struct sock *sk)
379{
380 sk_tx_queue_clear(sk);
381}
382EXPORT_SYMBOL(sk_reset_txq);
383
384struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
385{
386 struct dst_entry *dst = __sk_dst_get(sk);
387
388 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
389 sk_tx_queue_clear(sk);
390 rcu_assign_pointer(sk->sk_dst_cache, NULL);
391 dst_release(dst);
392 return NULL;
393 }
394
395 return dst;
396}
397EXPORT_SYMBOL(__sk_dst_check);
398
399struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
400{
401 struct dst_entry *dst = sk_dst_get(sk);
402
403 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
404 sk_dst_reset(sk);
405 dst_release(dst);
406 return NULL;
407 }
408
409 return dst;
410}
411EXPORT_SYMBOL(sk_dst_check);
412
413static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
414{
415 int ret = -ENOPROTOOPT;
416#ifdef CONFIG_NETDEVICES
417 struct net *net = sock_net(sk);
418 char devname[IFNAMSIZ];
419 int index;
420
421 /* Sorry... */
422 ret = -EPERM;
423 if (!capable(CAP_NET_RAW))
424 goto out;
425
426 ret = -EINVAL;
427 if (optlen < 0)
428 goto out;
429
430 /* Bind this socket to a particular device like "eth0",
431 * as specified in the passed interface name. If the
432 * name is "" or the option length is zero the socket
433 * is not bound.
434 */
435 if (optlen > IFNAMSIZ - 1)
436 optlen = IFNAMSIZ - 1;
437 memset(devname, 0, sizeof(devname));
438
439 ret = -EFAULT;
440 if (copy_from_user(devname, optval, optlen))
441 goto out;
442
443 index = 0;
444 if (devname[0] != '\0') {
445 struct net_device *dev;
446
447 rcu_read_lock();
448 dev = dev_get_by_name_rcu(net, devname);
449 if (dev)
450 index = dev->ifindex;
451 rcu_read_unlock();
452 ret = -ENODEV;
453 if (!dev)
454 goto out;
455 }
456
457 lock_sock(sk);
458 sk->sk_bound_dev_if = index;
459 sk_dst_reset(sk);
460 release_sock(sk);
461
462 ret = 0;
463
464out:
465#endif
466
467 return ret;
468}
469
470static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
471{
472 if (valbool)
473 sock_set_flag(sk, bit);
474 else
475 sock_reset_flag(sk, bit);
476}
477
478/*
479 * This is meant for all protocols to use and covers goings on
480 * at the socket level. Everything here is generic.
481 */
482
483int sock_setsockopt(struct socket *sock, int level, int optname,
484 char __user *optval, unsigned int optlen)
485{
486 struct sock *sk = sock->sk;
487 int val;
488 int valbool;
489 struct linger ling;
490 int ret = 0;
491
492 /*
493 * Options without arguments
494 */
495
496 if (optname == SO_BINDTODEVICE)
497 return sock_bindtodevice(sk, optval, optlen);
498
499 if (optlen < sizeof(int))
500 return -EINVAL;
501
502 if (get_user(val, (int __user *)optval))
503 return -EFAULT;
504
505 valbool = val ? 1 : 0;
506
507 lock_sock(sk);
508
509 switch (optname) {
510 case SO_DEBUG:
511 if (val && !capable(CAP_NET_ADMIN))
512 ret = -EACCES;
513 else
514 sock_valbool_flag(sk, SOCK_DBG, valbool);
515 break;
516 case SO_REUSEADDR:
517 sk->sk_reuse = valbool;
518 break;
519 case SO_TYPE:
520 case SO_PROTOCOL:
521 case SO_DOMAIN:
522 case SO_ERROR:
523 ret = -ENOPROTOOPT;
524 break;
525 case SO_DONTROUTE:
526 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
527 break;
528 case SO_BROADCAST:
529 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
530 break;
531 case SO_SNDBUF:
532 /* Don't error on this BSD doesn't and if you think
533 about it this is right. Otherwise apps have to
534 play 'guess the biggest size' games. RCVBUF/SNDBUF
535 are treated in BSD as hints */
536
537 if (val > sysctl_wmem_max)
538 val = sysctl_wmem_max;
539set_sndbuf:
540 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
541 if ((val * 2) < SOCK_MIN_SNDBUF)
542 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
543 else
544 sk->sk_sndbuf = val * 2;
545
546 /*
547 * Wake up sending tasks if we
548 * upped the value.
549 */
550 sk->sk_write_space(sk);
551 break;
552
553 case SO_SNDBUFFORCE:
554 if (!capable(CAP_NET_ADMIN)) {
555 ret = -EPERM;
556 break;
557 }
558 goto set_sndbuf;
559
560 case SO_RCVBUF:
561 /* Don't error on this BSD doesn't and if you think
562 about it this is right. Otherwise apps have to
563 play 'guess the biggest size' games. RCVBUF/SNDBUF
564 are treated in BSD as hints */
565
566 if (val > sysctl_rmem_max)
567 val = sysctl_rmem_max;
568set_rcvbuf:
569 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
570 /*
571 * We double it on the way in to account for
572 * "struct sk_buff" etc. overhead. Applications
573 * assume that the SO_RCVBUF setting they make will
574 * allow that much actual data to be received on that
575 * socket.
576 *
577 * Applications are unaware that "struct sk_buff" and
578 * other overheads allocate from the receive buffer
579 * during socket buffer allocation.
580 *
581 * And after considering the possible alternatives,
582 * returning the value we actually used in getsockopt
583 * is the most desirable behavior.
584 */
585 if ((val * 2) < SOCK_MIN_RCVBUF)
586 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
587 else
588 sk->sk_rcvbuf = val * 2;
589 break;
590
591 case SO_RCVBUFFORCE:
592 if (!capable(CAP_NET_ADMIN)) {
593 ret = -EPERM;
594 break;
595 }
596 goto set_rcvbuf;
597
598 case SO_KEEPALIVE:
599#ifdef CONFIG_INET
600 if (sk->sk_protocol == IPPROTO_TCP)
601 tcp_set_keepalive(sk, valbool);
602#endif
603 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
604 break;
605
606 case SO_OOBINLINE:
607 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
608 break;
609
610 case SO_NO_CHECK:
611 sk->sk_no_check = valbool;
612 break;
613
614 case SO_PRIORITY:
615 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
616 sk->sk_priority = val;
617 else
618 ret = -EPERM;
619 break;
620
621 case SO_LINGER:
622 if (optlen < sizeof(ling)) {
623 ret = -EINVAL; /* 1003.1g */
624 break;
625 }
626 if (copy_from_user(&ling, optval, sizeof(ling))) {
627 ret = -EFAULT;
628 break;
629 }
630 if (!ling.l_onoff)
631 sock_reset_flag(sk, SOCK_LINGER);
632 else {
633#if (BITS_PER_LONG == 32)
634 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
635 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
636 else
637#endif
638 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
639 sock_set_flag(sk, SOCK_LINGER);
640 }
641 break;
642
643 case SO_BSDCOMPAT:
644 sock_warn_obsolete_bsdism("setsockopt");
645 break;
646
647 case SO_PASSCRED:
648 if (valbool)
649 set_bit(SOCK_PASSCRED, &sock->flags);
650 else
651 clear_bit(SOCK_PASSCRED, &sock->flags);
652 break;
653
654 case SO_TIMESTAMP:
655 case SO_TIMESTAMPNS:
656 if (valbool) {
657 if (optname == SO_TIMESTAMP)
658 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
659 else
660 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
661 sock_set_flag(sk, SOCK_RCVTSTAMP);
662 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
663 } else {
664 sock_reset_flag(sk, SOCK_RCVTSTAMP);
665 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
666 }
667 break;
668
669 case SO_TIMESTAMPING:
670 if (val & ~SOF_TIMESTAMPING_MASK) {
671 ret = -EINVAL;
672 break;
673 }
674 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
675 val & SOF_TIMESTAMPING_TX_HARDWARE);
676 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
677 val & SOF_TIMESTAMPING_TX_SOFTWARE);
678 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
679 val & SOF_TIMESTAMPING_RX_HARDWARE);
680 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
681 sock_enable_timestamp(sk,
682 SOCK_TIMESTAMPING_RX_SOFTWARE);
683 else
684 sock_disable_timestamp(sk,
685 SOCK_TIMESTAMPING_RX_SOFTWARE);
686 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
687 val & SOF_TIMESTAMPING_SOFTWARE);
688 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
689 val & SOF_TIMESTAMPING_SYS_HARDWARE);
690 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
691 val & SOF_TIMESTAMPING_RAW_HARDWARE);
692 break;
693
694 case SO_RCVLOWAT:
695 if (val < 0)
696 val = INT_MAX;
697 sk->sk_rcvlowat = val ? : 1;
698 break;
699
700 case SO_RCVTIMEO:
701 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
702 break;
703
704 case SO_SNDTIMEO:
705 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
706 break;
707
708 case SO_ATTACH_FILTER:
709 ret = -EINVAL;
710 if (optlen == sizeof(struct sock_fprog)) {
711 struct sock_fprog fprog;
712
713 ret = -EFAULT;
714 if (copy_from_user(&fprog, optval, sizeof(fprog)))
715 break;
716
717 ret = sk_attach_filter(&fprog, sk);
718 }
719 break;
720
721 case SO_DETACH_FILTER:
722 ret = sk_detach_filter(sk);
723 break;
724
725 case SO_PASSSEC:
726 if (valbool)
727 set_bit(SOCK_PASSSEC, &sock->flags);
728 else
729 clear_bit(SOCK_PASSSEC, &sock->flags);
730 break;
731 case SO_MARK:
732 if (!capable(CAP_NET_ADMIN))
733 ret = -EPERM;
734 else
735 sk->sk_mark = val;
736 break;
737
738 /* We implement the SO_SNDLOWAT etc to
739 not be settable (1003.1g 5.3) */
740 case SO_RXQ_OVFL:
741 if (valbool)
742 sock_set_flag(sk, SOCK_RXQ_OVFL);
743 else
744 sock_reset_flag(sk, SOCK_RXQ_OVFL);
745 break;
746 default:
747 ret = -ENOPROTOOPT;
748 break;
749 }
750 release_sock(sk);
751 return ret;
752}
753EXPORT_SYMBOL(sock_setsockopt);
754
755
756void cred_to_ucred(struct pid *pid, const struct cred *cred,
757 struct ucred *ucred)
758{
759 ucred->pid = pid_vnr(pid);
760 ucred->uid = ucred->gid = -1;
761 if (cred) {
762 struct user_namespace *current_ns = current_user_ns();
763
764 ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
765 ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
766 }
767}
768EXPORT_SYMBOL_GPL(cred_to_ucred);
769
770int sock_getsockopt(struct socket *sock, int level, int optname,
771 char __user *optval, int __user *optlen)
772{
773 struct sock *sk = sock->sk;
774
775 union {
776 int val;
777 struct linger ling;
778 struct timeval tm;
779 } v;
780
781 int lv = sizeof(int);
782 int len;
783
784 if (get_user(len, optlen))
785 return -EFAULT;
786 if (len < 0)
787 return -EINVAL;
788
789 memset(&v, 0, sizeof(v));
790
791 switch (optname) {
792 case SO_DEBUG:
793 v.val = sock_flag(sk, SOCK_DBG);
794 break;
795
796 case SO_DONTROUTE:
797 v.val = sock_flag(sk, SOCK_LOCALROUTE);
798 break;
799
800 case SO_BROADCAST:
801 v.val = !!sock_flag(sk, SOCK_BROADCAST);
802 break;
803
804 case SO_SNDBUF:
805 v.val = sk->sk_sndbuf;
806 break;
807
808 case SO_RCVBUF:
809 v.val = sk->sk_rcvbuf;
810 break;
811
812 case SO_REUSEADDR:
813 v.val = sk->sk_reuse;
814 break;
815
816 case SO_KEEPALIVE:
817 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
818 break;
819
820 case SO_TYPE:
821 v.val = sk->sk_type;
822 break;
823
824 case SO_PROTOCOL:
825 v.val = sk->sk_protocol;
826 break;
827
828 case SO_DOMAIN:
829 v.val = sk->sk_family;
830 break;
831
832 case SO_ERROR:
833 v.val = -sock_error(sk);
834 if (v.val == 0)
835 v.val = xchg(&sk->sk_err_soft, 0);
836 break;
837
838 case SO_OOBINLINE:
839 v.val = !!sock_flag(sk, SOCK_URGINLINE);
840 break;
841
842 case SO_NO_CHECK:
843 v.val = sk->sk_no_check;
844 break;
845
846 case SO_PRIORITY:
847 v.val = sk->sk_priority;
848 break;
849
850 case SO_LINGER:
851 lv = sizeof(v.ling);
852 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
853 v.ling.l_linger = sk->sk_lingertime / HZ;
854 break;
855
856 case SO_BSDCOMPAT:
857 sock_warn_obsolete_bsdism("getsockopt");
858 break;
859
860 case SO_TIMESTAMP:
861 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
862 !sock_flag(sk, SOCK_RCVTSTAMPNS);
863 break;
864
865 case SO_TIMESTAMPNS:
866 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
867 break;
868
869 case SO_TIMESTAMPING:
870 v.val = 0;
871 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
872 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
873 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
874 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
875 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
876 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
877 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
878 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
879 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
880 v.val |= SOF_TIMESTAMPING_SOFTWARE;
881 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
882 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
883 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
884 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
885 break;
886
887 case SO_RCVTIMEO:
888 lv = sizeof(struct timeval);
889 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
890 v.tm.tv_sec = 0;
891 v.tm.tv_usec = 0;
892 } else {
893 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
894 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
895 }
896 break;
897
898 case SO_SNDTIMEO:
899 lv = sizeof(struct timeval);
900 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
901 v.tm.tv_sec = 0;
902 v.tm.tv_usec = 0;
903 } else {
904 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
905 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
906 }
907 break;
908
909 case SO_RCVLOWAT:
910 v.val = sk->sk_rcvlowat;
911 break;
912
913 case SO_SNDLOWAT:
914 v.val = 1;
915 break;
916
917 case SO_PASSCRED:
918 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
919 break;
920
921 case SO_PEERCRED:
922 {
923 struct ucred peercred;
924 if (len > sizeof(peercred))
925 len = sizeof(peercred);
926 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
927 if (copy_to_user(optval, &peercred, len))
928 return -EFAULT;
929 goto lenout;
930 }
931
932 case SO_PEERNAME:
933 {
934 char address[128];
935
936 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
937 return -ENOTCONN;
938 if (lv < len)
939 return -EINVAL;
940 if (copy_to_user(optval, address, len))
941 return -EFAULT;
942 goto lenout;
943 }
944
945 /* Dubious BSD thing... Probably nobody even uses it, but
946 * the UNIX standard wants it for whatever reason... -DaveM
947 */
948 case SO_ACCEPTCONN:
949 v.val = sk->sk_state == TCP_LISTEN;
950 break;
951
952 case SO_PASSSEC:
953 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
954 break;
955
956 case SO_PEERSEC:
957 return security_socket_getpeersec_stream(sock, optval, optlen, len);
958
959 case SO_MARK:
960 v.val = sk->sk_mark;
961 break;
962
963 case SO_RXQ_OVFL:
964 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
965 break;
966
967 default:
968 return -ENOPROTOOPT;
969 }
970
971 if (len > lv)
972 len = lv;
973 if (copy_to_user(optval, &v, len))
974 return -EFAULT;
975lenout:
976 if (put_user(len, optlen))
977 return -EFAULT;
978 return 0;
979}
980
981/*
982 * Initialize an sk_lock.
983 *
984 * (We also register the sk_lock with the lock validator.)
985 */
986static inline void sock_lock_init(struct sock *sk)
987{
988 sock_lock_init_class_and_name(sk,
989 af_family_slock_key_strings[sk->sk_family],
990 af_family_slock_keys + sk->sk_family,
991 af_family_key_strings[sk->sk_family],
992 af_family_keys + sk->sk_family);
993}
994
995/*
996 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
997 * even temporarly, because of RCU lookups. sk_node should also be left as is.
998 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
999 */
1000static void sock_copy(struct sock *nsk, const struct sock *osk)
1001{
1002#ifdef CONFIG_SECURITY_NETWORK
1003 void *sptr = nsk->sk_security;
1004#endif
1005 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1006
1007 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1008 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1009
1010#ifdef CONFIG_SECURITY_NETWORK
1011 nsk->sk_security = sptr;
1012 security_sk_clone(osk, nsk);
1013#endif
1014}
1015
1016/*
1017 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1018 * un-modified. Special care is taken when initializing object to zero.
1019 */
1020static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1021{
1022 if (offsetof(struct sock, sk_node.next) != 0)
1023 memset(sk, 0, offsetof(struct sock, sk_node.next));
1024 memset(&sk->sk_node.pprev, 0,
1025 size - offsetof(struct sock, sk_node.pprev));
1026}
1027
1028void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1029{
1030 unsigned long nulls1, nulls2;
1031
1032 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1033 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1034 if (nulls1 > nulls2)
1035 swap(nulls1, nulls2);
1036
1037 if (nulls1 != 0)
1038 memset((char *)sk, 0, nulls1);
1039 memset((char *)sk + nulls1 + sizeof(void *), 0,
1040 nulls2 - nulls1 - sizeof(void *));
1041 memset((char *)sk + nulls2 + sizeof(void *), 0,
1042 size - nulls2 - sizeof(void *));
1043}
1044EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1045
1046static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1047 int family)
1048{
1049 struct sock *sk;
1050 struct kmem_cache *slab;
1051
1052 slab = prot->slab;
1053 if (slab != NULL) {
1054 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1055 if (!sk)
1056 return sk;
1057 if (priority & __GFP_ZERO) {
1058 if (prot->clear_sk)
1059 prot->clear_sk(sk, prot->obj_size);
1060 else
1061 sk_prot_clear_nulls(sk, prot->obj_size);
1062 }
1063 } else
1064 sk = kmalloc(prot->obj_size, priority);
1065
1066 if (sk != NULL) {
1067 kmemcheck_annotate_bitfield(sk, flags);
1068
1069 if (security_sk_alloc(sk, family, priority))
1070 goto out_free;
1071
1072 if (!try_module_get(prot->owner))
1073 goto out_free_sec;
1074 sk_tx_queue_clear(sk);
1075 }
1076
1077 return sk;
1078
1079out_free_sec:
1080 security_sk_free(sk);
1081out_free:
1082 if (slab != NULL)
1083 kmem_cache_free(slab, sk);
1084 else
1085 kfree(sk);
1086 return NULL;
1087}
1088
1089static void sk_prot_free(struct proto *prot, struct sock *sk)
1090{
1091 struct kmem_cache *slab;
1092 struct module *owner;
1093
1094 owner = prot->owner;
1095 slab = prot->slab;
1096
1097 security_sk_free(sk);
1098 if (slab != NULL)
1099 kmem_cache_free(slab, sk);
1100 else
1101 kfree(sk);
1102 module_put(owner);
1103}
1104
1105#ifdef CONFIG_CGROUPS
1106void sock_update_classid(struct sock *sk)
1107{
1108 u32 classid;
1109
1110 rcu_read_lock(); /* doing current task, which cannot vanish. */
1111 classid = task_cls_classid(current);
1112 rcu_read_unlock();
1113 if (classid && classid != sk->sk_classid)
1114 sk->sk_classid = classid;
1115}
1116EXPORT_SYMBOL(sock_update_classid);
1117#endif
1118
1119/**
1120 * sk_alloc - All socket objects are allocated here
1121 * @net: the applicable net namespace
1122 * @family: protocol family
1123 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1124 * @prot: struct proto associated with this new sock instance
1125 */
1126struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1127 struct proto *prot)
1128{
1129 struct sock *sk;
1130
1131 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1132 if (sk) {
1133 sk->sk_family = family;
1134 /*
1135 * See comment in struct sock definition to understand
1136 * why we need sk_prot_creator -acme
1137 */
1138 sk->sk_prot = sk->sk_prot_creator = prot;
1139 sock_lock_init(sk);
1140 sock_net_set(sk, get_net(net));
1141 atomic_set(&sk->sk_wmem_alloc, 1);
1142
1143 sock_update_classid(sk);
1144 }
1145
1146 return sk;
1147}
1148EXPORT_SYMBOL(sk_alloc);
1149
1150static void __sk_free(struct sock *sk)
1151{
1152 struct sk_filter *filter;
1153
1154 if (sk->sk_destruct)
1155 sk->sk_destruct(sk);
1156
1157 filter = rcu_dereference_check(sk->sk_filter,
1158 atomic_read(&sk->sk_wmem_alloc) == 0);
1159 if (filter) {
1160 sk_filter_uncharge(sk, filter);
1161 rcu_assign_pointer(sk->sk_filter, NULL);
1162 }
1163
1164 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1165 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1166
1167 if (atomic_read(&sk->sk_omem_alloc))
1168 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1169 __func__, atomic_read(&sk->sk_omem_alloc));
1170
1171 if (sk->sk_peer_cred)
1172 put_cred(sk->sk_peer_cred);
1173 put_pid(sk->sk_peer_pid);
1174 put_net(sock_net(sk));
1175 sk_prot_free(sk->sk_prot_creator, sk);
1176}
1177
1178void sk_free(struct sock *sk)
1179{
1180 /*
1181 * We subtract one from sk_wmem_alloc and can know if
1182 * some packets are still in some tx queue.
1183 * If not null, sock_wfree() will call __sk_free(sk) later
1184 */
1185 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1186 __sk_free(sk);
1187}
1188EXPORT_SYMBOL(sk_free);
1189
1190/*
1191 * Last sock_put should drop reference to sk->sk_net. It has already
1192 * been dropped in sk_change_net. Taking reference to stopping namespace
1193 * is not an option.
1194 * Take reference to a socket to remove it from hash _alive_ and after that
1195 * destroy it in the context of init_net.
1196 */
1197void sk_release_kernel(struct sock *sk)
1198{
1199 if (sk == NULL || sk->sk_socket == NULL)
1200 return;
1201
1202 sock_hold(sk);
1203 sock_release(sk->sk_socket);
1204 release_net(sock_net(sk));
1205 sock_net_set(sk, get_net(&init_net));
1206 sock_put(sk);
1207}
1208EXPORT_SYMBOL(sk_release_kernel);
1209
1210struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1211{
1212 struct sock *newsk;
1213
1214 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1215 if (newsk != NULL) {
1216 struct sk_filter *filter;
1217
1218 sock_copy(newsk, sk);
1219
1220 /* SANITY */
1221 get_net(sock_net(newsk));
1222 sk_node_init(&newsk->sk_node);
1223 sock_lock_init(newsk);
1224 bh_lock_sock(newsk);
1225 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1226 newsk->sk_backlog.len = 0;
1227
1228 atomic_set(&newsk->sk_rmem_alloc, 0);
1229 /*
1230 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1231 */
1232 atomic_set(&newsk->sk_wmem_alloc, 1);
1233 atomic_set(&newsk->sk_omem_alloc, 0);
1234 skb_queue_head_init(&newsk->sk_receive_queue);
1235 skb_queue_head_init(&newsk->sk_write_queue);
1236#ifdef CONFIG_NET_DMA
1237 skb_queue_head_init(&newsk->sk_async_wait_queue);
1238#endif
1239
1240 spin_lock_init(&newsk->sk_dst_lock);
1241 rwlock_init(&newsk->sk_callback_lock);
1242 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1243 af_callback_keys + newsk->sk_family,
1244 af_family_clock_key_strings[newsk->sk_family]);
1245
1246 newsk->sk_dst_cache = NULL;
1247 newsk->sk_wmem_queued = 0;
1248 newsk->sk_forward_alloc = 0;
1249 newsk->sk_send_head = NULL;
1250 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1251
1252 sock_reset_flag(newsk, SOCK_DONE);
1253 skb_queue_head_init(&newsk->sk_error_queue);
1254
1255 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1256 if (filter != NULL)
1257 sk_filter_charge(newsk, filter);
1258
1259 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1260 /* It is still raw copy of parent, so invalidate
1261 * destructor and make plain sk_free() */
1262 newsk->sk_destruct = NULL;
1263 sk_free(newsk);
1264 newsk = NULL;
1265 goto out;
1266 }
1267
1268 newsk->sk_err = 0;
1269 newsk->sk_priority = 0;
1270 /*
1271 * Before updating sk_refcnt, we must commit prior changes to memory
1272 * (Documentation/RCU/rculist_nulls.txt for details)
1273 */
1274 smp_wmb();
1275 atomic_set(&newsk->sk_refcnt, 2);
1276
1277 /*
1278 * Increment the counter in the same struct proto as the master
1279 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1280 * is the same as sk->sk_prot->socks, as this field was copied
1281 * with memcpy).
1282 *
1283 * This _changes_ the previous behaviour, where
1284 * tcp_create_openreq_child always was incrementing the
1285 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1286 * to be taken into account in all callers. -acme
1287 */
1288 sk_refcnt_debug_inc(newsk);
1289 sk_set_socket(newsk, NULL);
1290 newsk->sk_wq = NULL;
1291
1292 if (newsk->sk_prot->sockets_allocated)
1293 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1294
1295 if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1296 sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1297 net_enable_timestamp();
1298 }
1299out:
1300 return newsk;
1301}
1302EXPORT_SYMBOL_GPL(sk_clone);
1303
1304void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1305{
1306 __sk_dst_set(sk, dst);
1307 sk->sk_route_caps = dst->dev->features;
1308 if (sk->sk_route_caps & NETIF_F_GSO)
1309 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1310 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1311 if (sk_can_gso(sk)) {
1312 if (dst->header_len) {
1313 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1314 } else {
1315 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1316 sk->sk_gso_max_size = dst->dev->gso_max_size;
1317 }
1318 }
1319}
1320EXPORT_SYMBOL_GPL(sk_setup_caps);
1321
1322void __init sk_init(void)
1323{
1324 if (totalram_pages <= 4096) {
1325 sysctl_wmem_max = 32767;
1326 sysctl_rmem_max = 32767;
1327 sysctl_wmem_default = 32767;
1328 sysctl_rmem_default = 32767;
1329 } else if (totalram_pages >= 131072) {
1330 sysctl_wmem_max = 131071;
1331 sysctl_rmem_max = 131071;
1332 }
1333}
1334
1335/*
1336 * Simple resource managers for sockets.
1337 */
1338
1339
1340/*
1341 * Write buffer destructor automatically called from kfree_skb.
1342 */
1343void sock_wfree(struct sk_buff *skb)
1344{
1345 struct sock *sk = skb->sk;
1346 unsigned int len = skb->truesize;
1347
1348 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1349 /*
1350 * Keep a reference on sk_wmem_alloc, this will be released
1351 * after sk_write_space() call
1352 */
1353 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1354 sk->sk_write_space(sk);
1355 len = 1;
1356 }
1357 /*
1358 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1359 * could not do because of in-flight packets
1360 */
1361 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1362 __sk_free(sk);
1363}
1364EXPORT_SYMBOL(sock_wfree);
1365
1366/*
1367 * Read buffer destructor automatically called from kfree_skb.
1368 */
1369void sock_rfree(struct sk_buff *skb)
1370{
1371 struct sock *sk = skb->sk;
1372 unsigned int len = skb->truesize;
1373
1374 atomic_sub(len, &sk->sk_rmem_alloc);
1375 sk_mem_uncharge(sk, len);
1376}
1377EXPORT_SYMBOL(sock_rfree);
1378
1379
1380int sock_i_uid(struct sock *sk)
1381{
1382 int uid;
1383
1384 read_lock_bh(&sk->sk_callback_lock);
1385 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1386 read_unlock_bh(&sk->sk_callback_lock);
1387 return uid;
1388}
1389EXPORT_SYMBOL(sock_i_uid);
1390
1391unsigned long sock_i_ino(struct sock *sk)
1392{
1393 unsigned long ino;
1394
1395 read_lock_bh(&sk->sk_callback_lock);
1396 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1397 read_unlock_bh(&sk->sk_callback_lock);
1398 return ino;
1399}
1400EXPORT_SYMBOL(sock_i_ino);
1401
1402/*
1403 * Allocate a skb from the socket's send buffer.
1404 */
1405struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1406 gfp_t priority)
1407{
1408 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1409 struct sk_buff *skb = alloc_skb(size, priority);
1410 if (skb) {
1411 skb_set_owner_w(skb, sk);
1412 return skb;
1413 }
1414 }
1415 return NULL;
1416}
1417EXPORT_SYMBOL(sock_wmalloc);
1418
1419/*
1420 * Allocate a skb from the socket's receive buffer.
1421 */
1422struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1423 gfp_t priority)
1424{
1425 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1426 struct sk_buff *skb = alloc_skb(size, priority);
1427 if (skb) {
1428 skb_set_owner_r(skb, sk);
1429 return skb;
1430 }
1431 }
1432 return NULL;
1433}
1434
1435/*
1436 * Allocate a memory block from the socket's option memory buffer.
1437 */
1438void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1439{
1440 if ((unsigned)size <= sysctl_optmem_max &&
1441 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1442 void *mem;
1443 /* First do the add, to avoid the race if kmalloc
1444 * might sleep.
1445 */
1446 atomic_add(size, &sk->sk_omem_alloc);
1447 mem = kmalloc(size, priority);
1448 if (mem)
1449 return mem;
1450 atomic_sub(size, &sk->sk_omem_alloc);
1451 }
1452 return NULL;
1453}
1454EXPORT_SYMBOL(sock_kmalloc);
1455
1456/*
1457 * Free an option memory block.
1458 */
1459void sock_kfree_s(struct sock *sk, void *mem, int size)
1460{
1461 kfree(mem);
1462 atomic_sub(size, &sk->sk_omem_alloc);
1463}
1464EXPORT_SYMBOL(sock_kfree_s);
1465
1466/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1467 I think, these locks should be removed for datagram sockets.
1468 */
1469static long sock_wait_for_wmem(struct sock *sk, long timeo)
1470{
1471 DEFINE_WAIT(wait);
1472
1473 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1474 for (;;) {
1475 if (!timeo)
1476 break;
1477 if (signal_pending(current))
1478 break;
1479 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1480 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1481 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1482 break;
1483 if (sk->sk_shutdown & SEND_SHUTDOWN)
1484 break;
1485 if (sk->sk_err)
1486 break;
1487 timeo = schedule_timeout(timeo);
1488 }
1489 finish_wait(sk_sleep(sk), &wait);
1490 return timeo;
1491}
1492
1493
1494/*
1495 * Generic send/receive buffer handlers
1496 */
1497
1498struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1499 unsigned long data_len, int noblock,
1500 int *errcode)
1501{
1502 struct sk_buff *skb;
1503 gfp_t gfp_mask;
1504 long timeo;
1505 int err;
1506
1507 gfp_mask = sk->sk_allocation;
1508 if (gfp_mask & __GFP_WAIT)
1509 gfp_mask |= __GFP_REPEAT;
1510
1511 timeo = sock_sndtimeo(sk, noblock);
1512 while (1) {
1513 err = sock_error(sk);
1514 if (err != 0)
1515 goto failure;
1516
1517 err = -EPIPE;
1518 if (sk->sk_shutdown & SEND_SHUTDOWN)
1519 goto failure;
1520
1521 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1522 skb = alloc_skb(header_len, gfp_mask);
1523 if (skb) {
1524 int npages;
1525 int i;
1526
1527 /* No pages, we're done... */
1528 if (!data_len)
1529 break;
1530
1531 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1532 skb->truesize += data_len;
1533 skb_shinfo(skb)->nr_frags = npages;
1534 for (i = 0; i < npages; i++) {
1535 struct page *page;
1536 skb_frag_t *frag;
1537
1538 page = alloc_pages(sk->sk_allocation, 0);
1539 if (!page) {
1540 err = -ENOBUFS;
1541 skb_shinfo(skb)->nr_frags = i;
1542 kfree_skb(skb);
1543 goto failure;
1544 }
1545
1546 frag = &skb_shinfo(skb)->frags[i];
1547 frag->page = page;
1548 frag->page_offset = 0;
1549 frag->size = (data_len >= PAGE_SIZE ?
1550 PAGE_SIZE :
1551 data_len);
1552 data_len -= PAGE_SIZE;
1553 }
1554
1555 /* Full success... */
1556 break;
1557 }
1558 err = -ENOBUFS;
1559 goto failure;
1560 }
1561 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1562 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1563 err = -EAGAIN;
1564 if (!timeo)
1565 goto failure;
1566 if (signal_pending(current))
1567 goto interrupted;
1568 timeo = sock_wait_for_wmem(sk, timeo);
1569 }
1570
1571 skb_set_owner_w(skb, sk);
1572 return skb;
1573
1574interrupted:
1575 err = sock_intr_errno(timeo);
1576failure:
1577 *errcode = err;
1578 return NULL;
1579}
1580EXPORT_SYMBOL(sock_alloc_send_pskb);
1581
1582struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1583 int noblock, int *errcode)
1584{
1585 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1586}
1587EXPORT_SYMBOL(sock_alloc_send_skb);
1588
1589static void __lock_sock(struct sock *sk)
1590 __releases(&sk->sk_lock.slock)
1591 __acquires(&sk->sk_lock.slock)
1592{
1593 DEFINE_WAIT(wait);
1594
1595 for (;;) {
1596 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1597 TASK_UNINTERRUPTIBLE);
1598 spin_unlock_bh(&sk->sk_lock.slock);
1599 schedule();
1600 spin_lock_bh(&sk->sk_lock.slock);
1601 if (!sock_owned_by_user(sk))
1602 break;
1603 }
1604 finish_wait(&sk->sk_lock.wq, &wait);
1605}
1606
1607static void __release_sock(struct sock *sk)
1608 __releases(&sk->sk_lock.slock)
1609 __acquires(&sk->sk_lock.slock)
1610{
1611 struct sk_buff *skb = sk->sk_backlog.head;
1612
1613 do {
1614 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1615 bh_unlock_sock(sk);
1616
1617 do {
1618 struct sk_buff *next = skb->next;
1619
1620 WARN_ON_ONCE(skb_dst_is_noref(skb));
1621 skb->next = NULL;
1622 sk_backlog_rcv(sk, skb);
1623
1624 /*
1625 * We are in process context here with softirqs
1626 * disabled, use cond_resched_softirq() to preempt.
1627 * This is safe to do because we've taken the backlog
1628 * queue private:
1629 */
1630 cond_resched_softirq();
1631
1632 skb = next;
1633 } while (skb != NULL);
1634
1635 bh_lock_sock(sk);
1636 } while ((skb = sk->sk_backlog.head) != NULL);
1637
1638 /*
1639 * Doing the zeroing here guarantee we can not loop forever
1640 * while a wild producer attempts to flood us.
1641 */
1642 sk->sk_backlog.len = 0;
1643}
1644
1645/**
1646 * sk_wait_data - wait for data to arrive at sk_receive_queue
1647 * @sk: sock to wait on
1648 * @timeo: for how long
1649 *
1650 * Now socket state including sk->sk_err is changed only under lock,
1651 * hence we may omit checks after joining wait queue.
1652 * We check receive queue before schedule() only as optimization;
1653 * it is very likely that release_sock() added new data.
1654 */
1655int sk_wait_data(struct sock *sk, long *timeo)
1656{
1657 int rc;
1658 DEFINE_WAIT(wait);
1659
1660 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1661 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1662 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1663 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1664 finish_wait(sk_sleep(sk), &wait);
1665 return rc;
1666}
1667EXPORT_SYMBOL(sk_wait_data);
1668
1669/**
1670 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1671 * @sk: socket
1672 * @size: memory size to allocate
1673 * @kind: allocation type
1674 *
1675 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1676 * rmem allocation. This function assumes that protocols which have
1677 * memory_pressure use sk_wmem_queued as write buffer accounting.
1678 */
1679int __sk_mem_schedule(struct sock *sk, int size, int kind)
1680{
1681 struct proto *prot = sk->sk_prot;
1682 int amt = sk_mem_pages(size);
1683 long allocated;
1684
1685 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1686 allocated = atomic_long_add_return(amt, prot->memory_allocated);
1687
1688 /* Under limit. */
1689 if (allocated <= prot->sysctl_mem[0]) {
1690 if (prot->memory_pressure && *prot->memory_pressure)
1691 *prot->memory_pressure = 0;
1692 return 1;
1693 }
1694
1695 /* Under pressure. */
1696 if (allocated > prot->sysctl_mem[1])
1697 if (prot->enter_memory_pressure)
1698 prot->enter_memory_pressure(sk);
1699
1700 /* Over hard limit. */
1701 if (allocated > prot->sysctl_mem[2])
1702 goto suppress_allocation;
1703
1704 /* guarantee minimum buffer size under pressure */
1705 if (kind == SK_MEM_RECV) {
1706 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1707 return 1;
1708 } else { /* SK_MEM_SEND */
1709 if (sk->sk_type == SOCK_STREAM) {
1710 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1711 return 1;
1712 } else if (atomic_read(&sk->sk_wmem_alloc) <
1713 prot->sysctl_wmem[0])
1714 return 1;
1715 }
1716
1717 if (prot->memory_pressure) {
1718 int alloc;
1719
1720 if (!*prot->memory_pressure)
1721 return 1;
1722 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1723 if (prot->sysctl_mem[2] > alloc *
1724 sk_mem_pages(sk->sk_wmem_queued +
1725 atomic_read(&sk->sk_rmem_alloc) +
1726 sk->sk_forward_alloc))
1727 return 1;
1728 }
1729
1730suppress_allocation:
1731
1732 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1733 sk_stream_moderate_sndbuf(sk);
1734
1735 /* Fail only if socket is _under_ its sndbuf.
1736 * In this case we cannot block, so that we have to fail.
1737 */
1738 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1739 return 1;
1740 }
1741
1742 trace_sock_exceed_buf_limit(sk, prot, allocated);
1743
1744 /* Alas. Undo changes. */
1745 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1746 atomic_long_sub(amt, prot->memory_allocated);
1747 return 0;
1748}
1749EXPORT_SYMBOL(__sk_mem_schedule);
1750
1751/**
1752 * __sk_reclaim - reclaim memory_allocated
1753 * @sk: socket
1754 */
1755void __sk_mem_reclaim(struct sock *sk)
1756{
1757 struct proto *prot = sk->sk_prot;
1758
1759 atomic_long_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1760 prot->memory_allocated);
1761 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1762
1763 if (prot->memory_pressure && *prot->memory_pressure &&
1764 (atomic_long_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1765 *prot->memory_pressure = 0;
1766}
1767EXPORT_SYMBOL(__sk_mem_reclaim);
1768
1769
1770/*
1771 * Set of default routines for initialising struct proto_ops when
1772 * the protocol does not support a particular function. In certain
1773 * cases where it makes no sense for a protocol to have a "do nothing"
1774 * function, some default processing is provided.
1775 */
1776
1777int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1778{
1779 return -EOPNOTSUPP;
1780}
1781EXPORT_SYMBOL(sock_no_bind);
1782
1783int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1784 int len, int flags)
1785{
1786 return -EOPNOTSUPP;
1787}
1788EXPORT_SYMBOL(sock_no_connect);
1789
1790int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1791{
1792 return -EOPNOTSUPP;
1793}
1794EXPORT_SYMBOL(sock_no_socketpair);
1795
1796int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1797{
1798 return -EOPNOTSUPP;
1799}
1800EXPORT_SYMBOL(sock_no_accept);
1801
1802int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1803 int *len, int peer)
1804{
1805 return -EOPNOTSUPP;
1806}
1807EXPORT_SYMBOL(sock_no_getname);
1808
1809unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1810{
1811 return 0;
1812}
1813EXPORT_SYMBOL(sock_no_poll);
1814
1815int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1816{
1817 return -EOPNOTSUPP;
1818}
1819EXPORT_SYMBOL(sock_no_ioctl);
1820
1821int sock_no_listen(struct socket *sock, int backlog)
1822{
1823 return -EOPNOTSUPP;
1824}
1825EXPORT_SYMBOL(sock_no_listen);
1826
1827int sock_no_shutdown(struct socket *sock, int how)
1828{
1829 return -EOPNOTSUPP;
1830}
1831EXPORT_SYMBOL(sock_no_shutdown);
1832
1833int sock_no_setsockopt(struct socket *sock, int level, int optname,
1834 char __user *optval, unsigned int optlen)
1835{
1836 return -EOPNOTSUPP;
1837}
1838EXPORT_SYMBOL(sock_no_setsockopt);
1839
1840int sock_no_getsockopt(struct socket *sock, int level, int optname,
1841 char __user *optval, int __user *optlen)
1842{
1843 return -EOPNOTSUPP;
1844}
1845EXPORT_SYMBOL(sock_no_getsockopt);
1846
1847int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1848 size_t len)
1849{
1850 return -EOPNOTSUPP;
1851}
1852EXPORT_SYMBOL(sock_no_sendmsg);
1853
1854int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1855 size_t len, int flags)
1856{
1857 return -EOPNOTSUPP;
1858}
1859EXPORT_SYMBOL(sock_no_recvmsg);
1860
1861int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1862{
1863 /* Mirror missing mmap method error code */
1864 return -ENODEV;
1865}
1866EXPORT_SYMBOL(sock_no_mmap);
1867
1868ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1869{
1870 ssize_t res;
1871 struct msghdr msg = {.msg_flags = flags};
1872 struct kvec iov;
1873 char *kaddr = kmap(page);
1874 iov.iov_base = kaddr + offset;
1875 iov.iov_len = size;
1876 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1877 kunmap(page);
1878 return res;
1879}
1880EXPORT_SYMBOL(sock_no_sendpage);
1881
1882/*
1883 * Default Socket Callbacks
1884 */
1885
1886static void sock_def_wakeup(struct sock *sk)
1887{
1888 struct socket_wq *wq;
1889
1890 rcu_read_lock();
1891 wq = rcu_dereference(sk->sk_wq);
1892 if (wq_has_sleeper(wq))
1893 wake_up_interruptible_all(&wq->wait);
1894 rcu_read_unlock();
1895}
1896
1897static void sock_def_error_report(struct sock *sk)
1898{
1899 struct socket_wq *wq;
1900
1901 rcu_read_lock();
1902 wq = rcu_dereference(sk->sk_wq);
1903 if (wq_has_sleeper(wq))
1904 wake_up_interruptible_poll(&wq->wait, POLLERR);
1905 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1906 rcu_read_unlock();
1907}
1908
1909static void sock_def_readable(struct sock *sk, int len)
1910{
1911 struct socket_wq *wq;
1912
1913 rcu_read_lock();
1914 wq = rcu_dereference(sk->sk_wq);
1915 if (wq_has_sleeper(wq))
1916 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
1917 POLLRDNORM | POLLRDBAND);
1918 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1919 rcu_read_unlock();
1920}
1921
1922static void sock_def_write_space(struct sock *sk)
1923{
1924 struct socket_wq *wq;
1925
1926 rcu_read_lock();
1927
1928 /* Do not wake up a writer until he can make "significant"
1929 * progress. --DaveM
1930 */
1931 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1932 wq = rcu_dereference(sk->sk_wq);
1933 if (wq_has_sleeper(wq))
1934 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1935 POLLWRNORM | POLLWRBAND);
1936
1937 /* Should agree with poll, otherwise some programs break */
1938 if (sock_writeable(sk))
1939 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1940 }
1941
1942 rcu_read_unlock();
1943}
1944
1945static void sock_def_destruct(struct sock *sk)
1946{
1947 kfree(sk->sk_protinfo);
1948}
1949
1950void sk_send_sigurg(struct sock *sk)
1951{
1952 if (sk->sk_socket && sk->sk_socket->file)
1953 if (send_sigurg(&sk->sk_socket->file->f_owner))
1954 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1955}
1956EXPORT_SYMBOL(sk_send_sigurg);
1957
1958void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1959 unsigned long expires)
1960{
1961 if (!mod_timer(timer, expires))
1962 sock_hold(sk);
1963}
1964EXPORT_SYMBOL(sk_reset_timer);
1965
1966void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1967{
1968 if (timer_pending(timer) && del_timer(timer))
1969 __sock_put(sk);
1970}
1971EXPORT_SYMBOL(sk_stop_timer);
1972
1973void sock_init_data(struct socket *sock, struct sock *sk)
1974{
1975 skb_queue_head_init(&sk->sk_receive_queue);
1976 skb_queue_head_init(&sk->sk_write_queue);
1977 skb_queue_head_init(&sk->sk_error_queue);
1978#ifdef CONFIG_NET_DMA
1979 skb_queue_head_init(&sk->sk_async_wait_queue);
1980#endif
1981
1982 sk->sk_send_head = NULL;
1983
1984 init_timer(&sk->sk_timer);
1985
1986 sk->sk_allocation = GFP_KERNEL;
1987 sk->sk_rcvbuf = sysctl_rmem_default;
1988 sk->sk_sndbuf = sysctl_wmem_default;
1989 sk->sk_state = TCP_CLOSE;
1990 sk_set_socket(sk, sock);
1991
1992 sock_set_flag(sk, SOCK_ZAPPED);
1993
1994 if (sock) {
1995 sk->sk_type = sock->type;
1996 sk->sk_wq = sock->wq;
1997 sock->sk = sk;
1998 } else
1999 sk->sk_wq = NULL;
2000
2001 spin_lock_init(&sk->sk_dst_lock);
2002 rwlock_init(&sk->sk_callback_lock);
2003 lockdep_set_class_and_name(&sk->sk_callback_lock,
2004 af_callback_keys + sk->sk_family,
2005 af_family_clock_key_strings[sk->sk_family]);
2006
2007 sk->sk_state_change = sock_def_wakeup;
2008 sk->sk_data_ready = sock_def_readable;
2009 sk->sk_write_space = sock_def_write_space;
2010 sk->sk_error_report = sock_def_error_report;
2011 sk->sk_destruct = sock_def_destruct;
2012
2013 sk->sk_sndmsg_page = NULL;
2014 sk->sk_sndmsg_off = 0;
2015
2016 sk->sk_peer_pid = NULL;
2017 sk->sk_peer_cred = NULL;
2018 sk->sk_write_pending = 0;
2019 sk->sk_rcvlowat = 1;
2020 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2021 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2022
2023 sk->sk_stamp = ktime_set(-1L, 0);
2024
2025 /*
2026 * Before updating sk_refcnt, we must commit prior changes to memory
2027 * (Documentation/RCU/rculist_nulls.txt for details)
2028 */
2029 smp_wmb();
2030 atomic_set(&sk->sk_refcnt, 1);
2031 atomic_set(&sk->sk_drops, 0);
2032}
2033EXPORT_SYMBOL(sock_init_data);
2034
2035void lock_sock_nested(struct sock *sk, int subclass)
2036{
2037 might_sleep();
2038 spin_lock_bh(&sk->sk_lock.slock);
2039 if (sk->sk_lock.owned)
2040 __lock_sock(sk);
2041 sk->sk_lock.owned = 1;
2042 spin_unlock(&sk->sk_lock.slock);
2043 /*
2044 * The sk_lock has mutex_lock() semantics here:
2045 */
2046 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2047 local_bh_enable();
2048}
2049EXPORT_SYMBOL(lock_sock_nested);
2050
2051void release_sock(struct sock *sk)
2052{
2053 /*
2054 * The sk_lock has mutex_unlock() semantics:
2055 */
2056 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2057
2058 spin_lock_bh(&sk->sk_lock.slock);
2059 if (sk->sk_backlog.tail)
2060 __release_sock(sk);
2061 sk->sk_lock.owned = 0;
2062 if (waitqueue_active(&sk->sk_lock.wq))
2063 wake_up(&sk->sk_lock.wq);
2064 spin_unlock_bh(&sk->sk_lock.slock);
2065}
2066EXPORT_SYMBOL(release_sock);
2067
2068/**
2069 * lock_sock_fast - fast version of lock_sock
2070 * @sk: socket
2071 *
2072 * This version should be used for very small section, where process wont block
2073 * return false if fast path is taken
2074 * sk_lock.slock locked, owned = 0, BH disabled
2075 * return true if slow path is taken
2076 * sk_lock.slock unlocked, owned = 1, BH enabled
2077 */
2078bool lock_sock_fast(struct sock *sk)
2079{
2080 might_sleep();
2081 spin_lock_bh(&sk->sk_lock.slock);
2082
2083 if (!sk->sk_lock.owned)
2084 /*
2085 * Note : We must disable BH
2086 */
2087 return false;
2088
2089 __lock_sock(sk);
2090 sk->sk_lock.owned = 1;
2091 spin_unlock(&sk->sk_lock.slock);
2092 /*
2093 * The sk_lock has mutex_lock() semantics here:
2094 */
2095 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2096 local_bh_enable();
2097 return true;
2098}
2099EXPORT_SYMBOL(lock_sock_fast);
2100
2101int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2102{
2103 struct timeval tv;
2104 if (!sock_flag(sk, SOCK_TIMESTAMP))
2105 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2106 tv = ktime_to_timeval(sk->sk_stamp);
2107 if (tv.tv_sec == -1)
2108 return -ENOENT;
2109 if (tv.tv_sec == 0) {
2110 sk->sk_stamp = ktime_get_real();
2111 tv = ktime_to_timeval(sk->sk_stamp);
2112 }
2113 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2114}
2115EXPORT_SYMBOL(sock_get_timestamp);
2116
2117int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2118{
2119 struct timespec ts;
2120 if (!sock_flag(sk, SOCK_TIMESTAMP))
2121 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2122 ts = ktime_to_timespec(sk->sk_stamp);
2123 if (ts.tv_sec == -1)
2124 return -ENOENT;
2125 if (ts.tv_sec == 0) {
2126 sk->sk_stamp = ktime_get_real();
2127 ts = ktime_to_timespec(sk->sk_stamp);
2128 }
2129 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2130}
2131EXPORT_SYMBOL(sock_get_timestampns);
2132
2133void sock_enable_timestamp(struct sock *sk, int flag)
2134{
2135 if (!sock_flag(sk, flag)) {
2136 sock_set_flag(sk, flag);
2137 /*
2138 * we just set one of the two flags which require net
2139 * time stamping, but time stamping might have been on
2140 * already because of the other one
2141 */
2142 if (!sock_flag(sk,
2143 flag == SOCK_TIMESTAMP ?
2144 SOCK_TIMESTAMPING_RX_SOFTWARE :
2145 SOCK_TIMESTAMP))
2146 net_enable_timestamp();
2147 }
2148}
2149
2150/*
2151 * Get a socket option on an socket.
2152 *
2153 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2154 * asynchronous errors should be reported by getsockopt. We assume
2155 * this means if you specify SO_ERROR (otherwise whats the point of it).
2156 */
2157int sock_common_getsockopt(struct socket *sock, int level, int optname,
2158 char __user *optval, int __user *optlen)
2159{
2160 struct sock *sk = sock->sk;
2161
2162 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2163}
2164EXPORT_SYMBOL(sock_common_getsockopt);
2165
2166#ifdef CONFIG_COMPAT
2167int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2168 char __user *optval, int __user *optlen)
2169{
2170 struct sock *sk = sock->sk;
2171
2172 if (sk->sk_prot->compat_getsockopt != NULL)
2173 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2174 optval, optlen);
2175 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2176}
2177EXPORT_SYMBOL(compat_sock_common_getsockopt);
2178#endif
2179
2180int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2181 struct msghdr *msg, size_t size, int flags)
2182{
2183 struct sock *sk = sock->sk;
2184 int addr_len = 0;
2185 int err;
2186
2187 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2188 flags & ~MSG_DONTWAIT, &addr_len);
2189 if (err >= 0)
2190 msg->msg_namelen = addr_len;
2191 return err;
2192}
2193EXPORT_SYMBOL(sock_common_recvmsg);
2194
2195/*
2196 * Set socket options on an inet socket.
2197 */
2198int sock_common_setsockopt(struct socket *sock, int level, int optname,
2199 char __user *optval, unsigned int optlen)
2200{
2201 struct sock *sk = sock->sk;
2202
2203 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2204}
2205EXPORT_SYMBOL(sock_common_setsockopt);
2206
2207#ifdef CONFIG_COMPAT
2208int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2209 char __user *optval, unsigned int optlen)
2210{
2211 struct sock *sk = sock->sk;
2212
2213 if (sk->sk_prot->compat_setsockopt != NULL)
2214 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2215 optval, optlen);
2216 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2217}
2218EXPORT_SYMBOL(compat_sock_common_setsockopt);
2219#endif
2220
2221void sk_common_release(struct sock *sk)
2222{
2223 if (sk->sk_prot->destroy)
2224 sk->sk_prot->destroy(sk);
2225
2226 /*
2227 * Observation: when sock_common_release is called, processes have
2228 * no access to socket. But net still has.
2229 * Step one, detach it from networking:
2230 *
2231 * A. Remove from hash tables.
2232 */
2233
2234 sk->sk_prot->unhash(sk);
2235
2236 /*
2237 * In this point socket cannot receive new packets, but it is possible
2238 * that some packets are in flight because some CPU runs receiver and
2239 * did hash table lookup before we unhashed socket. They will achieve
2240 * receive queue and will be purged by socket destructor.
2241 *
2242 * Also we still have packets pending on receive queue and probably,
2243 * our own packets waiting in device queues. sock_destroy will drain
2244 * receive queue, but transmitted packets will delay socket destruction
2245 * until the last reference will be released.
2246 */
2247
2248 sock_orphan(sk);
2249
2250 xfrm_sk_free_policy(sk);
2251
2252 sk_refcnt_debug_release(sk);
2253 sock_put(sk);
2254}
2255EXPORT_SYMBOL(sk_common_release);
2256
2257static DEFINE_RWLOCK(proto_list_lock);
2258static LIST_HEAD(proto_list);
2259
2260#ifdef CONFIG_PROC_FS
2261#define PROTO_INUSE_NR 64 /* should be enough for the first time */
2262struct prot_inuse {
2263 int val[PROTO_INUSE_NR];
2264};
2265
2266static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2267
2268#ifdef CONFIG_NET_NS
2269void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2270{
2271 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2272}
2273EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2274
2275int sock_prot_inuse_get(struct net *net, struct proto *prot)
2276{
2277 int cpu, idx = prot->inuse_idx;
2278 int res = 0;
2279
2280 for_each_possible_cpu(cpu)
2281 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2282
2283 return res >= 0 ? res : 0;
2284}
2285EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2286
2287static int __net_init sock_inuse_init_net(struct net *net)
2288{
2289 net->core.inuse = alloc_percpu(struct prot_inuse);
2290 return net->core.inuse ? 0 : -ENOMEM;
2291}
2292
2293static void __net_exit sock_inuse_exit_net(struct net *net)
2294{
2295 free_percpu(net->core.inuse);
2296}
2297
2298static struct pernet_operations net_inuse_ops = {
2299 .init = sock_inuse_init_net,
2300 .exit = sock_inuse_exit_net,
2301};
2302
2303static __init int net_inuse_init(void)
2304{
2305 if (register_pernet_subsys(&net_inuse_ops))
2306 panic("Cannot initialize net inuse counters");
2307
2308 return 0;
2309}
2310
2311core_initcall(net_inuse_init);
2312#else
2313static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2314
2315void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2316{
2317 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2318}
2319EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2320
2321int sock_prot_inuse_get(struct net *net, struct proto *prot)
2322{
2323 int cpu, idx = prot->inuse_idx;
2324 int res = 0;
2325
2326 for_each_possible_cpu(cpu)
2327 res += per_cpu(prot_inuse, cpu).val[idx];
2328
2329 return res >= 0 ? res : 0;
2330}
2331EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2332#endif
2333
2334static void assign_proto_idx(struct proto *prot)
2335{
2336 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2337
2338 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2339 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2340 return;
2341 }
2342
2343 set_bit(prot->inuse_idx, proto_inuse_idx);
2344}
2345
2346static void release_proto_idx(struct proto *prot)
2347{
2348 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2349 clear_bit(prot->inuse_idx, proto_inuse_idx);
2350}
2351#else
2352static inline void assign_proto_idx(struct proto *prot)
2353{
2354}
2355
2356static inline void release_proto_idx(struct proto *prot)
2357{
2358}
2359#endif
2360
2361int proto_register(struct proto *prot, int alloc_slab)
2362{
2363 if (alloc_slab) {
2364 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2365 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2366 NULL);
2367
2368 if (prot->slab == NULL) {
2369 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2370 prot->name);
2371 goto out;
2372 }
2373
2374 if (prot->rsk_prot != NULL) {
2375 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2376 if (prot->rsk_prot->slab_name == NULL)
2377 goto out_free_sock_slab;
2378
2379 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2380 prot->rsk_prot->obj_size, 0,
2381 SLAB_HWCACHE_ALIGN, NULL);
2382
2383 if (prot->rsk_prot->slab == NULL) {
2384 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2385 prot->name);
2386 goto out_free_request_sock_slab_name;
2387 }
2388 }
2389
2390 if (prot->twsk_prot != NULL) {
2391 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2392
2393 if (prot->twsk_prot->twsk_slab_name == NULL)
2394 goto out_free_request_sock_slab;
2395
2396 prot->twsk_prot->twsk_slab =
2397 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2398 prot->twsk_prot->twsk_obj_size,
2399 0,
2400 SLAB_HWCACHE_ALIGN |
2401 prot->slab_flags,
2402 NULL);
2403 if (prot->twsk_prot->twsk_slab == NULL)
2404 goto out_free_timewait_sock_slab_name;
2405 }
2406 }
2407
2408 write_lock(&proto_list_lock);
2409 list_add(&prot->node, &proto_list);
2410 assign_proto_idx(prot);
2411 write_unlock(&proto_list_lock);
2412 return 0;
2413
2414out_free_timewait_sock_slab_name:
2415 kfree(prot->twsk_prot->twsk_slab_name);
2416out_free_request_sock_slab:
2417 if (prot->rsk_prot && prot->rsk_prot->slab) {
2418 kmem_cache_destroy(prot->rsk_prot->slab);
2419 prot->rsk_prot->slab = NULL;
2420 }
2421out_free_request_sock_slab_name:
2422 if (prot->rsk_prot)
2423 kfree(prot->rsk_prot->slab_name);
2424out_free_sock_slab:
2425 kmem_cache_destroy(prot->slab);
2426 prot->slab = NULL;
2427out:
2428 return -ENOBUFS;
2429}
2430EXPORT_SYMBOL(proto_register);
2431
2432void proto_unregister(struct proto *prot)
2433{
2434 write_lock(&proto_list_lock);
2435 release_proto_idx(prot);
2436 list_del(&prot->node);
2437 write_unlock(&proto_list_lock);
2438
2439 if (prot->slab != NULL) {
2440 kmem_cache_destroy(prot->slab);
2441 prot->slab = NULL;
2442 }
2443
2444 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2445 kmem_cache_destroy(prot->rsk_prot->slab);
2446 kfree(prot->rsk_prot->slab_name);
2447 prot->rsk_prot->slab = NULL;
2448 }
2449
2450 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2451 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2452 kfree(prot->twsk_prot->twsk_slab_name);
2453 prot->twsk_prot->twsk_slab = NULL;
2454 }
2455}
2456EXPORT_SYMBOL(proto_unregister);
2457
2458#ifdef CONFIG_PROC_FS
2459static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2460 __acquires(proto_list_lock)
2461{
2462 read_lock(&proto_list_lock);
2463 return seq_list_start_head(&proto_list, *pos);
2464}
2465
2466static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2467{
2468 return seq_list_next(v, &proto_list, pos);
2469}
2470
2471static void proto_seq_stop(struct seq_file *seq, void *v)
2472 __releases(proto_list_lock)
2473{
2474 read_unlock(&proto_list_lock);
2475}
2476
2477static char proto_method_implemented(const void *method)
2478{
2479 return method == NULL ? 'n' : 'y';
2480}
2481
2482static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2483{
2484 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2485 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2486 proto->name,
2487 proto->obj_size,
2488 sock_prot_inuse_get(seq_file_net(seq), proto),
2489 proto->memory_allocated != NULL ? atomic_long_read(proto->memory_allocated) : -1L,
2490 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2491 proto->max_header,
2492 proto->slab == NULL ? "no" : "yes",
2493 module_name(proto->owner),
2494 proto_method_implemented(proto->close),
2495 proto_method_implemented(proto->connect),
2496 proto_method_implemented(proto->disconnect),
2497 proto_method_implemented(proto->accept),
2498 proto_method_implemented(proto->ioctl),
2499 proto_method_implemented(proto->init),
2500 proto_method_implemented(proto->destroy),
2501 proto_method_implemented(proto->shutdown),
2502 proto_method_implemented(proto->setsockopt),
2503 proto_method_implemented(proto->getsockopt),
2504 proto_method_implemented(proto->sendmsg),
2505 proto_method_implemented(proto->recvmsg),
2506 proto_method_implemented(proto->sendpage),
2507 proto_method_implemented(proto->bind),
2508 proto_method_implemented(proto->backlog_rcv),
2509 proto_method_implemented(proto->hash),
2510 proto_method_implemented(proto->unhash),
2511 proto_method_implemented(proto->get_port),
2512 proto_method_implemented(proto->enter_memory_pressure));
2513}
2514
2515static int proto_seq_show(struct seq_file *seq, void *v)
2516{
2517 if (v == &proto_list)
2518 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2519 "protocol",
2520 "size",
2521 "sockets",
2522 "memory",
2523 "press",
2524 "maxhdr",
2525 "slab",
2526 "module",
2527 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2528 else
2529 proto_seq_printf(seq, list_entry(v, struct proto, node));
2530 return 0;
2531}
2532
2533static const struct seq_operations proto_seq_ops = {
2534 .start = proto_seq_start,
2535 .next = proto_seq_next,
2536 .stop = proto_seq_stop,
2537 .show = proto_seq_show,
2538};
2539
2540static int proto_seq_open(struct inode *inode, struct file *file)
2541{
2542 return seq_open_net(inode, file, &proto_seq_ops,
2543 sizeof(struct seq_net_private));
2544}
2545
2546static const struct file_operations proto_seq_fops = {
2547 .owner = THIS_MODULE,
2548 .open = proto_seq_open,
2549 .read = seq_read,
2550 .llseek = seq_lseek,
2551 .release = seq_release_net,
2552};
2553
2554static __net_init int proto_init_net(struct net *net)
2555{
2556 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2557 return -ENOMEM;
2558
2559 return 0;
2560}
2561
2562static __net_exit void proto_exit_net(struct net *net)
2563{
2564 proc_net_remove(net, "protocols");
2565}
2566
2567
2568static __net_initdata struct pernet_operations proto_net_ops = {
2569 .init = proto_init_net,
2570 .exit = proto_exit_net,
2571};
2572
2573static int __init proto_init(void)
2574{
2575 return register_pernet_subsys(&proto_net_ops);
2576}
2577
2578subsys_initcall(proto_init);
2579
2580#endif /* PROC_FS */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88#include <asm/unaligned.h>
89#include <linux/capability.h>
90#include <linux/errno.h>
91#include <linux/errqueue.h>
92#include <linux/types.h>
93#include <linux/socket.h>
94#include <linux/in.h>
95#include <linux/kernel.h>
96#include <linux/module.h>
97#include <linux/proc_fs.h>
98#include <linux/seq_file.h>
99#include <linux/sched.h>
100#include <linux/sched/mm.h>
101#include <linux/timer.h>
102#include <linux/string.h>
103#include <linux/sockios.h>
104#include <linux/net.h>
105#include <linux/mm.h>
106#include <linux/slab.h>
107#include <linux/interrupt.h>
108#include <linux/poll.h>
109#include <linux/tcp.h>
110#include <linux/init.h>
111#include <linux/highmem.h>
112#include <linux/user_namespace.h>
113#include <linux/static_key.h>
114#include <linux/memcontrol.h>
115#include <linux/prefetch.h>
116#include <linux/compat.h>
117
118#include <linux/uaccess.h>
119
120#include <linux/netdevice.h>
121#include <net/protocol.h>
122#include <linux/skbuff.h>
123#include <net/net_namespace.h>
124#include <net/request_sock.h>
125#include <net/sock.h>
126#include <linux/net_tstamp.h>
127#include <net/xfrm.h>
128#include <linux/ipsec.h>
129#include <net/cls_cgroup.h>
130#include <net/netprio_cgroup.h>
131#include <linux/sock_diag.h>
132
133#include <linux/filter.h>
134#include <net/sock_reuseport.h>
135#include <net/bpf_sk_storage.h>
136
137#include <trace/events/sock.h>
138
139#include <net/tcp.h>
140#include <net/busy_poll.h>
141
142static DEFINE_MUTEX(proto_list_mutex);
143static LIST_HEAD(proto_list);
144
145static void sock_inuse_add(struct net *net, int val);
146
147/**
148 * sk_ns_capable - General socket capability test
149 * @sk: Socket to use a capability on or through
150 * @user_ns: The user namespace of the capability to use
151 * @cap: The capability to use
152 *
153 * Test to see if the opener of the socket had when the socket was
154 * created and the current process has the capability @cap in the user
155 * namespace @user_ns.
156 */
157bool sk_ns_capable(const struct sock *sk,
158 struct user_namespace *user_ns, int cap)
159{
160 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
161 ns_capable(user_ns, cap);
162}
163EXPORT_SYMBOL(sk_ns_capable);
164
165/**
166 * sk_capable - Socket global capability test
167 * @sk: Socket to use a capability on or through
168 * @cap: The global capability to use
169 *
170 * Test to see if the opener of the socket had when the socket was
171 * created and the current process has the capability @cap in all user
172 * namespaces.
173 */
174bool sk_capable(const struct sock *sk, int cap)
175{
176 return sk_ns_capable(sk, &init_user_ns, cap);
177}
178EXPORT_SYMBOL(sk_capable);
179
180/**
181 * sk_net_capable - Network namespace socket capability test
182 * @sk: Socket to use a capability on or through
183 * @cap: The capability to use
184 *
185 * Test to see if the opener of the socket had when the socket was created
186 * and the current process has the capability @cap over the network namespace
187 * the socket is a member of.
188 */
189bool sk_net_capable(const struct sock *sk, int cap)
190{
191 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
192}
193EXPORT_SYMBOL(sk_net_capable);
194
195/*
196 * Each address family might have different locking rules, so we have
197 * one slock key per address family and separate keys for internal and
198 * userspace sockets.
199 */
200static struct lock_class_key af_family_keys[AF_MAX];
201static struct lock_class_key af_family_kern_keys[AF_MAX];
202static struct lock_class_key af_family_slock_keys[AF_MAX];
203static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
204
205/*
206 * Make lock validator output more readable. (we pre-construct these
207 * strings build-time, so that runtime initialization of socket
208 * locks is fast):
209 */
210
211#define _sock_locks(x) \
212 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
213 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
214 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
215 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
216 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
217 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
218 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
219 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
220 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
221 x "27" , x "28" , x "AF_CAN" , \
222 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
223 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
224 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
225 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
226 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
227 x "AF_MAX"
228
229static const char *const af_family_key_strings[AF_MAX+1] = {
230 _sock_locks("sk_lock-")
231};
232static const char *const af_family_slock_key_strings[AF_MAX+1] = {
233 _sock_locks("slock-")
234};
235static const char *const af_family_clock_key_strings[AF_MAX+1] = {
236 _sock_locks("clock-")
237};
238
239static const char *const af_family_kern_key_strings[AF_MAX+1] = {
240 _sock_locks("k-sk_lock-")
241};
242static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
243 _sock_locks("k-slock-")
244};
245static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
246 _sock_locks("k-clock-")
247};
248static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
249 _sock_locks("rlock-")
250};
251static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
252 _sock_locks("wlock-")
253};
254static const char *const af_family_elock_key_strings[AF_MAX+1] = {
255 _sock_locks("elock-")
256};
257
258/*
259 * sk_callback_lock and sk queues locking rules are per-address-family,
260 * so split the lock classes by using a per-AF key:
261 */
262static struct lock_class_key af_callback_keys[AF_MAX];
263static struct lock_class_key af_rlock_keys[AF_MAX];
264static struct lock_class_key af_wlock_keys[AF_MAX];
265static struct lock_class_key af_elock_keys[AF_MAX];
266static struct lock_class_key af_kern_callback_keys[AF_MAX];
267
268/* Run time adjustable parameters. */
269__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
270EXPORT_SYMBOL(sysctl_wmem_max);
271__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
272EXPORT_SYMBOL(sysctl_rmem_max);
273__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
274__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
275
276/* Maximal space eaten by iovec or ancillary data plus some space */
277int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
278EXPORT_SYMBOL(sysctl_optmem_max);
279
280int sysctl_tstamp_allow_data __read_mostly = 1;
281
282DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
283EXPORT_SYMBOL_GPL(memalloc_socks_key);
284
285/**
286 * sk_set_memalloc - sets %SOCK_MEMALLOC
287 * @sk: socket to set it on
288 *
289 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
290 * It's the responsibility of the admin to adjust min_free_kbytes
291 * to meet the requirements
292 */
293void sk_set_memalloc(struct sock *sk)
294{
295 sock_set_flag(sk, SOCK_MEMALLOC);
296 sk->sk_allocation |= __GFP_MEMALLOC;
297 static_branch_inc(&memalloc_socks_key);
298}
299EXPORT_SYMBOL_GPL(sk_set_memalloc);
300
301void sk_clear_memalloc(struct sock *sk)
302{
303 sock_reset_flag(sk, SOCK_MEMALLOC);
304 sk->sk_allocation &= ~__GFP_MEMALLOC;
305 static_branch_dec(&memalloc_socks_key);
306
307 /*
308 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
309 * progress of swapping. SOCK_MEMALLOC may be cleared while
310 * it has rmem allocations due to the last swapfile being deactivated
311 * but there is a risk that the socket is unusable due to exceeding
312 * the rmem limits. Reclaim the reserves and obey rmem limits again.
313 */
314 sk_mem_reclaim(sk);
315}
316EXPORT_SYMBOL_GPL(sk_clear_memalloc);
317
318int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
319{
320 int ret;
321 unsigned int noreclaim_flag;
322
323 /* these should have been dropped before queueing */
324 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
325
326 noreclaim_flag = memalloc_noreclaim_save();
327 ret = sk->sk_backlog_rcv(sk, skb);
328 memalloc_noreclaim_restore(noreclaim_flag);
329
330 return ret;
331}
332EXPORT_SYMBOL(__sk_backlog_rcv);
333
334static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
335{
336 struct __kernel_sock_timeval tv;
337
338 if (timeo == MAX_SCHEDULE_TIMEOUT) {
339 tv.tv_sec = 0;
340 tv.tv_usec = 0;
341 } else {
342 tv.tv_sec = timeo / HZ;
343 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
344 }
345
346 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
347 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
348 *(struct old_timeval32 *)optval = tv32;
349 return sizeof(tv32);
350 }
351
352 if (old_timeval) {
353 struct __kernel_old_timeval old_tv;
354 old_tv.tv_sec = tv.tv_sec;
355 old_tv.tv_usec = tv.tv_usec;
356 *(struct __kernel_old_timeval *)optval = old_tv;
357 return sizeof(old_tv);
358 }
359
360 *(struct __kernel_sock_timeval *)optval = tv;
361 return sizeof(tv);
362}
363
364static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
365 bool old_timeval)
366{
367 struct __kernel_sock_timeval tv;
368
369 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
370 struct old_timeval32 tv32;
371
372 if (optlen < sizeof(tv32))
373 return -EINVAL;
374
375 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
376 return -EFAULT;
377 tv.tv_sec = tv32.tv_sec;
378 tv.tv_usec = tv32.tv_usec;
379 } else if (old_timeval) {
380 struct __kernel_old_timeval old_tv;
381
382 if (optlen < sizeof(old_tv))
383 return -EINVAL;
384 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
385 return -EFAULT;
386 tv.tv_sec = old_tv.tv_sec;
387 tv.tv_usec = old_tv.tv_usec;
388 } else {
389 if (optlen < sizeof(tv))
390 return -EINVAL;
391 if (copy_from_sockptr(&tv, optval, sizeof(tv)))
392 return -EFAULT;
393 }
394 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
395 return -EDOM;
396
397 if (tv.tv_sec < 0) {
398 static int warned __read_mostly;
399
400 *timeo_p = 0;
401 if (warned < 10 && net_ratelimit()) {
402 warned++;
403 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
404 __func__, current->comm, task_pid_nr(current));
405 }
406 return 0;
407 }
408 *timeo_p = MAX_SCHEDULE_TIMEOUT;
409 if (tv.tv_sec == 0 && tv.tv_usec == 0)
410 return 0;
411 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
412 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
413 return 0;
414}
415
416static void sock_warn_obsolete_bsdism(const char *name)
417{
418 static int warned;
419 static char warncomm[TASK_COMM_LEN];
420 if (strcmp(warncomm, current->comm) && warned < 5) {
421 strcpy(warncomm, current->comm);
422 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
423 warncomm, name);
424 warned++;
425 }
426}
427
428static bool sock_needs_netstamp(const struct sock *sk)
429{
430 switch (sk->sk_family) {
431 case AF_UNSPEC:
432 case AF_UNIX:
433 return false;
434 default:
435 return true;
436 }
437}
438
439static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
440{
441 if (sk->sk_flags & flags) {
442 sk->sk_flags &= ~flags;
443 if (sock_needs_netstamp(sk) &&
444 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
445 net_disable_timestamp();
446 }
447}
448
449
450int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
451{
452 unsigned long flags;
453 struct sk_buff_head *list = &sk->sk_receive_queue;
454
455 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
456 atomic_inc(&sk->sk_drops);
457 trace_sock_rcvqueue_full(sk, skb);
458 return -ENOMEM;
459 }
460
461 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
462 atomic_inc(&sk->sk_drops);
463 return -ENOBUFS;
464 }
465
466 skb->dev = NULL;
467 skb_set_owner_r(skb, sk);
468
469 /* we escape from rcu protected region, make sure we dont leak
470 * a norefcounted dst
471 */
472 skb_dst_force(skb);
473
474 spin_lock_irqsave(&list->lock, flags);
475 sock_skb_set_dropcount(sk, skb);
476 __skb_queue_tail(list, skb);
477 spin_unlock_irqrestore(&list->lock, flags);
478
479 if (!sock_flag(sk, SOCK_DEAD))
480 sk->sk_data_ready(sk);
481 return 0;
482}
483EXPORT_SYMBOL(__sock_queue_rcv_skb);
484
485int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
486{
487 int err;
488
489 err = sk_filter(sk, skb);
490 if (err)
491 return err;
492
493 return __sock_queue_rcv_skb(sk, skb);
494}
495EXPORT_SYMBOL(sock_queue_rcv_skb);
496
497int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
498 const int nested, unsigned int trim_cap, bool refcounted)
499{
500 int rc = NET_RX_SUCCESS;
501
502 if (sk_filter_trim_cap(sk, skb, trim_cap))
503 goto discard_and_relse;
504
505 skb->dev = NULL;
506
507 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
508 atomic_inc(&sk->sk_drops);
509 goto discard_and_relse;
510 }
511 if (nested)
512 bh_lock_sock_nested(sk);
513 else
514 bh_lock_sock(sk);
515 if (!sock_owned_by_user(sk)) {
516 /*
517 * trylock + unlock semantics:
518 */
519 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
520
521 rc = sk_backlog_rcv(sk, skb);
522
523 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
524 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
525 bh_unlock_sock(sk);
526 atomic_inc(&sk->sk_drops);
527 goto discard_and_relse;
528 }
529
530 bh_unlock_sock(sk);
531out:
532 if (refcounted)
533 sock_put(sk);
534 return rc;
535discard_and_relse:
536 kfree_skb(skb);
537 goto out;
538}
539EXPORT_SYMBOL(__sk_receive_skb);
540
541struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
542{
543 struct dst_entry *dst = __sk_dst_get(sk);
544
545 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
546 sk_tx_queue_clear(sk);
547 sk->sk_dst_pending_confirm = 0;
548 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
549 dst_release(dst);
550 return NULL;
551 }
552
553 return dst;
554}
555EXPORT_SYMBOL(__sk_dst_check);
556
557struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
558{
559 struct dst_entry *dst = sk_dst_get(sk);
560
561 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
562 sk_dst_reset(sk);
563 dst_release(dst);
564 return NULL;
565 }
566
567 return dst;
568}
569EXPORT_SYMBOL(sk_dst_check);
570
571static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
572{
573 int ret = -ENOPROTOOPT;
574#ifdef CONFIG_NETDEVICES
575 struct net *net = sock_net(sk);
576
577 /* Sorry... */
578 ret = -EPERM;
579 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
580 goto out;
581
582 ret = -EINVAL;
583 if (ifindex < 0)
584 goto out;
585
586 sk->sk_bound_dev_if = ifindex;
587 if (sk->sk_prot->rehash)
588 sk->sk_prot->rehash(sk);
589 sk_dst_reset(sk);
590
591 ret = 0;
592
593out:
594#endif
595
596 return ret;
597}
598
599int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
600{
601 int ret;
602
603 if (lock_sk)
604 lock_sock(sk);
605 ret = sock_bindtoindex_locked(sk, ifindex);
606 if (lock_sk)
607 release_sock(sk);
608
609 return ret;
610}
611EXPORT_SYMBOL(sock_bindtoindex);
612
613static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
614{
615 int ret = -ENOPROTOOPT;
616#ifdef CONFIG_NETDEVICES
617 struct net *net = sock_net(sk);
618 char devname[IFNAMSIZ];
619 int index;
620
621 ret = -EINVAL;
622 if (optlen < 0)
623 goto out;
624
625 /* Bind this socket to a particular device like "eth0",
626 * as specified in the passed interface name. If the
627 * name is "" or the option length is zero the socket
628 * is not bound.
629 */
630 if (optlen > IFNAMSIZ - 1)
631 optlen = IFNAMSIZ - 1;
632 memset(devname, 0, sizeof(devname));
633
634 ret = -EFAULT;
635 if (copy_from_sockptr(devname, optval, optlen))
636 goto out;
637
638 index = 0;
639 if (devname[0] != '\0') {
640 struct net_device *dev;
641
642 rcu_read_lock();
643 dev = dev_get_by_name_rcu(net, devname);
644 if (dev)
645 index = dev->ifindex;
646 rcu_read_unlock();
647 ret = -ENODEV;
648 if (!dev)
649 goto out;
650 }
651
652 return sock_bindtoindex(sk, index, true);
653out:
654#endif
655
656 return ret;
657}
658
659static int sock_getbindtodevice(struct sock *sk, char __user *optval,
660 int __user *optlen, int len)
661{
662 int ret = -ENOPROTOOPT;
663#ifdef CONFIG_NETDEVICES
664 struct net *net = sock_net(sk);
665 char devname[IFNAMSIZ];
666
667 if (sk->sk_bound_dev_if == 0) {
668 len = 0;
669 goto zero;
670 }
671
672 ret = -EINVAL;
673 if (len < IFNAMSIZ)
674 goto out;
675
676 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
677 if (ret)
678 goto out;
679
680 len = strlen(devname) + 1;
681
682 ret = -EFAULT;
683 if (copy_to_user(optval, devname, len))
684 goto out;
685
686zero:
687 ret = -EFAULT;
688 if (put_user(len, optlen))
689 goto out;
690
691 ret = 0;
692
693out:
694#endif
695
696 return ret;
697}
698
699bool sk_mc_loop(struct sock *sk)
700{
701 if (dev_recursion_level())
702 return false;
703 if (!sk)
704 return true;
705 switch (sk->sk_family) {
706 case AF_INET:
707 return inet_sk(sk)->mc_loop;
708#if IS_ENABLED(CONFIG_IPV6)
709 case AF_INET6:
710 return inet6_sk(sk)->mc_loop;
711#endif
712 }
713 WARN_ON_ONCE(1);
714 return true;
715}
716EXPORT_SYMBOL(sk_mc_loop);
717
718void sock_set_reuseaddr(struct sock *sk)
719{
720 lock_sock(sk);
721 sk->sk_reuse = SK_CAN_REUSE;
722 release_sock(sk);
723}
724EXPORT_SYMBOL(sock_set_reuseaddr);
725
726void sock_set_reuseport(struct sock *sk)
727{
728 lock_sock(sk);
729 sk->sk_reuseport = true;
730 release_sock(sk);
731}
732EXPORT_SYMBOL(sock_set_reuseport);
733
734void sock_no_linger(struct sock *sk)
735{
736 lock_sock(sk);
737 sk->sk_lingertime = 0;
738 sock_set_flag(sk, SOCK_LINGER);
739 release_sock(sk);
740}
741EXPORT_SYMBOL(sock_no_linger);
742
743void sock_set_priority(struct sock *sk, u32 priority)
744{
745 lock_sock(sk);
746 sk->sk_priority = priority;
747 release_sock(sk);
748}
749EXPORT_SYMBOL(sock_set_priority);
750
751void sock_set_sndtimeo(struct sock *sk, s64 secs)
752{
753 lock_sock(sk);
754 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
755 sk->sk_sndtimeo = secs * HZ;
756 else
757 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
758 release_sock(sk);
759}
760EXPORT_SYMBOL(sock_set_sndtimeo);
761
762static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
763{
764 if (val) {
765 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
766 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
767 sock_set_flag(sk, SOCK_RCVTSTAMP);
768 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
769 } else {
770 sock_reset_flag(sk, SOCK_RCVTSTAMP);
771 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
772 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
773 }
774}
775
776void sock_enable_timestamps(struct sock *sk)
777{
778 lock_sock(sk);
779 __sock_set_timestamps(sk, true, false, true);
780 release_sock(sk);
781}
782EXPORT_SYMBOL(sock_enable_timestamps);
783
784void sock_set_keepalive(struct sock *sk)
785{
786 lock_sock(sk);
787 if (sk->sk_prot->keepalive)
788 sk->sk_prot->keepalive(sk, true);
789 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
790 release_sock(sk);
791}
792EXPORT_SYMBOL(sock_set_keepalive);
793
794static void __sock_set_rcvbuf(struct sock *sk, int val)
795{
796 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
797 * as a negative value.
798 */
799 val = min_t(int, val, INT_MAX / 2);
800 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
801
802 /* We double it on the way in to account for "struct sk_buff" etc.
803 * overhead. Applications assume that the SO_RCVBUF setting they make
804 * will allow that much actual data to be received on that socket.
805 *
806 * Applications are unaware that "struct sk_buff" and other overheads
807 * allocate from the receive buffer during socket buffer allocation.
808 *
809 * And after considering the possible alternatives, returning the value
810 * we actually used in getsockopt is the most desirable behavior.
811 */
812 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
813}
814
815void sock_set_rcvbuf(struct sock *sk, int val)
816{
817 lock_sock(sk);
818 __sock_set_rcvbuf(sk, val);
819 release_sock(sk);
820}
821EXPORT_SYMBOL(sock_set_rcvbuf);
822
823void sock_set_mark(struct sock *sk, u32 val)
824{
825 lock_sock(sk);
826 sk->sk_mark = val;
827 release_sock(sk);
828}
829EXPORT_SYMBOL(sock_set_mark);
830
831/*
832 * This is meant for all protocols to use and covers goings on
833 * at the socket level. Everything here is generic.
834 */
835
836int sock_setsockopt(struct socket *sock, int level, int optname,
837 sockptr_t optval, unsigned int optlen)
838{
839 struct sock_txtime sk_txtime;
840 struct sock *sk = sock->sk;
841 int val;
842 int valbool;
843 struct linger ling;
844 int ret = 0;
845
846 /*
847 * Options without arguments
848 */
849
850 if (optname == SO_BINDTODEVICE)
851 return sock_setbindtodevice(sk, optval, optlen);
852
853 if (optlen < sizeof(int))
854 return -EINVAL;
855
856 if (copy_from_sockptr(&val, optval, sizeof(val)))
857 return -EFAULT;
858
859 valbool = val ? 1 : 0;
860
861 lock_sock(sk);
862
863 switch (optname) {
864 case SO_DEBUG:
865 if (val && !capable(CAP_NET_ADMIN))
866 ret = -EACCES;
867 else
868 sock_valbool_flag(sk, SOCK_DBG, valbool);
869 break;
870 case SO_REUSEADDR:
871 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
872 break;
873 case SO_REUSEPORT:
874 sk->sk_reuseport = valbool;
875 break;
876 case SO_TYPE:
877 case SO_PROTOCOL:
878 case SO_DOMAIN:
879 case SO_ERROR:
880 ret = -ENOPROTOOPT;
881 break;
882 case SO_DONTROUTE:
883 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
884 sk_dst_reset(sk);
885 break;
886 case SO_BROADCAST:
887 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
888 break;
889 case SO_SNDBUF:
890 /* Don't error on this BSD doesn't and if you think
891 * about it this is right. Otherwise apps have to
892 * play 'guess the biggest size' games. RCVBUF/SNDBUF
893 * are treated in BSD as hints
894 */
895 val = min_t(u32, val, sysctl_wmem_max);
896set_sndbuf:
897 /* Ensure val * 2 fits into an int, to prevent max_t()
898 * from treating it as a negative value.
899 */
900 val = min_t(int, val, INT_MAX / 2);
901 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
902 WRITE_ONCE(sk->sk_sndbuf,
903 max_t(int, val * 2, SOCK_MIN_SNDBUF));
904 /* Wake up sending tasks if we upped the value. */
905 sk->sk_write_space(sk);
906 break;
907
908 case SO_SNDBUFFORCE:
909 if (!capable(CAP_NET_ADMIN)) {
910 ret = -EPERM;
911 break;
912 }
913
914 /* No negative values (to prevent underflow, as val will be
915 * multiplied by 2).
916 */
917 if (val < 0)
918 val = 0;
919 goto set_sndbuf;
920
921 case SO_RCVBUF:
922 /* Don't error on this BSD doesn't and if you think
923 * about it this is right. Otherwise apps have to
924 * play 'guess the biggest size' games. RCVBUF/SNDBUF
925 * are treated in BSD as hints
926 */
927 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
928 break;
929
930 case SO_RCVBUFFORCE:
931 if (!capable(CAP_NET_ADMIN)) {
932 ret = -EPERM;
933 break;
934 }
935
936 /* No negative values (to prevent underflow, as val will be
937 * multiplied by 2).
938 */
939 __sock_set_rcvbuf(sk, max(val, 0));
940 break;
941
942 case SO_KEEPALIVE:
943 if (sk->sk_prot->keepalive)
944 sk->sk_prot->keepalive(sk, valbool);
945 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
946 break;
947
948 case SO_OOBINLINE:
949 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
950 break;
951
952 case SO_NO_CHECK:
953 sk->sk_no_check_tx = valbool;
954 break;
955
956 case SO_PRIORITY:
957 if ((val >= 0 && val <= 6) ||
958 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
959 sk->sk_priority = val;
960 else
961 ret = -EPERM;
962 break;
963
964 case SO_LINGER:
965 if (optlen < sizeof(ling)) {
966 ret = -EINVAL; /* 1003.1g */
967 break;
968 }
969 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
970 ret = -EFAULT;
971 break;
972 }
973 if (!ling.l_onoff)
974 sock_reset_flag(sk, SOCK_LINGER);
975 else {
976#if (BITS_PER_LONG == 32)
977 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
978 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
979 else
980#endif
981 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
982 sock_set_flag(sk, SOCK_LINGER);
983 }
984 break;
985
986 case SO_BSDCOMPAT:
987 sock_warn_obsolete_bsdism("setsockopt");
988 break;
989
990 case SO_PASSCRED:
991 if (valbool)
992 set_bit(SOCK_PASSCRED, &sock->flags);
993 else
994 clear_bit(SOCK_PASSCRED, &sock->flags);
995 break;
996
997 case SO_TIMESTAMP_OLD:
998 __sock_set_timestamps(sk, valbool, false, false);
999 break;
1000 case SO_TIMESTAMP_NEW:
1001 __sock_set_timestamps(sk, valbool, true, false);
1002 break;
1003 case SO_TIMESTAMPNS_OLD:
1004 __sock_set_timestamps(sk, valbool, false, true);
1005 break;
1006 case SO_TIMESTAMPNS_NEW:
1007 __sock_set_timestamps(sk, valbool, true, true);
1008 break;
1009 case SO_TIMESTAMPING_NEW:
1010 sock_set_flag(sk, SOCK_TSTAMP_NEW);
1011 fallthrough;
1012 case SO_TIMESTAMPING_OLD:
1013 if (val & ~SOF_TIMESTAMPING_MASK) {
1014 ret = -EINVAL;
1015 break;
1016 }
1017
1018 if (val & SOF_TIMESTAMPING_OPT_ID &&
1019 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
1020 if (sk->sk_protocol == IPPROTO_TCP &&
1021 sk->sk_type == SOCK_STREAM) {
1022 if ((1 << sk->sk_state) &
1023 (TCPF_CLOSE | TCPF_LISTEN)) {
1024 ret = -EINVAL;
1025 break;
1026 }
1027 sk->sk_tskey = tcp_sk(sk)->snd_una;
1028 } else {
1029 sk->sk_tskey = 0;
1030 }
1031 }
1032
1033 if (val & SOF_TIMESTAMPING_OPT_STATS &&
1034 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
1035 ret = -EINVAL;
1036 break;
1037 }
1038
1039 sk->sk_tsflags = val;
1040 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
1041 sock_enable_timestamp(sk,
1042 SOCK_TIMESTAMPING_RX_SOFTWARE);
1043 else {
1044 if (optname == SO_TIMESTAMPING_NEW)
1045 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
1046
1047 sock_disable_timestamp(sk,
1048 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
1049 }
1050 break;
1051
1052 case SO_RCVLOWAT:
1053 if (val < 0)
1054 val = INT_MAX;
1055 if (sock->ops->set_rcvlowat)
1056 ret = sock->ops->set_rcvlowat(sk, val);
1057 else
1058 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1059 break;
1060
1061 case SO_RCVTIMEO_OLD:
1062 case SO_RCVTIMEO_NEW:
1063 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1064 optlen, optname == SO_RCVTIMEO_OLD);
1065 break;
1066
1067 case SO_SNDTIMEO_OLD:
1068 case SO_SNDTIMEO_NEW:
1069 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1070 optlen, optname == SO_SNDTIMEO_OLD);
1071 break;
1072
1073 case SO_ATTACH_FILTER: {
1074 struct sock_fprog fprog;
1075
1076 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1077 if (!ret)
1078 ret = sk_attach_filter(&fprog, sk);
1079 break;
1080 }
1081 case SO_ATTACH_BPF:
1082 ret = -EINVAL;
1083 if (optlen == sizeof(u32)) {
1084 u32 ufd;
1085
1086 ret = -EFAULT;
1087 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1088 break;
1089
1090 ret = sk_attach_bpf(ufd, sk);
1091 }
1092 break;
1093
1094 case SO_ATTACH_REUSEPORT_CBPF: {
1095 struct sock_fprog fprog;
1096
1097 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1098 if (!ret)
1099 ret = sk_reuseport_attach_filter(&fprog, sk);
1100 break;
1101 }
1102 case SO_ATTACH_REUSEPORT_EBPF:
1103 ret = -EINVAL;
1104 if (optlen == sizeof(u32)) {
1105 u32 ufd;
1106
1107 ret = -EFAULT;
1108 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1109 break;
1110
1111 ret = sk_reuseport_attach_bpf(ufd, sk);
1112 }
1113 break;
1114
1115 case SO_DETACH_REUSEPORT_BPF:
1116 ret = reuseport_detach_prog(sk);
1117 break;
1118
1119 case SO_DETACH_FILTER:
1120 ret = sk_detach_filter(sk);
1121 break;
1122
1123 case SO_LOCK_FILTER:
1124 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1125 ret = -EPERM;
1126 else
1127 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1128 break;
1129
1130 case SO_PASSSEC:
1131 if (valbool)
1132 set_bit(SOCK_PASSSEC, &sock->flags);
1133 else
1134 clear_bit(SOCK_PASSSEC, &sock->flags);
1135 break;
1136 case SO_MARK:
1137 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1138 ret = -EPERM;
1139 } else if (val != sk->sk_mark) {
1140 sk->sk_mark = val;
1141 sk_dst_reset(sk);
1142 }
1143 break;
1144
1145 case SO_RXQ_OVFL:
1146 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1147 break;
1148
1149 case SO_WIFI_STATUS:
1150 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1151 break;
1152
1153 case SO_PEEK_OFF:
1154 if (sock->ops->set_peek_off)
1155 ret = sock->ops->set_peek_off(sk, val);
1156 else
1157 ret = -EOPNOTSUPP;
1158 break;
1159
1160 case SO_NOFCS:
1161 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1162 break;
1163
1164 case SO_SELECT_ERR_QUEUE:
1165 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1166 break;
1167
1168#ifdef CONFIG_NET_RX_BUSY_POLL
1169 case SO_BUSY_POLL:
1170 /* allow unprivileged users to decrease the value */
1171 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1172 ret = -EPERM;
1173 else {
1174 if (val < 0)
1175 ret = -EINVAL;
1176 else
1177 sk->sk_ll_usec = val;
1178 }
1179 break;
1180#endif
1181
1182 case SO_MAX_PACING_RATE:
1183 {
1184 unsigned long ulval = (val == ~0U) ? ~0UL : val;
1185
1186 if (sizeof(ulval) != sizeof(val) &&
1187 optlen >= sizeof(ulval) &&
1188 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1189 ret = -EFAULT;
1190 break;
1191 }
1192 if (ulval != ~0UL)
1193 cmpxchg(&sk->sk_pacing_status,
1194 SK_PACING_NONE,
1195 SK_PACING_NEEDED);
1196 sk->sk_max_pacing_rate = ulval;
1197 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1198 break;
1199 }
1200 case SO_INCOMING_CPU:
1201 WRITE_ONCE(sk->sk_incoming_cpu, val);
1202 break;
1203
1204 case SO_CNX_ADVICE:
1205 if (val == 1)
1206 dst_negative_advice(sk);
1207 break;
1208
1209 case SO_ZEROCOPY:
1210 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1211 if (!((sk->sk_type == SOCK_STREAM &&
1212 sk->sk_protocol == IPPROTO_TCP) ||
1213 (sk->sk_type == SOCK_DGRAM &&
1214 sk->sk_protocol == IPPROTO_UDP)))
1215 ret = -ENOTSUPP;
1216 } else if (sk->sk_family != PF_RDS) {
1217 ret = -ENOTSUPP;
1218 }
1219 if (!ret) {
1220 if (val < 0 || val > 1)
1221 ret = -EINVAL;
1222 else
1223 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1224 }
1225 break;
1226
1227 case SO_TXTIME:
1228 if (optlen != sizeof(struct sock_txtime)) {
1229 ret = -EINVAL;
1230 break;
1231 } else if (copy_from_sockptr(&sk_txtime, optval,
1232 sizeof(struct sock_txtime))) {
1233 ret = -EFAULT;
1234 break;
1235 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1236 ret = -EINVAL;
1237 break;
1238 }
1239 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1240 * scheduler has enough safe guards.
1241 */
1242 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1243 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1244 ret = -EPERM;
1245 break;
1246 }
1247 sock_valbool_flag(sk, SOCK_TXTIME, true);
1248 sk->sk_clockid = sk_txtime.clockid;
1249 sk->sk_txtime_deadline_mode =
1250 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1251 sk->sk_txtime_report_errors =
1252 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1253 break;
1254
1255 case SO_BINDTOIFINDEX:
1256 ret = sock_bindtoindex_locked(sk, val);
1257 break;
1258
1259 default:
1260 ret = -ENOPROTOOPT;
1261 break;
1262 }
1263 release_sock(sk);
1264 return ret;
1265}
1266EXPORT_SYMBOL(sock_setsockopt);
1267
1268
1269static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1270 struct ucred *ucred)
1271{
1272 ucred->pid = pid_vnr(pid);
1273 ucred->uid = ucred->gid = -1;
1274 if (cred) {
1275 struct user_namespace *current_ns = current_user_ns();
1276
1277 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1278 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1279 }
1280}
1281
1282static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1283{
1284 struct user_namespace *user_ns = current_user_ns();
1285 int i;
1286
1287 for (i = 0; i < src->ngroups; i++)
1288 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1289 return -EFAULT;
1290
1291 return 0;
1292}
1293
1294int sock_getsockopt(struct socket *sock, int level, int optname,
1295 char __user *optval, int __user *optlen)
1296{
1297 struct sock *sk = sock->sk;
1298
1299 union {
1300 int val;
1301 u64 val64;
1302 unsigned long ulval;
1303 struct linger ling;
1304 struct old_timeval32 tm32;
1305 struct __kernel_old_timeval tm;
1306 struct __kernel_sock_timeval stm;
1307 struct sock_txtime txtime;
1308 } v;
1309
1310 int lv = sizeof(int);
1311 int len;
1312
1313 if (get_user(len, optlen))
1314 return -EFAULT;
1315 if (len < 0)
1316 return -EINVAL;
1317
1318 memset(&v, 0, sizeof(v));
1319
1320 switch (optname) {
1321 case SO_DEBUG:
1322 v.val = sock_flag(sk, SOCK_DBG);
1323 break;
1324
1325 case SO_DONTROUTE:
1326 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1327 break;
1328
1329 case SO_BROADCAST:
1330 v.val = sock_flag(sk, SOCK_BROADCAST);
1331 break;
1332
1333 case SO_SNDBUF:
1334 v.val = sk->sk_sndbuf;
1335 break;
1336
1337 case SO_RCVBUF:
1338 v.val = sk->sk_rcvbuf;
1339 break;
1340
1341 case SO_REUSEADDR:
1342 v.val = sk->sk_reuse;
1343 break;
1344
1345 case SO_REUSEPORT:
1346 v.val = sk->sk_reuseport;
1347 break;
1348
1349 case SO_KEEPALIVE:
1350 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1351 break;
1352
1353 case SO_TYPE:
1354 v.val = sk->sk_type;
1355 break;
1356
1357 case SO_PROTOCOL:
1358 v.val = sk->sk_protocol;
1359 break;
1360
1361 case SO_DOMAIN:
1362 v.val = sk->sk_family;
1363 break;
1364
1365 case SO_ERROR:
1366 v.val = -sock_error(sk);
1367 if (v.val == 0)
1368 v.val = xchg(&sk->sk_err_soft, 0);
1369 break;
1370
1371 case SO_OOBINLINE:
1372 v.val = sock_flag(sk, SOCK_URGINLINE);
1373 break;
1374
1375 case SO_NO_CHECK:
1376 v.val = sk->sk_no_check_tx;
1377 break;
1378
1379 case SO_PRIORITY:
1380 v.val = sk->sk_priority;
1381 break;
1382
1383 case SO_LINGER:
1384 lv = sizeof(v.ling);
1385 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1386 v.ling.l_linger = sk->sk_lingertime / HZ;
1387 break;
1388
1389 case SO_BSDCOMPAT:
1390 sock_warn_obsolete_bsdism("getsockopt");
1391 break;
1392
1393 case SO_TIMESTAMP_OLD:
1394 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1395 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1396 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1397 break;
1398
1399 case SO_TIMESTAMPNS_OLD:
1400 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1401 break;
1402
1403 case SO_TIMESTAMP_NEW:
1404 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1405 break;
1406
1407 case SO_TIMESTAMPNS_NEW:
1408 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1409 break;
1410
1411 case SO_TIMESTAMPING_OLD:
1412 v.val = sk->sk_tsflags;
1413 break;
1414
1415 case SO_RCVTIMEO_OLD:
1416 case SO_RCVTIMEO_NEW:
1417 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1418 break;
1419
1420 case SO_SNDTIMEO_OLD:
1421 case SO_SNDTIMEO_NEW:
1422 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1423 break;
1424
1425 case SO_RCVLOWAT:
1426 v.val = sk->sk_rcvlowat;
1427 break;
1428
1429 case SO_SNDLOWAT:
1430 v.val = 1;
1431 break;
1432
1433 case SO_PASSCRED:
1434 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1435 break;
1436
1437 case SO_PEERCRED:
1438 {
1439 struct ucred peercred;
1440 if (len > sizeof(peercred))
1441 len = sizeof(peercred);
1442 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1443 if (copy_to_user(optval, &peercred, len))
1444 return -EFAULT;
1445 goto lenout;
1446 }
1447
1448 case SO_PEERGROUPS:
1449 {
1450 int ret, n;
1451
1452 if (!sk->sk_peer_cred)
1453 return -ENODATA;
1454
1455 n = sk->sk_peer_cred->group_info->ngroups;
1456 if (len < n * sizeof(gid_t)) {
1457 len = n * sizeof(gid_t);
1458 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1459 }
1460 len = n * sizeof(gid_t);
1461
1462 ret = groups_to_user((gid_t __user *)optval,
1463 sk->sk_peer_cred->group_info);
1464 if (ret)
1465 return ret;
1466 goto lenout;
1467 }
1468
1469 case SO_PEERNAME:
1470 {
1471 char address[128];
1472
1473 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1474 if (lv < 0)
1475 return -ENOTCONN;
1476 if (lv < len)
1477 return -EINVAL;
1478 if (copy_to_user(optval, address, len))
1479 return -EFAULT;
1480 goto lenout;
1481 }
1482
1483 /* Dubious BSD thing... Probably nobody even uses it, but
1484 * the UNIX standard wants it for whatever reason... -DaveM
1485 */
1486 case SO_ACCEPTCONN:
1487 v.val = sk->sk_state == TCP_LISTEN;
1488 break;
1489
1490 case SO_PASSSEC:
1491 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1492 break;
1493
1494 case SO_PEERSEC:
1495 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1496
1497 case SO_MARK:
1498 v.val = sk->sk_mark;
1499 break;
1500
1501 case SO_RXQ_OVFL:
1502 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1503 break;
1504
1505 case SO_WIFI_STATUS:
1506 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1507 break;
1508
1509 case SO_PEEK_OFF:
1510 if (!sock->ops->set_peek_off)
1511 return -EOPNOTSUPP;
1512
1513 v.val = sk->sk_peek_off;
1514 break;
1515 case SO_NOFCS:
1516 v.val = sock_flag(sk, SOCK_NOFCS);
1517 break;
1518
1519 case SO_BINDTODEVICE:
1520 return sock_getbindtodevice(sk, optval, optlen, len);
1521
1522 case SO_GET_FILTER:
1523 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1524 if (len < 0)
1525 return len;
1526
1527 goto lenout;
1528
1529 case SO_LOCK_FILTER:
1530 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1531 break;
1532
1533 case SO_BPF_EXTENSIONS:
1534 v.val = bpf_tell_extensions();
1535 break;
1536
1537 case SO_SELECT_ERR_QUEUE:
1538 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1539 break;
1540
1541#ifdef CONFIG_NET_RX_BUSY_POLL
1542 case SO_BUSY_POLL:
1543 v.val = sk->sk_ll_usec;
1544 break;
1545#endif
1546
1547 case SO_MAX_PACING_RATE:
1548 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1549 lv = sizeof(v.ulval);
1550 v.ulval = sk->sk_max_pacing_rate;
1551 } else {
1552 /* 32bit version */
1553 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1554 }
1555 break;
1556
1557 case SO_INCOMING_CPU:
1558 v.val = READ_ONCE(sk->sk_incoming_cpu);
1559 break;
1560
1561 case SO_MEMINFO:
1562 {
1563 u32 meminfo[SK_MEMINFO_VARS];
1564
1565 sk_get_meminfo(sk, meminfo);
1566
1567 len = min_t(unsigned int, len, sizeof(meminfo));
1568 if (copy_to_user(optval, &meminfo, len))
1569 return -EFAULT;
1570
1571 goto lenout;
1572 }
1573
1574#ifdef CONFIG_NET_RX_BUSY_POLL
1575 case SO_INCOMING_NAPI_ID:
1576 v.val = READ_ONCE(sk->sk_napi_id);
1577
1578 /* aggregate non-NAPI IDs down to 0 */
1579 if (v.val < MIN_NAPI_ID)
1580 v.val = 0;
1581
1582 break;
1583#endif
1584
1585 case SO_COOKIE:
1586 lv = sizeof(u64);
1587 if (len < lv)
1588 return -EINVAL;
1589 v.val64 = sock_gen_cookie(sk);
1590 break;
1591
1592 case SO_ZEROCOPY:
1593 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1594 break;
1595
1596 case SO_TXTIME:
1597 lv = sizeof(v.txtime);
1598 v.txtime.clockid = sk->sk_clockid;
1599 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1600 SOF_TXTIME_DEADLINE_MODE : 0;
1601 v.txtime.flags |= sk->sk_txtime_report_errors ?
1602 SOF_TXTIME_REPORT_ERRORS : 0;
1603 break;
1604
1605 case SO_BINDTOIFINDEX:
1606 v.val = sk->sk_bound_dev_if;
1607 break;
1608
1609 default:
1610 /* We implement the SO_SNDLOWAT etc to not be settable
1611 * (1003.1g 7).
1612 */
1613 return -ENOPROTOOPT;
1614 }
1615
1616 if (len > lv)
1617 len = lv;
1618 if (copy_to_user(optval, &v, len))
1619 return -EFAULT;
1620lenout:
1621 if (put_user(len, optlen))
1622 return -EFAULT;
1623 return 0;
1624}
1625
1626/*
1627 * Initialize an sk_lock.
1628 *
1629 * (We also register the sk_lock with the lock validator.)
1630 */
1631static inline void sock_lock_init(struct sock *sk)
1632{
1633 if (sk->sk_kern_sock)
1634 sock_lock_init_class_and_name(
1635 sk,
1636 af_family_kern_slock_key_strings[sk->sk_family],
1637 af_family_kern_slock_keys + sk->sk_family,
1638 af_family_kern_key_strings[sk->sk_family],
1639 af_family_kern_keys + sk->sk_family);
1640 else
1641 sock_lock_init_class_and_name(
1642 sk,
1643 af_family_slock_key_strings[sk->sk_family],
1644 af_family_slock_keys + sk->sk_family,
1645 af_family_key_strings[sk->sk_family],
1646 af_family_keys + sk->sk_family);
1647}
1648
1649/*
1650 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1651 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1652 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1653 */
1654static void sock_copy(struct sock *nsk, const struct sock *osk)
1655{
1656 const struct proto *prot = READ_ONCE(osk->sk_prot);
1657#ifdef CONFIG_SECURITY_NETWORK
1658 void *sptr = nsk->sk_security;
1659#endif
1660 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1661
1662 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1663 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1664
1665#ifdef CONFIG_SECURITY_NETWORK
1666 nsk->sk_security = sptr;
1667 security_sk_clone(osk, nsk);
1668#endif
1669}
1670
1671static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1672 int family)
1673{
1674 struct sock *sk;
1675 struct kmem_cache *slab;
1676
1677 slab = prot->slab;
1678 if (slab != NULL) {
1679 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1680 if (!sk)
1681 return sk;
1682 if (want_init_on_alloc(priority))
1683 sk_prot_clear_nulls(sk, prot->obj_size);
1684 } else
1685 sk = kmalloc(prot->obj_size, priority);
1686
1687 if (sk != NULL) {
1688 if (security_sk_alloc(sk, family, priority))
1689 goto out_free;
1690
1691 if (!try_module_get(prot->owner))
1692 goto out_free_sec;
1693 sk_tx_queue_clear(sk);
1694 }
1695
1696 return sk;
1697
1698out_free_sec:
1699 security_sk_free(sk);
1700out_free:
1701 if (slab != NULL)
1702 kmem_cache_free(slab, sk);
1703 else
1704 kfree(sk);
1705 return NULL;
1706}
1707
1708static void sk_prot_free(struct proto *prot, struct sock *sk)
1709{
1710 struct kmem_cache *slab;
1711 struct module *owner;
1712
1713 owner = prot->owner;
1714 slab = prot->slab;
1715
1716 cgroup_sk_free(&sk->sk_cgrp_data);
1717 mem_cgroup_sk_free(sk);
1718 security_sk_free(sk);
1719 if (slab != NULL)
1720 kmem_cache_free(slab, sk);
1721 else
1722 kfree(sk);
1723 module_put(owner);
1724}
1725
1726/**
1727 * sk_alloc - All socket objects are allocated here
1728 * @net: the applicable net namespace
1729 * @family: protocol family
1730 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1731 * @prot: struct proto associated with this new sock instance
1732 * @kern: is this to be a kernel socket?
1733 */
1734struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1735 struct proto *prot, int kern)
1736{
1737 struct sock *sk;
1738
1739 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1740 if (sk) {
1741 sk->sk_family = family;
1742 /*
1743 * See comment in struct sock definition to understand
1744 * why we need sk_prot_creator -acme
1745 */
1746 sk->sk_prot = sk->sk_prot_creator = prot;
1747 sk->sk_kern_sock = kern;
1748 sock_lock_init(sk);
1749 sk->sk_net_refcnt = kern ? 0 : 1;
1750 if (likely(sk->sk_net_refcnt)) {
1751 get_net(net);
1752 sock_inuse_add(net, 1);
1753 }
1754
1755 sock_net_set(sk, net);
1756 refcount_set(&sk->sk_wmem_alloc, 1);
1757
1758 mem_cgroup_sk_alloc(sk);
1759 cgroup_sk_alloc(&sk->sk_cgrp_data);
1760 sock_update_classid(&sk->sk_cgrp_data);
1761 sock_update_netprioidx(&sk->sk_cgrp_data);
1762 sk_tx_queue_clear(sk);
1763 }
1764
1765 return sk;
1766}
1767EXPORT_SYMBOL(sk_alloc);
1768
1769/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1770 * grace period. This is the case for UDP sockets and TCP listeners.
1771 */
1772static void __sk_destruct(struct rcu_head *head)
1773{
1774 struct sock *sk = container_of(head, struct sock, sk_rcu);
1775 struct sk_filter *filter;
1776
1777 if (sk->sk_destruct)
1778 sk->sk_destruct(sk);
1779
1780 filter = rcu_dereference_check(sk->sk_filter,
1781 refcount_read(&sk->sk_wmem_alloc) == 0);
1782 if (filter) {
1783 sk_filter_uncharge(sk, filter);
1784 RCU_INIT_POINTER(sk->sk_filter, NULL);
1785 }
1786
1787 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1788
1789#ifdef CONFIG_BPF_SYSCALL
1790 bpf_sk_storage_free(sk);
1791#endif
1792
1793 if (atomic_read(&sk->sk_omem_alloc))
1794 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1795 __func__, atomic_read(&sk->sk_omem_alloc));
1796
1797 if (sk->sk_frag.page) {
1798 put_page(sk->sk_frag.page);
1799 sk->sk_frag.page = NULL;
1800 }
1801
1802 if (sk->sk_peer_cred)
1803 put_cred(sk->sk_peer_cred);
1804 put_pid(sk->sk_peer_pid);
1805 if (likely(sk->sk_net_refcnt))
1806 put_net(sock_net(sk));
1807 sk_prot_free(sk->sk_prot_creator, sk);
1808}
1809
1810void sk_destruct(struct sock *sk)
1811{
1812 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1813
1814 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1815 reuseport_detach_sock(sk);
1816 use_call_rcu = true;
1817 }
1818
1819 if (use_call_rcu)
1820 call_rcu(&sk->sk_rcu, __sk_destruct);
1821 else
1822 __sk_destruct(&sk->sk_rcu);
1823}
1824
1825static void __sk_free(struct sock *sk)
1826{
1827 if (likely(sk->sk_net_refcnt))
1828 sock_inuse_add(sock_net(sk), -1);
1829
1830 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1831 sock_diag_broadcast_destroy(sk);
1832 else
1833 sk_destruct(sk);
1834}
1835
1836void sk_free(struct sock *sk)
1837{
1838 /*
1839 * We subtract one from sk_wmem_alloc and can know if
1840 * some packets are still in some tx queue.
1841 * If not null, sock_wfree() will call __sk_free(sk) later
1842 */
1843 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1844 __sk_free(sk);
1845}
1846EXPORT_SYMBOL(sk_free);
1847
1848static void sk_init_common(struct sock *sk)
1849{
1850 skb_queue_head_init(&sk->sk_receive_queue);
1851 skb_queue_head_init(&sk->sk_write_queue);
1852 skb_queue_head_init(&sk->sk_error_queue);
1853
1854 rwlock_init(&sk->sk_callback_lock);
1855 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1856 af_rlock_keys + sk->sk_family,
1857 af_family_rlock_key_strings[sk->sk_family]);
1858 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1859 af_wlock_keys + sk->sk_family,
1860 af_family_wlock_key_strings[sk->sk_family]);
1861 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1862 af_elock_keys + sk->sk_family,
1863 af_family_elock_key_strings[sk->sk_family]);
1864 lockdep_set_class_and_name(&sk->sk_callback_lock,
1865 af_callback_keys + sk->sk_family,
1866 af_family_clock_key_strings[sk->sk_family]);
1867}
1868
1869/**
1870 * sk_clone_lock - clone a socket, and lock its clone
1871 * @sk: the socket to clone
1872 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1873 *
1874 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1875 */
1876struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1877{
1878 struct proto *prot = READ_ONCE(sk->sk_prot);
1879 struct sock *newsk;
1880 bool is_charged = true;
1881
1882 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
1883 if (newsk != NULL) {
1884 struct sk_filter *filter;
1885
1886 sock_copy(newsk, sk);
1887
1888 newsk->sk_prot_creator = prot;
1889
1890 /* SANITY */
1891 if (likely(newsk->sk_net_refcnt))
1892 get_net(sock_net(newsk));
1893 sk_node_init(&newsk->sk_node);
1894 sock_lock_init(newsk);
1895 bh_lock_sock(newsk);
1896 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1897 newsk->sk_backlog.len = 0;
1898
1899 atomic_set(&newsk->sk_rmem_alloc, 0);
1900 /*
1901 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1902 */
1903 refcount_set(&newsk->sk_wmem_alloc, 1);
1904 atomic_set(&newsk->sk_omem_alloc, 0);
1905 sk_init_common(newsk);
1906
1907 newsk->sk_dst_cache = NULL;
1908 newsk->sk_dst_pending_confirm = 0;
1909 newsk->sk_wmem_queued = 0;
1910 newsk->sk_forward_alloc = 0;
1911 atomic_set(&newsk->sk_drops, 0);
1912 newsk->sk_send_head = NULL;
1913 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1914 atomic_set(&newsk->sk_zckey, 0);
1915
1916 sock_reset_flag(newsk, SOCK_DONE);
1917
1918 /* sk->sk_memcg will be populated at accept() time */
1919 newsk->sk_memcg = NULL;
1920
1921 cgroup_sk_clone(&newsk->sk_cgrp_data);
1922
1923 rcu_read_lock();
1924 filter = rcu_dereference(sk->sk_filter);
1925 if (filter != NULL)
1926 /* though it's an empty new sock, the charging may fail
1927 * if sysctl_optmem_max was changed between creation of
1928 * original socket and cloning
1929 */
1930 is_charged = sk_filter_charge(newsk, filter);
1931 RCU_INIT_POINTER(newsk->sk_filter, filter);
1932 rcu_read_unlock();
1933
1934 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1935 /* We need to make sure that we don't uncharge the new
1936 * socket if we couldn't charge it in the first place
1937 * as otherwise we uncharge the parent's filter.
1938 */
1939 if (!is_charged)
1940 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1941 sk_free_unlock_clone(newsk);
1942 newsk = NULL;
1943 goto out;
1944 }
1945 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1946
1947 if (bpf_sk_storage_clone(sk, newsk)) {
1948 sk_free_unlock_clone(newsk);
1949 newsk = NULL;
1950 goto out;
1951 }
1952
1953 /* Clear sk_user_data if parent had the pointer tagged
1954 * as not suitable for copying when cloning.
1955 */
1956 if (sk_user_data_is_nocopy(newsk))
1957 newsk->sk_user_data = NULL;
1958
1959 newsk->sk_err = 0;
1960 newsk->sk_err_soft = 0;
1961 newsk->sk_priority = 0;
1962 newsk->sk_incoming_cpu = raw_smp_processor_id();
1963 if (likely(newsk->sk_net_refcnt))
1964 sock_inuse_add(sock_net(newsk), 1);
1965
1966 /*
1967 * Before updating sk_refcnt, we must commit prior changes to memory
1968 * (Documentation/RCU/rculist_nulls.rst for details)
1969 */
1970 smp_wmb();
1971 refcount_set(&newsk->sk_refcnt, 2);
1972
1973 /*
1974 * Increment the counter in the same struct proto as the master
1975 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1976 * is the same as sk->sk_prot->socks, as this field was copied
1977 * with memcpy).
1978 *
1979 * This _changes_ the previous behaviour, where
1980 * tcp_create_openreq_child always was incrementing the
1981 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1982 * to be taken into account in all callers. -acme
1983 */
1984 sk_refcnt_debug_inc(newsk);
1985 sk_set_socket(newsk, NULL);
1986 sk_tx_queue_clear(newsk);
1987 RCU_INIT_POINTER(newsk->sk_wq, NULL);
1988
1989 if (newsk->sk_prot->sockets_allocated)
1990 sk_sockets_allocated_inc(newsk);
1991
1992 if (sock_needs_netstamp(sk) &&
1993 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1994 net_enable_timestamp();
1995 }
1996out:
1997 return newsk;
1998}
1999EXPORT_SYMBOL_GPL(sk_clone_lock);
2000
2001void sk_free_unlock_clone(struct sock *sk)
2002{
2003 /* It is still raw copy of parent, so invalidate
2004 * destructor and make plain sk_free() */
2005 sk->sk_destruct = NULL;
2006 bh_unlock_sock(sk);
2007 sk_free(sk);
2008}
2009EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2010
2011void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2012{
2013 u32 max_segs = 1;
2014
2015 sk_dst_set(sk, dst);
2016 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2017 if (sk->sk_route_caps & NETIF_F_GSO)
2018 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2019 sk->sk_route_caps &= ~sk->sk_route_nocaps;
2020 if (sk_can_gso(sk)) {
2021 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2022 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2023 } else {
2024 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2025 sk->sk_gso_max_size = dst->dev->gso_max_size;
2026 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2027 }
2028 }
2029 sk->sk_gso_max_segs = max_segs;
2030}
2031EXPORT_SYMBOL_GPL(sk_setup_caps);
2032
2033/*
2034 * Simple resource managers for sockets.
2035 */
2036
2037
2038/*
2039 * Write buffer destructor automatically called from kfree_skb.
2040 */
2041void sock_wfree(struct sk_buff *skb)
2042{
2043 struct sock *sk = skb->sk;
2044 unsigned int len = skb->truesize;
2045
2046 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2047 /*
2048 * Keep a reference on sk_wmem_alloc, this will be released
2049 * after sk_write_space() call
2050 */
2051 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2052 sk->sk_write_space(sk);
2053 len = 1;
2054 }
2055 /*
2056 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2057 * could not do because of in-flight packets
2058 */
2059 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2060 __sk_free(sk);
2061}
2062EXPORT_SYMBOL(sock_wfree);
2063
2064/* This variant of sock_wfree() is used by TCP,
2065 * since it sets SOCK_USE_WRITE_QUEUE.
2066 */
2067void __sock_wfree(struct sk_buff *skb)
2068{
2069 struct sock *sk = skb->sk;
2070
2071 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2072 __sk_free(sk);
2073}
2074
2075void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2076{
2077 skb_orphan(skb);
2078 skb->sk = sk;
2079#ifdef CONFIG_INET
2080 if (unlikely(!sk_fullsock(sk))) {
2081 skb->destructor = sock_edemux;
2082 sock_hold(sk);
2083 return;
2084 }
2085#endif
2086 skb->destructor = sock_wfree;
2087 skb_set_hash_from_sk(skb, sk);
2088 /*
2089 * We used to take a refcount on sk, but following operation
2090 * is enough to guarantee sk_free() wont free this sock until
2091 * all in-flight packets are completed
2092 */
2093 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2094}
2095EXPORT_SYMBOL(skb_set_owner_w);
2096
2097static bool can_skb_orphan_partial(const struct sk_buff *skb)
2098{
2099#ifdef CONFIG_TLS_DEVICE
2100 /* Drivers depend on in-order delivery for crypto offload,
2101 * partial orphan breaks out-of-order-OK logic.
2102 */
2103 if (skb->decrypted)
2104 return false;
2105#endif
2106 return (skb->destructor == sock_wfree ||
2107 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2108}
2109
2110/* This helper is used by netem, as it can hold packets in its
2111 * delay queue. We want to allow the owner socket to send more
2112 * packets, as if they were already TX completed by a typical driver.
2113 * But we also want to keep skb->sk set because some packet schedulers
2114 * rely on it (sch_fq for example).
2115 */
2116void skb_orphan_partial(struct sk_buff *skb)
2117{
2118 if (skb_is_tcp_pure_ack(skb))
2119 return;
2120
2121 if (can_skb_orphan_partial(skb)) {
2122 struct sock *sk = skb->sk;
2123
2124 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2125 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2126 skb->destructor = sock_efree;
2127 }
2128 } else {
2129 skb_orphan(skb);
2130 }
2131}
2132EXPORT_SYMBOL(skb_orphan_partial);
2133
2134/*
2135 * Read buffer destructor automatically called from kfree_skb.
2136 */
2137void sock_rfree(struct sk_buff *skb)
2138{
2139 struct sock *sk = skb->sk;
2140 unsigned int len = skb->truesize;
2141
2142 atomic_sub(len, &sk->sk_rmem_alloc);
2143 sk_mem_uncharge(sk, len);
2144}
2145EXPORT_SYMBOL(sock_rfree);
2146
2147/*
2148 * Buffer destructor for skbs that are not used directly in read or write
2149 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2150 */
2151void sock_efree(struct sk_buff *skb)
2152{
2153 sock_put(skb->sk);
2154}
2155EXPORT_SYMBOL(sock_efree);
2156
2157/* Buffer destructor for prefetch/receive path where reference count may
2158 * not be held, e.g. for listen sockets.
2159 */
2160#ifdef CONFIG_INET
2161void sock_pfree(struct sk_buff *skb)
2162{
2163 if (sk_is_refcounted(skb->sk))
2164 sock_gen_put(skb->sk);
2165}
2166EXPORT_SYMBOL(sock_pfree);
2167#endif /* CONFIG_INET */
2168
2169kuid_t sock_i_uid(struct sock *sk)
2170{
2171 kuid_t uid;
2172
2173 read_lock_bh(&sk->sk_callback_lock);
2174 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2175 read_unlock_bh(&sk->sk_callback_lock);
2176 return uid;
2177}
2178EXPORT_SYMBOL(sock_i_uid);
2179
2180unsigned long sock_i_ino(struct sock *sk)
2181{
2182 unsigned long ino;
2183
2184 read_lock_bh(&sk->sk_callback_lock);
2185 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2186 read_unlock_bh(&sk->sk_callback_lock);
2187 return ino;
2188}
2189EXPORT_SYMBOL(sock_i_ino);
2190
2191/*
2192 * Allocate a skb from the socket's send buffer.
2193 */
2194struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2195 gfp_t priority)
2196{
2197 if (force ||
2198 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2199 struct sk_buff *skb = alloc_skb(size, priority);
2200
2201 if (skb) {
2202 skb_set_owner_w(skb, sk);
2203 return skb;
2204 }
2205 }
2206 return NULL;
2207}
2208EXPORT_SYMBOL(sock_wmalloc);
2209
2210static void sock_ofree(struct sk_buff *skb)
2211{
2212 struct sock *sk = skb->sk;
2213
2214 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2215}
2216
2217struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2218 gfp_t priority)
2219{
2220 struct sk_buff *skb;
2221
2222 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2223 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2224 sysctl_optmem_max)
2225 return NULL;
2226
2227 skb = alloc_skb(size, priority);
2228 if (!skb)
2229 return NULL;
2230
2231 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2232 skb->sk = sk;
2233 skb->destructor = sock_ofree;
2234 return skb;
2235}
2236
2237/*
2238 * Allocate a memory block from the socket's option memory buffer.
2239 */
2240void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2241{
2242 if ((unsigned int)size <= sysctl_optmem_max &&
2243 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2244 void *mem;
2245 /* First do the add, to avoid the race if kmalloc
2246 * might sleep.
2247 */
2248 atomic_add(size, &sk->sk_omem_alloc);
2249 mem = kmalloc(size, priority);
2250 if (mem)
2251 return mem;
2252 atomic_sub(size, &sk->sk_omem_alloc);
2253 }
2254 return NULL;
2255}
2256EXPORT_SYMBOL(sock_kmalloc);
2257
2258/* Free an option memory block. Note, we actually want the inline
2259 * here as this allows gcc to detect the nullify and fold away the
2260 * condition entirely.
2261 */
2262static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2263 const bool nullify)
2264{
2265 if (WARN_ON_ONCE(!mem))
2266 return;
2267 if (nullify)
2268 kfree_sensitive(mem);
2269 else
2270 kfree(mem);
2271 atomic_sub(size, &sk->sk_omem_alloc);
2272}
2273
2274void sock_kfree_s(struct sock *sk, void *mem, int size)
2275{
2276 __sock_kfree_s(sk, mem, size, false);
2277}
2278EXPORT_SYMBOL(sock_kfree_s);
2279
2280void sock_kzfree_s(struct sock *sk, void *mem, int size)
2281{
2282 __sock_kfree_s(sk, mem, size, true);
2283}
2284EXPORT_SYMBOL(sock_kzfree_s);
2285
2286/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2287 I think, these locks should be removed for datagram sockets.
2288 */
2289static long sock_wait_for_wmem(struct sock *sk, long timeo)
2290{
2291 DEFINE_WAIT(wait);
2292
2293 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2294 for (;;) {
2295 if (!timeo)
2296 break;
2297 if (signal_pending(current))
2298 break;
2299 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2300 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2301 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2302 break;
2303 if (sk->sk_shutdown & SEND_SHUTDOWN)
2304 break;
2305 if (sk->sk_err)
2306 break;
2307 timeo = schedule_timeout(timeo);
2308 }
2309 finish_wait(sk_sleep(sk), &wait);
2310 return timeo;
2311}
2312
2313
2314/*
2315 * Generic send/receive buffer handlers
2316 */
2317
2318struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2319 unsigned long data_len, int noblock,
2320 int *errcode, int max_page_order)
2321{
2322 struct sk_buff *skb;
2323 long timeo;
2324 int err;
2325
2326 timeo = sock_sndtimeo(sk, noblock);
2327 for (;;) {
2328 err = sock_error(sk);
2329 if (err != 0)
2330 goto failure;
2331
2332 err = -EPIPE;
2333 if (sk->sk_shutdown & SEND_SHUTDOWN)
2334 goto failure;
2335
2336 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2337 break;
2338
2339 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2340 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2341 err = -EAGAIN;
2342 if (!timeo)
2343 goto failure;
2344 if (signal_pending(current))
2345 goto interrupted;
2346 timeo = sock_wait_for_wmem(sk, timeo);
2347 }
2348 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2349 errcode, sk->sk_allocation);
2350 if (skb)
2351 skb_set_owner_w(skb, sk);
2352 return skb;
2353
2354interrupted:
2355 err = sock_intr_errno(timeo);
2356failure:
2357 *errcode = err;
2358 return NULL;
2359}
2360EXPORT_SYMBOL(sock_alloc_send_pskb);
2361
2362struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2363 int noblock, int *errcode)
2364{
2365 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2366}
2367EXPORT_SYMBOL(sock_alloc_send_skb);
2368
2369int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2370 struct sockcm_cookie *sockc)
2371{
2372 u32 tsflags;
2373
2374 switch (cmsg->cmsg_type) {
2375 case SO_MARK:
2376 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2377 return -EPERM;
2378 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2379 return -EINVAL;
2380 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2381 break;
2382 case SO_TIMESTAMPING_OLD:
2383 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2384 return -EINVAL;
2385
2386 tsflags = *(u32 *)CMSG_DATA(cmsg);
2387 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2388 return -EINVAL;
2389
2390 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2391 sockc->tsflags |= tsflags;
2392 break;
2393 case SCM_TXTIME:
2394 if (!sock_flag(sk, SOCK_TXTIME))
2395 return -EINVAL;
2396 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2397 return -EINVAL;
2398 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2399 break;
2400 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2401 case SCM_RIGHTS:
2402 case SCM_CREDENTIALS:
2403 break;
2404 default:
2405 return -EINVAL;
2406 }
2407 return 0;
2408}
2409EXPORT_SYMBOL(__sock_cmsg_send);
2410
2411int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2412 struct sockcm_cookie *sockc)
2413{
2414 struct cmsghdr *cmsg;
2415 int ret;
2416
2417 for_each_cmsghdr(cmsg, msg) {
2418 if (!CMSG_OK(msg, cmsg))
2419 return -EINVAL;
2420 if (cmsg->cmsg_level != SOL_SOCKET)
2421 continue;
2422 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2423 if (ret)
2424 return ret;
2425 }
2426 return 0;
2427}
2428EXPORT_SYMBOL(sock_cmsg_send);
2429
2430static void sk_enter_memory_pressure(struct sock *sk)
2431{
2432 if (!sk->sk_prot->enter_memory_pressure)
2433 return;
2434
2435 sk->sk_prot->enter_memory_pressure(sk);
2436}
2437
2438static void sk_leave_memory_pressure(struct sock *sk)
2439{
2440 if (sk->sk_prot->leave_memory_pressure) {
2441 sk->sk_prot->leave_memory_pressure(sk);
2442 } else {
2443 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2444
2445 if (memory_pressure && READ_ONCE(*memory_pressure))
2446 WRITE_ONCE(*memory_pressure, 0);
2447 }
2448}
2449
2450#define SKB_FRAG_PAGE_ORDER get_order(32768)
2451DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2452
2453/**
2454 * skb_page_frag_refill - check that a page_frag contains enough room
2455 * @sz: minimum size of the fragment we want to get
2456 * @pfrag: pointer to page_frag
2457 * @gfp: priority for memory allocation
2458 *
2459 * Note: While this allocator tries to use high order pages, there is
2460 * no guarantee that allocations succeed. Therefore, @sz MUST be
2461 * less or equal than PAGE_SIZE.
2462 */
2463bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2464{
2465 if (pfrag->page) {
2466 if (page_ref_count(pfrag->page) == 1) {
2467 pfrag->offset = 0;
2468 return true;
2469 }
2470 if (pfrag->offset + sz <= pfrag->size)
2471 return true;
2472 put_page(pfrag->page);
2473 }
2474
2475 pfrag->offset = 0;
2476 if (SKB_FRAG_PAGE_ORDER &&
2477 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2478 /* Avoid direct reclaim but allow kswapd to wake */
2479 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2480 __GFP_COMP | __GFP_NOWARN |
2481 __GFP_NORETRY,
2482 SKB_FRAG_PAGE_ORDER);
2483 if (likely(pfrag->page)) {
2484 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2485 return true;
2486 }
2487 }
2488 pfrag->page = alloc_page(gfp);
2489 if (likely(pfrag->page)) {
2490 pfrag->size = PAGE_SIZE;
2491 return true;
2492 }
2493 return false;
2494}
2495EXPORT_SYMBOL(skb_page_frag_refill);
2496
2497bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2498{
2499 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2500 return true;
2501
2502 sk_enter_memory_pressure(sk);
2503 sk_stream_moderate_sndbuf(sk);
2504 return false;
2505}
2506EXPORT_SYMBOL(sk_page_frag_refill);
2507
2508static void __lock_sock(struct sock *sk)
2509 __releases(&sk->sk_lock.slock)
2510 __acquires(&sk->sk_lock.slock)
2511{
2512 DEFINE_WAIT(wait);
2513
2514 for (;;) {
2515 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2516 TASK_UNINTERRUPTIBLE);
2517 spin_unlock_bh(&sk->sk_lock.slock);
2518 schedule();
2519 spin_lock_bh(&sk->sk_lock.slock);
2520 if (!sock_owned_by_user(sk))
2521 break;
2522 }
2523 finish_wait(&sk->sk_lock.wq, &wait);
2524}
2525
2526void __release_sock(struct sock *sk)
2527 __releases(&sk->sk_lock.slock)
2528 __acquires(&sk->sk_lock.slock)
2529{
2530 struct sk_buff *skb, *next;
2531
2532 while ((skb = sk->sk_backlog.head) != NULL) {
2533 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2534
2535 spin_unlock_bh(&sk->sk_lock.slock);
2536
2537 do {
2538 next = skb->next;
2539 prefetch(next);
2540 WARN_ON_ONCE(skb_dst_is_noref(skb));
2541 skb_mark_not_on_list(skb);
2542 sk_backlog_rcv(sk, skb);
2543
2544 cond_resched();
2545
2546 skb = next;
2547 } while (skb != NULL);
2548
2549 spin_lock_bh(&sk->sk_lock.slock);
2550 }
2551
2552 /*
2553 * Doing the zeroing here guarantee we can not loop forever
2554 * while a wild producer attempts to flood us.
2555 */
2556 sk->sk_backlog.len = 0;
2557}
2558
2559void __sk_flush_backlog(struct sock *sk)
2560{
2561 spin_lock_bh(&sk->sk_lock.slock);
2562 __release_sock(sk);
2563 spin_unlock_bh(&sk->sk_lock.slock);
2564}
2565
2566/**
2567 * sk_wait_data - wait for data to arrive at sk_receive_queue
2568 * @sk: sock to wait on
2569 * @timeo: for how long
2570 * @skb: last skb seen on sk_receive_queue
2571 *
2572 * Now socket state including sk->sk_err is changed only under lock,
2573 * hence we may omit checks after joining wait queue.
2574 * We check receive queue before schedule() only as optimization;
2575 * it is very likely that release_sock() added new data.
2576 */
2577int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2578{
2579 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2580 int rc;
2581
2582 add_wait_queue(sk_sleep(sk), &wait);
2583 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2584 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2585 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2586 remove_wait_queue(sk_sleep(sk), &wait);
2587 return rc;
2588}
2589EXPORT_SYMBOL(sk_wait_data);
2590
2591/**
2592 * __sk_mem_raise_allocated - increase memory_allocated
2593 * @sk: socket
2594 * @size: memory size to allocate
2595 * @amt: pages to allocate
2596 * @kind: allocation type
2597 *
2598 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2599 */
2600int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2601{
2602 struct proto *prot = sk->sk_prot;
2603 long allocated = sk_memory_allocated_add(sk, amt);
2604 bool charged = true;
2605
2606 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2607 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2608 goto suppress_allocation;
2609
2610 /* Under limit. */
2611 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2612 sk_leave_memory_pressure(sk);
2613 return 1;
2614 }
2615
2616 /* Under pressure. */
2617 if (allocated > sk_prot_mem_limits(sk, 1))
2618 sk_enter_memory_pressure(sk);
2619
2620 /* Over hard limit. */
2621 if (allocated > sk_prot_mem_limits(sk, 2))
2622 goto suppress_allocation;
2623
2624 /* guarantee minimum buffer size under pressure */
2625 if (kind == SK_MEM_RECV) {
2626 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2627 return 1;
2628
2629 } else { /* SK_MEM_SEND */
2630 int wmem0 = sk_get_wmem0(sk, prot);
2631
2632 if (sk->sk_type == SOCK_STREAM) {
2633 if (sk->sk_wmem_queued < wmem0)
2634 return 1;
2635 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2636 return 1;
2637 }
2638 }
2639
2640 if (sk_has_memory_pressure(sk)) {
2641 u64 alloc;
2642
2643 if (!sk_under_memory_pressure(sk))
2644 return 1;
2645 alloc = sk_sockets_allocated_read_positive(sk);
2646 if (sk_prot_mem_limits(sk, 2) > alloc *
2647 sk_mem_pages(sk->sk_wmem_queued +
2648 atomic_read(&sk->sk_rmem_alloc) +
2649 sk->sk_forward_alloc))
2650 return 1;
2651 }
2652
2653suppress_allocation:
2654
2655 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2656 sk_stream_moderate_sndbuf(sk);
2657
2658 /* Fail only if socket is _under_ its sndbuf.
2659 * In this case we cannot block, so that we have to fail.
2660 */
2661 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2662 return 1;
2663 }
2664
2665 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2666 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2667
2668 sk_memory_allocated_sub(sk, amt);
2669
2670 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2671 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2672
2673 return 0;
2674}
2675EXPORT_SYMBOL(__sk_mem_raise_allocated);
2676
2677/**
2678 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2679 * @sk: socket
2680 * @size: memory size to allocate
2681 * @kind: allocation type
2682 *
2683 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2684 * rmem allocation. This function assumes that protocols which have
2685 * memory_pressure use sk_wmem_queued as write buffer accounting.
2686 */
2687int __sk_mem_schedule(struct sock *sk, int size, int kind)
2688{
2689 int ret, amt = sk_mem_pages(size);
2690
2691 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2692 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2693 if (!ret)
2694 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2695 return ret;
2696}
2697EXPORT_SYMBOL(__sk_mem_schedule);
2698
2699/**
2700 * __sk_mem_reduce_allocated - reclaim memory_allocated
2701 * @sk: socket
2702 * @amount: number of quanta
2703 *
2704 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2705 */
2706void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2707{
2708 sk_memory_allocated_sub(sk, amount);
2709
2710 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2711 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2712
2713 if (sk_under_memory_pressure(sk) &&
2714 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2715 sk_leave_memory_pressure(sk);
2716}
2717EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2718
2719/**
2720 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2721 * @sk: socket
2722 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2723 */
2724void __sk_mem_reclaim(struct sock *sk, int amount)
2725{
2726 amount >>= SK_MEM_QUANTUM_SHIFT;
2727 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2728 __sk_mem_reduce_allocated(sk, amount);
2729}
2730EXPORT_SYMBOL(__sk_mem_reclaim);
2731
2732int sk_set_peek_off(struct sock *sk, int val)
2733{
2734 sk->sk_peek_off = val;
2735 return 0;
2736}
2737EXPORT_SYMBOL_GPL(sk_set_peek_off);
2738
2739/*
2740 * Set of default routines for initialising struct proto_ops when
2741 * the protocol does not support a particular function. In certain
2742 * cases where it makes no sense for a protocol to have a "do nothing"
2743 * function, some default processing is provided.
2744 */
2745
2746int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2747{
2748 return -EOPNOTSUPP;
2749}
2750EXPORT_SYMBOL(sock_no_bind);
2751
2752int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2753 int len, int flags)
2754{
2755 return -EOPNOTSUPP;
2756}
2757EXPORT_SYMBOL(sock_no_connect);
2758
2759int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2760{
2761 return -EOPNOTSUPP;
2762}
2763EXPORT_SYMBOL(sock_no_socketpair);
2764
2765int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2766 bool kern)
2767{
2768 return -EOPNOTSUPP;
2769}
2770EXPORT_SYMBOL(sock_no_accept);
2771
2772int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2773 int peer)
2774{
2775 return -EOPNOTSUPP;
2776}
2777EXPORT_SYMBOL(sock_no_getname);
2778
2779int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2780{
2781 return -EOPNOTSUPP;
2782}
2783EXPORT_SYMBOL(sock_no_ioctl);
2784
2785int sock_no_listen(struct socket *sock, int backlog)
2786{
2787 return -EOPNOTSUPP;
2788}
2789EXPORT_SYMBOL(sock_no_listen);
2790
2791int sock_no_shutdown(struct socket *sock, int how)
2792{
2793 return -EOPNOTSUPP;
2794}
2795EXPORT_SYMBOL(sock_no_shutdown);
2796
2797int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2798{
2799 return -EOPNOTSUPP;
2800}
2801EXPORT_SYMBOL(sock_no_sendmsg);
2802
2803int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2804{
2805 return -EOPNOTSUPP;
2806}
2807EXPORT_SYMBOL(sock_no_sendmsg_locked);
2808
2809int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2810 int flags)
2811{
2812 return -EOPNOTSUPP;
2813}
2814EXPORT_SYMBOL(sock_no_recvmsg);
2815
2816int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2817{
2818 /* Mirror missing mmap method error code */
2819 return -ENODEV;
2820}
2821EXPORT_SYMBOL(sock_no_mmap);
2822
2823/*
2824 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2825 * various sock-based usage counts.
2826 */
2827void __receive_sock(struct file *file)
2828{
2829 struct socket *sock;
2830 int error;
2831
2832 /*
2833 * The resulting value of "error" is ignored here since we only
2834 * need to take action when the file is a socket and testing
2835 * "sock" for NULL is sufficient.
2836 */
2837 sock = sock_from_file(file, &error);
2838 if (sock) {
2839 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2840 sock_update_classid(&sock->sk->sk_cgrp_data);
2841 }
2842}
2843
2844ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2845{
2846 ssize_t res;
2847 struct msghdr msg = {.msg_flags = flags};
2848 struct kvec iov;
2849 char *kaddr = kmap(page);
2850 iov.iov_base = kaddr + offset;
2851 iov.iov_len = size;
2852 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2853 kunmap(page);
2854 return res;
2855}
2856EXPORT_SYMBOL(sock_no_sendpage);
2857
2858ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2859 int offset, size_t size, int flags)
2860{
2861 ssize_t res;
2862 struct msghdr msg = {.msg_flags = flags};
2863 struct kvec iov;
2864 char *kaddr = kmap(page);
2865
2866 iov.iov_base = kaddr + offset;
2867 iov.iov_len = size;
2868 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2869 kunmap(page);
2870 return res;
2871}
2872EXPORT_SYMBOL(sock_no_sendpage_locked);
2873
2874/*
2875 * Default Socket Callbacks
2876 */
2877
2878static void sock_def_wakeup(struct sock *sk)
2879{
2880 struct socket_wq *wq;
2881
2882 rcu_read_lock();
2883 wq = rcu_dereference(sk->sk_wq);
2884 if (skwq_has_sleeper(wq))
2885 wake_up_interruptible_all(&wq->wait);
2886 rcu_read_unlock();
2887}
2888
2889static void sock_def_error_report(struct sock *sk)
2890{
2891 struct socket_wq *wq;
2892
2893 rcu_read_lock();
2894 wq = rcu_dereference(sk->sk_wq);
2895 if (skwq_has_sleeper(wq))
2896 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2897 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2898 rcu_read_unlock();
2899}
2900
2901void sock_def_readable(struct sock *sk)
2902{
2903 struct socket_wq *wq;
2904
2905 rcu_read_lock();
2906 wq = rcu_dereference(sk->sk_wq);
2907 if (skwq_has_sleeper(wq))
2908 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2909 EPOLLRDNORM | EPOLLRDBAND);
2910 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2911 rcu_read_unlock();
2912}
2913
2914static void sock_def_write_space(struct sock *sk)
2915{
2916 struct socket_wq *wq;
2917
2918 rcu_read_lock();
2919
2920 /* Do not wake up a writer until he can make "significant"
2921 * progress. --DaveM
2922 */
2923 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2924 wq = rcu_dereference(sk->sk_wq);
2925 if (skwq_has_sleeper(wq))
2926 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2927 EPOLLWRNORM | EPOLLWRBAND);
2928
2929 /* Should agree with poll, otherwise some programs break */
2930 if (sock_writeable(sk))
2931 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2932 }
2933
2934 rcu_read_unlock();
2935}
2936
2937static void sock_def_destruct(struct sock *sk)
2938{
2939}
2940
2941void sk_send_sigurg(struct sock *sk)
2942{
2943 if (sk->sk_socket && sk->sk_socket->file)
2944 if (send_sigurg(&sk->sk_socket->file->f_owner))
2945 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2946}
2947EXPORT_SYMBOL(sk_send_sigurg);
2948
2949void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2950 unsigned long expires)
2951{
2952 if (!mod_timer(timer, expires))
2953 sock_hold(sk);
2954}
2955EXPORT_SYMBOL(sk_reset_timer);
2956
2957void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2958{
2959 if (del_timer(timer))
2960 __sock_put(sk);
2961}
2962EXPORT_SYMBOL(sk_stop_timer);
2963
2964void sock_init_data(struct socket *sock, struct sock *sk)
2965{
2966 sk_init_common(sk);
2967 sk->sk_send_head = NULL;
2968
2969 timer_setup(&sk->sk_timer, NULL, 0);
2970
2971 sk->sk_allocation = GFP_KERNEL;
2972 sk->sk_rcvbuf = sysctl_rmem_default;
2973 sk->sk_sndbuf = sysctl_wmem_default;
2974 sk->sk_state = TCP_CLOSE;
2975 sk_set_socket(sk, sock);
2976
2977 sock_set_flag(sk, SOCK_ZAPPED);
2978
2979 if (sock) {
2980 sk->sk_type = sock->type;
2981 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2982 sock->sk = sk;
2983 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2984 } else {
2985 RCU_INIT_POINTER(sk->sk_wq, NULL);
2986 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2987 }
2988
2989 rwlock_init(&sk->sk_callback_lock);
2990 if (sk->sk_kern_sock)
2991 lockdep_set_class_and_name(
2992 &sk->sk_callback_lock,
2993 af_kern_callback_keys + sk->sk_family,
2994 af_family_kern_clock_key_strings[sk->sk_family]);
2995 else
2996 lockdep_set_class_and_name(
2997 &sk->sk_callback_lock,
2998 af_callback_keys + sk->sk_family,
2999 af_family_clock_key_strings[sk->sk_family]);
3000
3001 sk->sk_state_change = sock_def_wakeup;
3002 sk->sk_data_ready = sock_def_readable;
3003 sk->sk_write_space = sock_def_write_space;
3004 sk->sk_error_report = sock_def_error_report;
3005 sk->sk_destruct = sock_def_destruct;
3006
3007 sk->sk_frag.page = NULL;
3008 sk->sk_frag.offset = 0;
3009 sk->sk_peek_off = -1;
3010
3011 sk->sk_peer_pid = NULL;
3012 sk->sk_peer_cred = NULL;
3013 sk->sk_write_pending = 0;
3014 sk->sk_rcvlowat = 1;
3015 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3016 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3017
3018 sk->sk_stamp = SK_DEFAULT_STAMP;
3019#if BITS_PER_LONG==32
3020 seqlock_init(&sk->sk_stamp_seq);
3021#endif
3022 atomic_set(&sk->sk_zckey, 0);
3023
3024#ifdef CONFIG_NET_RX_BUSY_POLL
3025 sk->sk_napi_id = 0;
3026 sk->sk_ll_usec = sysctl_net_busy_read;
3027#endif
3028
3029 sk->sk_max_pacing_rate = ~0UL;
3030 sk->sk_pacing_rate = ~0UL;
3031 WRITE_ONCE(sk->sk_pacing_shift, 10);
3032 sk->sk_incoming_cpu = -1;
3033
3034 sk_rx_queue_clear(sk);
3035 /*
3036 * Before updating sk_refcnt, we must commit prior changes to memory
3037 * (Documentation/RCU/rculist_nulls.rst for details)
3038 */
3039 smp_wmb();
3040 refcount_set(&sk->sk_refcnt, 1);
3041 atomic_set(&sk->sk_drops, 0);
3042}
3043EXPORT_SYMBOL(sock_init_data);
3044
3045void lock_sock_nested(struct sock *sk, int subclass)
3046{
3047 might_sleep();
3048 spin_lock_bh(&sk->sk_lock.slock);
3049 if (sk->sk_lock.owned)
3050 __lock_sock(sk);
3051 sk->sk_lock.owned = 1;
3052 spin_unlock(&sk->sk_lock.slock);
3053 /*
3054 * The sk_lock has mutex_lock() semantics here:
3055 */
3056 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3057 local_bh_enable();
3058}
3059EXPORT_SYMBOL(lock_sock_nested);
3060
3061void release_sock(struct sock *sk)
3062{
3063 spin_lock_bh(&sk->sk_lock.slock);
3064 if (sk->sk_backlog.tail)
3065 __release_sock(sk);
3066
3067 /* Warning : release_cb() might need to release sk ownership,
3068 * ie call sock_release_ownership(sk) before us.
3069 */
3070 if (sk->sk_prot->release_cb)
3071 sk->sk_prot->release_cb(sk);
3072
3073 sock_release_ownership(sk);
3074 if (waitqueue_active(&sk->sk_lock.wq))
3075 wake_up(&sk->sk_lock.wq);
3076 spin_unlock_bh(&sk->sk_lock.slock);
3077}
3078EXPORT_SYMBOL(release_sock);
3079
3080/**
3081 * lock_sock_fast - fast version of lock_sock
3082 * @sk: socket
3083 *
3084 * This version should be used for very small section, where process wont block
3085 * return false if fast path is taken:
3086 *
3087 * sk_lock.slock locked, owned = 0, BH disabled
3088 *
3089 * return true if slow path is taken:
3090 *
3091 * sk_lock.slock unlocked, owned = 1, BH enabled
3092 */
3093bool lock_sock_fast(struct sock *sk)
3094{
3095 might_sleep();
3096 spin_lock_bh(&sk->sk_lock.slock);
3097
3098 if (!sk->sk_lock.owned)
3099 /*
3100 * Note : We must disable BH
3101 */
3102 return false;
3103
3104 __lock_sock(sk);
3105 sk->sk_lock.owned = 1;
3106 spin_unlock(&sk->sk_lock.slock);
3107 /*
3108 * The sk_lock has mutex_lock() semantics here:
3109 */
3110 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3111 local_bh_enable();
3112 return true;
3113}
3114EXPORT_SYMBOL(lock_sock_fast);
3115
3116int sock_gettstamp(struct socket *sock, void __user *userstamp,
3117 bool timeval, bool time32)
3118{
3119 struct sock *sk = sock->sk;
3120 struct timespec64 ts;
3121
3122 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3123 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3124 if (ts.tv_sec == -1)
3125 return -ENOENT;
3126 if (ts.tv_sec == 0) {
3127 ktime_t kt = ktime_get_real();
3128 sock_write_timestamp(sk, kt);
3129 ts = ktime_to_timespec64(kt);
3130 }
3131
3132 if (timeval)
3133 ts.tv_nsec /= 1000;
3134
3135#ifdef CONFIG_COMPAT_32BIT_TIME
3136 if (time32)
3137 return put_old_timespec32(&ts, userstamp);
3138#endif
3139#ifdef CONFIG_SPARC64
3140 /* beware of padding in sparc64 timeval */
3141 if (timeval && !in_compat_syscall()) {
3142 struct __kernel_old_timeval __user tv = {
3143 .tv_sec = ts.tv_sec,
3144 .tv_usec = ts.tv_nsec,
3145 };
3146 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3147 return -EFAULT;
3148 return 0;
3149 }
3150#endif
3151 return put_timespec64(&ts, userstamp);
3152}
3153EXPORT_SYMBOL(sock_gettstamp);
3154
3155void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3156{
3157 if (!sock_flag(sk, flag)) {
3158 unsigned long previous_flags = sk->sk_flags;
3159
3160 sock_set_flag(sk, flag);
3161 /*
3162 * we just set one of the two flags which require net
3163 * time stamping, but time stamping might have been on
3164 * already because of the other one
3165 */
3166 if (sock_needs_netstamp(sk) &&
3167 !(previous_flags & SK_FLAGS_TIMESTAMP))
3168 net_enable_timestamp();
3169 }
3170}
3171
3172int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3173 int level, int type)
3174{
3175 struct sock_exterr_skb *serr;
3176 struct sk_buff *skb;
3177 int copied, err;
3178
3179 err = -EAGAIN;
3180 skb = sock_dequeue_err_skb(sk);
3181 if (skb == NULL)
3182 goto out;
3183
3184 copied = skb->len;
3185 if (copied > len) {
3186 msg->msg_flags |= MSG_TRUNC;
3187 copied = len;
3188 }
3189 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3190 if (err)
3191 goto out_free_skb;
3192
3193 sock_recv_timestamp(msg, sk, skb);
3194
3195 serr = SKB_EXT_ERR(skb);
3196 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3197
3198 msg->msg_flags |= MSG_ERRQUEUE;
3199 err = copied;
3200
3201out_free_skb:
3202 kfree_skb(skb);
3203out:
3204 return err;
3205}
3206EXPORT_SYMBOL(sock_recv_errqueue);
3207
3208/*
3209 * Get a socket option on an socket.
3210 *
3211 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3212 * asynchronous errors should be reported by getsockopt. We assume
3213 * this means if you specify SO_ERROR (otherwise whats the point of it).
3214 */
3215int sock_common_getsockopt(struct socket *sock, int level, int optname,
3216 char __user *optval, int __user *optlen)
3217{
3218 struct sock *sk = sock->sk;
3219
3220 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3221}
3222EXPORT_SYMBOL(sock_common_getsockopt);
3223
3224int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3225 int flags)
3226{
3227 struct sock *sk = sock->sk;
3228 int addr_len = 0;
3229 int err;
3230
3231 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3232 flags & ~MSG_DONTWAIT, &addr_len);
3233 if (err >= 0)
3234 msg->msg_namelen = addr_len;
3235 return err;
3236}
3237EXPORT_SYMBOL(sock_common_recvmsg);
3238
3239/*
3240 * Set socket options on an inet socket.
3241 */
3242int sock_common_setsockopt(struct socket *sock, int level, int optname,
3243 sockptr_t optval, unsigned int optlen)
3244{
3245 struct sock *sk = sock->sk;
3246
3247 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3248}
3249EXPORT_SYMBOL(sock_common_setsockopt);
3250
3251void sk_common_release(struct sock *sk)
3252{
3253 if (sk->sk_prot->destroy)
3254 sk->sk_prot->destroy(sk);
3255
3256 /*
3257 * Observation: when sk_common_release is called, processes have
3258 * no access to socket. But net still has.
3259 * Step one, detach it from networking:
3260 *
3261 * A. Remove from hash tables.
3262 */
3263
3264 sk->sk_prot->unhash(sk);
3265
3266 /*
3267 * In this point socket cannot receive new packets, but it is possible
3268 * that some packets are in flight because some CPU runs receiver and
3269 * did hash table lookup before we unhashed socket. They will achieve
3270 * receive queue and will be purged by socket destructor.
3271 *
3272 * Also we still have packets pending on receive queue and probably,
3273 * our own packets waiting in device queues. sock_destroy will drain
3274 * receive queue, but transmitted packets will delay socket destruction
3275 * until the last reference will be released.
3276 */
3277
3278 sock_orphan(sk);
3279
3280 xfrm_sk_free_policy(sk);
3281
3282 sk_refcnt_debug_release(sk);
3283
3284 sock_put(sk);
3285}
3286EXPORT_SYMBOL(sk_common_release);
3287
3288void sk_get_meminfo(const struct sock *sk, u32 *mem)
3289{
3290 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3291
3292 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3293 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3294 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3295 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3296 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3297 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3298 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3299 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3300 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3301}
3302
3303#ifdef CONFIG_PROC_FS
3304#define PROTO_INUSE_NR 64 /* should be enough for the first time */
3305struct prot_inuse {
3306 int val[PROTO_INUSE_NR];
3307};
3308
3309static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3310
3311void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3312{
3313 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3314}
3315EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3316
3317int sock_prot_inuse_get(struct net *net, struct proto *prot)
3318{
3319 int cpu, idx = prot->inuse_idx;
3320 int res = 0;
3321
3322 for_each_possible_cpu(cpu)
3323 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3324
3325 return res >= 0 ? res : 0;
3326}
3327EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3328
3329static void sock_inuse_add(struct net *net, int val)
3330{
3331 this_cpu_add(*net->core.sock_inuse, val);
3332}
3333
3334int sock_inuse_get(struct net *net)
3335{
3336 int cpu, res = 0;
3337
3338 for_each_possible_cpu(cpu)
3339 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3340
3341 return res;
3342}
3343
3344EXPORT_SYMBOL_GPL(sock_inuse_get);
3345
3346static int __net_init sock_inuse_init_net(struct net *net)
3347{
3348 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3349 if (net->core.prot_inuse == NULL)
3350 return -ENOMEM;
3351
3352 net->core.sock_inuse = alloc_percpu(int);
3353 if (net->core.sock_inuse == NULL)
3354 goto out;
3355
3356 return 0;
3357
3358out:
3359 free_percpu(net->core.prot_inuse);
3360 return -ENOMEM;
3361}
3362
3363static void __net_exit sock_inuse_exit_net(struct net *net)
3364{
3365 free_percpu(net->core.prot_inuse);
3366 free_percpu(net->core.sock_inuse);
3367}
3368
3369static struct pernet_operations net_inuse_ops = {
3370 .init = sock_inuse_init_net,
3371 .exit = sock_inuse_exit_net,
3372};
3373
3374static __init int net_inuse_init(void)
3375{
3376 if (register_pernet_subsys(&net_inuse_ops))
3377 panic("Cannot initialize net inuse counters");
3378
3379 return 0;
3380}
3381
3382core_initcall(net_inuse_init);
3383
3384static int assign_proto_idx(struct proto *prot)
3385{
3386 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3387
3388 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3389 pr_err("PROTO_INUSE_NR exhausted\n");
3390 return -ENOSPC;
3391 }
3392
3393 set_bit(prot->inuse_idx, proto_inuse_idx);
3394 return 0;
3395}
3396
3397static void release_proto_idx(struct proto *prot)
3398{
3399 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3400 clear_bit(prot->inuse_idx, proto_inuse_idx);
3401}
3402#else
3403static inline int assign_proto_idx(struct proto *prot)
3404{
3405 return 0;
3406}
3407
3408static inline void release_proto_idx(struct proto *prot)
3409{
3410}
3411
3412static void sock_inuse_add(struct net *net, int val)
3413{
3414}
3415#endif
3416
3417static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3418{
3419 if (!twsk_prot)
3420 return;
3421 kfree(twsk_prot->twsk_slab_name);
3422 twsk_prot->twsk_slab_name = NULL;
3423 kmem_cache_destroy(twsk_prot->twsk_slab);
3424 twsk_prot->twsk_slab = NULL;
3425}
3426
3427static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3428{
3429 if (!rsk_prot)
3430 return;
3431 kfree(rsk_prot->slab_name);
3432 rsk_prot->slab_name = NULL;
3433 kmem_cache_destroy(rsk_prot->slab);
3434 rsk_prot->slab = NULL;
3435}
3436
3437static int req_prot_init(const struct proto *prot)
3438{
3439 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3440
3441 if (!rsk_prot)
3442 return 0;
3443
3444 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3445 prot->name);
3446 if (!rsk_prot->slab_name)
3447 return -ENOMEM;
3448
3449 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3450 rsk_prot->obj_size, 0,
3451 SLAB_ACCOUNT | prot->slab_flags,
3452 NULL);
3453
3454 if (!rsk_prot->slab) {
3455 pr_crit("%s: Can't create request sock SLAB cache!\n",
3456 prot->name);
3457 return -ENOMEM;
3458 }
3459 return 0;
3460}
3461
3462int proto_register(struct proto *prot, int alloc_slab)
3463{
3464 int ret = -ENOBUFS;
3465
3466 if (alloc_slab) {
3467 prot->slab = kmem_cache_create_usercopy(prot->name,
3468 prot->obj_size, 0,
3469 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3470 prot->slab_flags,
3471 prot->useroffset, prot->usersize,
3472 NULL);
3473
3474 if (prot->slab == NULL) {
3475 pr_crit("%s: Can't create sock SLAB cache!\n",
3476 prot->name);
3477 goto out;
3478 }
3479
3480 if (req_prot_init(prot))
3481 goto out_free_request_sock_slab;
3482
3483 if (prot->twsk_prot != NULL) {
3484 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3485
3486 if (prot->twsk_prot->twsk_slab_name == NULL)
3487 goto out_free_request_sock_slab;
3488
3489 prot->twsk_prot->twsk_slab =
3490 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3491 prot->twsk_prot->twsk_obj_size,
3492 0,
3493 SLAB_ACCOUNT |
3494 prot->slab_flags,
3495 NULL);
3496 if (prot->twsk_prot->twsk_slab == NULL)
3497 goto out_free_timewait_sock_slab;
3498 }
3499 }
3500
3501 mutex_lock(&proto_list_mutex);
3502 ret = assign_proto_idx(prot);
3503 if (ret) {
3504 mutex_unlock(&proto_list_mutex);
3505 goto out_free_timewait_sock_slab;
3506 }
3507 list_add(&prot->node, &proto_list);
3508 mutex_unlock(&proto_list_mutex);
3509 return ret;
3510
3511out_free_timewait_sock_slab:
3512 if (alloc_slab && prot->twsk_prot)
3513 tw_prot_cleanup(prot->twsk_prot);
3514out_free_request_sock_slab:
3515 if (alloc_slab) {
3516 req_prot_cleanup(prot->rsk_prot);
3517
3518 kmem_cache_destroy(prot->slab);
3519 prot->slab = NULL;
3520 }
3521out:
3522 return ret;
3523}
3524EXPORT_SYMBOL(proto_register);
3525
3526void proto_unregister(struct proto *prot)
3527{
3528 mutex_lock(&proto_list_mutex);
3529 release_proto_idx(prot);
3530 list_del(&prot->node);
3531 mutex_unlock(&proto_list_mutex);
3532
3533 kmem_cache_destroy(prot->slab);
3534 prot->slab = NULL;
3535
3536 req_prot_cleanup(prot->rsk_prot);
3537 tw_prot_cleanup(prot->twsk_prot);
3538}
3539EXPORT_SYMBOL(proto_unregister);
3540
3541int sock_load_diag_module(int family, int protocol)
3542{
3543 if (!protocol) {
3544 if (!sock_is_registered(family))
3545 return -ENOENT;
3546
3547 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3548 NETLINK_SOCK_DIAG, family);
3549 }
3550
3551#ifdef CONFIG_INET
3552 if (family == AF_INET &&
3553 protocol != IPPROTO_RAW &&
3554 protocol < MAX_INET_PROTOS &&
3555 !rcu_access_pointer(inet_protos[protocol]))
3556 return -ENOENT;
3557#endif
3558
3559 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3560 NETLINK_SOCK_DIAG, family, protocol);
3561}
3562EXPORT_SYMBOL(sock_load_diag_module);
3563
3564#ifdef CONFIG_PROC_FS
3565static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3566 __acquires(proto_list_mutex)
3567{
3568 mutex_lock(&proto_list_mutex);
3569 return seq_list_start_head(&proto_list, *pos);
3570}
3571
3572static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3573{
3574 return seq_list_next(v, &proto_list, pos);
3575}
3576
3577static void proto_seq_stop(struct seq_file *seq, void *v)
3578 __releases(proto_list_mutex)
3579{
3580 mutex_unlock(&proto_list_mutex);
3581}
3582
3583static char proto_method_implemented(const void *method)
3584{
3585 return method == NULL ? 'n' : 'y';
3586}
3587static long sock_prot_memory_allocated(struct proto *proto)
3588{
3589 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3590}
3591
3592static const char *sock_prot_memory_pressure(struct proto *proto)
3593{
3594 return proto->memory_pressure != NULL ?
3595 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3596}
3597
3598static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3599{
3600
3601 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3602 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3603 proto->name,
3604 proto->obj_size,
3605 sock_prot_inuse_get(seq_file_net(seq), proto),
3606 sock_prot_memory_allocated(proto),
3607 sock_prot_memory_pressure(proto),
3608 proto->max_header,
3609 proto->slab == NULL ? "no" : "yes",
3610 module_name(proto->owner),
3611 proto_method_implemented(proto->close),
3612 proto_method_implemented(proto->connect),
3613 proto_method_implemented(proto->disconnect),
3614 proto_method_implemented(proto->accept),
3615 proto_method_implemented(proto->ioctl),
3616 proto_method_implemented(proto->init),
3617 proto_method_implemented(proto->destroy),
3618 proto_method_implemented(proto->shutdown),
3619 proto_method_implemented(proto->setsockopt),
3620 proto_method_implemented(proto->getsockopt),
3621 proto_method_implemented(proto->sendmsg),
3622 proto_method_implemented(proto->recvmsg),
3623 proto_method_implemented(proto->sendpage),
3624 proto_method_implemented(proto->bind),
3625 proto_method_implemented(proto->backlog_rcv),
3626 proto_method_implemented(proto->hash),
3627 proto_method_implemented(proto->unhash),
3628 proto_method_implemented(proto->get_port),
3629 proto_method_implemented(proto->enter_memory_pressure));
3630}
3631
3632static int proto_seq_show(struct seq_file *seq, void *v)
3633{
3634 if (v == &proto_list)
3635 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3636 "protocol",
3637 "size",
3638 "sockets",
3639 "memory",
3640 "press",
3641 "maxhdr",
3642 "slab",
3643 "module",
3644 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3645 else
3646 proto_seq_printf(seq, list_entry(v, struct proto, node));
3647 return 0;
3648}
3649
3650static const struct seq_operations proto_seq_ops = {
3651 .start = proto_seq_start,
3652 .next = proto_seq_next,
3653 .stop = proto_seq_stop,
3654 .show = proto_seq_show,
3655};
3656
3657static __net_init int proto_init_net(struct net *net)
3658{
3659 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3660 sizeof(struct seq_net_private)))
3661 return -ENOMEM;
3662
3663 return 0;
3664}
3665
3666static __net_exit void proto_exit_net(struct net *net)
3667{
3668 remove_proc_entry("protocols", net->proc_net);
3669}
3670
3671
3672static __net_initdata struct pernet_operations proto_net_ops = {
3673 .init = proto_init_net,
3674 .exit = proto_exit_net,
3675};
3676
3677static int __init proto_init(void)
3678{
3679 return register_pernet_subsys(&proto_net_ops);
3680}
3681
3682subsys_initcall(proto_init);
3683
3684#endif /* PROC_FS */
3685
3686#ifdef CONFIG_NET_RX_BUSY_POLL
3687bool sk_busy_loop_end(void *p, unsigned long start_time)
3688{
3689 struct sock *sk = p;
3690
3691 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3692 sk_busy_loop_timeout(sk, start_time);
3693}
3694EXPORT_SYMBOL(sk_busy_loop_end);
3695#endif /* CONFIG_NET_RX_BUSY_POLL */
3696
3697int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3698{
3699 if (!sk->sk_prot->bind_add)
3700 return -EOPNOTSUPP;
3701 return sk->sk_prot->bind_add(sk, addr, addr_len);
3702}
3703EXPORT_SYMBOL(sock_bind_add);