Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * "splice": joining two ropes together by interweaving their strands.
   3 *
   4 * This is the "extended pipe" functionality, where a pipe is used as
   5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
   6 * buffer that you can use to transfer data from one end to the other.
   7 *
   8 * The traditional unix read/write is extended with a "splice()" operation
   9 * that transfers data buffers to or from a pipe buffer.
  10 *
  11 * Named by Larry McVoy, original implementation from Linus, extended by
  12 * Jens to support splicing to files, network, direct splicing, etc and
  13 * fixing lots of bugs.
  14 *
  15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
  16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
  17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
  18 *
  19 */
 
  20#include <linux/fs.h>
  21#include <linux/file.h>
  22#include <linux/pagemap.h>
  23#include <linux/splice.h>
  24#include <linux/memcontrol.h>
  25#include <linux/mm_inline.h>
  26#include <linux/swap.h>
  27#include <linux/writeback.h>
  28#include <linux/buffer_head.h>
  29#include <linux/module.h>
  30#include <linux/syscalls.h>
  31#include <linux/uio.h>
  32#include <linux/security.h>
  33#include <linux/gfp.h>
 
 
 
 
  34
  35/*
  36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
  37 * a vm helper function, it's already simplified quite a bit by the
  38 * addition of remove_mapping(). If success is returned, the caller may
  39 * attempt to reuse this page for another destination.
  40 */
  41static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
  42				     struct pipe_buffer *buf)
  43{
  44	struct page *page = buf->page;
  45	struct address_space *mapping;
  46
  47	lock_page(page);
  48
  49	mapping = page_mapping(page);
  50	if (mapping) {
  51		WARN_ON(!PageUptodate(page));
  52
  53		/*
  54		 * At least for ext2 with nobh option, we need to wait on
  55		 * writeback completing on this page, since we'll remove it
  56		 * from the pagecache.  Otherwise truncate wont wait on the
  57		 * page, allowing the disk blocks to be reused by someone else
  58		 * before we actually wrote our data to them. fs corruption
  59		 * ensues.
  60		 */
  61		wait_on_page_writeback(page);
  62
  63		if (page_has_private(page) &&
  64		    !try_to_release_page(page, GFP_KERNEL))
  65			goto out_unlock;
  66
  67		/*
  68		 * If we succeeded in removing the mapping, set LRU flag
  69		 * and return good.
  70		 */
  71		if (remove_mapping(mapping, page)) {
  72			buf->flags |= PIPE_BUF_FLAG_LRU;
  73			return 0;
  74		}
  75	}
  76
  77	/*
  78	 * Raced with truncate or failed to remove page from current
  79	 * address space, unlock and return failure.
  80	 */
  81out_unlock:
  82	unlock_page(page);
  83	return 1;
  84}
  85
  86static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
  87					struct pipe_buffer *buf)
  88{
  89	page_cache_release(buf->page);
  90	buf->flags &= ~PIPE_BUF_FLAG_LRU;
  91}
  92
  93/*
  94 * Check whether the contents of buf is OK to access. Since the content
  95 * is a page cache page, IO may be in flight.
  96 */
  97static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
  98				       struct pipe_buffer *buf)
  99{
 100	struct page *page = buf->page;
 101	int err;
 102
 103	if (!PageUptodate(page)) {
 104		lock_page(page);
 105
 106		/*
 107		 * Page got truncated/unhashed. This will cause a 0-byte
 108		 * splice, if this is the first page.
 109		 */
 110		if (!page->mapping) {
 111			err = -ENODATA;
 112			goto error;
 113		}
 114
 115		/*
 116		 * Uh oh, read-error from disk.
 117		 */
 118		if (!PageUptodate(page)) {
 119			err = -EIO;
 120			goto error;
 121		}
 122
 123		/*
 124		 * Page is ok afterall, we are done.
 125		 */
 126		unlock_page(page);
 127	}
 128
 129	return 0;
 130error:
 131	unlock_page(page);
 132	return err;
 133}
 134
 135const struct pipe_buf_operations page_cache_pipe_buf_ops = {
 136	.can_merge = 0,
 137	.map = generic_pipe_buf_map,
 138	.unmap = generic_pipe_buf_unmap,
 139	.confirm = page_cache_pipe_buf_confirm,
 140	.release = page_cache_pipe_buf_release,
 141	.steal = page_cache_pipe_buf_steal,
 142	.get = generic_pipe_buf_get,
 143};
 144
 145static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
 146				    struct pipe_buffer *buf)
 147{
 148	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
 149		return 1;
 150
 151	buf->flags |= PIPE_BUF_FLAG_LRU;
 152	return generic_pipe_buf_steal(pipe, buf);
 153}
 154
 155static const struct pipe_buf_operations user_page_pipe_buf_ops = {
 156	.can_merge = 0,
 157	.map = generic_pipe_buf_map,
 158	.unmap = generic_pipe_buf_unmap,
 159	.confirm = generic_pipe_buf_confirm,
 160	.release = page_cache_pipe_buf_release,
 161	.steal = user_page_pipe_buf_steal,
 162	.get = generic_pipe_buf_get,
 163};
 164
 165static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
 166{
 167	smp_mb();
 168	if (waitqueue_active(&pipe->wait))
 169		wake_up_interruptible(&pipe->wait);
 170	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 171}
 172
 173/**
 174 * splice_to_pipe - fill passed data into a pipe
 175 * @pipe:	pipe to fill
 176 * @spd:	data to fill
 177 *
 178 * Description:
 179 *    @spd contains a map of pages and len/offset tuples, along with
 180 *    the struct pipe_buf_operations associated with these pages. This
 181 *    function will link that data to the pipe.
 182 *
 183 */
 184ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
 185		       struct splice_pipe_desc *spd)
 186{
 187	unsigned int spd_pages = spd->nr_pages;
 188	int ret, do_wakeup, page_nr;
 189
 190	ret = 0;
 191	do_wakeup = 0;
 192	page_nr = 0;
 193
 194	pipe_lock(pipe);
 195
 196	for (;;) {
 197		if (!pipe->readers) {
 198			send_sig(SIGPIPE, current, 0);
 199			if (!ret)
 200				ret = -EPIPE;
 201			break;
 202		}
 203
 204		if (pipe->nrbufs < pipe->buffers) {
 205			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
 206			struct pipe_buffer *buf = pipe->bufs + newbuf;
 207
 208			buf->page = spd->pages[page_nr];
 209			buf->offset = spd->partial[page_nr].offset;
 210			buf->len = spd->partial[page_nr].len;
 211			buf->private = spd->partial[page_nr].private;
 212			buf->ops = spd->ops;
 213			if (spd->flags & SPLICE_F_GIFT)
 214				buf->flags |= PIPE_BUF_FLAG_GIFT;
 215
 216			pipe->nrbufs++;
 217			page_nr++;
 218			ret += buf->len;
 219
 220			if (pipe->inode)
 221				do_wakeup = 1;
 222
 223			if (!--spd->nr_pages)
 224				break;
 225			if (pipe->nrbufs < pipe->buffers)
 226				continue;
 
 227
 228			break;
 229		}
 230
 231		if (spd->flags & SPLICE_F_NONBLOCK) {
 232			if (!ret)
 233				ret = -EAGAIN;
 234			break;
 235		}
 
 
 
 
 
 
 236
 237		if (signal_pending(current)) {
 238			if (!ret)
 239				ret = -ERESTARTSYS;
 240			break;
 241		}
 242
 243		if (do_wakeup) {
 244			smp_mb();
 245			if (waitqueue_active(&pipe->wait))
 246				wake_up_interruptible_sync(&pipe->wait);
 247			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 248			do_wakeup = 0;
 249		}
 250
 251		pipe->waiting_writers++;
 252		pipe_wait(pipe);
 253		pipe->waiting_writers--;
 254	}
 255
 256	pipe_unlock(pipe);
 257
 258	if (do_wakeup)
 259		wakeup_pipe_readers(pipe);
 260
 
 261	while (page_nr < spd_pages)
 262		spd->spd_release(spd, page_nr++);
 263
 264	return ret;
 265}
 
 266
 267void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
 268{
 269	page_cache_release(spd->pages[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 270}
 
 271
 272/*
 273 * Check if we need to grow the arrays holding pages and partial page
 274 * descriptions.
 275 */
 276int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
 277{
 278	if (pipe->buffers <= PIPE_DEF_BUFFERS)
 
 
 
 279		return 0;
 280
 281	spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
 282	spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
 
 283
 284	if (spd->pages && spd->partial)
 285		return 0;
 286
 287	kfree(spd->pages);
 288	kfree(spd->partial);
 289	return -ENOMEM;
 290}
 291
 292void splice_shrink_spd(struct pipe_inode_info *pipe,
 293		       struct splice_pipe_desc *spd)
 294{
 295	if (pipe->buffers <= PIPE_DEF_BUFFERS)
 296		return;
 297
 298	kfree(spd->pages);
 299	kfree(spd->partial);
 300}
 301
 302static int
 303__generic_file_splice_read(struct file *in, loff_t *ppos,
 304			   struct pipe_inode_info *pipe, size_t len,
 305			   unsigned int flags)
 306{
 307	struct address_space *mapping = in->f_mapping;
 308	unsigned int loff, nr_pages, req_pages;
 309	struct page *pages[PIPE_DEF_BUFFERS];
 310	struct partial_page partial[PIPE_DEF_BUFFERS];
 311	struct page *page;
 312	pgoff_t index, end_index;
 313	loff_t isize;
 314	int error, page_nr;
 315	struct splice_pipe_desc spd = {
 316		.pages = pages,
 317		.partial = partial,
 318		.flags = flags,
 319		.ops = &page_cache_pipe_buf_ops,
 320		.spd_release = spd_release_page,
 321	};
 322
 323	if (splice_grow_spd(pipe, &spd))
 324		return -ENOMEM;
 325
 326	index = *ppos >> PAGE_CACHE_SHIFT;
 327	loff = *ppos & ~PAGE_CACHE_MASK;
 328	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 329	nr_pages = min(req_pages, pipe->buffers);
 330
 331	/*
 332	 * Lookup the (hopefully) full range of pages we need.
 333	 */
 334	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
 335	index += spd.nr_pages;
 336
 337	/*
 338	 * If find_get_pages_contig() returned fewer pages than we needed,
 339	 * readahead/allocate the rest and fill in the holes.
 340	 */
 341	if (spd.nr_pages < nr_pages)
 342		page_cache_sync_readahead(mapping, &in->f_ra, in,
 343				index, req_pages - spd.nr_pages);
 344
 345	error = 0;
 346	while (spd.nr_pages < nr_pages) {
 347		/*
 348		 * Page could be there, find_get_pages_contig() breaks on
 349		 * the first hole.
 350		 */
 351		page = find_get_page(mapping, index);
 352		if (!page) {
 353			/*
 354			 * page didn't exist, allocate one.
 355			 */
 356			page = page_cache_alloc_cold(mapping);
 357			if (!page)
 358				break;
 359
 360			error = add_to_page_cache_lru(page, mapping, index,
 361						GFP_KERNEL);
 362			if (unlikely(error)) {
 363				page_cache_release(page);
 364				if (error == -EEXIST)
 365					continue;
 366				break;
 367			}
 368			/*
 369			 * add_to_page_cache() locks the page, unlock it
 370			 * to avoid convoluting the logic below even more.
 371			 */
 372			unlock_page(page);
 373		}
 374
 375		spd.pages[spd.nr_pages++] = page;
 376		index++;
 377	}
 378
 379	/*
 380	 * Now loop over the map and see if we need to start IO on any
 381	 * pages, fill in the partial map, etc.
 382	 */
 383	index = *ppos >> PAGE_CACHE_SHIFT;
 384	nr_pages = spd.nr_pages;
 385	spd.nr_pages = 0;
 386	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
 387		unsigned int this_len;
 388
 389		if (!len)
 390			break;
 391
 392		/*
 393		 * this_len is the max we'll use from this page
 394		 */
 395		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
 396		page = spd.pages[page_nr];
 397
 398		if (PageReadahead(page))
 399			page_cache_async_readahead(mapping, &in->f_ra, in,
 400					page, index, req_pages - page_nr);
 401
 402		/*
 403		 * If the page isn't uptodate, we may need to start io on it
 404		 */
 405		if (!PageUptodate(page)) {
 406			lock_page(page);
 407
 408			/*
 409			 * Page was truncated, or invalidated by the
 410			 * filesystem.  Redo the find/create, but this time the
 411			 * page is kept locked, so there's no chance of another
 412			 * race with truncate/invalidate.
 413			 */
 414			if (!page->mapping) {
 415				unlock_page(page);
 416				page = find_or_create_page(mapping, index,
 417						mapping_gfp_mask(mapping));
 418
 419				if (!page) {
 420					error = -ENOMEM;
 421					break;
 422				}
 423				page_cache_release(spd.pages[page_nr]);
 424				spd.pages[page_nr] = page;
 425			}
 426			/*
 427			 * page was already under io and is now done, great
 428			 */
 429			if (PageUptodate(page)) {
 430				unlock_page(page);
 431				goto fill_it;
 432			}
 433
 434			/*
 435			 * need to read in the page
 436			 */
 437			error = mapping->a_ops->readpage(in, page);
 438			if (unlikely(error)) {
 439				/*
 440				 * We really should re-lookup the page here,
 441				 * but it complicates things a lot. Instead
 442				 * lets just do what we already stored, and
 443				 * we'll get it the next time we are called.
 444				 */
 445				if (error == AOP_TRUNCATED_PAGE)
 446					error = 0;
 447
 448				break;
 449			}
 450		}
 451fill_it:
 452		/*
 453		 * i_size must be checked after PageUptodate.
 454		 */
 455		isize = i_size_read(mapping->host);
 456		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
 457		if (unlikely(!isize || index > end_index))
 458			break;
 459
 460		/*
 461		 * if this is the last page, see if we need to shrink
 462		 * the length and stop
 463		 */
 464		if (end_index == index) {
 465			unsigned int plen;
 466
 467			/*
 468			 * max good bytes in this page
 469			 */
 470			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
 471			if (plen <= loff)
 472				break;
 473
 474			/*
 475			 * force quit after adding this page
 476			 */
 477			this_len = min(this_len, plen - loff);
 478			len = this_len;
 479		}
 480
 481		spd.partial[page_nr].offset = loff;
 482		spd.partial[page_nr].len = this_len;
 483		len -= this_len;
 484		loff = 0;
 485		spd.nr_pages++;
 486		index++;
 487	}
 488
 489	/*
 490	 * Release any pages at the end, if we quit early. 'page_nr' is how far
 491	 * we got, 'nr_pages' is how many pages are in the map.
 492	 */
 493	while (page_nr < nr_pages)
 494		page_cache_release(spd.pages[page_nr++]);
 495	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
 496
 497	if (spd.nr_pages)
 498		error = splice_to_pipe(pipe, &spd);
 499
 500	splice_shrink_spd(pipe, &spd);
 501	return error;
 502}
 503
 504/**
 505 * generic_file_splice_read - splice data from file to a pipe
 506 * @in:		file to splice from
 507 * @ppos:	position in @in
 508 * @pipe:	pipe to splice to
 509 * @len:	number of bytes to splice
 510 * @flags:	splice modifier flags
 511 *
 512 * Description:
 513 *    Will read pages from given file and fill them into a pipe. Can be
 514 *    used as long as the address_space operations for the source implements
 515 *    a readpage() hook.
 516 *
 517 */
 518ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
 519				 struct pipe_inode_info *pipe, size_t len,
 520				 unsigned int flags)
 521{
 522	loff_t isize, left;
 
 523	int ret;
 524
 525	isize = i_size_read(in->f_mapping->host);
 526	if (unlikely(*ppos >= isize))
 527		return 0;
 528
 529	left = isize - *ppos;
 530	if (unlikely(left < len))
 531		len = left;
 532
 533	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
 534	if (ret > 0) {
 535		*ppos += ret;
 536		file_accessed(in);
 
 
 
 
 
 
 
 
 
 537	}
 538
 539	return ret;
 540}
 541EXPORT_SYMBOL(generic_file_splice_read);
 542
 543static const struct pipe_buf_operations default_pipe_buf_ops = {
 544	.can_merge = 0,
 545	.map = generic_pipe_buf_map,
 546	.unmap = generic_pipe_buf_unmap,
 547	.confirm = generic_pipe_buf_confirm,
 548	.release = generic_pipe_buf_release,
 549	.steal = generic_pipe_buf_steal,
 550	.get = generic_pipe_buf_get,
 551};
 552
 553static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
 554			    unsigned long vlen, loff_t offset)
 555{
 556	mm_segment_t old_fs;
 557	loff_t pos = offset;
 558	ssize_t res;
 559
 560	old_fs = get_fs();
 561	set_fs(get_ds());
 562	/* The cast to a user pointer is valid due to the set_fs() */
 563	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
 564	set_fs(old_fs);
 565
 566	return res;
 567}
 568
 569static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
 570			    loff_t pos)
 571{
 572	mm_segment_t old_fs;
 573	ssize_t res;
 574
 575	old_fs = get_fs();
 576	set_fs(get_ds());
 577	/* The cast to a user pointer is valid due to the set_fs() */
 578	res = vfs_write(file, (const char __user *)buf, count, &pos);
 579	set_fs(old_fs);
 580
 581	return res;
 582}
 583
 584ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
 585				 struct pipe_inode_info *pipe, size_t len,
 586				 unsigned int flags)
 587{
 588	unsigned int nr_pages;
 589	unsigned int nr_freed;
 590	size_t offset;
 591	struct page *pages[PIPE_DEF_BUFFERS];
 592	struct partial_page partial[PIPE_DEF_BUFFERS];
 593	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
 594	ssize_t res;
 595	size_t this_len;
 596	int error;
 597	int i;
 598	struct splice_pipe_desc spd = {
 599		.pages = pages,
 600		.partial = partial,
 601		.flags = flags,
 602		.ops = &default_pipe_buf_ops,
 603		.spd_release = spd_release_page,
 604	};
 605
 606	if (splice_grow_spd(pipe, &spd))
 607		return -ENOMEM;
 608
 609	res = -ENOMEM;
 610	vec = __vec;
 611	if (pipe->buffers > PIPE_DEF_BUFFERS) {
 612		vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
 613		if (!vec)
 614			goto shrink_ret;
 615	}
 616
 617	offset = *ppos & ~PAGE_CACHE_MASK;
 618	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 619
 620	for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
 621		struct page *page;
 622
 623		page = alloc_page(GFP_USER);
 624		error = -ENOMEM;
 625		if (!page)
 626			goto err;
 627
 628		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
 629		vec[i].iov_base = (void __user *) page_address(page);
 630		vec[i].iov_len = this_len;
 631		spd.pages[i] = page;
 632		spd.nr_pages++;
 633		len -= this_len;
 634		offset = 0;
 635	}
 636
 637	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
 638	if (res < 0) {
 639		error = res;
 640		goto err;
 641	}
 642
 643	error = 0;
 644	if (!res)
 645		goto err;
 646
 647	nr_freed = 0;
 648	for (i = 0; i < spd.nr_pages; i++) {
 649		this_len = min_t(size_t, vec[i].iov_len, res);
 650		spd.partial[i].offset = 0;
 651		spd.partial[i].len = this_len;
 652		if (!this_len) {
 653			__free_page(spd.pages[i]);
 654			spd.pages[i] = NULL;
 655			nr_freed++;
 656		}
 657		res -= this_len;
 658	}
 659	spd.nr_pages -= nr_freed;
 660
 661	res = splice_to_pipe(pipe, &spd);
 662	if (res > 0)
 663		*ppos += res;
 664
 665shrink_ret:
 666	if (vec != __vec)
 667		kfree(vec);
 668	splice_shrink_spd(pipe, &spd);
 669	return res;
 670
 671err:
 672	for (i = 0; i < spd.nr_pages; i++)
 673		__free_page(spd.pages[i]);
 674
 675	res = error;
 676	goto shrink_ret;
 677}
 678EXPORT_SYMBOL(default_file_splice_read);
 679
 680/*
 681 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
 682 * using sendpage(). Return the number of bytes sent.
 683 */
 684static int pipe_to_sendpage(struct pipe_inode_info *pipe,
 685			    struct pipe_buffer *buf, struct splice_desc *sd)
 686{
 687	struct file *file = sd->u.file;
 688	loff_t pos = sd->pos;
 689	int more;
 690
 691	if (!likely(file->f_op && file->f_op->sendpage))
 692		return -EINVAL;
 693
 694	more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
 695	return file->f_op->sendpage(file, buf->page, buf->offset,
 696				    sd->len, &pos, more);
 697}
 698
 699/*
 700 * This is a little more tricky than the file -> pipe splicing. There are
 701 * basically three cases:
 702 *
 703 *	- Destination page already exists in the address space and there
 704 *	  are users of it. For that case we have no other option that
 705 *	  copying the data. Tough luck.
 706 *	- Destination page already exists in the address space, but there
 707 *	  are no users of it. Make sure it's uptodate, then drop it. Fall
 708 *	  through to last case.
 709 *	- Destination page does not exist, we can add the pipe page to
 710 *	  the page cache and avoid the copy.
 711 *
 712 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
 713 * sd->flags), we attempt to migrate pages from the pipe to the output
 714 * file address space page cache. This is possible if no one else has
 715 * the pipe page referenced outside of the pipe and page cache. If
 716 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
 717 * a new page in the output file page cache and fill/dirty that.
 718 */
 719int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
 720		 struct splice_desc *sd)
 721{
 722	struct file *file = sd->u.file;
 723	struct address_space *mapping = file->f_mapping;
 724	unsigned int offset, this_len;
 725	struct page *page;
 726	void *fsdata;
 727	int ret;
 728
 729	offset = sd->pos & ~PAGE_CACHE_MASK;
 730
 731	this_len = sd->len;
 732	if (this_len + offset > PAGE_CACHE_SIZE)
 733		this_len = PAGE_CACHE_SIZE - offset;
 734
 735	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
 736				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
 737	if (unlikely(ret))
 738		goto out;
 739
 740	if (buf->page != page) {
 741		/*
 742		 * Careful, ->map() uses KM_USER0!
 743		 */
 744		char *src = buf->ops->map(pipe, buf, 1);
 745		char *dst = kmap_atomic(page, KM_USER1);
 746
 747		memcpy(dst + offset, src + buf->offset, this_len);
 748		flush_dcache_page(page);
 749		kunmap_atomic(dst, KM_USER1);
 750		buf->ops->unmap(pipe, buf, src);
 751	}
 752	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
 753				page, fsdata);
 754out:
 755	return ret;
 756}
 757EXPORT_SYMBOL(pipe_to_file);
 758
 759static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
 760{
 761	smp_mb();
 762	if (waitqueue_active(&pipe->wait))
 763		wake_up_interruptible(&pipe->wait);
 764	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 765}
 766
 767/**
 768 * splice_from_pipe_feed - feed available data from a pipe to a file
 769 * @pipe:	pipe to splice from
 770 * @sd:		information to @actor
 771 * @actor:	handler that splices the data
 772 *
 773 * Description:
 774 *    This function loops over the pipe and calls @actor to do the
 775 *    actual moving of a single struct pipe_buffer to the desired
 776 *    destination.  It returns when there's no more buffers left in
 777 *    the pipe or if the requested number of bytes (@sd->total_len)
 778 *    have been copied.  It returns a positive number (one) if the
 779 *    pipe needs to be filled with more data, zero if the required
 780 *    number of bytes have been copied and -errno on error.
 781 *
 782 *    This, together with splice_from_pipe_{begin,end,next}, may be
 783 *    used to implement the functionality of __splice_from_pipe() when
 784 *    locking is required around copying the pipe buffers to the
 785 *    destination.
 786 */
 787int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
 788			  splice_actor *actor)
 789{
 
 
 
 790	int ret;
 791
 792	while (pipe->nrbufs) {
 793		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
 794		const struct pipe_buf_operations *ops = buf->ops;
 795
 796		sd->len = buf->len;
 797		if (sd->len > sd->total_len)
 798			sd->len = sd->total_len;
 799
 800		ret = buf->ops->confirm(pipe, buf);
 801		if (unlikely(ret)) {
 802			if (ret == -ENODATA)
 803				ret = 0;
 804			return ret;
 805		}
 806
 807		ret = actor(pipe, buf, sd);
 808		if (ret <= 0)
 809			return ret;
 810
 811		buf->offset += ret;
 812		buf->len -= ret;
 813
 814		sd->num_spliced += ret;
 815		sd->len -= ret;
 816		sd->pos += ret;
 817		sd->total_len -= ret;
 818
 819		if (!buf->len) {
 820			buf->ops = NULL;
 821			ops->release(pipe, buf);
 822			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
 823			pipe->nrbufs--;
 824			if (pipe->inode)
 825				sd->need_wakeup = true;
 826		}
 827
 828		if (!sd->total_len)
 829			return 0;
 830	}
 831
 832	return 1;
 833}
 834EXPORT_SYMBOL(splice_from_pipe_feed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835
 836/**
 837 * splice_from_pipe_next - wait for some data to splice from
 838 * @pipe:	pipe to splice from
 839 * @sd:		information about the splice operation
 840 *
 841 * Description:
 842 *    This function will wait for some data and return a positive
 843 *    value (one) if pipe buffers are available.  It will return zero
 844 *    or -errno if no more data needs to be spliced.
 845 */
 846int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
 847{
 848	while (!pipe->nrbufs) {
 
 
 
 
 
 
 
 
 849		if (!pipe->writers)
 850			return 0;
 851
 852		if (!pipe->waiting_writers && sd->num_spliced)
 853			return 0;
 854
 855		if (sd->flags & SPLICE_F_NONBLOCK)
 856			return -EAGAIN;
 857
 858		if (signal_pending(current))
 859			return -ERESTARTSYS;
 860
 861		if (sd->need_wakeup) {
 862			wakeup_pipe_writers(pipe);
 863			sd->need_wakeup = false;
 864		}
 865
 866		pipe_wait(pipe);
 867	}
 868
 
 
 
 869	return 1;
 870}
 871EXPORT_SYMBOL(splice_from_pipe_next);
 872
 873/**
 874 * splice_from_pipe_begin - start splicing from pipe
 875 * @sd:		information about the splice operation
 876 *
 877 * Description:
 878 *    This function should be called before a loop containing
 879 *    splice_from_pipe_next() and splice_from_pipe_feed() to
 880 *    initialize the necessary fields of @sd.
 881 */
 882void splice_from_pipe_begin(struct splice_desc *sd)
 883{
 884	sd->num_spliced = 0;
 885	sd->need_wakeup = false;
 886}
 887EXPORT_SYMBOL(splice_from_pipe_begin);
 888
 889/**
 890 * splice_from_pipe_end - finish splicing from pipe
 891 * @pipe:	pipe to splice from
 892 * @sd:		information about the splice operation
 893 *
 894 * Description:
 895 *    This function will wake up pipe writers if necessary.  It should
 896 *    be called after a loop containing splice_from_pipe_next() and
 897 *    splice_from_pipe_feed().
 898 */
 899void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
 900{
 901	if (sd->need_wakeup)
 902		wakeup_pipe_writers(pipe);
 903}
 904EXPORT_SYMBOL(splice_from_pipe_end);
 905
 906/**
 907 * __splice_from_pipe - splice data from a pipe to given actor
 908 * @pipe:	pipe to splice from
 909 * @sd:		information to @actor
 910 * @actor:	handler that splices the data
 911 *
 912 * Description:
 913 *    This function does little more than loop over the pipe and call
 914 *    @actor to do the actual moving of a single struct pipe_buffer to
 915 *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
 916 *    pipe_to_user.
 917 *
 918 */
 919ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
 920			   splice_actor *actor)
 921{
 922	int ret;
 923
 924	splice_from_pipe_begin(sd);
 925	do {
 
 926		ret = splice_from_pipe_next(pipe, sd);
 927		if (ret > 0)
 928			ret = splice_from_pipe_feed(pipe, sd, actor);
 929	} while (ret > 0);
 930	splice_from_pipe_end(pipe, sd);
 931
 932	return sd->num_spliced ? sd->num_spliced : ret;
 933}
 934EXPORT_SYMBOL(__splice_from_pipe);
 935
 936/**
 937 * splice_from_pipe - splice data from a pipe to a file
 938 * @pipe:	pipe to splice from
 939 * @out:	file to splice to
 940 * @ppos:	position in @out
 941 * @len:	how many bytes to splice
 942 * @flags:	splice modifier flags
 943 * @actor:	handler that splices the data
 944 *
 945 * Description:
 946 *    See __splice_from_pipe. This function locks the pipe inode,
 947 *    otherwise it's identical to __splice_from_pipe().
 948 *
 949 */
 950ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
 951			 loff_t *ppos, size_t len, unsigned int flags,
 952			 splice_actor *actor)
 953{
 954	ssize_t ret;
 955	struct splice_desc sd = {
 956		.total_len = len,
 957		.flags = flags,
 958		.pos = *ppos,
 959		.u.file = out,
 960	};
 961
 962	pipe_lock(pipe);
 963	ret = __splice_from_pipe(pipe, &sd, actor);
 964	pipe_unlock(pipe);
 965
 966	return ret;
 967}
 968
 969/**
 970 * generic_file_splice_write - splice data from a pipe to a file
 971 * @pipe:	pipe info
 972 * @out:	file to write to
 973 * @ppos:	position in @out
 974 * @len:	number of bytes to splice
 975 * @flags:	splice modifier flags
 976 *
 977 * Description:
 978 *    Will either move or copy pages (determined by @flags options) from
 979 *    the given pipe inode to the given file.
 
 980 *
 981 */
 982ssize_t
 983generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
 984			  loff_t *ppos, size_t len, unsigned int flags)
 985{
 986	struct address_space *mapping = out->f_mapping;
 987	struct inode *inode = mapping->host;
 988	struct splice_desc sd = {
 989		.total_len = len,
 990		.flags = flags,
 991		.pos = *ppos,
 992		.u.file = out,
 993	};
 
 
 
 994	ssize_t ret;
 995
 
 
 
 996	pipe_lock(pipe);
 997
 998	splice_from_pipe_begin(&sd);
 999	do {
 
 
 
 
 
1000		ret = splice_from_pipe_next(pipe, &sd);
1001		if (ret <= 0)
1002			break;
1003
1004		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1005		ret = file_remove_suid(out);
1006		if (!ret) {
1007			file_update_time(out);
1008			ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
 
 
 
 
1009		}
1010		mutex_unlock(&inode->i_mutex);
1011	} while (ret > 0);
1012	splice_from_pipe_end(pipe, &sd);
1013
1014	pipe_unlock(pipe);
 
 
 
 
 
 
 
 
1015
1016	if (sd.num_spliced)
1017		ret = sd.num_spliced;
 
 
1018
1019	if (ret > 0) {
1020		unsigned long nr_pages;
1021		int err;
 
 
 
1022
1023		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 
 
 
 
 
1024
1025		err = generic_write_sync(out, *ppos, ret);
1026		if (err)
1027			ret = err;
1028		else
1029			*ppos += ret;
1030		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1031	}
1032
1033	return ret;
1034}
 
1035
1036EXPORT_SYMBOL(generic_file_splice_write);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037
1038static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1039			  struct splice_desc *sd)
1040{
1041	int ret;
1042	void *data;
1043
1044	data = buf->ops->map(pipe, buf, 0);
1045	ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1046	buf->ops->unmap(pipe, buf, data);
1047
1048	return ret;
1049}
1050
1051static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1052					 struct file *out, loff_t *ppos,
1053					 size_t len, unsigned int flags)
1054{
1055	ssize_t ret;
1056
1057	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1058	if (ret > 0)
1059		*ppos += ret;
1060
1061	return ret;
1062}
1063
1064/**
1065 * generic_splice_sendpage - splice data from a pipe to a socket
1066 * @pipe:	pipe to splice from
1067 * @out:	socket to write to
1068 * @ppos:	position in @out
1069 * @len:	number of bytes to splice
1070 * @flags:	splice modifier flags
1071 *
1072 * Description:
1073 *    Will send @len bytes from the pipe to a network socket. No data copying
1074 *    is involved.
1075 *
1076 */
1077ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1078				loff_t *ppos, size_t len, unsigned int flags)
1079{
1080	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1081}
1082
1083EXPORT_SYMBOL(generic_splice_sendpage);
1084
 
 
 
 
 
 
 
 
1085/*
1086 * Attempt to initiate a splice from pipe to file.
1087 */
1088static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1089			   loff_t *ppos, size_t len, unsigned int flags)
1090{
1091	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1092				loff_t *, size_t, unsigned int);
1093	int ret;
1094
1095	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1096		return -EBADF;
1097
1098	if (unlikely(out->f_flags & O_APPEND))
1099		return -EINVAL;
1100
1101	ret = rw_verify_area(WRITE, out, ppos, len);
1102	if (unlikely(ret < 0))
1103		return ret;
1104
1105	if (out->f_op && out->f_op->splice_write)
1106		splice_write = out->f_op->splice_write;
1107	else
1108		splice_write = default_file_splice_write;
1109
1110	return splice_write(pipe, out, ppos, len, flags);
1111}
1112
1113/*
1114 * Attempt to initiate a splice from a file to a pipe.
1115 */
1116static long do_splice_to(struct file *in, loff_t *ppos,
1117			 struct pipe_inode_info *pipe, size_t len,
1118			 unsigned int flags)
1119{
1120	ssize_t (*splice_read)(struct file *, loff_t *,
1121			       struct pipe_inode_info *, size_t, unsigned int);
1122	int ret;
1123
1124	if (unlikely(!(in->f_mode & FMODE_READ)))
1125		return -EBADF;
1126
 
 
 
 
1127	ret = rw_verify_area(READ, in, ppos, len);
1128	if (unlikely(ret < 0))
1129		return ret;
1130
1131	if (in->f_op && in->f_op->splice_read)
1132		splice_read = in->f_op->splice_read;
1133	else
1134		splice_read = default_file_splice_read;
1135
1136	return splice_read(in, ppos, pipe, len, flags);
 
 
1137}
1138
1139/**
1140 * splice_direct_to_actor - splices data directly between two non-pipes
1141 * @in:		file to splice from
1142 * @sd:		actor information on where to splice to
1143 * @actor:	handles the data splicing
1144 *
1145 * Description:
1146 *    This is a special case helper to splice directly between two
1147 *    points, without requiring an explicit pipe. Internally an allocated
1148 *    pipe is cached in the process, and reused during the lifetime of
1149 *    that process.
1150 *
1151 */
1152ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1153			       splice_direct_actor *actor)
1154{
1155	struct pipe_inode_info *pipe;
1156	long ret, bytes;
1157	umode_t i_mode;
1158	size_t len;
1159	int i, flags;
1160
1161	/*
1162	 * We require the input being a regular file, as we don't want to
1163	 * randomly drop data for eg socket -> socket splicing. Use the
1164	 * piped splicing for that!
1165	 */
1166	i_mode = in->f_path.dentry->d_inode->i_mode;
1167	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1168		return -EINVAL;
1169
1170	/*
1171	 * neither in nor out is a pipe, setup an internal pipe attached to
1172	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1173	 */
1174	pipe = current->splice_pipe;
1175	if (unlikely(!pipe)) {
1176		pipe = alloc_pipe_info(NULL);
1177		if (!pipe)
1178			return -ENOMEM;
1179
1180		/*
1181		 * We don't have an immediate reader, but we'll read the stuff
1182		 * out of the pipe right after the splice_to_pipe(). So set
1183		 * PIPE_READERS appropriately.
1184		 */
1185		pipe->readers = 1;
1186
1187		current->splice_pipe = pipe;
1188	}
1189
1190	/*
1191	 * Do the splice.
1192	 */
1193	ret = 0;
1194	bytes = 0;
1195	len = sd->total_len;
1196	flags = sd->flags;
1197
1198	/*
1199	 * Don't block on output, we have to drain the direct pipe.
1200	 */
1201	sd->flags &= ~SPLICE_F_NONBLOCK;
 
 
 
1202
1203	while (len) {
1204		size_t read_len;
1205		loff_t pos = sd->pos, prev_pos = pos;
1206
1207		ret = do_splice_to(in, &pos, pipe, len, flags);
1208		if (unlikely(ret <= 0))
1209			goto out_release;
1210
1211		read_len = ret;
1212		sd->total_len = read_len;
1213
1214		/*
 
 
 
 
 
 
 
 
 
1215		 * NOTE: nonblocking mode only applies to the input. We
1216		 * must not do the output in nonblocking mode as then we
1217		 * could get stuck data in the internal pipe:
1218		 */
1219		ret = actor(pipe, sd);
1220		if (unlikely(ret <= 0)) {
1221			sd->pos = prev_pos;
1222			goto out_release;
1223		}
1224
1225		bytes += ret;
1226		len -= ret;
1227		sd->pos = pos;
1228
1229		if (ret < read_len) {
1230			sd->pos = prev_pos + ret;
1231			goto out_release;
1232		}
1233	}
1234
1235done:
1236	pipe->nrbufs = pipe->curbuf = 0;
1237	file_accessed(in);
1238	return bytes;
1239
1240out_release:
1241	/*
1242	 * If we did an incomplete transfer we must release
1243	 * the pipe buffers in question:
1244	 */
1245	for (i = 0; i < pipe->buffers; i++) {
1246		struct pipe_buffer *buf = pipe->bufs + i;
1247
1248		if (buf->ops) {
1249			buf->ops->release(pipe, buf);
1250			buf->ops = NULL;
1251		}
1252	}
1253
1254	if (!bytes)
1255		bytes = ret;
1256
1257	goto done;
1258}
1259EXPORT_SYMBOL(splice_direct_to_actor);
1260
1261static int direct_splice_actor(struct pipe_inode_info *pipe,
1262			       struct splice_desc *sd)
1263{
1264	struct file *file = sd->u.file;
1265
1266	return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1267			      sd->flags);
1268}
1269
1270/**
1271 * do_splice_direct - splices data directly between two files
1272 * @in:		file to splice from
1273 * @ppos:	input file offset
1274 * @out:	file to splice to
 
1275 * @len:	number of bytes to splice
1276 * @flags:	splice modifier flags
1277 *
1278 * Description:
1279 *    For use by do_sendfile(). splice can easily emulate sendfile, but
1280 *    doing it in the application would incur an extra system call
1281 *    (splice in + splice out, as compared to just sendfile()). So this helper
1282 *    can splice directly through a process-private pipe.
1283 *
1284 */
1285long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1286		      size_t len, unsigned int flags)
1287{
1288	struct splice_desc sd = {
1289		.len		= len,
1290		.total_len	= len,
1291		.flags		= flags,
1292		.pos		= *ppos,
1293		.u.file		= out,
 
1294	};
1295	long ret;
1296
 
 
 
 
 
 
 
 
 
 
1297	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1298	if (ret > 0)
1299		*ppos = sd.pos;
1300
1301	return ret;
1302}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303
1304static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1305			       struct pipe_inode_info *opipe,
1306			       size_t len, unsigned int flags);
1307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1308/*
1309 * Determine where to splice to/from.
1310 */
1311static long do_splice(struct file *in, loff_t __user *off_in,
1312		      struct file *out, loff_t __user *off_out,
1313		      size_t len, unsigned int flags)
1314{
1315	struct pipe_inode_info *ipipe;
1316	struct pipe_inode_info *opipe;
1317	loff_t offset, *off;
1318	long ret;
1319
1320	ipipe = get_pipe_info(in);
1321	opipe = get_pipe_info(out);
 
 
 
 
1322
1323	if (ipipe && opipe) {
1324		if (off_in || off_out)
1325			return -ESPIPE;
1326
1327		if (!(in->f_mode & FMODE_READ))
1328			return -EBADF;
1329
1330		if (!(out->f_mode & FMODE_WRITE))
1331			return -EBADF;
1332
1333		/* Splicing to self would be fun, but... */
1334		if (ipipe == opipe)
1335			return -EINVAL;
1336
 
 
 
1337		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1338	}
1339
1340	if (ipipe) {
1341		if (off_in)
1342			return -ESPIPE;
1343		if (off_out) {
1344			if (!(out->f_mode & FMODE_PWRITE))
1345				return -EINVAL;
1346			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1347				return -EFAULT;
1348			off = &offset;
1349		} else
1350			off = &out->f_pos;
 
 
 
 
 
 
1351
1352		ret = do_splice_from(ipipe, out, off, len, flags);
 
1353
1354		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1355			ret = -EFAULT;
 
 
 
 
 
 
1356
1357		return ret;
1358	}
1359
1360	if (opipe) {
1361		if (off_out)
1362			return -ESPIPE;
1363		if (off_in) {
1364			if (!(in->f_mode & FMODE_PREAD))
1365				return -EINVAL;
1366			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1367				return -EFAULT;
1368			off = &offset;
1369		} else
1370			off = &in->f_pos;
1371
1372		ret = do_splice_to(in, off, opipe, len, flags);
 
1373
1374		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1375			ret = -EFAULT;
 
 
 
1376
1377		return ret;
1378	}
1379
1380	return -EINVAL;
1381}
1382
1383/*
1384 * Map an iov into an array of pages and offset/length tupples. With the
1385 * partial_page structure, we can map several non-contiguous ranges into
1386 * our ones pages[] map instead of splitting that operation into pieces.
1387 * Could easily be exported as a generic helper for other users, in which
1388 * case one would probably want to add a 'max_nr_pages' parameter as well.
1389 */
1390static int get_iovec_page_array(const struct iovec __user *iov,
1391				unsigned int nr_vecs, struct page **pages,
1392				struct partial_page *partial, int aligned,
1393				unsigned int pipe_buffers)
1394{
1395	int buffers = 0, error = 0;
1396
1397	while (nr_vecs) {
1398		unsigned long off, npages;
1399		struct iovec entry;
1400		void __user *base;
1401		size_t len;
1402		int i;
1403
1404		error = -EFAULT;
1405		if (copy_from_user(&entry, iov, sizeof(entry)))
1406			break;
1407
1408		base = entry.iov_base;
1409		len = entry.iov_len;
1410
1411		/*
1412		 * Sanity check this iovec. 0 read succeeds.
1413		 */
1414		error = 0;
1415		if (unlikely(!len))
1416			break;
1417		error = -EFAULT;
1418		if (!access_ok(VERIFY_READ, base, len))
1419			break;
 
 
 
 
 
 
1420
1421		/*
1422		 * Get this base offset and number of pages, then map
1423		 * in the user pages.
1424		 */
1425		off = (unsigned long) base & ~PAGE_MASK;
1426
1427		/*
1428		 * If asked for alignment, the offset must be zero and the
1429		 * length a multiple of the PAGE_SIZE.
1430		 */
1431		error = -EINVAL;
1432		if (aligned && (off || len & ~PAGE_MASK))
1433			break;
1434
1435		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1436		if (npages > pipe_buffers - buffers)
1437			npages = pipe_buffers - buffers;
1438
1439		error = get_user_pages_fast((unsigned long)base, npages,
1440					0, &pages[buffers]);
 
 
 
 
 
 
 
 
1441
1442		if (unlikely(error <= 0))
 
 
 
 
 
 
 
 
1443			break;
1444
1445		/*
1446		 * Fill this contiguous range into the partial page map.
1447		 */
1448		for (i = 0; i < error; i++) {
1449			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1450
1451			partial[buffers].offset = off;
1452			partial[buffers].len = plen;
1453
1454			off = 0;
1455			len -= plen;
1456			buffers++;
1457		}
1458
1459		/*
1460		 * We didn't complete this iov, stop here since it probably
1461		 * means we have to move some of this into a pipe to
1462		 * be able to continue.
1463		 */
1464		if (len)
1465			break;
1466
1467		/*
1468		 * Don't continue if we mapped fewer pages than we asked for,
1469		 * or if we mapped the max number of pages that we have
1470		 * room for.
1471		 */
1472		if (error < npages || buffers == pipe_buffers)
1473			break;
1474
1475		nr_vecs--;
1476		iov++;
 
1477	}
1478
1479	if (buffers)
1480		return buffers;
1481
1482	return error;
1483}
1484
1485static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1486			struct splice_desc *sd)
1487{
1488	char *src;
1489	int ret;
1490
1491	/*
1492	 * See if we can use the atomic maps, by prefaulting in the
1493	 * pages and doing an atomic copy
1494	 */
1495	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1496		src = buf->ops->map(pipe, buf, 1);
1497		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1498							sd->len);
1499		buf->ops->unmap(pipe, buf, src);
1500		if (!ret) {
1501			ret = sd->len;
1502			goto out;
1503		}
1504	}
1505
1506	/*
1507	 * No dice, use slow non-atomic map and copy
1508 	 */
1509	src = buf->ops->map(pipe, buf, 0);
1510
1511	ret = sd->len;
1512	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1513		ret = -EFAULT;
1514
1515	buf->ops->unmap(pipe, buf, src);
1516out:
1517	if (ret > 0)
1518		sd->u.userptr += ret;
1519	return ret;
1520}
1521
1522/*
1523 * For lack of a better implementation, implement vmsplice() to userspace
1524 * as a simple copy of the pipes pages to the user iov.
1525 */
1526static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1527			     unsigned long nr_segs, unsigned int flags)
1528{
1529	struct pipe_inode_info *pipe;
1530	struct splice_desc sd;
1531	ssize_t size;
1532	int error;
1533	long ret;
 
 
1534
1535	pipe = get_pipe_info(file);
1536	if (!pipe)
1537		return -EBADF;
1538
1539	pipe_lock(pipe);
1540
1541	error = ret = 0;
1542	while (nr_segs) {
1543		void __user *base;
1544		size_t len;
1545
1546		/*
1547		 * Get user address base and length for this iovec.
1548		 */
1549		error = get_user(base, &iov->iov_base);
1550		if (unlikely(error))
1551			break;
1552		error = get_user(len, &iov->iov_len);
1553		if (unlikely(error))
1554			break;
1555
1556		/*
1557		 * Sanity check this iovec. 0 read succeeds.
1558		 */
1559		if (unlikely(!len))
1560			break;
1561		if (unlikely(!base)) {
1562			error = -EFAULT;
1563			break;
1564		}
1565
1566		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1567			error = -EFAULT;
1568			break;
1569		}
1570
1571		sd.len = 0;
1572		sd.total_len = len;
1573		sd.flags = flags;
1574		sd.u.userptr = base;
1575		sd.pos = 0;
1576
1577		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1578		if (size < 0) {
1579			if (!ret)
1580				ret = size;
1581
1582			break;
1583		}
1584
1585		ret += size;
1586
1587		if (size < len)
1588			break;
1589
1590		nr_segs--;
1591		iov++;
1592	}
1593
1594	pipe_unlock(pipe);
1595
1596	if (!ret)
1597		ret = error;
1598
1599	return ret;
1600}
1601
1602/*
1603 * vmsplice splices a user address range into a pipe. It can be thought of
1604 * as splice-from-memory, where the regular splice is splice-from-file (or
1605 * to file). In both cases the output is a pipe, naturally.
1606 */
1607static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1608			     unsigned long nr_segs, unsigned int flags)
1609{
1610	struct pipe_inode_info *pipe;
1611	struct page *pages[PIPE_DEF_BUFFERS];
1612	struct partial_page partial[PIPE_DEF_BUFFERS];
1613	struct splice_pipe_desc spd = {
1614		.pages = pages,
1615		.partial = partial,
1616		.flags = flags,
1617		.ops = &user_page_pipe_buf_ops,
1618		.spd_release = spd_release_page,
1619	};
1620	long ret;
1621
1622	pipe = get_pipe_info(file);
1623	if (!pipe)
1624		return -EBADF;
1625
1626	if (splice_grow_spd(pipe, &spd))
1627		return -ENOMEM;
1628
1629	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1630					    spd.partial, flags & SPLICE_F_GIFT,
1631					    pipe->buffers);
1632	if (spd.nr_pages <= 0)
1633		ret = spd.nr_pages;
1634	else
1635		ret = splice_to_pipe(pipe, &spd);
1636
1637	splice_shrink_spd(pipe, &spd);
1638	return ret;
1639}
1640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1641/*
1642 * Note that vmsplice only really supports true splicing _from_ user memory
1643 * to a pipe, not the other way around. Splicing from user memory is a simple
1644 * operation that can be supported without any funky alignment restrictions
1645 * or nasty vm tricks. We simply map in the user memory and fill them into
1646 * a pipe. The reverse isn't quite as easy, though. There are two possible
1647 * solutions for that:
1648 *
1649 *	- memcpy() the data internally, at which point we might as well just
1650 *	  do a regular read() on the buffer anyway.
1651 *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1652 *	  has restriction limitations on both ends of the pipe).
1653 *
1654 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1655 *
1656 */
1657SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1658		unsigned long, nr_segs, unsigned int, flags)
1659{
1660	struct file *file;
1661	long error;
1662	int fput;
 
 
 
1663
1664	if (unlikely(nr_segs > UIO_MAXIOV))
1665		return -EINVAL;
1666	else if (unlikely(!nr_segs))
1667		return 0;
1668
1669	error = -EBADF;
1670	file = fget_light(fd, &fput);
1671	if (file) {
1672		if (file->f_mode & FMODE_WRITE)
1673			error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1674		else if (file->f_mode & FMODE_READ)
1675			error = vmsplice_to_user(file, iov, nr_segs, flags);
 
 
1676
1677		fput_light(file, fput);
1678	}
 
 
 
 
1679
 
 
 
1680	return error;
1681}
1682
1683SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1684		int, fd_out, loff_t __user *, off_out,
1685		size_t, len, unsigned int, flags)
1686{
 
1687	long error;
1688	struct file *in, *out;
1689	int fput_in, fput_out;
1690
1691	if (unlikely(!len))
1692		return 0;
1693
 
 
 
1694	error = -EBADF;
1695	in = fget_light(fd_in, &fput_in);
1696	if (in) {
1697		if (in->f_mode & FMODE_READ) {
1698			out = fget_light(fd_out, &fput_out);
1699			if (out) {
1700				if (out->f_mode & FMODE_WRITE)
1701					error = do_splice(in, off_in,
1702							  out, off_out,
1703							  len, flags);
1704				fput_light(out, fput_out);
1705			}
1706		}
1707
1708		fput_light(in, fput_in);
1709	}
1710
1711	return error;
1712}
1713
1714/*
1715 * Make sure there's data to read. Wait for input if we can, otherwise
1716 * return an appropriate error.
1717 */
1718static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1719{
1720	int ret;
1721
1722	/*
1723	 * Check ->nrbufs without the inode lock first. This function
1724	 * is speculative anyways, so missing one is ok.
1725	 */
1726	if (pipe->nrbufs)
1727		return 0;
1728
1729	ret = 0;
1730	pipe_lock(pipe);
1731
1732	while (!pipe->nrbufs) {
1733		if (signal_pending(current)) {
1734			ret = -ERESTARTSYS;
1735			break;
1736		}
1737		if (!pipe->writers)
1738			break;
1739		if (!pipe->waiting_writers) {
1740			if (flags & SPLICE_F_NONBLOCK) {
1741				ret = -EAGAIN;
1742				break;
1743			}
1744		}
1745		pipe_wait(pipe);
1746	}
1747
1748	pipe_unlock(pipe);
1749	return ret;
1750}
1751
1752/*
1753 * Make sure there's writeable room. Wait for room if we can, otherwise
1754 * return an appropriate error.
1755 */
1756static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1757{
1758	int ret;
1759
1760	/*
1761	 * Check ->nrbufs without the inode lock first. This function
1762	 * is speculative anyways, so missing one is ok.
1763	 */
1764	if (pipe->nrbufs < pipe->buffers)
1765		return 0;
1766
1767	ret = 0;
1768	pipe_lock(pipe);
1769
1770	while (pipe->nrbufs >= pipe->buffers) {
1771		if (!pipe->readers) {
1772			send_sig(SIGPIPE, current, 0);
1773			ret = -EPIPE;
1774			break;
1775		}
1776		if (flags & SPLICE_F_NONBLOCK) {
1777			ret = -EAGAIN;
1778			break;
1779		}
1780		if (signal_pending(current)) {
1781			ret = -ERESTARTSYS;
1782			break;
1783		}
1784		pipe->waiting_writers++;
1785		pipe_wait(pipe);
1786		pipe->waiting_writers--;
1787	}
1788
1789	pipe_unlock(pipe);
1790	return ret;
1791}
1792
1793/*
1794 * Splice contents of ipipe to opipe.
1795 */
1796static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1797			       struct pipe_inode_info *opipe,
1798			       size_t len, unsigned int flags)
1799{
1800	struct pipe_buffer *ibuf, *obuf;
1801	int ret = 0, nbuf;
 
 
 
1802	bool input_wakeup = false;
1803
1804
1805retry:
1806	ret = ipipe_prep(ipipe, flags);
1807	if (ret)
1808		return ret;
1809
1810	ret = opipe_prep(opipe, flags);
1811	if (ret)
1812		return ret;
1813
1814	/*
1815	 * Potential ABBA deadlock, work around it by ordering lock
1816	 * grabbing by pipe info address. Otherwise two different processes
1817	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1818	 */
1819	pipe_double_lock(ipipe, opipe);
1820
 
 
 
 
 
1821	do {
 
 
1822		if (!opipe->readers) {
1823			send_sig(SIGPIPE, current, 0);
1824			if (!ret)
1825				ret = -EPIPE;
1826			break;
1827		}
1828
1829		if (!ipipe->nrbufs && !ipipe->writers)
 
 
 
1830			break;
1831
1832		/*
1833		 * Cannot make any progress, because either the input
1834		 * pipe is empty or the output pipe is full.
1835		 */
1836		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
 
1837			/* Already processed some buffers, break */
1838			if (ret)
1839				break;
1840
1841			if (flags & SPLICE_F_NONBLOCK) {
1842				ret = -EAGAIN;
1843				break;
1844			}
1845
1846			/*
1847			 * We raced with another reader/writer and haven't
1848			 * managed to process any buffers.  A zero return
1849			 * value means EOF, so retry instead.
1850			 */
1851			pipe_unlock(ipipe);
1852			pipe_unlock(opipe);
1853			goto retry;
1854		}
1855
1856		ibuf = ipipe->bufs + ipipe->curbuf;
1857		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1858		obuf = opipe->bufs + nbuf;
1859
1860		if (len >= ibuf->len) {
1861			/*
1862			 * Simply move the whole buffer from ipipe to opipe
1863			 */
1864			*obuf = *ibuf;
1865			ibuf->ops = NULL;
1866			opipe->nrbufs++;
1867			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1868			ipipe->nrbufs--;
1869			input_wakeup = true;
 
 
 
1870		} else {
1871			/*
1872			 * Get a reference to this pipe buffer,
1873			 * so we can copy the contents over.
1874			 */
1875			ibuf->ops->get(ipipe, ibuf);
 
 
 
 
1876			*obuf = *ibuf;
1877
1878			/*
1879			 * Don't inherit the gift flag, we need to
1880			 * prevent multiple steals of this page.
1881			 */
1882			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
 
1883
1884			obuf->len = len;
1885			opipe->nrbufs++;
1886			ibuf->offset += obuf->len;
1887			ibuf->len -= obuf->len;
 
 
1888		}
1889		ret += obuf->len;
1890		len -= obuf->len;
1891	} while (len);
1892
1893	pipe_unlock(ipipe);
1894	pipe_unlock(opipe);
1895
1896	/*
1897	 * If we put data in the output pipe, wakeup any potential readers.
1898	 */
1899	if (ret > 0)
1900		wakeup_pipe_readers(opipe);
1901
1902	if (input_wakeup)
1903		wakeup_pipe_writers(ipipe);
1904
1905	return ret;
1906}
1907
1908/*
1909 * Link contents of ipipe to opipe.
1910 */
1911static int link_pipe(struct pipe_inode_info *ipipe,
1912		     struct pipe_inode_info *opipe,
1913		     size_t len, unsigned int flags)
1914{
1915	struct pipe_buffer *ibuf, *obuf;
1916	int ret = 0, i = 0, nbuf;
 
 
 
1917
1918	/*
1919	 * Potential ABBA deadlock, work around it by ordering lock
1920	 * grabbing by pipe info address. Otherwise two different processes
1921	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1922	 */
1923	pipe_double_lock(ipipe, opipe);
1924
 
 
 
 
 
1925	do {
1926		if (!opipe->readers) {
1927			send_sig(SIGPIPE, current, 0);
1928			if (!ret)
1929				ret = -EPIPE;
1930			break;
1931		}
1932
 
 
 
1933		/*
1934		 * If we have iterated all input buffers or ran out of
1935		 * output room, break.
1936		 */
1937		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
 
1938			break;
1939
1940		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1941		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1942
1943		/*
1944		 * Get a reference to this pipe buffer,
1945		 * so we can copy the contents over.
1946		 */
1947		ibuf->ops->get(ipipe, ibuf);
 
 
 
 
1948
1949		obuf = opipe->bufs + nbuf;
1950		*obuf = *ibuf;
1951
1952		/*
1953		 * Don't inherit the gift flag, we need to
1954		 * prevent multiple steals of this page.
1955		 */
1956		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
 
1957
1958		if (obuf->len > len)
1959			obuf->len = len;
1960
1961		opipe->nrbufs++;
1962		ret += obuf->len;
1963		len -= obuf->len;
1964		i++;
1965	} while (len);
1966
1967	/*
1968	 * return EAGAIN if we have the potential of some data in the
1969	 * future, otherwise just return 0
1970	 */
1971	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1972		ret = -EAGAIN;
1973
1974	pipe_unlock(ipipe);
1975	pipe_unlock(opipe);
1976
1977	/*
1978	 * If we put data in the output pipe, wakeup any potential readers.
1979	 */
1980	if (ret > 0)
1981		wakeup_pipe_readers(opipe);
1982
1983	return ret;
1984}
1985
1986/*
1987 * This is a tee(1) implementation that works on pipes. It doesn't copy
1988 * any data, it simply references the 'in' pages on the 'out' pipe.
1989 * The 'flags' used are the SPLICE_F_* variants, currently the only
1990 * applicable one is SPLICE_F_NONBLOCK.
1991 */
1992static long do_tee(struct file *in, struct file *out, size_t len,
1993		   unsigned int flags)
1994{
1995	struct pipe_inode_info *ipipe = get_pipe_info(in);
1996	struct pipe_inode_info *opipe = get_pipe_info(out);
1997	int ret = -EINVAL;
1998
 
 
 
 
1999	/*
2000	 * Duplicate the contents of ipipe to opipe without actually
2001	 * copying the data.
2002	 */
2003	if (ipipe && opipe && ipipe != opipe) {
 
 
 
2004		/*
2005		 * Keep going, unless we encounter an error. The ipipe/opipe
2006		 * ordering doesn't really matter.
2007		 */
2008		ret = ipipe_prep(ipipe, flags);
2009		if (!ret) {
2010			ret = opipe_prep(opipe, flags);
2011			if (!ret)
2012				ret = link_pipe(ipipe, opipe, len, flags);
2013		}
2014	}
2015
2016	return ret;
2017}
2018
2019SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2020{
2021	struct file *in;
2022	int error, fput_in;
 
 
 
2023
2024	if (unlikely(!len))
2025		return 0;
2026
2027	error = -EBADF;
2028	in = fget_light(fdin, &fput_in);
2029	if (in) {
2030		if (in->f_mode & FMODE_READ) {
2031			int fput_out;
2032			struct file *out = fget_light(fdout, &fput_out);
2033
2034			if (out) {
2035				if (out->f_mode & FMODE_WRITE)
2036					error = do_tee(in, out, len, flags);
2037				fput_light(out, fput_out);
2038			}
2039		}
2040 		fput_light(in, fput_in);
2041 	}
2042
2043	return error;
2044}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * "splice": joining two ropes together by interweaving their strands.
   4 *
   5 * This is the "extended pipe" functionality, where a pipe is used as
   6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
   7 * buffer that you can use to transfer data from one end to the other.
   8 *
   9 * The traditional unix read/write is extended with a "splice()" operation
  10 * that transfers data buffers to or from a pipe buffer.
  11 *
  12 * Named by Larry McVoy, original implementation from Linus, extended by
  13 * Jens to support splicing to files, network, direct splicing, etc and
  14 * fixing lots of bugs.
  15 *
  16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
  17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
  18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
  19 *
  20 */
  21#include <linux/bvec.h>
  22#include <linux/fs.h>
  23#include <linux/file.h>
  24#include <linux/pagemap.h>
  25#include <linux/splice.h>
  26#include <linux/memcontrol.h>
  27#include <linux/mm_inline.h>
  28#include <linux/swap.h>
  29#include <linux/writeback.h>
  30#include <linux/export.h>
 
  31#include <linux/syscalls.h>
  32#include <linux/uio.h>
  33#include <linux/security.h>
  34#include <linux/gfp.h>
  35#include <linux/socket.h>
  36#include <linux/sched/signal.h>
  37
  38#include "internal.h"
  39
  40/*
  41 * Attempt to steal a page from a pipe buffer. This should perhaps go into
  42 * a vm helper function, it's already simplified quite a bit by the
  43 * addition of remove_mapping(). If success is returned, the caller may
  44 * attempt to reuse this page for another destination.
  45 */
  46static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
  47		struct pipe_buffer *buf)
  48{
  49	struct folio *folio = page_folio(buf->page);
  50	struct address_space *mapping;
  51
  52	folio_lock(folio);
  53
  54	mapping = folio_mapping(folio);
  55	if (mapping) {
  56		WARN_ON(!folio_test_uptodate(folio));
  57
  58		/*
  59		 * At least for ext2 with nobh option, we need to wait on
  60		 * writeback completing on this folio, since we'll remove it
  61		 * from the pagecache.  Otherwise truncate wont wait on the
  62		 * folio, allowing the disk blocks to be reused by someone else
  63		 * before we actually wrote our data to them. fs corruption
  64		 * ensues.
  65		 */
  66		folio_wait_writeback(folio);
  67
  68		if (folio_has_private(folio) &&
  69		    !filemap_release_folio(folio, GFP_KERNEL))
  70			goto out_unlock;
  71
  72		/*
  73		 * If we succeeded in removing the mapping, set LRU flag
  74		 * and return good.
  75		 */
  76		if (remove_mapping(mapping, folio)) {
  77			buf->flags |= PIPE_BUF_FLAG_LRU;
  78			return true;
  79		}
  80	}
  81
  82	/*
  83	 * Raced with truncate or failed to remove folio from current
  84	 * address space, unlock and return failure.
  85	 */
  86out_unlock:
  87	folio_unlock(folio);
  88	return false;
  89}
  90
  91static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
  92					struct pipe_buffer *buf)
  93{
  94	put_page(buf->page);
  95	buf->flags &= ~PIPE_BUF_FLAG_LRU;
  96}
  97
  98/*
  99 * Check whether the contents of buf is OK to access. Since the content
 100 * is a page cache page, IO may be in flight.
 101 */
 102static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
 103				       struct pipe_buffer *buf)
 104{
 105	struct page *page = buf->page;
 106	int err;
 107
 108	if (!PageUptodate(page)) {
 109		lock_page(page);
 110
 111		/*
 112		 * Page got truncated/unhashed. This will cause a 0-byte
 113		 * splice, if this is the first page.
 114		 */
 115		if (!page->mapping) {
 116			err = -ENODATA;
 117			goto error;
 118		}
 119
 120		/*
 121		 * Uh oh, read-error from disk.
 122		 */
 123		if (!PageUptodate(page)) {
 124			err = -EIO;
 125			goto error;
 126		}
 127
 128		/*
 129		 * Page is ok afterall, we are done.
 130		 */
 131		unlock_page(page);
 132	}
 133
 134	return 0;
 135error:
 136	unlock_page(page);
 137	return err;
 138}
 139
 140const struct pipe_buf_operations page_cache_pipe_buf_ops = {
 141	.confirm	= page_cache_pipe_buf_confirm,
 142	.release	= page_cache_pipe_buf_release,
 143	.try_steal	= page_cache_pipe_buf_try_steal,
 144	.get		= generic_pipe_buf_get,
 
 
 
 145};
 146
 147static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
 148		struct pipe_buffer *buf)
 149{
 150	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
 151		return false;
 152
 153	buf->flags |= PIPE_BUF_FLAG_LRU;
 154	return generic_pipe_buf_try_steal(pipe, buf);
 155}
 156
 157static const struct pipe_buf_operations user_page_pipe_buf_ops = {
 158	.release	= page_cache_pipe_buf_release,
 159	.try_steal	= user_page_pipe_buf_try_steal,
 160	.get		= generic_pipe_buf_get,
 
 
 
 
 161};
 162
 163static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
 164{
 165	smp_mb();
 166	if (waitqueue_active(&pipe->rd_wait))
 167		wake_up_interruptible(&pipe->rd_wait);
 168	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 169}
 170
 171/**
 172 * splice_to_pipe - fill passed data into a pipe
 173 * @pipe:	pipe to fill
 174 * @spd:	data to fill
 175 *
 176 * Description:
 177 *    @spd contains a map of pages and len/offset tuples, along with
 178 *    the struct pipe_buf_operations associated with these pages. This
 179 *    function will link that data to the pipe.
 180 *
 181 */
 182ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
 183		       struct splice_pipe_desc *spd)
 184{
 185	unsigned int spd_pages = spd->nr_pages;
 186	unsigned int tail = pipe->tail;
 187	unsigned int head = pipe->head;
 188	unsigned int mask = pipe->ring_size - 1;
 189	int ret = 0, page_nr = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190
 191	if (!spd_pages)
 192		return 0;
 193
 194	if (unlikely(!pipe->readers)) {
 195		send_sig(SIGPIPE, current, 0);
 196		ret = -EPIPE;
 197		goto out;
 198	}
 199
 200	while (!pipe_full(head, tail, pipe->max_usage)) {
 201		struct pipe_buffer *buf = &pipe->bufs[head & mask];
 202
 203		buf->page = spd->pages[page_nr];
 204		buf->offset = spd->partial[page_nr].offset;
 205		buf->len = spd->partial[page_nr].len;
 206		buf->private = spd->partial[page_nr].private;
 207		buf->ops = spd->ops;
 208		buf->flags = 0;
 209
 210		head++;
 211		pipe->head = head;
 212		page_nr++;
 213		ret += buf->len;
 214
 215		if (!--spd->nr_pages)
 
 
 216			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 217	}
 218
 219	if (!ret)
 220		ret = -EAGAIN;
 
 
 221
 222out:
 223	while (page_nr < spd_pages)
 224		spd->spd_release(spd, page_nr++);
 225
 226	return ret;
 227}
 228EXPORT_SYMBOL_GPL(splice_to_pipe);
 229
 230ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
 231{
 232	unsigned int head = pipe->head;
 233	unsigned int tail = pipe->tail;
 234	unsigned int mask = pipe->ring_size - 1;
 235	int ret;
 236
 237	if (unlikely(!pipe->readers)) {
 238		send_sig(SIGPIPE, current, 0);
 239		ret = -EPIPE;
 240	} else if (pipe_full(head, tail, pipe->max_usage)) {
 241		ret = -EAGAIN;
 242	} else {
 243		pipe->bufs[head & mask] = *buf;
 244		pipe->head = head + 1;
 245		return buf->len;
 246	}
 247	pipe_buf_release(pipe, buf);
 248	return ret;
 249}
 250EXPORT_SYMBOL(add_to_pipe);
 251
 252/*
 253 * Check if we need to grow the arrays holding pages and partial page
 254 * descriptions.
 255 */
 256int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
 257{
 258	unsigned int max_usage = READ_ONCE(pipe->max_usage);
 259
 260	spd->nr_pages_max = max_usage;
 261	if (max_usage <= PIPE_DEF_BUFFERS)
 262		return 0;
 263
 264	spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
 265	spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
 266				     GFP_KERNEL);
 267
 268	if (spd->pages && spd->partial)
 269		return 0;
 270
 271	kfree(spd->pages);
 272	kfree(spd->partial);
 273	return -ENOMEM;
 274}
 275
 276void splice_shrink_spd(struct splice_pipe_desc *spd)
 
 277{
 278	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
 279		return;
 280
 281	kfree(spd->pages);
 282	kfree(spd->partial);
 283}
 284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 285/**
 286 * generic_file_splice_read - splice data from file to a pipe
 287 * @in:		file to splice from
 288 * @ppos:	position in @in
 289 * @pipe:	pipe to splice to
 290 * @len:	number of bytes to splice
 291 * @flags:	splice modifier flags
 292 *
 293 * Description:
 294 *    Will read pages from given file and fill them into a pipe. Can be
 295 *    used as long as it has more or less sane ->read_iter().
 
 296 *
 297 */
 298ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
 299				 struct pipe_inode_info *pipe, size_t len,
 300				 unsigned int flags)
 301{
 302	struct iov_iter to;
 303	struct kiocb kiocb;
 304	int ret;
 305
 306	iov_iter_pipe(&to, ITER_DEST, pipe, len);
 307	init_sync_kiocb(&kiocb, in);
 308	kiocb.ki_pos = *ppos;
 309	ret = call_read_iter(in, &kiocb, &to);
 
 
 
 
 
 310	if (ret > 0) {
 311		*ppos = kiocb.ki_pos;
 312		file_accessed(in);
 313	} else if (ret < 0) {
 314		/* free what was emitted */
 315		pipe_discard_from(pipe, to.start_head);
 316		/*
 317		 * callers of ->splice_read() expect -EAGAIN on
 318		 * "can't put anything in there", rather than -EFAULT.
 319		 */
 320		if (ret == -EFAULT)
 321			ret = -EAGAIN;
 322	}
 323
 324	return ret;
 325}
 326EXPORT_SYMBOL(generic_file_splice_read);
 327
 328const struct pipe_buf_operations default_pipe_buf_ops = {
 329	.release	= generic_pipe_buf_release,
 330	.try_steal	= generic_pipe_buf_try_steal,
 331	.get		= generic_pipe_buf_get,
 
 
 
 
 332};
 333
 334/* Pipe buffer operations for a socket and similar. */
 335const struct pipe_buf_operations nosteal_pipe_buf_ops = {
 336	.release	= generic_pipe_buf_release,
 337	.get		= generic_pipe_buf_get,
 338};
 339EXPORT_SYMBOL(nosteal_pipe_buf_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340
 341/*
 342 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
 343 * using sendpage(). Return the number of bytes sent.
 344 */
 345static int pipe_to_sendpage(struct pipe_inode_info *pipe,
 346			    struct pipe_buffer *buf, struct splice_desc *sd)
 347{
 348	struct file *file = sd->u.file;
 349	loff_t pos = sd->pos;
 350	int more;
 351
 352	if (!likely(file->f_op->sendpage))
 353		return -EINVAL;
 354
 355	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 356
 357	if (sd->len < sd->total_len &&
 358	    pipe_occupancy(pipe->head, pipe->tail) > 1)
 359		more |= MSG_SENDPAGE_NOTLAST;
 
 
 
 
 
 360
 361	return file->f_op->sendpage(file, buf->page, buf->offset,
 362				    sd->len, &pos, more);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 363}
 
 364
 365static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
 366{
 367	smp_mb();
 368	if (waitqueue_active(&pipe->wr_wait))
 369		wake_up_interruptible(&pipe->wr_wait);
 370	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 371}
 372
 373/**
 374 * splice_from_pipe_feed - feed available data from a pipe to a file
 375 * @pipe:	pipe to splice from
 376 * @sd:		information to @actor
 377 * @actor:	handler that splices the data
 378 *
 379 * Description:
 380 *    This function loops over the pipe and calls @actor to do the
 381 *    actual moving of a single struct pipe_buffer to the desired
 382 *    destination.  It returns when there's no more buffers left in
 383 *    the pipe or if the requested number of bytes (@sd->total_len)
 384 *    have been copied.  It returns a positive number (one) if the
 385 *    pipe needs to be filled with more data, zero if the required
 386 *    number of bytes have been copied and -errno on error.
 387 *
 388 *    This, together with splice_from_pipe_{begin,end,next}, may be
 389 *    used to implement the functionality of __splice_from_pipe() when
 390 *    locking is required around copying the pipe buffers to the
 391 *    destination.
 392 */
 393static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
 394			  splice_actor *actor)
 395{
 396	unsigned int head = pipe->head;
 397	unsigned int tail = pipe->tail;
 398	unsigned int mask = pipe->ring_size - 1;
 399	int ret;
 400
 401	while (!pipe_empty(head, tail)) {
 402		struct pipe_buffer *buf = &pipe->bufs[tail & mask];
 
 403
 404		sd->len = buf->len;
 405		if (sd->len > sd->total_len)
 406			sd->len = sd->total_len;
 407
 408		ret = pipe_buf_confirm(pipe, buf);
 409		if (unlikely(ret)) {
 410			if (ret == -ENODATA)
 411				ret = 0;
 412			return ret;
 413		}
 414
 415		ret = actor(pipe, buf, sd);
 416		if (ret <= 0)
 417			return ret;
 418
 419		buf->offset += ret;
 420		buf->len -= ret;
 421
 422		sd->num_spliced += ret;
 423		sd->len -= ret;
 424		sd->pos += ret;
 425		sd->total_len -= ret;
 426
 427		if (!buf->len) {
 428			pipe_buf_release(pipe, buf);
 429			tail++;
 430			pipe->tail = tail;
 431			if (pipe->files)
 
 432				sd->need_wakeup = true;
 433		}
 434
 435		if (!sd->total_len)
 436			return 0;
 437	}
 438
 439	return 1;
 440}
 441
 442/* We know we have a pipe buffer, but maybe it's empty? */
 443static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
 444{
 445	unsigned int tail = pipe->tail;
 446	unsigned int mask = pipe->ring_size - 1;
 447	struct pipe_buffer *buf = &pipe->bufs[tail & mask];
 448
 449	if (unlikely(!buf->len)) {
 450		pipe_buf_release(pipe, buf);
 451		pipe->tail = tail+1;
 452		return true;
 453	}
 454
 455	return false;
 456}
 457
 458/**
 459 * splice_from_pipe_next - wait for some data to splice from
 460 * @pipe:	pipe to splice from
 461 * @sd:		information about the splice operation
 462 *
 463 * Description:
 464 *    This function will wait for some data and return a positive
 465 *    value (one) if pipe buffers are available.  It will return zero
 466 *    or -errno if no more data needs to be spliced.
 467 */
 468static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
 469{
 470	/*
 471	 * Check for signal early to make process killable when there are
 472	 * always buffers available
 473	 */
 474	if (signal_pending(current))
 475		return -ERESTARTSYS;
 476
 477repeat:
 478	while (pipe_empty(pipe->head, pipe->tail)) {
 479		if (!pipe->writers)
 480			return 0;
 481
 482		if (sd->num_spliced)
 483			return 0;
 484
 485		if (sd->flags & SPLICE_F_NONBLOCK)
 486			return -EAGAIN;
 487
 488		if (signal_pending(current))
 489			return -ERESTARTSYS;
 490
 491		if (sd->need_wakeup) {
 492			wakeup_pipe_writers(pipe);
 493			sd->need_wakeup = false;
 494		}
 495
 496		pipe_wait_readable(pipe);
 497	}
 498
 499	if (eat_empty_buffer(pipe))
 500		goto repeat;
 501
 502	return 1;
 503}
 
 504
 505/**
 506 * splice_from_pipe_begin - start splicing from pipe
 507 * @sd:		information about the splice operation
 508 *
 509 * Description:
 510 *    This function should be called before a loop containing
 511 *    splice_from_pipe_next() and splice_from_pipe_feed() to
 512 *    initialize the necessary fields of @sd.
 513 */
 514static void splice_from_pipe_begin(struct splice_desc *sd)
 515{
 516	sd->num_spliced = 0;
 517	sd->need_wakeup = false;
 518}
 
 519
 520/**
 521 * splice_from_pipe_end - finish splicing from pipe
 522 * @pipe:	pipe to splice from
 523 * @sd:		information about the splice operation
 524 *
 525 * Description:
 526 *    This function will wake up pipe writers if necessary.  It should
 527 *    be called after a loop containing splice_from_pipe_next() and
 528 *    splice_from_pipe_feed().
 529 */
 530static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
 531{
 532	if (sd->need_wakeup)
 533		wakeup_pipe_writers(pipe);
 534}
 
 535
 536/**
 537 * __splice_from_pipe - splice data from a pipe to given actor
 538 * @pipe:	pipe to splice from
 539 * @sd:		information to @actor
 540 * @actor:	handler that splices the data
 541 *
 542 * Description:
 543 *    This function does little more than loop over the pipe and call
 544 *    @actor to do the actual moving of a single struct pipe_buffer to
 545 *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
 546 *    pipe_to_user.
 547 *
 548 */
 549ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
 550			   splice_actor *actor)
 551{
 552	int ret;
 553
 554	splice_from_pipe_begin(sd);
 555	do {
 556		cond_resched();
 557		ret = splice_from_pipe_next(pipe, sd);
 558		if (ret > 0)
 559			ret = splice_from_pipe_feed(pipe, sd, actor);
 560	} while (ret > 0);
 561	splice_from_pipe_end(pipe, sd);
 562
 563	return sd->num_spliced ? sd->num_spliced : ret;
 564}
 565EXPORT_SYMBOL(__splice_from_pipe);
 566
 567/**
 568 * splice_from_pipe - splice data from a pipe to a file
 569 * @pipe:	pipe to splice from
 570 * @out:	file to splice to
 571 * @ppos:	position in @out
 572 * @len:	how many bytes to splice
 573 * @flags:	splice modifier flags
 574 * @actor:	handler that splices the data
 575 *
 576 * Description:
 577 *    See __splice_from_pipe. This function locks the pipe inode,
 578 *    otherwise it's identical to __splice_from_pipe().
 579 *
 580 */
 581ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
 582			 loff_t *ppos, size_t len, unsigned int flags,
 583			 splice_actor *actor)
 584{
 585	ssize_t ret;
 586	struct splice_desc sd = {
 587		.total_len = len,
 588		.flags = flags,
 589		.pos = *ppos,
 590		.u.file = out,
 591	};
 592
 593	pipe_lock(pipe);
 594	ret = __splice_from_pipe(pipe, &sd, actor);
 595	pipe_unlock(pipe);
 596
 597	return ret;
 598}
 599
 600/**
 601 * iter_file_splice_write - splice data from a pipe to a file
 602 * @pipe:	pipe info
 603 * @out:	file to write to
 604 * @ppos:	position in @out
 605 * @len:	number of bytes to splice
 606 * @flags:	splice modifier flags
 607 *
 608 * Description:
 609 *    Will either move or copy pages (determined by @flags options) from
 610 *    the given pipe inode to the given file.
 611 *    This one is ->write_iter-based.
 612 *
 613 */
 614ssize_t
 615iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
 616			  loff_t *ppos, size_t len, unsigned int flags)
 617{
 
 
 618	struct splice_desc sd = {
 619		.total_len = len,
 620		.flags = flags,
 621		.pos = *ppos,
 622		.u.file = out,
 623	};
 624	int nbufs = pipe->max_usage;
 625	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
 626					GFP_KERNEL);
 627	ssize_t ret;
 628
 629	if (unlikely(!array))
 630		return -ENOMEM;
 631
 632	pipe_lock(pipe);
 633
 634	splice_from_pipe_begin(&sd);
 635	while (sd.total_len) {
 636		struct iov_iter from;
 637		unsigned int head, tail, mask;
 638		size_t left;
 639		int n;
 640
 641		ret = splice_from_pipe_next(pipe, &sd);
 642		if (ret <= 0)
 643			break;
 644
 645		if (unlikely(nbufs < pipe->max_usage)) {
 646			kfree(array);
 647			nbufs = pipe->max_usage;
 648			array = kcalloc(nbufs, sizeof(struct bio_vec),
 649					GFP_KERNEL);
 650			if (!array) {
 651				ret = -ENOMEM;
 652				break;
 653			}
 654		}
 
 
 
 655
 656		head = pipe->head;
 657		tail = pipe->tail;
 658		mask = pipe->ring_size - 1;
 659
 660		/* build the vector */
 661		left = sd.total_len;
 662		for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
 663			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
 664			size_t this_len = buf->len;
 665
 666			/* zero-length bvecs are not supported, skip them */
 667			if (!this_len)
 668				continue;
 669			this_len = min(this_len, left);
 670
 671			ret = pipe_buf_confirm(pipe, buf);
 672			if (unlikely(ret)) {
 673				if (ret == -ENODATA)
 674					ret = 0;
 675				goto done;
 676			}
 677
 678			array[n].bv_page = buf->page;
 679			array[n].bv_len = this_len;
 680			array[n].bv_offset = buf->offset;
 681			left -= this_len;
 682			n++;
 683		}
 684
 685		iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
 686		ret = vfs_iter_write(out, &from, &sd.pos, 0);
 687		if (ret <= 0)
 688			break;
 
 
 
 689
 690		sd.num_spliced += ret;
 691		sd.total_len -= ret;
 692		*ppos = sd.pos;
 693
 694		/* dismiss the fully eaten buffers, adjust the partial one */
 695		tail = pipe->tail;
 696		while (ret) {
 697			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
 698			if (ret >= buf->len) {
 699				ret -= buf->len;
 700				buf->len = 0;
 701				pipe_buf_release(pipe, buf);
 702				tail++;
 703				pipe->tail = tail;
 704				if (pipe->files)
 705					sd.need_wakeup = true;
 706			} else {
 707				buf->offset += ret;
 708				buf->len -= ret;
 709				ret = 0;
 710			}
 711		}
 712	}
 713done:
 714	kfree(array);
 715	splice_from_pipe_end(pipe, &sd);
 716
 717	pipe_unlock(pipe);
 
 
 
 
 718
 719	if (sd.num_spliced)
 720		ret = sd.num_spliced;
 
 721
 722	return ret;
 723}
 724
 725EXPORT_SYMBOL(iter_file_splice_write);
 
 
 
 
 
 
 
 
 
 
 
 726
 727/**
 728 * generic_splice_sendpage - splice data from a pipe to a socket
 729 * @pipe:	pipe to splice from
 730 * @out:	socket to write to
 731 * @ppos:	position in @out
 732 * @len:	number of bytes to splice
 733 * @flags:	splice modifier flags
 734 *
 735 * Description:
 736 *    Will send @len bytes from the pipe to a network socket. No data copying
 737 *    is involved.
 738 *
 739 */
 740ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
 741				loff_t *ppos, size_t len, unsigned int flags)
 742{
 743	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
 744}
 745
 746EXPORT_SYMBOL(generic_splice_sendpage);
 747
 748static int warn_unsupported(struct file *file, const char *op)
 749{
 750	pr_debug_ratelimited(
 751		"splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
 752		op, file, current->pid, current->comm);
 753	return -EINVAL;
 754}
 755
 756/*
 757 * Attempt to initiate a splice from pipe to file.
 758 */
 759static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
 760			   loff_t *ppos, size_t len, unsigned int flags)
 761{
 762	if (unlikely(!out->f_op->splice_write))
 763		return warn_unsupported(out, "write");
 764	return out->f_op->splice_write(pipe, out, ppos, len, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765}
 766
 767/*
 768 * Attempt to initiate a splice from a file to a pipe.
 769 */
 770static long do_splice_to(struct file *in, loff_t *ppos,
 771			 struct pipe_inode_info *pipe, size_t len,
 772			 unsigned int flags)
 773{
 774	unsigned int p_space;
 
 775	int ret;
 776
 777	if (unlikely(!(in->f_mode & FMODE_READ)))
 778		return -EBADF;
 779
 780	/* Don't try to read more the pipe has space for. */
 781	p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
 782	len = min_t(size_t, len, p_space << PAGE_SHIFT);
 783
 784	ret = rw_verify_area(READ, in, ppos, len);
 785	if (unlikely(ret < 0))
 786		return ret;
 787
 788	if (unlikely(len > MAX_RW_COUNT))
 789		len = MAX_RW_COUNT;
 
 
 790
 791	if (unlikely(!in->f_op->splice_read))
 792		return warn_unsupported(in, "read");
 793	return in->f_op->splice_read(in, ppos, pipe, len, flags);
 794}
 795
 796/**
 797 * splice_direct_to_actor - splices data directly between two non-pipes
 798 * @in:		file to splice from
 799 * @sd:		actor information on where to splice to
 800 * @actor:	handles the data splicing
 801 *
 802 * Description:
 803 *    This is a special case helper to splice directly between two
 804 *    points, without requiring an explicit pipe. Internally an allocated
 805 *    pipe is cached in the process, and reused during the lifetime of
 806 *    that process.
 807 *
 808 */
 809ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
 810			       splice_direct_actor *actor)
 811{
 812	struct pipe_inode_info *pipe;
 813	long ret, bytes;
 
 814	size_t len;
 815	int i, flags, more;
 816
 817	/*
 818	 * We require the input to be seekable, as we don't want to randomly
 819	 * drop data for eg socket -> socket splicing. Use the piped splicing
 820	 * for that!
 821	 */
 822	if (unlikely(!(in->f_mode & FMODE_LSEEK)))
 
 823		return -EINVAL;
 824
 825	/*
 826	 * neither in nor out is a pipe, setup an internal pipe attached to
 827	 * 'out' and transfer the wanted data from 'in' to 'out' through that
 828	 */
 829	pipe = current->splice_pipe;
 830	if (unlikely(!pipe)) {
 831		pipe = alloc_pipe_info();
 832		if (!pipe)
 833			return -ENOMEM;
 834
 835		/*
 836		 * We don't have an immediate reader, but we'll read the stuff
 837		 * out of the pipe right after the splice_to_pipe(). So set
 838		 * PIPE_READERS appropriately.
 839		 */
 840		pipe->readers = 1;
 841
 842		current->splice_pipe = pipe;
 843	}
 844
 845	/*
 846	 * Do the splice.
 847	 */
 848	ret = 0;
 849	bytes = 0;
 850	len = sd->total_len;
 851	flags = sd->flags;
 852
 853	/*
 854	 * Don't block on output, we have to drain the direct pipe.
 855	 */
 856	sd->flags &= ~SPLICE_F_NONBLOCK;
 857	more = sd->flags & SPLICE_F_MORE;
 858
 859	WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
 860
 861	while (len) {
 862		size_t read_len;
 863		loff_t pos = sd->pos, prev_pos = pos;
 864
 865		ret = do_splice_to(in, &pos, pipe, len, flags);
 866		if (unlikely(ret <= 0))
 867			goto out_release;
 868
 869		read_len = ret;
 870		sd->total_len = read_len;
 871
 872		/*
 873		 * If more data is pending, set SPLICE_F_MORE
 874		 * If this is the last data and SPLICE_F_MORE was not set
 875		 * initially, clears it.
 876		 */
 877		if (read_len < len)
 878			sd->flags |= SPLICE_F_MORE;
 879		else if (!more)
 880			sd->flags &= ~SPLICE_F_MORE;
 881		/*
 882		 * NOTE: nonblocking mode only applies to the input. We
 883		 * must not do the output in nonblocking mode as then we
 884		 * could get stuck data in the internal pipe:
 885		 */
 886		ret = actor(pipe, sd);
 887		if (unlikely(ret <= 0)) {
 888			sd->pos = prev_pos;
 889			goto out_release;
 890		}
 891
 892		bytes += ret;
 893		len -= ret;
 894		sd->pos = pos;
 895
 896		if (ret < read_len) {
 897			sd->pos = prev_pos + ret;
 898			goto out_release;
 899		}
 900	}
 901
 902done:
 903	pipe->tail = pipe->head = 0;
 904	file_accessed(in);
 905	return bytes;
 906
 907out_release:
 908	/*
 909	 * If we did an incomplete transfer we must release
 910	 * the pipe buffers in question:
 911	 */
 912	for (i = 0; i < pipe->ring_size; i++) {
 913		struct pipe_buffer *buf = &pipe->bufs[i];
 914
 915		if (buf->ops)
 916			pipe_buf_release(pipe, buf);
 
 
 917	}
 918
 919	if (!bytes)
 920		bytes = ret;
 921
 922	goto done;
 923}
 924EXPORT_SYMBOL(splice_direct_to_actor);
 925
 926static int direct_splice_actor(struct pipe_inode_info *pipe,
 927			       struct splice_desc *sd)
 928{
 929	struct file *file = sd->u.file;
 930
 931	return do_splice_from(pipe, file, sd->opos, sd->total_len,
 932			      sd->flags);
 933}
 934
 935/**
 936 * do_splice_direct - splices data directly between two files
 937 * @in:		file to splice from
 938 * @ppos:	input file offset
 939 * @out:	file to splice to
 940 * @opos:	output file offset
 941 * @len:	number of bytes to splice
 942 * @flags:	splice modifier flags
 943 *
 944 * Description:
 945 *    For use by do_sendfile(). splice can easily emulate sendfile, but
 946 *    doing it in the application would incur an extra system call
 947 *    (splice in + splice out, as compared to just sendfile()). So this helper
 948 *    can splice directly through a process-private pipe.
 949 *
 950 */
 951long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
 952		      loff_t *opos, size_t len, unsigned int flags)
 953{
 954	struct splice_desc sd = {
 955		.len		= len,
 956		.total_len	= len,
 957		.flags		= flags,
 958		.pos		= *ppos,
 959		.u.file		= out,
 960		.opos		= opos,
 961	};
 962	long ret;
 963
 964	if (unlikely(!(out->f_mode & FMODE_WRITE)))
 965		return -EBADF;
 966
 967	if (unlikely(out->f_flags & O_APPEND))
 968		return -EINVAL;
 969
 970	ret = rw_verify_area(WRITE, out, opos, len);
 971	if (unlikely(ret < 0))
 972		return ret;
 973
 974	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
 975	if (ret > 0)
 976		*ppos = sd.pos;
 977
 978	return ret;
 979}
 980EXPORT_SYMBOL(do_splice_direct);
 981
 982static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
 983{
 984	for (;;) {
 985		if (unlikely(!pipe->readers)) {
 986			send_sig(SIGPIPE, current, 0);
 987			return -EPIPE;
 988		}
 989		if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
 990			return 0;
 991		if (flags & SPLICE_F_NONBLOCK)
 992			return -EAGAIN;
 993		if (signal_pending(current))
 994			return -ERESTARTSYS;
 995		pipe_wait_writable(pipe);
 996	}
 997}
 998
 999static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1000			       struct pipe_inode_info *opipe,
1001			       size_t len, unsigned int flags);
1002
1003long splice_file_to_pipe(struct file *in,
1004			 struct pipe_inode_info *opipe,
1005			 loff_t *offset,
1006			 size_t len, unsigned int flags)
1007{
1008	long ret;
1009
1010	pipe_lock(opipe);
1011	ret = wait_for_space(opipe, flags);
1012	if (!ret)
1013		ret = do_splice_to(in, offset, opipe, len, flags);
1014	pipe_unlock(opipe);
1015	if (ret > 0)
1016		wakeup_pipe_readers(opipe);
1017	return ret;
1018}
1019
1020/*
1021 * Determine where to splice to/from.
1022 */
1023long do_splice(struct file *in, loff_t *off_in, struct file *out,
1024	       loff_t *off_out, size_t len, unsigned int flags)
 
1025{
1026	struct pipe_inode_info *ipipe;
1027	struct pipe_inode_info *opipe;
1028	loff_t offset;
1029	long ret;
1030
1031	if (unlikely(!(in->f_mode & FMODE_READ) ||
1032		     !(out->f_mode & FMODE_WRITE)))
1033		return -EBADF;
1034
1035	ipipe = get_pipe_info(in, true);
1036	opipe = get_pipe_info(out, true);
1037
1038	if (ipipe && opipe) {
1039		if (off_in || off_out)
1040			return -ESPIPE;
1041
 
 
 
 
 
 
1042		/* Splicing to self would be fun, but... */
1043		if (ipipe == opipe)
1044			return -EINVAL;
1045
1046		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1047			flags |= SPLICE_F_NONBLOCK;
1048
1049		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1050	}
1051
1052	if (ipipe) {
1053		if (off_in)
1054			return -ESPIPE;
1055		if (off_out) {
1056			if (!(out->f_mode & FMODE_PWRITE))
1057				return -EINVAL;
1058			offset = *off_out;
1059		} else {
1060			offset = out->f_pos;
1061		}
1062
1063		if (unlikely(out->f_flags & O_APPEND))
1064			return -EINVAL;
1065
1066		ret = rw_verify_area(WRITE, out, &offset, len);
1067		if (unlikely(ret < 0))
1068			return ret;
1069
1070		if (in->f_flags & O_NONBLOCK)
1071			flags |= SPLICE_F_NONBLOCK;
1072
1073		file_start_write(out);
1074		ret = do_splice_from(ipipe, out, &offset, len, flags);
1075		file_end_write(out);
1076
1077		if (!off_out)
1078			out->f_pos = offset;
1079		else
1080			*off_out = offset;
1081
1082		return ret;
1083	}
1084
1085	if (opipe) {
1086		if (off_out)
1087			return -ESPIPE;
1088		if (off_in) {
1089			if (!(in->f_mode & FMODE_PREAD))
1090				return -EINVAL;
1091			offset = *off_in;
1092		} else {
1093			offset = in->f_pos;
1094		}
 
1095
1096		if (out->f_flags & O_NONBLOCK)
1097			flags |= SPLICE_F_NONBLOCK;
1098
1099		ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1100		if (!off_in)
1101			in->f_pos = offset;
1102		else
1103			*off_in = offset;
1104
1105		return ret;
1106	}
1107
1108	return -EINVAL;
1109}
1110
1111static long __do_splice(struct file *in, loff_t __user *off_in,
1112			struct file *out, loff_t __user *off_out,
1113			size_t len, unsigned int flags)
1114{
1115	struct pipe_inode_info *ipipe;
1116	struct pipe_inode_info *opipe;
1117	loff_t offset, *__off_in = NULL, *__off_out = NULL;
1118	long ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1119
1120	ipipe = get_pipe_info(in, true);
1121	opipe = get_pipe_info(out, true);
1122
1123	if (ipipe && off_in)
1124		return -ESPIPE;
1125	if (opipe && off_out)
1126		return -ESPIPE;
1127
1128	if (off_out) {
1129		if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1130			return -EFAULT;
1131		__off_out = &offset;
1132	}
1133	if (off_in) {
1134		if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1135			return -EFAULT;
1136		__off_in = &offset;
1137	}
1138
1139	ret = do_splice(in, __off_in, out, __off_out, len, flags);
1140	if (ret < 0)
1141		return ret;
 
 
1142
1143	if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1144		return -EFAULT;
1145	if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1146		return -EFAULT;
 
 
 
1147
1148	return ret;
1149}
 
1150
1151static int iter_to_pipe(struct iov_iter *from,
1152			struct pipe_inode_info *pipe,
1153			unsigned flags)
1154{
1155	struct pipe_buffer buf = {
1156		.ops = &user_page_pipe_buf_ops,
1157		.flags = flags
1158	};
1159	size_t total = 0;
1160	int ret = 0;
1161
1162	while (iov_iter_count(from)) {
1163		struct page *pages[16];
1164		ssize_t left;
1165		size_t start;
1166		int i, n;
1167
1168		left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1169		if (left <= 0) {
1170			ret = left;
1171			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
1172		}
1173
1174		n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1175		for (i = 0; i < n; i++) {
1176			int size = min_t(int, left, PAGE_SIZE - start);
1177
1178			buf.page = pages[i];
1179			buf.offset = start;
1180			buf.len = size;
1181			ret = add_to_pipe(pipe, &buf);
1182			if (unlikely(ret < 0)) {
1183				iov_iter_revert(from, left);
1184				// this one got dropped by add_to_pipe()
1185				while (++i < n)
1186					put_page(pages[i]);
1187				goto out;
1188			}
1189			total += ret;
1190			left -= size;
1191			start = 0;
1192		}
1193	}
1194out:
1195	return total ? total : ret;
 
 
 
1196}
1197
1198static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1199			struct splice_desc *sd)
1200{
1201	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1202	return n == sd->len ? n : -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203}
1204
1205/*
1206 * For lack of a better implementation, implement vmsplice() to userspace
1207 * as a simple copy of the pipes pages to the user iov.
1208 */
1209static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1210			     unsigned int flags)
1211{
1212	struct pipe_inode_info *pipe = get_pipe_info(file, true);
1213	struct splice_desc sd = {
1214		.total_len = iov_iter_count(iter),
1215		.flags = flags,
1216		.u.data = iter
1217	};
1218	long ret = 0;
1219
 
1220	if (!pipe)
1221		return -EBADF;
1222
1223	if (sd.total_len) {
1224		pipe_lock(pipe);
1225		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1226		pipe_unlock(pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227	}
1228
 
 
 
 
 
1229	return ret;
1230}
1231
1232/*
1233 * vmsplice splices a user address range into a pipe. It can be thought of
1234 * as splice-from-memory, where the regular splice is splice-from-file (or
1235 * to file). In both cases the output is a pipe, naturally.
1236 */
1237static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1238			     unsigned int flags)
1239{
1240	struct pipe_inode_info *pipe;
1241	long ret = 0;
1242	unsigned buf_flag = 0;
1243
1244	if (flags & SPLICE_F_GIFT)
1245		buf_flag = PIPE_BUF_FLAG_GIFT;
 
 
 
 
 
1246
1247	pipe = get_pipe_info(file, true);
1248	if (!pipe)
1249		return -EBADF;
1250
1251	pipe_lock(pipe);
1252	ret = wait_for_space(pipe, flags);
1253	if (!ret)
1254		ret = iter_to_pipe(iter, pipe, buf_flag);
1255	pipe_unlock(pipe);
1256	if (ret > 0)
1257		wakeup_pipe_readers(pipe);
 
 
 
 
 
1258	return ret;
1259}
1260
1261static int vmsplice_type(struct fd f, int *type)
1262{
1263	if (!f.file)
1264		return -EBADF;
1265	if (f.file->f_mode & FMODE_WRITE) {
1266		*type = ITER_SOURCE;
1267	} else if (f.file->f_mode & FMODE_READ) {
1268		*type = ITER_DEST;
1269	} else {
1270		fdput(f);
1271		return -EBADF;
1272	}
1273	return 0;
1274}
1275
1276/*
1277 * Note that vmsplice only really supports true splicing _from_ user memory
1278 * to a pipe, not the other way around. Splicing from user memory is a simple
1279 * operation that can be supported without any funky alignment restrictions
1280 * or nasty vm tricks. We simply map in the user memory and fill them into
1281 * a pipe. The reverse isn't quite as easy, though. There are two possible
1282 * solutions for that:
1283 *
1284 *	- memcpy() the data internally, at which point we might as well just
1285 *	  do a regular read() on the buffer anyway.
1286 *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1287 *	  has restriction limitations on both ends of the pipe).
1288 *
1289 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1290 *
1291 */
1292SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1293		unsigned long, nr_segs, unsigned int, flags)
1294{
1295	struct iovec iovstack[UIO_FASTIOV];
1296	struct iovec *iov = iovstack;
1297	struct iov_iter iter;
1298	ssize_t error;
1299	struct fd f;
1300	int type;
1301
1302	if (unlikely(flags & ~SPLICE_F_ALL))
1303		return -EINVAL;
 
 
1304
1305	f = fdget(fd);
1306	error = vmsplice_type(f, &type);
1307	if (error)
1308		return error;
1309
1310	error = import_iovec(type, uiov, nr_segs,
1311			     ARRAY_SIZE(iovstack), &iov, &iter);
1312	if (error < 0)
1313		goto out_fdput;
1314
1315	if (!iov_iter_count(&iter))
1316		error = 0;
1317	else if (type == ITER_SOURCE)
1318		error = vmsplice_to_pipe(f.file, &iter, flags);
1319	else
1320		error = vmsplice_to_user(f.file, &iter, flags);
1321
1322	kfree(iov);
1323out_fdput:
1324	fdput(f);
1325	return error;
1326}
1327
1328SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1329		int, fd_out, loff_t __user *, off_out,
1330		size_t, len, unsigned int, flags)
1331{
1332	struct fd in, out;
1333	long error;
 
 
1334
1335	if (unlikely(!len))
1336		return 0;
1337
1338	if (unlikely(flags & ~SPLICE_F_ALL))
1339		return -EINVAL;
1340
1341	error = -EBADF;
1342	in = fdget(fd_in);
1343	if (in.file) {
1344		out = fdget(fd_out);
1345		if (out.file) {
1346			error = __do_splice(in.file, off_in, out.file, off_out,
1347						len, flags);
1348			fdput(out);
 
 
 
 
1349		}
1350		fdput(in);
 
1351	}
 
1352	return error;
1353}
1354
1355/*
1356 * Make sure there's data to read. Wait for input if we can, otherwise
1357 * return an appropriate error.
1358 */
1359static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1360{
1361	int ret;
1362
1363	/*
1364	 * Check the pipe occupancy without the inode lock first. This function
1365	 * is speculative anyways, so missing one is ok.
1366	 */
1367	if (!pipe_empty(pipe->head, pipe->tail))
1368		return 0;
1369
1370	ret = 0;
1371	pipe_lock(pipe);
1372
1373	while (pipe_empty(pipe->head, pipe->tail)) {
1374		if (signal_pending(current)) {
1375			ret = -ERESTARTSYS;
1376			break;
1377		}
1378		if (!pipe->writers)
1379			break;
1380		if (flags & SPLICE_F_NONBLOCK) {
1381			ret = -EAGAIN;
1382			break;
 
 
1383		}
1384		pipe_wait_readable(pipe);
1385	}
1386
1387	pipe_unlock(pipe);
1388	return ret;
1389}
1390
1391/*
1392 * Make sure there's writeable room. Wait for room if we can, otherwise
1393 * return an appropriate error.
1394 */
1395static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1396{
1397	int ret;
1398
1399	/*
1400	 * Check pipe occupancy without the inode lock first. This function
1401	 * is speculative anyways, so missing one is ok.
1402	 */
1403	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1404		return 0;
1405
1406	ret = 0;
1407	pipe_lock(pipe);
1408
1409	while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1410		if (!pipe->readers) {
1411			send_sig(SIGPIPE, current, 0);
1412			ret = -EPIPE;
1413			break;
1414		}
1415		if (flags & SPLICE_F_NONBLOCK) {
1416			ret = -EAGAIN;
1417			break;
1418		}
1419		if (signal_pending(current)) {
1420			ret = -ERESTARTSYS;
1421			break;
1422		}
1423		pipe_wait_writable(pipe);
 
 
1424	}
1425
1426	pipe_unlock(pipe);
1427	return ret;
1428}
1429
1430/*
1431 * Splice contents of ipipe to opipe.
1432 */
1433static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1434			       struct pipe_inode_info *opipe,
1435			       size_t len, unsigned int flags)
1436{
1437	struct pipe_buffer *ibuf, *obuf;
1438	unsigned int i_head, o_head;
1439	unsigned int i_tail, o_tail;
1440	unsigned int i_mask, o_mask;
1441	int ret = 0;
1442	bool input_wakeup = false;
1443
1444
1445retry:
1446	ret = ipipe_prep(ipipe, flags);
1447	if (ret)
1448		return ret;
1449
1450	ret = opipe_prep(opipe, flags);
1451	if (ret)
1452		return ret;
1453
1454	/*
1455	 * Potential ABBA deadlock, work around it by ordering lock
1456	 * grabbing by pipe info address. Otherwise two different processes
1457	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1458	 */
1459	pipe_double_lock(ipipe, opipe);
1460
1461	i_tail = ipipe->tail;
1462	i_mask = ipipe->ring_size - 1;
1463	o_head = opipe->head;
1464	o_mask = opipe->ring_size - 1;
1465
1466	do {
1467		size_t o_len;
1468
1469		if (!opipe->readers) {
1470			send_sig(SIGPIPE, current, 0);
1471			if (!ret)
1472				ret = -EPIPE;
1473			break;
1474		}
1475
1476		i_head = ipipe->head;
1477		o_tail = opipe->tail;
1478
1479		if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1480			break;
1481
1482		/*
1483		 * Cannot make any progress, because either the input
1484		 * pipe is empty or the output pipe is full.
1485		 */
1486		if (pipe_empty(i_head, i_tail) ||
1487		    pipe_full(o_head, o_tail, opipe->max_usage)) {
1488			/* Already processed some buffers, break */
1489			if (ret)
1490				break;
1491
1492			if (flags & SPLICE_F_NONBLOCK) {
1493				ret = -EAGAIN;
1494				break;
1495			}
1496
1497			/*
1498			 * We raced with another reader/writer and haven't
1499			 * managed to process any buffers.  A zero return
1500			 * value means EOF, so retry instead.
1501			 */
1502			pipe_unlock(ipipe);
1503			pipe_unlock(opipe);
1504			goto retry;
1505		}
1506
1507		ibuf = &ipipe->bufs[i_tail & i_mask];
1508		obuf = &opipe->bufs[o_head & o_mask];
 
1509
1510		if (len >= ibuf->len) {
1511			/*
1512			 * Simply move the whole buffer from ipipe to opipe
1513			 */
1514			*obuf = *ibuf;
1515			ibuf->ops = NULL;
1516			i_tail++;
1517			ipipe->tail = i_tail;
 
1518			input_wakeup = true;
1519			o_len = obuf->len;
1520			o_head++;
1521			opipe->head = o_head;
1522		} else {
1523			/*
1524			 * Get a reference to this pipe buffer,
1525			 * so we can copy the contents over.
1526			 */
1527			if (!pipe_buf_get(ipipe, ibuf)) {
1528				if (ret == 0)
1529					ret = -EFAULT;
1530				break;
1531			}
1532			*obuf = *ibuf;
1533
1534			/*
1535			 * Don't inherit the gift and merge flags, we need to
1536			 * prevent multiple steals of this page.
1537			 */
1538			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1539			obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1540
1541			obuf->len = len;
1542			ibuf->offset += len;
1543			ibuf->len -= len;
1544			o_len = len;
1545			o_head++;
1546			opipe->head = o_head;
1547		}
1548		ret += o_len;
1549		len -= o_len;
1550	} while (len);
1551
1552	pipe_unlock(ipipe);
1553	pipe_unlock(opipe);
1554
1555	/*
1556	 * If we put data in the output pipe, wakeup any potential readers.
1557	 */
1558	if (ret > 0)
1559		wakeup_pipe_readers(opipe);
1560
1561	if (input_wakeup)
1562		wakeup_pipe_writers(ipipe);
1563
1564	return ret;
1565}
1566
1567/*
1568 * Link contents of ipipe to opipe.
1569 */
1570static int link_pipe(struct pipe_inode_info *ipipe,
1571		     struct pipe_inode_info *opipe,
1572		     size_t len, unsigned int flags)
1573{
1574	struct pipe_buffer *ibuf, *obuf;
1575	unsigned int i_head, o_head;
1576	unsigned int i_tail, o_tail;
1577	unsigned int i_mask, o_mask;
1578	int ret = 0;
1579
1580	/*
1581	 * Potential ABBA deadlock, work around it by ordering lock
1582	 * grabbing by pipe info address. Otherwise two different processes
1583	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1584	 */
1585	pipe_double_lock(ipipe, opipe);
1586
1587	i_tail = ipipe->tail;
1588	i_mask = ipipe->ring_size - 1;
1589	o_head = opipe->head;
1590	o_mask = opipe->ring_size - 1;
1591
1592	do {
1593		if (!opipe->readers) {
1594			send_sig(SIGPIPE, current, 0);
1595			if (!ret)
1596				ret = -EPIPE;
1597			break;
1598		}
1599
1600		i_head = ipipe->head;
1601		o_tail = opipe->tail;
1602
1603		/*
1604		 * If we have iterated all input buffers or run out of
1605		 * output room, break.
1606		 */
1607		if (pipe_empty(i_head, i_tail) ||
1608		    pipe_full(o_head, o_tail, opipe->max_usage))
1609			break;
1610
1611		ibuf = &ipipe->bufs[i_tail & i_mask];
1612		obuf = &opipe->bufs[o_head & o_mask];
1613
1614		/*
1615		 * Get a reference to this pipe buffer,
1616		 * so we can copy the contents over.
1617		 */
1618		if (!pipe_buf_get(ipipe, ibuf)) {
1619			if (ret == 0)
1620				ret = -EFAULT;
1621			break;
1622		}
1623
 
1624		*obuf = *ibuf;
1625
1626		/*
1627		 * Don't inherit the gift and merge flag, we need to prevent
1628		 * multiple steals of this page.
1629		 */
1630		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1631		obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1632
1633		if (obuf->len > len)
1634			obuf->len = len;
 
 
1635		ret += obuf->len;
1636		len -= obuf->len;
 
 
1637
1638		o_head++;
1639		opipe->head = o_head;
1640		i_tail++;
1641	} while (len);
 
 
1642
1643	pipe_unlock(ipipe);
1644	pipe_unlock(opipe);
1645
1646	/*
1647	 * If we put data in the output pipe, wakeup any potential readers.
1648	 */
1649	if (ret > 0)
1650		wakeup_pipe_readers(opipe);
1651
1652	return ret;
1653}
1654
1655/*
1656 * This is a tee(1) implementation that works on pipes. It doesn't copy
1657 * any data, it simply references the 'in' pages on the 'out' pipe.
1658 * The 'flags' used are the SPLICE_F_* variants, currently the only
1659 * applicable one is SPLICE_F_NONBLOCK.
1660 */
1661long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
 
1662{
1663	struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1664	struct pipe_inode_info *opipe = get_pipe_info(out, true);
1665	int ret = -EINVAL;
1666
1667	if (unlikely(!(in->f_mode & FMODE_READ) ||
1668		     !(out->f_mode & FMODE_WRITE)))
1669		return -EBADF;
1670
1671	/*
1672	 * Duplicate the contents of ipipe to opipe without actually
1673	 * copying the data.
1674	 */
1675	if (ipipe && opipe && ipipe != opipe) {
1676		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1677			flags |= SPLICE_F_NONBLOCK;
1678
1679		/*
1680		 * Keep going, unless we encounter an error. The ipipe/opipe
1681		 * ordering doesn't really matter.
1682		 */
1683		ret = ipipe_prep(ipipe, flags);
1684		if (!ret) {
1685			ret = opipe_prep(opipe, flags);
1686			if (!ret)
1687				ret = link_pipe(ipipe, opipe, len, flags);
1688		}
1689	}
1690
1691	return ret;
1692}
1693
1694SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1695{
1696	struct fd in, out;
1697	int error;
1698
1699	if (unlikely(flags & ~SPLICE_F_ALL))
1700		return -EINVAL;
1701
1702	if (unlikely(!len))
1703		return 0;
1704
1705	error = -EBADF;
1706	in = fdget(fdin);
1707	if (in.file) {
1708		out = fdget(fdout);
1709		if (out.file) {
1710			error = do_tee(in.file, out.file, len, flags);
1711			fdput(out);
 
 
 
 
 
1712		}
1713 		fdput(in);
1714 	}
1715
1716	return error;
1717}