Loading...
1/*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/pagemap.h>
23#include <linux/splice.h>
24#include <linux/memcontrol.h>
25#include <linux/mm_inline.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28#include <linux/buffer_head.h>
29#include <linux/module.h>
30#include <linux/syscalls.h>
31#include <linux/uio.h>
32#include <linux/security.h>
33#include <linux/gfp.h>
34
35/*
36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
37 * a vm helper function, it's already simplified quite a bit by the
38 * addition of remove_mapping(). If success is returned, the caller may
39 * attempt to reuse this page for another destination.
40 */
41static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 struct pipe_buffer *buf)
43{
44 struct page *page = buf->page;
45 struct address_space *mapping;
46
47 lock_page(page);
48
49 mapping = page_mapping(page);
50 if (mapping) {
51 WARN_ON(!PageUptodate(page));
52
53 /*
54 * At least for ext2 with nobh option, we need to wait on
55 * writeback completing on this page, since we'll remove it
56 * from the pagecache. Otherwise truncate wont wait on the
57 * page, allowing the disk blocks to be reused by someone else
58 * before we actually wrote our data to them. fs corruption
59 * ensues.
60 */
61 wait_on_page_writeback(page);
62
63 if (page_has_private(page) &&
64 !try_to_release_page(page, GFP_KERNEL))
65 goto out_unlock;
66
67 /*
68 * If we succeeded in removing the mapping, set LRU flag
69 * and return good.
70 */
71 if (remove_mapping(mapping, page)) {
72 buf->flags |= PIPE_BUF_FLAG_LRU;
73 return 0;
74 }
75 }
76
77 /*
78 * Raced with truncate or failed to remove page from current
79 * address space, unlock and return failure.
80 */
81out_unlock:
82 unlock_page(page);
83 return 1;
84}
85
86static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 struct pipe_buffer *buf)
88{
89 page_cache_release(buf->page);
90 buf->flags &= ~PIPE_BUF_FLAG_LRU;
91}
92
93/*
94 * Check whether the contents of buf is OK to access. Since the content
95 * is a page cache page, IO may be in flight.
96 */
97static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
99{
100 struct page *page = buf->page;
101 int err;
102
103 if (!PageUptodate(page)) {
104 lock_page(page);
105
106 /*
107 * Page got truncated/unhashed. This will cause a 0-byte
108 * splice, if this is the first page.
109 */
110 if (!page->mapping) {
111 err = -ENODATA;
112 goto error;
113 }
114
115 /*
116 * Uh oh, read-error from disk.
117 */
118 if (!PageUptodate(page)) {
119 err = -EIO;
120 goto error;
121 }
122
123 /*
124 * Page is ok afterall, we are done.
125 */
126 unlock_page(page);
127 }
128
129 return 0;
130error:
131 unlock_page(page);
132 return err;
133}
134
135const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 .can_merge = 0,
137 .map = generic_pipe_buf_map,
138 .unmap = generic_pipe_buf_unmap,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143};
144
145static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147{
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153}
154
155static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .map = generic_pipe_buf_map,
158 .unmap = generic_pipe_buf_unmap,
159 .confirm = generic_pipe_buf_confirm,
160 .release = page_cache_pipe_buf_release,
161 .steal = user_page_pipe_buf_steal,
162 .get = generic_pipe_buf_get,
163};
164
165static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166{
167 smp_mb();
168 if (waitqueue_active(&pipe->wait))
169 wake_up_interruptible(&pipe->wait);
170 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
171}
172
173/**
174 * splice_to_pipe - fill passed data into a pipe
175 * @pipe: pipe to fill
176 * @spd: data to fill
177 *
178 * Description:
179 * @spd contains a map of pages and len/offset tuples, along with
180 * the struct pipe_buf_operations associated with these pages. This
181 * function will link that data to the pipe.
182 *
183 */
184ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
185 struct splice_pipe_desc *spd)
186{
187 unsigned int spd_pages = spd->nr_pages;
188 int ret, do_wakeup, page_nr;
189
190 ret = 0;
191 do_wakeup = 0;
192 page_nr = 0;
193
194 pipe_lock(pipe);
195
196 for (;;) {
197 if (!pipe->readers) {
198 send_sig(SIGPIPE, current, 0);
199 if (!ret)
200 ret = -EPIPE;
201 break;
202 }
203
204 if (pipe->nrbufs < pipe->buffers) {
205 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
206 struct pipe_buffer *buf = pipe->bufs + newbuf;
207
208 buf->page = spd->pages[page_nr];
209 buf->offset = spd->partial[page_nr].offset;
210 buf->len = spd->partial[page_nr].len;
211 buf->private = spd->partial[page_nr].private;
212 buf->ops = spd->ops;
213 if (spd->flags & SPLICE_F_GIFT)
214 buf->flags |= PIPE_BUF_FLAG_GIFT;
215
216 pipe->nrbufs++;
217 page_nr++;
218 ret += buf->len;
219
220 if (pipe->inode)
221 do_wakeup = 1;
222
223 if (!--spd->nr_pages)
224 break;
225 if (pipe->nrbufs < pipe->buffers)
226 continue;
227
228 break;
229 }
230
231 if (spd->flags & SPLICE_F_NONBLOCK) {
232 if (!ret)
233 ret = -EAGAIN;
234 break;
235 }
236
237 if (signal_pending(current)) {
238 if (!ret)
239 ret = -ERESTARTSYS;
240 break;
241 }
242
243 if (do_wakeup) {
244 smp_mb();
245 if (waitqueue_active(&pipe->wait))
246 wake_up_interruptible_sync(&pipe->wait);
247 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
248 do_wakeup = 0;
249 }
250
251 pipe->waiting_writers++;
252 pipe_wait(pipe);
253 pipe->waiting_writers--;
254 }
255
256 pipe_unlock(pipe);
257
258 if (do_wakeup)
259 wakeup_pipe_readers(pipe);
260
261 while (page_nr < spd_pages)
262 spd->spd_release(spd, page_nr++);
263
264 return ret;
265}
266
267void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
268{
269 page_cache_release(spd->pages[i]);
270}
271
272/*
273 * Check if we need to grow the arrays holding pages and partial page
274 * descriptions.
275 */
276int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
277{
278 if (pipe->buffers <= PIPE_DEF_BUFFERS)
279 return 0;
280
281 spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
282 spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
283
284 if (spd->pages && spd->partial)
285 return 0;
286
287 kfree(spd->pages);
288 kfree(spd->partial);
289 return -ENOMEM;
290}
291
292void splice_shrink_spd(struct pipe_inode_info *pipe,
293 struct splice_pipe_desc *spd)
294{
295 if (pipe->buffers <= PIPE_DEF_BUFFERS)
296 return;
297
298 kfree(spd->pages);
299 kfree(spd->partial);
300}
301
302static int
303__generic_file_splice_read(struct file *in, loff_t *ppos,
304 struct pipe_inode_info *pipe, size_t len,
305 unsigned int flags)
306{
307 struct address_space *mapping = in->f_mapping;
308 unsigned int loff, nr_pages, req_pages;
309 struct page *pages[PIPE_DEF_BUFFERS];
310 struct partial_page partial[PIPE_DEF_BUFFERS];
311 struct page *page;
312 pgoff_t index, end_index;
313 loff_t isize;
314 int error, page_nr;
315 struct splice_pipe_desc spd = {
316 .pages = pages,
317 .partial = partial,
318 .flags = flags,
319 .ops = &page_cache_pipe_buf_ops,
320 .spd_release = spd_release_page,
321 };
322
323 if (splice_grow_spd(pipe, &spd))
324 return -ENOMEM;
325
326 index = *ppos >> PAGE_CACHE_SHIFT;
327 loff = *ppos & ~PAGE_CACHE_MASK;
328 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
329 nr_pages = min(req_pages, pipe->buffers);
330
331 /*
332 * Lookup the (hopefully) full range of pages we need.
333 */
334 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
335 index += spd.nr_pages;
336
337 /*
338 * If find_get_pages_contig() returned fewer pages than we needed,
339 * readahead/allocate the rest and fill in the holes.
340 */
341 if (spd.nr_pages < nr_pages)
342 page_cache_sync_readahead(mapping, &in->f_ra, in,
343 index, req_pages - spd.nr_pages);
344
345 error = 0;
346 while (spd.nr_pages < nr_pages) {
347 /*
348 * Page could be there, find_get_pages_contig() breaks on
349 * the first hole.
350 */
351 page = find_get_page(mapping, index);
352 if (!page) {
353 /*
354 * page didn't exist, allocate one.
355 */
356 page = page_cache_alloc_cold(mapping);
357 if (!page)
358 break;
359
360 error = add_to_page_cache_lru(page, mapping, index,
361 GFP_KERNEL);
362 if (unlikely(error)) {
363 page_cache_release(page);
364 if (error == -EEXIST)
365 continue;
366 break;
367 }
368 /*
369 * add_to_page_cache() locks the page, unlock it
370 * to avoid convoluting the logic below even more.
371 */
372 unlock_page(page);
373 }
374
375 spd.pages[spd.nr_pages++] = page;
376 index++;
377 }
378
379 /*
380 * Now loop over the map and see if we need to start IO on any
381 * pages, fill in the partial map, etc.
382 */
383 index = *ppos >> PAGE_CACHE_SHIFT;
384 nr_pages = spd.nr_pages;
385 spd.nr_pages = 0;
386 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
387 unsigned int this_len;
388
389 if (!len)
390 break;
391
392 /*
393 * this_len is the max we'll use from this page
394 */
395 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
396 page = spd.pages[page_nr];
397
398 if (PageReadahead(page))
399 page_cache_async_readahead(mapping, &in->f_ra, in,
400 page, index, req_pages - page_nr);
401
402 /*
403 * If the page isn't uptodate, we may need to start io on it
404 */
405 if (!PageUptodate(page)) {
406 lock_page(page);
407
408 /*
409 * Page was truncated, or invalidated by the
410 * filesystem. Redo the find/create, but this time the
411 * page is kept locked, so there's no chance of another
412 * race with truncate/invalidate.
413 */
414 if (!page->mapping) {
415 unlock_page(page);
416 page = find_or_create_page(mapping, index,
417 mapping_gfp_mask(mapping));
418
419 if (!page) {
420 error = -ENOMEM;
421 break;
422 }
423 page_cache_release(spd.pages[page_nr]);
424 spd.pages[page_nr] = page;
425 }
426 /*
427 * page was already under io and is now done, great
428 */
429 if (PageUptodate(page)) {
430 unlock_page(page);
431 goto fill_it;
432 }
433
434 /*
435 * need to read in the page
436 */
437 error = mapping->a_ops->readpage(in, page);
438 if (unlikely(error)) {
439 /*
440 * We really should re-lookup the page here,
441 * but it complicates things a lot. Instead
442 * lets just do what we already stored, and
443 * we'll get it the next time we are called.
444 */
445 if (error == AOP_TRUNCATED_PAGE)
446 error = 0;
447
448 break;
449 }
450 }
451fill_it:
452 /*
453 * i_size must be checked after PageUptodate.
454 */
455 isize = i_size_read(mapping->host);
456 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
457 if (unlikely(!isize || index > end_index))
458 break;
459
460 /*
461 * if this is the last page, see if we need to shrink
462 * the length and stop
463 */
464 if (end_index == index) {
465 unsigned int plen;
466
467 /*
468 * max good bytes in this page
469 */
470 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
471 if (plen <= loff)
472 break;
473
474 /*
475 * force quit after adding this page
476 */
477 this_len = min(this_len, plen - loff);
478 len = this_len;
479 }
480
481 spd.partial[page_nr].offset = loff;
482 spd.partial[page_nr].len = this_len;
483 len -= this_len;
484 loff = 0;
485 spd.nr_pages++;
486 index++;
487 }
488
489 /*
490 * Release any pages at the end, if we quit early. 'page_nr' is how far
491 * we got, 'nr_pages' is how many pages are in the map.
492 */
493 while (page_nr < nr_pages)
494 page_cache_release(spd.pages[page_nr++]);
495 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
496
497 if (spd.nr_pages)
498 error = splice_to_pipe(pipe, &spd);
499
500 splice_shrink_spd(pipe, &spd);
501 return error;
502}
503
504/**
505 * generic_file_splice_read - splice data from file to a pipe
506 * @in: file to splice from
507 * @ppos: position in @in
508 * @pipe: pipe to splice to
509 * @len: number of bytes to splice
510 * @flags: splice modifier flags
511 *
512 * Description:
513 * Will read pages from given file and fill them into a pipe. Can be
514 * used as long as the address_space operations for the source implements
515 * a readpage() hook.
516 *
517 */
518ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
519 struct pipe_inode_info *pipe, size_t len,
520 unsigned int flags)
521{
522 loff_t isize, left;
523 int ret;
524
525 isize = i_size_read(in->f_mapping->host);
526 if (unlikely(*ppos >= isize))
527 return 0;
528
529 left = isize - *ppos;
530 if (unlikely(left < len))
531 len = left;
532
533 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
534 if (ret > 0) {
535 *ppos += ret;
536 file_accessed(in);
537 }
538
539 return ret;
540}
541EXPORT_SYMBOL(generic_file_splice_read);
542
543static const struct pipe_buf_operations default_pipe_buf_ops = {
544 .can_merge = 0,
545 .map = generic_pipe_buf_map,
546 .unmap = generic_pipe_buf_unmap,
547 .confirm = generic_pipe_buf_confirm,
548 .release = generic_pipe_buf_release,
549 .steal = generic_pipe_buf_steal,
550 .get = generic_pipe_buf_get,
551};
552
553static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
554 unsigned long vlen, loff_t offset)
555{
556 mm_segment_t old_fs;
557 loff_t pos = offset;
558 ssize_t res;
559
560 old_fs = get_fs();
561 set_fs(get_ds());
562 /* The cast to a user pointer is valid due to the set_fs() */
563 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
564 set_fs(old_fs);
565
566 return res;
567}
568
569static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
570 loff_t pos)
571{
572 mm_segment_t old_fs;
573 ssize_t res;
574
575 old_fs = get_fs();
576 set_fs(get_ds());
577 /* The cast to a user pointer is valid due to the set_fs() */
578 res = vfs_write(file, (const char __user *)buf, count, &pos);
579 set_fs(old_fs);
580
581 return res;
582}
583
584ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
585 struct pipe_inode_info *pipe, size_t len,
586 unsigned int flags)
587{
588 unsigned int nr_pages;
589 unsigned int nr_freed;
590 size_t offset;
591 struct page *pages[PIPE_DEF_BUFFERS];
592 struct partial_page partial[PIPE_DEF_BUFFERS];
593 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
594 ssize_t res;
595 size_t this_len;
596 int error;
597 int i;
598 struct splice_pipe_desc spd = {
599 .pages = pages,
600 .partial = partial,
601 .flags = flags,
602 .ops = &default_pipe_buf_ops,
603 .spd_release = spd_release_page,
604 };
605
606 if (splice_grow_spd(pipe, &spd))
607 return -ENOMEM;
608
609 res = -ENOMEM;
610 vec = __vec;
611 if (pipe->buffers > PIPE_DEF_BUFFERS) {
612 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
613 if (!vec)
614 goto shrink_ret;
615 }
616
617 offset = *ppos & ~PAGE_CACHE_MASK;
618 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
619
620 for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
621 struct page *page;
622
623 page = alloc_page(GFP_USER);
624 error = -ENOMEM;
625 if (!page)
626 goto err;
627
628 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
629 vec[i].iov_base = (void __user *) page_address(page);
630 vec[i].iov_len = this_len;
631 spd.pages[i] = page;
632 spd.nr_pages++;
633 len -= this_len;
634 offset = 0;
635 }
636
637 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
638 if (res < 0) {
639 error = res;
640 goto err;
641 }
642
643 error = 0;
644 if (!res)
645 goto err;
646
647 nr_freed = 0;
648 for (i = 0; i < spd.nr_pages; i++) {
649 this_len = min_t(size_t, vec[i].iov_len, res);
650 spd.partial[i].offset = 0;
651 spd.partial[i].len = this_len;
652 if (!this_len) {
653 __free_page(spd.pages[i]);
654 spd.pages[i] = NULL;
655 nr_freed++;
656 }
657 res -= this_len;
658 }
659 spd.nr_pages -= nr_freed;
660
661 res = splice_to_pipe(pipe, &spd);
662 if (res > 0)
663 *ppos += res;
664
665shrink_ret:
666 if (vec != __vec)
667 kfree(vec);
668 splice_shrink_spd(pipe, &spd);
669 return res;
670
671err:
672 for (i = 0; i < spd.nr_pages; i++)
673 __free_page(spd.pages[i]);
674
675 res = error;
676 goto shrink_ret;
677}
678EXPORT_SYMBOL(default_file_splice_read);
679
680/*
681 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
682 * using sendpage(). Return the number of bytes sent.
683 */
684static int pipe_to_sendpage(struct pipe_inode_info *pipe,
685 struct pipe_buffer *buf, struct splice_desc *sd)
686{
687 struct file *file = sd->u.file;
688 loff_t pos = sd->pos;
689 int more;
690
691 if (!likely(file->f_op && file->f_op->sendpage))
692 return -EINVAL;
693
694 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
695 return file->f_op->sendpage(file, buf->page, buf->offset,
696 sd->len, &pos, more);
697}
698
699/*
700 * This is a little more tricky than the file -> pipe splicing. There are
701 * basically three cases:
702 *
703 * - Destination page already exists in the address space and there
704 * are users of it. For that case we have no other option that
705 * copying the data. Tough luck.
706 * - Destination page already exists in the address space, but there
707 * are no users of it. Make sure it's uptodate, then drop it. Fall
708 * through to last case.
709 * - Destination page does not exist, we can add the pipe page to
710 * the page cache and avoid the copy.
711 *
712 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
713 * sd->flags), we attempt to migrate pages from the pipe to the output
714 * file address space page cache. This is possible if no one else has
715 * the pipe page referenced outside of the pipe and page cache. If
716 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
717 * a new page in the output file page cache and fill/dirty that.
718 */
719int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
720 struct splice_desc *sd)
721{
722 struct file *file = sd->u.file;
723 struct address_space *mapping = file->f_mapping;
724 unsigned int offset, this_len;
725 struct page *page;
726 void *fsdata;
727 int ret;
728
729 offset = sd->pos & ~PAGE_CACHE_MASK;
730
731 this_len = sd->len;
732 if (this_len + offset > PAGE_CACHE_SIZE)
733 this_len = PAGE_CACHE_SIZE - offset;
734
735 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
736 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
737 if (unlikely(ret))
738 goto out;
739
740 if (buf->page != page) {
741 /*
742 * Careful, ->map() uses KM_USER0!
743 */
744 char *src = buf->ops->map(pipe, buf, 1);
745 char *dst = kmap_atomic(page, KM_USER1);
746
747 memcpy(dst + offset, src + buf->offset, this_len);
748 flush_dcache_page(page);
749 kunmap_atomic(dst, KM_USER1);
750 buf->ops->unmap(pipe, buf, src);
751 }
752 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
753 page, fsdata);
754out:
755 return ret;
756}
757EXPORT_SYMBOL(pipe_to_file);
758
759static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
760{
761 smp_mb();
762 if (waitqueue_active(&pipe->wait))
763 wake_up_interruptible(&pipe->wait);
764 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
765}
766
767/**
768 * splice_from_pipe_feed - feed available data from a pipe to a file
769 * @pipe: pipe to splice from
770 * @sd: information to @actor
771 * @actor: handler that splices the data
772 *
773 * Description:
774 * This function loops over the pipe and calls @actor to do the
775 * actual moving of a single struct pipe_buffer to the desired
776 * destination. It returns when there's no more buffers left in
777 * the pipe or if the requested number of bytes (@sd->total_len)
778 * have been copied. It returns a positive number (one) if the
779 * pipe needs to be filled with more data, zero if the required
780 * number of bytes have been copied and -errno on error.
781 *
782 * This, together with splice_from_pipe_{begin,end,next}, may be
783 * used to implement the functionality of __splice_from_pipe() when
784 * locking is required around copying the pipe buffers to the
785 * destination.
786 */
787int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
788 splice_actor *actor)
789{
790 int ret;
791
792 while (pipe->nrbufs) {
793 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
794 const struct pipe_buf_operations *ops = buf->ops;
795
796 sd->len = buf->len;
797 if (sd->len > sd->total_len)
798 sd->len = sd->total_len;
799
800 ret = buf->ops->confirm(pipe, buf);
801 if (unlikely(ret)) {
802 if (ret == -ENODATA)
803 ret = 0;
804 return ret;
805 }
806
807 ret = actor(pipe, buf, sd);
808 if (ret <= 0)
809 return ret;
810
811 buf->offset += ret;
812 buf->len -= ret;
813
814 sd->num_spliced += ret;
815 sd->len -= ret;
816 sd->pos += ret;
817 sd->total_len -= ret;
818
819 if (!buf->len) {
820 buf->ops = NULL;
821 ops->release(pipe, buf);
822 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
823 pipe->nrbufs--;
824 if (pipe->inode)
825 sd->need_wakeup = true;
826 }
827
828 if (!sd->total_len)
829 return 0;
830 }
831
832 return 1;
833}
834EXPORT_SYMBOL(splice_from_pipe_feed);
835
836/**
837 * splice_from_pipe_next - wait for some data to splice from
838 * @pipe: pipe to splice from
839 * @sd: information about the splice operation
840 *
841 * Description:
842 * This function will wait for some data and return a positive
843 * value (one) if pipe buffers are available. It will return zero
844 * or -errno if no more data needs to be spliced.
845 */
846int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
847{
848 while (!pipe->nrbufs) {
849 if (!pipe->writers)
850 return 0;
851
852 if (!pipe->waiting_writers && sd->num_spliced)
853 return 0;
854
855 if (sd->flags & SPLICE_F_NONBLOCK)
856 return -EAGAIN;
857
858 if (signal_pending(current))
859 return -ERESTARTSYS;
860
861 if (sd->need_wakeup) {
862 wakeup_pipe_writers(pipe);
863 sd->need_wakeup = false;
864 }
865
866 pipe_wait(pipe);
867 }
868
869 return 1;
870}
871EXPORT_SYMBOL(splice_from_pipe_next);
872
873/**
874 * splice_from_pipe_begin - start splicing from pipe
875 * @sd: information about the splice operation
876 *
877 * Description:
878 * This function should be called before a loop containing
879 * splice_from_pipe_next() and splice_from_pipe_feed() to
880 * initialize the necessary fields of @sd.
881 */
882void splice_from_pipe_begin(struct splice_desc *sd)
883{
884 sd->num_spliced = 0;
885 sd->need_wakeup = false;
886}
887EXPORT_SYMBOL(splice_from_pipe_begin);
888
889/**
890 * splice_from_pipe_end - finish splicing from pipe
891 * @pipe: pipe to splice from
892 * @sd: information about the splice operation
893 *
894 * Description:
895 * This function will wake up pipe writers if necessary. It should
896 * be called after a loop containing splice_from_pipe_next() and
897 * splice_from_pipe_feed().
898 */
899void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
900{
901 if (sd->need_wakeup)
902 wakeup_pipe_writers(pipe);
903}
904EXPORT_SYMBOL(splice_from_pipe_end);
905
906/**
907 * __splice_from_pipe - splice data from a pipe to given actor
908 * @pipe: pipe to splice from
909 * @sd: information to @actor
910 * @actor: handler that splices the data
911 *
912 * Description:
913 * This function does little more than loop over the pipe and call
914 * @actor to do the actual moving of a single struct pipe_buffer to
915 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
916 * pipe_to_user.
917 *
918 */
919ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
920 splice_actor *actor)
921{
922 int ret;
923
924 splice_from_pipe_begin(sd);
925 do {
926 ret = splice_from_pipe_next(pipe, sd);
927 if (ret > 0)
928 ret = splice_from_pipe_feed(pipe, sd, actor);
929 } while (ret > 0);
930 splice_from_pipe_end(pipe, sd);
931
932 return sd->num_spliced ? sd->num_spliced : ret;
933}
934EXPORT_SYMBOL(__splice_from_pipe);
935
936/**
937 * splice_from_pipe - splice data from a pipe to a file
938 * @pipe: pipe to splice from
939 * @out: file to splice to
940 * @ppos: position in @out
941 * @len: how many bytes to splice
942 * @flags: splice modifier flags
943 * @actor: handler that splices the data
944 *
945 * Description:
946 * See __splice_from_pipe. This function locks the pipe inode,
947 * otherwise it's identical to __splice_from_pipe().
948 *
949 */
950ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
951 loff_t *ppos, size_t len, unsigned int flags,
952 splice_actor *actor)
953{
954 ssize_t ret;
955 struct splice_desc sd = {
956 .total_len = len,
957 .flags = flags,
958 .pos = *ppos,
959 .u.file = out,
960 };
961
962 pipe_lock(pipe);
963 ret = __splice_from_pipe(pipe, &sd, actor);
964 pipe_unlock(pipe);
965
966 return ret;
967}
968
969/**
970 * generic_file_splice_write - splice data from a pipe to a file
971 * @pipe: pipe info
972 * @out: file to write to
973 * @ppos: position in @out
974 * @len: number of bytes to splice
975 * @flags: splice modifier flags
976 *
977 * Description:
978 * Will either move or copy pages (determined by @flags options) from
979 * the given pipe inode to the given file.
980 *
981 */
982ssize_t
983generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
984 loff_t *ppos, size_t len, unsigned int flags)
985{
986 struct address_space *mapping = out->f_mapping;
987 struct inode *inode = mapping->host;
988 struct splice_desc sd = {
989 .total_len = len,
990 .flags = flags,
991 .pos = *ppos,
992 .u.file = out,
993 };
994 ssize_t ret;
995
996 pipe_lock(pipe);
997
998 splice_from_pipe_begin(&sd);
999 do {
1000 ret = splice_from_pipe_next(pipe, &sd);
1001 if (ret <= 0)
1002 break;
1003
1004 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1005 ret = file_remove_suid(out);
1006 if (!ret) {
1007 file_update_time(out);
1008 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1009 }
1010 mutex_unlock(&inode->i_mutex);
1011 } while (ret > 0);
1012 splice_from_pipe_end(pipe, &sd);
1013
1014 pipe_unlock(pipe);
1015
1016 if (sd.num_spliced)
1017 ret = sd.num_spliced;
1018
1019 if (ret > 0) {
1020 unsigned long nr_pages;
1021 int err;
1022
1023 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1024
1025 err = generic_write_sync(out, *ppos, ret);
1026 if (err)
1027 ret = err;
1028 else
1029 *ppos += ret;
1030 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1031 }
1032
1033 return ret;
1034}
1035
1036EXPORT_SYMBOL(generic_file_splice_write);
1037
1038static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1039 struct splice_desc *sd)
1040{
1041 int ret;
1042 void *data;
1043
1044 data = buf->ops->map(pipe, buf, 0);
1045 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1046 buf->ops->unmap(pipe, buf, data);
1047
1048 return ret;
1049}
1050
1051static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1052 struct file *out, loff_t *ppos,
1053 size_t len, unsigned int flags)
1054{
1055 ssize_t ret;
1056
1057 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1058 if (ret > 0)
1059 *ppos += ret;
1060
1061 return ret;
1062}
1063
1064/**
1065 * generic_splice_sendpage - splice data from a pipe to a socket
1066 * @pipe: pipe to splice from
1067 * @out: socket to write to
1068 * @ppos: position in @out
1069 * @len: number of bytes to splice
1070 * @flags: splice modifier flags
1071 *
1072 * Description:
1073 * Will send @len bytes from the pipe to a network socket. No data copying
1074 * is involved.
1075 *
1076 */
1077ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1078 loff_t *ppos, size_t len, unsigned int flags)
1079{
1080 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1081}
1082
1083EXPORT_SYMBOL(generic_splice_sendpage);
1084
1085/*
1086 * Attempt to initiate a splice from pipe to file.
1087 */
1088static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1089 loff_t *ppos, size_t len, unsigned int flags)
1090{
1091 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1092 loff_t *, size_t, unsigned int);
1093 int ret;
1094
1095 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1096 return -EBADF;
1097
1098 if (unlikely(out->f_flags & O_APPEND))
1099 return -EINVAL;
1100
1101 ret = rw_verify_area(WRITE, out, ppos, len);
1102 if (unlikely(ret < 0))
1103 return ret;
1104
1105 if (out->f_op && out->f_op->splice_write)
1106 splice_write = out->f_op->splice_write;
1107 else
1108 splice_write = default_file_splice_write;
1109
1110 return splice_write(pipe, out, ppos, len, flags);
1111}
1112
1113/*
1114 * Attempt to initiate a splice from a file to a pipe.
1115 */
1116static long do_splice_to(struct file *in, loff_t *ppos,
1117 struct pipe_inode_info *pipe, size_t len,
1118 unsigned int flags)
1119{
1120 ssize_t (*splice_read)(struct file *, loff_t *,
1121 struct pipe_inode_info *, size_t, unsigned int);
1122 int ret;
1123
1124 if (unlikely(!(in->f_mode & FMODE_READ)))
1125 return -EBADF;
1126
1127 ret = rw_verify_area(READ, in, ppos, len);
1128 if (unlikely(ret < 0))
1129 return ret;
1130
1131 if (in->f_op && in->f_op->splice_read)
1132 splice_read = in->f_op->splice_read;
1133 else
1134 splice_read = default_file_splice_read;
1135
1136 return splice_read(in, ppos, pipe, len, flags);
1137}
1138
1139/**
1140 * splice_direct_to_actor - splices data directly between two non-pipes
1141 * @in: file to splice from
1142 * @sd: actor information on where to splice to
1143 * @actor: handles the data splicing
1144 *
1145 * Description:
1146 * This is a special case helper to splice directly between two
1147 * points, without requiring an explicit pipe. Internally an allocated
1148 * pipe is cached in the process, and reused during the lifetime of
1149 * that process.
1150 *
1151 */
1152ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1153 splice_direct_actor *actor)
1154{
1155 struct pipe_inode_info *pipe;
1156 long ret, bytes;
1157 umode_t i_mode;
1158 size_t len;
1159 int i, flags;
1160
1161 /*
1162 * We require the input being a regular file, as we don't want to
1163 * randomly drop data for eg socket -> socket splicing. Use the
1164 * piped splicing for that!
1165 */
1166 i_mode = in->f_path.dentry->d_inode->i_mode;
1167 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1168 return -EINVAL;
1169
1170 /*
1171 * neither in nor out is a pipe, setup an internal pipe attached to
1172 * 'out' and transfer the wanted data from 'in' to 'out' through that
1173 */
1174 pipe = current->splice_pipe;
1175 if (unlikely(!pipe)) {
1176 pipe = alloc_pipe_info(NULL);
1177 if (!pipe)
1178 return -ENOMEM;
1179
1180 /*
1181 * We don't have an immediate reader, but we'll read the stuff
1182 * out of the pipe right after the splice_to_pipe(). So set
1183 * PIPE_READERS appropriately.
1184 */
1185 pipe->readers = 1;
1186
1187 current->splice_pipe = pipe;
1188 }
1189
1190 /*
1191 * Do the splice.
1192 */
1193 ret = 0;
1194 bytes = 0;
1195 len = sd->total_len;
1196 flags = sd->flags;
1197
1198 /*
1199 * Don't block on output, we have to drain the direct pipe.
1200 */
1201 sd->flags &= ~SPLICE_F_NONBLOCK;
1202
1203 while (len) {
1204 size_t read_len;
1205 loff_t pos = sd->pos, prev_pos = pos;
1206
1207 ret = do_splice_to(in, &pos, pipe, len, flags);
1208 if (unlikely(ret <= 0))
1209 goto out_release;
1210
1211 read_len = ret;
1212 sd->total_len = read_len;
1213
1214 /*
1215 * NOTE: nonblocking mode only applies to the input. We
1216 * must not do the output in nonblocking mode as then we
1217 * could get stuck data in the internal pipe:
1218 */
1219 ret = actor(pipe, sd);
1220 if (unlikely(ret <= 0)) {
1221 sd->pos = prev_pos;
1222 goto out_release;
1223 }
1224
1225 bytes += ret;
1226 len -= ret;
1227 sd->pos = pos;
1228
1229 if (ret < read_len) {
1230 sd->pos = prev_pos + ret;
1231 goto out_release;
1232 }
1233 }
1234
1235done:
1236 pipe->nrbufs = pipe->curbuf = 0;
1237 file_accessed(in);
1238 return bytes;
1239
1240out_release:
1241 /*
1242 * If we did an incomplete transfer we must release
1243 * the pipe buffers in question:
1244 */
1245 for (i = 0; i < pipe->buffers; i++) {
1246 struct pipe_buffer *buf = pipe->bufs + i;
1247
1248 if (buf->ops) {
1249 buf->ops->release(pipe, buf);
1250 buf->ops = NULL;
1251 }
1252 }
1253
1254 if (!bytes)
1255 bytes = ret;
1256
1257 goto done;
1258}
1259EXPORT_SYMBOL(splice_direct_to_actor);
1260
1261static int direct_splice_actor(struct pipe_inode_info *pipe,
1262 struct splice_desc *sd)
1263{
1264 struct file *file = sd->u.file;
1265
1266 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1267 sd->flags);
1268}
1269
1270/**
1271 * do_splice_direct - splices data directly between two files
1272 * @in: file to splice from
1273 * @ppos: input file offset
1274 * @out: file to splice to
1275 * @len: number of bytes to splice
1276 * @flags: splice modifier flags
1277 *
1278 * Description:
1279 * For use by do_sendfile(). splice can easily emulate sendfile, but
1280 * doing it in the application would incur an extra system call
1281 * (splice in + splice out, as compared to just sendfile()). So this helper
1282 * can splice directly through a process-private pipe.
1283 *
1284 */
1285long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1286 size_t len, unsigned int flags)
1287{
1288 struct splice_desc sd = {
1289 .len = len,
1290 .total_len = len,
1291 .flags = flags,
1292 .pos = *ppos,
1293 .u.file = out,
1294 };
1295 long ret;
1296
1297 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1298 if (ret > 0)
1299 *ppos = sd.pos;
1300
1301 return ret;
1302}
1303
1304static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1305 struct pipe_inode_info *opipe,
1306 size_t len, unsigned int flags);
1307
1308/*
1309 * Determine where to splice to/from.
1310 */
1311static long do_splice(struct file *in, loff_t __user *off_in,
1312 struct file *out, loff_t __user *off_out,
1313 size_t len, unsigned int flags)
1314{
1315 struct pipe_inode_info *ipipe;
1316 struct pipe_inode_info *opipe;
1317 loff_t offset, *off;
1318 long ret;
1319
1320 ipipe = get_pipe_info(in);
1321 opipe = get_pipe_info(out);
1322
1323 if (ipipe && opipe) {
1324 if (off_in || off_out)
1325 return -ESPIPE;
1326
1327 if (!(in->f_mode & FMODE_READ))
1328 return -EBADF;
1329
1330 if (!(out->f_mode & FMODE_WRITE))
1331 return -EBADF;
1332
1333 /* Splicing to self would be fun, but... */
1334 if (ipipe == opipe)
1335 return -EINVAL;
1336
1337 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1338 }
1339
1340 if (ipipe) {
1341 if (off_in)
1342 return -ESPIPE;
1343 if (off_out) {
1344 if (!(out->f_mode & FMODE_PWRITE))
1345 return -EINVAL;
1346 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1347 return -EFAULT;
1348 off = &offset;
1349 } else
1350 off = &out->f_pos;
1351
1352 ret = do_splice_from(ipipe, out, off, len, flags);
1353
1354 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1355 ret = -EFAULT;
1356
1357 return ret;
1358 }
1359
1360 if (opipe) {
1361 if (off_out)
1362 return -ESPIPE;
1363 if (off_in) {
1364 if (!(in->f_mode & FMODE_PREAD))
1365 return -EINVAL;
1366 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1367 return -EFAULT;
1368 off = &offset;
1369 } else
1370 off = &in->f_pos;
1371
1372 ret = do_splice_to(in, off, opipe, len, flags);
1373
1374 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1375 ret = -EFAULT;
1376
1377 return ret;
1378 }
1379
1380 return -EINVAL;
1381}
1382
1383/*
1384 * Map an iov into an array of pages and offset/length tupples. With the
1385 * partial_page structure, we can map several non-contiguous ranges into
1386 * our ones pages[] map instead of splitting that operation into pieces.
1387 * Could easily be exported as a generic helper for other users, in which
1388 * case one would probably want to add a 'max_nr_pages' parameter as well.
1389 */
1390static int get_iovec_page_array(const struct iovec __user *iov,
1391 unsigned int nr_vecs, struct page **pages,
1392 struct partial_page *partial, int aligned,
1393 unsigned int pipe_buffers)
1394{
1395 int buffers = 0, error = 0;
1396
1397 while (nr_vecs) {
1398 unsigned long off, npages;
1399 struct iovec entry;
1400 void __user *base;
1401 size_t len;
1402 int i;
1403
1404 error = -EFAULT;
1405 if (copy_from_user(&entry, iov, sizeof(entry)))
1406 break;
1407
1408 base = entry.iov_base;
1409 len = entry.iov_len;
1410
1411 /*
1412 * Sanity check this iovec. 0 read succeeds.
1413 */
1414 error = 0;
1415 if (unlikely(!len))
1416 break;
1417 error = -EFAULT;
1418 if (!access_ok(VERIFY_READ, base, len))
1419 break;
1420
1421 /*
1422 * Get this base offset and number of pages, then map
1423 * in the user pages.
1424 */
1425 off = (unsigned long) base & ~PAGE_MASK;
1426
1427 /*
1428 * If asked for alignment, the offset must be zero and the
1429 * length a multiple of the PAGE_SIZE.
1430 */
1431 error = -EINVAL;
1432 if (aligned && (off || len & ~PAGE_MASK))
1433 break;
1434
1435 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1436 if (npages > pipe_buffers - buffers)
1437 npages = pipe_buffers - buffers;
1438
1439 error = get_user_pages_fast((unsigned long)base, npages,
1440 0, &pages[buffers]);
1441
1442 if (unlikely(error <= 0))
1443 break;
1444
1445 /*
1446 * Fill this contiguous range into the partial page map.
1447 */
1448 for (i = 0; i < error; i++) {
1449 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1450
1451 partial[buffers].offset = off;
1452 partial[buffers].len = plen;
1453
1454 off = 0;
1455 len -= plen;
1456 buffers++;
1457 }
1458
1459 /*
1460 * We didn't complete this iov, stop here since it probably
1461 * means we have to move some of this into a pipe to
1462 * be able to continue.
1463 */
1464 if (len)
1465 break;
1466
1467 /*
1468 * Don't continue if we mapped fewer pages than we asked for,
1469 * or if we mapped the max number of pages that we have
1470 * room for.
1471 */
1472 if (error < npages || buffers == pipe_buffers)
1473 break;
1474
1475 nr_vecs--;
1476 iov++;
1477 }
1478
1479 if (buffers)
1480 return buffers;
1481
1482 return error;
1483}
1484
1485static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1486 struct splice_desc *sd)
1487{
1488 char *src;
1489 int ret;
1490
1491 /*
1492 * See if we can use the atomic maps, by prefaulting in the
1493 * pages and doing an atomic copy
1494 */
1495 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1496 src = buf->ops->map(pipe, buf, 1);
1497 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1498 sd->len);
1499 buf->ops->unmap(pipe, buf, src);
1500 if (!ret) {
1501 ret = sd->len;
1502 goto out;
1503 }
1504 }
1505
1506 /*
1507 * No dice, use slow non-atomic map and copy
1508 */
1509 src = buf->ops->map(pipe, buf, 0);
1510
1511 ret = sd->len;
1512 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1513 ret = -EFAULT;
1514
1515 buf->ops->unmap(pipe, buf, src);
1516out:
1517 if (ret > 0)
1518 sd->u.userptr += ret;
1519 return ret;
1520}
1521
1522/*
1523 * For lack of a better implementation, implement vmsplice() to userspace
1524 * as a simple copy of the pipes pages to the user iov.
1525 */
1526static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1527 unsigned long nr_segs, unsigned int flags)
1528{
1529 struct pipe_inode_info *pipe;
1530 struct splice_desc sd;
1531 ssize_t size;
1532 int error;
1533 long ret;
1534
1535 pipe = get_pipe_info(file);
1536 if (!pipe)
1537 return -EBADF;
1538
1539 pipe_lock(pipe);
1540
1541 error = ret = 0;
1542 while (nr_segs) {
1543 void __user *base;
1544 size_t len;
1545
1546 /*
1547 * Get user address base and length for this iovec.
1548 */
1549 error = get_user(base, &iov->iov_base);
1550 if (unlikely(error))
1551 break;
1552 error = get_user(len, &iov->iov_len);
1553 if (unlikely(error))
1554 break;
1555
1556 /*
1557 * Sanity check this iovec. 0 read succeeds.
1558 */
1559 if (unlikely(!len))
1560 break;
1561 if (unlikely(!base)) {
1562 error = -EFAULT;
1563 break;
1564 }
1565
1566 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1567 error = -EFAULT;
1568 break;
1569 }
1570
1571 sd.len = 0;
1572 sd.total_len = len;
1573 sd.flags = flags;
1574 sd.u.userptr = base;
1575 sd.pos = 0;
1576
1577 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1578 if (size < 0) {
1579 if (!ret)
1580 ret = size;
1581
1582 break;
1583 }
1584
1585 ret += size;
1586
1587 if (size < len)
1588 break;
1589
1590 nr_segs--;
1591 iov++;
1592 }
1593
1594 pipe_unlock(pipe);
1595
1596 if (!ret)
1597 ret = error;
1598
1599 return ret;
1600}
1601
1602/*
1603 * vmsplice splices a user address range into a pipe. It can be thought of
1604 * as splice-from-memory, where the regular splice is splice-from-file (or
1605 * to file). In both cases the output is a pipe, naturally.
1606 */
1607static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1608 unsigned long nr_segs, unsigned int flags)
1609{
1610 struct pipe_inode_info *pipe;
1611 struct page *pages[PIPE_DEF_BUFFERS];
1612 struct partial_page partial[PIPE_DEF_BUFFERS];
1613 struct splice_pipe_desc spd = {
1614 .pages = pages,
1615 .partial = partial,
1616 .flags = flags,
1617 .ops = &user_page_pipe_buf_ops,
1618 .spd_release = spd_release_page,
1619 };
1620 long ret;
1621
1622 pipe = get_pipe_info(file);
1623 if (!pipe)
1624 return -EBADF;
1625
1626 if (splice_grow_spd(pipe, &spd))
1627 return -ENOMEM;
1628
1629 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1630 spd.partial, flags & SPLICE_F_GIFT,
1631 pipe->buffers);
1632 if (spd.nr_pages <= 0)
1633 ret = spd.nr_pages;
1634 else
1635 ret = splice_to_pipe(pipe, &spd);
1636
1637 splice_shrink_spd(pipe, &spd);
1638 return ret;
1639}
1640
1641/*
1642 * Note that vmsplice only really supports true splicing _from_ user memory
1643 * to a pipe, not the other way around. Splicing from user memory is a simple
1644 * operation that can be supported without any funky alignment restrictions
1645 * or nasty vm tricks. We simply map in the user memory and fill them into
1646 * a pipe. The reverse isn't quite as easy, though. There are two possible
1647 * solutions for that:
1648 *
1649 * - memcpy() the data internally, at which point we might as well just
1650 * do a regular read() on the buffer anyway.
1651 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1652 * has restriction limitations on both ends of the pipe).
1653 *
1654 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1655 *
1656 */
1657SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1658 unsigned long, nr_segs, unsigned int, flags)
1659{
1660 struct file *file;
1661 long error;
1662 int fput;
1663
1664 if (unlikely(nr_segs > UIO_MAXIOV))
1665 return -EINVAL;
1666 else if (unlikely(!nr_segs))
1667 return 0;
1668
1669 error = -EBADF;
1670 file = fget_light(fd, &fput);
1671 if (file) {
1672 if (file->f_mode & FMODE_WRITE)
1673 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1674 else if (file->f_mode & FMODE_READ)
1675 error = vmsplice_to_user(file, iov, nr_segs, flags);
1676
1677 fput_light(file, fput);
1678 }
1679
1680 return error;
1681}
1682
1683SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1684 int, fd_out, loff_t __user *, off_out,
1685 size_t, len, unsigned int, flags)
1686{
1687 long error;
1688 struct file *in, *out;
1689 int fput_in, fput_out;
1690
1691 if (unlikely(!len))
1692 return 0;
1693
1694 error = -EBADF;
1695 in = fget_light(fd_in, &fput_in);
1696 if (in) {
1697 if (in->f_mode & FMODE_READ) {
1698 out = fget_light(fd_out, &fput_out);
1699 if (out) {
1700 if (out->f_mode & FMODE_WRITE)
1701 error = do_splice(in, off_in,
1702 out, off_out,
1703 len, flags);
1704 fput_light(out, fput_out);
1705 }
1706 }
1707
1708 fput_light(in, fput_in);
1709 }
1710
1711 return error;
1712}
1713
1714/*
1715 * Make sure there's data to read. Wait for input if we can, otherwise
1716 * return an appropriate error.
1717 */
1718static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1719{
1720 int ret;
1721
1722 /*
1723 * Check ->nrbufs without the inode lock first. This function
1724 * is speculative anyways, so missing one is ok.
1725 */
1726 if (pipe->nrbufs)
1727 return 0;
1728
1729 ret = 0;
1730 pipe_lock(pipe);
1731
1732 while (!pipe->nrbufs) {
1733 if (signal_pending(current)) {
1734 ret = -ERESTARTSYS;
1735 break;
1736 }
1737 if (!pipe->writers)
1738 break;
1739 if (!pipe->waiting_writers) {
1740 if (flags & SPLICE_F_NONBLOCK) {
1741 ret = -EAGAIN;
1742 break;
1743 }
1744 }
1745 pipe_wait(pipe);
1746 }
1747
1748 pipe_unlock(pipe);
1749 return ret;
1750}
1751
1752/*
1753 * Make sure there's writeable room. Wait for room if we can, otherwise
1754 * return an appropriate error.
1755 */
1756static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1757{
1758 int ret;
1759
1760 /*
1761 * Check ->nrbufs without the inode lock first. This function
1762 * is speculative anyways, so missing one is ok.
1763 */
1764 if (pipe->nrbufs < pipe->buffers)
1765 return 0;
1766
1767 ret = 0;
1768 pipe_lock(pipe);
1769
1770 while (pipe->nrbufs >= pipe->buffers) {
1771 if (!pipe->readers) {
1772 send_sig(SIGPIPE, current, 0);
1773 ret = -EPIPE;
1774 break;
1775 }
1776 if (flags & SPLICE_F_NONBLOCK) {
1777 ret = -EAGAIN;
1778 break;
1779 }
1780 if (signal_pending(current)) {
1781 ret = -ERESTARTSYS;
1782 break;
1783 }
1784 pipe->waiting_writers++;
1785 pipe_wait(pipe);
1786 pipe->waiting_writers--;
1787 }
1788
1789 pipe_unlock(pipe);
1790 return ret;
1791}
1792
1793/*
1794 * Splice contents of ipipe to opipe.
1795 */
1796static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1797 struct pipe_inode_info *opipe,
1798 size_t len, unsigned int flags)
1799{
1800 struct pipe_buffer *ibuf, *obuf;
1801 int ret = 0, nbuf;
1802 bool input_wakeup = false;
1803
1804
1805retry:
1806 ret = ipipe_prep(ipipe, flags);
1807 if (ret)
1808 return ret;
1809
1810 ret = opipe_prep(opipe, flags);
1811 if (ret)
1812 return ret;
1813
1814 /*
1815 * Potential ABBA deadlock, work around it by ordering lock
1816 * grabbing by pipe info address. Otherwise two different processes
1817 * could deadlock (one doing tee from A -> B, the other from B -> A).
1818 */
1819 pipe_double_lock(ipipe, opipe);
1820
1821 do {
1822 if (!opipe->readers) {
1823 send_sig(SIGPIPE, current, 0);
1824 if (!ret)
1825 ret = -EPIPE;
1826 break;
1827 }
1828
1829 if (!ipipe->nrbufs && !ipipe->writers)
1830 break;
1831
1832 /*
1833 * Cannot make any progress, because either the input
1834 * pipe is empty or the output pipe is full.
1835 */
1836 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1837 /* Already processed some buffers, break */
1838 if (ret)
1839 break;
1840
1841 if (flags & SPLICE_F_NONBLOCK) {
1842 ret = -EAGAIN;
1843 break;
1844 }
1845
1846 /*
1847 * We raced with another reader/writer and haven't
1848 * managed to process any buffers. A zero return
1849 * value means EOF, so retry instead.
1850 */
1851 pipe_unlock(ipipe);
1852 pipe_unlock(opipe);
1853 goto retry;
1854 }
1855
1856 ibuf = ipipe->bufs + ipipe->curbuf;
1857 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1858 obuf = opipe->bufs + nbuf;
1859
1860 if (len >= ibuf->len) {
1861 /*
1862 * Simply move the whole buffer from ipipe to opipe
1863 */
1864 *obuf = *ibuf;
1865 ibuf->ops = NULL;
1866 opipe->nrbufs++;
1867 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1868 ipipe->nrbufs--;
1869 input_wakeup = true;
1870 } else {
1871 /*
1872 * Get a reference to this pipe buffer,
1873 * so we can copy the contents over.
1874 */
1875 ibuf->ops->get(ipipe, ibuf);
1876 *obuf = *ibuf;
1877
1878 /*
1879 * Don't inherit the gift flag, we need to
1880 * prevent multiple steals of this page.
1881 */
1882 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1883
1884 obuf->len = len;
1885 opipe->nrbufs++;
1886 ibuf->offset += obuf->len;
1887 ibuf->len -= obuf->len;
1888 }
1889 ret += obuf->len;
1890 len -= obuf->len;
1891 } while (len);
1892
1893 pipe_unlock(ipipe);
1894 pipe_unlock(opipe);
1895
1896 /*
1897 * If we put data in the output pipe, wakeup any potential readers.
1898 */
1899 if (ret > 0)
1900 wakeup_pipe_readers(opipe);
1901
1902 if (input_wakeup)
1903 wakeup_pipe_writers(ipipe);
1904
1905 return ret;
1906}
1907
1908/*
1909 * Link contents of ipipe to opipe.
1910 */
1911static int link_pipe(struct pipe_inode_info *ipipe,
1912 struct pipe_inode_info *opipe,
1913 size_t len, unsigned int flags)
1914{
1915 struct pipe_buffer *ibuf, *obuf;
1916 int ret = 0, i = 0, nbuf;
1917
1918 /*
1919 * Potential ABBA deadlock, work around it by ordering lock
1920 * grabbing by pipe info address. Otherwise two different processes
1921 * could deadlock (one doing tee from A -> B, the other from B -> A).
1922 */
1923 pipe_double_lock(ipipe, opipe);
1924
1925 do {
1926 if (!opipe->readers) {
1927 send_sig(SIGPIPE, current, 0);
1928 if (!ret)
1929 ret = -EPIPE;
1930 break;
1931 }
1932
1933 /*
1934 * If we have iterated all input buffers or ran out of
1935 * output room, break.
1936 */
1937 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1938 break;
1939
1940 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1941 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1942
1943 /*
1944 * Get a reference to this pipe buffer,
1945 * so we can copy the contents over.
1946 */
1947 ibuf->ops->get(ipipe, ibuf);
1948
1949 obuf = opipe->bufs + nbuf;
1950 *obuf = *ibuf;
1951
1952 /*
1953 * Don't inherit the gift flag, we need to
1954 * prevent multiple steals of this page.
1955 */
1956 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1957
1958 if (obuf->len > len)
1959 obuf->len = len;
1960
1961 opipe->nrbufs++;
1962 ret += obuf->len;
1963 len -= obuf->len;
1964 i++;
1965 } while (len);
1966
1967 /*
1968 * return EAGAIN if we have the potential of some data in the
1969 * future, otherwise just return 0
1970 */
1971 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1972 ret = -EAGAIN;
1973
1974 pipe_unlock(ipipe);
1975 pipe_unlock(opipe);
1976
1977 /*
1978 * If we put data in the output pipe, wakeup any potential readers.
1979 */
1980 if (ret > 0)
1981 wakeup_pipe_readers(opipe);
1982
1983 return ret;
1984}
1985
1986/*
1987 * This is a tee(1) implementation that works on pipes. It doesn't copy
1988 * any data, it simply references the 'in' pages on the 'out' pipe.
1989 * The 'flags' used are the SPLICE_F_* variants, currently the only
1990 * applicable one is SPLICE_F_NONBLOCK.
1991 */
1992static long do_tee(struct file *in, struct file *out, size_t len,
1993 unsigned int flags)
1994{
1995 struct pipe_inode_info *ipipe = get_pipe_info(in);
1996 struct pipe_inode_info *opipe = get_pipe_info(out);
1997 int ret = -EINVAL;
1998
1999 /*
2000 * Duplicate the contents of ipipe to opipe without actually
2001 * copying the data.
2002 */
2003 if (ipipe && opipe && ipipe != opipe) {
2004 /*
2005 * Keep going, unless we encounter an error. The ipipe/opipe
2006 * ordering doesn't really matter.
2007 */
2008 ret = ipipe_prep(ipipe, flags);
2009 if (!ret) {
2010 ret = opipe_prep(opipe, flags);
2011 if (!ret)
2012 ret = link_pipe(ipipe, opipe, len, flags);
2013 }
2014 }
2015
2016 return ret;
2017}
2018
2019SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2020{
2021 struct file *in;
2022 int error, fput_in;
2023
2024 if (unlikely(!len))
2025 return 0;
2026
2027 error = -EBADF;
2028 in = fget_light(fdin, &fput_in);
2029 if (in) {
2030 if (in->f_mode & FMODE_READ) {
2031 int fput_out;
2032 struct file *out = fget_light(fdout, &fput_out);
2033
2034 if (out) {
2035 if (out->f_mode & FMODE_WRITE)
2036 error = do_tee(in, out, len, flags);
2037 fput_light(out, fput_out);
2038 }
2039 }
2040 fput_light(in, fput_in);
2041 }
2042
2043 return error;
2044}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * "splice": joining two ropes together by interweaving their strands.
4 *
5 * This is the "extended pipe" functionality, where a pipe is used as
6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7 * buffer that you can use to transfer data from one end to the other.
8 *
9 * The traditional unix read/write is extended with a "splice()" operation
10 * that transfers data buffers to or from a pipe buffer.
11 *
12 * Named by Larry McVoy, original implementation from Linus, extended by
13 * Jens to support splicing to files, network, direct splicing, etc and
14 * fixing lots of bugs.
15 *
16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19 *
20 */
21#include <linux/bvec.h>
22#include <linux/fs.h>
23#include <linux/file.h>
24#include <linux/pagemap.h>
25#include <linux/splice.h>
26#include <linux/memcontrol.h>
27#include <linux/mm_inline.h>
28#include <linux/swap.h>
29#include <linux/writeback.h>
30#include <linux/export.h>
31#include <linux/syscalls.h>
32#include <linux/uio.h>
33#include <linux/security.h>
34#include <linux/gfp.h>
35#include <linux/socket.h>
36#include <linux/sched/signal.h>
37
38#include "internal.h"
39
40/*
41 * Attempt to steal a page from a pipe buffer. This should perhaps go into
42 * a vm helper function, it's already simplified quite a bit by the
43 * addition of remove_mapping(). If success is returned, the caller may
44 * attempt to reuse this page for another destination.
45 */
46static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
47 struct pipe_buffer *buf)
48{
49 struct folio *folio = page_folio(buf->page);
50 struct address_space *mapping;
51
52 folio_lock(folio);
53
54 mapping = folio_mapping(folio);
55 if (mapping) {
56 WARN_ON(!folio_test_uptodate(folio));
57
58 /*
59 * At least for ext2 with nobh option, we need to wait on
60 * writeback completing on this folio, since we'll remove it
61 * from the pagecache. Otherwise truncate wont wait on the
62 * folio, allowing the disk blocks to be reused by someone else
63 * before we actually wrote our data to them. fs corruption
64 * ensues.
65 */
66 folio_wait_writeback(folio);
67
68 if (folio_has_private(folio) &&
69 !filemap_release_folio(folio, GFP_KERNEL))
70 goto out_unlock;
71
72 /*
73 * If we succeeded in removing the mapping, set LRU flag
74 * and return good.
75 */
76 if (remove_mapping(mapping, folio)) {
77 buf->flags |= PIPE_BUF_FLAG_LRU;
78 return true;
79 }
80 }
81
82 /*
83 * Raced with truncate or failed to remove folio from current
84 * address space, unlock and return failure.
85 */
86out_unlock:
87 folio_unlock(folio);
88 return false;
89}
90
91static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
92 struct pipe_buffer *buf)
93{
94 put_page(buf->page);
95 buf->flags &= ~PIPE_BUF_FLAG_LRU;
96}
97
98/*
99 * Check whether the contents of buf is OK to access. Since the content
100 * is a page cache page, IO may be in flight.
101 */
102static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
103 struct pipe_buffer *buf)
104{
105 struct page *page = buf->page;
106 int err;
107
108 if (!PageUptodate(page)) {
109 lock_page(page);
110
111 /*
112 * Page got truncated/unhashed. This will cause a 0-byte
113 * splice, if this is the first page.
114 */
115 if (!page->mapping) {
116 err = -ENODATA;
117 goto error;
118 }
119
120 /*
121 * Uh oh, read-error from disk.
122 */
123 if (!PageUptodate(page)) {
124 err = -EIO;
125 goto error;
126 }
127
128 /*
129 * Page is ok afterall, we are done.
130 */
131 unlock_page(page);
132 }
133
134 return 0;
135error:
136 unlock_page(page);
137 return err;
138}
139
140const struct pipe_buf_operations page_cache_pipe_buf_ops = {
141 .confirm = page_cache_pipe_buf_confirm,
142 .release = page_cache_pipe_buf_release,
143 .try_steal = page_cache_pipe_buf_try_steal,
144 .get = generic_pipe_buf_get,
145};
146
147static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
148 struct pipe_buffer *buf)
149{
150 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
151 return false;
152
153 buf->flags |= PIPE_BUF_FLAG_LRU;
154 return generic_pipe_buf_try_steal(pipe, buf);
155}
156
157static const struct pipe_buf_operations user_page_pipe_buf_ops = {
158 .release = page_cache_pipe_buf_release,
159 .try_steal = user_page_pipe_buf_try_steal,
160 .get = generic_pipe_buf_get,
161};
162
163static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164{
165 smp_mb();
166 if (waitqueue_active(&pipe->rd_wait))
167 wake_up_interruptible(&pipe->rd_wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169}
170
171/**
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
175 *
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
180 *
181 */
182ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
184{
185 unsigned int spd_pages = spd->nr_pages;
186 unsigned int tail = pipe->tail;
187 unsigned int head = pipe->head;
188 unsigned int mask = pipe->ring_size - 1;
189 int ret = 0, page_nr = 0;
190
191 if (!spd_pages)
192 return 0;
193
194 if (unlikely(!pipe->readers)) {
195 send_sig(SIGPIPE, current, 0);
196 ret = -EPIPE;
197 goto out;
198 }
199
200 while (!pipe_full(head, tail, pipe->max_usage)) {
201 struct pipe_buffer *buf = &pipe->bufs[head & mask];
202
203 buf->page = spd->pages[page_nr];
204 buf->offset = spd->partial[page_nr].offset;
205 buf->len = spd->partial[page_nr].len;
206 buf->private = spd->partial[page_nr].private;
207 buf->ops = spd->ops;
208 buf->flags = 0;
209
210 head++;
211 pipe->head = head;
212 page_nr++;
213 ret += buf->len;
214
215 if (!--spd->nr_pages)
216 break;
217 }
218
219 if (!ret)
220 ret = -EAGAIN;
221
222out:
223 while (page_nr < spd_pages)
224 spd->spd_release(spd, page_nr++);
225
226 return ret;
227}
228EXPORT_SYMBOL_GPL(splice_to_pipe);
229
230ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
231{
232 unsigned int head = pipe->head;
233 unsigned int tail = pipe->tail;
234 unsigned int mask = pipe->ring_size - 1;
235 int ret;
236
237 if (unlikely(!pipe->readers)) {
238 send_sig(SIGPIPE, current, 0);
239 ret = -EPIPE;
240 } else if (pipe_full(head, tail, pipe->max_usage)) {
241 ret = -EAGAIN;
242 } else {
243 pipe->bufs[head & mask] = *buf;
244 pipe->head = head + 1;
245 return buf->len;
246 }
247 pipe_buf_release(pipe, buf);
248 return ret;
249}
250EXPORT_SYMBOL(add_to_pipe);
251
252/*
253 * Check if we need to grow the arrays holding pages and partial page
254 * descriptions.
255 */
256int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
257{
258 unsigned int max_usage = READ_ONCE(pipe->max_usage);
259
260 spd->nr_pages_max = max_usage;
261 if (max_usage <= PIPE_DEF_BUFFERS)
262 return 0;
263
264 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
265 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
266 GFP_KERNEL);
267
268 if (spd->pages && spd->partial)
269 return 0;
270
271 kfree(spd->pages);
272 kfree(spd->partial);
273 return -ENOMEM;
274}
275
276void splice_shrink_spd(struct splice_pipe_desc *spd)
277{
278 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
279 return;
280
281 kfree(spd->pages);
282 kfree(spd->partial);
283}
284
285/**
286 * generic_file_splice_read - splice data from file to a pipe
287 * @in: file to splice from
288 * @ppos: position in @in
289 * @pipe: pipe to splice to
290 * @len: number of bytes to splice
291 * @flags: splice modifier flags
292 *
293 * Description:
294 * Will read pages from given file and fill them into a pipe. Can be
295 * used as long as it has more or less sane ->read_iter().
296 *
297 */
298ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
299 struct pipe_inode_info *pipe, size_t len,
300 unsigned int flags)
301{
302 struct iov_iter to;
303 struct kiocb kiocb;
304 int ret;
305
306 iov_iter_pipe(&to, ITER_DEST, pipe, len);
307 init_sync_kiocb(&kiocb, in);
308 kiocb.ki_pos = *ppos;
309 ret = call_read_iter(in, &kiocb, &to);
310 if (ret > 0) {
311 *ppos = kiocb.ki_pos;
312 file_accessed(in);
313 } else if (ret < 0) {
314 /* free what was emitted */
315 pipe_discard_from(pipe, to.start_head);
316 /*
317 * callers of ->splice_read() expect -EAGAIN on
318 * "can't put anything in there", rather than -EFAULT.
319 */
320 if (ret == -EFAULT)
321 ret = -EAGAIN;
322 }
323
324 return ret;
325}
326EXPORT_SYMBOL(generic_file_splice_read);
327
328const struct pipe_buf_operations default_pipe_buf_ops = {
329 .release = generic_pipe_buf_release,
330 .try_steal = generic_pipe_buf_try_steal,
331 .get = generic_pipe_buf_get,
332};
333
334/* Pipe buffer operations for a socket and similar. */
335const struct pipe_buf_operations nosteal_pipe_buf_ops = {
336 .release = generic_pipe_buf_release,
337 .get = generic_pipe_buf_get,
338};
339EXPORT_SYMBOL(nosteal_pipe_buf_ops);
340
341/*
342 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
343 * using sendpage(). Return the number of bytes sent.
344 */
345static int pipe_to_sendpage(struct pipe_inode_info *pipe,
346 struct pipe_buffer *buf, struct splice_desc *sd)
347{
348 struct file *file = sd->u.file;
349 loff_t pos = sd->pos;
350 int more;
351
352 if (!likely(file->f_op->sendpage))
353 return -EINVAL;
354
355 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
356
357 if (sd->len < sd->total_len &&
358 pipe_occupancy(pipe->head, pipe->tail) > 1)
359 more |= MSG_SENDPAGE_NOTLAST;
360
361 return file->f_op->sendpage(file, buf->page, buf->offset,
362 sd->len, &pos, more);
363}
364
365static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
366{
367 smp_mb();
368 if (waitqueue_active(&pipe->wr_wait))
369 wake_up_interruptible(&pipe->wr_wait);
370 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
371}
372
373/**
374 * splice_from_pipe_feed - feed available data from a pipe to a file
375 * @pipe: pipe to splice from
376 * @sd: information to @actor
377 * @actor: handler that splices the data
378 *
379 * Description:
380 * This function loops over the pipe and calls @actor to do the
381 * actual moving of a single struct pipe_buffer to the desired
382 * destination. It returns when there's no more buffers left in
383 * the pipe or if the requested number of bytes (@sd->total_len)
384 * have been copied. It returns a positive number (one) if the
385 * pipe needs to be filled with more data, zero if the required
386 * number of bytes have been copied and -errno on error.
387 *
388 * This, together with splice_from_pipe_{begin,end,next}, may be
389 * used to implement the functionality of __splice_from_pipe() when
390 * locking is required around copying the pipe buffers to the
391 * destination.
392 */
393static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
394 splice_actor *actor)
395{
396 unsigned int head = pipe->head;
397 unsigned int tail = pipe->tail;
398 unsigned int mask = pipe->ring_size - 1;
399 int ret;
400
401 while (!pipe_empty(head, tail)) {
402 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
403
404 sd->len = buf->len;
405 if (sd->len > sd->total_len)
406 sd->len = sd->total_len;
407
408 ret = pipe_buf_confirm(pipe, buf);
409 if (unlikely(ret)) {
410 if (ret == -ENODATA)
411 ret = 0;
412 return ret;
413 }
414
415 ret = actor(pipe, buf, sd);
416 if (ret <= 0)
417 return ret;
418
419 buf->offset += ret;
420 buf->len -= ret;
421
422 sd->num_spliced += ret;
423 sd->len -= ret;
424 sd->pos += ret;
425 sd->total_len -= ret;
426
427 if (!buf->len) {
428 pipe_buf_release(pipe, buf);
429 tail++;
430 pipe->tail = tail;
431 if (pipe->files)
432 sd->need_wakeup = true;
433 }
434
435 if (!sd->total_len)
436 return 0;
437 }
438
439 return 1;
440}
441
442/* We know we have a pipe buffer, but maybe it's empty? */
443static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
444{
445 unsigned int tail = pipe->tail;
446 unsigned int mask = pipe->ring_size - 1;
447 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
448
449 if (unlikely(!buf->len)) {
450 pipe_buf_release(pipe, buf);
451 pipe->tail = tail+1;
452 return true;
453 }
454
455 return false;
456}
457
458/**
459 * splice_from_pipe_next - wait for some data to splice from
460 * @pipe: pipe to splice from
461 * @sd: information about the splice operation
462 *
463 * Description:
464 * This function will wait for some data and return a positive
465 * value (one) if pipe buffers are available. It will return zero
466 * or -errno if no more data needs to be spliced.
467 */
468static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
469{
470 /*
471 * Check for signal early to make process killable when there are
472 * always buffers available
473 */
474 if (signal_pending(current))
475 return -ERESTARTSYS;
476
477repeat:
478 while (pipe_empty(pipe->head, pipe->tail)) {
479 if (!pipe->writers)
480 return 0;
481
482 if (sd->num_spliced)
483 return 0;
484
485 if (sd->flags & SPLICE_F_NONBLOCK)
486 return -EAGAIN;
487
488 if (signal_pending(current))
489 return -ERESTARTSYS;
490
491 if (sd->need_wakeup) {
492 wakeup_pipe_writers(pipe);
493 sd->need_wakeup = false;
494 }
495
496 pipe_wait_readable(pipe);
497 }
498
499 if (eat_empty_buffer(pipe))
500 goto repeat;
501
502 return 1;
503}
504
505/**
506 * splice_from_pipe_begin - start splicing from pipe
507 * @sd: information about the splice operation
508 *
509 * Description:
510 * This function should be called before a loop containing
511 * splice_from_pipe_next() and splice_from_pipe_feed() to
512 * initialize the necessary fields of @sd.
513 */
514static void splice_from_pipe_begin(struct splice_desc *sd)
515{
516 sd->num_spliced = 0;
517 sd->need_wakeup = false;
518}
519
520/**
521 * splice_from_pipe_end - finish splicing from pipe
522 * @pipe: pipe to splice from
523 * @sd: information about the splice operation
524 *
525 * Description:
526 * This function will wake up pipe writers if necessary. It should
527 * be called after a loop containing splice_from_pipe_next() and
528 * splice_from_pipe_feed().
529 */
530static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
531{
532 if (sd->need_wakeup)
533 wakeup_pipe_writers(pipe);
534}
535
536/**
537 * __splice_from_pipe - splice data from a pipe to given actor
538 * @pipe: pipe to splice from
539 * @sd: information to @actor
540 * @actor: handler that splices the data
541 *
542 * Description:
543 * This function does little more than loop over the pipe and call
544 * @actor to do the actual moving of a single struct pipe_buffer to
545 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
546 * pipe_to_user.
547 *
548 */
549ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
550 splice_actor *actor)
551{
552 int ret;
553
554 splice_from_pipe_begin(sd);
555 do {
556 cond_resched();
557 ret = splice_from_pipe_next(pipe, sd);
558 if (ret > 0)
559 ret = splice_from_pipe_feed(pipe, sd, actor);
560 } while (ret > 0);
561 splice_from_pipe_end(pipe, sd);
562
563 return sd->num_spliced ? sd->num_spliced : ret;
564}
565EXPORT_SYMBOL(__splice_from_pipe);
566
567/**
568 * splice_from_pipe - splice data from a pipe to a file
569 * @pipe: pipe to splice from
570 * @out: file to splice to
571 * @ppos: position in @out
572 * @len: how many bytes to splice
573 * @flags: splice modifier flags
574 * @actor: handler that splices the data
575 *
576 * Description:
577 * See __splice_from_pipe. This function locks the pipe inode,
578 * otherwise it's identical to __splice_from_pipe().
579 *
580 */
581ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
582 loff_t *ppos, size_t len, unsigned int flags,
583 splice_actor *actor)
584{
585 ssize_t ret;
586 struct splice_desc sd = {
587 .total_len = len,
588 .flags = flags,
589 .pos = *ppos,
590 .u.file = out,
591 };
592
593 pipe_lock(pipe);
594 ret = __splice_from_pipe(pipe, &sd, actor);
595 pipe_unlock(pipe);
596
597 return ret;
598}
599
600/**
601 * iter_file_splice_write - splice data from a pipe to a file
602 * @pipe: pipe info
603 * @out: file to write to
604 * @ppos: position in @out
605 * @len: number of bytes to splice
606 * @flags: splice modifier flags
607 *
608 * Description:
609 * Will either move or copy pages (determined by @flags options) from
610 * the given pipe inode to the given file.
611 * This one is ->write_iter-based.
612 *
613 */
614ssize_t
615iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
616 loff_t *ppos, size_t len, unsigned int flags)
617{
618 struct splice_desc sd = {
619 .total_len = len,
620 .flags = flags,
621 .pos = *ppos,
622 .u.file = out,
623 };
624 int nbufs = pipe->max_usage;
625 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
626 GFP_KERNEL);
627 ssize_t ret;
628
629 if (unlikely(!array))
630 return -ENOMEM;
631
632 pipe_lock(pipe);
633
634 splice_from_pipe_begin(&sd);
635 while (sd.total_len) {
636 struct iov_iter from;
637 unsigned int head, tail, mask;
638 size_t left;
639 int n;
640
641 ret = splice_from_pipe_next(pipe, &sd);
642 if (ret <= 0)
643 break;
644
645 if (unlikely(nbufs < pipe->max_usage)) {
646 kfree(array);
647 nbufs = pipe->max_usage;
648 array = kcalloc(nbufs, sizeof(struct bio_vec),
649 GFP_KERNEL);
650 if (!array) {
651 ret = -ENOMEM;
652 break;
653 }
654 }
655
656 head = pipe->head;
657 tail = pipe->tail;
658 mask = pipe->ring_size - 1;
659
660 /* build the vector */
661 left = sd.total_len;
662 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
663 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
664 size_t this_len = buf->len;
665
666 /* zero-length bvecs are not supported, skip them */
667 if (!this_len)
668 continue;
669 this_len = min(this_len, left);
670
671 ret = pipe_buf_confirm(pipe, buf);
672 if (unlikely(ret)) {
673 if (ret == -ENODATA)
674 ret = 0;
675 goto done;
676 }
677
678 array[n].bv_page = buf->page;
679 array[n].bv_len = this_len;
680 array[n].bv_offset = buf->offset;
681 left -= this_len;
682 n++;
683 }
684
685 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
686 ret = vfs_iter_write(out, &from, &sd.pos, 0);
687 if (ret <= 0)
688 break;
689
690 sd.num_spliced += ret;
691 sd.total_len -= ret;
692 *ppos = sd.pos;
693
694 /* dismiss the fully eaten buffers, adjust the partial one */
695 tail = pipe->tail;
696 while (ret) {
697 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
698 if (ret >= buf->len) {
699 ret -= buf->len;
700 buf->len = 0;
701 pipe_buf_release(pipe, buf);
702 tail++;
703 pipe->tail = tail;
704 if (pipe->files)
705 sd.need_wakeup = true;
706 } else {
707 buf->offset += ret;
708 buf->len -= ret;
709 ret = 0;
710 }
711 }
712 }
713done:
714 kfree(array);
715 splice_from_pipe_end(pipe, &sd);
716
717 pipe_unlock(pipe);
718
719 if (sd.num_spliced)
720 ret = sd.num_spliced;
721
722 return ret;
723}
724
725EXPORT_SYMBOL(iter_file_splice_write);
726
727/**
728 * generic_splice_sendpage - splice data from a pipe to a socket
729 * @pipe: pipe to splice from
730 * @out: socket to write to
731 * @ppos: position in @out
732 * @len: number of bytes to splice
733 * @flags: splice modifier flags
734 *
735 * Description:
736 * Will send @len bytes from the pipe to a network socket. No data copying
737 * is involved.
738 *
739 */
740ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
741 loff_t *ppos, size_t len, unsigned int flags)
742{
743 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
744}
745
746EXPORT_SYMBOL(generic_splice_sendpage);
747
748static int warn_unsupported(struct file *file, const char *op)
749{
750 pr_debug_ratelimited(
751 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
752 op, file, current->pid, current->comm);
753 return -EINVAL;
754}
755
756/*
757 * Attempt to initiate a splice from pipe to file.
758 */
759static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
760 loff_t *ppos, size_t len, unsigned int flags)
761{
762 if (unlikely(!out->f_op->splice_write))
763 return warn_unsupported(out, "write");
764 return out->f_op->splice_write(pipe, out, ppos, len, flags);
765}
766
767/*
768 * Attempt to initiate a splice from a file to a pipe.
769 */
770static long do_splice_to(struct file *in, loff_t *ppos,
771 struct pipe_inode_info *pipe, size_t len,
772 unsigned int flags)
773{
774 unsigned int p_space;
775 int ret;
776
777 if (unlikely(!(in->f_mode & FMODE_READ)))
778 return -EBADF;
779
780 /* Don't try to read more the pipe has space for. */
781 p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
782 len = min_t(size_t, len, p_space << PAGE_SHIFT);
783
784 ret = rw_verify_area(READ, in, ppos, len);
785 if (unlikely(ret < 0))
786 return ret;
787
788 if (unlikely(len > MAX_RW_COUNT))
789 len = MAX_RW_COUNT;
790
791 if (unlikely(!in->f_op->splice_read))
792 return warn_unsupported(in, "read");
793 return in->f_op->splice_read(in, ppos, pipe, len, flags);
794}
795
796/**
797 * splice_direct_to_actor - splices data directly between two non-pipes
798 * @in: file to splice from
799 * @sd: actor information on where to splice to
800 * @actor: handles the data splicing
801 *
802 * Description:
803 * This is a special case helper to splice directly between two
804 * points, without requiring an explicit pipe. Internally an allocated
805 * pipe is cached in the process, and reused during the lifetime of
806 * that process.
807 *
808 */
809ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
810 splice_direct_actor *actor)
811{
812 struct pipe_inode_info *pipe;
813 long ret, bytes;
814 size_t len;
815 int i, flags, more;
816
817 /*
818 * We require the input to be seekable, as we don't want to randomly
819 * drop data for eg socket -> socket splicing. Use the piped splicing
820 * for that!
821 */
822 if (unlikely(!(in->f_mode & FMODE_LSEEK)))
823 return -EINVAL;
824
825 /*
826 * neither in nor out is a pipe, setup an internal pipe attached to
827 * 'out' and transfer the wanted data from 'in' to 'out' through that
828 */
829 pipe = current->splice_pipe;
830 if (unlikely(!pipe)) {
831 pipe = alloc_pipe_info();
832 if (!pipe)
833 return -ENOMEM;
834
835 /*
836 * We don't have an immediate reader, but we'll read the stuff
837 * out of the pipe right after the splice_to_pipe(). So set
838 * PIPE_READERS appropriately.
839 */
840 pipe->readers = 1;
841
842 current->splice_pipe = pipe;
843 }
844
845 /*
846 * Do the splice.
847 */
848 ret = 0;
849 bytes = 0;
850 len = sd->total_len;
851 flags = sd->flags;
852
853 /*
854 * Don't block on output, we have to drain the direct pipe.
855 */
856 sd->flags &= ~SPLICE_F_NONBLOCK;
857 more = sd->flags & SPLICE_F_MORE;
858
859 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
860
861 while (len) {
862 size_t read_len;
863 loff_t pos = sd->pos, prev_pos = pos;
864
865 ret = do_splice_to(in, &pos, pipe, len, flags);
866 if (unlikely(ret <= 0))
867 goto out_release;
868
869 read_len = ret;
870 sd->total_len = read_len;
871
872 /*
873 * If more data is pending, set SPLICE_F_MORE
874 * If this is the last data and SPLICE_F_MORE was not set
875 * initially, clears it.
876 */
877 if (read_len < len)
878 sd->flags |= SPLICE_F_MORE;
879 else if (!more)
880 sd->flags &= ~SPLICE_F_MORE;
881 /*
882 * NOTE: nonblocking mode only applies to the input. We
883 * must not do the output in nonblocking mode as then we
884 * could get stuck data in the internal pipe:
885 */
886 ret = actor(pipe, sd);
887 if (unlikely(ret <= 0)) {
888 sd->pos = prev_pos;
889 goto out_release;
890 }
891
892 bytes += ret;
893 len -= ret;
894 sd->pos = pos;
895
896 if (ret < read_len) {
897 sd->pos = prev_pos + ret;
898 goto out_release;
899 }
900 }
901
902done:
903 pipe->tail = pipe->head = 0;
904 file_accessed(in);
905 return bytes;
906
907out_release:
908 /*
909 * If we did an incomplete transfer we must release
910 * the pipe buffers in question:
911 */
912 for (i = 0; i < pipe->ring_size; i++) {
913 struct pipe_buffer *buf = &pipe->bufs[i];
914
915 if (buf->ops)
916 pipe_buf_release(pipe, buf);
917 }
918
919 if (!bytes)
920 bytes = ret;
921
922 goto done;
923}
924EXPORT_SYMBOL(splice_direct_to_actor);
925
926static int direct_splice_actor(struct pipe_inode_info *pipe,
927 struct splice_desc *sd)
928{
929 struct file *file = sd->u.file;
930
931 return do_splice_from(pipe, file, sd->opos, sd->total_len,
932 sd->flags);
933}
934
935/**
936 * do_splice_direct - splices data directly between two files
937 * @in: file to splice from
938 * @ppos: input file offset
939 * @out: file to splice to
940 * @opos: output file offset
941 * @len: number of bytes to splice
942 * @flags: splice modifier flags
943 *
944 * Description:
945 * For use by do_sendfile(). splice can easily emulate sendfile, but
946 * doing it in the application would incur an extra system call
947 * (splice in + splice out, as compared to just sendfile()). So this helper
948 * can splice directly through a process-private pipe.
949 *
950 */
951long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
952 loff_t *opos, size_t len, unsigned int flags)
953{
954 struct splice_desc sd = {
955 .len = len,
956 .total_len = len,
957 .flags = flags,
958 .pos = *ppos,
959 .u.file = out,
960 .opos = opos,
961 };
962 long ret;
963
964 if (unlikely(!(out->f_mode & FMODE_WRITE)))
965 return -EBADF;
966
967 if (unlikely(out->f_flags & O_APPEND))
968 return -EINVAL;
969
970 ret = rw_verify_area(WRITE, out, opos, len);
971 if (unlikely(ret < 0))
972 return ret;
973
974 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
975 if (ret > 0)
976 *ppos = sd.pos;
977
978 return ret;
979}
980EXPORT_SYMBOL(do_splice_direct);
981
982static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
983{
984 for (;;) {
985 if (unlikely(!pipe->readers)) {
986 send_sig(SIGPIPE, current, 0);
987 return -EPIPE;
988 }
989 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
990 return 0;
991 if (flags & SPLICE_F_NONBLOCK)
992 return -EAGAIN;
993 if (signal_pending(current))
994 return -ERESTARTSYS;
995 pipe_wait_writable(pipe);
996 }
997}
998
999static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1000 struct pipe_inode_info *opipe,
1001 size_t len, unsigned int flags);
1002
1003long splice_file_to_pipe(struct file *in,
1004 struct pipe_inode_info *opipe,
1005 loff_t *offset,
1006 size_t len, unsigned int flags)
1007{
1008 long ret;
1009
1010 pipe_lock(opipe);
1011 ret = wait_for_space(opipe, flags);
1012 if (!ret)
1013 ret = do_splice_to(in, offset, opipe, len, flags);
1014 pipe_unlock(opipe);
1015 if (ret > 0)
1016 wakeup_pipe_readers(opipe);
1017 return ret;
1018}
1019
1020/*
1021 * Determine where to splice to/from.
1022 */
1023long do_splice(struct file *in, loff_t *off_in, struct file *out,
1024 loff_t *off_out, size_t len, unsigned int flags)
1025{
1026 struct pipe_inode_info *ipipe;
1027 struct pipe_inode_info *opipe;
1028 loff_t offset;
1029 long ret;
1030
1031 if (unlikely(!(in->f_mode & FMODE_READ) ||
1032 !(out->f_mode & FMODE_WRITE)))
1033 return -EBADF;
1034
1035 ipipe = get_pipe_info(in, true);
1036 opipe = get_pipe_info(out, true);
1037
1038 if (ipipe && opipe) {
1039 if (off_in || off_out)
1040 return -ESPIPE;
1041
1042 /* Splicing to self would be fun, but... */
1043 if (ipipe == opipe)
1044 return -EINVAL;
1045
1046 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1047 flags |= SPLICE_F_NONBLOCK;
1048
1049 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1050 }
1051
1052 if (ipipe) {
1053 if (off_in)
1054 return -ESPIPE;
1055 if (off_out) {
1056 if (!(out->f_mode & FMODE_PWRITE))
1057 return -EINVAL;
1058 offset = *off_out;
1059 } else {
1060 offset = out->f_pos;
1061 }
1062
1063 if (unlikely(out->f_flags & O_APPEND))
1064 return -EINVAL;
1065
1066 ret = rw_verify_area(WRITE, out, &offset, len);
1067 if (unlikely(ret < 0))
1068 return ret;
1069
1070 if (in->f_flags & O_NONBLOCK)
1071 flags |= SPLICE_F_NONBLOCK;
1072
1073 file_start_write(out);
1074 ret = do_splice_from(ipipe, out, &offset, len, flags);
1075 file_end_write(out);
1076
1077 if (!off_out)
1078 out->f_pos = offset;
1079 else
1080 *off_out = offset;
1081
1082 return ret;
1083 }
1084
1085 if (opipe) {
1086 if (off_out)
1087 return -ESPIPE;
1088 if (off_in) {
1089 if (!(in->f_mode & FMODE_PREAD))
1090 return -EINVAL;
1091 offset = *off_in;
1092 } else {
1093 offset = in->f_pos;
1094 }
1095
1096 if (out->f_flags & O_NONBLOCK)
1097 flags |= SPLICE_F_NONBLOCK;
1098
1099 ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1100 if (!off_in)
1101 in->f_pos = offset;
1102 else
1103 *off_in = offset;
1104
1105 return ret;
1106 }
1107
1108 return -EINVAL;
1109}
1110
1111static long __do_splice(struct file *in, loff_t __user *off_in,
1112 struct file *out, loff_t __user *off_out,
1113 size_t len, unsigned int flags)
1114{
1115 struct pipe_inode_info *ipipe;
1116 struct pipe_inode_info *opipe;
1117 loff_t offset, *__off_in = NULL, *__off_out = NULL;
1118 long ret;
1119
1120 ipipe = get_pipe_info(in, true);
1121 opipe = get_pipe_info(out, true);
1122
1123 if (ipipe && off_in)
1124 return -ESPIPE;
1125 if (opipe && off_out)
1126 return -ESPIPE;
1127
1128 if (off_out) {
1129 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1130 return -EFAULT;
1131 __off_out = &offset;
1132 }
1133 if (off_in) {
1134 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1135 return -EFAULT;
1136 __off_in = &offset;
1137 }
1138
1139 ret = do_splice(in, __off_in, out, __off_out, len, flags);
1140 if (ret < 0)
1141 return ret;
1142
1143 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1144 return -EFAULT;
1145 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1146 return -EFAULT;
1147
1148 return ret;
1149}
1150
1151static int iter_to_pipe(struct iov_iter *from,
1152 struct pipe_inode_info *pipe,
1153 unsigned flags)
1154{
1155 struct pipe_buffer buf = {
1156 .ops = &user_page_pipe_buf_ops,
1157 .flags = flags
1158 };
1159 size_t total = 0;
1160 int ret = 0;
1161
1162 while (iov_iter_count(from)) {
1163 struct page *pages[16];
1164 ssize_t left;
1165 size_t start;
1166 int i, n;
1167
1168 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1169 if (left <= 0) {
1170 ret = left;
1171 break;
1172 }
1173
1174 n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1175 for (i = 0; i < n; i++) {
1176 int size = min_t(int, left, PAGE_SIZE - start);
1177
1178 buf.page = pages[i];
1179 buf.offset = start;
1180 buf.len = size;
1181 ret = add_to_pipe(pipe, &buf);
1182 if (unlikely(ret < 0)) {
1183 iov_iter_revert(from, left);
1184 // this one got dropped by add_to_pipe()
1185 while (++i < n)
1186 put_page(pages[i]);
1187 goto out;
1188 }
1189 total += ret;
1190 left -= size;
1191 start = 0;
1192 }
1193 }
1194out:
1195 return total ? total : ret;
1196}
1197
1198static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1199 struct splice_desc *sd)
1200{
1201 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1202 return n == sd->len ? n : -EFAULT;
1203}
1204
1205/*
1206 * For lack of a better implementation, implement vmsplice() to userspace
1207 * as a simple copy of the pipes pages to the user iov.
1208 */
1209static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1210 unsigned int flags)
1211{
1212 struct pipe_inode_info *pipe = get_pipe_info(file, true);
1213 struct splice_desc sd = {
1214 .total_len = iov_iter_count(iter),
1215 .flags = flags,
1216 .u.data = iter
1217 };
1218 long ret = 0;
1219
1220 if (!pipe)
1221 return -EBADF;
1222
1223 if (sd.total_len) {
1224 pipe_lock(pipe);
1225 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1226 pipe_unlock(pipe);
1227 }
1228
1229 return ret;
1230}
1231
1232/*
1233 * vmsplice splices a user address range into a pipe. It can be thought of
1234 * as splice-from-memory, where the regular splice is splice-from-file (or
1235 * to file). In both cases the output is a pipe, naturally.
1236 */
1237static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1238 unsigned int flags)
1239{
1240 struct pipe_inode_info *pipe;
1241 long ret = 0;
1242 unsigned buf_flag = 0;
1243
1244 if (flags & SPLICE_F_GIFT)
1245 buf_flag = PIPE_BUF_FLAG_GIFT;
1246
1247 pipe = get_pipe_info(file, true);
1248 if (!pipe)
1249 return -EBADF;
1250
1251 pipe_lock(pipe);
1252 ret = wait_for_space(pipe, flags);
1253 if (!ret)
1254 ret = iter_to_pipe(iter, pipe, buf_flag);
1255 pipe_unlock(pipe);
1256 if (ret > 0)
1257 wakeup_pipe_readers(pipe);
1258 return ret;
1259}
1260
1261static int vmsplice_type(struct fd f, int *type)
1262{
1263 if (!f.file)
1264 return -EBADF;
1265 if (f.file->f_mode & FMODE_WRITE) {
1266 *type = ITER_SOURCE;
1267 } else if (f.file->f_mode & FMODE_READ) {
1268 *type = ITER_DEST;
1269 } else {
1270 fdput(f);
1271 return -EBADF;
1272 }
1273 return 0;
1274}
1275
1276/*
1277 * Note that vmsplice only really supports true splicing _from_ user memory
1278 * to a pipe, not the other way around. Splicing from user memory is a simple
1279 * operation that can be supported without any funky alignment restrictions
1280 * or nasty vm tricks. We simply map in the user memory and fill them into
1281 * a pipe. The reverse isn't quite as easy, though. There are two possible
1282 * solutions for that:
1283 *
1284 * - memcpy() the data internally, at which point we might as well just
1285 * do a regular read() on the buffer anyway.
1286 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1287 * has restriction limitations on both ends of the pipe).
1288 *
1289 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1290 *
1291 */
1292SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1293 unsigned long, nr_segs, unsigned int, flags)
1294{
1295 struct iovec iovstack[UIO_FASTIOV];
1296 struct iovec *iov = iovstack;
1297 struct iov_iter iter;
1298 ssize_t error;
1299 struct fd f;
1300 int type;
1301
1302 if (unlikely(flags & ~SPLICE_F_ALL))
1303 return -EINVAL;
1304
1305 f = fdget(fd);
1306 error = vmsplice_type(f, &type);
1307 if (error)
1308 return error;
1309
1310 error = import_iovec(type, uiov, nr_segs,
1311 ARRAY_SIZE(iovstack), &iov, &iter);
1312 if (error < 0)
1313 goto out_fdput;
1314
1315 if (!iov_iter_count(&iter))
1316 error = 0;
1317 else if (type == ITER_SOURCE)
1318 error = vmsplice_to_pipe(f.file, &iter, flags);
1319 else
1320 error = vmsplice_to_user(f.file, &iter, flags);
1321
1322 kfree(iov);
1323out_fdput:
1324 fdput(f);
1325 return error;
1326}
1327
1328SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1329 int, fd_out, loff_t __user *, off_out,
1330 size_t, len, unsigned int, flags)
1331{
1332 struct fd in, out;
1333 long error;
1334
1335 if (unlikely(!len))
1336 return 0;
1337
1338 if (unlikely(flags & ~SPLICE_F_ALL))
1339 return -EINVAL;
1340
1341 error = -EBADF;
1342 in = fdget(fd_in);
1343 if (in.file) {
1344 out = fdget(fd_out);
1345 if (out.file) {
1346 error = __do_splice(in.file, off_in, out.file, off_out,
1347 len, flags);
1348 fdput(out);
1349 }
1350 fdput(in);
1351 }
1352 return error;
1353}
1354
1355/*
1356 * Make sure there's data to read. Wait for input if we can, otherwise
1357 * return an appropriate error.
1358 */
1359static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1360{
1361 int ret;
1362
1363 /*
1364 * Check the pipe occupancy without the inode lock first. This function
1365 * is speculative anyways, so missing one is ok.
1366 */
1367 if (!pipe_empty(pipe->head, pipe->tail))
1368 return 0;
1369
1370 ret = 0;
1371 pipe_lock(pipe);
1372
1373 while (pipe_empty(pipe->head, pipe->tail)) {
1374 if (signal_pending(current)) {
1375 ret = -ERESTARTSYS;
1376 break;
1377 }
1378 if (!pipe->writers)
1379 break;
1380 if (flags & SPLICE_F_NONBLOCK) {
1381 ret = -EAGAIN;
1382 break;
1383 }
1384 pipe_wait_readable(pipe);
1385 }
1386
1387 pipe_unlock(pipe);
1388 return ret;
1389}
1390
1391/*
1392 * Make sure there's writeable room. Wait for room if we can, otherwise
1393 * return an appropriate error.
1394 */
1395static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1396{
1397 int ret;
1398
1399 /*
1400 * Check pipe occupancy without the inode lock first. This function
1401 * is speculative anyways, so missing one is ok.
1402 */
1403 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1404 return 0;
1405
1406 ret = 0;
1407 pipe_lock(pipe);
1408
1409 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1410 if (!pipe->readers) {
1411 send_sig(SIGPIPE, current, 0);
1412 ret = -EPIPE;
1413 break;
1414 }
1415 if (flags & SPLICE_F_NONBLOCK) {
1416 ret = -EAGAIN;
1417 break;
1418 }
1419 if (signal_pending(current)) {
1420 ret = -ERESTARTSYS;
1421 break;
1422 }
1423 pipe_wait_writable(pipe);
1424 }
1425
1426 pipe_unlock(pipe);
1427 return ret;
1428}
1429
1430/*
1431 * Splice contents of ipipe to opipe.
1432 */
1433static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1434 struct pipe_inode_info *opipe,
1435 size_t len, unsigned int flags)
1436{
1437 struct pipe_buffer *ibuf, *obuf;
1438 unsigned int i_head, o_head;
1439 unsigned int i_tail, o_tail;
1440 unsigned int i_mask, o_mask;
1441 int ret = 0;
1442 bool input_wakeup = false;
1443
1444
1445retry:
1446 ret = ipipe_prep(ipipe, flags);
1447 if (ret)
1448 return ret;
1449
1450 ret = opipe_prep(opipe, flags);
1451 if (ret)
1452 return ret;
1453
1454 /*
1455 * Potential ABBA deadlock, work around it by ordering lock
1456 * grabbing by pipe info address. Otherwise two different processes
1457 * could deadlock (one doing tee from A -> B, the other from B -> A).
1458 */
1459 pipe_double_lock(ipipe, opipe);
1460
1461 i_tail = ipipe->tail;
1462 i_mask = ipipe->ring_size - 1;
1463 o_head = opipe->head;
1464 o_mask = opipe->ring_size - 1;
1465
1466 do {
1467 size_t o_len;
1468
1469 if (!opipe->readers) {
1470 send_sig(SIGPIPE, current, 0);
1471 if (!ret)
1472 ret = -EPIPE;
1473 break;
1474 }
1475
1476 i_head = ipipe->head;
1477 o_tail = opipe->tail;
1478
1479 if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1480 break;
1481
1482 /*
1483 * Cannot make any progress, because either the input
1484 * pipe is empty or the output pipe is full.
1485 */
1486 if (pipe_empty(i_head, i_tail) ||
1487 pipe_full(o_head, o_tail, opipe->max_usage)) {
1488 /* Already processed some buffers, break */
1489 if (ret)
1490 break;
1491
1492 if (flags & SPLICE_F_NONBLOCK) {
1493 ret = -EAGAIN;
1494 break;
1495 }
1496
1497 /*
1498 * We raced with another reader/writer and haven't
1499 * managed to process any buffers. A zero return
1500 * value means EOF, so retry instead.
1501 */
1502 pipe_unlock(ipipe);
1503 pipe_unlock(opipe);
1504 goto retry;
1505 }
1506
1507 ibuf = &ipipe->bufs[i_tail & i_mask];
1508 obuf = &opipe->bufs[o_head & o_mask];
1509
1510 if (len >= ibuf->len) {
1511 /*
1512 * Simply move the whole buffer from ipipe to opipe
1513 */
1514 *obuf = *ibuf;
1515 ibuf->ops = NULL;
1516 i_tail++;
1517 ipipe->tail = i_tail;
1518 input_wakeup = true;
1519 o_len = obuf->len;
1520 o_head++;
1521 opipe->head = o_head;
1522 } else {
1523 /*
1524 * Get a reference to this pipe buffer,
1525 * so we can copy the contents over.
1526 */
1527 if (!pipe_buf_get(ipipe, ibuf)) {
1528 if (ret == 0)
1529 ret = -EFAULT;
1530 break;
1531 }
1532 *obuf = *ibuf;
1533
1534 /*
1535 * Don't inherit the gift and merge flags, we need to
1536 * prevent multiple steals of this page.
1537 */
1538 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1539 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1540
1541 obuf->len = len;
1542 ibuf->offset += len;
1543 ibuf->len -= len;
1544 o_len = len;
1545 o_head++;
1546 opipe->head = o_head;
1547 }
1548 ret += o_len;
1549 len -= o_len;
1550 } while (len);
1551
1552 pipe_unlock(ipipe);
1553 pipe_unlock(opipe);
1554
1555 /*
1556 * If we put data in the output pipe, wakeup any potential readers.
1557 */
1558 if (ret > 0)
1559 wakeup_pipe_readers(opipe);
1560
1561 if (input_wakeup)
1562 wakeup_pipe_writers(ipipe);
1563
1564 return ret;
1565}
1566
1567/*
1568 * Link contents of ipipe to opipe.
1569 */
1570static int link_pipe(struct pipe_inode_info *ipipe,
1571 struct pipe_inode_info *opipe,
1572 size_t len, unsigned int flags)
1573{
1574 struct pipe_buffer *ibuf, *obuf;
1575 unsigned int i_head, o_head;
1576 unsigned int i_tail, o_tail;
1577 unsigned int i_mask, o_mask;
1578 int ret = 0;
1579
1580 /*
1581 * Potential ABBA deadlock, work around it by ordering lock
1582 * grabbing by pipe info address. Otherwise two different processes
1583 * could deadlock (one doing tee from A -> B, the other from B -> A).
1584 */
1585 pipe_double_lock(ipipe, opipe);
1586
1587 i_tail = ipipe->tail;
1588 i_mask = ipipe->ring_size - 1;
1589 o_head = opipe->head;
1590 o_mask = opipe->ring_size - 1;
1591
1592 do {
1593 if (!opipe->readers) {
1594 send_sig(SIGPIPE, current, 0);
1595 if (!ret)
1596 ret = -EPIPE;
1597 break;
1598 }
1599
1600 i_head = ipipe->head;
1601 o_tail = opipe->tail;
1602
1603 /*
1604 * If we have iterated all input buffers or run out of
1605 * output room, break.
1606 */
1607 if (pipe_empty(i_head, i_tail) ||
1608 pipe_full(o_head, o_tail, opipe->max_usage))
1609 break;
1610
1611 ibuf = &ipipe->bufs[i_tail & i_mask];
1612 obuf = &opipe->bufs[o_head & o_mask];
1613
1614 /*
1615 * Get a reference to this pipe buffer,
1616 * so we can copy the contents over.
1617 */
1618 if (!pipe_buf_get(ipipe, ibuf)) {
1619 if (ret == 0)
1620 ret = -EFAULT;
1621 break;
1622 }
1623
1624 *obuf = *ibuf;
1625
1626 /*
1627 * Don't inherit the gift and merge flag, we need to prevent
1628 * multiple steals of this page.
1629 */
1630 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1631 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1632
1633 if (obuf->len > len)
1634 obuf->len = len;
1635 ret += obuf->len;
1636 len -= obuf->len;
1637
1638 o_head++;
1639 opipe->head = o_head;
1640 i_tail++;
1641 } while (len);
1642
1643 pipe_unlock(ipipe);
1644 pipe_unlock(opipe);
1645
1646 /*
1647 * If we put data in the output pipe, wakeup any potential readers.
1648 */
1649 if (ret > 0)
1650 wakeup_pipe_readers(opipe);
1651
1652 return ret;
1653}
1654
1655/*
1656 * This is a tee(1) implementation that works on pipes. It doesn't copy
1657 * any data, it simply references the 'in' pages on the 'out' pipe.
1658 * The 'flags' used are the SPLICE_F_* variants, currently the only
1659 * applicable one is SPLICE_F_NONBLOCK.
1660 */
1661long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1662{
1663 struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1664 struct pipe_inode_info *opipe = get_pipe_info(out, true);
1665 int ret = -EINVAL;
1666
1667 if (unlikely(!(in->f_mode & FMODE_READ) ||
1668 !(out->f_mode & FMODE_WRITE)))
1669 return -EBADF;
1670
1671 /*
1672 * Duplicate the contents of ipipe to opipe without actually
1673 * copying the data.
1674 */
1675 if (ipipe && opipe && ipipe != opipe) {
1676 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1677 flags |= SPLICE_F_NONBLOCK;
1678
1679 /*
1680 * Keep going, unless we encounter an error. The ipipe/opipe
1681 * ordering doesn't really matter.
1682 */
1683 ret = ipipe_prep(ipipe, flags);
1684 if (!ret) {
1685 ret = opipe_prep(opipe, flags);
1686 if (!ret)
1687 ret = link_pipe(ipipe, opipe, len, flags);
1688 }
1689 }
1690
1691 return ret;
1692}
1693
1694SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1695{
1696 struct fd in, out;
1697 int error;
1698
1699 if (unlikely(flags & ~SPLICE_F_ALL))
1700 return -EINVAL;
1701
1702 if (unlikely(!len))
1703 return 0;
1704
1705 error = -EBADF;
1706 in = fdget(fdin);
1707 if (in.file) {
1708 out = fdget(fdout);
1709 if (out.file) {
1710 error = do_tee(in.file, out.file, len, flags);
1711 fdput(out);
1712 }
1713 fdput(in);
1714 }
1715
1716 return error;
1717}