Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * "splice": joining two ropes together by interweaving their strands.
   3 *
   4 * This is the "extended pipe" functionality, where a pipe is used as
   5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
   6 * buffer that you can use to transfer data from one end to the other.
   7 *
   8 * The traditional unix read/write is extended with a "splice()" operation
   9 * that transfers data buffers to or from a pipe buffer.
  10 *
  11 * Named by Larry McVoy, original implementation from Linus, extended by
  12 * Jens to support splicing to files, network, direct splicing, etc and
  13 * fixing lots of bugs.
  14 *
  15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
  16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
  17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
  18 *
  19 */
 
  20#include <linux/fs.h>
  21#include <linux/file.h>
  22#include <linux/pagemap.h>
  23#include <linux/splice.h>
  24#include <linux/memcontrol.h>
  25#include <linux/mm_inline.h>
  26#include <linux/swap.h>
  27#include <linux/writeback.h>
  28#include <linux/buffer_head.h>
  29#include <linux/module.h>
  30#include <linux/syscalls.h>
  31#include <linux/uio.h>
  32#include <linux/security.h>
  33#include <linux/gfp.h>
 
 
 
 
 
  34
  35/*
  36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
  37 * a vm helper function, it's already simplified quite a bit by the
  38 * addition of remove_mapping(). If success is returned, the caller may
  39 * attempt to reuse this page for another destination.
  40 */
  41static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
  42				     struct pipe_buffer *buf)
  43{
  44	struct page *page = buf->page;
  45	struct address_space *mapping;
  46
  47	lock_page(page);
  48
  49	mapping = page_mapping(page);
  50	if (mapping) {
  51		WARN_ON(!PageUptodate(page));
  52
  53		/*
  54		 * At least for ext2 with nobh option, we need to wait on
  55		 * writeback completing on this page, since we'll remove it
  56		 * from the pagecache.  Otherwise truncate wont wait on the
  57		 * page, allowing the disk blocks to be reused by someone else
  58		 * before we actually wrote our data to them. fs corruption
  59		 * ensues.
  60		 */
  61		wait_on_page_writeback(page);
  62
  63		if (page_has_private(page) &&
  64		    !try_to_release_page(page, GFP_KERNEL))
  65			goto out_unlock;
  66
  67		/*
  68		 * If we succeeded in removing the mapping, set LRU flag
  69		 * and return good.
  70		 */
  71		if (remove_mapping(mapping, page)) {
  72			buf->flags |= PIPE_BUF_FLAG_LRU;
  73			return 0;
  74		}
  75	}
  76
  77	/*
  78	 * Raced with truncate or failed to remove page from current
  79	 * address space, unlock and return failure.
  80	 */
  81out_unlock:
  82	unlock_page(page);
  83	return 1;
  84}
  85
  86static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
  87					struct pipe_buffer *buf)
  88{
  89	page_cache_release(buf->page);
  90	buf->flags &= ~PIPE_BUF_FLAG_LRU;
  91}
  92
  93/*
  94 * Check whether the contents of buf is OK to access. Since the content
  95 * is a page cache page, IO may be in flight.
  96 */
  97static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
  98				       struct pipe_buffer *buf)
  99{
 100	struct page *page = buf->page;
 101	int err;
 102
 103	if (!PageUptodate(page)) {
 104		lock_page(page);
 105
 106		/*
 107		 * Page got truncated/unhashed. This will cause a 0-byte
 108		 * splice, if this is the first page.
 109		 */
 110		if (!page->mapping) {
 111			err = -ENODATA;
 112			goto error;
 113		}
 114
 115		/*
 116		 * Uh oh, read-error from disk.
 117		 */
 118		if (!PageUptodate(page)) {
 119			err = -EIO;
 120			goto error;
 121		}
 122
 123		/*
 124		 * Page is ok afterall, we are done.
 125		 */
 126		unlock_page(page);
 127	}
 128
 129	return 0;
 130error:
 131	unlock_page(page);
 132	return err;
 133}
 134
 135const struct pipe_buf_operations page_cache_pipe_buf_ops = {
 136	.can_merge = 0,
 137	.map = generic_pipe_buf_map,
 138	.unmap = generic_pipe_buf_unmap,
 139	.confirm = page_cache_pipe_buf_confirm,
 140	.release = page_cache_pipe_buf_release,
 141	.steal = page_cache_pipe_buf_steal,
 142	.get = generic_pipe_buf_get,
 143};
 144
 145static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
 146				    struct pipe_buffer *buf)
 147{
 148	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
 149		return 1;
 150
 151	buf->flags |= PIPE_BUF_FLAG_LRU;
 152	return generic_pipe_buf_steal(pipe, buf);
 153}
 154
 155static const struct pipe_buf_operations user_page_pipe_buf_ops = {
 156	.can_merge = 0,
 157	.map = generic_pipe_buf_map,
 158	.unmap = generic_pipe_buf_unmap,
 159	.confirm = generic_pipe_buf_confirm,
 160	.release = page_cache_pipe_buf_release,
 161	.steal = user_page_pipe_buf_steal,
 162	.get = generic_pipe_buf_get,
 163};
 164
 165static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
 166{
 167	smp_mb();
 168	if (waitqueue_active(&pipe->wait))
 169		wake_up_interruptible(&pipe->wait);
 170	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 171}
 172
 173/**
 174 * splice_to_pipe - fill passed data into a pipe
 175 * @pipe:	pipe to fill
 176 * @spd:	data to fill
 177 *
 178 * Description:
 179 *    @spd contains a map of pages and len/offset tuples, along with
 180 *    the struct pipe_buf_operations associated with these pages. This
 181 *    function will link that data to the pipe.
 182 *
 183 */
 184ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
 185		       struct splice_pipe_desc *spd)
 186{
 187	unsigned int spd_pages = spd->nr_pages;
 188	int ret, do_wakeup, page_nr;
 189
 190	ret = 0;
 191	do_wakeup = 0;
 192	page_nr = 0;
 193
 194	pipe_lock(pipe);
 195
 196	for (;;) {
 197		if (!pipe->readers) {
 198			send_sig(SIGPIPE, current, 0);
 199			if (!ret)
 200				ret = -EPIPE;
 201			break;
 202		}
 203
 204		if (pipe->nrbufs < pipe->buffers) {
 205			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
 206			struct pipe_buffer *buf = pipe->bufs + newbuf;
 207
 208			buf->page = spd->pages[page_nr];
 209			buf->offset = spd->partial[page_nr].offset;
 210			buf->len = spd->partial[page_nr].len;
 211			buf->private = spd->partial[page_nr].private;
 212			buf->ops = spd->ops;
 213			if (spd->flags & SPLICE_F_GIFT)
 214				buf->flags |= PIPE_BUF_FLAG_GIFT;
 215
 216			pipe->nrbufs++;
 217			page_nr++;
 218			ret += buf->len;
 219
 220			if (pipe->inode)
 221				do_wakeup = 1;
 222
 223			if (!--spd->nr_pages)
 224				break;
 225			if (pipe->nrbufs < pipe->buffers)
 226				continue;
 
 227
 228			break;
 229		}
 230
 231		if (spd->flags & SPLICE_F_NONBLOCK) {
 232			if (!ret)
 233				ret = -EAGAIN;
 234			break;
 235		}
 
 
 
 
 
 
 236
 237		if (signal_pending(current)) {
 238			if (!ret)
 239				ret = -ERESTARTSYS;
 240			break;
 241		}
 242
 243		if (do_wakeup) {
 244			smp_mb();
 245			if (waitqueue_active(&pipe->wait))
 246				wake_up_interruptible_sync(&pipe->wait);
 247			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 248			do_wakeup = 0;
 249		}
 250
 251		pipe->waiting_writers++;
 252		pipe_wait(pipe);
 253		pipe->waiting_writers--;
 254	}
 255
 256	pipe_unlock(pipe);
 257
 258	if (do_wakeup)
 259		wakeup_pipe_readers(pipe);
 260
 
 261	while (page_nr < spd_pages)
 262		spd->spd_release(spd, page_nr++);
 263
 264	return ret;
 265}
 
 266
 267void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
 268{
 269	page_cache_release(spd->pages[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 270}
 
 271
 272/*
 273 * Check if we need to grow the arrays holding pages and partial page
 274 * descriptions.
 275 */
 276int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
 277{
 278	if (pipe->buffers <= PIPE_DEF_BUFFERS)
 
 
 
 279		return 0;
 280
 281	spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
 282	spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
 
 283
 284	if (spd->pages && spd->partial)
 285		return 0;
 286
 287	kfree(spd->pages);
 288	kfree(spd->partial);
 289	return -ENOMEM;
 290}
 291
 292void splice_shrink_spd(struct pipe_inode_info *pipe,
 293		       struct splice_pipe_desc *spd)
 294{
 295	if (pipe->buffers <= PIPE_DEF_BUFFERS)
 296		return;
 297
 298	kfree(spd->pages);
 299	kfree(spd->partial);
 300}
 301
 302static int
 303__generic_file_splice_read(struct file *in, loff_t *ppos,
 304			   struct pipe_inode_info *pipe, size_t len,
 305			   unsigned int flags)
 306{
 307	struct address_space *mapping = in->f_mapping;
 308	unsigned int loff, nr_pages, req_pages;
 309	struct page *pages[PIPE_DEF_BUFFERS];
 310	struct partial_page partial[PIPE_DEF_BUFFERS];
 311	struct page *page;
 312	pgoff_t index, end_index;
 313	loff_t isize;
 314	int error, page_nr;
 315	struct splice_pipe_desc spd = {
 316		.pages = pages,
 317		.partial = partial,
 318		.flags = flags,
 319		.ops = &page_cache_pipe_buf_ops,
 320		.spd_release = spd_release_page,
 321	};
 322
 323	if (splice_grow_spd(pipe, &spd))
 324		return -ENOMEM;
 325
 326	index = *ppos >> PAGE_CACHE_SHIFT;
 327	loff = *ppos & ~PAGE_CACHE_MASK;
 328	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 329	nr_pages = min(req_pages, pipe->buffers);
 330
 331	/*
 332	 * Lookup the (hopefully) full range of pages we need.
 333	 */
 334	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
 335	index += spd.nr_pages;
 336
 337	/*
 338	 * If find_get_pages_contig() returned fewer pages than we needed,
 339	 * readahead/allocate the rest and fill in the holes.
 340	 */
 341	if (spd.nr_pages < nr_pages)
 342		page_cache_sync_readahead(mapping, &in->f_ra, in,
 343				index, req_pages - spd.nr_pages);
 344
 345	error = 0;
 346	while (spd.nr_pages < nr_pages) {
 347		/*
 348		 * Page could be there, find_get_pages_contig() breaks on
 349		 * the first hole.
 350		 */
 351		page = find_get_page(mapping, index);
 352		if (!page) {
 353			/*
 354			 * page didn't exist, allocate one.
 355			 */
 356			page = page_cache_alloc_cold(mapping);
 357			if (!page)
 358				break;
 359
 360			error = add_to_page_cache_lru(page, mapping, index,
 361						GFP_KERNEL);
 362			if (unlikely(error)) {
 363				page_cache_release(page);
 364				if (error == -EEXIST)
 365					continue;
 366				break;
 367			}
 368			/*
 369			 * add_to_page_cache() locks the page, unlock it
 370			 * to avoid convoluting the logic below even more.
 371			 */
 372			unlock_page(page);
 373		}
 374
 375		spd.pages[spd.nr_pages++] = page;
 376		index++;
 377	}
 378
 379	/*
 380	 * Now loop over the map and see if we need to start IO on any
 381	 * pages, fill in the partial map, etc.
 382	 */
 383	index = *ppos >> PAGE_CACHE_SHIFT;
 384	nr_pages = spd.nr_pages;
 385	spd.nr_pages = 0;
 386	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
 387		unsigned int this_len;
 388
 389		if (!len)
 390			break;
 391
 392		/*
 393		 * this_len is the max we'll use from this page
 394		 */
 395		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
 396		page = spd.pages[page_nr];
 397
 398		if (PageReadahead(page))
 399			page_cache_async_readahead(mapping, &in->f_ra, in,
 400					page, index, req_pages - page_nr);
 401
 402		/*
 403		 * If the page isn't uptodate, we may need to start io on it
 404		 */
 405		if (!PageUptodate(page)) {
 406			lock_page(page);
 407
 408			/*
 409			 * Page was truncated, or invalidated by the
 410			 * filesystem.  Redo the find/create, but this time the
 411			 * page is kept locked, so there's no chance of another
 412			 * race with truncate/invalidate.
 413			 */
 414			if (!page->mapping) {
 415				unlock_page(page);
 416				page = find_or_create_page(mapping, index,
 417						mapping_gfp_mask(mapping));
 418
 419				if (!page) {
 420					error = -ENOMEM;
 421					break;
 422				}
 423				page_cache_release(spd.pages[page_nr]);
 424				spd.pages[page_nr] = page;
 425			}
 426			/*
 427			 * page was already under io and is now done, great
 428			 */
 429			if (PageUptodate(page)) {
 430				unlock_page(page);
 431				goto fill_it;
 432			}
 433
 434			/*
 435			 * need to read in the page
 436			 */
 437			error = mapping->a_ops->readpage(in, page);
 438			if (unlikely(error)) {
 439				/*
 440				 * We really should re-lookup the page here,
 441				 * but it complicates things a lot. Instead
 442				 * lets just do what we already stored, and
 443				 * we'll get it the next time we are called.
 444				 */
 445				if (error == AOP_TRUNCATED_PAGE)
 446					error = 0;
 447
 448				break;
 449			}
 450		}
 451fill_it:
 452		/*
 453		 * i_size must be checked after PageUptodate.
 454		 */
 455		isize = i_size_read(mapping->host);
 456		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
 457		if (unlikely(!isize || index > end_index))
 458			break;
 459
 460		/*
 461		 * if this is the last page, see if we need to shrink
 462		 * the length and stop
 463		 */
 464		if (end_index == index) {
 465			unsigned int plen;
 466
 467			/*
 468			 * max good bytes in this page
 469			 */
 470			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
 471			if (plen <= loff)
 472				break;
 473
 474			/*
 475			 * force quit after adding this page
 476			 */
 477			this_len = min(this_len, plen - loff);
 478			len = this_len;
 479		}
 480
 481		spd.partial[page_nr].offset = loff;
 482		spd.partial[page_nr].len = this_len;
 483		len -= this_len;
 484		loff = 0;
 485		spd.nr_pages++;
 486		index++;
 487	}
 488
 489	/*
 490	 * Release any pages at the end, if we quit early. 'page_nr' is how far
 491	 * we got, 'nr_pages' is how many pages are in the map.
 492	 */
 493	while (page_nr < nr_pages)
 494		page_cache_release(spd.pages[page_nr++]);
 495	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
 496
 497	if (spd.nr_pages)
 498		error = splice_to_pipe(pipe, &spd);
 499
 500	splice_shrink_spd(pipe, &spd);
 501	return error;
 502}
 503
 504/**
 505 * generic_file_splice_read - splice data from file to a pipe
 506 * @in:		file to splice from
 507 * @ppos:	position in @in
 508 * @pipe:	pipe to splice to
 509 * @len:	number of bytes to splice
 510 * @flags:	splice modifier flags
 511 *
 512 * Description:
 513 *    Will read pages from given file and fill them into a pipe. Can be
 514 *    used as long as the address_space operations for the source implements
 515 *    a readpage() hook.
 516 *
 517 */
 518ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
 519				 struct pipe_inode_info *pipe, size_t len,
 520				 unsigned int flags)
 521{
 522	loff_t isize, left;
 
 
 523	int ret;
 524
 525	isize = i_size_read(in->f_mapping->host);
 526	if (unlikely(*ppos >= isize))
 527		return 0;
 528
 529	left = isize - *ppos;
 530	if (unlikely(left < len))
 531		len = left;
 532
 533	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
 534	if (ret > 0) {
 535		*ppos += ret;
 536		file_accessed(in);
 
 
 
 
 
 
 
 
 
 
 537	}
 538
 539	return ret;
 540}
 541EXPORT_SYMBOL(generic_file_splice_read);
 542
 543static const struct pipe_buf_operations default_pipe_buf_ops = {
 544	.can_merge = 0,
 545	.map = generic_pipe_buf_map,
 546	.unmap = generic_pipe_buf_unmap,
 547	.confirm = generic_pipe_buf_confirm,
 548	.release = generic_pipe_buf_release,
 549	.steal = generic_pipe_buf_steal,
 550	.get = generic_pipe_buf_get,
 
 
 551};
 
 552
 553static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
 554			    unsigned long vlen, loff_t offset)
 555{
 556	mm_segment_t old_fs;
 557	loff_t pos = offset;
 558	ssize_t res;
 559
 560	old_fs = get_fs();
 561	set_fs(get_ds());
 562	/* The cast to a user pointer is valid due to the set_fs() */
 563	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
 564	set_fs(old_fs);
 565
 566	return res;
 567}
 568
 569static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
 570			    loff_t pos)
 571{
 572	mm_segment_t old_fs;
 573	ssize_t res;
 574
 575	old_fs = get_fs();
 576	set_fs(get_ds());
 577	/* The cast to a user pointer is valid due to the set_fs() */
 578	res = vfs_write(file, (const char __user *)buf, count, &pos);
 579	set_fs(old_fs);
 580
 581	return res;
 582}
 583
 584ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
 585				 struct pipe_inode_info *pipe, size_t len,
 586				 unsigned int flags)
 587{
 
 
 
 588	unsigned int nr_pages;
 589	unsigned int nr_freed;
 590	size_t offset;
 591	struct page *pages[PIPE_DEF_BUFFERS];
 592	struct partial_page partial[PIPE_DEF_BUFFERS];
 593	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
 594	ssize_t res;
 595	size_t this_len;
 596	int error;
 597	int i;
 598	struct splice_pipe_desc spd = {
 599		.pages = pages,
 600		.partial = partial,
 601		.flags = flags,
 602		.ops = &default_pipe_buf_ops,
 603		.spd_release = spd_release_page,
 604	};
 605
 606	if (splice_grow_spd(pipe, &spd))
 607		return -ENOMEM;
 608
 609	res = -ENOMEM;
 610	vec = __vec;
 611	if (pipe->buffers > PIPE_DEF_BUFFERS) {
 612		vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
 613		if (!vec)
 614			goto shrink_ret;
 615	}
 616
 617	offset = *ppos & ~PAGE_CACHE_MASK;
 618	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 619
 620	for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
 621		struct page *page;
 
 622
 623		page = alloc_page(GFP_USER);
 624		error = -ENOMEM;
 625		if (!page)
 626			goto err;
 627
 628		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
 629		vec[i].iov_base = (void __user *) page_address(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 630		vec[i].iov_len = this_len;
 631		spd.pages[i] = page;
 632		spd.nr_pages++;
 633		len -= this_len;
 634		offset = 0;
 635	}
 636
 637	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
 638	if (res < 0) {
 639		error = res;
 640		goto err;
 641	}
 642
 643	error = 0;
 644	if (!res)
 645		goto err;
 646
 647	nr_freed = 0;
 648	for (i = 0; i < spd.nr_pages; i++) {
 649		this_len = min_t(size_t, vec[i].iov_len, res);
 650		spd.partial[i].offset = 0;
 651		spd.partial[i].len = this_len;
 652		if (!this_len) {
 653			__free_page(spd.pages[i]);
 654			spd.pages[i] = NULL;
 655			nr_freed++;
 656		}
 657		res -= this_len;
 658	}
 659	spd.nr_pages -= nr_freed;
 660
 661	res = splice_to_pipe(pipe, &spd);
 662	if (res > 0)
 663		*ppos += res;
 
 664
 665shrink_ret:
 666	if (vec != __vec)
 667		kfree(vec);
 668	splice_shrink_spd(pipe, &spd);
 
 
 
 
 669	return res;
 670
 671err:
 672	for (i = 0; i < spd.nr_pages; i++)
 673		__free_page(spd.pages[i]);
 674
 675	res = error;
 676	goto shrink_ret;
 677}
 678EXPORT_SYMBOL(default_file_splice_read);
 679
 680/*
 681 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
 682 * using sendpage(). Return the number of bytes sent.
 683 */
 684static int pipe_to_sendpage(struct pipe_inode_info *pipe,
 685			    struct pipe_buffer *buf, struct splice_desc *sd)
 686{
 687	struct file *file = sd->u.file;
 688	loff_t pos = sd->pos;
 689	int more;
 690
 691	if (!likely(file->f_op && file->f_op->sendpage))
 692		return -EINVAL;
 693
 694	more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
 695	return file->f_op->sendpage(file, buf->page, buf->offset,
 696				    sd->len, &pos, more);
 697}
 698
 699/*
 700 * This is a little more tricky than the file -> pipe splicing. There are
 701 * basically three cases:
 702 *
 703 *	- Destination page already exists in the address space and there
 704 *	  are users of it. For that case we have no other option that
 705 *	  copying the data. Tough luck.
 706 *	- Destination page already exists in the address space, but there
 707 *	  are no users of it. Make sure it's uptodate, then drop it. Fall
 708 *	  through to last case.
 709 *	- Destination page does not exist, we can add the pipe page to
 710 *	  the page cache and avoid the copy.
 711 *
 712 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
 713 * sd->flags), we attempt to migrate pages from the pipe to the output
 714 * file address space page cache. This is possible if no one else has
 715 * the pipe page referenced outside of the pipe and page cache. If
 716 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
 717 * a new page in the output file page cache and fill/dirty that.
 718 */
 719int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
 720		 struct splice_desc *sd)
 721{
 722	struct file *file = sd->u.file;
 723	struct address_space *mapping = file->f_mapping;
 724	unsigned int offset, this_len;
 725	struct page *page;
 726	void *fsdata;
 727	int ret;
 728
 729	offset = sd->pos & ~PAGE_CACHE_MASK;
 730
 731	this_len = sd->len;
 732	if (this_len + offset > PAGE_CACHE_SIZE)
 733		this_len = PAGE_CACHE_SIZE - offset;
 734
 735	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
 736				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
 737	if (unlikely(ret))
 738		goto out;
 739
 740	if (buf->page != page) {
 741		/*
 742		 * Careful, ->map() uses KM_USER0!
 743		 */
 744		char *src = buf->ops->map(pipe, buf, 1);
 745		char *dst = kmap_atomic(page, KM_USER1);
 746
 747		memcpy(dst + offset, src + buf->offset, this_len);
 748		flush_dcache_page(page);
 749		kunmap_atomic(dst, KM_USER1);
 750		buf->ops->unmap(pipe, buf, src);
 751	}
 752	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
 753				page, fsdata);
 754out:
 755	return ret;
 756}
 757EXPORT_SYMBOL(pipe_to_file);
 758
 759static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
 760{
 761	smp_mb();
 762	if (waitqueue_active(&pipe->wait))
 763		wake_up_interruptible(&pipe->wait);
 764	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 765}
 766
 767/**
 768 * splice_from_pipe_feed - feed available data from a pipe to a file
 769 * @pipe:	pipe to splice from
 770 * @sd:		information to @actor
 771 * @actor:	handler that splices the data
 772 *
 773 * Description:
 774 *    This function loops over the pipe and calls @actor to do the
 775 *    actual moving of a single struct pipe_buffer to the desired
 776 *    destination.  It returns when there's no more buffers left in
 777 *    the pipe or if the requested number of bytes (@sd->total_len)
 778 *    have been copied.  It returns a positive number (one) if the
 779 *    pipe needs to be filled with more data, zero if the required
 780 *    number of bytes have been copied and -errno on error.
 781 *
 782 *    This, together with splice_from_pipe_{begin,end,next}, may be
 783 *    used to implement the functionality of __splice_from_pipe() when
 784 *    locking is required around copying the pipe buffers to the
 785 *    destination.
 786 */
 787int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
 788			  splice_actor *actor)
 789{
 
 
 
 790	int ret;
 791
 792	while (pipe->nrbufs) {
 793		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
 794		const struct pipe_buf_operations *ops = buf->ops;
 795
 796		sd->len = buf->len;
 797		if (sd->len > sd->total_len)
 798			sd->len = sd->total_len;
 799
 800		ret = buf->ops->confirm(pipe, buf);
 801		if (unlikely(ret)) {
 802			if (ret == -ENODATA)
 803				ret = 0;
 804			return ret;
 805		}
 806
 807		ret = actor(pipe, buf, sd);
 808		if (ret <= 0)
 809			return ret;
 810
 811		buf->offset += ret;
 812		buf->len -= ret;
 813
 814		sd->num_spliced += ret;
 815		sd->len -= ret;
 816		sd->pos += ret;
 817		sd->total_len -= ret;
 818
 819		if (!buf->len) {
 820			buf->ops = NULL;
 821			ops->release(pipe, buf);
 822			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
 823			pipe->nrbufs--;
 824			if (pipe->inode)
 825				sd->need_wakeup = true;
 826		}
 827
 828		if (!sd->total_len)
 829			return 0;
 830	}
 831
 832	return 1;
 833}
 834EXPORT_SYMBOL(splice_from_pipe_feed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835
 836/**
 837 * splice_from_pipe_next - wait for some data to splice from
 838 * @pipe:	pipe to splice from
 839 * @sd:		information about the splice operation
 840 *
 841 * Description:
 842 *    This function will wait for some data and return a positive
 843 *    value (one) if pipe buffers are available.  It will return zero
 844 *    or -errno if no more data needs to be spliced.
 845 */
 846int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
 847{
 848	while (!pipe->nrbufs) {
 
 
 
 
 
 
 
 
 849		if (!pipe->writers)
 850			return 0;
 851
 852		if (!pipe->waiting_writers && sd->num_spliced)
 853			return 0;
 854
 855		if (sd->flags & SPLICE_F_NONBLOCK)
 856			return -EAGAIN;
 857
 858		if (signal_pending(current))
 859			return -ERESTARTSYS;
 860
 861		if (sd->need_wakeup) {
 862			wakeup_pipe_writers(pipe);
 863			sd->need_wakeup = false;
 864		}
 865
 866		pipe_wait(pipe);
 867	}
 868
 
 
 
 869	return 1;
 870}
 871EXPORT_SYMBOL(splice_from_pipe_next);
 872
 873/**
 874 * splice_from_pipe_begin - start splicing from pipe
 875 * @sd:		information about the splice operation
 876 *
 877 * Description:
 878 *    This function should be called before a loop containing
 879 *    splice_from_pipe_next() and splice_from_pipe_feed() to
 880 *    initialize the necessary fields of @sd.
 881 */
 882void splice_from_pipe_begin(struct splice_desc *sd)
 883{
 884	sd->num_spliced = 0;
 885	sd->need_wakeup = false;
 886}
 887EXPORT_SYMBOL(splice_from_pipe_begin);
 888
 889/**
 890 * splice_from_pipe_end - finish splicing from pipe
 891 * @pipe:	pipe to splice from
 892 * @sd:		information about the splice operation
 893 *
 894 * Description:
 895 *    This function will wake up pipe writers if necessary.  It should
 896 *    be called after a loop containing splice_from_pipe_next() and
 897 *    splice_from_pipe_feed().
 898 */
 899void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
 900{
 901	if (sd->need_wakeup)
 902		wakeup_pipe_writers(pipe);
 903}
 904EXPORT_SYMBOL(splice_from_pipe_end);
 905
 906/**
 907 * __splice_from_pipe - splice data from a pipe to given actor
 908 * @pipe:	pipe to splice from
 909 * @sd:		information to @actor
 910 * @actor:	handler that splices the data
 911 *
 912 * Description:
 913 *    This function does little more than loop over the pipe and call
 914 *    @actor to do the actual moving of a single struct pipe_buffer to
 915 *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
 916 *    pipe_to_user.
 917 *
 918 */
 919ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
 920			   splice_actor *actor)
 921{
 922	int ret;
 923
 924	splice_from_pipe_begin(sd);
 925	do {
 
 926		ret = splice_from_pipe_next(pipe, sd);
 927		if (ret > 0)
 928			ret = splice_from_pipe_feed(pipe, sd, actor);
 929	} while (ret > 0);
 930	splice_from_pipe_end(pipe, sd);
 931
 932	return sd->num_spliced ? sd->num_spliced : ret;
 933}
 934EXPORT_SYMBOL(__splice_from_pipe);
 935
 936/**
 937 * splice_from_pipe - splice data from a pipe to a file
 938 * @pipe:	pipe to splice from
 939 * @out:	file to splice to
 940 * @ppos:	position in @out
 941 * @len:	how many bytes to splice
 942 * @flags:	splice modifier flags
 943 * @actor:	handler that splices the data
 944 *
 945 * Description:
 946 *    See __splice_from_pipe. This function locks the pipe inode,
 947 *    otherwise it's identical to __splice_from_pipe().
 948 *
 949 */
 950ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
 951			 loff_t *ppos, size_t len, unsigned int flags,
 952			 splice_actor *actor)
 953{
 954	ssize_t ret;
 955	struct splice_desc sd = {
 956		.total_len = len,
 957		.flags = flags,
 958		.pos = *ppos,
 959		.u.file = out,
 960	};
 961
 962	pipe_lock(pipe);
 963	ret = __splice_from_pipe(pipe, &sd, actor);
 964	pipe_unlock(pipe);
 965
 966	return ret;
 967}
 968
 969/**
 970 * generic_file_splice_write - splice data from a pipe to a file
 971 * @pipe:	pipe info
 972 * @out:	file to write to
 973 * @ppos:	position in @out
 974 * @len:	number of bytes to splice
 975 * @flags:	splice modifier flags
 976 *
 977 * Description:
 978 *    Will either move or copy pages (determined by @flags options) from
 979 *    the given pipe inode to the given file.
 
 980 *
 981 */
 982ssize_t
 983generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
 984			  loff_t *ppos, size_t len, unsigned int flags)
 985{
 986	struct address_space *mapping = out->f_mapping;
 987	struct inode *inode = mapping->host;
 988	struct splice_desc sd = {
 989		.total_len = len,
 990		.flags = flags,
 991		.pos = *ppos,
 992		.u.file = out,
 993	};
 
 
 
 994	ssize_t ret;
 995
 
 
 
 996	pipe_lock(pipe);
 997
 998	splice_from_pipe_begin(&sd);
 999	do {
 
 
 
 
 
1000		ret = splice_from_pipe_next(pipe, &sd);
1001		if (ret <= 0)
1002			break;
1003
1004		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1005		ret = file_remove_suid(out);
1006		if (!ret) {
1007			file_update_time(out);
1008			ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
 
 
 
 
1009		}
1010		mutex_unlock(&inode->i_mutex);
1011	} while (ret > 0);
1012	splice_from_pipe_end(pipe, &sd);
1013
1014	pipe_unlock(pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015
1016	if (sd.num_spliced)
1017		ret = sd.num_spliced;
 
 
 
1018
1019	if (ret > 0) {
1020		unsigned long nr_pages;
1021		int err;
 
1022
1023		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 
 
1024
1025		err = generic_write_sync(out, *ppos, ret);
1026		if (err)
1027			ret = err;
1028		else
1029			*ppos += ret;
1030		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
1031	}
 
 
 
 
 
 
 
 
1032
1033	return ret;
1034}
1035
1036EXPORT_SYMBOL(generic_file_splice_write);
1037
1038static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1039			  struct splice_desc *sd)
1040{
1041	int ret;
1042	void *data;
 
1043
1044	data = buf->ops->map(pipe, buf, 0);
1045	ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1046	buf->ops->unmap(pipe, buf, data);
1047
1048	return ret;
1049}
1050
1051static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1052					 struct file *out, loff_t *ppos,
1053					 size_t len, unsigned int flags)
1054{
1055	ssize_t ret;
1056
1057	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1058	if (ret > 0)
1059		*ppos += ret;
1060
1061	return ret;
1062}
1063
1064/**
1065 * generic_splice_sendpage - splice data from a pipe to a socket
1066 * @pipe:	pipe to splice from
1067 * @out:	socket to write to
1068 * @ppos:	position in @out
1069 * @len:	number of bytes to splice
1070 * @flags:	splice modifier flags
1071 *
1072 * Description:
1073 *    Will send @len bytes from the pipe to a network socket. No data copying
1074 *    is involved.
1075 *
1076 */
1077ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1078				loff_t *ppos, size_t len, unsigned int flags)
1079{
1080	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1081}
1082
1083EXPORT_SYMBOL(generic_splice_sendpage);
1084
1085/*
1086 * Attempt to initiate a splice from pipe to file.
1087 */
1088static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1089			   loff_t *ppos, size_t len, unsigned int flags)
1090{
1091	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1092				loff_t *, size_t, unsigned int);
1093	int ret;
1094
1095	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1096		return -EBADF;
1097
1098	if (unlikely(out->f_flags & O_APPEND))
1099		return -EINVAL;
1100
1101	ret = rw_verify_area(WRITE, out, ppos, len);
1102	if (unlikely(ret < 0))
1103		return ret;
1104
1105	if (out->f_op && out->f_op->splice_write)
1106		splice_write = out->f_op->splice_write;
1107	else
1108		splice_write = default_file_splice_write;
1109
1110	return splice_write(pipe, out, ppos, len, flags);
1111}
1112
1113/*
1114 * Attempt to initiate a splice from a file to a pipe.
1115 */
1116static long do_splice_to(struct file *in, loff_t *ppos,
1117			 struct pipe_inode_info *pipe, size_t len,
1118			 unsigned int flags)
1119{
1120	ssize_t (*splice_read)(struct file *, loff_t *,
1121			       struct pipe_inode_info *, size_t, unsigned int);
1122	int ret;
1123
1124	if (unlikely(!(in->f_mode & FMODE_READ)))
1125		return -EBADF;
1126
1127	ret = rw_verify_area(READ, in, ppos, len);
1128	if (unlikely(ret < 0))
1129		return ret;
1130
1131	if (in->f_op && in->f_op->splice_read)
1132		splice_read = in->f_op->splice_read;
1133	else
1134		splice_read = default_file_splice_read;
1135
1136	return splice_read(in, ppos, pipe, len, flags);
 
 
1137}
1138
1139/**
1140 * splice_direct_to_actor - splices data directly between two non-pipes
1141 * @in:		file to splice from
1142 * @sd:		actor information on where to splice to
1143 * @actor:	handles the data splicing
1144 *
1145 * Description:
1146 *    This is a special case helper to splice directly between two
1147 *    points, without requiring an explicit pipe. Internally an allocated
1148 *    pipe is cached in the process, and reused during the lifetime of
1149 *    that process.
1150 *
1151 */
1152ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1153			       splice_direct_actor *actor)
1154{
1155	struct pipe_inode_info *pipe;
1156	long ret, bytes;
1157	umode_t i_mode;
1158	size_t len;
1159	int i, flags;
1160
1161	/*
1162	 * We require the input being a regular file, as we don't want to
1163	 * randomly drop data for eg socket -> socket splicing. Use the
1164	 * piped splicing for that!
1165	 */
1166	i_mode = in->f_path.dentry->d_inode->i_mode;
1167	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1168		return -EINVAL;
1169
1170	/*
1171	 * neither in nor out is a pipe, setup an internal pipe attached to
1172	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1173	 */
1174	pipe = current->splice_pipe;
1175	if (unlikely(!pipe)) {
1176		pipe = alloc_pipe_info(NULL);
1177		if (!pipe)
1178			return -ENOMEM;
1179
1180		/*
1181		 * We don't have an immediate reader, but we'll read the stuff
1182		 * out of the pipe right after the splice_to_pipe(). So set
1183		 * PIPE_READERS appropriately.
1184		 */
1185		pipe->readers = 1;
1186
1187		current->splice_pipe = pipe;
1188	}
1189
1190	/*
1191	 * Do the splice.
1192	 */
1193	ret = 0;
1194	bytes = 0;
1195	len = sd->total_len;
1196	flags = sd->flags;
1197
1198	/*
1199	 * Don't block on output, we have to drain the direct pipe.
1200	 */
1201	sd->flags &= ~SPLICE_F_NONBLOCK;
 
 
 
1202
1203	while (len) {
 
1204		size_t read_len;
1205		loff_t pos = sd->pos, prev_pos = pos;
1206
1207		ret = do_splice_to(in, &pos, pipe, len, flags);
 
 
 
 
1208		if (unlikely(ret <= 0))
1209			goto out_release;
1210
1211		read_len = ret;
1212		sd->total_len = read_len;
1213
1214		/*
 
 
 
 
 
 
 
 
 
1215		 * NOTE: nonblocking mode only applies to the input. We
1216		 * must not do the output in nonblocking mode as then we
1217		 * could get stuck data in the internal pipe:
1218		 */
1219		ret = actor(pipe, sd);
1220		if (unlikely(ret <= 0)) {
1221			sd->pos = prev_pos;
1222			goto out_release;
1223		}
1224
1225		bytes += ret;
1226		len -= ret;
1227		sd->pos = pos;
1228
1229		if (ret < read_len) {
1230			sd->pos = prev_pos + ret;
1231			goto out_release;
1232		}
1233	}
1234
1235done:
1236	pipe->nrbufs = pipe->curbuf = 0;
1237	file_accessed(in);
1238	return bytes;
1239
1240out_release:
1241	/*
1242	 * If we did an incomplete transfer we must release
1243	 * the pipe buffers in question:
1244	 */
1245	for (i = 0; i < pipe->buffers; i++) {
1246		struct pipe_buffer *buf = pipe->bufs + i;
1247
1248		if (buf->ops) {
1249			buf->ops->release(pipe, buf);
1250			buf->ops = NULL;
1251		}
1252	}
1253
1254	if (!bytes)
1255		bytes = ret;
1256
1257	goto done;
1258}
1259EXPORT_SYMBOL(splice_direct_to_actor);
1260
1261static int direct_splice_actor(struct pipe_inode_info *pipe,
1262			       struct splice_desc *sd)
1263{
1264	struct file *file = sd->u.file;
1265
1266	return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1267			      sd->flags);
1268}
1269
1270/**
1271 * do_splice_direct - splices data directly between two files
1272 * @in:		file to splice from
1273 * @ppos:	input file offset
1274 * @out:	file to splice to
 
1275 * @len:	number of bytes to splice
1276 * @flags:	splice modifier flags
1277 *
1278 * Description:
1279 *    For use by do_sendfile(). splice can easily emulate sendfile, but
1280 *    doing it in the application would incur an extra system call
1281 *    (splice in + splice out, as compared to just sendfile()). So this helper
1282 *    can splice directly through a process-private pipe.
1283 *
1284 */
1285long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1286		      size_t len, unsigned int flags)
1287{
1288	struct splice_desc sd = {
1289		.len		= len,
1290		.total_len	= len,
1291		.flags		= flags,
1292		.pos		= *ppos,
1293		.u.file		= out,
 
1294	};
1295	long ret;
1296
 
 
 
 
 
 
 
 
 
 
1297	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1298	if (ret > 0)
1299		*ppos = sd.pos;
1300
1301	return ret;
1302}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303
1304static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1305			       struct pipe_inode_info *opipe,
1306			       size_t len, unsigned int flags);
1307
1308/*
1309 * Determine where to splice to/from.
1310 */
1311static long do_splice(struct file *in, loff_t __user *off_in,
1312		      struct file *out, loff_t __user *off_out,
1313		      size_t len, unsigned int flags)
1314{
1315	struct pipe_inode_info *ipipe;
1316	struct pipe_inode_info *opipe;
1317	loff_t offset, *off;
1318	long ret;
1319
1320	ipipe = get_pipe_info(in);
1321	opipe = get_pipe_info(out);
 
 
 
 
1322
1323	if (ipipe && opipe) {
1324		if (off_in || off_out)
1325			return -ESPIPE;
1326
1327		if (!(in->f_mode & FMODE_READ))
1328			return -EBADF;
1329
1330		if (!(out->f_mode & FMODE_WRITE))
1331			return -EBADF;
1332
1333		/* Splicing to self would be fun, but... */
1334		if (ipipe == opipe)
1335			return -EINVAL;
1336
 
 
 
1337		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1338	}
1339
1340	if (ipipe) {
1341		if (off_in)
1342			return -ESPIPE;
1343		if (off_out) {
1344			if (!(out->f_mode & FMODE_PWRITE))
1345				return -EINVAL;
1346			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1347				return -EFAULT;
1348			off = &offset;
1349		} else
1350			off = &out->f_pos;
1351
1352		ret = do_splice_from(ipipe, out, off, len, flags);
 
1353
1354		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
 
 
 
 
 
 
 
 
 
 
 
 
 
1355			ret = -EFAULT;
1356
1357		return ret;
1358	}
1359
1360	if (opipe) {
1361		if (off_out)
1362			return -ESPIPE;
1363		if (off_in) {
1364			if (!(in->f_mode & FMODE_PREAD))
1365				return -EINVAL;
1366			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1367				return -EFAULT;
1368			off = &offset;
1369		} else
1370			off = &in->f_pos;
 
 
 
1371
1372		ret = do_splice_to(in, off, opipe, len, flags);
 
 
 
1373
1374		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
 
 
 
 
 
 
 
 
 
 
 
1375			ret = -EFAULT;
1376
1377		return ret;
1378	}
1379
1380	return -EINVAL;
1381}
1382
1383/*
1384 * Map an iov into an array of pages and offset/length tupples. With the
1385 * partial_page structure, we can map several non-contiguous ranges into
1386 * our ones pages[] map instead of splitting that operation into pieces.
1387 * Could easily be exported as a generic helper for other users, in which
1388 * case one would probably want to add a 'max_nr_pages' parameter as well.
1389 */
1390static int get_iovec_page_array(const struct iovec __user *iov,
1391				unsigned int nr_vecs, struct page **pages,
1392				struct partial_page *partial, int aligned,
1393				unsigned int pipe_buffers)
1394{
1395	int buffers = 0, error = 0;
1396
1397	while (nr_vecs) {
1398		unsigned long off, npages;
1399		struct iovec entry;
1400		void __user *base;
1401		size_t len;
1402		int i;
1403
1404		error = -EFAULT;
1405		if (copy_from_user(&entry, iov, sizeof(entry)))
1406			break;
1407
1408		base = entry.iov_base;
1409		len = entry.iov_len;
1410
1411		/*
1412		 * Sanity check this iovec. 0 read succeeds.
1413		 */
1414		error = 0;
1415		if (unlikely(!len))
1416			break;
1417		error = -EFAULT;
1418		if (!access_ok(VERIFY_READ, base, len))
1419			break;
1420
1421		/*
1422		 * Get this base offset and number of pages, then map
1423		 * in the user pages.
1424		 */
1425		off = (unsigned long) base & ~PAGE_MASK;
1426
1427		/*
1428		 * If asked for alignment, the offset must be zero and the
1429		 * length a multiple of the PAGE_SIZE.
1430		 */
1431		error = -EINVAL;
1432		if (aligned && (off || len & ~PAGE_MASK))
1433			break;
1434
1435		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1436		if (npages > pipe_buffers - buffers)
1437			npages = pipe_buffers - buffers;
1438
1439		error = get_user_pages_fast((unsigned long)base, npages,
1440					0, &pages[buffers]);
1441
1442		if (unlikely(error <= 0))
1443			break;
1444
1445		/*
1446		 * Fill this contiguous range into the partial page map.
1447		 */
1448		for (i = 0; i < error; i++) {
1449			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1450
1451			partial[buffers].offset = off;
1452			partial[buffers].len = plen;
1453
1454			off = 0;
1455			len -= plen;
1456			buffers++;
1457		}
1458
1459		/*
1460		 * We didn't complete this iov, stop here since it probably
1461		 * means we have to move some of this into a pipe to
1462		 * be able to continue.
1463		 */
1464		if (len)
1465			break;
1466
1467		/*
1468		 * Don't continue if we mapped fewer pages than we asked for,
1469		 * or if we mapped the max number of pages that we have
1470		 * room for.
1471		 */
1472		if (error < npages || buffers == pipe_buffers)
1473			break;
1474
1475		nr_vecs--;
1476		iov++;
1477	}
1478
1479	if (buffers)
1480		return buffers;
1481
1482	return error;
1483}
1484
1485static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1486			struct splice_desc *sd)
1487{
1488	char *src;
1489	int ret;
1490
1491	/*
1492	 * See if we can use the atomic maps, by prefaulting in the
1493	 * pages and doing an atomic copy
1494	 */
1495	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1496		src = buf->ops->map(pipe, buf, 1);
1497		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1498							sd->len);
1499		buf->ops->unmap(pipe, buf, src);
1500		if (!ret) {
1501			ret = sd->len;
1502			goto out;
1503		}
1504	}
1505
1506	/*
1507	 * No dice, use slow non-atomic map and copy
1508 	 */
1509	src = buf->ops->map(pipe, buf, 0);
1510
1511	ret = sd->len;
1512	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1513		ret = -EFAULT;
1514
1515	buf->ops->unmap(pipe, buf, src);
1516out:
1517	if (ret > 0)
1518		sd->u.userptr += ret;
1519	return ret;
1520}
1521
1522/*
1523 * For lack of a better implementation, implement vmsplice() to userspace
1524 * as a simple copy of the pipes pages to the user iov.
1525 */
1526static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1527			     unsigned long nr_segs, unsigned int flags)
1528{
1529	struct pipe_inode_info *pipe;
1530	struct splice_desc sd;
1531	ssize_t size;
1532	int error;
1533	long ret;
 
 
1534
1535	pipe = get_pipe_info(file);
1536	if (!pipe)
1537		return -EBADF;
1538
1539	pipe_lock(pipe);
1540
1541	error = ret = 0;
1542	while (nr_segs) {
1543		void __user *base;
1544		size_t len;
1545
1546		/*
1547		 * Get user address base and length for this iovec.
1548		 */
1549		error = get_user(base, &iov->iov_base);
1550		if (unlikely(error))
1551			break;
1552		error = get_user(len, &iov->iov_len);
1553		if (unlikely(error))
1554			break;
1555
1556		/*
1557		 * Sanity check this iovec. 0 read succeeds.
1558		 */
1559		if (unlikely(!len))
1560			break;
1561		if (unlikely(!base)) {
1562			error = -EFAULT;
1563			break;
1564		}
1565
1566		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1567			error = -EFAULT;
1568			break;
1569		}
1570
1571		sd.len = 0;
1572		sd.total_len = len;
1573		sd.flags = flags;
1574		sd.u.userptr = base;
1575		sd.pos = 0;
1576
1577		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1578		if (size < 0) {
1579			if (!ret)
1580				ret = size;
1581
1582			break;
1583		}
1584
1585		ret += size;
1586
1587		if (size < len)
1588			break;
1589
1590		nr_segs--;
1591		iov++;
1592	}
1593
1594	pipe_unlock(pipe);
1595
1596	if (!ret)
1597		ret = error;
1598
1599	return ret;
1600}
1601
1602/*
1603 * vmsplice splices a user address range into a pipe. It can be thought of
1604 * as splice-from-memory, where the regular splice is splice-from-file (or
1605 * to file). In both cases the output is a pipe, naturally.
1606 */
1607static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1608			     unsigned long nr_segs, unsigned int flags)
1609{
1610	struct pipe_inode_info *pipe;
1611	struct page *pages[PIPE_DEF_BUFFERS];
1612	struct partial_page partial[PIPE_DEF_BUFFERS];
1613	struct splice_pipe_desc spd = {
1614		.pages = pages,
1615		.partial = partial,
1616		.flags = flags,
1617		.ops = &user_page_pipe_buf_ops,
1618		.spd_release = spd_release_page,
1619	};
1620	long ret;
1621
1622	pipe = get_pipe_info(file);
 
 
 
1623	if (!pipe)
1624		return -EBADF;
1625
1626	if (splice_grow_spd(pipe, &spd))
1627		return -ENOMEM;
1628
1629	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1630					    spd.partial, flags & SPLICE_F_GIFT,
1631					    pipe->buffers);
1632	if (spd.nr_pages <= 0)
1633		ret = spd.nr_pages;
1634	else
1635		ret = splice_to_pipe(pipe, &spd);
1636
1637	splice_shrink_spd(pipe, &spd);
1638	return ret;
1639}
1640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1641/*
1642 * Note that vmsplice only really supports true splicing _from_ user memory
1643 * to a pipe, not the other way around. Splicing from user memory is a simple
1644 * operation that can be supported without any funky alignment restrictions
1645 * or nasty vm tricks. We simply map in the user memory and fill them into
1646 * a pipe. The reverse isn't quite as easy, though. There are two possible
1647 * solutions for that:
1648 *
1649 *	- memcpy() the data internally, at which point we might as well just
1650 *	  do a regular read() on the buffer anyway.
1651 *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1652 *	  has restriction limitations on both ends of the pipe).
1653 *
1654 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1655 *
1656 */
1657SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1658		unsigned long, nr_segs, unsigned int, flags)
1659{
1660	struct file *file;
1661	long error;
1662	int fput;
1663
1664	if (unlikely(nr_segs > UIO_MAXIOV))
1665		return -EINVAL;
1666	else if (unlikely(!nr_segs))
 
1667		return 0;
1668
1669	error = -EBADF;
1670	file = fget_light(fd, &fput);
1671	if (file) {
1672		if (file->f_mode & FMODE_WRITE)
1673			error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1674		else if (file->f_mode & FMODE_READ)
1675			error = vmsplice_to_user(file, iov, nr_segs, flags);
1676
1677		fput_light(file, fput);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1678	}
 
 
 
1679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1680	return error;
1681}
 
1682
1683SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1684		int, fd_out, loff_t __user *, off_out,
1685		size_t, len, unsigned int, flags)
1686{
 
1687	long error;
1688	struct file *in, *out;
1689	int fput_in, fput_out;
1690
1691	if (unlikely(!len))
1692		return 0;
1693
 
 
 
1694	error = -EBADF;
1695	in = fget_light(fd_in, &fput_in);
1696	if (in) {
1697		if (in->f_mode & FMODE_READ) {
1698			out = fget_light(fd_out, &fput_out);
1699			if (out) {
1700				if (out->f_mode & FMODE_WRITE)
1701					error = do_splice(in, off_in,
1702							  out, off_out,
1703							  len, flags);
1704				fput_light(out, fput_out);
1705			}
1706		}
1707
1708		fput_light(in, fput_in);
1709	}
1710
1711	return error;
1712}
1713
1714/*
1715 * Make sure there's data to read. Wait for input if we can, otherwise
1716 * return an appropriate error.
1717 */
1718static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1719{
1720	int ret;
1721
1722	/*
1723	 * Check ->nrbufs without the inode lock first. This function
1724	 * is speculative anyways, so missing one is ok.
1725	 */
1726	if (pipe->nrbufs)
1727		return 0;
1728
1729	ret = 0;
1730	pipe_lock(pipe);
1731
1732	while (!pipe->nrbufs) {
1733		if (signal_pending(current)) {
1734			ret = -ERESTARTSYS;
1735			break;
1736		}
1737		if (!pipe->writers)
1738			break;
1739		if (!pipe->waiting_writers) {
1740			if (flags & SPLICE_F_NONBLOCK) {
1741				ret = -EAGAIN;
1742				break;
1743			}
1744		}
1745		pipe_wait(pipe);
1746	}
1747
1748	pipe_unlock(pipe);
1749	return ret;
1750}
1751
1752/*
1753 * Make sure there's writeable room. Wait for room if we can, otherwise
1754 * return an appropriate error.
1755 */
1756static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1757{
1758	int ret;
1759
1760	/*
1761	 * Check ->nrbufs without the inode lock first. This function
1762	 * is speculative anyways, so missing one is ok.
1763	 */
1764	if (pipe->nrbufs < pipe->buffers)
1765		return 0;
1766
1767	ret = 0;
1768	pipe_lock(pipe);
1769
1770	while (pipe->nrbufs >= pipe->buffers) {
1771		if (!pipe->readers) {
1772			send_sig(SIGPIPE, current, 0);
1773			ret = -EPIPE;
1774			break;
1775		}
1776		if (flags & SPLICE_F_NONBLOCK) {
1777			ret = -EAGAIN;
1778			break;
1779		}
1780		if (signal_pending(current)) {
1781			ret = -ERESTARTSYS;
1782			break;
1783		}
1784		pipe->waiting_writers++;
1785		pipe_wait(pipe);
1786		pipe->waiting_writers--;
1787	}
1788
1789	pipe_unlock(pipe);
1790	return ret;
1791}
1792
1793/*
1794 * Splice contents of ipipe to opipe.
1795 */
1796static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1797			       struct pipe_inode_info *opipe,
1798			       size_t len, unsigned int flags)
1799{
1800	struct pipe_buffer *ibuf, *obuf;
1801	int ret = 0, nbuf;
 
 
 
1802	bool input_wakeup = false;
1803
1804
1805retry:
1806	ret = ipipe_prep(ipipe, flags);
1807	if (ret)
1808		return ret;
1809
1810	ret = opipe_prep(opipe, flags);
1811	if (ret)
1812		return ret;
1813
1814	/*
1815	 * Potential ABBA deadlock, work around it by ordering lock
1816	 * grabbing by pipe info address. Otherwise two different processes
1817	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1818	 */
1819	pipe_double_lock(ipipe, opipe);
1820
 
 
 
 
 
1821	do {
 
 
1822		if (!opipe->readers) {
1823			send_sig(SIGPIPE, current, 0);
1824			if (!ret)
1825				ret = -EPIPE;
1826			break;
1827		}
1828
1829		if (!ipipe->nrbufs && !ipipe->writers)
 
 
 
1830			break;
1831
1832		/*
1833		 * Cannot make any progress, because either the input
1834		 * pipe is empty or the output pipe is full.
1835		 */
1836		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
 
1837			/* Already processed some buffers, break */
1838			if (ret)
1839				break;
1840
1841			if (flags & SPLICE_F_NONBLOCK) {
1842				ret = -EAGAIN;
1843				break;
1844			}
1845
1846			/*
1847			 * We raced with another reader/writer and haven't
1848			 * managed to process any buffers.  A zero return
1849			 * value means EOF, so retry instead.
1850			 */
1851			pipe_unlock(ipipe);
1852			pipe_unlock(opipe);
1853			goto retry;
1854		}
1855
1856		ibuf = ipipe->bufs + ipipe->curbuf;
1857		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1858		obuf = opipe->bufs + nbuf;
1859
1860		if (len >= ibuf->len) {
1861			/*
1862			 * Simply move the whole buffer from ipipe to opipe
1863			 */
1864			*obuf = *ibuf;
1865			ibuf->ops = NULL;
1866			opipe->nrbufs++;
1867			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1868			ipipe->nrbufs--;
1869			input_wakeup = true;
 
 
 
1870		} else {
1871			/*
1872			 * Get a reference to this pipe buffer,
1873			 * so we can copy the contents over.
1874			 */
1875			ibuf->ops->get(ipipe, ibuf);
 
 
 
 
1876			*obuf = *ibuf;
1877
1878			/*
1879			 * Don't inherit the gift flag, we need to
1880			 * prevent multiple steals of this page.
1881			 */
1882			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
 
1883
1884			obuf->len = len;
1885			opipe->nrbufs++;
1886			ibuf->offset += obuf->len;
1887			ibuf->len -= obuf->len;
 
 
1888		}
1889		ret += obuf->len;
1890		len -= obuf->len;
1891	} while (len);
1892
1893	pipe_unlock(ipipe);
1894	pipe_unlock(opipe);
1895
1896	/*
1897	 * If we put data in the output pipe, wakeup any potential readers.
1898	 */
1899	if (ret > 0)
1900		wakeup_pipe_readers(opipe);
1901
1902	if (input_wakeup)
1903		wakeup_pipe_writers(ipipe);
1904
1905	return ret;
1906}
1907
1908/*
1909 * Link contents of ipipe to opipe.
1910 */
1911static int link_pipe(struct pipe_inode_info *ipipe,
1912		     struct pipe_inode_info *opipe,
1913		     size_t len, unsigned int flags)
1914{
1915	struct pipe_buffer *ibuf, *obuf;
1916	int ret = 0, i = 0, nbuf;
 
 
 
1917
1918	/*
1919	 * Potential ABBA deadlock, work around it by ordering lock
1920	 * grabbing by pipe info address. Otherwise two different processes
1921	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1922	 */
1923	pipe_double_lock(ipipe, opipe);
1924
 
 
 
 
 
1925	do {
1926		if (!opipe->readers) {
1927			send_sig(SIGPIPE, current, 0);
1928			if (!ret)
1929				ret = -EPIPE;
1930			break;
1931		}
1932
 
 
 
1933		/*
1934		 * If we have iterated all input buffers or ran out of
1935		 * output room, break.
1936		 */
1937		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
 
1938			break;
1939
1940		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1941		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1942
1943		/*
1944		 * Get a reference to this pipe buffer,
1945		 * so we can copy the contents over.
1946		 */
1947		ibuf->ops->get(ipipe, ibuf);
 
 
 
 
1948
1949		obuf = opipe->bufs + nbuf;
1950		*obuf = *ibuf;
1951
1952		/*
1953		 * Don't inherit the gift flag, we need to
1954		 * prevent multiple steals of this page.
1955		 */
1956		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
 
1957
1958		if (obuf->len > len)
1959			obuf->len = len;
1960
1961		opipe->nrbufs++;
1962		ret += obuf->len;
1963		len -= obuf->len;
1964		i++;
1965	} while (len);
1966
1967	/*
1968	 * return EAGAIN if we have the potential of some data in the
1969	 * future, otherwise just return 0
1970	 */
1971	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1972		ret = -EAGAIN;
1973
1974	pipe_unlock(ipipe);
1975	pipe_unlock(opipe);
1976
1977	/*
1978	 * If we put data in the output pipe, wakeup any potential readers.
1979	 */
1980	if (ret > 0)
1981		wakeup_pipe_readers(opipe);
1982
1983	return ret;
1984}
1985
1986/*
1987 * This is a tee(1) implementation that works on pipes. It doesn't copy
1988 * any data, it simply references the 'in' pages on the 'out' pipe.
1989 * The 'flags' used are the SPLICE_F_* variants, currently the only
1990 * applicable one is SPLICE_F_NONBLOCK.
1991 */
1992static long do_tee(struct file *in, struct file *out, size_t len,
1993		   unsigned int flags)
1994{
1995	struct pipe_inode_info *ipipe = get_pipe_info(in);
1996	struct pipe_inode_info *opipe = get_pipe_info(out);
1997	int ret = -EINVAL;
1998
 
 
 
 
1999	/*
2000	 * Duplicate the contents of ipipe to opipe without actually
2001	 * copying the data.
2002	 */
2003	if (ipipe && opipe && ipipe != opipe) {
 
 
 
2004		/*
2005		 * Keep going, unless we encounter an error. The ipipe/opipe
2006		 * ordering doesn't really matter.
2007		 */
2008		ret = ipipe_prep(ipipe, flags);
2009		if (!ret) {
2010			ret = opipe_prep(opipe, flags);
2011			if (!ret)
2012				ret = link_pipe(ipipe, opipe, len, flags);
2013		}
2014	}
2015
2016	return ret;
2017}
2018
2019SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2020{
2021	struct file *in;
2022	int error, fput_in;
 
 
 
2023
2024	if (unlikely(!len))
2025		return 0;
2026
2027	error = -EBADF;
2028	in = fget_light(fdin, &fput_in);
2029	if (in) {
2030		if (in->f_mode & FMODE_READ) {
2031			int fput_out;
2032			struct file *out = fget_light(fdout, &fput_out);
2033
2034			if (out) {
2035				if (out->f_mode & FMODE_WRITE)
2036					error = do_tee(in, out, len, flags);
2037				fput_light(out, fput_out);
2038			}
2039		}
2040 		fput_light(in, fput_in);
2041 	}
2042
2043	return error;
2044}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * "splice": joining two ropes together by interweaving their strands.
   4 *
   5 * This is the "extended pipe" functionality, where a pipe is used as
   6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
   7 * buffer that you can use to transfer data from one end to the other.
   8 *
   9 * The traditional unix read/write is extended with a "splice()" operation
  10 * that transfers data buffers to or from a pipe buffer.
  11 *
  12 * Named by Larry McVoy, original implementation from Linus, extended by
  13 * Jens to support splicing to files, network, direct splicing, etc and
  14 * fixing lots of bugs.
  15 *
  16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
  17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
  18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
  19 *
  20 */
  21#include <linux/bvec.h>
  22#include <linux/fs.h>
  23#include <linux/file.h>
  24#include <linux/pagemap.h>
  25#include <linux/splice.h>
  26#include <linux/memcontrol.h>
  27#include <linux/mm_inline.h>
  28#include <linux/swap.h>
  29#include <linux/writeback.h>
  30#include <linux/export.h>
 
  31#include <linux/syscalls.h>
  32#include <linux/uio.h>
  33#include <linux/security.h>
  34#include <linux/gfp.h>
  35#include <linux/socket.h>
  36#include <linux/compat.h>
  37#include <linux/sched/signal.h>
  38
  39#include "internal.h"
  40
  41/*
  42 * Attempt to steal a page from a pipe buffer. This should perhaps go into
  43 * a vm helper function, it's already simplified quite a bit by the
  44 * addition of remove_mapping(). If success is returned, the caller may
  45 * attempt to reuse this page for another destination.
  46 */
  47static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
  48		struct pipe_buffer *buf)
  49{
  50	struct page *page = buf->page;
  51	struct address_space *mapping;
  52
  53	lock_page(page);
  54
  55	mapping = page_mapping(page);
  56	if (mapping) {
  57		WARN_ON(!PageUptodate(page));
  58
  59		/*
  60		 * At least for ext2 with nobh option, we need to wait on
  61		 * writeback completing on this page, since we'll remove it
  62		 * from the pagecache.  Otherwise truncate wont wait on the
  63		 * page, allowing the disk blocks to be reused by someone else
  64		 * before we actually wrote our data to them. fs corruption
  65		 * ensues.
  66		 */
  67		wait_on_page_writeback(page);
  68
  69		if (page_has_private(page) &&
  70		    !try_to_release_page(page, GFP_KERNEL))
  71			goto out_unlock;
  72
  73		/*
  74		 * If we succeeded in removing the mapping, set LRU flag
  75		 * and return good.
  76		 */
  77		if (remove_mapping(mapping, page)) {
  78			buf->flags |= PIPE_BUF_FLAG_LRU;
  79			return true;
  80		}
  81	}
  82
  83	/*
  84	 * Raced with truncate or failed to remove page from current
  85	 * address space, unlock and return failure.
  86	 */
  87out_unlock:
  88	unlock_page(page);
  89	return false;
  90}
  91
  92static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
  93					struct pipe_buffer *buf)
  94{
  95	put_page(buf->page);
  96	buf->flags &= ~PIPE_BUF_FLAG_LRU;
  97}
  98
  99/*
 100 * Check whether the contents of buf is OK to access. Since the content
 101 * is a page cache page, IO may be in flight.
 102 */
 103static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
 104				       struct pipe_buffer *buf)
 105{
 106	struct page *page = buf->page;
 107	int err;
 108
 109	if (!PageUptodate(page)) {
 110		lock_page(page);
 111
 112		/*
 113		 * Page got truncated/unhashed. This will cause a 0-byte
 114		 * splice, if this is the first page.
 115		 */
 116		if (!page->mapping) {
 117			err = -ENODATA;
 118			goto error;
 119		}
 120
 121		/*
 122		 * Uh oh, read-error from disk.
 123		 */
 124		if (!PageUptodate(page)) {
 125			err = -EIO;
 126			goto error;
 127		}
 128
 129		/*
 130		 * Page is ok afterall, we are done.
 131		 */
 132		unlock_page(page);
 133	}
 134
 135	return 0;
 136error:
 137	unlock_page(page);
 138	return err;
 139}
 140
 141const struct pipe_buf_operations page_cache_pipe_buf_ops = {
 142	.confirm	= page_cache_pipe_buf_confirm,
 143	.release	= page_cache_pipe_buf_release,
 144	.try_steal	= page_cache_pipe_buf_try_steal,
 145	.get		= generic_pipe_buf_get,
 
 
 
 146};
 147
 148static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
 149		struct pipe_buffer *buf)
 150{
 151	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
 152		return false;
 153
 154	buf->flags |= PIPE_BUF_FLAG_LRU;
 155	return generic_pipe_buf_try_steal(pipe, buf);
 156}
 157
 158static const struct pipe_buf_operations user_page_pipe_buf_ops = {
 159	.release	= page_cache_pipe_buf_release,
 160	.try_steal	= user_page_pipe_buf_try_steal,
 161	.get		= generic_pipe_buf_get,
 
 
 
 
 162};
 163
 164static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
 165{
 166	smp_mb();
 167	if (waitqueue_active(&pipe->rd_wait))
 168		wake_up_interruptible(&pipe->rd_wait);
 169	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 170}
 171
 172/**
 173 * splice_to_pipe - fill passed data into a pipe
 174 * @pipe:	pipe to fill
 175 * @spd:	data to fill
 176 *
 177 * Description:
 178 *    @spd contains a map of pages and len/offset tuples, along with
 179 *    the struct pipe_buf_operations associated with these pages. This
 180 *    function will link that data to the pipe.
 181 *
 182 */
 183ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
 184		       struct splice_pipe_desc *spd)
 185{
 186	unsigned int spd_pages = spd->nr_pages;
 187	unsigned int tail = pipe->tail;
 188	unsigned int head = pipe->head;
 189	unsigned int mask = pipe->ring_size - 1;
 190	int ret = 0, page_nr = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191
 192	if (!spd_pages)
 193		return 0;
 194
 195	if (unlikely(!pipe->readers)) {
 196		send_sig(SIGPIPE, current, 0);
 197		ret = -EPIPE;
 198		goto out;
 199	}
 200
 201	while (!pipe_full(head, tail, pipe->max_usage)) {
 202		struct pipe_buffer *buf = &pipe->bufs[head & mask];
 203
 204		buf->page = spd->pages[page_nr];
 205		buf->offset = spd->partial[page_nr].offset;
 206		buf->len = spd->partial[page_nr].len;
 207		buf->private = spd->partial[page_nr].private;
 208		buf->ops = spd->ops;
 209		buf->flags = 0;
 210
 211		head++;
 212		pipe->head = head;
 213		page_nr++;
 214		ret += buf->len;
 215
 216		if (!--spd->nr_pages)
 
 
 217			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 218	}
 219
 220	if (!ret)
 221		ret = -EAGAIN;
 
 
 222
 223out:
 224	while (page_nr < spd_pages)
 225		spd->spd_release(spd, page_nr++);
 226
 227	return ret;
 228}
 229EXPORT_SYMBOL_GPL(splice_to_pipe);
 230
 231ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
 232{
 233	unsigned int head = pipe->head;
 234	unsigned int tail = pipe->tail;
 235	unsigned int mask = pipe->ring_size - 1;
 236	int ret;
 237
 238	if (unlikely(!pipe->readers)) {
 239		send_sig(SIGPIPE, current, 0);
 240		ret = -EPIPE;
 241	} else if (pipe_full(head, tail, pipe->max_usage)) {
 242		ret = -EAGAIN;
 243	} else {
 244		pipe->bufs[head & mask] = *buf;
 245		pipe->head = head + 1;
 246		return buf->len;
 247	}
 248	pipe_buf_release(pipe, buf);
 249	return ret;
 250}
 251EXPORT_SYMBOL(add_to_pipe);
 252
 253/*
 254 * Check if we need to grow the arrays holding pages and partial page
 255 * descriptions.
 256 */
 257int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
 258{
 259	unsigned int max_usage = READ_ONCE(pipe->max_usage);
 260
 261	spd->nr_pages_max = max_usage;
 262	if (max_usage <= PIPE_DEF_BUFFERS)
 263		return 0;
 264
 265	spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
 266	spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
 267				     GFP_KERNEL);
 268
 269	if (spd->pages && spd->partial)
 270		return 0;
 271
 272	kfree(spd->pages);
 273	kfree(spd->partial);
 274	return -ENOMEM;
 275}
 276
 277void splice_shrink_spd(struct splice_pipe_desc *spd)
 
 278{
 279	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
 280		return;
 281
 282	kfree(spd->pages);
 283	kfree(spd->partial);
 284}
 285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286/**
 287 * generic_file_splice_read - splice data from file to a pipe
 288 * @in:		file to splice from
 289 * @ppos:	position in @in
 290 * @pipe:	pipe to splice to
 291 * @len:	number of bytes to splice
 292 * @flags:	splice modifier flags
 293 *
 294 * Description:
 295 *    Will read pages from given file and fill them into a pipe. Can be
 296 *    used as long as it has more or less sane ->read_iter().
 
 297 *
 298 */
 299ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
 300				 struct pipe_inode_info *pipe, size_t len,
 301				 unsigned int flags)
 302{
 303	struct iov_iter to;
 304	struct kiocb kiocb;
 305	unsigned int i_head;
 306	int ret;
 307
 308	iov_iter_pipe(&to, READ, pipe, len);
 309	i_head = to.head;
 310	init_sync_kiocb(&kiocb, in);
 311	kiocb.ki_pos = *ppos;
 312	ret = call_read_iter(in, &kiocb, &to);
 
 
 
 
 313	if (ret > 0) {
 314		*ppos = kiocb.ki_pos;
 315		file_accessed(in);
 316	} else if (ret < 0) {
 317		to.head = i_head;
 318		to.iov_offset = 0;
 319		iov_iter_advance(&to, 0); /* to free what was emitted */
 320		/*
 321		 * callers of ->splice_read() expect -EAGAIN on
 322		 * "can't put anything in there", rather than -EFAULT.
 323		 */
 324		if (ret == -EFAULT)
 325			ret = -EAGAIN;
 326	}
 327
 328	return ret;
 329}
 330EXPORT_SYMBOL(generic_file_splice_read);
 331
 332const struct pipe_buf_operations default_pipe_buf_ops = {
 333	.release	= generic_pipe_buf_release,
 334	.try_steal	= generic_pipe_buf_try_steal,
 335	.get		= generic_pipe_buf_get,
 336};
 337
 338/* Pipe buffer operations for a socket and similar. */
 339const struct pipe_buf_operations nosteal_pipe_buf_ops = {
 340	.release	= generic_pipe_buf_release,
 341	.get		= generic_pipe_buf_get,
 342};
 343EXPORT_SYMBOL(nosteal_pipe_buf_ops);
 344
 345static ssize_t kernel_readv(struct file *file, const struct kvec *vec,
 346			    unsigned long vlen, loff_t offset)
 347{
 348	mm_segment_t old_fs;
 349	loff_t pos = offset;
 350	ssize_t res;
 351
 352	old_fs = get_fs();
 353	set_fs(KERNEL_DS);
 354	/* The cast to a user pointer is valid due to the set_fs() */
 355	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
 356	set_fs(old_fs);
 357
 358	return res;
 359}
 360
 361static ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 362				 struct pipe_inode_info *pipe, size_t len,
 363				 unsigned int flags)
 364{
 365	struct kvec *vec, __vec[PIPE_DEF_BUFFERS];
 366	struct iov_iter to;
 367	struct page **pages;
 368	unsigned int nr_pages;
 369	unsigned int mask;
 370	size_t offset, base, copied = 0;
 
 
 
 371	ssize_t res;
 
 
 372	int i;
 
 
 
 
 
 
 
 373
 374	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
 375		return -EAGAIN;
 376
 377	/*
 378	 * Try to keep page boundaries matching to source pagecache ones -
 379	 * it probably won't be much help, but...
 380	 */
 381	offset = *ppos & ~PAGE_MASK;
 
 
 382
 383	iov_iter_pipe(&to, READ, pipe, len + offset);
 
 384
 385	res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &base);
 386	if (res <= 0)
 387		return -ENOMEM;
 388
 389	nr_pages = DIV_ROUND_UP(res + base, PAGE_SIZE);
 
 
 
 390
 391	vec = __vec;
 392	if (nr_pages > PIPE_DEF_BUFFERS) {
 393		vec = kmalloc_array(nr_pages, sizeof(struct kvec), GFP_KERNEL);
 394		if (unlikely(!vec)) {
 395			res = -ENOMEM;
 396			goto out;
 397		}
 398	}
 399
 400	mask = pipe->ring_size - 1;
 401	pipe->bufs[to.head & mask].offset = offset;
 402	pipe->bufs[to.head & mask].len -= offset;
 403
 404	for (i = 0; i < nr_pages; i++) {
 405		size_t this_len = min_t(size_t, len, PAGE_SIZE - offset);
 406		vec[i].iov_base = page_address(pages[i]) + offset;
 407		vec[i].iov_len = this_len;
 
 
 408		len -= this_len;
 409		offset = 0;
 410	}
 411
 412	res = kernel_readv(in, vec, nr_pages, *ppos);
 413	if (res > 0) {
 414		copied = res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 415		*ppos += res;
 416	}
 417
 
 418	if (vec != __vec)
 419		kfree(vec);
 420out:
 421	for (i = 0; i < nr_pages; i++)
 422		put_page(pages[i]);
 423	kvfree(pages);
 424	iov_iter_advance(&to, copied);	/* truncates and discards */
 425	return res;
 
 
 
 
 
 
 
 426}
 
 427
 428/*
 429 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
 430 * using sendpage(). Return the number of bytes sent.
 431 */
 432static int pipe_to_sendpage(struct pipe_inode_info *pipe,
 433			    struct pipe_buffer *buf, struct splice_desc *sd)
 434{
 435	struct file *file = sd->u.file;
 436	loff_t pos = sd->pos;
 437	int more;
 438
 439	if (!likely(file->f_op->sendpage))
 440		return -EINVAL;
 441
 442	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 443
 444	if (sd->len < sd->total_len &&
 445	    pipe_occupancy(pipe->head, pipe->tail) > 1)
 446		more |= MSG_SENDPAGE_NOTLAST;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447
 448	return file->f_op->sendpage(file, buf->page, buf->offset,
 449				    sd->len, &pos, more);
 
 
 
 
 
 
 
 450}
 
 451
 452static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
 453{
 454	smp_mb();
 455	if (waitqueue_active(&pipe->wr_wait))
 456		wake_up_interruptible(&pipe->wr_wait);
 457	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 458}
 459
 460/**
 461 * splice_from_pipe_feed - feed available data from a pipe to a file
 462 * @pipe:	pipe to splice from
 463 * @sd:		information to @actor
 464 * @actor:	handler that splices the data
 465 *
 466 * Description:
 467 *    This function loops over the pipe and calls @actor to do the
 468 *    actual moving of a single struct pipe_buffer to the desired
 469 *    destination.  It returns when there's no more buffers left in
 470 *    the pipe or if the requested number of bytes (@sd->total_len)
 471 *    have been copied.  It returns a positive number (one) if the
 472 *    pipe needs to be filled with more data, zero if the required
 473 *    number of bytes have been copied and -errno on error.
 474 *
 475 *    This, together with splice_from_pipe_{begin,end,next}, may be
 476 *    used to implement the functionality of __splice_from_pipe() when
 477 *    locking is required around copying the pipe buffers to the
 478 *    destination.
 479 */
 480static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
 481			  splice_actor *actor)
 482{
 483	unsigned int head = pipe->head;
 484	unsigned int tail = pipe->tail;
 485	unsigned int mask = pipe->ring_size - 1;
 486	int ret;
 487
 488	while (!pipe_empty(head, tail)) {
 489		struct pipe_buffer *buf = &pipe->bufs[tail & mask];
 
 490
 491		sd->len = buf->len;
 492		if (sd->len > sd->total_len)
 493			sd->len = sd->total_len;
 494
 495		ret = pipe_buf_confirm(pipe, buf);
 496		if (unlikely(ret)) {
 497			if (ret == -ENODATA)
 498				ret = 0;
 499			return ret;
 500		}
 501
 502		ret = actor(pipe, buf, sd);
 503		if (ret <= 0)
 504			return ret;
 505
 506		buf->offset += ret;
 507		buf->len -= ret;
 508
 509		sd->num_spliced += ret;
 510		sd->len -= ret;
 511		sd->pos += ret;
 512		sd->total_len -= ret;
 513
 514		if (!buf->len) {
 515			pipe_buf_release(pipe, buf);
 516			tail++;
 517			pipe->tail = tail;
 518			if (pipe->files)
 
 519				sd->need_wakeup = true;
 520		}
 521
 522		if (!sd->total_len)
 523			return 0;
 524	}
 525
 526	return 1;
 527}
 528
 529/* We know we have a pipe buffer, but maybe it's empty? */
 530static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
 531{
 532	unsigned int tail = pipe->tail;
 533	unsigned int mask = pipe->ring_size - 1;
 534	struct pipe_buffer *buf = &pipe->bufs[tail & mask];
 535
 536	if (unlikely(!buf->len)) {
 537		pipe_buf_release(pipe, buf);
 538		pipe->tail = tail+1;
 539		return true;
 540	}
 541
 542	return false;
 543}
 544
 545/**
 546 * splice_from_pipe_next - wait for some data to splice from
 547 * @pipe:	pipe to splice from
 548 * @sd:		information about the splice operation
 549 *
 550 * Description:
 551 *    This function will wait for some data and return a positive
 552 *    value (one) if pipe buffers are available.  It will return zero
 553 *    or -errno if no more data needs to be spliced.
 554 */
 555static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
 556{
 557	/*
 558	 * Check for signal early to make process killable when there are
 559	 * always buffers available
 560	 */
 561	if (signal_pending(current))
 562		return -ERESTARTSYS;
 563
 564repeat:
 565	while (pipe_empty(pipe->head, pipe->tail)) {
 566		if (!pipe->writers)
 567			return 0;
 568
 569		if (sd->num_spliced)
 570			return 0;
 571
 572		if (sd->flags & SPLICE_F_NONBLOCK)
 573			return -EAGAIN;
 574
 575		if (signal_pending(current))
 576			return -ERESTARTSYS;
 577
 578		if (sd->need_wakeup) {
 579			wakeup_pipe_writers(pipe);
 580			sd->need_wakeup = false;
 581		}
 582
 583		pipe_wait_readable(pipe);
 584	}
 585
 586	if (eat_empty_buffer(pipe))
 587		goto repeat;
 588
 589	return 1;
 590}
 
 591
 592/**
 593 * splice_from_pipe_begin - start splicing from pipe
 594 * @sd:		information about the splice operation
 595 *
 596 * Description:
 597 *    This function should be called before a loop containing
 598 *    splice_from_pipe_next() and splice_from_pipe_feed() to
 599 *    initialize the necessary fields of @sd.
 600 */
 601static void splice_from_pipe_begin(struct splice_desc *sd)
 602{
 603	sd->num_spliced = 0;
 604	sd->need_wakeup = false;
 605}
 
 606
 607/**
 608 * splice_from_pipe_end - finish splicing from pipe
 609 * @pipe:	pipe to splice from
 610 * @sd:		information about the splice operation
 611 *
 612 * Description:
 613 *    This function will wake up pipe writers if necessary.  It should
 614 *    be called after a loop containing splice_from_pipe_next() and
 615 *    splice_from_pipe_feed().
 616 */
 617static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
 618{
 619	if (sd->need_wakeup)
 620		wakeup_pipe_writers(pipe);
 621}
 
 622
 623/**
 624 * __splice_from_pipe - splice data from a pipe to given actor
 625 * @pipe:	pipe to splice from
 626 * @sd:		information to @actor
 627 * @actor:	handler that splices the data
 628 *
 629 * Description:
 630 *    This function does little more than loop over the pipe and call
 631 *    @actor to do the actual moving of a single struct pipe_buffer to
 632 *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
 633 *    pipe_to_user.
 634 *
 635 */
 636ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
 637			   splice_actor *actor)
 638{
 639	int ret;
 640
 641	splice_from_pipe_begin(sd);
 642	do {
 643		cond_resched();
 644		ret = splice_from_pipe_next(pipe, sd);
 645		if (ret > 0)
 646			ret = splice_from_pipe_feed(pipe, sd, actor);
 647	} while (ret > 0);
 648	splice_from_pipe_end(pipe, sd);
 649
 650	return sd->num_spliced ? sd->num_spliced : ret;
 651}
 652EXPORT_SYMBOL(__splice_from_pipe);
 653
 654/**
 655 * splice_from_pipe - splice data from a pipe to a file
 656 * @pipe:	pipe to splice from
 657 * @out:	file to splice to
 658 * @ppos:	position in @out
 659 * @len:	how many bytes to splice
 660 * @flags:	splice modifier flags
 661 * @actor:	handler that splices the data
 662 *
 663 * Description:
 664 *    See __splice_from_pipe. This function locks the pipe inode,
 665 *    otherwise it's identical to __splice_from_pipe().
 666 *
 667 */
 668ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
 669			 loff_t *ppos, size_t len, unsigned int flags,
 670			 splice_actor *actor)
 671{
 672	ssize_t ret;
 673	struct splice_desc sd = {
 674		.total_len = len,
 675		.flags = flags,
 676		.pos = *ppos,
 677		.u.file = out,
 678	};
 679
 680	pipe_lock(pipe);
 681	ret = __splice_from_pipe(pipe, &sd, actor);
 682	pipe_unlock(pipe);
 683
 684	return ret;
 685}
 686
 687/**
 688 * iter_file_splice_write - splice data from a pipe to a file
 689 * @pipe:	pipe info
 690 * @out:	file to write to
 691 * @ppos:	position in @out
 692 * @len:	number of bytes to splice
 693 * @flags:	splice modifier flags
 694 *
 695 * Description:
 696 *    Will either move or copy pages (determined by @flags options) from
 697 *    the given pipe inode to the given file.
 698 *    This one is ->write_iter-based.
 699 *
 700 */
 701ssize_t
 702iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
 703			  loff_t *ppos, size_t len, unsigned int flags)
 704{
 
 
 705	struct splice_desc sd = {
 706		.total_len = len,
 707		.flags = flags,
 708		.pos = *ppos,
 709		.u.file = out,
 710	};
 711	int nbufs = pipe->max_usage;
 712	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
 713					GFP_KERNEL);
 714	ssize_t ret;
 715
 716	if (unlikely(!array))
 717		return -ENOMEM;
 718
 719	pipe_lock(pipe);
 720
 721	splice_from_pipe_begin(&sd);
 722	while (sd.total_len) {
 723		struct iov_iter from;
 724		unsigned int head, tail, mask;
 725		size_t left;
 726		int n;
 727
 728		ret = splice_from_pipe_next(pipe, &sd);
 729		if (ret <= 0)
 730			break;
 731
 732		if (unlikely(nbufs < pipe->max_usage)) {
 733			kfree(array);
 734			nbufs = pipe->max_usage;
 735			array = kcalloc(nbufs, sizeof(struct bio_vec),
 736					GFP_KERNEL);
 737			if (!array) {
 738				ret = -ENOMEM;
 739				break;
 740			}
 741		}
 
 
 
 742
 743		head = pipe->head;
 744		tail = pipe->tail;
 745		mask = pipe->ring_size - 1;
 746
 747		/* build the vector */
 748		left = sd.total_len;
 749		for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++, n++) {
 750			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
 751			size_t this_len = buf->len;
 752
 753			if (this_len > left)
 754				this_len = left;
 755
 756			ret = pipe_buf_confirm(pipe, buf);
 757			if (unlikely(ret)) {
 758				if (ret == -ENODATA)
 759					ret = 0;
 760				goto done;
 761			}
 762
 763			array[n].bv_page = buf->page;
 764			array[n].bv_len = this_len;
 765			array[n].bv_offset = buf->offset;
 766			left -= this_len;
 767		}
 768
 769		iov_iter_bvec(&from, WRITE, array, n, sd.total_len - left);
 770		ret = vfs_iter_write(out, &from, &sd.pos, 0);
 771		if (ret <= 0)
 772			break;
 773
 774		sd.num_spliced += ret;
 775		sd.total_len -= ret;
 776		*ppos = sd.pos;
 777
 778		/* dismiss the fully eaten buffers, adjust the partial one */
 779		tail = pipe->tail;
 780		while (ret) {
 781			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
 782			if (ret >= buf->len) {
 783				ret -= buf->len;
 784				buf->len = 0;
 785				pipe_buf_release(pipe, buf);
 786				tail++;
 787				pipe->tail = tail;
 788				if (pipe->files)
 789					sd.need_wakeup = true;
 790			} else {
 791				buf->offset += ret;
 792				buf->len -= ret;
 793				ret = 0;
 794			}
 795		}
 796	}
 797done:
 798	kfree(array);
 799	splice_from_pipe_end(pipe, &sd);
 800
 801	pipe_unlock(pipe);
 802
 803	if (sd.num_spliced)
 804		ret = sd.num_spliced;
 805
 806	return ret;
 807}
 808
 809EXPORT_SYMBOL(iter_file_splice_write);
 810
 811static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
 812			  struct splice_desc *sd)
 813{
 814	int ret;
 815	void *data;
 816	loff_t tmp = sd->pos;
 817
 818	data = kmap(buf->page);
 819	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
 820	kunmap(buf->page);
 821
 822	return ret;
 823}
 824
 825static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
 826					 struct file *out, loff_t *ppos,
 827					 size_t len, unsigned int flags)
 828{
 829	ssize_t ret;
 830
 831	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
 832	if (ret > 0)
 833		*ppos += ret;
 834
 835	return ret;
 836}
 837
 838/**
 839 * generic_splice_sendpage - splice data from a pipe to a socket
 840 * @pipe:	pipe to splice from
 841 * @out:	socket to write to
 842 * @ppos:	position in @out
 843 * @len:	number of bytes to splice
 844 * @flags:	splice modifier flags
 845 *
 846 * Description:
 847 *    Will send @len bytes from the pipe to a network socket. No data copying
 848 *    is involved.
 849 *
 850 */
 851ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
 852				loff_t *ppos, size_t len, unsigned int flags)
 853{
 854	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
 855}
 856
 857EXPORT_SYMBOL(generic_splice_sendpage);
 858
 859/*
 860 * Attempt to initiate a splice from pipe to file.
 861 */
 862static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
 863			   loff_t *ppos, size_t len, unsigned int flags)
 864{
 865	if (out->f_op->splice_write)
 866		return out->f_op->splice_write(pipe, out, ppos, len, flags);
 867	return default_file_splice_write(pipe, out, ppos, len, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868}
 869
 870/*
 871 * Attempt to initiate a splice from a file to a pipe.
 872 */
 873static long do_splice_to(struct file *in, loff_t *ppos,
 874			 struct pipe_inode_info *pipe, size_t len,
 875			 unsigned int flags)
 876{
 
 
 877	int ret;
 878
 879	if (unlikely(!(in->f_mode & FMODE_READ)))
 880		return -EBADF;
 881
 882	ret = rw_verify_area(READ, in, ppos, len);
 883	if (unlikely(ret < 0))
 884		return ret;
 885
 886	if (unlikely(len > MAX_RW_COUNT))
 887		len = MAX_RW_COUNT;
 
 
 888
 889	if (in->f_op->splice_read)
 890		return in->f_op->splice_read(in, ppos, pipe, len, flags);
 891	return default_file_splice_read(in, ppos, pipe, len, flags);
 892}
 893
 894/**
 895 * splice_direct_to_actor - splices data directly between two non-pipes
 896 * @in:		file to splice from
 897 * @sd:		actor information on where to splice to
 898 * @actor:	handles the data splicing
 899 *
 900 * Description:
 901 *    This is a special case helper to splice directly between two
 902 *    points, without requiring an explicit pipe. Internally an allocated
 903 *    pipe is cached in the process, and reused during the lifetime of
 904 *    that process.
 905 *
 906 */
 907ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
 908			       splice_direct_actor *actor)
 909{
 910	struct pipe_inode_info *pipe;
 911	long ret, bytes;
 912	umode_t i_mode;
 913	size_t len;
 914	int i, flags, more;
 915
 916	/*
 917	 * We require the input being a regular file, as we don't want to
 918	 * randomly drop data for eg socket -> socket splicing. Use the
 919	 * piped splicing for that!
 920	 */
 921	i_mode = file_inode(in)->i_mode;
 922	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
 923		return -EINVAL;
 924
 925	/*
 926	 * neither in nor out is a pipe, setup an internal pipe attached to
 927	 * 'out' and transfer the wanted data from 'in' to 'out' through that
 928	 */
 929	pipe = current->splice_pipe;
 930	if (unlikely(!pipe)) {
 931		pipe = alloc_pipe_info();
 932		if (!pipe)
 933			return -ENOMEM;
 934
 935		/*
 936		 * We don't have an immediate reader, but we'll read the stuff
 937		 * out of the pipe right after the splice_to_pipe(). So set
 938		 * PIPE_READERS appropriately.
 939		 */
 940		pipe->readers = 1;
 941
 942		current->splice_pipe = pipe;
 943	}
 944
 945	/*
 946	 * Do the splice.
 947	 */
 948	ret = 0;
 949	bytes = 0;
 950	len = sd->total_len;
 951	flags = sd->flags;
 952
 953	/*
 954	 * Don't block on output, we have to drain the direct pipe.
 955	 */
 956	sd->flags &= ~SPLICE_F_NONBLOCK;
 957	more = sd->flags & SPLICE_F_MORE;
 958
 959	WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
 960
 961	while (len) {
 962		unsigned int p_space;
 963		size_t read_len;
 964		loff_t pos = sd->pos, prev_pos = pos;
 965
 966		/* Don't try to read more the pipe has space for. */
 967		p_space = pipe->max_usage -
 968			pipe_occupancy(pipe->head, pipe->tail);
 969		read_len = min_t(size_t, len, p_space << PAGE_SHIFT);
 970		ret = do_splice_to(in, &pos, pipe, read_len, flags);
 971		if (unlikely(ret <= 0))
 972			goto out_release;
 973
 974		read_len = ret;
 975		sd->total_len = read_len;
 976
 977		/*
 978		 * If more data is pending, set SPLICE_F_MORE
 979		 * If this is the last data and SPLICE_F_MORE was not set
 980		 * initially, clears it.
 981		 */
 982		if (read_len < len)
 983			sd->flags |= SPLICE_F_MORE;
 984		else if (!more)
 985			sd->flags &= ~SPLICE_F_MORE;
 986		/*
 987		 * NOTE: nonblocking mode only applies to the input. We
 988		 * must not do the output in nonblocking mode as then we
 989		 * could get stuck data in the internal pipe:
 990		 */
 991		ret = actor(pipe, sd);
 992		if (unlikely(ret <= 0)) {
 993			sd->pos = prev_pos;
 994			goto out_release;
 995		}
 996
 997		bytes += ret;
 998		len -= ret;
 999		sd->pos = pos;
1000
1001		if (ret < read_len) {
1002			sd->pos = prev_pos + ret;
1003			goto out_release;
1004		}
1005	}
1006
1007done:
1008	pipe->tail = pipe->head = 0;
1009	file_accessed(in);
1010	return bytes;
1011
1012out_release:
1013	/*
1014	 * If we did an incomplete transfer we must release
1015	 * the pipe buffers in question:
1016	 */
1017	for (i = 0; i < pipe->ring_size; i++) {
1018		struct pipe_buffer *buf = &pipe->bufs[i];
1019
1020		if (buf->ops)
1021			pipe_buf_release(pipe, buf);
 
 
1022	}
1023
1024	if (!bytes)
1025		bytes = ret;
1026
1027	goto done;
1028}
1029EXPORT_SYMBOL(splice_direct_to_actor);
1030
1031static int direct_splice_actor(struct pipe_inode_info *pipe,
1032			       struct splice_desc *sd)
1033{
1034	struct file *file = sd->u.file;
1035
1036	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1037			      sd->flags);
1038}
1039
1040/**
1041 * do_splice_direct - splices data directly between two files
1042 * @in:		file to splice from
1043 * @ppos:	input file offset
1044 * @out:	file to splice to
1045 * @opos:	output file offset
1046 * @len:	number of bytes to splice
1047 * @flags:	splice modifier flags
1048 *
1049 * Description:
1050 *    For use by do_sendfile(). splice can easily emulate sendfile, but
1051 *    doing it in the application would incur an extra system call
1052 *    (splice in + splice out, as compared to just sendfile()). So this helper
1053 *    can splice directly through a process-private pipe.
1054 *
1055 */
1056long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1057		      loff_t *opos, size_t len, unsigned int flags)
1058{
1059	struct splice_desc sd = {
1060		.len		= len,
1061		.total_len	= len,
1062		.flags		= flags,
1063		.pos		= *ppos,
1064		.u.file		= out,
1065		.opos		= opos,
1066	};
1067	long ret;
1068
1069	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1070		return -EBADF;
1071
1072	if (unlikely(out->f_flags & O_APPEND))
1073		return -EINVAL;
1074
1075	ret = rw_verify_area(WRITE, out, opos, len);
1076	if (unlikely(ret < 0))
1077		return ret;
1078
1079	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1080	if (ret > 0)
1081		*ppos = sd.pos;
1082
1083	return ret;
1084}
1085EXPORT_SYMBOL(do_splice_direct);
1086
1087static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1088{
1089	for (;;) {
1090		if (unlikely(!pipe->readers)) {
1091			send_sig(SIGPIPE, current, 0);
1092			return -EPIPE;
1093		}
1094		if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1095			return 0;
1096		if (flags & SPLICE_F_NONBLOCK)
1097			return -EAGAIN;
1098		if (signal_pending(current))
1099			return -ERESTARTSYS;
1100		pipe_wait_writable(pipe);
1101	}
1102}
1103
1104static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1105			       struct pipe_inode_info *opipe,
1106			       size_t len, unsigned int flags);
1107
1108/*
1109 * Determine where to splice to/from.
1110 */
1111long do_splice(struct file *in, loff_t __user *off_in,
1112		struct file *out, loff_t __user *off_out,
1113		size_t len, unsigned int flags)
1114{
1115	struct pipe_inode_info *ipipe;
1116	struct pipe_inode_info *opipe;
1117	loff_t offset;
1118	long ret;
1119
1120	if (unlikely(!(in->f_mode & FMODE_READ) ||
1121		     !(out->f_mode & FMODE_WRITE)))
1122		return -EBADF;
1123
1124	ipipe = get_pipe_info(in, true);
1125	opipe = get_pipe_info(out, true);
1126
1127	if (ipipe && opipe) {
1128		if (off_in || off_out)
1129			return -ESPIPE;
1130
 
 
 
 
 
 
1131		/* Splicing to self would be fun, but... */
1132		if (ipipe == opipe)
1133			return -EINVAL;
1134
1135		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1136			flags |= SPLICE_F_NONBLOCK;
1137
1138		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1139	}
1140
1141	if (ipipe) {
1142		if (off_in)
1143			return -ESPIPE;
1144		if (off_out) {
1145			if (!(out->f_mode & FMODE_PWRITE))
1146				return -EINVAL;
1147			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1148				return -EFAULT;
1149		} else {
1150			offset = out->f_pos;
1151		}
1152
1153		if (unlikely(out->f_flags & O_APPEND))
1154			return -EINVAL;
1155
1156		ret = rw_verify_area(WRITE, out, &offset, len);
1157		if (unlikely(ret < 0))
1158			return ret;
1159
1160		if (in->f_flags & O_NONBLOCK)
1161			flags |= SPLICE_F_NONBLOCK;
1162
1163		file_start_write(out);
1164		ret = do_splice_from(ipipe, out, &offset, len, flags);
1165		file_end_write(out);
1166
1167		if (!off_out)
1168			out->f_pos = offset;
1169		else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1170			ret = -EFAULT;
1171
1172		return ret;
1173	}
1174
1175	if (opipe) {
1176		if (off_out)
1177			return -ESPIPE;
1178		if (off_in) {
1179			if (!(in->f_mode & FMODE_PREAD))
1180				return -EINVAL;
1181			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1182				return -EFAULT;
1183		} else {
1184			offset = in->f_pos;
1185		}
1186
1187		if (out->f_flags & O_NONBLOCK)
1188			flags |= SPLICE_F_NONBLOCK;
1189
1190		pipe_lock(opipe);
1191		ret = wait_for_space(opipe, flags);
1192		if (!ret) {
1193			unsigned int p_space;
1194
1195			/* Don't try to read more the pipe has space for. */
1196			p_space = opipe->max_usage - pipe_occupancy(opipe->head, opipe->tail);
1197			len = min_t(size_t, len, p_space << PAGE_SHIFT);
1198
1199			ret = do_splice_to(in, &offset, opipe, len, flags);
1200		}
1201		pipe_unlock(opipe);
1202		if (ret > 0)
1203			wakeup_pipe_readers(opipe);
1204		if (!off_in)
1205			in->f_pos = offset;
1206		else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1207			ret = -EFAULT;
1208
1209		return ret;
1210	}
1211
1212	return -EINVAL;
1213}
1214
1215static int iter_to_pipe(struct iov_iter *from,
1216			struct pipe_inode_info *pipe,
1217			unsigned flags)
1218{
1219	struct pipe_buffer buf = {
1220		.ops = &user_page_pipe_buf_ops,
1221		.flags = flags
1222	};
1223	size_t total = 0;
1224	int ret = 0;
1225	bool failed = false;
1226
1227	while (iov_iter_count(from) && !failed) {
1228		struct page *pages[16];
1229		ssize_t copied;
1230		size_t start;
1231		int n;
1232
1233		copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start);
1234		if (copied <= 0) {
1235			ret = copied;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1236			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
1237		}
1238
1239		for (n = 0; copied; n++, start = 0) {
1240			int size = min_t(int, copied, PAGE_SIZE - start);
1241			if (!failed) {
1242				buf.page = pages[n];
1243				buf.offset = start;
1244				buf.len = size;
1245				ret = add_to_pipe(pipe, &buf);
1246				if (unlikely(ret < 0)) {
1247					failed = true;
1248				} else {
1249					iov_iter_advance(from, ret);
1250					total += ret;
1251				}
1252			} else {
1253				put_page(pages[n]);
1254			}
1255			copied -= size;
1256		}
1257	}
1258	return total ? total : ret;
 
 
 
 
1259}
1260
1261static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1262			struct splice_desc *sd)
1263{
1264	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1265	return n == sd->len ? n : -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1266}
1267
1268/*
1269 * For lack of a better implementation, implement vmsplice() to userspace
1270 * as a simple copy of the pipes pages to the user iov.
1271 */
1272static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1273			     unsigned int flags)
1274{
1275	struct pipe_inode_info *pipe = get_pipe_info(file, true);
1276	struct splice_desc sd = {
1277		.total_len = iov_iter_count(iter),
1278		.flags = flags,
1279		.u.data = iter
1280	};
1281	long ret = 0;
1282
 
1283	if (!pipe)
1284		return -EBADF;
1285
1286	if (sd.total_len) {
1287		pipe_lock(pipe);
1288		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1289		pipe_unlock(pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1290	}
1291
 
 
 
 
 
1292	return ret;
1293}
1294
1295/*
1296 * vmsplice splices a user address range into a pipe. It can be thought of
1297 * as splice-from-memory, where the regular splice is splice-from-file (or
1298 * to file). In both cases the output is a pipe, naturally.
1299 */
1300static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1301			     unsigned int flags)
1302{
1303	struct pipe_inode_info *pipe;
1304	long ret = 0;
1305	unsigned buf_flag = 0;
 
 
 
 
 
 
 
 
1306
1307	if (flags & SPLICE_F_GIFT)
1308		buf_flag = PIPE_BUF_FLAG_GIFT;
1309
1310	pipe = get_pipe_info(file, true);
1311	if (!pipe)
1312		return -EBADF;
1313
1314	pipe_lock(pipe);
1315	ret = wait_for_space(pipe, flags);
1316	if (!ret)
1317		ret = iter_to_pipe(iter, pipe, buf_flag);
1318	pipe_unlock(pipe);
1319	if (ret > 0)
1320		wakeup_pipe_readers(pipe);
 
 
 
 
 
1321	return ret;
1322}
1323
1324static int vmsplice_type(struct fd f, int *type)
1325{
1326	if (!f.file)
1327		return -EBADF;
1328	if (f.file->f_mode & FMODE_WRITE) {
1329		*type = WRITE;
1330	} else if (f.file->f_mode & FMODE_READ) {
1331		*type = READ;
1332	} else {
1333		fdput(f);
1334		return -EBADF;
1335	}
1336	return 0;
1337}
1338
1339/*
1340 * Note that vmsplice only really supports true splicing _from_ user memory
1341 * to a pipe, not the other way around. Splicing from user memory is a simple
1342 * operation that can be supported without any funky alignment restrictions
1343 * or nasty vm tricks. We simply map in the user memory and fill them into
1344 * a pipe. The reverse isn't quite as easy, though. There are two possible
1345 * solutions for that:
1346 *
1347 *	- memcpy() the data internally, at which point we might as well just
1348 *	  do a regular read() on the buffer anyway.
1349 *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1350 *	  has restriction limitations on both ends of the pipe).
1351 *
1352 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1353 *
1354 */
1355static long do_vmsplice(struct file *f, struct iov_iter *iter, unsigned int flags)
 
1356{
1357	if (unlikely(flags & ~SPLICE_F_ALL))
 
 
 
 
1358		return -EINVAL;
1359
1360	if (!iov_iter_count(iter))
1361		return 0;
1362
1363	if (iov_iter_rw(iter) == WRITE)
1364		return vmsplice_to_pipe(f, iter, flags);
1365	else
1366		return vmsplice_to_user(f, iter, flags);
1367}
 
 
1368
1369SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1370		unsigned long, nr_segs, unsigned int, flags)
1371{
1372	struct iovec iovstack[UIO_FASTIOV];
1373	struct iovec *iov = iovstack;
1374	struct iov_iter iter;
1375	ssize_t error;
1376	struct fd f;
1377	int type;
1378
1379	f = fdget(fd);
1380	error = vmsplice_type(f, &type);
1381	if (error)
1382		return error;
1383
1384	error = import_iovec(type, uiov, nr_segs,
1385			     ARRAY_SIZE(iovstack), &iov, &iter);
1386	if (error >= 0) {
1387		error = do_vmsplice(f.file, &iter, flags);
1388		kfree(iov);
1389	}
1390	fdput(f);
1391	return error;
1392}
1393
1394#ifdef CONFIG_COMPAT
1395COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1396		    unsigned int, nr_segs, unsigned int, flags)
1397{
1398	struct iovec iovstack[UIO_FASTIOV];
1399	struct iovec *iov = iovstack;
1400	struct iov_iter iter;
1401	ssize_t error;
1402	struct fd f;
1403	int type;
1404
1405	f = fdget(fd);
1406	error = vmsplice_type(f, &type);
1407	if (error)
1408		return error;
1409
1410	error = compat_import_iovec(type, iov32, nr_segs,
1411			     ARRAY_SIZE(iovstack), &iov, &iter);
1412	if (error >= 0) {
1413		error = do_vmsplice(f.file, &iter, flags);
1414		kfree(iov);
1415	}
1416	fdput(f);
1417	return error;
1418}
1419#endif
1420
1421SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1422		int, fd_out, loff_t __user *, off_out,
1423		size_t, len, unsigned int, flags)
1424{
1425	struct fd in, out;
1426	long error;
 
 
1427
1428	if (unlikely(!len))
1429		return 0;
1430
1431	if (unlikely(flags & ~SPLICE_F_ALL))
1432		return -EINVAL;
1433
1434	error = -EBADF;
1435	in = fdget(fd_in);
1436	if (in.file) {
1437		out = fdget(fd_out);
1438		if (out.file) {
1439			error = do_splice(in.file, off_in, out.file, off_out,
1440					  len, flags);
1441			fdput(out);
 
 
 
 
1442		}
1443		fdput(in);
 
1444	}
 
1445	return error;
1446}
1447
1448/*
1449 * Make sure there's data to read. Wait for input if we can, otherwise
1450 * return an appropriate error.
1451 */
1452static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1453{
1454	int ret;
1455
1456	/*
1457	 * Check the pipe occupancy without the inode lock first. This function
1458	 * is speculative anyways, so missing one is ok.
1459	 */
1460	if (!pipe_empty(pipe->head, pipe->tail))
1461		return 0;
1462
1463	ret = 0;
1464	pipe_lock(pipe);
1465
1466	while (pipe_empty(pipe->head, pipe->tail)) {
1467		if (signal_pending(current)) {
1468			ret = -ERESTARTSYS;
1469			break;
1470		}
1471		if (!pipe->writers)
1472			break;
1473		if (flags & SPLICE_F_NONBLOCK) {
1474			ret = -EAGAIN;
1475			break;
 
 
1476		}
1477		pipe_wait_readable(pipe);
1478	}
1479
1480	pipe_unlock(pipe);
1481	return ret;
1482}
1483
1484/*
1485 * Make sure there's writeable room. Wait for room if we can, otherwise
1486 * return an appropriate error.
1487 */
1488static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1489{
1490	int ret;
1491
1492	/*
1493	 * Check pipe occupancy without the inode lock first. This function
1494	 * is speculative anyways, so missing one is ok.
1495	 */
1496	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1497		return 0;
1498
1499	ret = 0;
1500	pipe_lock(pipe);
1501
1502	while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1503		if (!pipe->readers) {
1504			send_sig(SIGPIPE, current, 0);
1505			ret = -EPIPE;
1506			break;
1507		}
1508		if (flags & SPLICE_F_NONBLOCK) {
1509			ret = -EAGAIN;
1510			break;
1511		}
1512		if (signal_pending(current)) {
1513			ret = -ERESTARTSYS;
1514			break;
1515		}
1516		pipe_wait_writable(pipe);
 
 
1517	}
1518
1519	pipe_unlock(pipe);
1520	return ret;
1521}
1522
1523/*
1524 * Splice contents of ipipe to opipe.
1525 */
1526static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1527			       struct pipe_inode_info *opipe,
1528			       size_t len, unsigned int flags)
1529{
1530	struct pipe_buffer *ibuf, *obuf;
1531	unsigned int i_head, o_head;
1532	unsigned int i_tail, o_tail;
1533	unsigned int i_mask, o_mask;
1534	int ret = 0;
1535	bool input_wakeup = false;
1536
1537
1538retry:
1539	ret = ipipe_prep(ipipe, flags);
1540	if (ret)
1541		return ret;
1542
1543	ret = opipe_prep(opipe, flags);
1544	if (ret)
1545		return ret;
1546
1547	/*
1548	 * Potential ABBA deadlock, work around it by ordering lock
1549	 * grabbing by pipe info address. Otherwise two different processes
1550	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1551	 */
1552	pipe_double_lock(ipipe, opipe);
1553
1554	i_tail = ipipe->tail;
1555	i_mask = ipipe->ring_size - 1;
1556	o_head = opipe->head;
1557	o_mask = opipe->ring_size - 1;
1558
1559	do {
1560		size_t o_len;
1561
1562		if (!opipe->readers) {
1563			send_sig(SIGPIPE, current, 0);
1564			if (!ret)
1565				ret = -EPIPE;
1566			break;
1567		}
1568
1569		i_head = ipipe->head;
1570		o_tail = opipe->tail;
1571
1572		if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1573			break;
1574
1575		/*
1576		 * Cannot make any progress, because either the input
1577		 * pipe is empty or the output pipe is full.
1578		 */
1579		if (pipe_empty(i_head, i_tail) ||
1580		    pipe_full(o_head, o_tail, opipe->max_usage)) {
1581			/* Already processed some buffers, break */
1582			if (ret)
1583				break;
1584
1585			if (flags & SPLICE_F_NONBLOCK) {
1586				ret = -EAGAIN;
1587				break;
1588			}
1589
1590			/*
1591			 * We raced with another reader/writer and haven't
1592			 * managed to process any buffers.  A zero return
1593			 * value means EOF, so retry instead.
1594			 */
1595			pipe_unlock(ipipe);
1596			pipe_unlock(opipe);
1597			goto retry;
1598		}
1599
1600		ibuf = &ipipe->bufs[i_tail & i_mask];
1601		obuf = &opipe->bufs[o_head & o_mask];
 
1602
1603		if (len >= ibuf->len) {
1604			/*
1605			 * Simply move the whole buffer from ipipe to opipe
1606			 */
1607			*obuf = *ibuf;
1608			ibuf->ops = NULL;
1609			i_tail++;
1610			ipipe->tail = i_tail;
 
1611			input_wakeup = true;
1612			o_len = obuf->len;
1613			o_head++;
1614			opipe->head = o_head;
1615		} else {
1616			/*
1617			 * Get a reference to this pipe buffer,
1618			 * so we can copy the contents over.
1619			 */
1620			if (!pipe_buf_get(ipipe, ibuf)) {
1621				if (ret == 0)
1622					ret = -EFAULT;
1623				break;
1624			}
1625			*obuf = *ibuf;
1626
1627			/*
1628			 * Don't inherit the gift and merge flags, we need to
1629			 * prevent multiple steals of this page.
1630			 */
1631			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1632			obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1633
1634			obuf->len = len;
1635			ibuf->offset += len;
1636			ibuf->len -= len;
1637			o_len = len;
1638			o_head++;
1639			opipe->head = o_head;
1640		}
1641		ret += o_len;
1642		len -= o_len;
1643	} while (len);
1644
1645	pipe_unlock(ipipe);
1646	pipe_unlock(opipe);
1647
1648	/*
1649	 * If we put data in the output pipe, wakeup any potential readers.
1650	 */
1651	if (ret > 0)
1652		wakeup_pipe_readers(opipe);
1653
1654	if (input_wakeup)
1655		wakeup_pipe_writers(ipipe);
1656
1657	return ret;
1658}
1659
1660/*
1661 * Link contents of ipipe to opipe.
1662 */
1663static int link_pipe(struct pipe_inode_info *ipipe,
1664		     struct pipe_inode_info *opipe,
1665		     size_t len, unsigned int flags)
1666{
1667	struct pipe_buffer *ibuf, *obuf;
1668	unsigned int i_head, o_head;
1669	unsigned int i_tail, o_tail;
1670	unsigned int i_mask, o_mask;
1671	int ret = 0;
1672
1673	/*
1674	 * Potential ABBA deadlock, work around it by ordering lock
1675	 * grabbing by pipe info address. Otherwise two different processes
1676	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1677	 */
1678	pipe_double_lock(ipipe, opipe);
1679
1680	i_tail = ipipe->tail;
1681	i_mask = ipipe->ring_size - 1;
1682	o_head = opipe->head;
1683	o_mask = opipe->ring_size - 1;
1684
1685	do {
1686		if (!opipe->readers) {
1687			send_sig(SIGPIPE, current, 0);
1688			if (!ret)
1689				ret = -EPIPE;
1690			break;
1691		}
1692
1693		i_head = ipipe->head;
1694		o_tail = opipe->tail;
1695
1696		/*
1697		 * If we have iterated all input buffers or run out of
1698		 * output room, break.
1699		 */
1700		if (pipe_empty(i_head, i_tail) ||
1701		    pipe_full(o_head, o_tail, opipe->max_usage))
1702			break;
1703
1704		ibuf = &ipipe->bufs[i_tail & i_mask];
1705		obuf = &opipe->bufs[o_head & o_mask];
1706
1707		/*
1708		 * Get a reference to this pipe buffer,
1709		 * so we can copy the contents over.
1710		 */
1711		if (!pipe_buf_get(ipipe, ibuf)) {
1712			if (ret == 0)
1713				ret = -EFAULT;
1714			break;
1715		}
1716
 
1717		*obuf = *ibuf;
1718
1719		/*
1720		 * Don't inherit the gift and merge flag, we need to prevent
1721		 * multiple steals of this page.
1722		 */
1723		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1724		obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1725
1726		if (obuf->len > len)
1727			obuf->len = len;
 
 
1728		ret += obuf->len;
1729		len -= obuf->len;
 
 
1730
1731		o_head++;
1732		opipe->head = o_head;
1733		i_tail++;
1734	} while (len);
 
 
1735
1736	pipe_unlock(ipipe);
1737	pipe_unlock(opipe);
1738
1739	/*
1740	 * If we put data in the output pipe, wakeup any potential readers.
1741	 */
1742	if (ret > 0)
1743		wakeup_pipe_readers(opipe);
1744
1745	return ret;
1746}
1747
1748/*
1749 * This is a tee(1) implementation that works on pipes. It doesn't copy
1750 * any data, it simply references the 'in' pages on the 'out' pipe.
1751 * The 'flags' used are the SPLICE_F_* variants, currently the only
1752 * applicable one is SPLICE_F_NONBLOCK.
1753 */
1754long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
 
1755{
1756	struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1757	struct pipe_inode_info *opipe = get_pipe_info(out, true);
1758	int ret = -EINVAL;
1759
1760	if (unlikely(!(in->f_mode & FMODE_READ) ||
1761		     !(out->f_mode & FMODE_WRITE)))
1762		return -EBADF;
1763
1764	/*
1765	 * Duplicate the contents of ipipe to opipe without actually
1766	 * copying the data.
1767	 */
1768	if (ipipe && opipe && ipipe != opipe) {
1769		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1770			flags |= SPLICE_F_NONBLOCK;
1771
1772		/*
1773		 * Keep going, unless we encounter an error. The ipipe/opipe
1774		 * ordering doesn't really matter.
1775		 */
1776		ret = ipipe_prep(ipipe, flags);
1777		if (!ret) {
1778			ret = opipe_prep(opipe, flags);
1779			if (!ret)
1780				ret = link_pipe(ipipe, opipe, len, flags);
1781		}
1782	}
1783
1784	return ret;
1785}
1786
1787SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1788{
1789	struct fd in, out;
1790	int error;
1791
1792	if (unlikely(flags & ~SPLICE_F_ALL))
1793		return -EINVAL;
1794
1795	if (unlikely(!len))
1796		return 0;
1797
1798	error = -EBADF;
1799	in = fdget(fdin);
1800	if (in.file) {
1801		out = fdget(fdout);
1802		if (out.file) {
1803			error = do_tee(in.file, out.file, len, flags);
1804			fdput(out);
 
 
 
 
 
1805		}
1806 		fdput(in);
1807 	}
1808
1809	return error;
1810}