Loading...
1/*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/pagemap.h>
23#include <linux/splice.h>
24#include <linux/memcontrol.h>
25#include <linux/mm_inline.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28#include <linux/buffer_head.h>
29#include <linux/module.h>
30#include <linux/syscalls.h>
31#include <linux/uio.h>
32#include <linux/security.h>
33#include <linux/gfp.h>
34
35/*
36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
37 * a vm helper function, it's already simplified quite a bit by the
38 * addition of remove_mapping(). If success is returned, the caller may
39 * attempt to reuse this page for another destination.
40 */
41static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 struct pipe_buffer *buf)
43{
44 struct page *page = buf->page;
45 struct address_space *mapping;
46
47 lock_page(page);
48
49 mapping = page_mapping(page);
50 if (mapping) {
51 WARN_ON(!PageUptodate(page));
52
53 /*
54 * At least for ext2 with nobh option, we need to wait on
55 * writeback completing on this page, since we'll remove it
56 * from the pagecache. Otherwise truncate wont wait on the
57 * page, allowing the disk blocks to be reused by someone else
58 * before we actually wrote our data to them. fs corruption
59 * ensues.
60 */
61 wait_on_page_writeback(page);
62
63 if (page_has_private(page) &&
64 !try_to_release_page(page, GFP_KERNEL))
65 goto out_unlock;
66
67 /*
68 * If we succeeded in removing the mapping, set LRU flag
69 * and return good.
70 */
71 if (remove_mapping(mapping, page)) {
72 buf->flags |= PIPE_BUF_FLAG_LRU;
73 return 0;
74 }
75 }
76
77 /*
78 * Raced with truncate or failed to remove page from current
79 * address space, unlock and return failure.
80 */
81out_unlock:
82 unlock_page(page);
83 return 1;
84}
85
86static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 struct pipe_buffer *buf)
88{
89 page_cache_release(buf->page);
90 buf->flags &= ~PIPE_BUF_FLAG_LRU;
91}
92
93/*
94 * Check whether the contents of buf is OK to access. Since the content
95 * is a page cache page, IO may be in flight.
96 */
97static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
99{
100 struct page *page = buf->page;
101 int err;
102
103 if (!PageUptodate(page)) {
104 lock_page(page);
105
106 /*
107 * Page got truncated/unhashed. This will cause a 0-byte
108 * splice, if this is the first page.
109 */
110 if (!page->mapping) {
111 err = -ENODATA;
112 goto error;
113 }
114
115 /*
116 * Uh oh, read-error from disk.
117 */
118 if (!PageUptodate(page)) {
119 err = -EIO;
120 goto error;
121 }
122
123 /*
124 * Page is ok afterall, we are done.
125 */
126 unlock_page(page);
127 }
128
129 return 0;
130error:
131 unlock_page(page);
132 return err;
133}
134
135const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 .can_merge = 0,
137 .map = generic_pipe_buf_map,
138 .unmap = generic_pipe_buf_unmap,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143};
144
145static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147{
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153}
154
155static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .map = generic_pipe_buf_map,
158 .unmap = generic_pipe_buf_unmap,
159 .confirm = generic_pipe_buf_confirm,
160 .release = page_cache_pipe_buf_release,
161 .steal = user_page_pipe_buf_steal,
162 .get = generic_pipe_buf_get,
163};
164
165static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166{
167 smp_mb();
168 if (waitqueue_active(&pipe->wait))
169 wake_up_interruptible(&pipe->wait);
170 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
171}
172
173/**
174 * splice_to_pipe - fill passed data into a pipe
175 * @pipe: pipe to fill
176 * @spd: data to fill
177 *
178 * Description:
179 * @spd contains a map of pages and len/offset tuples, along with
180 * the struct pipe_buf_operations associated with these pages. This
181 * function will link that data to the pipe.
182 *
183 */
184ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
185 struct splice_pipe_desc *spd)
186{
187 unsigned int spd_pages = spd->nr_pages;
188 int ret, do_wakeup, page_nr;
189
190 ret = 0;
191 do_wakeup = 0;
192 page_nr = 0;
193
194 pipe_lock(pipe);
195
196 for (;;) {
197 if (!pipe->readers) {
198 send_sig(SIGPIPE, current, 0);
199 if (!ret)
200 ret = -EPIPE;
201 break;
202 }
203
204 if (pipe->nrbufs < pipe->buffers) {
205 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
206 struct pipe_buffer *buf = pipe->bufs + newbuf;
207
208 buf->page = spd->pages[page_nr];
209 buf->offset = spd->partial[page_nr].offset;
210 buf->len = spd->partial[page_nr].len;
211 buf->private = spd->partial[page_nr].private;
212 buf->ops = spd->ops;
213 if (spd->flags & SPLICE_F_GIFT)
214 buf->flags |= PIPE_BUF_FLAG_GIFT;
215
216 pipe->nrbufs++;
217 page_nr++;
218 ret += buf->len;
219
220 if (pipe->inode)
221 do_wakeup = 1;
222
223 if (!--spd->nr_pages)
224 break;
225 if (pipe->nrbufs < pipe->buffers)
226 continue;
227
228 break;
229 }
230
231 if (spd->flags & SPLICE_F_NONBLOCK) {
232 if (!ret)
233 ret = -EAGAIN;
234 break;
235 }
236
237 if (signal_pending(current)) {
238 if (!ret)
239 ret = -ERESTARTSYS;
240 break;
241 }
242
243 if (do_wakeup) {
244 smp_mb();
245 if (waitqueue_active(&pipe->wait))
246 wake_up_interruptible_sync(&pipe->wait);
247 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
248 do_wakeup = 0;
249 }
250
251 pipe->waiting_writers++;
252 pipe_wait(pipe);
253 pipe->waiting_writers--;
254 }
255
256 pipe_unlock(pipe);
257
258 if (do_wakeup)
259 wakeup_pipe_readers(pipe);
260
261 while (page_nr < spd_pages)
262 spd->spd_release(spd, page_nr++);
263
264 return ret;
265}
266
267void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
268{
269 page_cache_release(spd->pages[i]);
270}
271
272/*
273 * Check if we need to grow the arrays holding pages and partial page
274 * descriptions.
275 */
276int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
277{
278 if (pipe->buffers <= PIPE_DEF_BUFFERS)
279 return 0;
280
281 spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
282 spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
283
284 if (spd->pages && spd->partial)
285 return 0;
286
287 kfree(spd->pages);
288 kfree(spd->partial);
289 return -ENOMEM;
290}
291
292void splice_shrink_spd(struct pipe_inode_info *pipe,
293 struct splice_pipe_desc *spd)
294{
295 if (pipe->buffers <= PIPE_DEF_BUFFERS)
296 return;
297
298 kfree(spd->pages);
299 kfree(spd->partial);
300}
301
302static int
303__generic_file_splice_read(struct file *in, loff_t *ppos,
304 struct pipe_inode_info *pipe, size_t len,
305 unsigned int flags)
306{
307 struct address_space *mapping = in->f_mapping;
308 unsigned int loff, nr_pages, req_pages;
309 struct page *pages[PIPE_DEF_BUFFERS];
310 struct partial_page partial[PIPE_DEF_BUFFERS];
311 struct page *page;
312 pgoff_t index, end_index;
313 loff_t isize;
314 int error, page_nr;
315 struct splice_pipe_desc spd = {
316 .pages = pages,
317 .partial = partial,
318 .flags = flags,
319 .ops = &page_cache_pipe_buf_ops,
320 .spd_release = spd_release_page,
321 };
322
323 if (splice_grow_spd(pipe, &spd))
324 return -ENOMEM;
325
326 index = *ppos >> PAGE_CACHE_SHIFT;
327 loff = *ppos & ~PAGE_CACHE_MASK;
328 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
329 nr_pages = min(req_pages, pipe->buffers);
330
331 /*
332 * Lookup the (hopefully) full range of pages we need.
333 */
334 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
335 index += spd.nr_pages;
336
337 /*
338 * If find_get_pages_contig() returned fewer pages than we needed,
339 * readahead/allocate the rest and fill in the holes.
340 */
341 if (spd.nr_pages < nr_pages)
342 page_cache_sync_readahead(mapping, &in->f_ra, in,
343 index, req_pages - spd.nr_pages);
344
345 error = 0;
346 while (spd.nr_pages < nr_pages) {
347 /*
348 * Page could be there, find_get_pages_contig() breaks on
349 * the first hole.
350 */
351 page = find_get_page(mapping, index);
352 if (!page) {
353 /*
354 * page didn't exist, allocate one.
355 */
356 page = page_cache_alloc_cold(mapping);
357 if (!page)
358 break;
359
360 error = add_to_page_cache_lru(page, mapping, index,
361 GFP_KERNEL);
362 if (unlikely(error)) {
363 page_cache_release(page);
364 if (error == -EEXIST)
365 continue;
366 break;
367 }
368 /*
369 * add_to_page_cache() locks the page, unlock it
370 * to avoid convoluting the logic below even more.
371 */
372 unlock_page(page);
373 }
374
375 spd.pages[spd.nr_pages++] = page;
376 index++;
377 }
378
379 /*
380 * Now loop over the map and see if we need to start IO on any
381 * pages, fill in the partial map, etc.
382 */
383 index = *ppos >> PAGE_CACHE_SHIFT;
384 nr_pages = spd.nr_pages;
385 spd.nr_pages = 0;
386 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
387 unsigned int this_len;
388
389 if (!len)
390 break;
391
392 /*
393 * this_len is the max we'll use from this page
394 */
395 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
396 page = spd.pages[page_nr];
397
398 if (PageReadahead(page))
399 page_cache_async_readahead(mapping, &in->f_ra, in,
400 page, index, req_pages - page_nr);
401
402 /*
403 * If the page isn't uptodate, we may need to start io on it
404 */
405 if (!PageUptodate(page)) {
406 lock_page(page);
407
408 /*
409 * Page was truncated, or invalidated by the
410 * filesystem. Redo the find/create, but this time the
411 * page is kept locked, so there's no chance of another
412 * race with truncate/invalidate.
413 */
414 if (!page->mapping) {
415 unlock_page(page);
416 page = find_or_create_page(mapping, index,
417 mapping_gfp_mask(mapping));
418
419 if (!page) {
420 error = -ENOMEM;
421 break;
422 }
423 page_cache_release(spd.pages[page_nr]);
424 spd.pages[page_nr] = page;
425 }
426 /*
427 * page was already under io and is now done, great
428 */
429 if (PageUptodate(page)) {
430 unlock_page(page);
431 goto fill_it;
432 }
433
434 /*
435 * need to read in the page
436 */
437 error = mapping->a_ops->readpage(in, page);
438 if (unlikely(error)) {
439 /*
440 * We really should re-lookup the page here,
441 * but it complicates things a lot. Instead
442 * lets just do what we already stored, and
443 * we'll get it the next time we are called.
444 */
445 if (error == AOP_TRUNCATED_PAGE)
446 error = 0;
447
448 break;
449 }
450 }
451fill_it:
452 /*
453 * i_size must be checked after PageUptodate.
454 */
455 isize = i_size_read(mapping->host);
456 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
457 if (unlikely(!isize || index > end_index))
458 break;
459
460 /*
461 * if this is the last page, see if we need to shrink
462 * the length and stop
463 */
464 if (end_index == index) {
465 unsigned int plen;
466
467 /*
468 * max good bytes in this page
469 */
470 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
471 if (plen <= loff)
472 break;
473
474 /*
475 * force quit after adding this page
476 */
477 this_len = min(this_len, plen - loff);
478 len = this_len;
479 }
480
481 spd.partial[page_nr].offset = loff;
482 spd.partial[page_nr].len = this_len;
483 len -= this_len;
484 loff = 0;
485 spd.nr_pages++;
486 index++;
487 }
488
489 /*
490 * Release any pages at the end, if we quit early. 'page_nr' is how far
491 * we got, 'nr_pages' is how many pages are in the map.
492 */
493 while (page_nr < nr_pages)
494 page_cache_release(spd.pages[page_nr++]);
495 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
496
497 if (spd.nr_pages)
498 error = splice_to_pipe(pipe, &spd);
499
500 splice_shrink_spd(pipe, &spd);
501 return error;
502}
503
504/**
505 * generic_file_splice_read - splice data from file to a pipe
506 * @in: file to splice from
507 * @ppos: position in @in
508 * @pipe: pipe to splice to
509 * @len: number of bytes to splice
510 * @flags: splice modifier flags
511 *
512 * Description:
513 * Will read pages from given file and fill them into a pipe. Can be
514 * used as long as the address_space operations for the source implements
515 * a readpage() hook.
516 *
517 */
518ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
519 struct pipe_inode_info *pipe, size_t len,
520 unsigned int flags)
521{
522 loff_t isize, left;
523 int ret;
524
525 isize = i_size_read(in->f_mapping->host);
526 if (unlikely(*ppos >= isize))
527 return 0;
528
529 left = isize - *ppos;
530 if (unlikely(left < len))
531 len = left;
532
533 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
534 if (ret > 0) {
535 *ppos += ret;
536 file_accessed(in);
537 }
538
539 return ret;
540}
541EXPORT_SYMBOL(generic_file_splice_read);
542
543static const struct pipe_buf_operations default_pipe_buf_ops = {
544 .can_merge = 0,
545 .map = generic_pipe_buf_map,
546 .unmap = generic_pipe_buf_unmap,
547 .confirm = generic_pipe_buf_confirm,
548 .release = generic_pipe_buf_release,
549 .steal = generic_pipe_buf_steal,
550 .get = generic_pipe_buf_get,
551};
552
553static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
554 unsigned long vlen, loff_t offset)
555{
556 mm_segment_t old_fs;
557 loff_t pos = offset;
558 ssize_t res;
559
560 old_fs = get_fs();
561 set_fs(get_ds());
562 /* The cast to a user pointer is valid due to the set_fs() */
563 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
564 set_fs(old_fs);
565
566 return res;
567}
568
569static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
570 loff_t pos)
571{
572 mm_segment_t old_fs;
573 ssize_t res;
574
575 old_fs = get_fs();
576 set_fs(get_ds());
577 /* The cast to a user pointer is valid due to the set_fs() */
578 res = vfs_write(file, (const char __user *)buf, count, &pos);
579 set_fs(old_fs);
580
581 return res;
582}
583
584ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
585 struct pipe_inode_info *pipe, size_t len,
586 unsigned int flags)
587{
588 unsigned int nr_pages;
589 unsigned int nr_freed;
590 size_t offset;
591 struct page *pages[PIPE_DEF_BUFFERS];
592 struct partial_page partial[PIPE_DEF_BUFFERS];
593 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
594 ssize_t res;
595 size_t this_len;
596 int error;
597 int i;
598 struct splice_pipe_desc spd = {
599 .pages = pages,
600 .partial = partial,
601 .flags = flags,
602 .ops = &default_pipe_buf_ops,
603 .spd_release = spd_release_page,
604 };
605
606 if (splice_grow_spd(pipe, &spd))
607 return -ENOMEM;
608
609 res = -ENOMEM;
610 vec = __vec;
611 if (pipe->buffers > PIPE_DEF_BUFFERS) {
612 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
613 if (!vec)
614 goto shrink_ret;
615 }
616
617 offset = *ppos & ~PAGE_CACHE_MASK;
618 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
619
620 for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
621 struct page *page;
622
623 page = alloc_page(GFP_USER);
624 error = -ENOMEM;
625 if (!page)
626 goto err;
627
628 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
629 vec[i].iov_base = (void __user *) page_address(page);
630 vec[i].iov_len = this_len;
631 spd.pages[i] = page;
632 spd.nr_pages++;
633 len -= this_len;
634 offset = 0;
635 }
636
637 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
638 if (res < 0) {
639 error = res;
640 goto err;
641 }
642
643 error = 0;
644 if (!res)
645 goto err;
646
647 nr_freed = 0;
648 for (i = 0; i < spd.nr_pages; i++) {
649 this_len = min_t(size_t, vec[i].iov_len, res);
650 spd.partial[i].offset = 0;
651 spd.partial[i].len = this_len;
652 if (!this_len) {
653 __free_page(spd.pages[i]);
654 spd.pages[i] = NULL;
655 nr_freed++;
656 }
657 res -= this_len;
658 }
659 spd.nr_pages -= nr_freed;
660
661 res = splice_to_pipe(pipe, &spd);
662 if (res > 0)
663 *ppos += res;
664
665shrink_ret:
666 if (vec != __vec)
667 kfree(vec);
668 splice_shrink_spd(pipe, &spd);
669 return res;
670
671err:
672 for (i = 0; i < spd.nr_pages; i++)
673 __free_page(spd.pages[i]);
674
675 res = error;
676 goto shrink_ret;
677}
678EXPORT_SYMBOL(default_file_splice_read);
679
680/*
681 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
682 * using sendpage(). Return the number of bytes sent.
683 */
684static int pipe_to_sendpage(struct pipe_inode_info *pipe,
685 struct pipe_buffer *buf, struct splice_desc *sd)
686{
687 struct file *file = sd->u.file;
688 loff_t pos = sd->pos;
689 int more;
690
691 if (!likely(file->f_op && file->f_op->sendpage))
692 return -EINVAL;
693
694 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
695 return file->f_op->sendpage(file, buf->page, buf->offset,
696 sd->len, &pos, more);
697}
698
699/*
700 * This is a little more tricky than the file -> pipe splicing. There are
701 * basically three cases:
702 *
703 * - Destination page already exists in the address space and there
704 * are users of it. For that case we have no other option that
705 * copying the data. Tough luck.
706 * - Destination page already exists in the address space, but there
707 * are no users of it. Make sure it's uptodate, then drop it. Fall
708 * through to last case.
709 * - Destination page does not exist, we can add the pipe page to
710 * the page cache and avoid the copy.
711 *
712 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
713 * sd->flags), we attempt to migrate pages from the pipe to the output
714 * file address space page cache. This is possible if no one else has
715 * the pipe page referenced outside of the pipe and page cache. If
716 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
717 * a new page in the output file page cache and fill/dirty that.
718 */
719int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
720 struct splice_desc *sd)
721{
722 struct file *file = sd->u.file;
723 struct address_space *mapping = file->f_mapping;
724 unsigned int offset, this_len;
725 struct page *page;
726 void *fsdata;
727 int ret;
728
729 offset = sd->pos & ~PAGE_CACHE_MASK;
730
731 this_len = sd->len;
732 if (this_len + offset > PAGE_CACHE_SIZE)
733 this_len = PAGE_CACHE_SIZE - offset;
734
735 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
736 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
737 if (unlikely(ret))
738 goto out;
739
740 if (buf->page != page) {
741 /*
742 * Careful, ->map() uses KM_USER0!
743 */
744 char *src = buf->ops->map(pipe, buf, 1);
745 char *dst = kmap_atomic(page, KM_USER1);
746
747 memcpy(dst + offset, src + buf->offset, this_len);
748 flush_dcache_page(page);
749 kunmap_atomic(dst, KM_USER1);
750 buf->ops->unmap(pipe, buf, src);
751 }
752 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
753 page, fsdata);
754out:
755 return ret;
756}
757EXPORT_SYMBOL(pipe_to_file);
758
759static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
760{
761 smp_mb();
762 if (waitqueue_active(&pipe->wait))
763 wake_up_interruptible(&pipe->wait);
764 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
765}
766
767/**
768 * splice_from_pipe_feed - feed available data from a pipe to a file
769 * @pipe: pipe to splice from
770 * @sd: information to @actor
771 * @actor: handler that splices the data
772 *
773 * Description:
774 * This function loops over the pipe and calls @actor to do the
775 * actual moving of a single struct pipe_buffer to the desired
776 * destination. It returns when there's no more buffers left in
777 * the pipe or if the requested number of bytes (@sd->total_len)
778 * have been copied. It returns a positive number (one) if the
779 * pipe needs to be filled with more data, zero if the required
780 * number of bytes have been copied and -errno on error.
781 *
782 * This, together with splice_from_pipe_{begin,end,next}, may be
783 * used to implement the functionality of __splice_from_pipe() when
784 * locking is required around copying the pipe buffers to the
785 * destination.
786 */
787int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
788 splice_actor *actor)
789{
790 int ret;
791
792 while (pipe->nrbufs) {
793 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
794 const struct pipe_buf_operations *ops = buf->ops;
795
796 sd->len = buf->len;
797 if (sd->len > sd->total_len)
798 sd->len = sd->total_len;
799
800 ret = buf->ops->confirm(pipe, buf);
801 if (unlikely(ret)) {
802 if (ret == -ENODATA)
803 ret = 0;
804 return ret;
805 }
806
807 ret = actor(pipe, buf, sd);
808 if (ret <= 0)
809 return ret;
810
811 buf->offset += ret;
812 buf->len -= ret;
813
814 sd->num_spliced += ret;
815 sd->len -= ret;
816 sd->pos += ret;
817 sd->total_len -= ret;
818
819 if (!buf->len) {
820 buf->ops = NULL;
821 ops->release(pipe, buf);
822 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
823 pipe->nrbufs--;
824 if (pipe->inode)
825 sd->need_wakeup = true;
826 }
827
828 if (!sd->total_len)
829 return 0;
830 }
831
832 return 1;
833}
834EXPORT_SYMBOL(splice_from_pipe_feed);
835
836/**
837 * splice_from_pipe_next - wait for some data to splice from
838 * @pipe: pipe to splice from
839 * @sd: information about the splice operation
840 *
841 * Description:
842 * This function will wait for some data and return a positive
843 * value (one) if pipe buffers are available. It will return zero
844 * or -errno if no more data needs to be spliced.
845 */
846int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
847{
848 while (!pipe->nrbufs) {
849 if (!pipe->writers)
850 return 0;
851
852 if (!pipe->waiting_writers && sd->num_spliced)
853 return 0;
854
855 if (sd->flags & SPLICE_F_NONBLOCK)
856 return -EAGAIN;
857
858 if (signal_pending(current))
859 return -ERESTARTSYS;
860
861 if (sd->need_wakeup) {
862 wakeup_pipe_writers(pipe);
863 sd->need_wakeup = false;
864 }
865
866 pipe_wait(pipe);
867 }
868
869 return 1;
870}
871EXPORT_SYMBOL(splice_from_pipe_next);
872
873/**
874 * splice_from_pipe_begin - start splicing from pipe
875 * @sd: information about the splice operation
876 *
877 * Description:
878 * This function should be called before a loop containing
879 * splice_from_pipe_next() and splice_from_pipe_feed() to
880 * initialize the necessary fields of @sd.
881 */
882void splice_from_pipe_begin(struct splice_desc *sd)
883{
884 sd->num_spliced = 0;
885 sd->need_wakeup = false;
886}
887EXPORT_SYMBOL(splice_from_pipe_begin);
888
889/**
890 * splice_from_pipe_end - finish splicing from pipe
891 * @pipe: pipe to splice from
892 * @sd: information about the splice operation
893 *
894 * Description:
895 * This function will wake up pipe writers if necessary. It should
896 * be called after a loop containing splice_from_pipe_next() and
897 * splice_from_pipe_feed().
898 */
899void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
900{
901 if (sd->need_wakeup)
902 wakeup_pipe_writers(pipe);
903}
904EXPORT_SYMBOL(splice_from_pipe_end);
905
906/**
907 * __splice_from_pipe - splice data from a pipe to given actor
908 * @pipe: pipe to splice from
909 * @sd: information to @actor
910 * @actor: handler that splices the data
911 *
912 * Description:
913 * This function does little more than loop over the pipe and call
914 * @actor to do the actual moving of a single struct pipe_buffer to
915 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
916 * pipe_to_user.
917 *
918 */
919ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
920 splice_actor *actor)
921{
922 int ret;
923
924 splice_from_pipe_begin(sd);
925 do {
926 ret = splice_from_pipe_next(pipe, sd);
927 if (ret > 0)
928 ret = splice_from_pipe_feed(pipe, sd, actor);
929 } while (ret > 0);
930 splice_from_pipe_end(pipe, sd);
931
932 return sd->num_spliced ? sd->num_spliced : ret;
933}
934EXPORT_SYMBOL(__splice_from_pipe);
935
936/**
937 * splice_from_pipe - splice data from a pipe to a file
938 * @pipe: pipe to splice from
939 * @out: file to splice to
940 * @ppos: position in @out
941 * @len: how many bytes to splice
942 * @flags: splice modifier flags
943 * @actor: handler that splices the data
944 *
945 * Description:
946 * See __splice_from_pipe. This function locks the pipe inode,
947 * otherwise it's identical to __splice_from_pipe().
948 *
949 */
950ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
951 loff_t *ppos, size_t len, unsigned int flags,
952 splice_actor *actor)
953{
954 ssize_t ret;
955 struct splice_desc sd = {
956 .total_len = len,
957 .flags = flags,
958 .pos = *ppos,
959 .u.file = out,
960 };
961
962 pipe_lock(pipe);
963 ret = __splice_from_pipe(pipe, &sd, actor);
964 pipe_unlock(pipe);
965
966 return ret;
967}
968
969/**
970 * generic_file_splice_write - splice data from a pipe to a file
971 * @pipe: pipe info
972 * @out: file to write to
973 * @ppos: position in @out
974 * @len: number of bytes to splice
975 * @flags: splice modifier flags
976 *
977 * Description:
978 * Will either move or copy pages (determined by @flags options) from
979 * the given pipe inode to the given file.
980 *
981 */
982ssize_t
983generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
984 loff_t *ppos, size_t len, unsigned int flags)
985{
986 struct address_space *mapping = out->f_mapping;
987 struct inode *inode = mapping->host;
988 struct splice_desc sd = {
989 .total_len = len,
990 .flags = flags,
991 .pos = *ppos,
992 .u.file = out,
993 };
994 ssize_t ret;
995
996 pipe_lock(pipe);
997
998 splice_from_pipe_begin(&sd);
999 do {
1000 ret = splice_from_pipe_next(pipe, &sd);
1001 if (ret <= 0)
1002 break;
1003
1004 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1005 ret = file_remove_suid(out);
1006 if (!ret) {
1007 file_update_time(out);
1008 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1009 }
1010 mutex_unlock(&inode->i_mutex);
1011 } while (ret > 0);
1012 splice_from_pipe_end(pipe, &sd);
1013
1014 pipe_unlock(pipe);
1015
1016 if (sd.num_spliced)
1017 ret = sd.num_spliced;
1018
1019 if (ret > 0) {
1020 unsigned long nr_pages;
1021 int err;
1022
1023 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1024
1025 err = generic_write_sync(out, *ppos, ret);
1026 if (err)
1027 ret = err;
1028 else
1029 *ppos += ret;
1030 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1031 }
1032
1033 return ret;
1034}
1035
1036EXPORT_SYMBOL(generic_file_splice_write);
1037
1038static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1039 struct splice_desc *sd)
1040{
1041 int ret;
1042 void *data;
1043
1044 data = buf->ops->map(pipe, buf, 0);
1045 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1046 buf->ops->unmap(pipe, buf, data);
1047
1048 return ret;
1049}
1050
1051static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1052 struct file *out, loff_t *ppos,
1053 size_t len, unsigned int flags)
1054{
1055 ssize_t ret;
1056
1057 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1058 if (ret > 0)
1059 *ppos += ret;
1060
1061 return ret;
1062}
1063
1064/**
1065 * generic_splice_sendpage - splice data from a pipe to a socket
1066 * @pipe: pipe to splice from
1067 * @out: socket to write to
1068 * @ppos: position in @out
1069 * @len: number of bytes to splice
1070 * @flags: splice modifier flags
1071 *
1072 * Description:
1073 * Will send @len bytes from the pipe to a network socket. No data copying
1074 * is involved.
1075 *
1076 */
1077ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1078 loff_t *ppos, size_t len, unsigned int flags)
1079{
1080 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1081}
1082
1083EXPORT_SYMBOL(generic_splice_sendpage);
1084
1085/*
1086 * Attempt to initiate a splice from pipe to file.
1087 */
1088static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1089 loff_t *ppos, size_t len, unsigned int flags)
1090{
1091 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1092 loff_t *, size_t, unsigned int);
1093 int ret;
1094
1095 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1096 return -EBADF;
1097
1098 if (unlikely(out->f_flags & O_APPEND))
1099 return -EINVAL;
1100
1101 ret = rw_verify_area(WRITE, out, ppos, len);
1102 if (unlikely(ret < 0))
1103 return ret;
1104
1105 if (out->f_op && out->f_op->splice_write)
1106 splice_write = out->f_op->splice_write;
1107 else
1108 splice_write = default_file_splice_write;
1109
1110 return splice_write(pipe, out, ppos, len, flags);
1111}
1112
1113/*
1114 * Attempt to initiate a splice from a file to a pipe.
1115 */
1116static long do_splice_to(struct file *in, loff_t *ppos,
1117 struct pipe_inode_info *pipe, size_t len,
1118 unsigned int flags)
1119{
1120 ssize_t (*splice_read)(struct file *, loff_t *,
1121 struct pipe_inode_info *, size_t, unsigned int);
1122 int ret;
1123
1124 if (unlikely(!(in->f_mode & FMODE_READ)))
1125 return -EBADF;
1126
1127 ret = rw_verify_area(READ, in, ppos, len);
1128 if (unlikely(ret < 0))
1129 return ret;
1130
1131 if (in->f_op && in->f_op->splice_read)
1132 splice_read = in->f_op->splice_read;
1133 else
1134 splice_read = default_file_splice_read;
1135
1136 return splice_read(in, ppos, pipe, len, flags);
1137}
1138
1139/**
1140 * splice_direct_to_actor - splices data directly between two non-pipes
1141 * @in: file to splice from
1142 * @sd: actor information on where to splice to
1143 * @actor: handles the data splicing
1144 *
1145 * Description:
1146 * This is a special case helper to splice directly between two
1147 * points, without requiring an explicit pipe. Internally an allocated
1148 * pipe is cached in the process, and reused during the lifetime of
1149 * that process.
1150 *
1151 */
1152ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1153 splice_direct_actor *actor)
1154{
1155 struct pipe_inode_info *pipe;
1156 long ret, bytes;
1157 umode_t i_mode;
1158 size_t len;
1159 int i, flags;
1160
1161 /*
1162 * We require the input being a regular file, as we don't want to
1163 * randomly drop data for eg socket -> socket splicing. Use the
1164 * piped splicing for that!
1165 */
1166 i_mode = in->f_path.dentry->d_inode->i_mode;
1167 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1168 return -EINVAL;
1169
1170 /*
1171 * neither in nor out is a pipe, setup an internal pipe attached to
1172 * 'out' and transfer the wanted data from 'in' to 'out' through that
1173 */
1174 pipe = current->splice_pipe;
1175 if (unlikely(!pipe)) {
1176 pipe = alloc_pipe_info(NULL);
1177 if (!pipe)
1178 return -ENOMEM;
1179
1180 /*
1181 * We don't have an immediate reader, but we'll read the stuff
1182 * out of the pipe right after the splice_to_pipe(). So set
1183 * PIPE_READERS appropriately.
1184 */
1185 pipe->readers = 1;
1186
1187 current->splice_pipe = pipe;
1188 }
1189
1190 /*
1191 * Do the splice.
1192 */
1193 ret = 0;
1194 bytes = 0;
1195 len = sd->total_len;
1196 flags = sd->flags;
1197
1198 /*
1199 * Don't block on output, we have to drain the direct pipe.
1200 */
1201 sd->flags &= ~SPLICE_F_NONBLOCK;
1202
1203 while (len) {
1204 size_t read_len;
1205 loff_t pos = sd->pos, prev_pos = pos;
1206
1207 ret = do_splice_to(in, &pos, pipe, len, flags);
1208 if (unlikely(ret <= 0))
1209 goto out_release;
1210
1211 read_len = ret;
1212 sd->total_len = read_len;
1213
1214 /*
1215 * NOTE: nonblocking mode only applies to the input. We
1216 * must not do the output in nonblocking mode as then we
1217 * could get stuck data in the internal pipe:
1218 */
1219 ret = actor(pipe, sd);
1220 if (unlikely(ret <= 0)) {
1221 sd->pos = prev_pos;
1222 goto out_release;
1223 }
1224
1225 bytes += ret;
1226 len -= ret;
1227 sd->pos = pos;
1228
1229 if (ret < read_len) {
1230 sd->pos = prev_pos + ret;
1231 goto out_release;
1232 }
1233 }
1234
1235done:
1236 pipe->nrbufs = pipe->curbuf = 0;
1237 file_accessed(in);
1238 return bytes;
1239
1240out_release:
1241 /*
1242 * If we did an incomplete transfer we must release
1243 * the pipe buffers in question:
1244 */
1245 for (i = 0; i < pipe->buffers; i++) {
1246 struct pipe_buffer *buf = pipe->bufs + i;
1247
1248 if (buf->ops) {
1249 buf->ops->release(pipe, buf);
1250 buf->ops = NULL;
1251 }
1252 }
1253
1254 if (!bytes)
1255 bytes = ret;
1256
1257 goto done;
1258}
1259EXPORT_SYMBOL(splice_direct_to_actor);
1260
1261static int direct_splice_actor(struct pipe_inode_info *pipe,
1262 struct splice_desc *sd)
1263{
1264 struct file *file = sd->u.file;
1265
1266 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1267 sd->flags);
1268}
1269
1270/**
1271 * do_splice_direct - splices data directly between two files
1272 * @in: file to splice from
1273 * @ppos: input file offset
1274 * @out: file to splice to
1275 * @len: number of bytes to splice
1276 * @flags: splice modifier flags
1277 *
1278 * Description:
1279 * For use by do_sendfile(). splice can easily emulate sendfile, but
1280 * doing it in the application would incur an extra system call
1281 * (splice in + splice out, as compared to just sendfile()). So this helper
1282 * can splice directly through a process-private pipe.
1283 *
1284 */
1285long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1286 size_t len, unsigned int flags)
1287{
1288 struct splice_desc sd = {
1289 .len = len,
1290 .total_len = len,
1291 .flags = flags,
1292 .pos = *ppos,
1293 .u.file = out,
1294 };
1295 long ret;
1296
1297 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1298 if (ret > 0)
1299 *ppos = sd.pos;
1300
1301 return ret;
1302}
1303
1304static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1305 struct pipe_inode_info *opipe,
1306 size_t len, unsigned int flags);
1307
1308/*
1309 * Determine where to splice to/from.
1310 */
1311static long do_splice(struct file *in, loff_t __user *off_in,
1312 struct file *out, loff_t __user *off_out,
1313 size_t len, unsigned int flags)
1314{
1315 struct pipe_inode_info *ipipe;
1316 struct pipe_inode_info *opipe;
1317 loff_t offset, *off;
1318 long ret;
1319
1320 ipipe = get_pipe_info(in);
1321 opipe = get_pipe_info(out);
1322
1323 if (ipipe && opipe) {
1324 if (off_in || off_out)
1325 return -ESPIPE;
1326
1327 if (!(in->f_mode & FMODE_READ))
1328 return -EBADF;
1329
1330 if (!(out->f_mode & FMODE_WRITE))
1331 return -EBADF;
1332
1333 /* Splicing to self would be fun, but... */
1334 if (ipipe == opipe)
1335 return -EINVAL;
1336
1337 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1338 }
1339
1340 if (ipipe) {
1341 if (off_in)
1342 return -ESPIPE;
1343 if (off_out) {
1344 if (!(out->f_mode & FMODE_PWRITE))
1345 return -EINVAL;
1346 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1347 return -EFAULT;
1348 off = &offset;
1349 } else
1350 off = &out->f_pos;
1351
1352 ret = do_splice_from(ipipe, out, off, len, flags);
1353
1354 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1355 ret = -EFAULT;
1356
1357 return ret;
1358 }
1359
1360 if (opipe) {
1361 if (off_out)
1362 return -ESPIPE;
1363 if (off_in) {
1364 if (!(in->f_mode & FMODE_PREAD))
1365 return -EINVAL;
1366 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1367 return -EFAULT;
1368 off = &offset;
1369 } else
1370 off = &in->f_pos;
1371
1372 ret = do_splice_to(in, off, opipe, len, flags);
1373
1374 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1375 ret = -EFAULT;
1376
1377 return ret;
1378 }
1379
1380 return -EINVAL;
1381}
1382
1383/*
1384 * Map an iov into an array of pages and offset/length tupples. With the
1385 * partial_page structure, we can map several non-contiguous ranges into
1386 * our ones pages[] map instead of splitting that operation into pieces.
1387 * Could easily be exported as a generic helper for other users, in which
1388 * case one would probably want to add a 'max_nr_pages' parameter as well.
1389 */
1390static int get_iovec_page_array(const struct iovec __user *iov,
1391 unsigned int nr_vecs, struct page **pages,
1392 struct partial_page *partial, int aligned,
1393 unsigned int pipe_buffers)
1394{
1395 int buffers = 0, error = 0;
1396
1397 while (nr_vecs) {
1398 unsigned long off, npages;
1399 struct iovec entry;
1400 void __user *base;
1401 size_t len;
1402 int i;
1403
1404 error = -EFAULT;
1405 if (copy_from_user(&entry, iov, sizeof(entry)))
1406 break;
1407
1408 base = entry.iov_base;
1409 len = entry.iov_len;
1410
1411 /*
1412 * Sanity check this iovec. 0 read succeeds.
1413 */
1414 error = 0;
1415 if (unlikely(!len))
1416 break;
1417 error = -EFAULT;
1418 if (!access_ok(VERIFY_READ, base, len))
1419 break;
1420
1421 /*
1422 * Get this base offset and number of pages, then map
1423 * in the user pages.
1424 */
1425 off = (unsigned long) base & ~PAGE_MASK;
1426
1427 /*
1428 * If asked for alignment, the offset must be zero and the
1429 * length a multiple of the PAGE_SIZE.
1430 */
1431 error = -EINVAL;
1432 if (aligned && (off || len & ~PAGE_MASK))
1433 break;
1434
1435 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1436 if (npages > pipe_buffers - buffers)
1437 npages = pipe_buffers - buffers;
1438
1439 error = get_user_pages_fast((unsigned long)base, npages,
1440 0, &pages[buffers]);
1441
1442 if (unlikely(error <= 0))
1443 break;
1444
1445 /*
1446 * Fill this contiguous range into the partial page map.
1447 */
1448 for (i = 0; i < error; i++) {
1449 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1450
1451 partial[buffers].offset = off;
1452 partial[buffers].len = plen;
1453
1454 off = 0;
1455 len -= plen;
1456 buffers++;
1457 }
1458
1459 /*
1460 * We didn't complete this iov, stop here since it probably
1461 * means we have to move some of this into a pipe to
1462 * be able to continue.
1463 */
1464 if (len)
1465 break;
1466
1467 /*
1468 * Don't continue if we mapped fewer pages than we asked for,
1469 * or if we mapped the max number of pages that we have
1470 * room for.
1471 */
1472 if (error < npages || buffers == pipe_buffers)
1473 break;
1474
1475 nr_vecs--;
1476 iov++;
1477 }
1478
1479 if (buffers)
1480 return buffers;
1481
1482 return error;
1483}
1484
1485static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1486 struct splice_desc *sd)
1487{
1488 char *src;
1489 int ret;
1490
1491 /*
1492 * See if we can use the atomic maps, by prefaulting in the
1493 * pages and doing an atomic copy
1494 */
1495 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1496 src = buf->ops->map(pipe, buf, 1);
1497 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1498 sd->len);
1499 buf->ops->unmap(pipe, buf, src);
1500 if (!ret) {
1501 ret = sd->len;
1502 goto out;
1503 }
1504 }
1505
1506 /*
1507 * No dice, use slow non-atomic map and copy
1508 */
1509 src = buf->ops->map(pipe, buf, 0);
1510
1511 ret = sd->len;
1512 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1513 ret = -EFAULT;
1514
1515 buf->ops->unmap(pipe, buf, src);
1516out:
1517 if (ret > 0)
1518 sd->u.userptr += ret;
1519 return ret;
1520}
1521
1522/*
1523 * For lack of a better implementation, implement vmsplice() to userspace
1524 * as a simple copy of the pipes pages to the user iov.
1525 */
1526static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1527 unsigned long nr_segs, unsigned int flags)
1528{
1529 struct pipe_inode_info *pipe;
1530 struct splice_desc sd;
1531 ssize_t size;
1532 int error;
1533 long ret;
1534
1535 pipe = get_pipe_info(file);
1536 if (!pipe)
1537 return -EBADF;
1538
1539 pipe_lock(pipe);
1540
1541 error = ret = 0;
1542 while (nr_segs) {
1543 void __user *base;
1544 size_t len;
1545
1546 /*
1547 * Get user address base and length for this iovec.
1548 */
1549 error = get_user(base, &iov->iov_base);
1550 if (unlikely(error))
1551 break;
1552 error = get_user(len, &iov->iov_len);
1553 if (unlikely(error))
1554 break;
1555
1556 /*
1557 * Sanity check this iovec. 0 read succeeds.
1558 */
1559 if (unlikely(!len))
1560 break;
1561 if (unlikely(!base)) {
1562 error = -EFAULT;
1563 break;
1564 }
1565
1566 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1567 error = -EFAULT;
1568 break;
1569 }
1570
1571 sd.len = 0;
1572 sd.total_len = len;
1573 sd.flags = flags;
1574 sd.u.userptr = base;
1575 sd.pos = 0;
1576
1577 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1578 if (size < 0) {
1579 if (!ret)
1580 ret = size;
1581
1582 break;
1583 }
1584
1585 ret += size;
1586
1587 if (size < len)
1588 break;
1589
1590 nr_segs--;
1591 iov++;
1592 }
1593
1594 pipe_unlock(pipe);
1595
1596 if (!ret)
1597 ret = error;
1598
1599 return ret;
1600}
1601
1602/*
1603 * vmsplice splices a user address range into a pipe. It can be thought of
1604 * as splice-from-memory, where the regular splice is splice-from-file (or
1605 * to file). In both cases the output is a pipe, naturally.
1606 */
1607static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1608 unsigned long nr_segs, unsigned int flags)
1609{
1610 struct pipe_inode_info *pipe;
1611 struct page *pages[PIPE_DEF_BUFFERS];
1612 struct partial_page partial[PIPE_DEF_BUFFERS];
1613 struct splice_pipe_desc spd = {
1614 .pages = pages,
1615 .partial = partial,
1616 .flags = flags,
1617 .ops = &user_page_pipe_buf_ops,
1618 .spd_release = spd_release_page,
1619 };
1620 long ret;
1621
1622 pipe = get_pipe_info(file);
1623 if (!pipe)
1624 return -EBADF;
1625
1626 if (splice_grow_spd(pipe, &spd))
1627 return -ENOMEM;
1628
1629 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1630 spd.partial, flags & SPLICE_F_GIFT,
1631 pipe->buffers);
1632 if (spd.nr_pages <= 0)
1633 ret = spd.nr_pages;
1634 else
1635 ret = splice_to_pipe(pipe, &spd);
1636
1637 splice_shrink_spd(pipe, &spd);
1638 return ret;
1639}
1640
1641/*
1642 * Note that vmsplice only really supports true splicing _from_ user memory
1643 * to a pipe, not the other way around. Splicing from user memory is a simple
1644 * operation that can be supported without any funky alignment restrictions
1645 * or nasty vm tricks. We simply map in the user memory and fill them into
1646 * a pipe. The reverse isn't quite as easy, though. There are two possible
1647 * solutions for that:
1648 *
1649 * - memcpy() the data internally, at which point we might as well just
1650 * do a regular read() on the buffer anyway.
1651 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1652 * has restriction limitations on both ends of the pipe).
1653 *
1654 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1655 *
1656 */
1657SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1658 unsigned long, nr_segs, unsigned int, flags)
1659{
1660 struct file *file;
1661 long error;
1662 int fput;
1663
1664 if (unlikely(nr_segs > UIO_MAXIOV))
1665 return -EINVAL;
1666 else if (unlikely(!nr_segs))
1667 return 0;
1668
1669 error = -EBADF;
1670 file = fget_light(fd, &fput);
1671 if (file) {
1672 if (file->f_mode & FMODE_WRITE)
1673 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1674 else if (file->f_mode & FMODE_READ)
1675 error = vmsplice_to_user(file, iov, nr_segs, flags);
1676
1677 fput_light(file, fput);
1678 }
1679
1680 return error;
1681}
1682
1683SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1684 int, fd_out, loff_t __user *, off_out,
1685 size_t, len, unsigned int, flags)
1686{
1687 long error;
1688 struct file *in, *out;
1689 int fput_in, fput_out;
1690
1691 if (unlikely(!len))
1692 return 0;
1693
1694 error = -EBADF;
1695 in = fget_light(fd_in, &fput_in);
1696 if (in) {
1697 if (in->f_mode & FMODE_READ) {
1698 out = fget_light(fd_out, &fput_out);
1699 if (out) {
1700 if (out->f_mode & FMODE_WRITE)
1701 error = do_splice(in, off_in,
1702 out, off_out,
1703 len, flags);
1704 fput_light(out, fput_out);
1705 }
1706 }
1707
1708 fput_light(in, fput_in);
1709 }
1710
1711 return error;
1712}
1713
1714/*
1715 * Make sure there's data to read. Wait for input if we can, otherwise
1716 * return an appropriate error.
1717 */
1718static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1719{
1720 int ret;
1721
1722 /*
1723 * Check ->nrbufs without the inode lock first. This function
1724 * is speculative anyways, so missing one is ok.
1725 */
1726 if (pipe->nrbufs)
1727 return 0;
1728
1729 ret = 0;
1730 pipe_lock(pipe);
1731
1732 while (!pipe->nrbufs) {
1733 if (signal_pending(current)) {
1734 ret = -ERESTARTSYS;
1735 break;
1736 }
1737 if (!pipe->writers)
1738 break;
1739 if (!pipe->waiting_writers) {
1740 if (flags & SPLICE_F_NONBLOCK) {
1741 ret = -EAGAIN;
1742 break;
1743 }
1744 }
1745 pipe_wait(pipe);
1746 }
1747
1748 pipe_unlock(pipe);
1749 return ret;
1750}
1751
1752/*
1753 * Make sure there's writeable room. Wait for room if we can, otherwise
1754 * return an appropriate error.
1755 */
1756static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1757{
1758 int ret;
1759
1760 /*
1761 * Check ->nrbufs without the inode lock first. This function
1762 * is speculative anyways, so missing one is ok.
1763 */
1764 if (pipe->nrbufs < pipe->buffers)
1765 return 0;
1766
1767 ret = 0;
1768 pipe_lock(pipe);
1769
1770 while (pipe->nrbufs >= pipe->buffers) {
1771 if (!pipe->readers) {
1772 send_sig(SIGPIPE, current, 0);
1773 ret = -EPIPE;
1774 break;
1775 }
1776 if (flags & SPLICE_F_NONBLOCK) {
1777 ret = -EAGAIN;
1778 break;
1779 }
1780 if (signal_pending(current)) {
1781 ret = -ERESTARTSYS;
1782 break;
1783 }
1784 pipe->waiting_writers++;
1785 pipe_wait(pipe);
1786 pipe->waiting_writers--;
1787 }
1788
1789 pipe_unlock(pipe);
1790 return ret;
1791}
1792
1793/*
1794 * Splice contents of ipipe to opipe.
1795 */
1796static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1797 struct pipe_inode_info *opipe,
1798 size_t len, unsigned int flags)
1799{
1800 struct pipe_buffer *ibuf, *obuf;
1801 int ret = 0, nbuf;
1802 bool input_wakeup = false;
1803
1804
1805retry:
1806 ret = ipipe_prep(ipipe, flags);
1807 if (ret)
1808 return ret;
1809
1810 ret = opipe_prep(opipe, flags);
1811 if (ret)
1812 return ret;
1813
1814 /*
1815 * Potential ABBA deadlock, work around it by ordering lock
1816 * grabbing by pipe info address. Otherwise two different processes
1817 * could deadlock (one doing tee from A -> B, the other from B -> A).
1818 */
1819 pipe_double_lock(ipipe, opipe);
1820
1821 do {
1822 if (!opipe->readers) {
1823 send_sig(SIGPIPE, current, 0);
1824 if (!ret)
1825 ret = -EPIPE;
1826 break;
1827 }
1828
1829 if (!ipipe->nrbufs && !ipipe->writers)
1830 break;
1831
1832 /*
1833 * Cannot make any progress, because either the input
1834 * pipe is empty or the output pipe is full.
1835 */
1836 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1837 /* Already processed some buffers, break */
1838 if (ret)
1839 break;
1840
1841 if (flags & SPLICE_F_NONBLOCK) {
1842 ret = -EAGAIN;
1843 break;
1844 }
1845
1846 /*
1847 * We raced with another reader/writer and haven't
1848 * managed to process any buffers. A zero return
1849 * value means EOF, so retry instead.
1850 */
1851 pipe_unlock(ipipe);
1852 pipe_unlock(opipe);
1853 goto retry;
1854 }
1855
1856 ibuf = ipipe->bufs + ipipe->curbuf;
1857 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1858 obuf = opipe->bufs + nbuf;
1859
1860 if (len >= ibuf->len) {
1861 /*
1862 * Simply move the whole buffer from ipipe to opipe
1863 */
1864 *obuf = *ibuf;
1865 ibuf->ops = NULL;
1866 opipe->nrbufs++;
1867 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1868 ipipe->nrbufs--;
1869 input_wakeup = true;
1870 } else {
1871 /*
1872 * Get a reference to this pipe buffer,
1873 * so we can copy the contents over.
1874 */
1875 ibuf->ops->get(ipipe, ibuf);
1876 *obuf = *ibuf;
1877
1878 /*
1879 * Don't inherit the gift flag, we need to
1880 * prevent multiple steals of this page.
1881 */
1882 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1883
1884 obuf->len = len;
1885 opipe->nrbufs++;
1886 ibuf->offset += obuf->len;
1887 ibuf->len -= obuf->len;
1888 }
1889 ret += obuf->len;
1890 len -= obuf->len;
1891 } while (len);
1892
1893 pipe_unlock(ipipe);
1894 pipe_unlock(opipe);
1895
1896 /*
1897 * If we put data in the output pipe, wakeup any potential readers.
1898 */
1899 if (ret > 0)
1900 wakeup_pipe_readers(opipe);
1901
1902 if (input_wakeup)
1903 wakeup_pipe_writers(ipipe);
1904
1905 return ret;
1906}
1907
1908/*
1909 * Link contents of ipipe to opipe.
1910 */
1911static int link_pipe(struct pipe_inode_info *ipipe,
1912 struct pipe_inode_info *opipe,
1913 size_t len, unsigned int flags)
1914{
1915 struct pipe_buffer *ibuf, *obuf;
1916 int ret = 0, i = 0, nbuf;
1917
1918 /*
1919 * Potential ABBA deadlock, work around it by ordering lock
1920 * grabbing by pipe info address. Otherwise two different processes
1921 * could deadlock (one doing tee from A -> B, the other from B -> A).
1922 */
1923 pipe_double_lock(ipipe, opipe);
1924
1925 do {
1926 if (!opipe->readers) {
1927 send_sig(SIGPIPE, current, 0);
1928 if (!ret)
1929 ret = -EPIPE;
1930 break;
1931 }
1932
1933 /*
1934 * If we have iterated all input buffers or ran out of
1935 * output room, break.
1936 */
1937 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1938 break;
1939
1940 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1941 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1942
1943 /*
1944 * Get a reference to this pipe buffer,
1945 * so we can copy the contents over.
1946 */
1947 ibuf->ops->get(ipipe, ibuf);
1948
1949 obuf = opipe->bufs + nbuf;
1950 *obuf = *ibuf;
1951
1952 /*
1953 * Don't inherit the gift flag, we need to
1954 * prevent multiple steals of this page.
1955 */
1956 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1957
1958 if (obuf->len > len)
1959 obuf->len = len;
1960
1961 opipe->nrbufs++;
1962 ret += obuf->len;
1963 len -= obuf->len;
1964 i++;
1965 } while (len);
1966
1967 /*
1968 * return EAGAIN if we have the potential of some data in the
1969 * future, otherwise just return 0
1970 */
1971 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1972 ret = -EAGAIN;
1973
1974 pipe_unlock(ipipe);
1975 pipe_unlock(opipe);
1976
1977 /*
1978 * If we put data in the output pipe, wakeup any potential readers.
1979 */
1980 if (ret > 0)
1981 wakeup_pipe_readers(opipe);
1982
1983 return ret;
1984}
1985
1986/*
1987 * This is a tee(1) implementation that works on pipes. It doesn't copy
1988 * any data, it simply references the 'in' pages on the 'out' pipe.
1989 * The 'flags' used are the SPLICE_F_* variants, currently the only
1990 * applicable one is SPLICE_F_NONBLOCK.
1991 */
1992static long do_tee(struct file *in, struct file *out, size_t len,
1993 unsigned int flags)
1994{
1995 struct pipe_inode_info *ipipe = get_pipe_info(in);
1996 struct pipe_inode_info *opipe = get_pipe_info(out);
1997 int ret = -EINVAL;
1998
1999 /*
2000 * Duplicate the contents of ipipe to opipe without actually
2001 * copying the data.
2002 */
2003 if (ipipe && opipe && ipipe != opipe) {
2004 /*
2005 * Keep going, unless we encounter an error. The ipipe/opipe
2006 * ordering doesn't really matter.
2007 */
2008 ret = ipipe_prep(ipipe, flags);
2009 if (!ret) {
2010 ret = opipe_prep(opipe, flags);
2011 if (!ret)
2012 ret = link_pipe(ipipe, opipe, len, flags);
2013 }
2014 }
2015
2016 return ret;
2017}
2018
2019SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2020{
2021 struct file *in;
2022 int error, fput_in;
2023
2024 if (unlikely(!len))
2025 return 0;
2026
2027 error = -EBADF;
2028 in = fget_light(fdin, &fput_in);
2029 if (in) {
2030 if (in->f_mode & FMODE_READ) {
2031 int fput_out;
2032 struct file *out = fget_light(fdout, &fput_out);
2033
2034 if (out) {
2035 if (out->f_mode & FMODE_WRITE)
2036 error = do_tee(in, out, len, flags);
2037 fput_light(out, fput_out);
2038 }
2039 }
2040 fput_light(in, fput_in);
2041 }
2042
2043 return error;
2044}
1/*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20#include <linux/bvec.h>
21#include <linux/fs.h>
22#include <linux/file.h>
23#include <linux/pagemap.h>
24#include <linux/splice.h>
25#include <linux/memcontrol.h>
26#include <linux/mm_inline.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
29#include <linux/export.h>
30#include <linux/syscalls.h>
31#include <linux/uio.h>
32#include <linux/security.h>
33#include <linux/gfp.h>
34#include <linux/socket.h>
35#include <linux/compat.h>
36#include "internal.h"
37
38/*
39 * Attempt to steal a page from a pipe buffer. This should perhaps go into
40 * a vm helper function, it's already simplified quite a bit by the
41 * addition of remove_mapping(). If success is returned, the caller may
42 * attempt to reuse this page for another destination.
43 */
44static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
45 struct pipe_buffer *buf)
46{
47 struct page *page = buf->page;
48 struct address_space *mapping;
49
50 lock_page(page);
51
52 mapping = page_mapping(page);
53 if (mapping) {
54 WARN_ON(!PageUptodate(page));
55
56 /*
57 * At least for ext2 with nobh option, we need to wait on
58 * writeback completing on this page, since we'll remove it
59 * from the pagecache. Otherwise truncate wont wait on the
60 * page, allowing the disk blocks to be reused by someone else
61 * before we actually wrote our data to them. fs corruption
62 * ensues.
63 */
64 wait_on_page_writeback(page);
65
66 if (page_has_private(page) &&
67 !try_to_release_page(page, GFP_KERNEL))
68 goto out_unlock;
69
70 /*
71 * If we succeeded in removing the mapping, set LRU flag
72 * and return good.
73 */
74 if (remove_mapping(mapping, page)) {
75 buf->flags |= PIPE_BUF_FLAG_LRU;
76 return 0;
77 }
78 }
79
80 /*
81 * Raced with truncate or failed to remove page from current
82 * address space, unlock and return failure.
83 */
84out_unlock:
85 unlock_page(page);
86 return 1;
87}
88
89static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
91{
92 put_page(buf->page);
93 buf->flags &= ~PIPE_BUF_FLAG_LRU;
94}
95
96/*
97 * Check whether the contents of buf is OK to access. Since the content
98 * is a page cache page, IO may be in flight.
99 */
100static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
101 struct pipe_buffer *buf)
102{
103 struct page *page = buf->page;
104 int err;
105
106 if (!PageUptodate(page)) {
107 lock_page(page);
108
109 /*
110 * Page got truncated/unhashed. This will cause a 0-byte
111 * splice, if this is the first page.
112 */
113 if (!page->mapping) {
114 err = -ENODATA;
115 goto error;
116 }
117
118 /*
119 * Uh oh, read-error from disk.
120 */
121 if (!PageUptodate(page)) {
122 err = -EIO;
123 goto error;
124 }
125
126 /*
127 * Page is ok afterall, we are done.
128 */
129 unlock_page(page);
130 }
131
132 return 0;
133error:
134 unlock_page(page);
135 return err;
136}
137
138const struct pipe_buf_operations page_cache_pipe_buf_ops = {
139 .can_merge = 0,
140 .confirm = page_cache_pipe_buf_confirm,
141 .release = page_cache_pipe_buf_release,
142 .steal = page_cache_pipe_buf_steal,
143 .get = generic_pipe_buf_get,
144};
145
146static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
147 struct pipe_buffer *buf)
148{
149 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150 return 1;
151
152 buf->flags |= PIPE_BUF_FLAG_LRU;
153 return generic_pipe_buf_steal(pipe, buf);
154}
155
156static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157 .can_merge = 0,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
162};
163
164static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
165{
166 smp_mb();
167 if (waitqueue_active(&pipe->wait))
168 wake_up_interruptible(&pipe->wait);
169 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
170}
171
172/**
173 * splice_to_pipe - fill passed data into a pipe
174 * @pipe: pipe to fill
175 * @spd: data to fill
176 *
177 * Description:
178 * @spd contains a map of pages and len/offset tuples, along with
179 * the struct pipe_buf_operations associated with these pages. This
180 * function will link that data to the pipe.
181 *
182 */
183ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
184 struct splice_pipe_desc *spd)
185{
186 unsigned int spd_pages = spd->nr_pages;
187 int ret = 0, page_nr = 0;
188
189 if (!spd_pages)
190 return 0;
191
192 if (unlikely(!pipe->readers)) {
193 send_sig(SIGPIPE, current, 0);
194 ret = -EPIPE;
195 goto out;
196 }
197
198 while (pipe->nrbufs < pipe->buffers) {
199 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
200 struct pipe_buffer *buf = pipe->bufs + newbuf;
201
202 buf->page = spd->pages[page_nr];
203 buf->offset = spd->partial[page_nr].offset;
204 buf->len = spd->partial[page_nr].len;
205 buf->private = spd->partial[page_nr].private;
206 buf->ops = spd->ops;
207 buf->flags = 0;
208
209 pipe->nrbufs++;
210 page_nr++;
211 ret += buf->len;
212
213 if (!--spd->nr_pages)
214 break;
215 }
216
217 if (!ret)
218 ret = -EAGAIN;
219
220out:
221 while (page_nr < spd_pages)
222 spd->spd_release(spd, page_nr++);
223
224 return ret;
225}
226EXPORT_SYMBOL_GPL(splice_to_pipe);
227
228ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
229{
230 int ret;
231
232 if (unlikely(!pipe->readers)) {
233 send_sig(SIGPIPE, current, 0);
234 ret = -EPIPE;
235 } else if (pipe->nrbufs == pipe->buffers) {
236 ret = -EAGAIN;
237 } else {
238 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
239 pipe->bufs[newbuf] = *buf;
240 pipe->nrbufs++;
241 return buf->len;
242 }
243 pipe_buf_release(pipe, buf);
244 return ret;
245}
246EXPORT_SYMBOL(add_to_pipe);
247
248void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
249{
250 put_page(spd->pages[i]);
251}
252
253/*
254 * Check if we need to grow the arrays holding pages and partial page
255 * descriptions.
256 */
257int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
258{
259 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
260
261 spd->nr_pages_max = buffers;
262 if (buffers <= PIPE_DEF_BUFFERS)
263 return 0;
264
265 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
266 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
267
268 if (spd->pages && spd->partial)
269 return 0;
270
271 kfree(spd->pages);
272 kfree(spd->partial);
273 return -ENOMEM;
274}
275
276void splice_shrink_spd(struct splice_pipe_desc *spd)
277{
278 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
279 return;
280
281 kfree(spd->pages);
282 kfree(spd->partial);
283}
284
285/**
286 * generic_file_splice_read - splice data from file to a pipe
287 * @in: file to splice from
288 * @ppos: position in @in
289 * @pipe: pipe to splice to
290 * @len: number of bytes to splice
291 * @flags: splice modifier flags
292 *
293 * Description:
294 * Will read pages from given file and fill them into a pipe. Can be
295 * used as long as it has more or less sane ->read_iter().
296 *
297 */
298ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
299 struct pipe_inode_info *pipe, size_t len,
300 unsigned int flags)
301{
302 struct iov_iter to;
303 struct kiocb kiocb;
304 int idx, ret;
305
306 iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len);
307 idx = to.idx;
308 init_sync_kiocb(&kiocb, in);
309 kiocb.ki_pos = *ppos;
310 ret = in->f_op->read_iter(&kiocb, &to);
311 if (ret > 0) {
312 *ppos = kiocb.ki_pos;
313 file_accessed(in);
314 } else if (ret < 0) {
315 to.idx = idx;
316 to.iov_offset = 0;
317 iov_iter_advance(&to, 0); /* to free what was emitted */
318 /*
319 * callers of ->splice_read() expect -EAGAIN on
320 * "can't put anything in there", rather than -EFAULT.
321 */
322 if (ret == -EFAULT)
323 ret = -EAGAIN;
324 }
325
326 return ret;
327}
328EXPORT_SYMBOL(generic_file_splice_read);
329
330const struct pipe_buf_operations default_pipe_buf_ops = {
331 .can_merge = 0,
332 .confirm = generic_pipe_buf_confirm,
333 .release = generic_pipe_buf_release,
334 .steal = generic_pipe_buf_steal,
335 .get = generic_pipe_buf_get,
336};
337
338static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
339 struct pipe_buffer *buf)
340{
341 return 1;
342}
343
344/* Pipe buffer operations for a socket and similar. */
345const struct pipe_buf_operations nosteal_pipe_buf_ops = {
346 .can_merge = 0,
347 .confirm = generic_pipe_buf_confirm,
348 .release = generic_pipe_buf_release,
349 .steal = generic_pipe_buf_nosteal,
350 .get = generic_pipe_buf_get,
351};
352EXPORT_SYMBOL(nosteal_pipe_buf_ops);
353
354static ssize_t kernel_readv(struct file *file, const struct kvec *vec,
355 unsigned long vlen, loff_t offset)
356{
357 mm_segment_t old_fs;
358 loff_t pos = offset;
359 ssize_t res;
360
361 old_fs = get_fs();
362 set_fs(get_ds());
363 /* The cast to a user pointer is valid due to the set_fs() */
364 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
365 set_fs(old_fs);
366
367 return res;
368}
369
370ssize_t kernel_write(struct file *file, const char *buf, size_t count,
371 loff_t pos)
372{
373 mm_segment_t old_fs;
374 ssize_t res;
375
376 old_fs = get_fs();
377 set_fs(get_ds());
378 /* The cast to a user pointer is valid due to the set_fs() */
379 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
380 set_fs(old_fs);
381
382 return res;
383}
384EXPORT_SYMBOL(kernel_write);
385
386static ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
387 struct pipe_inode_info *pipe, size_t len,
388 unsigned int flags)
389{
390 struct kvec *vec, __vec[PIPE_DEF_BUFFERS];
391 struct iov_iter to;
392 struct page **pages;
393 unsigned int nr_pages;
394 size_t offset, dummy, copied = 0;
395 ssize_t res;
396 int i;
397
398 if (pipe->nrbufs == pipe->buffers)
399 return -EAGAIN;
400
401 /*
402 * Try to keep page boundaries matching to source pagecache ones -
403 * it probably won't be much help, but...
404 */
405 offset = *ppos & ~PAGE_MASK;
406
407 iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len + offset);
408
409 res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &dummy);
410 if (res <= 0)
411 return -ENOMEM;
412
413 BUG_ON(dummy);
414 nr_pages = DIV_ROUND_UP(res, PAGE_SIZE);
415
416 vec = __vec;
417 if (nr_pages > PIPE_DEF_BUFFERS) {
418 vec = kmalloc(nr_pages * sizeof(struct kvec), GFP_KERNEL);
419 if (unlikely(!vec)) {
420 res = -ENOMEM;
421 goto out;
422 }
423 }
424
425 pipe->bufs[to.idx].offset = offset;
426 pipe->bufs[to.idx].len -= offset;
427
428 for (i = 0; i < nr_pages; i++) {
429 size_t this_len = min_t(size_t, len, PAGE_SIZE - offset);
430 vec[i].iov_base = page_address(pages[i]) + offset;
431 vec[i].iov_len = this_len;
432 len -= this_len;
433 offset = 0;
434 }
435
436 res = kernel_readv(in, vec, nr_pages, *ppos);
437 if (res > 0) {
438 copied = res;
439 *ppos += res;
440 }
441
442 if (vec != __vec)
443 kfree(vec);
444out:
445 for (i = 0; i < nr_pages; i++)
446 put_page(pages[i]);
447 kvfree(pages);
448 iov_iter_advance(&to, copied); /* truncates and discards */
449 return res;
450}
451
452/*
453 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
454 * using sendpage(). Return the number of bytes sent.
455 */
456static int pipe_to_sendpage(struct pipe_inode_info *pipe,
457 struct pipe_buffer *buf, struct splice_desc *sd)
458{
459 struct file *file = sd->u.file;
460 loff_t pos = sd->pos;
461 int more;
462
463 if (!likely(file->f_op->sendpage))
464 return -EINVAL;
465
466 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
467
468 if (sd->len < sd->total_len && pipe->nrbufs > 1)
469 more |= MSG_SENDPAGE_NOTLAST;
470
471 return file->f_op->sendpage(file, buf->page, buf->offset,
472 sd->len, &pos, more);
473}
474
475static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
476{
477 smp_mb();
478 if (waitqueue_active(&pipe->wait))
479 wake_up_interruptible(&pipe->wait);
480 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
481}
482
483/**
484 * splice_from_pipe_feed - feed available data from a pipe to a file
485 * @pipe: pipe to splice from
486 * @sd: information to @actor
487 * @actor: handler that splices the data
488 *
489 * Description:
490 * This function loops over the pipe and calls @actor to do the
491 * actual moving of a single struct pipe_buffer to the desired
492 * destination. It returns when there's no more buffers left in
493 * the pipe or if the requested number of bytes (@sd->total_len)
494 * have been copied. It returns a positive number (one) if the
495 * pipe needs to be filled with more data, zero if the required
496 * number of bytes have been copied and -errno on error.
497 *
498 * This, together with splice_from_pipe_{begin,end,next}, may be
499 * used to implement the functionality of __splice_from_pipe() when
500 * locking is required around copying the pipe buffers to the
501 * destination.
502 */
503static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
504 splice_actor *actor)
505{
506 int ret;
507
508 while (pipe->nrbufs) {
509 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
510
511 sd->len = buf->len;
512 if (sd->len > sd->total_len)
513 sd->len = sd->total_len;
514
515 ret = pipe_buf_confirm(pipe, buf);
516 if (unlikely(ret)) {
517 if (ret == -ENODATA)
518 ret = 0;
519 return ret;
520 }
521
522 ret = actor(pipe, buf, sd);
523 if (ret <= 0)
524 return ret;
525
526 buf->offset += ret;
527 buf->len -= ret;
528
529 sd->num_spliced += ret;
530 sd->len -= ret;
531 sd->pos += ret;
532 sd->total_len -= ret;
533
534 if (!buf->len) {
535 pipe_buf_release(pipe, buf);
536 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
537 pipe->nrbufs--;
538 if (pipe->files)
539 sd->need_wakeup = true;
540 }
541
542 if (!sd->total_len)
543 return 0;
544 }
545
546 return 1;
547}
548
549/**
550 * splice_from_pipe_next - wait for some data to splice from
551 * @pipe: pipe to splice from
552 * @sd: information about the splice operation
553 *
554 * Description:
555 * This function will wait for some data and return a positive
556 * value (one) if pipe buffers are available. It will return zero
557 * or -errno if no more data needs to be spliced.
558 */
559static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
560{
561 /*
562 * Check for signal early to make process killable when there are
563 * always buffers available
564 */
565 if (signal_pending(current))
566 return -ERESTARTSYS;
567
568 while (!pipe->nrbufs) {
569 if (!pipe->writers)
570 return 0;
571
572 if (!pipe->waiting_writers && sd->num_spliced)
573 return 0;
574
575 if (sd->flags & SPLICE_F_NONBLOCK)
576 return -EAGAIN;
577
578 if (signal_pending(current))
579 return -ERESTARTSYS;
580
581 if (sd->need_wakeup) {
582 wakeup_pipe_writers(pipe);
583 sd->need_wakeup = false;
584 }
585
586 pipe_wait(pipe);
587 }
588
589 return 1;
590}
591
592/**
593 * splice_from_pipe_begin - start splicing from pipe
594 * @sd: information about the splice operation
595 *
596 * Description:
597 * This function should be called before a loop containing
598 * splice_from_pipe_next() and splice_from_pipe_feed() to
599 * initialize the necessary fields of @sd.
600 */
601static void splice_from_pipe_begin(struct splice_desc *sd)
602{
603 sd->num_spliced = 0;
604 sd->need_wakeup = false;
605}
606
607/**
608 * splice_from_pipe_end - finish splicing from pipe
609 * @pipe: pipe to splice from
610 * @sd: information about the splice operation
611 *
612 * Description:
613 * This function will wake up pipe writers if necessary. It should
614 * be called after a loop containing splice_from_pipe_next() and
615 * splice_from_pipe_feed().
616 */
617static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
618{
619 if (sd->need_wakeup)
620 wakeup_pipe_writers(pipe);
621}
622
623/**
624 * __splice_from_pipe - splice data from a pipe to given actor
625 * @pipe: pipe to splice from
626 * @sd: information to @actor
627 * @actor: handler that splices the data
628 *
629 * Description:
630 * This function does little more than loop over the pipe and call
631 * @actor to do the actual moving of a single struct pipe_buffer to
632 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
633 * pipe_to_user.
634 *
635 */
636ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
637 splice_actor *actor)
638{
639 int ret;
640
641 splice_from_pipe_begin(sd);
642 do {
643 cond_resched();
644 ret = splice_from_pipe_next(pipe, sd);
645 if (ret > 0)
646 ret = splice_from_pipe_feed(pipe, sd, actor);
647 } while (ret > 0);
648 splice_from_pipe_end(pipe, sd);
649
650 return sd->num_spliced ? sd->num_spliced : ret;
651}
652EXPORT_SYMBOL(__splice_from_pipe);
653
654/**
655 * splice_from_pipe - splice data from a pipe to a file
656 * @pipe: pipe to splice from
657 * @out: file to splice to
658 * @ppos: position in @out
659 * @len: how many bytes to splice
660 * @flags: splice modifier flags
661 * @actor: handler that splices the data
662 *
663 * Description:
664 * See __splice_from_pipe. This function locks the pipe inode,
665 * otherwise it's identical to __splice_from_pipe().
666 *
667 */
668ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
669 loff_t *ppos, size_t len, unsigned int flags,
670 splice_actor *actor)
671{
672 ssize_t ret;
673 struct splice_desc sd = {
674 .total_len = len,
675 .flags = flags,
676 .pos = *ppos,
677 .u.file = out,
678 };
679
680 pipe_lock(pipe);
681 ret = __splice_from_pipe(pipe, &sd, actor);
682 pipe_unlock(pipe);
683
684 return ret;
685}
686
687/**
688 * iter_file_splice_write - splice data from a pipe to a file
689 * @pipe: pipe info
690 * @out: file to write to
691 * @ppos: position in @out
692 * @len: number of bytes to splice
693 * @flags: splice modifier flags
694 *
695 * Description:
696 * Will either move or copy pages (determined by @flags options) from
697 * the given pipe inode to the given file.
698 * This one is ->write_iter-based.
699 *
700 */
701ssize_t
702iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
703 loff_t *ppos, size_t len, unsigned int flags)
704{
705 struct splice_desc sd = {
706 .total_len = len,
707 .flags = flags,
708 .pos = *ppos,
709 .u.file = out,
710 };
711 int nbufs = pipe->buffers;
712 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
713 GFP_KERNEL);
714 ssize_t ret;
715
716 if (unlikely(!array))
717 return -ENOMEM;
718
719 pipe_lock(pipe);
720
721 splice_from_pipe_begin(&sd);
722 while (sd.total_len) {
723 struct iov_iter from;
724 size_t left;
725 int n, idx;
726
727 ret = splice_from_pipe_next(pipe, &sd);
728 if (ret <= 0)
729 break;
730
731 if (unlikely(nbufs < pipe->buffers)) {
732 kfree(array);
733 nbufs = pipe->buffers;
734 array = kcalloc(nbufs, sizeof(struct bio_vec),
735 GFP_KERNEL);
736 if (!array) {
737 ret = -ENOMEM;
738 break;
739 }
740 }
741
742 /* build the vector */
743 left = sd.total_len;
744 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
745 struct pipe_buffer *buf = pipe->bufs + idx;
746 size_t this_len = buf->len;
747
748 if (this_len > left)
749 this_len = left;
750
751 if (idx == pipe->buffers - 1)
752 idx = -1;
753
754 ret = pipe_buf_confirm(pipe, buf);
755 if (unlikely(ret)) {
756 if (ret == -ENODATA)
757 ret = 0;
758 goto done;
759 }
760
761 array[n].bv_page = buf->page;
762 array[n].bv_len = this_len;
763 array[n].bv_offset = buf->offset;
764 left -= this_len;
765 }
766
767 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
768 sd.total_len - left);
769 ret = vfs_iter_write(out, &from, &sd.pos);
770 if (ret <= 0)
771 break;
772
773 sd.num_spliced += ret;
774 sd.total_len -= ret;
775 *ppos = sd.pos;
776
777 /* dismiss the fully eaten buffers, adjust the partial one */
778 while (ret) {
779 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
780 if (ret >= buf->len) {
781 ret -= buf->len;
782 buf->len = 0;
783 pipe_buf_release(pipe, buf);
784 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
785 pipe->nrbufs--;
786 if (pipe->files)
787 sd.need_wakeup = true;
788 } else {
789 buf->offset += ret;
790 buf->len -= ret;
791 ret = 0;
792 }
793 }
794 }
795done:
796 kfree(array);
797 splice_from_pipe_end(pipe, &sd);
798
799 pipe_unlock(pipe);
800
801 if (sd.num_spliced)
802 ret = sd.num_spliced;
803
804 return ret;
805}
806
807EXPORT_SYMBOL(iter_file_splice_write);
808
809static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
810 struct splice_desc *sd)
811{
812 int ret;
813 void *data;
814 loff_t tmp = sd->pos;
815
816 data = kmap(buf->page);
817 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
818 kunmap(buf->page);
819
820 return ret;
821}
822
823static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
824 struct file *out, loff_t *ppos,
825 size_t len, unsigned int flags)
826{
827 ssize_t ret;
828
829 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
830 if (ret > 0)
831 *ppos += ret;
832
833 return ret;
834}
835
836/**
837 * generic_splice_sendpage - splice data from a pipe to a socket
838 * @pipe: pipe to splice from
839 * @out: socket to write to
840 * @ppos: position in @out
841 * @len: number of bytes to splice
842 * @flags: splice modifier flags
843 *
844 * Description:
845 * Will send @len bytes from the pipe to a network socket. No data copying
846 * is involved.
847 *
848 */
849ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
850 loff_t *ppos, size_t len, unsigned int flags)
851{
852 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
853}
854
855EXPORT_SYMBOL(generic_splice_sendpage);
856
857/*
858 * Attempt to initiate a splice from pipe to file.
859 */
860static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
861 loff_t *ppos, size_t len, unsigned int flags)
862{
863 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
864 loff_t *, size_t, unsigned int);
865
866 if (out->f_op->splice_write)
867 splice_write = out->f_op->splice_write;
868 else
869 splice_write = default_file_splice_write;
870
871 return splice_write(pipe, out, ppos, len, flags);
872}
873
874/*
875 * Attempt to initiate a splice from a file to a pipe.
876 */
877static long do_splice_to(struct file *in, loff_t *ppos,
878 struct pipe_inode_info *pipe, size_t len,
879 unsigned int flags)
880{
881 ssize_t (*splice_read)(struct file *, loff_t *,
882 struct pipe_inode_info *, size_t, unsigned int);
883 int ret;
884
885 if (unlikely(!(in->f_mode & FMODE_READ)))
886 return -EBADF;
887
888 ret = rw_verify_area(READ, in, ppos, len);
889 if (unlikely(ret < 0))
890 return ret;
891
892 if (unlikely(len > MAX_RW_COUNT))
893 len = MAX_RW_COUNT;
894
895 if (in->f_op->splice_read)
896 splice_read = in->f_op->splice_read;
897 else
898 splice_read = default_file_splice_read;
899
900 return splice_read(in, ppos, pipe, len, flags);
901}
902
903/**
904 * splice_direct_to_actor - splices data directly between two non-pipes
905 * @in: file to splice from
906 * @sd: actor information on where to splice to
907 * @actor: handles the data splicing
908 *
909 * Description:
910 * This is a special case helper to splice directly between two
911 * points, without requiring an explicit pipe. Internally an allocated
912 * pipe is cached in the process, and reused during the lifetime of
913 * that process.
914 *
915 */
916ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
917 splice_direct_actor *actor)
918{
919 struct pipe_inode_info *pipe;
920 long ret, bytes;
921 umode_t i_mode;
922 size_t len;
923 int i, flags, more;
924
925 /*
926 * We require the input being a regular file, as we don't want to
927 * randomly drop data for eg socket -> socket splicing. Use the
928 * piped splicing for that!
929 */
930 i_mode = file_inode(in)->i_mode;
931 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
932 return -EINVAL;
933
934 /*
935 * neither in nor out is a pipe, setup an internal pipe attached to
936 * 'out' and transfer the wanted data from 'in' to 'out' through that
937 */
938 pipe = current->splice_pipe;
939 if (unlikely(!pipe)) {
940 pipe = alloc_pipe_info();
941 if (!pipe)
942 return -ENOMEM;
943
944 /*
945 * We don't have an immediate reader, but we'll read the stuff
946 * out of the pipe right after the splice_to_pipe(). So set
947 * PIPE_READERS appropriately.
948 */
949 pipe->readers = 1;
950
951 current->splice_pipe = pipe;
952 }
953
954 /*
955 * Do the splice.
956 */
957 ret = 0;
958 bytes = 0;
959 len = sd->total_len;
960 flags = sd->flags;
961
962 /*
963 * Don't block on output, we have to drain the direct pipe.
964 */
965 sd->flags &= ~SPLICE_F_NONBLOCK;
966 more = sd->flags & SPLICE_F_MORE;
967
968 while (len) {
969 size_t read_len;
970 loff_t pos = sd->pos, prev_pos = pos;
971
972 ret = do_splice_to(in, &pos, pipe, len, flags);
973 if (unlikely(ret <= 0))
974 goto out_release;
975
976 read_len = ret;
977 sd->total_len = read_len;
978
979 /*
980 * If more data is pending, set SPLICE_F_MORE
981 * If this is the last data and SPLICE_F_MORE was not set
982 * initially, clears it.
983 */
984 if (read_len < len)
985 sd->flags |= SPLICE_F_MORE;
986 else if (!more)
987 sd->flags &= ~SPLICE_F_MORE;
988 /*
989 * NOTE: nonblocking mode only applies to the input. We
990 * must not do the output in nonblocking mode as then we
991 * could get stuck data in the internal pipe:
992 */
993 ret = actor(pipe, sd);
994 if (unlikely(ret <= 0)) {
995 sd->pos = prev_pos;
996 goto out_release;
997 }
998
999 bytes += ret;
1000 len -= ret;
1001 sd->pos = pos;
1002
1003 if (ret < read_len) {
1004 sd->pos = prev_pos + ret;
1005 goto out_release;
1006 }
1007 }
1008
1009done:
1010 pipe->nrbufs = pipe->curbuf = 0;
1011 file_accessed(in);
1012 return bytes;
1013
1014out_release:
1015 /*
1016 * If we did an incomplete transfer we must release
1017 * the pipe buffers in question:
1018 */
1019 for (i = 0; i < pipe->buffers; i++) {
1020 struct pipe_buffer *buf = pipe->bufs + i;
1021
1022 if (buf->ops)
1023 pipe_buf_release(pipe, buf);
1024 }
1025
1026 if (!bytes)
1027 bytes = ret;
1028
1029 goto done;
1030}
1031EXPORT_SYMBOL(splice_direct_to_actor);
1032
1033static int direct_splice_actor(struct pipe_inode_info *pipe,
1034 struct splice_desc *sd)
1035{
1036 struct file *file = sd->u.file;
1037
1038 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1039 sd->flags);
1040}
1041
1042/**
1043 * do_splice_direct - splices data directly between two files
1044 * @in: file to splice from
1045 * @ppos: input file offset
1046 * @out: file to splice to
1047 * @opos: output file offset
1048 * @len: number of bytes to splice
1049 * @flags: splice modifier flags
1050 *
1051 * Description:
1052 * For use by do_sendfile(). splice can easily emulate sendfile, but
1053 * doing it in the application would incur an extra system call
1054 * (splice in + splice out, as compared to just sendfile()). So this helper
1055 * can splice directly through a process-private pipe.
1056 *
1057 */
1058long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1059 loff_t *opos, size_t len, unsigned int flags)
1060{
1061 struct splice_desc sd = {
1062 .len = len,
1063 .total_len = len,
1064 .flags = flags,
1065 .pos = *ppos,
1066 .u.file = out,
1067 .opos = opos,
1068 };
1069 long ret;
1070
1071 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1072 return -EBADF;
1073
1074 if (unlikely(out->f_flags & O_APPEND))
1075 return -EINVAL;
1076
1077 ret = rw_verify_area(WRITE, out, opos, len);
1078 if (unlikely(ret < 0))
1079 return ret;
1080
1081 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1082 if (ret > 0)
1083 *ppos = sd.pos;
1084
1085 return ret;
1086}
1087EXPORT_SYMBOL(do_splice_direct);
1088
1089static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1090{
1091 for (;;) {
1092 if (unlikely(!pipe->readers)) {
1093 send_sig(SIGPIPE, current, 0);
1094 return -EPIPE;
1095 }
1096 if (pipe->nrbufs != pipe->buffers)
1097 return 0;
1098 if (flags & SPLICE_F_NONBLOCK)
1099 return -EAGAIN;
1100 if (signal_pending(current))
1101 return -ERESTARTSYS;
1102 pipe->waiting_writers++;
1103 pipe_wait(pipe);
1104 pipe->waiting_writers--;
1105 }
1106}
1107
1108static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1109 struct pipe_inode_info *opipe,
1110 size_t len, unsigned int flags);
1111
1112/*
1113 * Determine where to splice to/from.
1114 */
1115static long do_splice(struct file *in, loff_t __user *off_in,
1116 struct file *out, loff_t __user *off_out,
1117 size_t len, unsigned int flags)
1118{
1119 struct pipe_inode_info *ipipe;
1120 struct pipe_inode_info *opipe;
1121 loff_t offset;
1122 long ret;
1123
1124 ipipe = get_pipe_info(in);
1125 opipe = get_pipe_info(out);
1126
1127 if (ipipe && opipe) {
1128 if (off_in || off_out)
1129 return -ESPIPE;
1130
1131 if (!(in->f_mode & FMODE_READ))
1132 return -EBADF;
1133
1134 if (!(out->f_mode & FMODE_WRITE))
1135 return -EBADF;
1136
1137 /* Splicing to self would be fun, but... */
1138 if (ipipe == opipe)
1139 return -EINVAL;
1140
1141 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1142 }
1143
1144 if (ipipe) {
1145 if (off_in)
1146 return -ESPIPE;
1147 if (off_out) {
1148 if (!(out->f_mode & FMODE_PWRITE))
1149 return -EINVAL;
1150 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1151 return -EFAULT;
1152 } else {
1153 offset = out->f_pos;
1154 }
1155
1156 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1157 return -EBADF;
1158
1159 if (unlikely(out->f_flags & O_APPEND))
1160 return -EINVAL;
1161
1162 ret = rw_verify_area(WRITE, out, &offset, len);
1163 if (unlikely(ret < 0))
1164 return ret;
1165
1166 file_start_write(out);
1167 ret = do_splice_from(ipipe, out, &offset, len, flags);
1168 file_end_write(out);
1169
1170 if (!off_out)
1171 out->f_pos = offset;
1172 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1173 ret = -EFAULT;
1174
1175 return ret;
1176 }
1177
1178 if (opipe) {
1179 if (off_out)
1180 return -ESPIPE;
1181 if (off_in) {
1182 if (!(in->f_mode & FMODE_PREAD))
1183 return -EINVAL;
1184 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1185 return -EFAULT;
1186 } else {
1187 offset = in->f_pos;
1188 }
1189
1190 pipe_lock(opipe);
1191 ret = wait_for_space(opipe, flags);
1192 if (!ret)
1193 ret = do_splice_to(in, &offset, opipe, len, flags);
1194 pipe_unlock(opipe);
1195 if (ret > 0)
1196 wakeup_pipe_readers(opipe);
1197 if (!off_in)
1198 in->f_pos = offset;
1199 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1200 ret = -EFAULT;
1201
1202 return ret;
1203 }
1204
1205 return -EINVAL;
1206}
1207
1208static int iter_to_pipe(struct iov_iter *from,
1209 struct pipe_inode_info *pipe,
1210 unsigned flags)
1211{
1212 struct pipe_buffer buf = {
1213 .ops = &user_page_pipe_buf_ops,
1214 .flags = flags
1215 };
1216 size_t total = 0;
1217 int ret = 0;
1218 bool failed = false;
1219
1220 while (iov_iter_count(from) && !failed) {
1221 struct page *pages[16];
1222 ssize_t copied;
1223 size_t start;
1224 int n;
1225
1226 copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start);
1227 if (copied <= 0) {
1228 ret = copied;
1229 break;
1230 }
1231
1232 for (n = 0; copied; n++, start = 0) {
1233 int size = min_t(int, copied, PAGE_SIZE - start);
1234 if (!failed) {
1235 buf.page = pages[n];
1236 buf.offset = start;
1237 buf.len = size;
1238 ret = add_to_pipe(pipe, &buf);
1239 if (unlikely(ret < 0)) {
1240 failed = true;
1241 } else {
1242 iov_iter_advance(from, ret);
1243 total += ret;
1244 }
1245 } else {
1246 put_page(pages[n]);
1247 }
1248 copied -= size;
1249 }
1250 }
1251 return total ? total : ret;
1252}
1253
1254static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1255 struct splice_desc *sd)
1256{
1257 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1258 return n == sd->len ? n : -EFAULT;
1259}
1260
1261/*
1262 * For lack of a better implementation, implement vmsplice() to userspace
1263 * as a simple copy of the pipes pages to the user iov.
1264 */
1265static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1266 unsigned long nr_segs, unsigned int flags)
1267{
1268 struct pipe_inode_info *pipe;
1269 struct splice_desc sd;
1270 long ret;
1271 struct iovec iovstack[UIO_FASTIOV];
1272 struct iovec *iov = iovstack;
1273 struct iov_iter iter;
1274
1275 pipe = get_pipe_info(file);
1276 if (!pipe)
1277 return -EBADF;
1278
1279 ret = import_iovec(READ, uiov, nr_segs,
1280 ARRAY_SIZE(iovstack), &iov, &iter);
1281 if (ret < 0)
1282 return ret;
1283
1284 sd.total_len = iov_iter_count(&iter);
1285 sd.len = 0;
1286 sd.flags = flags;
1287 sd.u.data = &iter;
1288 sd.pos = 0;
1289
1290 if (sd.total_len) {
1291 pipe_lock(pipe);
1292 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1293 pipe_unlock(pipe);
1294 }
1295
1296 kfree(iov);
1297 return ret;
1298}
1299
1300/*
1301 * vmsplice splices a user address range into a pipe. It can be thought of
1302 * as splice-from-memory, where the regular splice is splice-from-file (or
1303 * to file). In both cases the output is a pipe, naturally.
1304 */
1305static long vmsplice_to_pipe(struct file *file, const struct iovec __user *uiov,
1306 unsigned long nr_segs, unsigned int flags)
1307{
1308 struct pipe_inode_info *pipe;
1309 struct iovec iovstack[UIO_FASTIOV];
1310 struct iovec *iov = iovstack;
1311 struct iov_iter from;
1312 long ret;
1313 unsigned buf_flag = 0;
1314
1315 if (flags & SPLICE_F_GIFT)
1316 buf_flag = PIPE_BUF_FLAG_GIFT;
1317
1318 pipe = get_pipe_info(file);
1319 if (!pipe)
1320 return -EBADF;
1321
1322 ret = import_iovec(WRITE, uiov, nr_segs,
1323 ARRAY_SIZE(iovstack), &iov, &from);
1324 if (ret < 0)
1325 return ret;
1326
1327 pipe_lock(pipe);
1328 ret = wait_for_space(pipe, flags);
1329 if (!ret)
1330 ret = iter_to_pipe(&from, pipe, buf_flag);
1331 pipe_unlock(pipe);
1332 if (ret > 0)
1333 wakeup_pipe_readers(pipe);
1334 kfree(iov);
1335 return ret;
1336}
1337
1338/*
1339 * Note that vmsplice only really supports true splicing _from_ user memory
1340 * to a pipe, not the other way around. Splicing from user memory is a simple
1341 * operation that can be supported without any funky alignment restrictions
1342 * or nasty vm tricks. We simply map in the user memory and fill them into
1343 * a pipe. The reverse isn't quite as easy, though. There are two possible
1344 * solutions for that:
1345 *
1346 * - memcpy() the data internally, at which point we might as well just
1347 * do a regular read() on the buffer anyway.
1348 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1349 * has restriction limitations on both ends of the pipe).
1350 *
1351 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1352 *
1353 */
1354SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1355 unsigned long, nr_segs, unsigned int, flags)
1356{
1357 struct fd f;
1358 long error;
1359
1360 if (unlikely(nr_segs > UIO_MAXIOV))
1361 return -EINVAL;
1362 else if (unlikely(!nr_segs))
1363 return 0;
1364
1365 error = -EBADF;
1366 f = fdget(fd);
1367 if (f.file) {
1368 if (f.file->f_mode & FMODE_WRITE)
1369 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1370 else if (f.file->f_mode & FMODE_READ)
1371 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1372
1373 fdput(f);
1374 }
1375
1376 return error;
1377}
1378
1379#ifdef CONFIG_COMPAT
1380COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1381 unsigned int, nr_segs, unsigned int, flags)
1382{
1383 unsigned i;
1384 struct iovec __user *iov;
1385 if (nr_segs > UIO_MAXIOV)
1386 return -EINVAL;
1387 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1388 for (i = 0; i < nr_segs; i++) {
1389 struct compat_iovec v;
1390 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1391 get_user(v.iov_len, &iov32[i].iov_len) ||
1392 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1393 put_user(v.iov_len, &iov[i].iov_len))
1394 return -EFAULT;
1395 }
1396 return sys_vmsplice(fd, iov, nr_segs, flags);
1397}
1398#endif
1399
1400SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1401 int, fd_out, loff_t __user *, off_out,
1402 size_t, len, unsigned int, flags)
1403{
1404 struct fd in, out;
1405 long error;
1406
1407 if (unlikely(!len))
1408 return 0;
1409
1410 error = -EBADF;
1411 in = fdget(fd_in);
1412 if (in.file) {
1413 if (in.file->f_mode & FMODE_READ) {
1414 out = fdget(fd_out);
1415 if (out.file) {
1416 if (out.file->f_mode & FMODE_WRITE)
1417 error = do_splice(in.file, off_in,
1418 out.file, off_out,
1419 len, flags);
1420 fdput(out);
1421 }
1422 }
1423 fdput(in);
1424 }
1425 return error;
1426}
1427
1428/*
1429 * Make sure there's data to read. Wait for input if we can, otherwise
1430 * return an appropriate error.
1431 */
1432static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1433{
1434 int ret;
1435
1436 /*
1437 * Check ->nrbufs without the inode lock first. This function
1438 * is speculative anyways, so missing one is ok.
1439 */
1440 if (pipe->nrbufs)
1441 return 0;
1442
1443 ret = 0;
1444 pipe_lock(pipe);
1445
1446 while (!pipe->nrbufs) {
1447 if (signal_pending(current)) {
1448 ret = -ERESTARTSYS;
1449 break;
1450 }
1451 if (!pipe->writers)
1452 break;
1453 if (!pipe->waiting_writers) {
1454 if (flags & SPLICE_F_NONBLOCK) {
1455 ret = -EAGAIN;
1456 break;
1457 }
1458 }
1459 pipe_wait(pipe);
1460 }
1461
1462 pipe_unlock(pipe);
1463 return ret;
1464}
1465
1466/*
1467 * Make sure there's writeable room. Wait for room if we can, otherwise
1468 * return an appropriate error.
1469 */
1470static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1471{
1472 int ret;
1473
1474 /*
1475 * Check ->nrbufs without the inode lock first. This function
1476 * is speculative anyways, so missing one is ok.
1477 */
1478 if (pipe->nrbufs < pipe->buffers)
1479 return 0;
1480
1481 ret = 0;
1482 pipe_lock(pipe);
1483
1484 while (pipe->nrbufs >= pipe->buffers) {
1485 if (!pipe->readers) {
1486 send_sig(SIGPIPE, current, 0);
1487 ret = -EPIPE;
1488 break;
1489 }
1490 if (flags & SPLICE_F_NONBLOCK) {
1491 ret = -EAGAIN;
1492 break;
1493 }
1494 if (signal_pending(current)) {
1495 ret = -ERESTARTSYS;
1496 break;
1497 }
1498 pipe->waiting_writers++;
1499 pipe_wait(pipe);
1500 pipe->waiting_writers--;
1501 }
1502
1503 pipe_unlock(pipe);
1504 return ret;
1505}
1506
1507/*
1508 * Splice contents of ipipe to opipe.
1509 */
1510static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1511 struct pipe_inode_info *opipe,
1512 size_t len, unsigned int flags)
1513{
1514 struct pipe_buffer *ibuf, *obuf;
1515 int ret = 0, nbuf;
1516 bool input_wakeup = false;
1517
1518
1519retry:
1520 ret = ipipe_prep(ipipe, flags);
1521 if (ret)
1522 return ret;
1523
1524 ret = opipe_prep(opipe, flags);
1525 if (ret)
1526 return ret;
1527
1528 /*
1529 * Potential ABBA deadlock, work around it by ordering lock
1530 * grabbing by pipe info address. Otherwise two different processes
1531 * could deadlock (one doing tee from A -> B, the other from B -> A).
1532 */
1533 pipe_double_lock(ipipe, opipe);
1534
1535 do {
1536 if (!opipe->readers) {
1537 send_sig(SIGPIPE, current, 0);
1538 if (!ret)
1539 ret = -EPIPE;
1540 break;
1541 }
1542
1543 if (!ipipe->nrbufs && !ipipe->writers)
1544 break;
1545
1546 /*
1547 * Cannot make any progress, because either the input
1548 * pipe is empty or the output pipe is full.
1549 */
1550 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1551 /* Already processed some buffers, break */
1552 if (ret)
1553 break;
1554
1555 if (flags & SPLICE_F_NONBLOCK) {
1556 ret = -EAGAIN;
1557 break;
1558 }
1559
1560 /*
1561 * We raced with another reader/writer and haven't
1562 * managed to process any buffers. A zero return
1563 * value means EOF, so retry instead.
1564 */
1565 pipe_unlock(ipipe);
1566 pipe_unlock(opipe);
1567 goto retry;
1568 }
1569
1570 ibuf = ipipe->bufs + ipipe->curbuf;
1571 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1572 obuf = opipe->bufs + nbuf;
1573
1574 if (len >= ibuf->len) {
1575 /*
1576 * Simply move the whole buffer from ipipe to opipe
1577 */
1578 *obuf = *ibuf;
1579 ibuf->ops = NULL;
1580 opipe->nrbufs++;
1581 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1582 ipipe->nrbufs--;
1583 input_wakeup = true;
1584 } else {
1585 /*
1586 * Get a reference to this pipe buffer,
1587 * so we can copy the contents over.
1588 */
1589 pipe_buf_get(ipipe, ibuf);
1590 *obuf = *ibuf;
1591
1592 /*
1593 * Don't inherit the gift flag, we need to
1594 * prevent multiple steals of this page.
1595 */
1596 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1597
1598 obuf->len = len;
1599 opipe->nrbufs++;
1600 ibuf->offset += obuf->len;
1601 ibuf->len -= obuf->len;
1602 }
1603 ret += obuf->len;
1604 len -= obuf->len;
1605 } while (len);
1606
1607 pipe_unlock(ipipe);
1608 pipe_unlock(opipe);
1609
1610 /*
1611 * If we put data in the output pipe, wakeup any potential readers.
1612 */
1613 if (ret > 0)
1614 wakeup_pipe_readers(opipe);
1615
1616 if (input_wakeup)
1617 wakeup_pipe_writers(ipipe);
1618
1619 return ret;
1620}
1621
1622/*
1623 * Link contents of ipipe to opipe.
1624 */
1625static int link_pipe(struct pipe_inode_info *ipipe,
1626 struct pipe_inode_info *opipe,
1627 size_t len, unsigned int flags)
1628{
1629 struct pipe_buffer *ibuf, *obuf;
1630 int ret = 0, i = 0, nbuf;
1631
1632 /*
1633 * Potential ABBA deadlock, work around it by ordering lock
1634 * grabbing by pipe info address. Otherwise two different processes
1635 * could deadlock (one doing tee from A -> B, the other from B -> A).
1636 */
1637 pipe_double_lock(ipipe, opipe);
1638
1639 do {
1640 if (!opipe->readers) {
1641 send_sig(SIGPIPE, current, 0);
1642 if (!ret)
1643 ret = -EPIPE;
1644 break;
1645 }
1646
1647 /*
1648 * If we have iterated all input buffers or ran out of
1649 * output room, break.
1650 */
1651 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1652 break;
1653
1654 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1655 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1656
1657 /*
1658 * Get a reference to this pipe buffer,
1659 * so we can copy the contents over.
1660 */
1661 pipe_buf_get(ipipe, ibuf);
1662
1663 obuf = opipe->bufs + nbuf;
1664 *obuf = *ibuf;
1665
1666 /*
1667 * Don't inherit the gift flag, we need to
1668 * prevent multiple steals of this page.
1669 */
1670 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1671
1672 if (obuf->len > len)
1673 obuf->len = len;
1674
1675 opipe->nrbufs++;
1676 ret += obuf->len;
1677 len -= obuf->len;
1678 i++;
1679 } while (len);
1680
1681 /*
1682 * return EAGAIN if we have the potential of some data in the
1683 * future, otherwise just return 0
1684 */
1685 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1686 ret = -EAGAIN;
1687
1688 pipe_unlock(ipipe);
1689 pipe_unlock(opipe);
1690
1691 /*
1692 * If we put data in the output pipe, wakeup any potential readers.
1693 */
1694 if (ret > 0)
1695 wakeup_pipe_readers(opipe);
1696
1697 return ret;
1698}
1699
1700/*
1701 * This is a tee(1) implementation that works on pipes. It doesn't copy
1702 * any data, it simply references the 'in' pages on the 'out' pipe.
1703 * The 'flags' used are the SPLICE_F_* variants, currently the only
1704 * applicable one is SPLICE_F_NONBLOCK.
1705 */
1706static long do_tee(struct file *in, struct file *out, size_t len,
1707 unsigned int flags)
1708{
1709 struct pipe_inode_info *ipipe = get_pipe_info(in);
1710 struct pipe_inode_info *opipe = get_pipe_info(out);
1711 int ret = -EINVAL;
1712
1713 /*
1714 * Duplicate the contents of ipipe to opipe without actually
1715 * copying the data.
1716 */
1717 if (ipipe && opipe && ipipe != opipe) {
1718 /*
1719 * Keep going, unless we encounter an error. The ipipe/opipe
1720 * ordering doesn't really matter.
1721 */
1722 ret = ipipe_prep(ipipe, flags);
1723 if (!ret) {
1724 ret = opipe_prep(opipe, flags);
1725 if (!ret)
1726 ret = link_pipe(ipipe, opipe, len, flags);
1727 }
1728 }
1729
1730 return ret;
1731}
1732
1733SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1734{
1735 struct fd in;
1736 int error;
1737
1738 if (unlikely(!len))
1739 return 0;
1740
1741 error = -EBADF;
1742 in = fdget(fdin);
1743 if (in.file) {
1744 if (in.file->f_mode & FMODE_READ) {
1745 struct fd out = fdget(fdout);
1746 if (out.file) {
1747 if (out.file->f_mode & FMODE_WRITE)
1748 error = do_tee(in.file, out.file,
1749 len, flags);
1750 fdput(out);
1751 }
1752 }
1753 fdput(in);
1754 }
1755
1756 return error;
1757}