Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * "splice": joining two ropes together by interweaving their strands.
   3 *
   4 * This is the "extended pipe" functionality, where a pipe is used as
   5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
   6 * buffer that you can use to transfer data from one end to the other.
   7 *
   8 * The traditional unix read/write is extended with a "splice()" operation
   9 * that transfers data buffers to or from a pipe buffer.
  10 *
  11 * Named by Larry McVoy, original implementation from Linus, extended by
  12 * Jens to support splicing to files, network, direct splicing, etc and
  13 * fixing lots of bugs.
  14 *
  15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
  16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
  17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
  18 *
  19 */
 
  20#include <linux/fs.h>
  21#include <linux/file.h>
  22#include <linux/pagemap.h>
  23#include <linux/splice.h>
  24#include <linux/memcontrol.h>
  25#include <linux/mm_inline.h>
  26#include <linux/swap.h>
  27#include <linux/writeback.h>
  28#include <linux/buffer_head.h>
  29#include <linux/module.h>
  30#include <linux/syscalls.h>
  31#include <linux/uio.h>
  32#include <linux/security.h>
  33#include <linux/gfp.h>
 
 
 
  34
  35/*
  36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
  37 * a vm helper function, it's already simplified quite a bit by the
  38 * addition of remove_mapping(). If success is returned, the caller may
  39 * attempt to reuse this page for another destination.
  40 */
  41static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
  42				     struct pipe_buffer *buf)
  43{
  44	struct page *page = buf->page;
  45	struct address_space *mapping;
  46
  47	lock_page(page);
  48
  49	mapping = page_mapping(page);
  50	if (mapping) {
  51		WARN_ON(!PageUptodate(page));
  52
  53		/*
  54		 * At least for ext2 with nobh option, we need to wait on
  55		 * writeback completing on this page, since we'll remove it
  56		 * from the pagecache.  Otherwise truncate wont wait on the
  57		 * page, allowing the disk blocks to be reused by someone else
  58		 * before we actually wrote our data to them. fs corruption
  59		 * ensues.
  60		 */
  61		wait_on_page_writeback(page);
  62
  63		if (page_has_private(page) &&
  64		    !try_to_release_page(page, GFP_KERNEL))
  65			goto out_unlock;
  66
  67		/*
  68		 * If we succeeded in removing the mapping, set LRU flag
  69		 * and return good.
  70		 */
  71		if (remove_mapping(mapping, page)) {
  72			buf->flags |= PIPE_BUF_FLAG_LRU;
  73			return 0;
  74		}
  75	}
  76
  77	/*
  78	 * Raced with truncate or failed to remove page from current
  79	 * address space, unlock and return failure.
  80	 */
  81out_unlock:
  82	unlock_page(page);
  83	return 1;
  84}
  85
  86static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
  87					struct pipe_buffer *buf)
  88{
  89	page_cache_release(buf->page);
  90	buf->flags &= ~PIPE_BUF_FLAG_LRU;
  91}
  92
  93/*
  94 * Check whether the contents of buf is OK to access. Since the content
  95 * is a page cache page, IO may be in flight.
  96 */
  97static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
  98				       struct pipe_buffer *buf)
  99{
 100	struct page *page = buf->page;
 101	int err;
 102
 103	if (!PageUptodate(page)) {
 104		lock_page(page);
 105
 106		/*
 107		 * Page got truncated/unhashed. This will cause a 0-byte
 108		 * splice, if this is the first page.
 109		 */
 110		if (!page->mapping) {
 111			err = -ENODATA;
 112			goto error;
 113		}
 114
 115		/*
 116		 * Uh oh, read-error from disk.
 117		 */
 118		if (!PageUptodate(page)) {
 119			err = -EIO;
 120			goto error;
 121		}
 122
 123		/*
 124		 * Page is ok afterall, we are done.
 125		 */
 126		unlock_page(page);
 127	}
 128
 129	return 0;
 130error:
 131	unlock_page(page);
 132	return err;
 133}
 134
 135const struct pipe_buf_operations page_cache_pipe_buf_ops = {
 136	.can_merge = 0,
 137	.map = generic_pipe_buf_map,
 138	.unmap = generic_pipe_buf_unmap,
 139	.confirm = page_cache_pipe_buf_confirm,
 140	.release = page_cache_pipe_buf_release,
 141	.steal = page_cache_pipe_buf_steal,
 142	.get = generic_pipe_buf_get,
 143};
 144
 145static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
 146				    struct pipe_buffer *buf)
 147{
 148	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
 149		return 1;
 150
 151	buf->flags |= PIPE_BUF_FLAG_LRU;
 152	return generic_pipe_buf_steal(pipe, buf);
 153}
 154
 155static const struct pipe_buf_operations user_page_pipe_buf_ops = {
 156	.can_merge = 0,
 157	.map = generic_pipe_buf_map,
 158	.unmap = generic_pipe_buf_unmap,
 159	.confirm = generic_pipe_buf_confirm,
 160	.release = page_cache_pipe_buf_release,
 161	.steal = user_page_pipe_buf_steal,
 162	.get = generic_pipe_buf_get,
 163};
 164
 165static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
 166{
 167	smp_mb();
 168	if (waitqueue_active(&pipe->wait))
 169		wake_up_interruptible(&pipe->wait);
 170	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 171}
 172
 173/**
 174 * splice_to_pipe - fill passed data into a pipe
 175 * @pipe:	pipe to fill
 176 * @spd:	data to fill
 177 *
 178 * Description:
 179 *    @spd contains a map of pages and len/offset tuples, along with
 180 *    the struct pipe_buf_operations associated with these pages. This
 181 *    function will link that data to the pipe.
 182 *
 183 */
 184ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
 185		       struct splice_pipe_desc *spd)
 186{
 187	unsigned int spd_pages = spd->nr_pages;
 188	int ret, do_wakeup, page_nr;
 189
 190	ret = 0;
 191	do_wakeup = 0;
 192	page_nr = 0;
 193
 194	pipe_lock(pipe);
 195
 196	for (;;) {
 197		if (!pipe->readers) {
 198			send_sig(SIGPIPE, current, 0);
 199			if (!ret)
 200				ret = -EPIPE;
 201			break;
 202		}
 203
 204		if (pipe->nrbufs < pipe->buffers) {
 205			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
 206			struct pipe_buffer *buf = pipe->bufs + newbuf;
 207
 208			buf->page = spd->pages[page_nr];
 209			buf->offset = spd->partial[page_nr].offset;
 210			buf->len = spd->partial[page_nr].len;
 211			buf->private = spd->partial[page_nr].private;
 212			buf->ops = spd->ops;
 213			if (spd->flags & SPLICE_F_GIFT)
 214				buf->flags |= PIPE_BUF_FLAG_GIFT;
 215
 216			pipe->nrbufs++;
 217			page_nr++;
 218			ret += buf->len;
 219
 220			if (pipe->inode)
 221				do_wakeup = 1;
 222
 223			if (!--spd->nr_pages)
 224				break;
 225			if (pipe->nrbufs < pipe->buffers)
 226				continue;
 
 227
 228			break;
 229		}
 
 
 
 
 
 
 
 
 
 
 
 
 230
 231		if (spd->flags & SPLICE_F_NONBLOCK) {
 232			if (!ret)
 233				ret = -EAGAIN;
 234			break;
 235		}
 236
 237		if (signal_pending(current)) {
 238			if (!ret)
 239				ret = -ERESTARTSYS;
 240			break;
 241		}
 242
 243		if (do_wakeup) {
 244			smp_mb();
 245			if (waitqueue_active(&pipe->wait))
 246				wake_up_interruptible_sync(&pipe->wait);
 247			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 248			do_wakeup = 0;
 249		}
 250
 251		pipe->waiting_writers++;
 252		pipe_wait(pipe);
 253		pipe->waiting_writers--;
 254	}
 255
 256	pipe_unlock(pipe);
 257
 258	if (do_wakeup)
 259		wakeup_pipe_readers(pipe);
 260
 
 261	while (page_nr < spd_pages)
 262		spd->spd_release(spd, page_nr++);
 263
 264	return ret;
 265}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266
 267void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
 268{
 269	page_cache_release(spd->pages[i]);
 270}
 271
 272/*
 273 * Check if we need to grow the arrays holding pages and partial page
 274 * descriptions.
 275 */
 276int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
 277{
 278	if (pipe->buffers <= PIPE_DEF_BUFFERS)
 
 
 
 279		return 0;
 280
 281	spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
 282	spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
 283
 284	if (spd->pages && spd->partial)
 285		return 0;
 286
 287	kfree(spd->pages);
 288	kfree(spd->partial);
 289	return -ENOMEM;
 290}
 291
 292void splice_shrink_spd(struct pipe_inode_info *pipe,
 293		       struct splice_pipe_desc *spd)
 294{
 295	if (pipe->buffers <= PIPE_DEF_BUFFERS)
 296		return;
 297
 298	kfree(spd->pages);
 299	kfree(spd->partial);
 300}
 301
 302static int
 303__generic_file_splice_read(struct file *in, loff_t *ppos,
 304			   struct pipe_inode_info *pipe, size_t len,
 305			   unsigned int flags)
 306{
 307	struct address_space *mapping = in->f_mapping;
 308	unsigned int loff, nr_pages, req_pages;
 309	struct page *pages[PIPE_DEF_BUFFERS];
 310	struct partial_page partial[PIPE_DEF_BUFFERS];
 311	struct page *page;
 312	pgoff_t index, end_index;
 313	loff_t isize;
 314	int error, page_nr;
 315	struct splice_pipe_desc spd = {
 316		.pages = pages,
 317		.partial = partial,
 318		.flags = flags,
 319		.ops = &page_cache_pipe_buf_ops,
 320		.spd_release = spd_release_page,
 321	};
 322
 323	if (splice_grow_spd(pipe, &spd))
 324		return -ENOMEM;
 325
 326	index = *ppos >> PAGE_CACHE_SHIFT;
 327	loff = *ppos & ~PAGE_CACHE_MASK;
 328	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 329	nr_pages = min(req_pages, pipe->buffers);
 330
 331	/*
 332	 * Lookup the (hopefully) full range of pages we need.
 333	 */
 334	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
 335	index += spd.nr_pages;
 336
 337	/*
 338	 * If find_get_pages_contig() returned fewer pages than we needed,
 339	 * readahead/allocate the rest and fill in the holes.
 340	 */
 341	if (spd.nr_pages < nr_pages)
 342		page_cache_sync_readahead(mapping, &in->f_ra, in,
 343				index, req_pages - spd.nr_pages);
 344
 345	error = 0;
 346	while (spd.nr_pages < nr_pages) {
 347		/*
 348		 * Page could be there, find_get_pages_contig() breaks on
 349		 * the first hole.
 350		 */
 351		page = find_get_page(mapping, index);
 352		if (!page) {
 353			/*
 354			 * page didn't exist, allocate one.
 355			 */
 356			page = page_cache_alloc_cold(mapping);
 357			if (!page)
 358				break;
 359
 360			error = add_to_page_cache_lru(page, mapping, index,
 361						GFP_KERNEL);
 362			if (unlikely(error)) {
 363				page_cache_release(page);
 364				if (error == -EEXIST)
 365					continue;
 366				break;
 367			}
 368			/*
 369			 * add_to_page_cache() locks the page, unlock it
 370			 * to avoid convoluting the logic below even more.
 371			 */
 372			unlock_page(page);
 373		}
 374
 375		spd.pages[spd.nr_pages++] = page;
 376		index++;
 377	}
 378
 379	/*
 380	 * Now loop over the map and see if we need to start IO on any
 381	 * pages, fill in the partial map, etc.
 382	 */
 383	index = *ppos >> PAGE_CACHE_SHIFT;
 384	nr_pages = spd.nr_pages;
 385	spd.nr_pages = 0;
 386	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
 387		unsigned int this_len;
 388
 389		if (!len)
 390			break;
 391
 392		/*
 393		 * this_len is the max we'll use from this page
 394		 */
 395		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
 396		page = spd.pages[page_nr];
 397
 398		if (PageReadahead(page))
 399			page_cache_async_readahead(mapping, &in->f_ra, in,
 400					page, index, req_pages - page_nr);
 401
 402		/*
 403		 * If the page isn't uptodate, we may need to start io on it
 404		 */
 405		if (!PageUptodate(page)) {
 406			lock_page(page);
 407
 408			/*
 409			 * Page was truncated, or invalidated by the
 410			 * filesystem.  Redo the find/create, but this time the
 411			 * page is kept locked, so there's no chance of another
 412			 * race with truncate/invalidate.
 413			 */
 414			if (!page->mapping) {
 415				unlock_page(page);
 416				page = find_or_create_page(mapping, index,
 417						mapping_gfp_mask(mapping));
 418
 419				if (!page) {
 420					error = -ENOMEM;
 421					break;
 422				}
 423				page_cache_release(spd.pages[page_nr]);
 424				spd.pages[page_nr] = page;
 425			}
 426			/*
 427			 * page was already under io and is now done, great
 428			 */
 429			if (PageUptodate(page)) {
 430				unlock_page(page);
 431				goto fill_it;
 432			}
 433
 434			/*
 435			 * need to read in the page
 436			 */
 437			error = mapping->a_ops->readpage(in, page);
 438			if (unlikely(error)) {
 439				/*
 440				 * We really should re-lookup the page here,
 441				 * but it complicates things a lot. Instead
 442				 * lets just do what we already stored, and
 443				 * we'll get it the next time we are called.
 444				 */
 445				if (error == AOP_TRUNCATED_PAGE)
 446					error = 0;
 447
 448				break;
 449			}
 450		}
 451fill_it:
 452		/*
 453		 * i_size must be checked after PageUptodate.
 454		 */
 455		isize = i_size_read(mapping->host);
 456		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
 457		if (unlikely(!isize || index > end_index))
 458			break;
 459
 460		/*
 461		 * if this is the last page, see if we need to shrink
 462		 * the length and stop
 463		 */
 464		if (end_index == index) {
 465			unsigned int plen;
 466
 467			/*
 468			 * max good bytes in this page
 469			 */
 470			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
 471			if (plen <= loff)
 472				break;
 473
 474			/*
 475			 * force quit after adding this page
 476			 */
 477			this_len = min(this_len, plen - loff);
 478			len = this_len;
 479		}
 480
 481		spd.partial[page_nr].offset = loff;
 482		spd.partial[page_nr].len = this_len;
 483		len -= this_len;
 484		loff = 0;
 485		spd.nr_pages++;
 486		index++;
 487	}
 488
 489	/*
 490	 * Release any pages at the end, if we quit early. 'page_nr' is how far
 491	 * we got, 'nr_pages' is how many pages are in the map.
 492	 */
 493	while (page_nr < nr_pages)
 494		page_cache_release(spd.pages[page_nr++]);
 495	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
 496
 497	if (spd.nr_pages)
 498		error = splice_to_pipe(pipe, &spd);
 499
 500	splice_shrink_spd(pipe, &spd);
 501	return error;
 502}
 503
 504/**
 505 * generic_file_splice_read - splice data from file to a pipe
 506 * @in:		file to splice from
 507 * @ppos:	position in @in
 508 * @pipe:	pipe to splice to
 509 * @len:	number of bytes to splice
 510 * @flags:	splice modifier flags
 511 *
 512 * Description:
 513 *    Will read pages from given file and fill them into a pipe. Can be
 514 *    used as long as the address_space operations for the source implements
 515 *    a readpage() hook.
 516 *
 517 */
 518ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
 519				 struct pipe_inode_info *pipe, size_t len,
 520				 unsigned int flags)
 521{
 522	loff_t isize, left;
 523	int ret;
 524
 525	isize = i_size_read(in->f_mapping->host);
 526	if (unlikely(*ppos >= isize))
 527		return 0;
 528
 529	left = isize - *ppos;
 530	if (unlikely(left < len))
 531		len = left;
 532
 533	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
 534	if (ret > 0) {
 535		*ppos += ret;
 536		file_accessed(in);
 
 
 
 
 
 
 
 
 
 
 537	}
 538
 539	return ret;
 540}
 541EXPORT_SYMBOL(generic_file_splice_read);
 542
 543static const struct pipe_buf_operations default_pipe_buf_ops = {
 544	.can_merge = 0,
 545	.map = generic_pipe_buf_map,
 546	.unmap = generic_pipe_buf_unmap,
 547	.confirm = generic_pipe_buf_confirm,
 548	.release = generic_pipe_buf_release,
 549	.steal = generic_pipe_buf_steal,
 550	.get = generic_pipe_buf_get,
 551};
 552
 553static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 554			    unsigned long vlen, loff_t offset)
 555{
 556	mm_segment_t old_fs;
 557	loff_t pos = offset;
 558	ssize_t res;
 559
 560	old_fs = get_fs();
 561	set_fs(get_ds());
 562	/* The cast to a user pointer is valid due to the set_fs() */
 563	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
 564	set_fs(old_fs);
 565
 566	return res;
 567}
 568
 569static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
 570			    loff_t pos)
 571{
 572	mm_segment_t old_fs;
 573	ssize_t res;
 574
 575	old_fs = get_fs();
 576	set_fs(get_ds());
 577	/* The cast to a user pointer is valid due to the set_fs() */
 578	res = vfs_write(file, (const char __user *)buf, count, &pos);
 579	set_fs(old_fs);
 580
 581	return res;
 582}
 
 583
 584ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
 585				 struct pipe_inode_info *pipe, size_t len,
 586				 unsigned int flags)
 587{
 
 
 
 588	unsigned int nr_pages;
 589	unsigned int nr_freed;
 590	size_t offset;
 591	struct page *pages[PIPE_DEF_BUFFERS];
 592	struct partial_page partial[PIPE_DEF_BUFFERS];
 593	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
 594	ssize_t res;
 595	size_t this_len;
 596	int error;
 597	int i;
 598	struct splice_pipe_desc spd = {
 599		.pages = pages,
 600		.partial = partial,
 601		.flags = flags,
 602		.ops = &default_pipe_buf_ops,
 603		.spd_release = spd_release_page,
 604	};
 605
 606	if (splice_grow_spd(pipe, &spd))
 
 
 
 
 
 
 
 
 
 
 
 
 607		return -ENOMEM;
 608
 609	res = -ENOMEM;
 
 
 610	vec = __vec;
 611	if (pipe->buffers > PIPE_DEF_BUFFERS) {
 612		vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
 613		if (!vec)
 614			goto shrink_ret;
 
 
 615	}
 616
 617	offset = *ppos & ~PAGE_CACHE_MASK;
 618	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 619
 620	for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
 621		struct page *page;
 622
 623		page = alloc_page(GFP_USER);
 624		error = -ENOMEM;
 625		if (!page)
 626			goto err;
 627
 628		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
 629		vec[i].iov_base = (void __user *) page_address(page);
 630		vec[i].iov_len = this_len;
 631		spd.pages[i] = page;
 632		spd.nr_pages++;
 633		len -= this_len;
 634		offset = 0;
 635	}
 636
 637	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
 638	if (res < 0) {
 639		error = res;
 640		goto err;
 641	}
 642
 643	error = 0;
 644	if (!res)
 645		goto err;
 646
 647	nr_freed = 0;
 648	for (i = 0; i < spd.nr_pages; i++) {
 649		this_len = min_t(size_t, vec[i].iov_len, res);
 650		spd.partial[i].offset = 0;
 651		spd.partial[i].len = this_len;
 652		if (!this_len) {
 653			__free_page(spd.pages[i]);
 654			spd.pages[i] = NULL;
 655			nr_freed++;
 656		}
 657		res -= this_len;
 658	}
 659	spd.nr_pages -= nr_freed;
 660
 661	res = splice_to_pipe(pipe, &spd);
 662	if (res > 0)
 663		*ppos += res;
 
 664
 665shrink_ret:
 666	if (vec != __vec)
 667		kfree(vec);
 668	splice_shrink_spd(pipe, &spd);
 
 
 
 
 669	return res;
 670
 671err:
 672	for (i = 0; i < spd.nr_pages; i++)
 673		__free_page(spd.pages[i]);
 674
 675	res = error;
 676	goto shrink_ret;
 677}
 678EXPORT_SYMBOL(default_file_splice_read);
 679
 680/*
 681 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
 682 * using sendpage(). Return the number of bytes sent.
 683 */
 684static int pipe_to_sendpage(struct pipe_inode_info *pipe,
 685			    struct pipe_buffer *buf, struct splice_desc *sd)
 686{
 687	struct file *file = sd->u.file;
 688	loff_t pos = sd->pos;
 689	int more;
 690
 691	if (!likely(file->f_op && file->f_op->sendpage))
 692		return -EINVAL;
 693
 694	more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
 695	return file->f_op->sendpage(file, buf->page, buf->offset,
 696				    sd->len, &pos, more);
 697}
 698
 699/*
 700 * This is a little more tricky than the file -> pipe splicing. There are
 701 * basically three cases:
 702 *
 703 *	- Destination page already exists in the address space and there
 704 *	  are users of it. For that case we have no other option that
 705 *	  copying the data. Tough luck.
 706 *	- Destination page already exists in the address space, but there
 707 *	  are no users of it. Make sure it's uptodate, then drop it. Fall
 708 *	  through to last case.
 709 *	- Destination page does not exist, we can add the pipe page to
 710 *	  the page cache and avoid the copy.
 711 *
 712 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
 713 * sd->flags), we attempt to migrate pages from the pipe to the output
 714 * file address space page cache. This is possible if no one else has
 715 * the pipe page referenced outside of the pipe and page cache. If
 716 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
 717 * a new page in the output file page cache and fill/dirty that.
 718 */
 719int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
 720		 struct splice_desc *sd)
 721{
 722	struct file *file = sd->u.file;
 723	struct address_space *mapping = file->f_mapping;
 724	unsigned int offset, this_len;
 725	struct page *page;
 726	void *fsdata;
 727	int ret;
 728
 729	offset = sd->pos & ~PAGE_CACHE_MASK;
 730
 731	this_len = sd->len;
 732	if (this_len + offset > PAGE_CACHE_SIZE)
 733		this_len = PAGE_CACHE_SIZE - offset;
 734
 735	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
 736				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
 737	if (unlikely(ret))
 738		goto out;
 739
 740	if (buf->page != page) {
 741		/*
 742		 * Careful, ->map() uses KM_USER0!
 743		 */
 744		char *src = buf->ops->map(pipe, buf, 1);
 745		char *dst = kmap_atomic(page, KM_USER1);
 746
 747		memcpy(dst + offset, src + buf->offset, this_len);
 748		flush_dcache_page(page);
 749		kunmap_atomic(dst, KM_USER1);
 750		buf->ops->unmap(pipe, buf, src);
 751	}
 752	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
 753				page, fsdata);
 754out:
 755	return ret;
 756}
 757EXPORT_SYMBOL(pipe_to_file);
 758
 759static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
 760{
 761	smp_mb();
 762	if (waitqueue_active(&pipe->wait))
 763		wake_up_interruptible(&pipe->wait);
 764	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 765}
 766
 767/**
 768 * splice_from_pipe_feed - feed available data from a pipe to a file
 769 * @pipe:	pipe to splice from
 770 * @sd:		information to @actor
 771 * @actor:	handler that splices the data
 772 *
 773 * Description:
 774 *    This function loops over the pipe and calls @actor to do the
 775 *    actual moving of a single struct pipe_buffer to the desired
 776 *    destination.  It returns when there's no more buffers left in
 777 *    the pipe or if the requested number of bytes (@sd->total_len)
 778 *    have been copied.  It returns a positive number (one) if the
 779 *    pipe needs to be filled with more data, zero if the required
 780 *    number of bytes have been copied and -errno on error.
 781 *
 782 *    This, together with splice_from_pipe_{begin,end,next}, may be
 783 *    used to implement the functionality of __splice_from_pipe() when
 784 *    locking is required around copying the pipe buffers to the
 785 *    destination.
 786 */
 787int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
 788			  splice_actor *actor)
 789{
 790	int ret;
 791
 792	while (pipe->nrbufs) {
 793		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
 794		const struct pipe_buf_operations *ops = buf->ops;
 795
 796		sd->len = buf->len;
 797		if (sd->len > sd->total_len)
 798			sd->len = sd->total_len;
 799
 800		ret = buf->ops->confirm(pipe, buf);
 801		if (unlikely(ret)) {
 802			if (ret == -ENODATA)
 803				ret = 0;
 804			return ret;
 805		}
 806
 807		ret = actor(pipe, buf, sd);
 808		if (ret <= 0)
 809			return ret;
 810
 811		buf->offset += ret;
 812		buf->len -= ret;
 813
 814		sd->num_spliced += ret;
 815		sd->len -= ret;
 816		sd->pos += ret;
 817		sd->total_len -= ret;
 818
 819		if (!buf->len) {
 820			buf->ops = NULL;
 821			ops->release(pipe, buf);
 822			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
 823			pipe->nrbufs--;
 824			if (pipe->inode)
 825				sd->need_wakeup = true;
 826		}
 827
 828		if (!sd->total_len)
 829			return 0;
 830	}
 831
 832	return 1;
 833}
 834EXPORT_SYMBOL(splice_from_pipe_feed);
 835
 836/**
 837 * splice_from_pipe_next - wait for some data to splice from
 838 * @pipe:	pipe to splice from
 839 * @sd:		information about the splice operation
 840 *
 841 * Description:
 842 *    This function will wait for some data and return a positive
 843 *    value (one) if pipe buffers are available.  It will return zero
 844 *    or -errno if no more data needs to be spliced.
 845 */
 846int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
 847{
 
 
 
 
 
 
 
 848	while (!pipe->nrbufs) {
 849		if (!pipe->writers)
 850			return 0;
 851
 852		if (!pipe->waiting_writers && sd->num_spliced)
 853			return 0;
 854
 855		if (sd->flags & SPLICE_F_NONBLOCK)
 856			return -EAGAIN;
 857
 858		if (signal_pending(current))
 859			return -ERESTARTSYS;
 860
 861		if (sd->need_wakeup) {
 862			wakeup_pipe_writers(pipe);
 863			sd->need_wakeup = false;
 864		}
 865
 866		pipe_wait(pipe);
 867	}
 868
 869	return 1;
 870}
 871EXPORT_SYMBOL(splice_from_pipe_next);
 872
 873/**
 874 * splice_from_pipe_begin - start splicing from pipe
 875 * @sd:		information about the splice operation
 876 *
 877 * Description:
 878 *    This function should be called before a loop containing
 879 *    splice_from_pipe_next() and splice_from_pipe_feed() to
 880 *    initialize the necessary fields of @sd.
 881 */
 882void splice_from_pipe_begin(struct splice_desc *sd)
 883{
 884	sd->num_spliced = 0;
 885	sd->need_wakeup = false;
 886}
 887EXPORT_SYMBOL(splice_from_pipe_begin);
 888
 889/**
 890 * splice_from_pipe_end - finish splicing from pipe
 891 * @pipe:	pipe to splice from
 892 * @sd:		information about the splice operation
 893 *
 894 * Description:
 895 *    This function will wake up pipe writers if necessary.  It should
 896 *    be called after a loop containing splice_from_pipe_next() and
 897 *    splice_from_pipe_feed().
 898 */
 899void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
 900{
 901	if (sd->need_wakeup)
 902		wakeup_pipe_writers(pipe);
 903}
 904EXPORT_SYMBOL(splice_from_pipe_end);
 905
 906/**
 907 * __splice_from_pipe - splice data from a pipe to given actor
 908 * @pipe:	pipe to splice from
 909 * @sd:		information to @actor
 910 * @actor:	handler that splices the data
 911 *
 912 * Description:
 913 *    This function does little more than loop over the pipe and call
 914 *    @actor to do the actual moving of a single struct pipe_buffer to
 915 *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
 916 *    pipe_to_user.
 917 *
 918 */
 919ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
 920			   splice_actor *actor)
 921{
 922	int ret;
 923
 924	splice_from_pipe_begin(sd);
 925	do {
 
 926		ret = splice_from_pipe_next(pipe, sd);
 927		if (ret > 0)
 928			ret = splice_from_pipe_feed(pipe, sd, actor);
 929	} while (ret > 0);
 930	splice_from_pipe_end(pipe, sd);
 931
 932	return sd->num_spliced ? sd->num_spliced : ret;
 933}
 934EXPORT_SYMBOL(__splice_from_pipe);
 935
 936/**
 937 * splice_from_pipe - splice data from a pipe to a file
 938 * @pipe:	pipe to splice from
 939 * @out:	file to splice to
 940 * @ppos:	position in @out
 941 * @len:	how many bytes to splice
 942 * @flags:	splice modifier flags
 943 * @actor:	handler that splices the data
 944 *
 945 * Description:
 946 *    See __splice_from_pipe. This function locks the pipe inode,
 947 *    otherwise it's identical to __splice_from_pipe().
 948 *
 949 */
 950ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
 951			 loff_t *ppos, size_t len, unsigned int flags,
 952			 splice_actor *actor)
 953{
 954	ssize_t ret;
 955	struct splice_desc sd = {
 956		.total_len = len,
 957		.flags = flags,
 958		.pos = *ppos,
 959		.u.file = out,
 960	};
 961
 962	pipe_lock(pipe);
 963	ret = __splice_from_pipe(pipe, &sd, actor);
 964	pipe_unlock(pipe);
 965
 966	return ret;
 967}
 968
 969/**
 970 * generic_file_splice_write - splice data from a pipe to a file
 971 * @pipe:	pipe info
 972 * @out:	file to write to
 973 * @ppos:	position in @out
 974 * @len:	number of bytes to splice
 975 * @flags:	splice modifier flags
 976 *
 977 * Description:
 978 *    Will either move or copy pages (determined by @flags options) from
 979 *    the given pipe inode to the given file.
 
 980 *
 981 */
 982ssize_t
 983generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
 984			  loff_t *ppos, size_t len, unsigned int flags)
 985{
 986	struct address_space *mapping = out->f_mapping;
 987	struct inode *inode = mapping->host;
 988	struct splice_desc sd = {
 989		.total_len = len,
 990		.flags = flags,
 991		.pos = *ppos,
 992		.u.file = out,
 993	};
 
 
 
 994	ssize_t ret;
 995
 
 
 
 996	pipe_lock(pipe);
 997
 998	splice_from_pipe_begin(&sd);
 999	do {
 
 
 
 
1000		ret = splice_from_pipe_next(pipe, &sd);
1001		if (ret <= 0)
1002			break;
1003
1004		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1005		ret = file_remove_suid(out);
1006		if (!ret) {
1007			file_update_time(out);
1008			ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
 
 
 
 
1009		}
1010		mutex_unlock(&inode->i_mutex);
1011	} while (ret > 0);
1012	splice_from_pipe_end(pipe, &sd);
1013
1014	pipe_unlock(pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015
1016	if (sd.num_spliced)
1017		ret = sd.num_spliced;
 
 
 
1018
1019	if (ret > 0) {
1020		unsigned long nr_pages;
1021		int err;
 
 
1022
1023		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 
 
1024
1025		err = generic_write_sync(out, *ppos, ret);
1026		if (err)
1027			ret = err;
1028		else
1029			*ppos += ret;
1030		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
 
 
 
 
 
 
 
 
 
 
 
1031	}
 
 
 
 
 
 
 
 
1032
1033	return ret;
1034}
1035
1036EXPORT_SYMBOL(generic_file_splice_write);
1037
1038static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1039			  struct splice_desc *sd)
1040{
1041	int ret;
1042	void *data;
 
1043
1044	data = buf->ops->map(pipe, buf, 0);
1045	ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1046	buf->ops->unmap(pipe, buf, data);
1047
1048	return ret;
1049}
1050
1051static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1052					 struct file *out, loff_t *ppos,
1053					 size_t len, unsigned int flags)
1054{
1055	ssize_t ret;
1056
1057	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1058	if (ret > 0)
1059		*ppos += ret;
1060
1061	return ret;
1062}
1063
1064/**
1065 * generic_splice_sendpage - splice data from a pipe to a socket
1066 * @pipe:	pipe to splice from
1067 * @out:	socket to write to
1068 * @ppos:	position in @out
1069 * @len:	number of bytes to splice
1070 * @flags:	splice modifier flags
1071 *
1072 * Description:
1073 *    Will send @len bytes from the pipe to a network socket. No data copying
1074 *    is involved.
1075 *
1076 */
1077ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1078				loff_t *ppos, size_t len, unsigned int flags)
1079{
1080	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1081}
1082
1083EXPORT_SYMBOL(generic_splice_sendpage);
1084
1085/*
1086 * Attempt to initiate a splice from pipe to file.
1087 */
1088static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1089			   loff_t *ppos, size_t len, unsigned int flags)
1090{
1091	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1092				loff_t *, size_t, unsigned int);
1093	int ret;
1094
1095	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1096		return -EBADF;
1097
1098	if (unlikely(out->f_flags & O_APPEND))
1099		return -EINVAL;
1100
1101	ret = rw_verify_area(WRITE, out, ppos, len);
1102	if (unlikely(ret < 0))
1103		return ret;
1104
1105	if (out->f_op && out->f_op->splice_write)
1106		splice_write = out->f_op->splice_write;
1107	else
1108		splice_write = default_file_splice_write;
1109
1110	return splice_write(pipe, out, ppos, len, flags);
1111}
1112
1113/*
1114 * Attempt to initiate a splice from a file to a pipe.
1115 */
1116static long do_splice_to(struct file *in, loff_t *ppos,
1117			 struct pipe_inode_info *pipe, size_t len,
1118			 unsigned int flags)
1119{
1120	ssize_t (*splice_read)(struct file *, loff_t *,
1121			       struct pipe_inode_info *, size_t, unsigned int);
1122	int ret;
1123
1124	if (unlikely(!(in->f_mode & FMODE_READ)))
1125		return -EBADF;
1126
1127	ret = rw_verify_area(READ, in, ppos, len);
1128	if (unlikely(ret < 0))
1129		return ret;
1130
1131	if (in->f_op && in->f_op->splice_read)
 
 
 
1132		splice_read = in->f_op->splice_read;
1133	else
1134		splice_read = default_file_splice_read;
1135
1136	return splice_read(in, ppos, pipe, len, flags);
1137}
1138
1139/**
1140 * splice_direct_to_actor - splices data directly between two non-pipes
1141 * @in:		file to splice from
1142 * @sd:		actor information on where to splice to
1143 * @actor:	handles the data splicing
1144 *
1145 * Description:
1146 *    This is a special case helper to splice directly between two
1147 *    points, without requiring an explicit pipe. Internally an allocated
1148 *    pipe is cached in the process, and reused during the lifetime of
1149 *    that process.
1150 *
1151 */
1152ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1153			       splice_direct_actor *actor)
1154{
1155	struct pipe_inode_info *pipe;
1156	long ret, bytes;
1157	umode_t i_mode;
1158	size_t len;
1159	int i, flags;
1160
1161	/*
1162	 * We require the input being a regular file, as we don't want to
1163	 * randomly drop data for eg socket -> socket splicing. Use the
1164	 * piped splicing for that!
1165	 */
1166	i_mode = in->f_path.dentry->d_inode->i_mode;
1167	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1168		return -EINVAL;
1169
1170	/*
1171	 * neither in nor out is a pipe, setup an internal pipe attached to
1172	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1173	 */
1174	pipe = current->splice_pipe;
1175	if (unlikely(!pipe)) {
1176		pipe = alloc_pipe_info(NULL);
1177		if (!pipe)
1178			return -ENOMEM;
1179
1180		/*
1181		 * We don't have an immediate reader, but we'll read the stuff
1182		 * out of the pipe right after the splice_to_pipe(). So set
1183		 * PIPE_READERS appropriately.
1184		 */
1185		pipe->readers = 1;
1186
1187		current->splice_pipe = pipe;
1188	}
1189
1190	/*
1191	 * Do the splice.
1192	 */
1193	ret = 0;
1194	bytes = 0;
1195	len = sd->total_len;
1196	flags = sd->flags;
1197
1198	/*
1199	 * Don't block on output, we have to drain the direct pipe.
1200	 */
1201	sd->flags &= ~SPLICE_F_NONBLOCK;
 
1202
1203	while (len) {
1204		size_t read_len;
1205		loff_t pos = sd->pos, prev_pos = pos;
1206
1207		ret = do_splice_to(in, &pos, pipe, len, flags);
1208		if (unlikely(ret <= 0))
1209			goto out_release;
1210
1211		read_len = ret;
1212		sd->total_len = read_len;
1213
1214		/*
 
 
 
 
 
 
 
 
 
1215		 * NOTE: nonblocking mode only applies to the input. We
1216		 * must not do the output in nonblocking mode as then we
1217		 * could get stuck data in the internal pipe:
1218		 */
1219		ret = actor(pipe, sd);
1220		if (unlikely(ret <= 0)) {
1221			sd->pos = prev_pos;
1222			goto out_release;
1223		}
1224
1225		bytes += ret;
1226		len -= ret;
1227		sd->pos = pos;
1228
1229		if (ret < read_len) {
1230			sd->pos = prev_pos + ret;
1231			goto out_release;
1232		}
1233	}
1234
1235done:
1236	pipe->nrbufs = pipe->curbuf = 0;
1237	file_accessed(in);
1238	return bytes;
1239
1240out_release:
1241	/*
1242	 * If we did an incomplete transfer we must release
1243	 * the pipe buffers in question:
1244	 */
1245	for (i = 0; i < pipe->buffers; i++) {
1246		struct pipe_buffer *buf = pipe->bufs + i;
1247
1248		if (buf->ops) {
1249			buf->ops->release(pipe, buf);
1250			buf->ops = NULL;
1251		}
1252	}
1253
1254	if (!bytes)
1255		bytes = ret;
1256
1257	goto done;
1258}
1259EXPORT_SYMBOL(splice_direct_to_actor);
1260
1261static int direct_splice_actor(struct pipe_inode_info *pipe,
1262			       struct splice_desc *sd)
1263{
1264	struct file *file = sd->u.file;
1265
1266	return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1267			      sd->flags);
1268}
1269
1270/**
1271 * do_splice_direct - splices data directly between two files
1272 * @in:		file to splice from
1273 * @ppos:	input file offset
1274 * @out:	file to splice to
 
1275 * @len:	number of bytes to splice
1276 * @flags:	splice modifier flags
1277 *
1278 * Description:
1279 *    For use by do_sendfile(). splice can easily emulate sendfile, but
1280 *    doing it in the application would incur an extra system call
1281 *    (splice in + splice out, as compared to just sendfile()). So this helper
1282 *    can splice directly through a process-private pipe.
1283 *
1284 */
1285long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1286		      size_t len, unsigned int flags)
1287{
1288	struct splice_desc sd = {
1289		.len		= len,
1290		.total_len	= len,
1291		.flags		= flags,
1292		.pos		= *ppos,
1293		.u.file		= out,
 
1294	};
1295	long ret;
1296
 
 
 
 
 
 
 
 
 
 
1297	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1298	if (ret > 0)
1299		*ppos = sd.pos;
1300
1301	return ret;
1302}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303
1304static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1305			       struct pipe_inode_info *opipe,
1306			       size_t len, unsigned int flags);
1307
1308/*
1309 * Determine where to splice to/from.
1310 */
1311static long do_splice(struct file *in, loff_t __user *off_in,
1312		      struct file *out, loff_t __user *off_out,
1313		      size_t len, unsigned int flags)
1314{
1315	struct pipe_inode_info *ipipe;
1316	struct pipe_inode_info *opipe;
1317	loff_t offset, *off;
1318	long ret;
1319
1320	ipipe = get_pipe_info(in);
1321	opipe = get_pipe_info(out);
1322
1323	if (ipipe && opipe) {
1324		if (off_in || off_out)
1325			return -ESPIPE;
1326
1327		if (!(in->f_mode & FMODE_READ))
1328			return -EBADF;
1329
1330		if (!(out->f_mode & FMODE_WRITE))
1331			return -EBADF;
1332
1333		/* Splicing to self would be fun, but... */
1334		if (ipipe == opipe)
1335			return -EINVAL;
1336
1337		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1338	}
1339
1340	if (ipipe) {
1341		if (off_in)
1342			return -ESPIPE;
1343		if (off_out) {
1344			if (!(out->f_mode & FMODE_PWRITE))
1345				return -EINVAL;
1346			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1347				return -EFAULT;
1348			off = &offset;
1349		} else
1350			off = &out->f_pos;
 
 
 
1351
1352		ret = do_splice_from(ipipe, out, off, len, flags);
 
 
 
 
 
1353
1354		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
 
 
 
 
 
 
1355			ret = -EFAULT;
1356
1357		return ret;
1358	}
1359
1360	if (opipe) {
1361		if (off_out)
1362			return -ESPIPE;
1363		if (off_in) {
1364			if (!(in->f_mode & FMODE_PREAD))
1365				return -EINVAL;
1366			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1367				return -EFAULT;
1368			off = &offset;
1369		} else
1370			off = &in->f_pos;
1371
1372		ret = do_splice_to(in, off, opipe, len, flags);
1373
1374		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
 
 
 
 
 
 
 
 
 
1375			ret = -EFAULT;
1376
1377		return ret;
1378	}
1379
1380	return -EINVAL;
1381}
1382
1383/*
1384 * Map an iov into an array of pages and offset/length tupples. With the
1385 * partial_page structure, we can map several non-contiguous ranges into
1386 * our ones pages[] map instead of splitting that operation into pieces.
1387 * Could easily be exported as a generic helper for other users, in which
1388 * case one would probably want to add a 'max_nr_pages' parameter as well.
1389 */
1390static int get_iovec_page_array(const struct iovec __user *iov,
1391				unsigned int nr_vecs, struct page **pages,
1392				struct partial_page *partial, int aligned,
1393				unsigned int pipe_buffers)
1394{
1395	int buffers = 0, error = 0;
1396
1397	while (nr_vecs) {
1398		unsigned long off, npages;
1399		struct iovec entry;
1400		void __user *base;
1401		size_t len;
1402		int i;
1403
1404		error = -EFAULT;
1405		if (copy_from_user(&entry, iov, sizeof(entry)))
1406			break;
1407
1408		base = entry.iov_base;
1409		len = entry.iov_len;
1410
1411		/*
1412		 * Sanity check this iovec. 0 read succeeds.
1413		 */
1414		error = 0;
1415		if (unlikely(!len))
1416			break;
1417		error = -EFAULT;
1418		if (!access_ok(VERIFY_READ, base, len))
1419			break;
1420
1421		/*
1422		 * Get this base offset and number of pages, then map
1423		 * in the user pages.
1424		 */
1425		off = (unsigned long) base & ~PAGE_MASK;
1426
1427		/*
1428		 * If asked for alignment, the offset must be zero and the
1429		 * length a multiple of the PAGE_SIZE.
1430		 */
1431		error = -EINVAL;
1432		if (aligned && (off || len & ~PAGE_MASK))
1433			break;
1434
1435		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1436		if (npages > pipe_buffers - buffers)
1437			npages = pipe_buffers - buffers;
1438
1439		error = get_user_pages_fast((unsigned long)base, npages,
1440					0, &pages[buffers]);
1441
1442		if (unlikely(error <= 0))
1443			break;
1444
1445		/*
1446		 * Fill this contiguous range into the partial page map.
1447		 */
1448		for (i = 0; i < error; i++) {
1449			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1450
1451			partial[buffers].offset = off;
1452			partial[buffers].len = plen;
1453
1454			off = 0;
1455			len -= plen;
1456			buffers++;
1457		}
1458
1459		/*
1460		 * We didn't complete this iov, stop here since it probably
1461		 * means we have to move some of this into a pipe to
1462		 * be able to continue.
1463		 */
1464		if (len)
1465			break;
1466
1467		/*
1468		 * Don't continue if we mapped fewer pages than we asked for,
1469		 * or if we mapped the max number of pages that we have
1470		 * room for.
1471		 */
1472		if (error < npages || buffers == pipe_buffers)
1473			break;
1474
1475		nr_vecs--;
1476		iov++;
1477	}
1478
1479	if (buffers)
1480		return buffers;
1481
1482	return error;
1483}
1484
1485static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1486			struct splice_desc *sd)
1487{
1488	char *src;
1489	int ret;
1490
1491	/*
1492	 * See if we can use the atomic maps, by prefaulting in the
1493	 * pages and doing an atomic copy
1494	 */
1495	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1496		src = buf->ops->map(pipe, buf, 1);
1497		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1498							sd->len);
1499		buf->ops->unmap(pipe, buf, src);
1500		if (!ret) {
1501			ret = sd->len;
1502			goto out;
1503		}
1504	}
1505
1506	/*
1507	 * No dice, use slow non-atomic map and copy
1508 	 */
1509	src = buf->ops->map(pipe, buf, 0);
1510
1511	ret = sd->len;
1512	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1513		ret = -EFAULT;
1514
1515	buf->ops->unmap(pipe, buf, src);
1516out:
1517	if (ret > 0)
1518		sd->u.userptr += ret;
1519	return ret;
1520}
1521
1522/*
1523 * For lack of a better implementation, implement vmsplice() to userspace
1524 * as a simple copy of the pipes pages to the user iov.
1525 */
1526static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1527			     unsigned long nr_segs, unsigned int flags)
1528{
1529	struct pipe_inode_info *pipe;
1530	struct splice_desc sd;
1531	ssize_t size;
1532	int error;
1533	long ret;
 
 
 
1534
1535	pipe = get_pipe_info(file);
1536	if (!pipe)
1537		return -EBADF;
1538
1539	pipe_lock(pipe);
1540
1541	error = ret = 0;
1542	while (nr_segs) {
1543		void __user *base;
1544		size_t len;
1545
1546		/*
1547		 * Get user address base and length for this iovec.
1548		 */
1549		error = get_user(base, &iov->iov_base);
1550		if (unlikely(error))
1551			break;
1552		error = get_user(len, &iov->iov_len);
1553		if (unlikely(error))
1554			break;
1555
1556		/*
1557		 * Sanity check this iovec. 0 read succeeds.
1558		 */
1559		if (unlikely(!len))
1560			break;
1561		if (unlikely(!base)) {
1562			error = -EFAULT;
1563			break;
1564		}
1565
1566		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1567			error = -EFAULT;
1568			break;
1569		}
1570
1571		sd.len = 0;
1572		sd.total_len = len;
1573		sd.flags = flags;
1574		sd.u.userptr = base;
1575		sd.pos = 0;
1576
1577		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1578		if (size < 0) {
1579			if (!ret)
1580				ret = size;
1581
1582			break;
1583		}
1584
1585		ret += size;
1586
1587		if (size < len)
1588			break;
1589
1590		nr_segs--;
1591		iov++;
 
 
 
 
 
 
 
 
1592	}
1593
1594	pipe_unlock(pipe);
1595
1596	if (!ret)
1597		ret = error;
1598
1599	return ret;
1600}
1601
1602/*
1603 * vmsplice splices a user address range into a pipe. It can be thought of
1604 * as splice-from-memory, where the regular splice is splice-from-file (or
1605 * to file). In both cases the output is a pipe, naturally.
1606 */
1607static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1608			     unsigned long nr_segs, unsigned int flags)
1609{
1610	struct pipe_inode_info *pipe;
1611	struct page *pages[PIPE_DEF_BUFFERS];
1612	struct partial_page partial[PIPE_DEF_BUFFERS];
1613	struct splice_pipe_desc spd = {
1614		.pages = pages,
1615		.partial = partial,
1616		.flags = flags,
1617		.ops = &user_page_pipe_buf_ops,
1618		.spd_release = spd_release_page,
1619	};
1620	long ret;
 
 
 
 
1621
1622	pipe = get_pipe_info(file);
1623	if (!pipe)
1624		return -EBADF;
1625
1626	if (splice_grow_spd(pipe, &spd))
1627		return -ENOMEM;
1628
1629	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1630					    spd.partial, flags & SPLICE_F_GIFT,
1631					    pipe->buffers);
1632	if (spd.nr_pages <= 0)
1633		ret = spd.nr_pages;
1634	else
1635		ret = splice_to_pipe(pipe, &spd);
1636
1637	splice_shrink_spd(pipe, &spd);
 
 
 
 
 
 
 
1638	return ret;
1639}
1640
1641/*
1642 * Note that vmsplice only really supports true splicing _from_ user memory
1643 * to a pipe, not the other way around. Splicing from user memory is a simple
1644 * operation that can be supported without any funky alignment restrictions
1645 * or nasty vm tricks. We simply map in the user memory and fill them into
1646 * a pipe. The reverse isn't quite as easy, though. There are two possible
1647 * solutions for that:
1648 *
1649 *	- memcpy() the data internally, at which point we might as well just
1650 *	  do a regular read() on the buffer anyway.
1651 *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1652 *	  has restriction limitations on both ends of the pipe).
1653 *
1654 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1655 *
1656 */
1657SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1658		unsigned long, nr_segs, unsigned int, flags)
1659{
1660	struct file *file;
1661	long error;
1662	int fput;
1663
1664	if (unlikely(nr_segs > UIO_MAXIOV))
1665		return -EINVAL;
1666	else if (unlikely(!nr_segs))
1667		return 0;
1668
1669	error = -EBADF;
1670	file = fget_light(fd, &fput);
1671	if (file) {
1672		if (file->f_mode & FMODE_WRITE)
1673			error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1674		else if (file->f_mode & FMODE_READ)
1675			error = vmsplice_to_user(file, iov, nr_segs, flags);
1676
1677		fput_light(file, fput);
1678	}
1679
1680	return error;
1681}
1682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1683SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1684		int, fd_out, loff_t __user *, off_out,
1685		size_t, len, unsigned int, flags)
1686{
 
1687	long error;
1688	struct file *in, *out;
1689	int fput_in, fput_out;
1690
1691	if (unlikely(!len))
1692		return 0;
1693
1694	error = -EBADF;
1695	in = fget_light(fd_in, &fput_in);
1696	if (in) {
1697		if (in->f_mode & FMODE_READ) {
1698			out = fget_light(fd_out, &fput_out);
1699			if (out) {
1700				if (out->f_mode & FMODE_WRITE)
1701					error = do_splice(in, off_in,
1702							  out, off_out,
1703							  len, flags);
1704				fput_light(out, fput_out);
1705			}
1706		}
1707
1708		fput_light(in, fput_in);
1709	}
1710
1711	return error;
1712}
1713
1714/*
1715 * Make sure there's data to read. Wait for input if we can, otherwise
1716 * return an appropriate error.
1717 */
1718static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1719{
1720	int ret;
1721
1722	/*
1723	 * Check ->nrbufs without the inode lock first. This function
1724	 * is speculative anyways, so missing one is ok.
1725	 */
1726	if (pipe->nrbufs)
1727		return 0;
1728
1729	ret = 0;
1730	pipe_lock(pipe);
1731
1732	while (!pipe->nrbufs) {
1733		if (signal_pending(current)) {
1734			ret = -ERESTARTSYS;
1735			break;
1736		}
1737		if (!pipe->writers)
1738			break;
1739		if (!pipe->waiting_writers) {
1740			if (flags & SPLICE_F_NONBLOCK) {
1741				ret = -EAGAIN;
1742				break;
1743			}
1744		}
1745		pipe_wait(pipe);
1746	}
1747
1748	pipe_unlock(pipe);
1749	return ret;
1750}
1751
1752/*
1753 * Make sure there's writeable room. Wait for room if we can, otherwise
1754 * return an appropriate error.
1755 */
1756static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1757{
1758	int ret;
1759
1760	/*
1761	 * Check ->nrbufs without the inode lock first. This function
1762	 * is speculative anyways, so missing one is ok.
1763	 */
1764	if (pipe->nrbufs < pipe->buffers)
1765		return 0;
1766
1767	ret = 0;
1768	pipe_lock(pipe);
1769
1770	while (pipe->nrbufs >= pipe->buffers) {
1771		if (!pipe->readers) {
1772			send_sig(SIGPIPE, current, 0);
1773			ret = -EPIPE;
1774			break;
1775		}
1776		if (flags & SPLICE_F_NONBLOCK) {
1777			ret = -EAGAIN;
1778			break;
1779		}
1780		if (signal_pending(current)) {
1781			ret = -ERESTARTSYS;
1782			break;
1783		}
1784		pipe->waiting_writers++;
1785		pipe_wait(pipe);
1786		pipe->waiting_writers--;
1787	}
1788
1789	pipe_unlock(pipe);
1790	return ret;
1791}
1792
1793/*
1794 * Splice contents of ipipe to opipe.
1795 */
1796static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1797			       struct pipe_inode_info *opipe,
1798			       size_t len, unsigned int flags)
1799{
1800	struct pipe_buffer *ibuf, *obuf;
1801	int ret = 0, nbuf;
1802	bool input_wakeup = false;
1803
1804
1805retry:
1806	ret = ipipe_prep(ipipe, flags);
1807	if (ret)
1808		return ret;
1809
1810	ret = opipe_prep(opipe, flags);
1811	if (ret)
1812		return ret;
1813
1814	/*
1815	 * Potential ABBA deadlock, work around it by ordering lock
1816	 * grabbing by pipe info address. Otherwise two different processes
1817	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1818	 */
1819	pipe_double_lock(ipipe, opipe);
1820
1821	do {
1822		if (!opipe->readers) {
1823			send_sig(SIGPIPE, current, 0);
1824			if (!ret)
1825				ret = -EPIPE;
1826			break;
1827		}
1828
1829		if (!ipipe->nrbufs && !ipipe->writers)
1830			break;
1831
1832		/*
1833		 * Cannot make any progress, because either the input
1834		 * pipe is empty or the output pipe is full.
1835		 */
1836		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1837			/* Already processed some buffers, break */
1838			if (ret)
1839				break;
1840
1841			if (flags & SPLICE_F_NONBLOCK) {
1842				ret = -EAGAIN;
1843				break;
1844			}
1845
1846			/*
1847			 * We raced with another reader/writer and haven't
1848			 * managed to process any buffers.  A zero return
1849			 * value means EOF, so retry instead.
1850			 */
1851			pipe_unlock(ipipe);
1852			pipe_unlock(opipe);
1853			goto retry;
1854		}
1855
1856		ibuf = ipipe->bufs + ipipe->curbuf;
1857		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1858		obuf = opipe->bufs + nbuf;
1859
1860		if (len >= ibuf->len) {
1861			/*
1862			 * Simply move the whole buffer from ipipe to opipe
1863			 */
1864			*obuf = *ibuf;
1865			ibuf->ops = NULL;
1866			opipe->nrbufs++;
1867			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1868			ipipe->nrbufs--;
1869			input_wakeup = true;
1870		} else {
1871			/*
1872			 * Get a reference to this pipe buffer,
1873			 * so we can copy the contents over.
1874			 */
1875			ibuf->ops->get(ipipe, ibuf);
1876			*obuf = *ibuf;
1877
1878			/*
1879			 * Don't inherit the gift flag, we need to
1880			 * prevent multiple steals of this page.
1881			 */
1882			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1883
1884			obuf->len = len;
1885			opipe->nrbufs++;
1886			ibuf->offset += obuf->len;
1887			ibuf->len -= obuf->len;
1888		}
1889		ret += obuf->len;
1890		len -= obuf->len;
1891	} while (len);
1892
1893	pipe_unlock(ipipe);
1894	pipe_unlock(opipe);
1895
1896	/*
1897	 * If we put data in the output pipe, wakeup any potential readers.
1898	 */
1899	if (ret > 0)
1900		wakeup_pipe_readers(opipe);
1901
1902	if (input_wakeup)
1903		wakeup_pipe_writers(ipipe);
1904
1905	return ret;
1906}
1907
1908/*
1909 * Link contents of ipipe to opipe.
1910 */
1911static int link_pipe(struct pipe_inode_info *ipipe,
1912		     struct pipe_inode_info *opipe,
1913		     size_t len, unsigned int flags)
1914{
1915	struct pipe_buffer *ibuf, *obuf;
1916	int ret = 0, i = 0, nbuf;
1917
1918	/*
1919	 * Potential ABBA deadlock, work around it by ordering lock
1920	 * grabbing by pipe info address. Otherwise two different processes
1921	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1922	 */
1923	pipe_double_lock(ipipe, opipe);
1924
1925	do {
1926		if (!opipe->readers) {
1927			send_sig(SIGPIPE, current, 0);
1928			if (!ret)
1929				ret = -EPIPE;
1930			break;
1931		}
1932
1933		/*
1934		 * If we have iterated all input buffers or ran out of
1935		 * output room, break.
1936		 */
1937		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1938			break;
1939
1940		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1941		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1942
1943		/*
1944		 * Get a reference to this pipe buffer,
1945		 * so we can copy the contents over.
1946		 */
1947		ibuf->ops->get(ipipe, ibuf);
1948
1949		obuf = opipe->bufs + nbuf;
1950		*obuf = *ibuf;
1951
1952		/*
1953		 * Don't inherit the gift flag, we need to
1954		 * prevent multiple steals of this page.
1955		 */
1956		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1957
1958		if (obuf->len > len)
1959			obuf->len = len;
1960
1961		opipe->nrbufs++;
1962		ret += obuf->len;
1963		len -= obuf->len;
1964		i++;
1965	} while (len);
1966
1967	/*
1968	 * return EAGAIN if we have the potential of some data in the
1969	 * future, otherwise just return 0
1970	 */
1971	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1972		ret = -EAGAIN;
1973
1974	pipe_unlock(ipipe);
1975	pipe_unlock(opipe);
1976
1977	/*
1978	 * If we put data in the output pipe, wakeup any potential readers.
1979	 */
1980	if (ret > 0)
1981		wakeup_pipe_readers(opipe);
1982
1983	return ret;
1984}
1985
1986/*
1987 * This is a tee(1) implementation that works on pipes. It doesn't copy
1988 * any data, it simply references the 'in' pages on the 'out' pipe.
1989 * The 'flags' used are the SPLICE_F_* variants, currently the only
1990 * applicable one is SPLICE_F_NONBLOCK.
1991 */
1992static long do_tee(struct file *in, struct file *out, size_t len,
1993		   unsigned int flags)
1994{
1995	struct pipe_inode_info *ipipe = get_pipe_info(in);
1996	struct pipe_inode_info *opipe = get_pipe_info(out);
1997	int ret = -EINVAL;
1998
1999	/*
2000	 * Duplicate the contents of ipipe to opipe without actually
2001	 * copying the data.
2002	 */
2003	if (ipipe && opipe && ipipe != opipe) {
2004		/*
2005		 * Keep going, unless we encounter an error. The ipipe/opipe
2006		 * ordering doesn't really matter.
2007		 */
2008		ret = ipipe_prep(ipipe, flags);
2009		if (!ret) {
2010			ret = opipe_prep(opipe, flags);
2011			if (!ret)
2012				ret = link_pipe(ipipe, opipe, len, flags);
2013		}
2014	}
2015
2016	return ret;
2017}
2018
2019SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2020{
2021	struct file *in;
2022	int error, fput_in;
2023
2024	if (unlikely(!len))
2025		return 0;
2026
2027	error = -EBADF;
2028	in = fget_light(fdin, &fput_in);
2029	if (in) {
2030		if (in->f_mode & FMODE_READ) {
2031			int fput_out;
2032			struct file *out = fget_light(fdout, &fput_out);
2033
2034			if (out) {
2035				if (out->f_mode & FMODE_WRITE)
2036					error = do_tee(in, out, len, flags);
2037				fput_light(out, fput_out);
2038			}
2039		}
2040 		fput_light(in, fput_in);
2041 	}
2042
2043	return error;
2044}
v4.10.11
   1/*
   2 * "splice": joining two ropes together by interweaving their strands.
   3 *
   4 * This is the "extended pipe" functionality, where a pipe is used as
   5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
   6 * buffer that you can use to transfer data from one end to the other.
   7 *
   8 * The traditional unix read/write is extended with a "splice()" operation
   9 * that transfers data buffers to or from a pipe buffer.
  10 *
  11 * Named by Larry McVoy, original implementation from Linus, extended by
  12 * Jens to support splicing to files, network, direct splicing, etc and
  13 * fixing lots of bugs.
  14 *
  15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
  16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
  17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
  18 *
  19 */
  20#include <linux/bvec.h>
  21#include <linux/fs.h>
  22#include <linux/file.h>
  23#include <linux/pagemap.h>
  24#include <linux/splice.h>
  25#include <linux/memcontrol.h>
  26#include <linux/mm_inline.h>
  27#include <linux/swap.h>
  28#include <linux/writeback.h>
  29#include <linux/export.h>
 
  30#include <linux/syscalls.h>
  31#include <linux/uio.h>
  32#include <linux/security.h>
  33#include <linux/gfp.h>
  34#include <linux/socket.h>
  35#include <linux/compat.h>
  36#include "internal.h"
  37
  38/*
  39 * Attempt to steal a page from a pipe buffer. This should perhaps go into
  40 * a vm helper function, it's already simplified quite a bit by the
  41 * addition of remove_mapping(). If success is returned, the caller may
  42 * attempt to reuse this page for another destination.
  43 */
  44static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
  45				     struct pipe_buffer *buf)
  46{
  47	struct page *page = buf->page;
  48	struct address_space *mapping;
  49
  50	lock_page(page);
  51
  52	mapping = page_mapping(page);
  53	if (mapping) {
  54		WARN_ON(!PageUptodate(page));
  55
  56		/*
  57		 * At least for ext2 with nobh option, we need to wait on
  58		 * writeback completing on this page, since we'll remove it
  59		 * from the pagecache.  Otherwise truncate wont wait on the
  60		 * page, allowing the disk blocks to be reused by someone else
  61		 * before we actually wrote our data to them. fs corruption
  62		 * ensues.
  63		 */
  64		wait_on_page_writeback(page);
  65
  66		if (page_has_private(page) &&
  67		    !try_to_release_page(page, GFP_KERNEL))
  68			goto out_unlock;
  69
  70		/*
  71		 * If we succeeded in removing the mapping, set LRU flag
  72		 * and return good.
  73		 */
  74		if (remove_mapping(mapping, page)) {
  75			buf->flags |= PIPE_BUF_FLAG_LRU;
  76			return 0;
  77		}
  78	}
  79
  80	/*
  81	 * Raced with truncate or failed to remove page from current
  82	 * address space, unlock and return failure.
  83	 */
  84out_unlock:
  85	unlock_page(page);
  86	return 1;
  87}
  88
  89static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
  90					struct pipe_buffer *buf)
  91{
  92	put_page(buf->page);
  93	buf->flags &= ~PIPE_BUF_FLAG_LRU;
  94}
  95
  96/*
  97 * Check whether the contents of buf is OK to access. Since the content
  98 * is a page cache page, IO may be in flight.
  99 */
 100static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
 101				       struct pipe_buffer *buf)
 102{
 103	struct page *page = buf->page;
 104	int err;
 105
 106	if (!PageUptodate(page)) {
 107		lock_page(page);
 108
 109		/*
 110		 * Page got truncated/unhashed. This will cause a 0-byte
 111		 * splice, if this is the first page.
 112		 */
 113		if (!page->mapping) {
 114			err = -ENODATA;
 115			goto error;
 116		}
 117
 118		/*
 119		 * Uh oh, read-error from disk.
 120		 */
 121		if (!PageUptodate(page)) {
 122			err = -EIO;
 123			goto error;
 124		}
 125
 126		/*
 127		 * Page is ok afterall, we are done.
 128		 */
 129		unlock_page(page);
 130	}
 131
 132	return 0;
 133error:
 134	unlock_page(page);
 135	return err;
 136}
 137
 138const struct pipe_buf_operations page_cache_pipe_buf_ops = {
 139	.can_merge = 0,
 
 
 140	.confirm = page_cache_pipe_buf_confirm,
 141	.release = page_cache_pipe_buf_release,
 142	.steal = page_cache_pipe_buf_steal,
 143	.get = generic_pipe_buf_get,
 144};
 145
 146static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
 147				    struct pipe_buffer *buf)
 148{
 149	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
 150		return 1;
 151
 152	buf->flags |= PIPE_BUF_FLAG_LRU;
 153	return generic_pipe_buf_steal(pipe, buf);
 154}
 155
 156static const struct pipe_buf_operations user_page_pipe_buf_ops = {
 157	.can_merge = 0,
 
 
 158	.confirm = generic_pipe_buf_confirm,
 159	.release = page_cache_pipe_buf_release,
 160	.steal = user_page_pipe_buf_steal,
 161	.get = generic_pipe_buf_get,
 162};
 163
 164static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
 165{
 166	smp_mb();
 167	if (waitqueue_active(&pipe->wait))
 168		wake_up_interruptible(&pipe->wait);
 169	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 170}
 171
 172/**
 173 * splice_to_pipe - fill passed data into a pipe
 174 * @pipe:	pipe to fill
 175 * @spd:	data to fill
 176 *
 177 * Description:
 178 *    @spd contains a map of pages and len/offset tuples, along with
 179 *    the struct pipe_buf_operations associated with these pages. This
 180 *    function will link that data to the pipe.
 181 *
 182 */
 183ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
 184		       struct splice_pipe_desc *spd)
 185{
 186	unsigned int spd_pages = spd->nr_pages;
 187	int ret = 0, page_nr = 0;
 188
 189	if (!spd_pages)
 190		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191
 192	if (unlikely(!pipe->readers)) {
 193		send_sig(SIGPIPE, current, 0);
 194		ret = -EPIPE;
 195		goto out;
 196	}
 197
 198	while (pipe->nrbufs < pipe->buffers) {
 199		int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
 200		struct pipe_buffer *buf = pipe->bufs + newbuf;
 201
 202		buf->page = spd->pages[page_nr];
 203		buf->offset = spd->partial[page_nr].offset;
 204		buf->len = spd->partial[page_nr].len;
 205		buf->private = spd->partial[page_nr].private;
 206		buf->ops = spd->ops;
 207		buf->flags = 0;
 208
 209		pipe->nrbufs++;
 210		page_nr++;
 211		ret += buf->len;
 212
 213		if (!--spd->nr_pages)
 
 
 214			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 215	}
 216
 217	if (!ret)
 218		ret = -EAGAIN;
 
 
 219
 220out:
 221	while (page_nr < spd_pages)
 222		spd->spd_release(spd, page_nr++);
 223
 224	return ret;
 225}
 226EXPORT_SYMBOL_GPL(splice_to_pipe);
 227
 228ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
 229{
 230	int ret;
 231
 232	if (unlikely(!pipe->readers)) {
 233		send_sig(SIGPIPE, current, 0);
 234		ret = -EPIPE;
 235	} else if (pipe->nrbufs == pipe->buffers) {
 236		ret = -EAGAIN;
 237	} else {
 238		int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
 239		pipe->bufs[newbuf] = *buf;
 240		pipe->nrbufs++;
 241		return buf->len;
 242	}
 243	pipe_buf_release(pipe, buf);
 244	return ret;
 245}
 246EXPORT_SYMBOL(add_to_pipe);
 247
 248void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
 249{
 250	put_page(spd->pages[i]);
 251}
 252
 253/*
 254 * Check if we need to grow the arrays holding pages and partial page
 255 * descriptions.
 256 */
 257int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
 258{
 259	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
 260
 261	spd->nr_pages_max = buffers;
 262	if (buffers <= PIPE_DEF_BUFFERS)
 263		return 0;
 264
 265	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
 266	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
 267
 268	if (spd->pages && spd->partial)
 269		return 0;
 270
 271	kfree(spd->pages);
 272	kfree(spd->partial);
 273	return -ENOMEM;
 274}
 275
 276void splice_shrink_spd(struct splice_pipe_desc *spd)
 
 277{
 278	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
 279		return;
 280
 281	kfree(spd->pages);
 282	kfree(spd->partial);
 283}
 284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 285/**
 286 * generic_file_splice_read - splice data from file to a pipe
 287 * @in:		file to splice from
 288 * @ppos:	position in @in
 289 * @pipe:	pipe to splice to
 290 * @len:	number of bytes to splice
 291 * @flags:	splice modifier flags
 292 *
 293 * Description:
 294 *    Will read pages from given file and fill them into a pipe. Can be
 295 *    used as long as it has more or less sane ->read_iter().
 
 296 *
 297 */
 298ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
 299				 struct pipe_inode_info *pipe, size_t len,
 300				 unsigned int flags)
 301{
 302	struct iov_iter to;
 303	struct kiocb kiocb;
 304	int idx, ret;
 305
 306	iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len);
 307	idx = to.idx;
 308	init_sync_kiocb(&kiocb, in);
 309	kiocb.ki_pos = *ppos;
 310	ret = in->f_op->read_iter(&kiocb, &to);
 
 
 
 311	if (ret > 0) {
 312		*ppos = kiocb.ki_pos;
 313		file_accessed(in);
 314	} else if (ret < 0) {
 315		to.idx = idx;
 316		to.iov_offset = 0;
 317		iov_iter_advance(&to, 0); /* to free what was emitted */
 318		/*
 319		 * callers of ->splice_read() expect -EAGAIN on
 320		 * "can't put anything in there", rather than -EFAULT.
 321		 */
 322		if (ret == -EFAULT)
 323			ret = -EAGAIN;
 324	}
 325
 326	return ret;
 327}
 328EXPORT_SYMBOL(generic_file_splice_read);
 329
 330const struct pipe_buf_operations default_pipe_buf_ops = {
 331	.can_merge = 0,
 
 
 332	.confirm = generic_pipe_buf_confirm,
 333	.release = generic_pipe_buf_release,
 334	.steal = generic_pipe_buf_steal,
 335	.get = generic_pipe_buf_get,
 336};
 337
 338static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
 339				    struct pipe_buffer *buf)
 340{
 341	return 1;
 342}
 343
 344/* Pipe buffer operations for a socket and similar. */
 345const struct pipe_buf_operations nosteal_pipe_buf_ops = {
 346	.can_merge = 0,
 347	.confirm = generic_pipe_buf_confirm,
 348	.release = generic_pipe_buf_release,
 349	.steal = generic_pipe_buf_nosteal,
 350	.get = generic_pipe_buf_get,
 351};
 352EXPORT_SYMBOL(nosteal_pipe_buf_ops);
 353
 354static ssize_t kernel_readv(struct file *file, const struct kvec *vec,
 355			    unsigned long vlen, loff_t offset)
 356{
 357	mm_segment_t old_fs;
 358	loff_t pos = offset;
 359	ssize_t res;
 360
 361	old_fs = get_fs();
 362	set_fs(get_ds());
 363	/* The cast to a user pointer is valid due to the set_fs() */
 364	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
 365	set_fs(old_fs);
 366
 367	return res;
 368}
 369
 370ssize_t kernel_write(struct file *file, const char *buf, size_t count,
 371			    loff_t pos)
 372{
 373	mm_segment_t old_fs;
 374	ssize_t res;
 375
 376	old_fs = get_fs();
 377	set_fs(get_ds());
 378	/* The cast to a user pointer is valid due to the set_fs() */
 379	res = vfs_write(file, (__force const char __user *)buf, count, &pos);
 380	set_fs(old_fs);
 381
 382	return res;
 383}
 384EXPORT_SYMBOL(kernel_write);
 385
 386static ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
 387				 struct pipe_inode_info *pipe, size_t len,
 388				 unsigned int flags)
 389{
 390	struct kvec *vec, __vec[PIPE_DEF_BUFFERS];
 391	struct iov_iter to;
 392	struct page **pages;
 393	unsigned int nr_pages;
 394	size_t offset, dummy, copied = 0;
 
 
 
 
 395	ssize_t res;
 
 
 396	int i;
 
 
 
 
 
 
 
 397
 398	if (pipe->nrbufs == pipe->buffers)
 399		return -EAGAIN;
 400
 401	/*
 402	 * Try to keep page boundaries matching to source pagecache ones -
 403	 * it probably won't be much help, but...
 404	 */
 405	offset = *ppos & ~PAGE_MASK;
 406
 407	iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len + offset);
 408
 409	res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &dummy);
 410	if (res <= 0)
 411		return -ENOMEM;
 412
 413	BUG_ON(dummy);
 414	nr_pages = DIV_ROUND_UP(res, PAGE_SIZE);
 415
 416	vec = __vec;
 417	if (nr_pages > PIPE_DEF_BUFFERS) {
 418		vec = kmalloc(nr_pages * sizeof(struct kvec), GFP_KERNEL);
 419		if (unlikely(!vec)) {
 420			res = -ENOMEM;
 421			goto out;
 422		}
 423	}
 424
 425	pipe->bufs[to.idx].offset = offset;
 426	pipe->bufs[to.idx].len -= offset;
 427
 428	for (i = 0; i < nr_pages; i++) {
 429		size_t this_len = min_t(size_t, len, PAGE_SIZE - offset);
 430		vec[i].iov_base = page_address(pages[i]) + offset;
 
 
 
 
 
 
 
 431		vec[i].iov_len = this_len;
 
 
 432		len -= this_len;
 433		offset = 0;
 434	}
 435
 436	res = kernel_readv(in, vec, nr_pages, *ppos);
 437	if (res > 0) {
 438		copied = res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439		*ppos += res;
 440	}
 441
 
 442	if (vec != __vec)
 443		kfree(vec);
 444out:
 445	for (i = 0; i < nr_pages; i++)
 446		put_page(pages[i]);
 447	kvfree(pages);
 448	iov_iter_advance(&to, copied);	/* truncates and discards */
 449	return res;
 
 
 
 
 
 
 
 450}
 
 451
 452/*
 453 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
 454 * using sendpage(). Return the number of bytes sent.
 455 */
 456static int pipe_to_sendpage(struct pipe_inode_info *pipe,
 457			    struct pipe_buffer *buf, struct splice_desc *sd)
 458{
 459	struct file *file = sd->u.file;
 460	loff_t pos = sd->pos;
 461	int more;
 462
 463	if (!likely(file->f_op->sendpage))
 464		return -EINVAL;
 465
 466	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
 
 
 
 467
 468	if (sd->len < sd->total_len && pipe->nrbufs > 1)
 469		more |= MSG_SENDPAGE_NOTLAST;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 470
 471	return file->f_op->sendpage(file, buf->page, buf->offset,
 472				    sd->len, &pos, more);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473}
 
 474
 475static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
 476{
 477	smp_mb();
 478	if (waitqueue_active(&pipe->wait))
 479		wake_up_interruptible(&pipe->wait);
 480	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 481}
 482
 483/**
 484 * splice_from_pipe_feed - feed available data from a pipe to a file
 485 * @pipe:	pipe to splice from
 486 * @sd:		information to @actor
 487 * @actor:	handler that splices the data
 488 *
 489 * Description:
 490 *    This function loops over the pipe and calls @actor to do the
 491 *    actual moving of a single struct pipe_buffer to the desired
 492 *    destination.  It returns when there's no more buffers left in
 493 *    the pipe or if the requested number of bytes (@sd->total_len)
 494 *    have been copied.  It returns a positive number (one) if the
 495 *    pipe needs to be filled with more data, zero if the required
 496 *    number of bytes have been copied and -errno on error.
 497 *
 498 *    This, together with splice_from_pipe_{begin,end,next}, may be
 499 *    used to implement the functionality of __splice_from_pipe() when
 500 *    locking is required around copying the pipe buffers to the
 501 *    destination.
 502 */
 503static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
 504			  splice_actor *actor)
 505{
 506	int ret;
 507
 508	while (pipe->nrbufs) {
 509		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
 
 510
 511		sd->len = buf->len;
 512		if (sd->len > sd->total_len)
 513			sd->len = sd->total_len;
 514
 515		ret = pipe_buf_confirm(pipe, buf);
 516		if (unlikely(ret)) {
 517			if (ret == -ENODATA)
 518				ret = 0;
 519			return ret;
 520		}
 521
 522		ret = actor(pipe, buf, sd);
 523		if (ret <= 0)
 524			return ret;
 525
 526		buf->offset += ret;
 527		buf->len -= ret;
 528
 529		sd->num_spliced += ret;
 530		sd->len -= ret;
 531		sd->pos += ret;
 532		sd->total_len -= ret;
 533
 534		if (!buf->len) {
 535			pipe_buf_release(pipe, buf);
 
 536			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
 537			pipe->nrbufs--;
 538			if (pipe->files)
 539				sd->need_wakeup = true;
 540		}
 541
 542		if (!sd->total_len)
 543			return 0;
 544	}
 545
 546	return 1;
 547}
 
 548
 549/**
 550 * splice_from_pipe_next - wait for some data to splice from
 551 * @pipe:	pipe to splice from
 552 * @sd:		information about the splice operation
 553 *
 554 * Description:
 555 *    This function will wait for some data and return a positive
 556 *    value (one) if pipe buffers are available.  It will return zero
 557 *    or -errno if no more data needs to be spliced.
 558 */
 559static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
 560{
 561	/*
 562	 * Check for signal early to make process killable when there are
 563	 * always buffers available
 564	 */
 565	if (signal_pending(current))
 566		return -ERESTARTSYS;
 567
 568	while (!pipe->nrbufs) {
 569		if (!pipe->writers)
 570			return 0;
 571
 572		if (!pipe->waiting_writers && sd->num_spliced)
 573			return 0;
 574
 575		if (sd->flags & SPLICE_F_NONBLOCK)
 576			return -EAGAIN;
 577
 578		if (signal_pending(current))
 579			return -ERESTARTSYS;
 580
 581		if (sd->need_wakeup) {
 582			wakeup_pipe_writers(pipe);
 583			sd->need_wakeup = false;
 584		}
 585
 586		pipe_wait(pipe);
 587	}
 588
 589	return 1;
 590}
 
 591
 592/**
 593 * splice_from_pipe_begin - start splicing from pipe
 594 * @sd:		information about the splice operation
 595 *
 596 * Description:
 597 *    This function should be called before a loop containing
 598 *    splice_from_pipe_next() and splice_from_pipe_feed() to
 599 *    initialize the necessary fields of @sd.
 600 */
 601static void splice_from_pipe_begin(struct splice_desc *sd)
 602{
 603	sd->num_spliced = 0;
 604	sd->need_wakeup = false;
 605}
 
 606
 607/**
 608 * splice_from_pipe_end - finish splicing from pipe
 609 * @pipe:	pipe to splice from
 610 * @sd:		information about the splice operation
 611 *
 612 * Description:
 613 *    This function will wake up pipe writers if necessary.  It should
 614 *    be called after a loop containing splice_from_pipe_next() and
 615 *    splice_from_pipe_feed().
 616 */
 617static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
 618{
 619	if (sd->need_wakeup)
 620		wakeup_pipe_writers(pipe);
 621}
 
 622
 623/**
 624 * __splice_from_pipe - splice data from a pipe to given actor
 625 * @pipe:	pipe to splice from
 626 * @sd:		information to @actor
 627 * @actor:	handler that splices the data
 628 *
 629 * Description:
 630 *    This function does little more than loop over the pipe and call
 631 *    @actor to do the actual moving of a single struct pipe_buffer to
 632 *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
 633 *    pipe_to_user.
 634 *
 635 */
 636ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
 637			   splice_actor *actor)
 638{
 639	int ret;
 640
 641	splice_from_pipe_begin(sd);
 642	do {
 643		cond_resched();
 644		ret = splice_from_pipe_next(pipe, sd);
 645		if (ret > 0)
 646			ret = splice_from_pipe_feed(pipe, sd, actor);
 647	} while (ret > 0);
 648	splice_from_pipe_end(pipe, sd);
 649
 650	return sd->num_spliced ? sd->num_spliced : ret;
 651}
 652EXPORT_SYMBOL(__splice_from_pipe);
 653
 654/**
 655 * splice_from_pipe - splice data from a pipe to a file
 656 * @pipe:	pipe to splice from
 657 * @out:	file to splice to
 658 * @ppos:	position in @out
 659 * @len:	how many bytes to splice
 660 * @flags:	splice modifier flags
 661 * @actor:	handler that splices the data
 662 *
 663 * Description:
 664 *    See __splice_from_pipe. This function locks the pipe inode,
 665 *    otherwise it's identical to __splice_from_pipe().
 666 *
 667 */
 668ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
 669			 loff_t *ppos, size_t len, unsigned int flags,
 670			 splice_actor *actor)
 671{
 672	ssize_t ret;
 673	struct splice_desc sd = {
 674		.total_len = len,
 675		.flags = flags,
 676		.pos = *ppos,
 677		.u.file = out,
 678	};
 679
 680	pipe_lock(pipe);
 681	ret = __splice_from_pipe(pipe, &sd, actor);
 682	pipe_unlock(pipe);
 683
 684	return ret;
 685}
 686
 687/**
 688 * iter_file_splice_write - splice data from a pipe to a file
 689 * @pipe:	pipe info
 690 * @out:	file to write to
 691 * @ppos:	position in @out
 692 * @len:	number of bytes to splice
 693 * @flags:	splice modifier flags
 694 *
 695 * Description:
 696 *    Will either move or copy pages (determined by @flags options) from
 697 *    the given pipe inode to the given file.
 698 *    This one is ->write_iter-based.
 699 *
 700 */
 701ssize_t
 702iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
 703			  loff_t *ppos, size_t len, unsigned int flags)
 704{
 
 
 705	struct splice_desc sd = {
 706		.total_len = len,
 707		.flags = flags,
 708		.pos = *ppos,
 709		.u.file = out,
 710	};
 711	int nbufs = pipe->buffers;
 712	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
 713					GFP_KERNEL);
 714	ssize_t ret;
 715
 716	if (unlikely(!array))
 717		return -ENOMEM;
 718
 719	pipe_lock(pipe);
 720
 721	splice_from_pipe_begin(&sd);
 722	while (sd.total_len) {
 723		struct iov_iter from;
 724		size_t left;
 725		int n, idx;
 726
 727		ret = splice_from_pipe_next(pipe, &sd);
 728		if (ret <= 0)
 729			break;
 730
 731		if (unlikely(nbufs < pipe->buffers)) {
 732			kfree(array);
 733			nbufs = pipe->buffers;
 734			array = kcalloc(nbufs, sizeof(struct bio_vec),
 735					GFP_KERNEL);
 736			if (!array) {
 737				ret = -ENOMEM;
 738				break;
 739			}
 740		}
 
 
 
 741
 742		/* build the vector */
 743		left = sd.total_len;
 744		for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
 745			struct pipe_buffer *buf = pipe->bufs + idx;
 746			size_t this_len = buf->len;
 747
 748			if (this_len > left)
 749				this_len = left;
 750
 751			if (idx == pipe->buffers - 1)
 752				idx = -1;
 753
 754			ret = pipe_buf_confirm(pipe, buf);
 755			if (unlikely(ret)) {
 756				if (ret == -ENODATA)
 757					ret = 0;
 758				goto done;
 759			}
 760
 761			array[n].bv_page = buf->page;
 762			array[n].bv_len = this_len;
 763			array[n].bv_offset = buf->offset;
 764			left -= this_len;
 765		}
 766
 767		iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
 768			      sd.total_len - left);
 769		ret = vfs_iter_write(out, &from, &sd.pos);
 770		if (ret <= 0)
 771			break;
 772
 773		sd.num_spliced += ret;
 774		sd.total_len -= ret;
 775		*ppos = sd.pos;
 776
 777		/* dismiss the fully eaten buffers, adjust the partial one */
 778		while (ret) {
 779			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
 780			if (ret >= buf->len) {
 781				ret -= buf->len;
 782				buf->len = 0;
 783				pipe_buf_release(pipe, buf);
 784				pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
 785				pipe->nrbufs--;
 786				if (pipe->files)
 787					sd.need_wakeup = true;
 788			} else {
 789				buf->offset += ret;
 790				buf->len -= ret;
 791				ret = 0;
 792			}
 793		}
 794	}
 795done:
 796	kfree(array);
 797	splice_from_pipe_end(pipe, &sd);
 798
 799	pipe_unlock(pipe);
 800
 801	if (sd.num_spliced)
 802		ret = sd.num_spliced;
 803
 804	return ret;
 805}
 806
 807EXPORT_SYMBOL(iter_file_splice_write);
 808
 809static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
 810			  struct splice_desc *sd)
 811{
 812	int ret;
 813	void *data;
 814	loff_t tmp = sd->pos;
 815
 816	data = kmap(buf->page);
 817	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
 818	kunmap(buf->page);
 819
 820	return ret;
 821}
 822
 823static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
 824					 struct file *out, loff_t *ppos,
 825					 size_t len, unsigned int flags)
 826{
 827	ssize_t ret;
 828
 829	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
 830	if (ret > 0)
 831		*ppos += ret;
 832
 833	return ret;
 834}
 835
 836/**
 837 * generic_splice_sendpage - splice data from a pipe to a socket
 838 * @pipe:	pipe to splice from
 839 * @out:	socket to write to
 840 * @ppos:	position in @out
 841 * @len:	number of bytes to splice
 842 * @flags:	splice modifier flags
 843 *
 844 * Description:
 845 *    Will send @len bytes from the pipe to a network socket. No data copying
 846 *    is involved.
 847 *
 848 */
 849ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
 850				loff_t *ppos, size_t len, unsigned int flags)
 851{
 852	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
 853}
 854
 855EXPORT_SYMBOL(generic_splice_sendpage);
 856
 857/*
 858 * Attempt to initiate a splice from pipe to file.
 859 */
 860static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
 861			   loff_t *ppos, size_t len, unsigned int flags)
 862{
 863	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
 864				loff_t *, size_t, unsigned int);
 
 
 
 
 865
 866	if (out->f_op->splice_write)
 
 
 
 
 
 
 
 867		splice_write = out->f_op->splice_write;
 868	else
 869		splice_write = default_file_splice_write;
 870
 871	return splice_write(pipe, out, ppos, len, flags);
 872}
 873
 874/*
 875 * Attempt to initiate a splice from a file to a pipe.
 876 */
 877static long do_splice_to(struct file *in, loff_t *ppos,
 878			 struct pipe_inode_info *pipe, size_t len,
 879			 unsigned int flags)
 880{
 881	ssize_t (*splice_read)(struct file *, loff_t *,
 882			       struct pipe_inode_info *, size_t, unsigned int);
 883	int ret;
 884
 885	if (unlikely(!(in->f_mode & FMODE_READ)))
 886		return -EBADF;
 887
 888	ret = rw_verify_area(READ, in, ppos, len);
 889	if (unlikely(ret < 0))
 890		return ret;
 891
 892	if (unlikely(len > MAX_RW_COUNT))
 893		len = MAX_RW_COUNT;
 894
 895	if (in->f_op->splice_read)
 896		splice_read = in->f_op->splice_read;
 897	else
 898		splice_read = default_file_splice_read;
 899
 900	return splice_read(in, ppos, pipe, len, flags);
 901}
 902
 903/**
 904 * splice_direct_to_actor - splices data directly between two non-pipes
 905 * @in:		file to splice from
 906 * @sd:		actor information on where to splice to
 907 * @actor:	handles the data splicing
 908 *
 909 * Description:
 910 *    This is a special case helper to splice directly between two
 911 *    points, without requiring an explicit pipe. Internally an allocated
 912 *    pipe is cached in the process, and reused during the lifetime of
 913 *    that process.
 914 *
 915 */
 916ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
 917			       splice_direct_actor *actor)
 918{
 919	struct pipe_inode_info *pipe;
 920	long ret, bytes;
 921	umode_t i_mode;
 922	size_t len;
 923	int i, flags, more;
 924
 925	/*
 926	 * We require the input being a regular file, as we don't want to
 927	 * randomly drop data for eg socket -> socket splicing. Use the
 928	 * piped splicing for that!
 929	 */
 930	i_mode = file_inode(in)->i_mode;
 931	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
 932		return -EINVAL;
 933
 934	/*
 935	 * neither in nor out is a pipe, setup an internal pipe attached to
 936	 * 'out' and transfer the wanted data from 'in' to 'out' through that
 937	 */
 938	pipe = current->splice_pipe;
 939	if (unlikely(!pipe)) {
 940		pipe = alloc_pipe_info();
 941		if (!pipe)
 942			return -ENOMEM;
 943
 944		/*
 945		 * We don't have an immediate reader, but we'll read the stuff
 946		 * out of the pipe right after the splice_to_pipe(). So set
 947		 * PIPE_READERS appropriately.
 948		 */
 949		pipe->readers = 1;
 950
 951		current->splice_pipe = pipe;
 952	}
 953
 954	/*
 955	 * Do the splice.
 956	 */
 957	ret = 0;
 958	bytes = 0;
 959	len = sd->total_len;
 960	flags = sd->flags;
 961
 962	/*
 963	 * Don't block on output, we have to drain the direct pipe.
 964	 */
 965	sd->flags &= ~SPLICE_F_NONBLOCK;
 966	more = sd->flags & SPLICE_F_MORE;
 967
 968	while (len) {
 969		size_t read_len;
 970		loff_t pos = sd->pos, prev_pos = pos;
 971
 972		ret = do_splice_to(in, &pos, pipe, len, flags);
 973		if (unlikely(ret <= 0))
 974			goto out_release;
 975
 976		read_len = ret;
 977		sd->total_len = read_len;
 978
 979		/*
 980		 * If more data is pending, set SPLICE_F_MORE
 981		 * If this is the last data and SPLICE_F_MORE was not set
 982		 * initially, clears it.
 983		 */
 984		if (read_len < len)
 985			sd->flags |= SPLICE_F_MORE;
 986		else if (!more)
 987			sd->flags &= ~SPLICE_F_MORE;
 988		/*
 989		 * NOTE: nonblocking mode only applies to the input. We
 990		 * must not do the output in nonblocking mode as then we
 991		 * could get stuck data in the internal pipe:
 992		 */
 993		ret = actor(pipe, sd);
 994		if (unlikely(ret <= 0)) {
 995			sd->pos = prev_pos;
 996			goto out_release;
 997		}
 998
 999		bytes += ret;
1000		len -= ret;
1001		sd->pos = pos;
1002
1003		if (ret < read_len) {
1004			sd->pos = prev_pos + ret;
1005			goto out_release;
1006		}
1007	}
1008
1009done:
1010	pipe->nrbufs = pipe->curbuf = 0;
1011	file_accessed(in);
1012	return bytes;
1013
1014out_release:
1015	/*
1016	 * If we did an incomplete transfer we must release
1017	 * the pipe buffers in question:
1018	 */
1019	for (i = 0; i < pipe->buffers; i++) {
1020		struct pipe_buffer *buf = pipe->bufs + i;
1021
1022		if (buf->ops)
1023			pipe_buf_release(pipe, buf);
 
 
1024	}
1025
1026	if (!bytes)
1027		bytes = ret;
1028
1029	goto done;
1030}
1031EXPORT_SYMBOL(splice_direct_to_actor);
1032
1033static int direct_splice_actor(struct pipe_inode_info *pipe,
1034			       struct splice_desc *sd)
1035{
1036	struct file *file = sd->u.file;
1037
1038	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1039			      sd->flags);
1040}
1041
1042/**
1043 * do_splice_direct - splices data directly between two files
1044 * @in:		file to splice from
1045 * @ppos:	input file offset
1046 * @out:	file to splice to
1047 * @opos:	output file offset
1048 * @len:	number of bytes to splice
1049 * @flags:	splice modifier flags
1050 *
1051 * Description:
1052 *    For use by do_sendfile(). splice can easily emulate sendfile, but
1053 *    doing it in the application would incur an extra system call
1054 *    (splice in + splice out, as compared to just sendfile()). So this helper
1055 *    can splice directly through a process-private pipe.
1056 *
1057 */
1058long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1059		      loff_t *opos, size_t len, unsigned int flags)
1060{
1061	struct splice_desc sd = {
1062		.len		= len,
1063		.total_len	= len,
1064		.flags		= flags,
1065		.pos		= *ppos,
1066		.u.file		= out,
1067		.opos		= opos,
1068	};
1069	long ret;
1070
1071	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1072		return -EBADF;
1073
1074	if (unlikely(out->f_flags & O_APPEND))
1075		return -EINVAL;
1076
1077	ret = rw_verify_area(WRITE, out, opos, len);
1078	if (unlikely(ret < 0))
1079		return ret;
1080
1081	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1082	if (ret > 0)
1083		*ppos = sd.pos;
1084
1085	return ret;
1086}
1087EXPORT_SYMBOL(do_splice_direct);
1088
1089static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1090{
1091	for (;;) {
1092		if (unlikely(!pipe->readers)) {
1093			send_sig(SIGPIPE, current, 0);
1094			return -EPIPE;
1095		}
1096		if (pipe->nrbufs != pipe->buffers)
1097			return 0;
1098		if (flags & SPLICE_F_NONBLOCK)
1099			return -EAGAIN;
1100		if (signal_pending(current))
1101			return -ERESTARTSYS;
1102		pipe->waiting_writers++;
1103		pipe_wait(pipe);
1104		pipe->waiting_writers--;
1105	}
1106}
1107
1108static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1109			       struct pipe_inode_info *opipe,
1110			       size_t len, unsigned int flags);
1111
1112/*
1113 * Determine where to splice to/from.
1114 */
1115static long do_splice(struct file *in, loff_t __user *off_in,
1116		      struct file *out, loff_t __user *off_out,
1117		      size_t len, unsigned int flags)
1118{
1119	struct pipe_inode_info *ipipe;
1120	struct pipe_inode_info *opipe;
1121	loff_t offset;
1122	long ret;
1123
1124	ipipe = get_pipe_info(in);
1125	opipe = get_pipe_info(out);
1126
1127	if (ipipe && opipe) {
1128		if (off_in || off_out)
1129			return -ESPIPE;
1130
1131		if (!(in->f_mode & FMODE_READ))
1132			return -EBADF;
1133
1134		if (!(out->f_mode & FMODE_WRITE))
1135			return -EBADF;
1136
1137		/* Splicing to self would be fun, but... */
1138		if (ipipe == opipe)
1139			return -EINVAL;
1140
1141		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1142	}
1143
1144	if (ipipe) {
1145		if (off_in)
1146			return -ESPIPE;
1147		if (off_out) {
1148			if (!(out->f_mode & FMODE_PWRITE))
1149				return -EINVAL;
1150			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1151				return -EFAULT;
1152		} else {
1153			offset = out->f_pos;
1154		}
1155
1156		if (unlikely(!(out->f_mode & FMODE_WRITE)))
1157			return -EBADF;
1158
1159		if (unlikely(out->f_flags & O_APPEND))
1160			return -EINVAL;
1161
1162		ret = rw_verify_area(WRITE, out, &offset, len);
1163		if (unlikely(ret < 0))
1164			return ret;
1165
1166		file_start_write(out);
1167		ret = do_splice_from(ipipe, out, &offset, len, flags);
1168		file_end_write(out);
1169
1170		if (!off_out)
1171			out->f_pos = offset;
1172		else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1173			ret = -EFAULT;
1174
1175		return ret;
1176	}
1177
1178	if (opipe) {
1179		if (off_out)
1180			return -ESPIPE;
1181		if (off_in) {
1182			if (!(in->f_mode & FMODE_PREAD))
1183				return -EINVAL;
1184			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1185				return -EFAULT;
1186		} else {
1187			offset = in->f_pos;
1188		}
 
 
1189
1190		pipe_lock(opipe);
1191		ret = wait_for_space(opipe, flags);
1192		if (!ret)
1193			ret = do_splice_to(in, &offset, opipe, len, flags);
1194		pipe_unlock(opipe);
1195		if (ret > 0)
1196			wakeup_pipe_readers(opipe);
1197		if (!off_in)
1198			in->f_pos = offset;
1199		else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1200			ret = -EFAULT;
1201
1202		return ret;
1203	}
1204
1205	return -EINVAL;
1206}
1207
1208static int iter_to_pipe(struct iov_iter *from,
1209			struct pipe_inode_info *pipe,
1210			unsigned flags)
1211{
1212	struct pipe_buffer buf = {
1213		.ops = &user_page_pipe_buf_ops,
1214		.flags = flags
1215	};
1216	size_t total = 0;
1217	int ret = 0;
1218	bool failed = false;
1219
1220	while (iov_iter_count(from) && !failed) {
1221		struct page *pages[16];
1222		ssize_t copied;
1223		size_t start;
1224		int n;
1225
1226		copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start);
1227		if (copied <= 0) {
1228			ret = copied;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1229			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
1230		}
1231
1232		for (n = 0; copied; n++, start = 0) {
1233			int size = min_t(int, copied, PAGE_SIZE - start);
1234			if (!failed) {
1235				buf.page = pages[n];
1236				buf.offset = start;
1237				buf.len = size;
1238				ret = add_to_pipe(pipe, &buf);
1239				if (unlikely(ret < 0)) {
1240					failed = true;
1241				} else {
1242					iov_iter_advance(from, ret);
1243					total += ret;
1244				}
1245			} else {
1246				put_page(pages[n]);
1247			}
1248			copied -= size;
1249		}
1250	}
1251	return total ? total : ret;
 
 
 
 
1252}
1253
1254static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1255			struct splice_desc *sd)
1256{
1257	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1258	return n == sd->len ? n : -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1259}
1260
1261/*
1262 * For lack of a better implementation, implement vmsplice() to userspace
1263 * as a simple copy of the pipes pages to the user iov.
1264 */
1265static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1266			     unsigned long nr_segs, unsigned int flags)
1267{
1268	struct pipe_inode_info *pipe;
1269	struct splice_desc sd;
 
 
1270	long ret;
1271	struct iovec iovstack[UIO_FASTIOV];
1272	struct iovec *iov = iovstack;
1273	struct iov_iter iter;
1274
1275	pipe = get_pipe_info(file);
1276	if (!pipe)
1277		return -EBADF;
1278
1279	ret = import_iovec(READ, uiov, nr_segs,
1280			   ARRAY_SIZE(iovstack), &iov, &iter);
1281	if (ret < 0)
1282		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283
1284	sd.total_len = iov_iter_count(&iter);
1285	sd.len = 0;
1286	sd.flags = flags;
1287	sd.u.data = &iter;
1288	sd.pos = 0;
1289
1290	if (sd.total_len) {
1291		pipe_lock(pipe);
1292		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1293		pipe_unlock(pipe);
1294	}
1295
1296	kfree(iov);
 
 
 
 
1297	return ret;
1298}
1299
1300/*
1301 * vmsplice splices a user address range into a pipe. It can be thought of
1302 * as splice-from-memory, where the regular splice is splice-from-file (or
1303 * to file). In both cases the output is a pipe, naturally.
1304 */
1305static long vmsplice_to_pipe(struct file *file, const struct iovec __user *uiov,
1306			     unsigned long nr_segs, unsigned int flags)
1307{
1308	struct pipe_inode_info *pipe;
1309	struct iovec iovstack[UIO_FASTIOV];
1310	struct iovec *iov = iovstack;
1311	struct iov_iter from;
 
 
 
 
 
 
1312	long ret;
1313	unsigned buf_flag = 0;
1314
1315	if (flags & SPLICE_F_GIFT)
1316		buf_flag = PIPE_BUF_FLAG_GIFT;
1317
1318	pipe = get_pipe_info(file);
1319	if (!pipe)
1320		return -EBADF;
1321
1322	ret = import_iovec(WRITE, uiov, nr_segs,
1323			   ARRAY_SIZE(iovstack), &iov, &from);
1324	if (ret < 0)
1325		return ret;
 
 
 
 
 
 
1326
1327	pipe_lock(pipe);
1328	ret = wait_for_space(pipe, flags);
1329	if (!ret)
1330		ret = iter_to_pipe(&from, pipe, buf_flag);
1331	pipe_unlock(pipe);
1332	if (ret > 0)
1333		wakeup_pipe_readers(pipe);
1334	kfree(iov);
1335	return ret;
1336}
1337
1338/*
1339 * Note that vmsplice only really supports true splicing _from_ user memory
1340 * to a pipe, not the other way around. Splicing from user memory is a simple
1341 * operation that can be supported without any funky alignment restrictions
1342 * or nasty vm tricks. We simply map in the user memory and fill them into
1343 * a pipe. The reverse isn't quite as easy, though. There are two possible
1344 * solutions for that:
1345 *
1346 *	- memcpy() the data internally, at which point we might as well just
1347 *	  do a regular read() on the buffer anyway.
1348 *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1349 *	  has restriction limitations on both ends of the pipe).
1350 *
1351 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1352 *
1353 */
1354SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1355		unsigned long, nr_segs, unsigned int, flags)
1356{
1357	struct fd f;
1358	long error;
 
1359
1360	if (unlikely(nr_segs > UIO_MAXIOV))
1361		return -EINVAL;
1362	else if (unlikely(!nr_segs))
1363		return 0;
1364
1365	error = -EBADF;
1366	f = fdget(fd);
1367	if (f.file) {
1368		if (f.file->f_mode & FMODE_WRITE)
1369			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1370		else if (f.file->f_mode & FMODE_READ)
1371			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1372
1373		fdput(f);
1374	}
1375
1376	return error;
1377}
1378
1379#ifdef CONFIG_COMPAT
1380COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1381		    unsigned int, nr_segs, unsigned int, flags)
1382{
1383	unsigned i;
1384	struct iovec __user *iov;
1385	if (nr_segs > UIO_MAXIOV)
1386		return -EINVAL;
1387	iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1388	for (i = 0; i < nr_segs; i++) {
1389		struct compat_iovec v;
1390		if (get_user(v.iov_base, &iov32[i].iov_base) ||
1391		    get_user(v.iov_len, &iov32[i].iov_len) ||
1392		    put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1393		    put_user(v.iov_len, &iov[i].iov_len))
1394			return -EFAULT;
1395	}
1396	return sys_vmsplice(fd, iov, nr_segs, flags);
1397}
1398#endif
1399
1400SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1401		int, fd_out, loff_t __user *, off_out,
1402		size_t, len, unsigned int, flags)
1403{
1404	struct fd in, out;
1405	long error;
 
 
1406
1407	if (unlikely(!len))
1408		return 0;
1409
1410	error = -EBADF;
1411	in = fdget(fd_in);
1412	if (in.file) {
1413		if (in.file->f_mode & FMODE_READ) {
1414			out = fdget(fd_out);
1415			if (out.file) {
1416				if (out.file->f_mode & FMODE_WRITE)
1417					error = do_splice(in.file, off_in,
1418							  out.file, off_out,
1419							  len, flags);
1420				fdput(out);
1421			}
1422		}
1423		fdput(in);
 
1424	}
 
1425	return error;
1426}
1427
1428/*
1429 * Make sure there's data to read. Wait for input if we can, otherwise
1430 * return an appropriate error.
1431 */
1432static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1433{
1434	int ret;
1435
1436	/*
1437	 * Check ->nrbufs without the inode lock first. This function
1438	 * is speculative anyways, so missing one is ok.
1439	 */
1440	if (pipe->nrbufs)
1441		return 0;
1442
1443	ret = 0;
1444	pipe_lock(pipe);
1445
1446	while (!pipe->nrbufs) {
1447		if (signal_pending(current)) {
1448			ret = -ERESTARTSYS;
1449			break;
1450		}
1451		if (!pipe->writers)
1452			break;
1453		if (!pipe->waiting_writers) {
1454			if (flags & SPLICE_F_NONBLOCK) {
1455				ret = -EAGAIN;
1456				break;
1457			}
1458		}
1459		pipe_wait(pipe);
1460	}
1461
1462	pipe_unlock(pipe);
1463	return ret;
1464}
1465
1466/*
1467 * Make sure there's writeable room. Wait for room if we can, otherwise
1468 * return an appropriate error.
1469 */
1470static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1471{
1472	int ret;
1473
1474	/*
1475	 * Check ->nrbufs without the inode lock first. This function
1476	 * is speculative anyways, so missing one is ok.
1477	 */
1478	if (pipe->nrbufs < pipe->buffers)
1479		return 0;
1480
1481	ret = 0;
1482	pipe_lock(pipe);
1483
1484	while (pipe->nrbufs >= pipe->buffers) {
1485		if (!pipe->readers) {
1486			send_sig(SIGPIPE, current, 0);
1487			ret = -EPIPE;
1488			break;
1489		}
1490		if (flags & SPLICE_F_NONBLOCK) {
1491			ret = -EAGAIN;
1492			break;
1493		}
1494		if (signal_pending(current)) {
1495			ret = -ERESTARTSYS;
1496			break;
1497		}
1498		pipe->waiting_writers++;
1499		pipe_wait(pipe);
1500		pipe->waiting_writers--;
1501	}
1502
1503	pipe_unlock(pipe);
1504	return ret;
1505}
1506
1507/*
1508 * Splice contents of ipipe to opipe.
1509 */
1510static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1511			       struct pipe_inode_info *opipe,
1512			       size_t len, unsigned int flags)
1513{
1514	struct pipe_buffer *ibuf, *obuf;
1515	int ret = 0, nbuf;
1516	bool input_wakeup = false;
1517
1518
1519retry:
1520	ret = ipipe_prep(ipipe, flags);
1521	if (ret)
1522		return ret;
1523
1524	ret = opipe_prep(opipe, flags);
1525	if (ret)
1526		return ret;
1527
1528	/*
1529	 * Potential ABBA deadlock, work around it by ordering lock
1530	 * grabbing by pipe info address. Otherwise two different processes
1531	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1532	 */
1533	pipe_double_lock(ipipe, opipe);
1534
1535	do {
1536		if (!opipe->readers) {
1537			send_sig(SIGPIPE, current, 0);
1538			if (!ret)
1539				ret = -EPIPE;
1540			break;
1541		}
1542
1543		if (!ipipe->nrbufs && !ipipe->writers)
1544			break;
1545
1546		/*
1547		 * Cannot make any progress, because either the input
1548		 * pipe is empty or the output pipe is full.
1549		 */
1550		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1551			/* Already processed some buffers, break */
1552			if (ret)
1553				break;
1554
1555			if (flags & SPLICE_F_NONBLOCK) {
1556				ret = -EAGAIN;
1557				break;
1558			}
1559
1560			/*
1561			 * We raced with another reader/writer and haven't
1562			 * managed to process any buffers.  A zero return
1563			 * value means EOF, so retry instead.
1564			 */
1565			pipe_unlock(ipipe);
1566			pipe_unlock(opipe);
1567			goto retry;
1568		}
1569
1570		ibuf = ipipe->bufs + ipipe->curbuf;
1571		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1572		obuf = opipe->bufs + nbuf;
1573
1574		if (len >= ibuf->len) {
1575			/*
1576			 * Simply move the whole buffer from ipipe to opipe
1577			 */
1578			*obuf = *ibuf;
1579			ibuf->ops = NULL;
1580			opipe->nrbufs++;
1581			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1582			ipipe->nrbufs--;
1583			input_wakeup = true;
1584		} else {
1585			/*
1586			 * Get a reference to this pipe buffer,
1587			 * so we can copy the contents over.
1588			 */
1589			pipe_buf_get(ipipe, ibuf);
1590			*obuf = *ibuf;
1591
1592			/*
1593			 * Don't inherit the gift flag, we need to
1594			 * prevent multiple steals of this page.
1595			 */
1596			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1597
1598			obuf->len = len;
1599			opipe->nrbufs++;
1600			ibuf->offset += obuf->len;
1601			ibuf->len -= obuf->len;
1602		}
1603		ret += obuf->len;
1604		len -= obuf->len;
1605	} while (len);
1606
1607	pipe_unlock(ipipe);
1608	pipe_unlock(opipe);
1609
1610	/*
1611	 * If we put data in the output pipe, wakeup any potential readers.
1612	 */
1613	if (ret > 0)
1614		wakeup_pipe_readers(opipe);
1615
1616	if (input_wakeup)
1617		wakeup_pipe_writers(ipipe);
1618
1619	return ret;
1620}
1621
1622/*
1623 * Link contents of ipipe to opipe.
1624 */
1625static int link_pipe(struct pipe_inode_info *ipipe,
1626		     struct pipe_inode_info *opipe,
1627		     size_t len, unsigned int flags)
1628{
1629	struct pipe_buffer *ibuf, *obuf;
1630	int ret = 0, i = 0, nbuf;
1631
1632	/*
1633	 * Potential ABBA deadlock, work around it by ordering lock
1634	 * grabbing by pipe info address. Otherwise two different processes
1635	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1636	 */
1637	pipe_double_lock(ipipe, opipe);
1638
1639	do {
1640		if (!opipe->readers) {
1641			send_sig(SIGPIPE, current, 0);
1642			if (!ret)
1643				ret = -EPIPE;
1644			break;
1645		}
1646
1647		/*
1648		 * If we have iterated all input buffers or ran out of
1649		 * output room, break.
1650		 */
1651		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1652			break;
1653
1654		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1655		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1656
1657		/*
1658		 * Get a reference to this pipe buffer,
1659		 * so we can copy the contents over.
1660		 */
1661		pipe_buf_get(ipipe, ibuf);
1662
1663		obuf = opipe->bufs + nbuf;
1664		*obuf = *ibuf;
1665
1666		/*
1667		 * Don't inherit the gift flag, we need to
1668		 * prevent multiple steals of this page.
1669		 */
1670		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1671
1672		if (obuf->len > len)
1673			obuf->len = len;
1674
1675		opipe->nrbufs++;
1676		ret += obuf->len;
1677		len -= obuf->len;
1678		i++;
1679	} while (len);
1680
1681	/*
1682	 * return EAGAIN if we have the potential of some data in the
1683	 * future, otherwise just return 0
1684	 */
1685	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1686		ret = -EAGAIN;
1687
1688	pipe_unlock(ipipe);
1689	pipe_unlock(opipe);
1690
1691	/*
1692	 * If we put data in the output pipe, wakeup any potential readers.
1693	 */
1694	if (ret > 0)
1695		wakeup_pipe_readers(opipe);
1696
1697	return ret;
1698}
1699
1700/*
1701 * This is a tee(1) implementation that works on pipes. It doesn't copy
1702 * any data, it simply references the 'in' pages on the 'out' pipe.
1703 * The 'flags' used are the SPLICE_F_* variants, currently the only
1704 * applicable one is SPLICE_F_NONBLOCK.
1705 */
1706static long do_tee(struct file *in, struct file *out, size_t len,
1707		   unsigned int flags)
1708{
1709	struct pipe_inode_info *ipipe = get_pipe_info(in);
1710	struct pipe_inode_info *opipe = get_pipe_info(out);
1711	int ret = -EINVAL;
1712
1713	/*
1714	 * Duplicate the contents of ipipe to opipe without actually
1715	 * copying the data.
1716	 */
1717	if (ipipe && opipe && ipipe != opipe) {
1718		/*
1719		 * Keep going, unless we encounter an error. The ipipe/opipe
1720		 * ordering doesn't really matter.
1721		 */
1722		ret = ipipe_prep(ipipe, flags);
1723		if (!ret) {
1724			ret = opipe_prep(opipe, flags);
1725			if (!ret)
1726				ret = link_pipe(ipipe, opipe, len, flags);
1727		}
1728	}
1729
1730	return ret;
1731}
1732
1733SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1734{
1735	struct fd in;
1736	int error;
1737
1738	if (unlikely(!len))
1739		return 0;
1740
1741	error = -EBADF;
1742	in = fdget(fdin);
1743	if (in.file) {
1744		if (in.file->f_mode & FMODE_READ) {
1745			struct fd out = fdget(fdout);
1746			if (out.file) {
1747				if (out.file->f_mode & FMODE_WRITE)
1748					error = do_tee(in.file, out.file,
1749							len, flags);
1750				fdput(out);
 
1751			}
1752		}
1753 		fdput(in);
1754 	}
1755
1756	return error;
1757}