Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/slab.h>
 20#include <linux/blkdev.h>
 21#include <linux/writeback.h>
 22#include <linux/pagevec.h>
 
 
 23#include "ctree.h"
 24#include "transaction.h"
 25#include "btrfs_inode.h"
 26#include "extent_io.h"
 
 
 
 
 
 
 
 
 
 27
 28static u64 entry_end(struct btrfs_ordered_extent *entry)
 29{
 30	if (entry->file_offset + entry->len < entry->file_offset)
 31		return (u64)-1;
 32	return entry->file_offset + entry->len;
 33}
 34
 35/* returns NULL if the insertion worked, or it returns the node it did find
 36 * in the tree
 37 */
 38static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
 39				   struct rb_node *node)
 40{
 41	struct rb_node **p = &root->rb_node;
 42	struct rb_node *parent = NULL;
 43	struct btrfs_ordered_extent *entry;
 44
 45	while (*p) {
 46		parent = *p;
 47		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
 48
 49		if (file_offset < entry->file_offset)
 50			p = &(*p)->rb_left;
 51		else if (file_offset >= entry_end(entry))
 52			p = &(*p)->rb_right;
 53		else
 54			return parent;
 55	}
 56
 57	rb_link_node(node, parent, p);
 58	rb_insert_color(node, root);
 59	return NULL;
 60}
 61
 62/*
 63 * look for a given offset in the tree, and if it can't be found return the
 64 * first lesser offset
 65 */
 66static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
 67				     struct rb_node **prev_ret)
 68{
 69	struct rb_node *n = root->rb_node;
 70	struct rb_node *prev = NULL;
 71	struct rb_node *test;
 72	struct btrfs_ordered_extent *entry;
 73	struct btrfs_ordered_extent *prev_entry = NULL;
 74
 75	while (n) {
 76		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 77		prev = n;
 78		prev_entry = entry;
 79
 80		if (file_offset < entry->file_offset)
 81			n = n->rb_left;
 82		else if (file_offset >= entry_end(entry))
 83			n = n->rb_right;
 84		else
 85			return n;
 86	}
 87	if (!prev_ret)
 88		return NULL;
 89
 90	while (prev && file_offset >= entry_end(prev_entry)) {
 91		test = rb_next(prev);
 92		if (!test)
 93			break;
 94		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 95				      rb_node);
 96		if (file_offset < entry_end(prev_entry))
 97			break;
 98
 99		prev = test;
100	}
101	if (prev)
102		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
103				      rb_node);
104	while (prev && file_offset < entry_end(prev_entry)) {
105		test = rb_prev(prev);
106		if (!test)
107			break;
108		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
109				      rb_node);
110		prev = test;
111	}
112	*prev_ret = prev;
113	return NULL;
114}
115
116/*
117 * helper to check if a given offset is inside a given entry
118 */
119static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
120{
121	if (file_offset < entry->file_offset ||
122	    entry->file_offset + entry->len <= file_offset)
123		return 0;
124	return 1;
125}
126
127static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
128			  u64 len)
129{
130	if (file_offset + len <= entry->file_offset ||
131	    entry->file_offset + entry->len <= file_offset)
132		return 0;
133	return 1;
134}
135
136/*
137 * look find the first ordered struct that has this offset, otherwise
138 * the first one less than this offset
139 */
140static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
141					  u64 file_offset)
142{
143	struct rb_root *root = &tree->tree;
144	struct rb_node *prev = NULL;
145	struct rb_node *ret;
146	struct btrfs_ordered_extent *entry;
147
148	if (tree->last) {
149		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
150				 rb_node);
151		if (offset_in_entry(entry, file_offset))
152			return tree->last;
153	}
154	ret = __tree_search(root, file_offset, &prev);
155	if (!ret)
156		ret = prev;
157	if (ret)
158		tree->last = ret;
159	return ret;
160}
161
162/* allocate and add a new ordered_extent into the per-inode tree.
163 * file_offset is the logical offset in the file
164 *
165 * start is the disk block number of an extent already reserved in the
166 * extent allocation tree
 
 
 
 
 
 
 
167 *
168 * len is the length of the extent
 
169 *
170 * The tree is given a single reference on the ordered extent that was
171 * inserted.
172 */
173static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
174				      u64 start, u64 len, u64 disk_len,
175				      int type, int dio, int compress_type)
176{
177	struct btrfs_ordered_inode_tree *tree;
 
 
 
178	struct rb_node *node;
179	struct btrfs_ordered_extent *entry;
 
180
181	tree = &BTRFS_I(inode)->ordered_tree;
182	entry = kzalloc(sizeof(*entry), GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183	if (!entry)
184		return -ENOMEM;
185
186	entry->file_offset = file_offset;
187	entry->start = start;
188	entry->len = len;
189	entry->disk_len = disk_len;
190	entry->bytes_left = len;
191	entry->inode = inode;
 
 
192	entry->compress_type = compress_type;
193	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
194		set_bit(type, &entry->flags);
 
195
196	if (dio)
197		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 
 
 
198
199	/* one ref for the tree */
200	atomic_set(&entry->refs, 1);
201	init_waitqueue_head(&entry->wait);
202	INIT_LIST_HEAD(&entry->list);
 
203	INIT_LIST_HEAD(&entry->root_extent_list);
 
 
204
205	trace_btrfs_ordered_extent_add(inode, entry);
206
207	spin_lock(&tree->lock);
208	node = tree_insert(&tree->tree, file_offset,
209			   &entry->rb_node);
210	BUG_ON(node);
211	spin_unlock(&tree->lock);
 
 
 
212
213	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
214	list_add_tail(&entry->root_extent_list,
215		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
216	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
217
218	BUG_ON(node);
219	return 0;
220}
221
222int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
223			     u64 start, u64 len, u64 disk_len, int type)
224{
225	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
226					  disk_len, type, 0,
227					  BTRFS_COMPRESS_NONE);
228}
229
230int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
231				 u64 start, u64 len, u64 disk_len, int type)
232{
233	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
234					  disk_len, type, 1,
235					  BTRFS_COMPRESS_NONE);
236}
 
237
238int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
239				      u64 start, u64 len, u64 disk_len,
240				      int type, int compress_type)
241{
242	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
243					  disk_len, type, 0,
244					  compress_type);
245}
246
247/*
248 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
249 * when an ordered extent is finished.  If the list covers more than one
250 * ordered extent, it is split across multiples.
251 */
252int btrfs_add_ordered_sum(struct inode *inode,
253			  struct btrfs_ordered_extent *entry,
254			  struct btrfs_ordered_sum *sum)
255{
256	struct btrfs_ordered_inode_tree *tree;
257
258	tree = &BTRFS_I(inode)->ordered_tree;
259	spin_lock(&tree->lock);
260	list_add_tail(&sum->list, &entry->list);
261	spin_unlock(&tree->lock);
262	return 0;
263}
264
265/*
266 * this is used to account for finished IO across a given range
267 * of the file.  The IO may span ordered extents.  If
268 * a given ordered_extent is completely done, 1 is returned, otherwise
269 * 0.
270 *
271 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
272 * to make sure this function only returns 1 once for a given ordered extent.
273 *
274 * file_offset is updated to one byte past the range that is recorded as
275 * complete.  This allows you to walk forward in the file.
276 */
277int btrfs_dec_test_first_ordered_pending(struct inode *inode,
278				   struct btrfs_ordered_extent **cached,
279				   u64 *file_offset, u64 io_size)
280{
281	struct btrfs_ordered_inode_tree *tree;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282	struct rb_node *node;
283	struct btrfs_ordered_extent *entry = NULL;
284	int ret;
285	u64 dec_end;
286	u64 dec_start;
287	u64 to_dec;
288
289	tree = &BTRFS_I(inode)->ordered_tree;
290	spin_lock(&tree->lock);
291	node = tree_search(tree, *file_offset);
292	if (!node) {
293		ret = 1;
294		goto out;
295	}
296
297	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
298	if (!offset_in_entry(entry, *file_offset)) {
299		ret = 1;
300		goto out;
301	}
302
303	dec_start = max(*file_offset, entry->file_offset);
304	dec_end = min(*file_offset + io_size, entry->file_offset +
305		      entry->len);
306	*file_offset = dec_end;
307	if (dec_start > dec_end) {
308		printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
309		       (unsigned long long)dec_start,
310		       (unsigned long long)dec_end);
311	}
312	to_dec = dec_end - dec_start;
313	if (to_dec > entry->bytes_left) {
314		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
315		       (unsigned long long)entry->bytes_left,
316		       (unsigned long long)to_dec);
317	}
318	entry->bytes_left -= to_dec;
319	if (entry->bytes_left == 0)
320		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
321	else
322		ret = 1;
323out:
324	if (!ret && cached && entry) {
325		*cached = entry;
326		atomic_inc(&entry->refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327	}
328	spin_unlock(&tree->lock);
329	return ret == 0;
330}
331
332/*
333 * this is used to account for finished IO across a given range
334 * of the file.  The IO should not span ordered extents.  If
335 * a given ordered_extent is completely done, 1 is returned, otherwise
336 * 0.
337 *
338 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
339 * to make sure this function only returns 1 once for a given ordered extent.
 
 
 
 
 
 
 
 
 
 
340 */
341int btrfs_dec_test_ordered_pending(struct inode *inode,
342				   struct btrfs_ordered_extent **cached,
343				   u64 file_offset, u64 io_size)
344{
345	struct btrfs_ordered_inode_tree *tree;
346	struct rb_node *node;
347	struct btrfs_ordered_extent *entry = NULL;
348	int ret;
 
 
 
 
 
 
 
349
350	tree = &BTRFS_I(inode)->ordered_tree;
351	spin_lock(&tree->lock);
352	node = tree_search(tree, file_offset);
353	if (!node) {
354		ret = 1;
355		goto out;
356	}
357
358	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
359	if (!offset_in_entry(entry, file_offset)) {
360		ret = 1;
361		goto out;
362	}
363
364	if (io_size > entry->bytes_left) {
365		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
366		       (unsigned long long)entry->bytes_left,
367		       (unsigned long long)io_size);
368	}
369	entry->bytes_left -= io_size;
370	if (entry->bytes_left == 0)
371		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
372	else
373		ret = 1;
 
 
 
 
 
 
374out:
375	if (!ret && cached && entry) {
376		*cached = entry;
377		atomic_inc(&entry->refs);
 
378	}
379	spin_unlock(&tree->lock);
380	return ret == 0;
381}
382
383/*
384 * used to drop a reference on an ordered extent.  This will free
385 * the extent if the last reference is dropped
386 */
387int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
388{
389	struct list_head *cur;
390	struct btrfs_ordered_sum *sum;
391
392	trace_btrfs_ordered_extent_put(entry->inode, entry);
393
394	if (atomic_dec_and_test(&entry->refs)) {
 
 
 
 
 
395		while (!list_empty(&entry->list)) {
396			cur = entry->list.next;
397			sum = list_entry(cur, struct btrfs_ordered_sum, list);
398			list_del(&sum->list);
399			kfree(sum);
400		}
401		kfree(entry);
402	}
403	return 0;
404}
405
406/*
407 * remove an ordered extent from the tree.  No references are dropped
408 * and you must wake_up entry->wait.  You must hold the tree lock
409 * while you call this function.
410 */
411static int __btrfs_remove_ordered_extent(struct inode *inode,
412				struct btrfs_ordered_extent *entry)
413{
414	struct btrfs_ordered_inode_tree *tree;
415	struct btrfs_root *root = BTRFS_I(inode)->root;
 
416	struct rb_node *node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
417
418	tree = &BTRFS_I(inode)->ordered_tree;
 
419	node = &entry->rb_node;
420	rb_erase(node, &tree->tree);
421	tree->last = NULL;
 
 
422	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
423
424	spin_lock(&root->fs_info->ordered_extent_lock);
425	list_del_init(&entry->root_extent_list);
426
427	trace_btrfs_ordered_extent_remove(inode, entry);
428
429	/*
430	 * we have no more ordered extents for this inode and
431	 * no dirty pages.  We can safely remove it from the
432	 * list of ordered extents
433	 */
434	if (RB_EMPTY_ROOT(&tree->tree) &&
435	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
436		list_del_init(&BTRFS_I(inode)->ordered_operations);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437	}
438	spin_unlock(&root->fs_info->ordered_extent_lock);
439
440	return 0;
441}
442
443/*
444 * remove an ordered extent from the tree.  No references are dropped
445 * but any waiters are woken.
446 */
447int btrfs_remove_ordered_extent(struct inode *inode,
448				struct btrfs_ordered_extent *entry)
449{
450	struct btrfs_ordered_inode_tree *tree;
451	int ret;
452
453	tree = &BTRFS_I(inode)->ordered_tree;
454	spin_lock(&tree->lock);
455	ret = __btrfs_remove_ordered_extent(inode, entry);
456	spin_unlock(&tree->lock);
 
 
 
 
 
457	wake_up(&entry->wait);
 
 
 
458
459	return ret;
 
 
 
 
 
 
460}
461
462/*
463 * wait for all the ordered extents in a root.  This is done when balancing
464 * space between drives.
465 */
466int btrfs_wait_ordered_extents(struct btrfs_root *root,
467			       int nocow_only, int delay_iput)
468{
469	struct list_head splice;
470	struct list_head *cur;
471	struct btrfs_ordered_extent *ordered;
472	struct inode *inode;
473
474	INIT_LIST_HEAD(&splice);
475
476	spin_lock(&root->fs_info->ordered_extent_lock);
477	list_splice_init(&root->fs_info->ordered_extents, &splice);
478	while (!list_empty(&splice)) {
479		cur = splice.next;
480		ordered = list_entry(cur, struct btrfs_ordered_extent,
481				     root_extent_list);
482		if (nocow_only &&
483		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
484		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
485			list_move(&ordered->root_extent_list,
486				  &root->fs_info->ordered_extents);
487			cond_resched_lock(&root->fs_info->ordered_extent_lock);
488			continue;
489		}
490
491		list_del_init(&ordered->root_extent_list);
492		atomic_inc(&ordered->refs);
493
494		/*
495		 * the inode may be getting freed (in sys_unlink path).
496		 */
497		inode = igrab(ordered->inode);
498
499		spin_unlock(&root->fs_info->ordered_extent_lock);
500
501		if (inode) {
502			btrfs_start_ordered_extent(inode, ordered, 1);
503			btrfs_put_ordered_extent(ordered);
504			if (delay_iput)
505				btrfs_add_delayed_iput(inode);
506			else
507				iput(inode);
508		} else {
509			btrfs_put_ordered_extent(ordered);
510		}
511
512		spin_lock(&root->fs_info->ordered_extent_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
513	}
514	spin_unlock(&root->fs_info->ordered_extent_lock);
515	return 0;
 
516}
517
518/*
519 * this is used during transaction commit to write all the inodes
520 * added to the ordered operation list.  These files must be fully on
521 * disk before the transaction commits.
522 *
523 * we have two modes here, one is to just start the IO via filemap_flush
524 * and the other is to wait for all the io.  When we wait, we have an
525 * extra check to make sure the ordered operation list really is empty
526 * before we return
527 */
528int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
529{
530	struct btrfs_inode *btrfs_inode;
531	struct inode *inode;
532	struct list_head splice;
 
533
534	INIT_LIST_HEAD(&splice);
535
536	mutex_lock(&root->fs_info->ordered_operations_mutex);
537	spin_lock(&root->fs_info->ordered_extent_lock);
538again:
539	list_splice_init(&root->fs_info->ordered_operations, &splice);
540
541	while (!list_empty(&splice)) {
542		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
543				   ordered_operations);
544
545		inode = &btrfs_inode->vfs_inode;
546
547		list_del_init(&btrfs_inode->ordered_operations);
548
549		/*
550		 * the inode may be getting freed (in sys_unlink path).
551		 */
552		inode = igrab(inode);
553
554		if (!wait && inode) {
555			list_add_tail(&BTRFS_I(inode)->ordered_operations,
556			      &root->fs_info->ordered_operations);
557		}
558		spin_unlock(&root->fs_info->ordered_extent_lock);
559
560		if (inode) {
561			if (wait)
562				btrfs_wait_ordered_range(inode, 0, (u64)-1);
563			else
564				filemap_flush(inode->i_mapping);
565			btrfs_add_delayed_iput(inode);
566		}
567
568		cond_resched();
569		spin_lock(&root->fs_info->ordered_extent_lock);
570	}
571	if (wait && !list_empty(&root->fs_info->ordered_operations))
572		goto again;
573
574	spin_unlock(&root->fs_info->ordered_extent_lock);
575	mutex_unlock(&root->fs_info->ordered_operations_mutex);
576
577	return 0;
578}
579
580/*
581 * Used to start IO or wait for a given ordered extent to finish.
582 *
583 * If wait is one, this effectively waits on page writeback for all the pages
584 * in the extent, and it waits on the io completion code to insert
585 * metadata into the btree corresponding to the extent
586 */
587void btrfs_start_ordered_extent(struct inode *inode,
588				       struct btrfs_ordered_extent *entry,
589				       int wait)
590{
591	u64 start = entry->file_offset;
592	u64 end = start + entry->len - 1;
 
 
593
594	trace_btrfs_ordered_extent_start(inode, entry);
595
596	/*
 
 
 
 
 
 
597	 * pages in the range can be dirty, clean or writeback.  We
598	 * start IO on any dirty ones so the wait doesn't stall waiting
599	 * for pdflush to find them
600	 */
601	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
602		filemap_fdatawrite_range(inode->i_mapping, start, end);
603	if (wait) {
 
 
604		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
605						 &entry->flags));
606	}
607}
608
609/*
610 * Used to wait on ordered extents across a large range of bytes.
611 */
612int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
613{
 
 
614	u64 end;
615	u64 orig_end;
616	struct btrfs_ordered_extent *ordered;
617	int found;
618
619	if (start + len < start) {
620		orig_end = INT_LIMIT(loff_t);
621	} else {
622		orig_end = start + len - 1;
623		if (orig_end > INT_LIMIT(loff_t))
624			orig_end = INT_LIMIT(loff_t);
625	}
626again:
627	/* start IO across the range first to instantiate any delalloc
628	 * extents
629	 */
630	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
 
 
631
632	/* The compression code will leave pages locked but return from
633	 * writepage without setting the page writeback.  Starting again
634	 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
 
 
 
635	 */
636	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
637
638	filemap_fdatawait_range(inode->i_mapping, start, orig_end);
639
640	end = orig_end;
641	found = 0;
642	while (1) {
643		ordered = btrfs_lookup_first_ordered_extent(inode, end);
644		if (!ordered)
645			break;
646		if (ordered->file_offset > orig_end) {
647			btrfs_put_ordered_extent(ordered);
648			break;
649		}
650		if (ordered->file_offset + ordered->len < start) {
651			btrfs_put_ordered_extent(ordered);
652			break;
653		}
654		found++;
655		btrfs_start_ordered_extent(inode, ordered, 1);
656		end = ordered->file_offset;
 
 
 
 
 
 
 
657		btrfs_put_ordered_extent(ordered);
658		if (end == 0 || end == start)
659			break;
660		end--;
661	}
662	if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
663			   EXTENT_DELALLOC, 0, NULL)) {
664		schedule_timeout(1);
665		goto again;
666	}
667	return 0;
668}
669
670/*
671 * find an ordered extent corresponding to file_offset.  return NULL if
672 * nothing is found, otherwise take a reference on the extent and return it
673 */
674struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
675							 u64 file_offset)
676{
677	struct btrfs_ordered_inode_tree *tree;
678	struct rb_node *node;
679	struct btrfs_ordered_extent *entry = NULL;
 
680
681	tree = &BTRFS_I(inode)->ordered_tree;
682	spin_lock(&tree->lock);
683	node = tree_search(tree, file_offset);
684	if (!node)
685		goto out;
686
687	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
688	if (!offset_in_entry(entry, file_offset))
689		entry = NULL;
690	if (entry)
691		atomic_inc(&entry->refs);
 
 
692out:
693	spin_unlock(&tree->lock);
694	return entry;
695}
696
697/* Since the DIO code tries to lock a wide area we need to look for any ordered
698 * extents that exist in the range, rather than just the start of the range.
699 */
700struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
701							u64 file_offset,
702							u64 len)
703{
704	struct btrfs_ordered_inode_tree *tree;
705	struct rb_node *node;
706	struct btrfs_ordered_extent *entry = NULL;
707
708	tree = &BTRFS_I(inode)->ordered_tree;
709	spin_lock(&tree->lock);
710	node = tree_search(tree, file_offset);
711	if (!node) {
712		node = tree_search(tree, file_offset + len);
713		if (!node)
714			goto out;
715	}
716
717	while (1) {
718		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
719		if (range_overlaps(entry, file_offset, len))
720			break;
721
722		if (entry->file_offset >= file_offset + len) {
723			entry = NULL;
724			break;
725		}
726		entry = NULL;
727		node = rb_next(node);
728		if (!node)
729			break;
730	}
731out:
732	if (entry)
733		atomic_inc(&entry->refs);
734	spin_unlock(&tree->lock);
 
 
735	return entry;
736}
737
738/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
739 * lookup and return any extent before 'file_offset'.  NULL is returned
740 * if none is found
741 */
742struct btrfs_ordered_extent *
743btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
744{
745	struct btrfs_ordered_inode_tree *tree;
746	struct rb_node *node;
747	struct btrfs_ordered_extent *entry = NULL;
748
749	tree = &BTRFS_I(inode)->ordered_tree;
750	spin_lock(&tree->lock);
751	node = tree_search(tree, file_offset);
752	if (!node)
753		goto out;
754
755	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
756	atomic_inc(&entry->refs);
 
757out:
758	spin_unlock(&tree->lock);
759	return entry;
760}
761
762/*
763 * After an extent is done, call this to conditionally update the on disk
764 * i_size.  i_size is updated to cover any fully written part of the file.
 
 
 
 
 
765 */
766int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
767				struct btrfs_ordered_extent *ordered)
768{
769	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
770	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
771	u64 disk_i_size;
772	u64 new_i_size;
773	u64 i_size_test;
774	u64 i_size = i_size_read(inode);
775	struct rb_node *node;
776	struct rb_node *prev = NULL;
777	struct btrfs_ordered_extent *test;
778	int ret = 1;
779
780	if (ordered)
781		offset = entry_end(ordered);
782	else
783		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
784
785	spin_lock(&tree->lock);
786	disk_i_size = BTRFS_I(inode)->disk_i_size;
787
788	/* truncate file */
789	if (disk_i_size > i_size) {
790		BTRFS_I(inode)->disk_i_size = i_size;
791		ret = 0;
792		goto out;
793	}
794
 
 
795	/*
796	 * if the disk i_size is already at the inode->i_size, or
797	 * this ordered extent is inside the disk i_size, we're done
 
 
798	 */
799	if (disk_i_size == i_size || offset <= disk_i_size) {
800		goto out;
801	}
802
803	/*
804	 * we can't update the disk_isize if there are delalloc bytes
805	 * between disk_i_size and  this ordered extent
806	 */
807	if (test_range_bit(io_tree, disk_i_size, offset - 1,
808			   EXTENT_DELALLOC, 0, NULL)) {
809		goto out;
810	}
811	/*
812	 * walk backward from this ordered extent to disk_i_size.
813	 * if we find an ordered extent then we can't update disk i_size
814	 * yet
815	 */
816	if (ordered) {
817		node = rb_prev(&ordered->rb_node);
818	} else {
819		prev = tree_search(tree, offset);
820		/*
821		 * we insert file extents without involving ordered struct,
822		 * so there should be no ordered struct cover this offset
823		 */
824		if (prev) {
825			test = rb_entry(prev, struct btrfs_ordered_extent,
826					rb_node);
827			BUG_ON(offset_in_entry(test, offset));
828		}
829		node = prev;
830	}
831	while (node) {
832		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
833		if (test->file_offset + test->len <= disk_i_size)
834			break;
835		if (test->file_offset >= i_size)
836			break;
837		if (test->file_offset >= disk_i_size)
838			goto out;
839		node = rb_prev(node);
840	}
841	new_i_size = min_t(u64, offset, i_size);
842
843	/*
844	 * at this point, we know we can safely update i_size to at least
845	 * the offset from this ordered extent.  But, we need to
846	 * walk forward and see if ios from higher up in the file have
847	 * finished.
848	 */
849	if (ordered) {
850		node = rb_next(&ordered->rb_node);
851	} else {
852		if (prev)
853			node = rb_next(prev);
854		else
855			node = rb_first(&tree->tree);
856	}
857	i_size_test = 0;
858	if (node) {
859		/*
860		 * do we have an area where IO might have finished
861		 * between our ordered extent and the next one.
862		 */
863		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
864		if (test->file_offset > offset)
865			i_size_test = test->file_offset;
866	} else {
867		i_size_test = i_size;
868	}
869
870	/*
871	 * i_size_test is the end of a region after this ordered
872	 * extent where there are no ordered extents.  As long as there
873	 * are no delalloc bytes in this area, it is safe to update
874	 * disk_i_size to the end of the region.
875	 */
876	if (i_size_test > offset &&
877	    !test_range_bit(io_tree, offset, i_size_test - 1,
878			    EXTENT_DELALLOC, 0, NULL)) {
879		new_i_size = min_t(u64, i_size_test, i_size);
880	}
881	BTRFS_I(inode)->disk_i_size = new_i_size;
882	ret = 0;
883out:
884	/*
885	 * we need to remove the ordered extent with the tree lock held
886	 * so that other people calling this function don't find our fully
887	 * processed ordered entry and skip updating the i_size
888	 */
889	if (ordered)
890		__btrfs_remove_ordered_extent(inode, ordered);
891	spin_unlock(&tree->lock);
892	if (ordered)
893		wake_up(&ordered->wait);
894	return ret;
895}
896
897/*
898 * search the ordered extents for one corresponding to 'offset' and
899 * try to find a checksum.  This is used because we allow pages to
900 * be reclaimed before their checksum is actually put into the btree
 
 
 
 
 
 
 
 
 
901 */
902int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
903			   u32 *sum)
 
904{
905	struct btrfs_ordered_sum *ordered_sum;
906	struct btrfs_sector_sum *sector_sums;
907	struct btrfs_ordered_extent *ordered;
908	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
909	unsigned long num_sectors;
910	unsigned long i;
911	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
912	int ret = 1;
913
914	ordered = btrfs_lookup_ordered_extent(inode, offset);
915	if (!ordered)
916		return 1;
917
918	spin_lock(&tree->lock);
919	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
920		if (disk_bytenr >= ordered_sum->bytenr) {
921			num_sectors = ordered_sum->len / sectorsize;
922			sector_sums = ordered_sum->sums;
923			for (i = 0; i < num_sectors; i++) {
924				if (sector_sums[i].bytenr == disk_bytenr) {
925					*sum = sector_sums[i].sum;
926					ret = 0;
927					goto out;
928				}
929			}
 
930		}
 
 
 
931	}
932out:
933	spin_unlock(&tree->lock);
934	btrfs_put_ordered_extent(ordered);
935	return ret;
936}
937
938
939/*
940 * add a given inode to the list of inodes that must be fully on
941 * disk before a transaction commit finishes.
942 *
943 * This basically gives us the ext3 style data=ordered mode, and it is mostly
944 * used to make sure renamed files are fully on disk.
945 *
946 * It is a noop if the inode is already fully on disk.
947 *
948 * If trans is not null, we'll do a friendly check for a transaction that
949 * is already flushing things and force the IO down ourselves.
950 */
951int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
952				struct btrfs_root *root,
953				struct inode *inode)
954{
955	u64 last_mod;
956
957	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
 
958
959	/*
960	 * if this file hasn't been changed since the last transaction
961	 * commit, we can safely return without doing anything
962	 */
963	if (last_mod < root->fs_info->last_trans_committed)
964		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
965
966	/*
967	 * the transaction is already committing.  Just start the IO and
968	 * don't bother with all of this list nonsense
969	 */
970	if (trans && root->fs_info->running_transaction->blocked) {
971		btrfs_wait_ordered_range(inode, 0, (u64)-1);
972		return 0;
973	}
 
 
 
974
975	spin_lock(&root->fs_info->ordered_extent_lock);
976	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
977		list_add_tail(&BTRFS_I(inode)->ordered_operations,
978			      &root->fs_info->ordered_operations);
979	}
980	spin_unlock(&root->fs_info->ordered_extent_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
981
982	return 0;
 
 
 
 
 
983}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/slab.h>
   7#include <linux/blkdev.h>
   8#include <linux/writeback.h>
   9#include <linux/sched/mm.h>
  10#include "messages.h"
  11#include "misc.h"
  12#include "ctree.h"
  13#include "transaction.h"
  14#include "btrfs_inode.h"
  15#include "extent_io.h"
  16#include "disk-io.h"
  17#include "compression.h"
  18#include "delalloc-space.h"
  19#include "qgroup.h"
  20#include "subpage.h"
  21#include "file.h"
  22#include "super.h"
  23
  24static struct kmem_cache *btrfs_ordered_extent_cache;
  25
  26static u64 entry_end(struct btrfs_ordered_extent *entry)
  27{
  28	if (entry->file_offset + entry->num_bytes < entry->file_offset)
  29		return (u64)-1;
  30	return entry->file_offset + entry->num_bytes;
  31}
  32
  33/* returns NULL if the insertion worked, or it returns the node it did find
  34 * in the tree
  35 */
  36static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  37				   struct rb_node *node)
  38{
  39	struct rb_node **p = &root->rb_node;
  40	struct rb_node *parent = NULL;
  41	struct btrfs_ordered_extent *entry;
  42
  43	while (*p) {
  44		parent = *p;
  45		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  46
  47		if (file_offset < entry->file_offset)
  48			p = &(*p)->rb_left;
  49		else if (file_offset >= entry_end(entry))
  50			p = &(*p)->rb_right;
  51		else
  52			return parent;
  53	}
  54
  55	rb_link_node(node, parent, p);
  56	rb_insert_color(node, root);
  57	return NULL;
  58}
  59
  60/*
  61 * look for a given offset in the tree, and if it can't be found return the
  62 * first lesser offset
  63 */
  64static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  65				     struct rb_node **prev_ret)
  66{
  67	struct rb_node *n = root->rb_node;
  68	struct rb_node *prev = NULL;
  69	struct rb_node *test;
  70	struct btrfs_ordered_extent *entry;
  71	struct btrfs_ordered_extent *prev_entry = NULL;
  72
  73	while (n) {
  74		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  75		prev = n;
  76		prev_entry = entry;
  77
  78		if (file_offset < entry->file_offset)
  79			n = n->rb_left;
  80		else if (file_offset >= entry_end(entry))
  81			n = n->rb_right;
  82		else
  83			return n;
  84	}
  85	if (!prev_ret)
  86		return NULL;
  87
  88	while (prev && file_offset >= entry_end(prev_entry)) {
  89		test = rb_next(prev);
  90		if (!test)
  91			break;
  92		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  93				      rb_node);
  94		if (file_offset < entry_end(prev_entry))
  95			break;
  96
  97		prev = test;
  98	}
  99	if (prev)
 100		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 101				      rb_node);
 102	while (prev && file_offset < entry_end(prev_entry)) {
 103		test = rb_prev(prev);
 104		if (!test)
 105			break;
 106		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 107				      rb_node);
 108		prev = test;
 109	}
 110	*prev_ret = prev;
 111	return NULL;
 112}
 113
 
 
 
 
 
 
 
 
 
 
 
 114static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 115			  u64 len)
 116{
 117	if (file_offset + len <= entry->file_offset ||
 118	    entry->file_offset + entry->num_bytes <= file_offset)
 119		return 0;
 120	return 1;
 121}
 122
 123/*
 124 * look find the first ordered struct that has this offset, otherwise
 125 * the first one less than this offset
 126 */
 127static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 128					  u64 file_offset)
 129{
 130	struct rb_root *root = &tree->tree;
 131	struct rb_node *prev = NULL;
 132	struct rb_node *ret;
 133	struct btrfs_ordered_extent *entry;
 134
 135	if (tree->last) {
 136		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 137				 rb_node);
 138		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
 139			return tree->last;
 140	}
 141	ret = __tree_search(root, file_offset, &prev);
 142	if (!ret)
 143		ret = prev;
 144	if (ret)
 145		tree->last = ret;
 146	return ret;
 147}
 148
 149/*
 150 * Add an ordered extent to the per-inode tree.
 151 *
 152 * @inode:           Inode that this extent is for.
 153 * @file_offset:     Logical offset in file where the extent starts.
 154 * @num_bytes:       Logical length of extent in file.
 155 * @ram_bytes:       Full length of unencoded data.
 156 * @disk_bytenr:     Offset of extent on disk.
 157 * @disk_num_bytes:  Size of extent on disk.
 158 * @offset:          Offset into unencoded data where file data starts.
 159 * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
 160 * @compress_type:   Compression algorithm used for data.
 161 *
 162 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
 163 * tree is given a single reference on the ordered extent that was inserted.
 164 *
 165 * Return: 0 or -ENOMEM.
 
 166 */
 167int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
 168			     u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
 169			     u64 disk_num_bytes, u64 offset, unsigned flags,
 170			     int compress_type)
 171{
 172	struct btrfs_root *root = inode->root;
 173	struct btrfs_fs_info *fs_info = root->fs_info;
 174	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 175	struct rb_node *node;
 176	struct btrfs_ordered_extent *entry;
 177	int ret;
 178
 179	if (flags &
 180	    ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
 181		/* For nocow write, we can release the qgroup rsv right now */
 182		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
 183		if (ret < 0)
 184			return ret;
 185		ret = 0;
 186	} else {
 187		/*
 188		 * The ordered extent has reserved qgroup space, release now
 189		 * and pass the reserved number for qgroup_record to free.
 190		 */
 191		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
 192		if (ret < 0)
 193			return ret;
 194	}
 195	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 196	if (!entry)
 197		return -ENOMEM;
 198
 199	entry->file_offset = file_offset;
 200	entry->num_bytes = num_bytes;
 201	entry->ram_bytes = ram_bytes;
 202	entry->disk_bytenr = disk_bytenr;
 203	entry->disk_num_bytes = disk_num_bytes;
 204	entry->offset = offset;
 205	entry->bytes_left = num_bytes;
 206	entry->inode = igrab(&inode->vfs_inode);
 207	entry->compress_type = compress_type;
 208	entry->truncated_len = (u64)-1;
 209	entry->qgroup_rsv = ret;
 210	entry->physical = (u64)-1;
 211
 212	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
 213	entry->flags = flags;
 214
 215	percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
 216				 fs_info->delalloc_batch);
 217
 218	/* one ref for the tree */
 219	refcount_set(&entry->refs, 1);
 220	init_waitqueue_head(&entry->wait);
 221	INIT_LIST_HEAD(&entry->list);
 222	INIT_LIST_HEAD(&entry->log_list);
 223	INIT_LIST_HEAD(&entry->root_extent_list);
 224	INIT_LIST_HEAD(&entry->work_list);
 225	init_completion(&entry->completion);
 226
 227	trace_btrfs_ordered_extent_add(inode, entry);
 228
 229	spin_lock_irq(&tree->lock);
 230	node = tree_insert(&tree->tree, file_offset,
 231			   &entry->rb_node);
 232	if (node)
 233		btrfs_panic(fs_info, -EEXIST,
 234				"inconsistency in ordered tree at offset %llu",
 235				file_offset);
 236	spin_unlock_irq(&tree->lock);
 237
 238	spin_lock(&root->ordered_extent_lock);
 239	list_add_tail(&entry->root_extent_list,
 240		      &root->ordered_extents);
 241	root->nr_ordered_extents++;
 242	if (root->nr_ordered_extents == 1) {
 243		spin_lock(&fs_info->ordered_root_lock);
 244		BUG_ON(!list_empty(&root->ordered_root));
 245		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
 246		spin_unlock(&fs_info->ordered_root_lock);
 247	}
 248	spin_unlock(&root->ordered_extent_lock);
 
 
 
 
 
 249
 250	/*
 251	 * We don't need the count_max_extents here, we can assume that all of
 252	 * that work has been done at higher layers, so this is truly the
 253	 * smallest the extent is going to get.
 254	 */
 255	spin_lock(&inode->lock);
 256	btrfs_mod_outstanding_extents(inode, 1);
 257	spin_unlock(&inode->lock);
 258
 259	return 0;
 
 
 
 
 
 
 260}
 261
 262/*
 263 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 264 * when an ordered extent is finished.  If the list covers more than one
 265 * ordered extent, it is split across multiples.
 266 */
 267void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
 268			   struct btrfs_ordered_sum *sum)
 
 269{
 270	struct btrfs_ordered_inode_tree *tree;
 271
 272	tree = &BTRFS_I(entry->inode)->ordered_tree;
 273	spin_lock_irq(&tree->lock);
 274	list_add_tail(&sum->list, &entry->list);
 275	spin_unlock_irq(&tree->lock);
 
 276}
 277
 278static void finish_ordered_fn(struct btrfs_work *work)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279{
 280	struct btrfs_ordered_extent *ordered_extent;
 281
 282	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
 283	btrfs_finish_ordered_io(ordered_extent);
 284}
 285
 286/*
 287 * Mark all ordered extents io inside the specified range finished.
 288 *
 289 * @page:	 The involved page for the operation.
 290 *		 For uncompressed buffered IO, the page status also needs to be
 291 *		 updated to indicate whether the pending ordered io is finished.
 292 *		 Can be NULL for direct IO and compressed write.
 293 *		 For these cases, callers are ensured they won't execute the
 294 *		 endio function twice.
 295 *
 296 * This function is called for endio, thus the range must have ordered
 297 * extent(s) covering it.
 298 */
 299void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
 300				    struct page *page, u64 file_offset,
 301				    u64 num_bytes, bool uptodate)
 302{
 303	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 304	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 305	struct btrfs_workqueue *wq;
 306	struct rb_node *node;
 307	struct btrfs_ordered_extent *entry = NULL;
 308	unsigned long flags;
 309	u64 cur = file_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 310
 311	if (btrfs_is_free_space_inode(inode))
 312		wq = fs_info->endio_freespace_worker;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 313	else
 314		wq = fs_info->endio_write_workers;
 315
 316	if (page)
 317		ASSERT(page->mapping && page_offset(page) <= file_offset &&
 318		       file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
 319
 320	spin_lock_irqsave(&tree->lock, flags);
 321	while (cur < file_offset + num_bytes) {
 322		u64 entry_end;
 323		u64 end;
 324		u32 len;
 325
 326		node = tree_search(tree, cur);
 327		/* No ordered extents at all */
 328		if (!node)
 329			break;
 330
 331		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 332		entry_end = entry->file_offset + entry->num_bytes;
 333		/*
 334		 * |<-- OE --->|  |
 335		 *		  cur
 336		 * Go to next OE.
 337		 */
 338		if (cur >= entry_end) {
 339			node = rb_next(node);
 340			/* No more ordered extents, exit */
 341			if (!node)
 342				break;
 343			entry = rb_entry(node, struct btrfs_ordered_extent,
 344					 rb_node);
 345
 346			/* Go to next ordered extent and continue */
 347			cur = entry->file_offset;
 348			continue;
 349		}
 350		/*
 351		 * |	|<--- OE --->|
 352		 * cur
 353		 * Go to the start of OE.
 354		 */
 355		if (cur < entry->file_offset) {
 356			cur = entry->file_offset;
 357			continue;
 358		}
 359
 360		/*
 361		 * Now we are definitely inside one ordered extent.
 362		 *
 363		 * |<--- OE --->|
 364		 *	|
 365		 *	cur
 366		 */
 367		end = min(entry->file_offset + entry->num_bytes,
 368			  file_offset + num_bytes) - 1;
 369		ASSERT(end + 1 - cur < U32_MAX);
 370		len = end + 1 - cur;
 371
 372		if (page) {
 373			/*
 374			 * Ordered (Private2) bit indicates whether we still
 375			 * have pending io unfinished for the ordered extent.
 376			 *
 377			 * If there's no such bit, we need to skip to next range.
 378			 */
 379			if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
 380				cur += len;
 381				continue;
 382			}
 383			btrfs_page_clear_ordered(fs_info, page, cur, len);
 384		}
 385
 386		/* Now we're fine to update the accounting */
 387		if (unlikely(len > entry->bytes_left)) {
 388			WARN_ON(1);
 389			btrfs_crit(fs_info,
 390"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
 391				   inode->root->root_key.objectid,
 392				   btrfs_ino(inode),
 393				   entry->file_offset,
 394				   entry->num_bytes,
 395				   len, entry->bytes_left);
 396			entry->bytes_left = 0;
 397		} else {
 398			entry->bytes_left -= len;
 399		}
 400
 401		if (!uptodate)
 402			set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 403
 404		/*
 405		 * All the IO of the ordered extent is finished, we need to queue
 406		 * the finish_func to be executed.
 407		 */
 408		if (entry->bytes_left == 0) {
 409			set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 410			cond_wake_up(&entry->wait);
 411			refcount_inc(&entry->refs);
 412			trace_btrfs_ordered_extent_mark_finished(inode, entry);
 413			spin_unlock_irqrestore(&tree->lock, flags);
 414			btrfs_init_work(&entry->work, finish_ordered_fn, NULL, NULL);
 415			btrfs_queue_work(wq, &entry->work);
 416			spin_lock_irqsave(&tree->lock, flags);
 417		}
 418		cur += len;
 419	}
 420	spin_unlock_irqrestore(&tree->lock, flags);
 
 421}
 422
 423/*
 424 * Finish IO for one ordered extent across a given range.  The range can only
 425 * contain one ordered extent.
 
 
 426 *
 427 * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
 428 *               search and use the ordered extent directly.
 429 * 		 Will be also used to store the finished ordered extent.
 430 * @file_offset: File offset for the finished IO
 431 * @io_size:	 Length of the finish IO range
 432 *
 433 * Return true if the ordered extent is finished in the range, and update
 434 * @cached.
 435 * Return false otherwise.
 436 *
 437 * NOTE: The range can NOT cross multiple ordered extents.
 438 * Thus caller should ensure the range doesn't cross ordered extents.
 439 */
 440bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
 441				    struct btrfs_ordered_extent **cached,
 442				    u64 file_offset, u64 io_size)
 443{
 444	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 445	struct rb_node *node;
 446	struct btrfs_ordered_extent *entry = NULL;
 447	unsigned long flags;
 448	bool finished = false;
 449
 450	spin_lock_irqsave(&tree->lock, flags);
 451	if (cached && *cached) {
 452		entry = *cached;
 453		goto have_entry;
 454	}
 455
 
 
 456	node = tree_search(tree, file_offset);
 457	if (!node)
 
 458		goto out;
 
 459
 460	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 461have_entry:
 462	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 463		goto out;
 
 464
 465	if (io_size > entry->bytes_left)
 466		btrfs_crit(inode->root->fs_info,
 467			   "bad ordered accounting left %llu size %llu",
 468		       entry->bytes_left, io_size);
 469
 470	entry->bytes_left -= io_size;
 471
 472	if (entry->bytes_left == 0) {
 473		/*
 474		 * Ensure only one caller can set the flag and finished_ret
 475		 * accordingly
 476		 */
 477		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 478		/* test_and_set_bit implies a barrier */
 479		cond_wake_up_nomb(&entry->wait);
 480	}
 481out:
 482	if (finished && cached && entry) {
 483		*cached = entry;
 484		refcount_inc(&entry->refs);
 485		trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
 486	}
 487	spin_unlock_irqrestore(&tree->lock, flags);
 488	return finished;
 489}
 490
 491/*
 492 * used to drop a reference on an ordered extent.  This will free
 493 * the extent if the last reference is dropped
 494 */
 495void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 496{
 497	struct list_head *cur;
 498	struct btrfs_ordered_sum *sum;
 499
 500	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
 501
 502	if (refcount_dec_and_test(&entry->refs)) {
 503		ASSERT(list_empty(&entry->root_extent_list));
 504		ASSERT(list_empty(&entry->log_list));
 505		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
 506		if (entry->inode)
 507			btrfs_add_delayed_iput(BTRFS_I(entry->inode));
 508		while (!list_empty(&entry->list)) {
 509			cur = entry->list.next;
 510			sum = list_entry(cur, struct btrfs_ordered_sum, list);
 511			list_del(&sum->list);
 512			kvfree(sum);
 513		}
 514		kmem_cache_free(btrfs_ordered_extent_cache, entry);
 515	}
 
 516}
 517
 518/*
 519 * remove an ordered extent from the tree.  No references are dropped
 520 * and waiters are woken up.
 
 521 */
 522void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
 523				 struct btrfs_ordered_extent *entry)
 524{
 525	struct btrfs_ordered_inode_tree *tree;
 526	struct btrfs_root *root = btrfs_inode->root;
 527	struct btrfs_fs_info *fs_info = root->fs_info;
 528	struct rb_node *node;
 529	bool pending;
 530	bool freespace_inode;
 531
 532	/*
 533	 * If this is a free space inode the thread has not acquired the ordered
 534	 * extents lockdep map.
 535	 */
 536	freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
 537
 538	btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
 539	/* This is paired with btrfs_add_ordered_extent. */
 540	spin_lock(&btrfs_inode->lock);
 541	btrfs_mod_outstanding_extents(btrfs_inode, -1);
 542	spin_unlock(&btrfs_inode->lock);
 543	if (root != fs_info->tree_root) {
 544		u64 release;
 545
 546		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
 547			release = entry->disk_num_bytes;
 548		else
 549			release = entry->num_bytes;
 550		btrfs_delalloc_release_metadata(btrfs_inode, release, false);
 551	}
 552
 553	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
 554				 fs_info->delalloc_batch);
 555
 556	tree = &btrfs_inode->ordered_tree;
 557	spin_lock_irq(&tree->lock);
 558	node = &entry->rb_node;
 559	rb_erase(node, &tree->tree);
 560	RB_CLEAR_NODE(node);
 561	if (tree->last == node)
 562		tree->last = NULL;
 563	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 564	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
 565	spin_unlock_irq(&tree->lock);
 
 
 
 566
 567	/*
 568	 * The current running transaction is waiting on us, we need to let it
 569	 * know that we're complete and wake it up.
 
 570	 */
 571	if (pending) {
 572		struct btrfs_transaction *trans;
 573
 574		/*
 575		 * The checks for trans are just a formality, it should be set,
 576		 * but if it isn't we don't want to deref/assert under the spin
 577		 * lock, so be nice and check if trans is set, but ASSERT() so
 578		 * if it isn't set a developer will notice.
 579		 */
 580		spin_lock(&fs_info->trans_lock);
 581		trans = fs_info->running_transaction;
 582		if (trans)
 583			refcount_inc(&trans->use_count);
 584		spin_unlock(&fs_info->trans_lock);
 585
 586		ASSERT(trans);
 587		if (trans) {
 588			if (atomic_dec_and_test(&trans->pending_ordered))
 589				wake_up(&trans->pending_wait);
 590			btrfs_put_transaction(trans);
 591		}
 592	}
 
 593
 594	btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
 
 595
 596	spin_lock(&root->ordered_extent_lock);
 597	list_del_init(&entry->root_extent_list);
 598	root->nr_ordered_extents--;
 
 
 
 
 
 
 599
 600	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
 601
 602	if (!root->nr_ordered_extents) {
 603		spin_lock(&fs_info->ordered_root_lock);
 604		BUG_ON(list_empty(&root->ordered_root));
 605		list_del_init(&root->ordered_root);
 606		spin_unlock(&fs_info->ordered_root_lock);
 607	}
 608	spin_unlock(&root->ordered_extent_lock);
 609	wake_up(&entry->wait);
 610	if (!freespace_inode)
 611		btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
 612}
 613
 614static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 615{
 616	struct btrfs_ordered_extent *ordered;
 617
 618	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 619	btrfs_start_ordered_extent(ordered, 1);
 620	complete(&ordered->completion);
 621}
 622
 623/*
 624 * wait for all the ordered extents in a root.  This is done when balancing
 625 * space between drives.
 626 */
 627u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
 628			       const u64 range_start, const u64 range_len)
 629{
 630	struct btrfs_fs_info *fs_info = root->fs_info;
 631	LIST_HEAD(splice);
 632	LIST_HEAD(skipped);
 633	LIST_HEAD(works);
 634	struct btrfs_ordered_extent *ordered, *next;
 635	u64 count = 0;
 636	const u64 range_end = range_start + range_len;
 637
 638	mutex_lock(&root->ordered_extent_mutex);
 639	spin_lock(&root->ordered_extent_lock);
 640	list_splice_init(&root->ordered_extents, &splice);
 641	while (!list_empty(&splice) && nr) {
 642		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 643					   root_extent_list);
 644
 645		if (range_end <= ordered->disk_bytenr ||
 646		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
 647			list_move_tail(&ordered->root_extent_list, &skipped);
 648			cond_resched_lock(&root->ordered_extent_lock);
 649			continue;
 650		}
 651
 652		list_move_tail(&ordered->root_extent_list,
 653			       &root->ordered_extents);
 654		refcount_inc(&ordered->refs);
 655		spin_unlock(&root->ordered_extent_lock);
 656
 657		btrfs_init_work(&ordered->flush_work,
 658				btrfs_run_ordered_extent_work, NULL, NULL);
 659		list_add_tail(&ordered->work_list, &works);
 660		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
 
 
 
 
 
 
 
 
 
 
 
 661
 662		cond_resched();
 663		spin_lock(&root->ordered_extent_lock);
 664		if (nr != U64_MAX)
 665			nr--;
 666		count++;
 667	}
 668	list_splice_tail(&skipped, &root->ordered_extents);
 669	list_splice_tail(&splice, &root->ordered_extents);
 670	spin_unlock(&root->ordered_extent_lock);
 671
 672	list_for_each_entry_safe(ordered, next, &works, work_list) {
 673		list_del_init(&ordered->work_list);
 674		wait_for_completion(&ordered->completion);
 675		btrfs_put_ordered_extent(ordered);
 676		cond_resched();
 677	}
 678	mutex_unlock(&root->ordered_extent_mutex);
 679
 680	return count;
 681}
 682
 683void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
 684			     const u64 range_start, const u64 range_len)
 
 
 
 
 
 
 
 
 
 685{
 686	struct btrfs_root *root;
 
 687	struct list_head splice;
 688	u64 done;
 689
 690	INIT_LIST_HEAD(&splice);
 691
 692	mutex_lock(&fs_info->ordered_operations_mutex);
 693	spin_lock(&fs_info->ordered_root_lock);
 694	list_splice_init(&fs_info->ordered_roots, &splice);
 695	while (!list_empty(&splice) && nr) {
 696		root = list_first_entry(&splice, struct btrfs_root,
 697					ordered_root);
 698		root = btrfs_grab_root(root);
 699		BUG_ON(!root);
 700		list_move_tail(&root->ordered_root,
 701			       &fs_info->ordered_roots);
 702		spin_unlock(&fs_info->ordered_root_lock);
 703
 704		done = btrfs_wait_ordered_extents(root, nr,
 705						  range_start, range_len);
 706		btrfs_put_root(root);
 707
 708		spin_lock(&fs_info->ordered_root_lock);
 709		if (nr != U64_MAX) {
 710			nr -= done;
 
 
 
 
 
 
 
 
 
 
 
 711		}
 
 
 
 712	}
 713	list_splice_tail(&splice, &fs_info->ordered_roots);
 714	spin_unlock(&fs_info->ordered_root_lock);
 715	mutex_unlock(&fs_info->ordered_operations_mutex);
 
 
 
 
 716}
 717
 718/*
 719 * Used to start IO or wait for a given ordered extent to finish.
 720 *
 721 * If wait is one, this effectively waits on page writeback for all the pages
 722 * in the extent, and it waits on the io completion code to insert
 723 * metadata into the btree corresponding to the extent
 724 */
 725void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
 
 
 726{
 727	u64 start = entry->file_offset;
 728	u64 end = start + entry->num_bytes - 1;
 729	struct btrfs_inode *inode = BTRFS_I(entry->inode);
 730	bool freespace_inode;
 731
 732	trace_btrfs_ordered_extent_start(inode, entry);
 733
 734	/*
 735	 * If this is a free space inode do not take the ordered extents lockdep
 736	 * map.
 737	 */
 738	freespace_inode = btrfs_is_free_space_inode(inode);
 739
 740	/*
 741	 * pages in the range can be dirty, clean or writeback.  We
 742	 * start IO on any dirty ones so the wait doesn't stall waiting
 743	 * for the flusher thread to find them
 744	 */
 745	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 746		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
 747	if (wait) {
 748		if (!freespace_inode)
 749			btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
 750		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 751						 &entry->flags));
 752	}
 753}
 754
 755/*
 756 * Used to wait on ordered extents across a large range of bytes.
 757 */
 758int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 759{
 760	int ret = 0;
 761	int ret_wb = 0;
 762	u64 end;
 763	u64 orig_end;
 764	struct btrfs_ordered_extent *ordered;
 
 765
 766	if (start + len < start) {
 767		orig_end = OFFSET_MAX;
 768	} else {
 769		orig_end = start + len - 1;
 770		if (orig_end > OFFSET_MAX)
 771			orig_end = OFFSET_MAX;
 772	}
 773
 774	/* start IO across the range first to instantiate any delalloc
 775	 * extents
 776	 */
 777	ret = btrfs_fdatawrite_range(inode, start, orig_end);
 778	if (ret)
 779		return ret;
 780
 781	/*
 782	 * If we have a writeback error don't return immediately. Wait first
 783	 * for any ordered extents that haven't completed yet. This is to make
 784	 * sure no one can dirty the same page ranges and call writepages()
 785	 * before the ordered extents complete - to avoid failures (-EEXIST)
 786	 * when adding the new ordered extents to the ordered tree.
 787	 */
 788	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 
 
 789
 790	end = orig_end;
 
 791	while (1) {
 792		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
 793		if (!ordered)
 794			break;
 795		if (ordered->file_offset > orig_end) {
 796			btrfs_put_ordered_extent(ordered);
 797			break;
 798		}
 799		if (ordered->file_offset + ordered->num_bytes <= start) {
 800			btrfs_put_ordered_extent(ordered);
 801			break;
 802		}
 803		btrfs_start_ordered_extent(ordered, 1);
 
 804		end = ordered->file_offset;
 805		/*
 806		 * If the ordered extent had an error save the error but don't
 807		 * exit without waiting first for all other ordered extents in
 808		 * the range to complete.
 809		 */
 810		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 811			ret = -EIO;
 812		btrfs_put_ordered_extent(ordered);
 813		if (end == 0 || end == start)
 814			break;
 815		end--;
 816	}
 817	return ret_wb ? ret_wb : ret;
 
 
 
 
 
 818}
 819
 820/*
 821 * find an ordered extent corresponding to file_offset.  return NULL if
 822 * nothing is found, otherwise take a reference on the extent and return it
 823 */
 824struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
 825							 u64 file_offset)
 826{
 827	struct btrfs_ordered_inode_tree *tree;
 828	struct rb_node *node;
 829	struct btrfs_ordered_extent *entry = NULL;
 830	unsigned long flags;
 831
 832	tree = &inode->ordered_tree;
 833	spin_lock_irqsave(&tree->lock, flags);
 834	node = tree_search(tree, file_offset);
 835	if (!node)
 836		goto out;
 837
 838	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 839	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 840		entry = NULL;
 841	if (entry) {
 842		refcount_inc(&entry->refs);
 843		trace_btrfs_ordered_extent_lookup(inode, entry);
 844	}
 845out:
 846	spin_unlock_irqrestore(&tree->lock, flags);
 847	return entry;
 848}
 849
 850/* Since the DIO code tries to lock a wide area we need to look for any ordered
 851 * extents that exist in the range, rather than just the start of the range.
 852 */
 853struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
 854		struct btrfs_inode *inode, u64 file_offset, u64 len)
 
 855{
 856	struct btrfs_ordered_inode_tree *tree;
 857	struct rb_node *node;
 858	struct btrfs_ordered_extent *entry = NULL;
 859
 860	tree = &inode->ordered_tree;
 861	spin_lock_irq(&tree->lock);
 862	node = tree_search(tree, file_offset);
 863	if (!node) {
 864		node = tree_search(tree, file_offset + len);
 865		if (!node)
 866			goto out;
 867	}
 868
 869	while (1) {
 870		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 871		if (range_overlaps(entry, file_offset, len))
 872			break;
 873
 874		if (entry->file_offset >= file_offset + len) {
 875			entry = NULL;
 876			break;
 877		}
 878		entry = NULL;
 879		node = rb_next(node);
 880		if (!node)
 881			break;
 882	}
 883out:
 884	if (entry) {
 885		refcount_inc(&entry->refs);
 886		trace_btrfs_ordered_extent_lookup_range(inode, entry);
 887	}
 888	spin_unlock_irq(&tree->lock);
 889	return entry;
 890}
 891
 892/*
 893 * Adds all ordered extents to the given list. The list ends up sorted by the
 894 * file_offset of the ordered extents.
 895 */
 896void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
 897					   struct list_head *list)
 898{
 899	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 900	struct rb_node *n;
 901
 902	ASSERT(inode_is_locked(&inode->vfs_inode));
 903
 904	spin_lock_irq(&tree->lock);
 905	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
 906		struct btrfs_ordered_extent *ordered;
 907
 908		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 909
 910		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
 911			continue;
 912
 913		ASSERT(list_empty(&ordered->log_list));
 914		list_add_tail(&ordered->log_list, list);
 915		refcount_inc(&ordered->refs);
 916		trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
 917	}
 918	spin_unlock_irq(&tree->lock);
 919}
 920
 921/*
 922 * lookup and return any extent before 'file_offset'.  NULL is returned
 923 * if none is found
 924 */
 925struct btrfs_ordered_extent *
 926btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
 927{
 928	struct btrfs_ordered_inode_tree *tree;
 929	struct rb_node *node;
 930	struct btrfs_ordered_extent *entry = NULL;
 931
 932	tree = &inode->ordered_tree;
 933	spin_lock_irq(&tree->lock);
 934	node = tree_search(tree, file_offset);
 935	if (!node)
 936		goto out;
 937
 938	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 939	refcount_inc(&entry->refs);
 940	trace_btrfs_ordered_extent_lookup_first(inode, entry);
 941out:
 942	spin_unlock_irq(&tree->lock);
 943	return entry;
 944}
 945
 946/*
 947 * Lookup the first ordered extent that overlaps the range
 948 * [@file_offset, @file_offset + @len).
 949 *
 950 * The difference between this and btrfs_lookup_first_ordered_extent() is
 951 * that this one won't return any ordered extent that does not overlap the range.
 952 * And the difference against btrfs_lookup_ordered_extent() is, this function
 953 * ensures the first ordered extent gets returned.
 954 */
 955struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
 956			struct btrfs_inode *inode, u64 file_offset, u64 len)
 957{
 958	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 
 
 
 
 
 959	struct rb_node *node;
 960	struct rb_node *cur;
 961	struct rb_node *prev;
 962	struct rb_node *next;
 963	struct btrfs_ordered_extent *entry = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964
 965	spin_lock_irq(&tree->lock);
 966	node = tree->tree.rb_node;
 967	/*
 968	 * Here we don't want to use tree_search() which will use tree->last
 969	 * and screw up the search order.
 970	 * And __tree_search() can't return the adjacent ordered extents
 971	 * either, thus here we do our own search.
 972	 */
 973	while (node) {
 974		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 
 975
 976		if (file_offset < entry->file_offset) {
 977			node = node->rb_left;
 978		} else if (file_offset >= entry_end(entry)) {
 979			node = node->rb_right;
 980		} else {
 981			/*
 982			 * Direct hit, got an ordered extent that starts at
 983			 * @file_offset
 984			 */
 985			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986		}
 
 987	}
 988	if (!entry) {
 989		/* Empty tree */
 990		goto out;
 
 
 
 
 
 
 991	}
 
 992
 993	cur = &entry->rb_node;
 994	/* We got an entry around @file_offset, check adjacent entries */
 995	if (entry->file_offset < file_offset) {
 996		prev = cur;
 997		next = rb_next(cur);
 
 
 
 998	} else {
 999		prev = rb_prev(cur);
1000		next = cur;
 
 
1001	}
1002	if (prev) {
1003		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1004		if (range_overlaps(entry, file_offset, len))
1005			goto out;
 
 
 
 
 
 
 
1006	}
1007	if (next) {
1008		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1009		if (range_overlaps(entry, file_offset, len))
1010			goto out;
 
 
 
 
 
 
 
1011	}
1012	/* No ordered extent in the range */
1013	entry = NULL;
1014out:
1015	if (entry) {
1016		refcount_inc(&entry->refs);
1017		trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1018	}
1019
1020	spin_unlock_irq(&tree->lock);
1021	return entry;
 
 
 
 
1022}
1023
1024/*
1025 * Lock the passed range and ensures all pending ordered extents in it are run
1026 * to completion.
1027 *
1028 * @inode:        Inode whose ordered tree is to be searched
1029 * @start:        Beginning of range to flush
1030 * @end:          Last byte of range to lock
1031 * @cached_state: If passed, will return the extent state responsible for the
1032 *                locked range. It's the caller's responsibility to free the
1033 *                cached state.
1034 *
1035 * Always return with the given range locked, ensuring after it's called no
1036 * order extent can be pending.
1037 */
1038void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1039					u64 end,
1040					struct extent_state **cached_state)
1041{
 
 
1042	struct btrfs_ordered_extent *ordered;
1043	struct extent_state *cache = NULL;
1044	struct extent_state **cachedp = &cache;
 
 
 
1045
1046	if (cached_state)
1047		cachedp = cached_state;
 
1048
1049	while (1) {
1050		lock_extent(&inode->io_tree, start, end, cachedp);
1051		ordered = btrfs_lookup_ordered_range(inode, start,
1052						     end - start + 1);
1053		if (!ordered) {
1054			/*
1055			 * If no external cached_state has been passed then
1056			 * decrement the extra ref taken for cachedp since we
1057			 * aren't exposing it outside of this function
1058			 */
1059			if (!cached_state)
1060				refcount_dec(&cache->refs);
1061			break;
1062		}
1063		unlock_extent(&inode->io_tree, start, end, cachedp);
1064		btrfs_start_ordered_extent(ordered, 1);
1065		btrfs_put_ordered_extent(ordered);
1066	}
 
 
 
 
1067}
1068
 
1069/*
1070 * Lock the passed range and ensure all pending ordered extents in it are run
1071 * to completion in nowait mode.
 
 
 
1072 *
1073 * Return true if btrfs_lock_ordered_range does not return any extents,
1074 * otherwise false.
 
 
1075 */
1076bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1077				  struct extent_state **cached_state)
 
1078{
1079	struct btrfs_ordered_extent *ordered;
1080
1081	if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1082		return false;
1083
1084	ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1085	if (!ordered)
1086		return true;
1087
1088	btrfs_put_ordered_extent(ordered);
1089	unlock_extent(&inode->io_tree, start, end, cached_state);
1090
1091	return false;
1092}
1093
1094
1095static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1096				u64 len)
1097{
1098	struct inode *inode = ordered->inode;
1099	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1100	u64 file_offset = ordered->file_offset + pos;
1101	u64 disk_bytenr = ordered->disk_bytenr + pos;
1102	unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS;
1103
1104	/*
1105	 * The splitting extent is already counted and will be added again in
1106	 * btrfs_add_ordered_extent_*(). Subtract len to avoid double counting.
1107	 */
1108	percpu_counter_add_batch(&fs_info->ordered_bytes, -len,
1109				 fs_info->delalloc_batch);
1110	WARN_ON_ONCE(flags & (1 << BTRFS_ORDERED_COMPRESSED));
1111	return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len,
1112					disk_bytenr, len, 0, flags,
1113					ordered->compress_type);
1114}
1115
1116int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1117				u64 post)
1118{
1119	struct inode *inode = ordered->inode;
1120	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1121	struct rb_node *node;
1122	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1123	int ret = 0;
1124
1125	trace_btrfs_ordered_extent_split(BTRFS_I(inode), ordered);
1126
1127	spin_lock_irq(&tree->lock);
1128	/* Remove from tree once */
1129	node = &ordered->rb_node;
1130	rb_erase(node, &tree->tree);
1131	RB_CLEAR_NODE(node);
1132	if (tree->last == node)
1133		tree->last = NULL;
1134
1135	ordered->file_offset += pre;
1136	ordered->disk_bytenr += pre;
1137	ordered->num_bytes -= (pre + post);
1138	ordered->disk_num_bytes -= (pre + post);
1139	ordered->bytes_left -= (pre + post);
1140
1141	/* Re-insert the node */
1142	node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1143	if (node)
1144		btrfs_panic(fs_info, -EEXIST,
1145			"zoned: inconsistency in ordered tree at offset %llu",
1146			    ordered->file_offset);
1147
1148	spin_unlock_irq(&tree->lock);
1149
1150	if (pre)
1151		ret = clone_ordered_extent(ordered, 0, pre);
1152	if (ret == 0 && post)
1153		ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1154					   post);
1155
1156	return ret;
1157}
1158
1159int __init ordered_data_init(void)
1160{
1161	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1162				     sizeof(struct btrfs_ordered_extent), 0,
1163				     SLAB_MEM_SPREAD,
1164				     NULL);
1165	if (!btrfs_ordered_extent_cache)
1166		return -ENOMEM;
1167
1168	return 0;
1169}
1170
1171void __cold ordered_data_exit(void)
1172{
1173	kmem_cache_destroy(btrfs_ordered_extent_cache);
1174}