Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/slab.h>
 20#include <linux/blkdev.h>
 21#include <linux/writeback.h>
 22#include <linux/pagevec.h>
 
 23#include "ctree.h"
 24#include "transaction.h"
 25#include "btrfs_inode.h"
 26#include "extent_io.h"
 
 
 
 
 
 
 
 27
 28static u64 entry_end(struct btrfs_ordered_extent *entry)
 29{
 30	if (entry->file_offset + entry->len < entry->file_offset)
 31		return (u64)-1;
 32	return entry->file_offset + entry->len;
 33}
 34
 35/* returns NULL if the insertion worked, or it returns the node it did find
 36 * in the tree
 37 */
 38static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
 39				   struct rb_node *node)
 40{
 41	struct rb_node **p = &root->rb_node;
 42	struct rb_node *parent = NULL;
 43	struct btrfs_ordered_extent *entry;
 44
 45	while (*p) {
 46		parent = *p;
 47		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
 48
 49		if (file_offset < entry->file_offset)
 50			p = &(*p)->rb_left;
 51		else if (file_offset >= entry_end(entry))
 52			p = &(*p)->rb_right;
 53		else
 54			return parent;
 55	}
 56
 57	rb_link_node(node, parent, p);
 58	rb_insert_color(node, root);
 59	return NULL;
 60}
 61
 62/*
 63 * look for a given offset in the tree, and if it can't be found return the
 64 * first lesser offset
 65 */
 66static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
 67				     struct rb_node **prev_ret)
 68{
 69	struct rb_node *n = root->rb_node;
 70	struct rb_node *prev = NULL;
 71	struct rb_node *test;
 72	struct btrfs_ordered_extent *entry;
 73	struct btrfs_ordered_extent *prev_entry = NULL;
 74
 75	while (n) {
 76		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 77		prev = n;
 78		prev_entry = entry;
 79
 80		if (file_offset < entry->file_offset)
 81			n = n->rb_left;
 82		else if (file_offset >= entry_end(entry))
 83			n = n->rb_right;
 84		else
 85			return n;
 86	}
 87	if (!prev_ret)
 88		return NULL;
 89
 90	while (prev && file_offset >= entry_end(prev_entry)) {
 91		test = rb_next(prev);
 92		if (!test)
 93			break;
 94		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 95				      rb_node);
 96		if (file_offset < entry_end(prev_entry))
 97			break;
 98
 99		prev = test;
100	}
101	if (prev)
102		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
103				      rb_node);
104	while (prev && file_offset < entry_end(prev_entry)) {
105		test = rb_prev(prev);
106		if (!test)
107			break;
108		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
109				      rb_node);
110		prev = test;
111	}
112	*prev_ret = prev;
113	return NULL;
114}
115
116/*
117 * helper to check if a given offset is inside a given entry
118 */
119static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
120{
121	if (file_offset < entry->file_offset ||
122	    entry->file_offset + entry->len <= file_offset)
123		return 0;
124	return 1;
125}
126
127static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
128			  u64 len)
129{
130	if (file_offset + len <= entry->file_offset ||
131	    entry->file_offset + entry->len <= file_offset)
132		return 0;
133	return 1;
134}
135
136/*
137 * look find the first ordered struct that has this offset, otherwise
138 * the first one less than this offset
139 */
140static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
141					  u64 file_offset)
142{
143	struct rb_root *root = &tree->tree;
144	struct rb_node *prev = NULL;
145	struct rb_node *ret;
146	struct btrfs_ordered_extent *entry;
147
148	if (tree->last) {
149		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
150				 rb_node);
151		if (offset_in_entry(entry, file_offset))
152			return tree->last;
153	}
154	ret = __tree_search(root, file_offset, &prev);
155	if (!ret)
156		ret = prev;
157	if (ret)
158		tree->last = ret;
159	return ret;
160}
161
162/* allocate and add a new ordered_extent into the per-inode tree.
163 * file_offset is the logical offset in the file
164 *
165 * start is the disk block number of an extent already reserved in the
166 * extent allocation tree
167 *
168 * len is the length of the extent
169 *
170 * The tree is given a single reference on the ordered extent that was
171 * inserted.
172 */
173static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
174				      u64 start, u64 len, u64 disk_len,
175				      int type, int dio, int compress_type)
176{
177	struct btrfs_ordered_inode_tree *tree;
 
 
 
178	struct rb_node *node;
179	struct btrfs_ordered_extent *entry;
 
180
181	tree = &BTRFS_I(inode)->ordered_tree;
182	entry = kzalloc(sizeof(*entry), GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183	if (!entry)
184		return -ENOMEM;
185
186	entry->file_offset = file_offset;
187	entry->start = start;
188	entry->len = len;
189	entry->disk_len = disk_len;
190	entry->bytes_left = len;
191	entry->inode = inode;
192	entry->compress_type = compress_type;
193	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
194		set_bit(type, &entry->flags);
 
 
 
 
 
 
 
 
 
 
195
196	if (dio)
197		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
198
199	/* one ref for the tree */
200	atomic_set(&entry->refs, 1);
201	init_waitqueue_head(&entry->wait);
202	INIT_LIST_HEAD(&entry->list);
 
203	INIT_LIST_HEAD(&entry->root_extent_list);
 
 
204
205	trace_btrfs_ordered_extent_add(inode, entry);
206
207	spin_lock(&tree->lock);
208	node = tree_insert(&tree->tree, file_offset,
209			   &entry->rb_node);
210	BUG_ON(node);
211	spin_unlock(&tree->lock);
 
 
 
212
213	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
214	list_add_tail(&entry->root_extent_list,
215		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
216	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217
218	BUG_ON(node);
219	return 0;
220}
221
222int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
223			     u64 start, u64 len, u64 disk_len, int type)
224{
225	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
226					  disk_len, type, 0,
 
 
 
 
227					  BTRFS_COMPRESS_NONE);
228}
229
230int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
231				 u64 start, u64 len, u64 disk_len, int type)
232{
233	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
234					  disk_len, type, 1,
 
 
 
 
235					  BTRFS_COMPRESS_NONE);
236}
237
238int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
239				      u64 start, u64 len, u64 disk_len,
240				      int type, int compress_type)
241{
242	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
243					  disk_len, type, 0,
 
 
244					  compress_type);
245}
246
247/*
248 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
249 * when an ordered extent is finished.  If the list covers more than one
250 * ordered extent, it is split across multiples.
251 */
252int btrfs_add_ordered_sum(struct inode *inode,
253			  struct btrfs_ordered_extent *entry,
254			  struct btrfs_ordered_sum *sum)
255{
256	struct btrfs_ordered_inode_tree *tree;
257
258	tree = &BTRFS_I(inode)->ordered_tree;
259	spin_lock(&tree->lock);
260	list_add_tail(&sum->list, &entry->list);
261	spin_unlock(&tree->lock);
262	return 0;
263}
264
265/*
266 * this is used to account for finished IO across a given range
267 * of the file.  The IO may span ordered extents.  If
268 * a given ordered_extent is completely done, 1 is returned, otherwise
269 * 0.
270 *
271 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
272 * to make sure this function only returns 1 once for a given ordered extent.
 
 
 
 
 
 
273 *
274 * file_offset is updated to one byte past the range that is recorded as
275 * complete.  This allows you to walk forward in the file.
276 */
277int btrfs_dec_test_first_ordered_pending(struct inode *inode,
278				   struct btrfs_ordered_extent **cached,
279				   u64 *file_offset, u64 io_size)
280{
281	struct btrfs_ordered_inode_tree *tree;
 
 
 
282	struct rb_node *node;
283	struct btrfs_ordered_extent *entry = NULL;
284	int ret;
285	u64 dec_end;
286	u64 dec_start;
287	u64 to_dec;
288
289	tree = &BTRFS_I(inode)->ordered_tree;
290	spin_lock(&tree->lock);
291	node = tree_search(tree, *file_offset);
292	if (!node) {
293		ret = 1;
294		goto out;
295	}
296
297	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
298	if (!offset_in_entry(entry, *file_offset)) {
299		ret = 1;
300		goto out;
301	}
302
303	dec_start = max(*file_offset, entry->file_offset);
304	dec_end = min(*file_offset + io_size, entry->file_offset +
305		      entry->len);
306	*file_offset = dec_end;
307	if (dec_start > dec_end) {
308		printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
309		       (unsigned long long)dec_start,
310		       (unsigned long long)dec_end);
311	}
312	to_dec = dec_end - dec_start;
313	if (to_dec > entry->bytes_left) {
314		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
315		       (unsigned long long)entry->bytes_left,
316		       (unsigned long long)to_dec);
317	}
318	entry->bytes_left -= to_dec;
319	if (entry->bytes_left == 0)
320		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
321	else
322		ret = 1;
323out:
324	if (!ret && cached && entry) {
325		*cached = entry;
326		atomic_inc(&entry->refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327	}
328	spin_unlock(&tree->lock);
329	return ret == 0;
330}
331
332/*
333 * this is used to account for finished IO across a given range
334 * of the file.  The IO should not span ordered extents.  If
335 * a given ordered_extent is completely done, 1 is returned, otherwise
336 * 0.
 
 
 
 
 
337 *
338 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
339 * to make sure this function only returns 1 once for a given ordered extent.
 
 
 
 
340 */
341int btrfs_dec_test_ordered_pending(struct inode *inode,
342				   struct btrfs_ordered_extent **cached,
343				   u64 file_offset, u64 io_size)
344{
345	struct btrfs_ordered_inode_tree *tree;
346	struct rb_node *node;
347	struct btrfs_ordered_extent *entry = NULL;
348	int ret;
 
 
 
 
 
 
 
349
350	tree = &BTRFS_I(inode)->ordered_tree;
351	spin_lock(&tree->lock);
352	node = tree_search(tree, file_offset);
353	if (!node) {
354		ret = 1;
355		goto out;
356	}
357
358	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
359	if (!offset_in_entry(entry, file_offset)) {
360		ret = 1;
361		goto out;
362	}
363
364	if (io_size > entry->bytes_left) {
365		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
366		       (unsigned long long)entry->bytes_left,
367		       (unsigned long long)io_size);
368	}
369	entry->bytes_left -= io_size;
370	if (entry->bytes_left == 0)
371		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
372	else
373		ret = 1;
 
 
 
 
 
 
 
 
374out:
375	if (!ret && cached && entry) {
376		*cached = entry;
377		atomic_inc(&entry->refs);
378	}
379	spin_unlock(&tree->lock);
380	return ret == 0;
381}
382
383/*
384 * used to drop a reference on an ordered extent.  This will free
385 * the extent if the last reference is dropped
386 */
387int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
388{
389	struct list_head *cur;
390	struct btrfs_ordered_sum *sum;
391
392	trace_btrfs_ordered_extent_put(entry->inode, entry);
393
394	if (atomic_dec_and_test(&entry->refs)) {
 
 
 
 
 
395		while (!list_empty(&entry->list)) {
396			cur = entry->list.next;
397			sum = list_entry(cur, struct btrfs_ordered_sum, list);
398			list_del(&sum->list);
399			kfree(sum);
400		}
401		kfree(entry);
402	}
403	return 0;
404}
405
406/*
407 * remove an ordered extent from the tree.  No references are dropped
408 * and you must wake_up entry->wait.  You must hold the tree lock
409 * while you call this function.
410 */
411static int __btrfs_remove_ordered_extent(struct inode *inode,
412				struct btrfs_ordered_extent *entry)
413{
414	struct btrfs_ordered_inode_tree *tree;
415	struct btrfs_root *root = BTRFS_I(inode)->root;
 
416	struct rb_node *node;
 
 
 
 
 
 
 
 
 
417
418	tree = &BTRFS_I(inode)->ordered_tree;
 
 
 
 
419	node = &entry->rb_node;
420	rb_erase(node, &tree->tree);
421	tree->last = NULL;
 
 
422	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
423
424	spin_lock(&root->fs_info->ordered_extent_lock);
425	list_del_init(&entry->root_extent_list);
426
427	trace_btrfs_ordered_extent_remove(inode, entry);
428
429	/*
430	 * we have no more ordered extents for this inode and
431	 * no dirty pages.  We can safely remove it from the
432	 * list of ordered extents
433	 */
434	if (RB_EMPTY_ROOT(&tree->tree) &&
435	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
436		list_del_init(&BTRFS_I(inode)->ordered_operations);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437	}
438	spin_unlock(&root->fs_info->ordered_extent_lock);
439
440	return 0;
441}
 
442
443/*
444 * remove an ordered extent from the tree.  No references are dropped
445 * but any waiters are woken.
446 */
447int btrfs_remove_ordered_extent(struct inode *inode,
448				struct btrfs_ordered_extent *entry)
449{
450	struct btrfs_ordered_inode_tree *tree;
451	int ret;
452
453	tree = &BTRFS_I(inode)->ordered_tree;
454	spin_lock(&tree->lock);
455	ret = __btrfs_remove_ordered_extent(inode, entry);
456	spin_unlock(&tree->lock);
 
 
 
457	wake_up(&entry->wait);
 
458
459	return ret;
 
 
 
 
 
 
460}
461
462/*
463 * wait for all the ordered extents in a root.  This is done when balancing
464 * space between drives.
465 */
466int btrfs_wait_ordered_extents(struct btrfs_root *root,
467			       int nocow_only, int delay_iput)
468{
469	struct list_head splice;
470	struct list_head *cur;
471	struct btrfs_ordered_extent *ordered;
472	struct inode *inode;
473
474	INIT_LIST_HEAD(&splice);
475
476	spin_lock(&root->fs_info->ordered_extent_lock);
477	list_splice_init(&root->fs_info->ordered_extents, &splice);
478	while (!list_empty(&splice)) {
479		cur = splice.next;
480		ordered = list_entry(cur, struct btrfs_ordered_extent,
481				     root_extent_list);
482		if (nocow_only &&
483		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
484		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
485			list_move(&ordered->root_extent_list,
486				  &root->fs_info->ordered_extents);
487			cond_resched_lock(&root->fs_info->ordered_extent_lock);
488			continue;
489		}
490
491		list_del_init(&ordered->root_extent_list);
492		atomic_inc(&ordered->refs);
493
494		/*
495		 * the inode may be getting freed (in sys_unlink path).
496		 */
497		inode = igrab(ordered->inode);
498
499		spin_unlock(&root->fs_info->ordered_extent_lock);
500
501		if (inode) {
502			btrfs_start_ordered_extent(inode, ordered, 1);
503			btrfs_put_ordered_extent(ordered);
504			if (delay_iput)
505				btrfs_add_delayed_iput(inode);
506			else
507				iput(inode);
508		} else {
509			btrfs_put_ordered_extent(ordered);
510		}
511
512		spin_lock(&root->fs_info->ordered_extent_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
513	}
514	spin_unlock(&root->fs_info->ordered_extent_lock);
515	return 0;
 
516}
517
518/*
519 * this is used during transaction commit to write all the inodes
520 * added to the ordered operation list.  These files must be fully on
521 * disk before the transaction commits.
522 *
523 * we have two modes here, one is to just start the IO via filemap_flush
524 * and the other is to wait for all the io.  When we wait, we have an
525 * extra check to make sure the ordered operation list really is empty
526 * before we return
527 */
528int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
529{
530	struct btrfs_inode *btrfs_inode;
531	struct inode *inode;
532	struct list_head splice;
 
533
534	INIT_LIST_HEAD(&splice);
535
536	mutex_lock(&root->fs_info->ordered_operations_mutex);
537	spin_lock(&root->fs_info->ordered_extent_lock);
538again:
539	list_splice_init(&root->fs_info->ordered_operations, &splice);
540
541	while (!list_empty(&splice)) {
542		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
543				   ordered_operations);
544
545		inode = &btrfs_inode->vfs_inode;
546
547		list_del_init(&btrfs_inode->ordered_operations);
548
549		/*
550		 * the inode may be getting freed (in sys_unlink path).
551		 */
552		inode = igrab(inode);
553
554		if (!wait && inode) {
555			list_add_tail(&BTRFS_I(inode)->ordered_operations,
556			      &root->fs_info->ordered_operations);
557		}
558		spin_unlock(&root->fs_info->ordered_extent_lock);
559
560		if (inode) {
561			if (wait)
562				btrfs_wait_ordered_range(inode, 0, (u64)-1);
563			else
564				filemap_flush(inode->i_mapping);
565			btrfs_add_delayed_iput(inode);
566		}
567
568		cond_resched();
569		spin_lock(&root->fs_info->ordered_extent_lock);
570	}
571	if (wait && !list_empty(&root->fs_info->ordered_operations))
572		goto again;
573
574	spin_unlock(&root->fs_info->ordered_extent_lock);
575	mutex_unlock(&root->fs_info->ordered_operations_mutex);
576
577	return 0;
578}
579
580/*
581 * Used to start IO or wait for a given ordered extent to finish.
582 *
583 * If wait is one, this effectively waits on page writeback for all the pages
584 * in the extent, and it waits on the io completion code to insert
585 * metadata into the btree corresponding to the extent
586 */
587void btrfs_start_ordered_extent(struct inode *inode,
588				       struct btrfs_ordered_extent *entry,
589				       int wait)
590{
591	u64 start = entry->file_offset;
592	u64 end = start + entry->len - 1;
 
593
594	trace_btrfs_ordered_extent_start(inode, entry);
595
596	/*
597	 * pages in the range can be dirty, clean or writeback.  We
598	 * start IO on any dirty ones so the wait doesn't stall waiting
599	 * for pdflush to find them
600	 */
601	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
602		filemap_fdatawrite_range(inode->i_mapping, start, end);
603	if (wait) {
604		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
605						 &entry->flags));
606	}
607}
608
609/*
610 * Used to wait on ordered extents across a large range of bytes.
611 */
612int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
613{
 
 
614	u64 end;
615	u64 orig_end;
616	struct btrfs_ordered_extent *ordered;
617	int found;
618
619	if (start + len < start) {
620		orig_end = INT_LIMIT(loff_t);
621	} else {
622		orig_end = start + len - 1;
623		if (orig_end > INT_LIMIT(loff_t))
624			orig_end = INT_LIMIT(loff_t);
625	}
626again:
627	/* start IO across the range first to instantiate any delalloc
628	 * extents
629	 */
630	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
 
 
631
632	/* The compression code will leave pages locked but return from
633	 * writepage without setting the page writeback.  Starting again
634	 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
 
 
 
635	 */
636	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
637
638	filemap_fdatawait_range(inode->i_mapping, start, orig_end);
639
640	end = orig_end;
641	found = 0;
642	while (1) {
643		ordered = btrfs_lookup_first_ordered_extent(inode, end);
644		if (!ordered)
645			break;
646		if (ordered->file_offset > orig_end) {
647			btrfs_put_ordered_extent(ordered);
648			break;
649		}
650		if (ordered->file_offset + ordered->len < start) {
651			btrfs_put_ordered_extent(ordered);
652			break;
653		}
654		found++;
655		btrfs_start_ordered_extent(inode, ordered, 1);
656		end = ordered->file_offset;
 
 
 
 
 
 
 
657		btrfs_put_ordered_extent(ordered);
658		if (end == 0 || end == start)
659			break;
660		end--;
661	}
662	if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
663			   EXTENT_DELALLOC, 0, NULL)) {
664		schedule_timeout(1);
665		goto again;
666	}
667	return 0;
668}
669
670/*
671 * find an ordered extent corresponding to file_offset.  return NULL if
672 * nothing is found, otherwise take a reference on the extent and return it
673 */
674struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
675							 u64 file_offset)
676{
677	struct btrfs_ordered_inode_tree *tree;
678	struct rb_node *node;
679	struct btrfs_ordered_extent *entry = NULL;
 
680
681	tree = &BTRFS_I(inode)->ordered_tree;
682	spin_lock(&tree->lock);
683	node = tree_search(tree, file_offset);
684	if (!node)
685		goto out;
686
687	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
688	if (!offset_in_entry(entry, file_offset))
689		entry = NULL;
690	if (entry)
691		atomic_inc(&entry->refs);
692out:
693	spin_unlock(&tree->lock);
694	return entry;
695}
696
697/* Since the DIO code tries to lock a wide area we need to look for any ordered
698 * extents that exist in the range, rather than just the start of the range.
699 */
700struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
701							u64 file_offset,
702							u64 len)
703{
704	struct btrfs_ordered_inode_tree *tree;
705	struct rb_node *node;
706	struct btrfs_ordered_extent *entry = NULL;
707
708	tree = &BTRFS_I(inode)->ordered_tree;
709	spin_lock(&tree->lock);
710	node = tree_search(tree, file_offset);
711	if (!node) {
712		node = tree_search(tree, file_offset + len);
713		if (!node)
714			goto out;
715	}
716
717	while (1) {
718		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
719		if (range_overlaps(entry, file_offset, len))
720			break;
721
722		if (entry->file_offset >= file_offset + len) {
723			entry = NULL;
724			break;
725		}
726		entry = NULL;
727		node = rb_next(node);
728		if (!node)
729			break;
730	}
731out:
732	if (entry)
733		atomic_inc(&entry->refs);
734	spin_unlock(&tree->lock);
735	return entry;
736}
737
738/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
739 * lookup and return any extent before 'file_offset'.  NULL is returned
740 * if none is found
741 */
742struct btrfs_ordered_extent *
743btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
744{
745	struct btrfs_ordered_inode_tree *tree;
746	struct rb_node *node;
747	struct btrfs_ordered_extent *entry = NULL;
748
749	tree = &BTRFS_I(inode)->ordered_tree;
750	spin_lock(&tree->lock);
751	node = tree_search(tree, file_offset);
752	if (!node)
753		goto out;
754
755	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
756	atomic_inc(&entry->refs);
757out:
758	spin_unlock(&tree->lock);
759	return entry;
760}
761
762/*
763 * After an extent is done, call this to conditionally update the on disk
764 * i_size.  i_size is updated to cover any fully written part of the file.
 
 
 
 
 
765 */
766int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
767				struct btrfs_ordered_extent *ordered)
768{
769	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
770	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
771	u64 disk_i_size;
772	u64 new_i_size;
773	u64 i_size_test;
774	u64 i_size = i_size_read(inode);
775	struct rb_node *node;
776	struct rb_node *prev = NULL;
777	struct btrfs_ordered_extent *test;
778	int ret = 1;
779
780	if (ordered)
781		offset = entry_end(ordered);
782	else
783		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
784
785	spin_lock(&tree->lock);
786	disk_i_size = BTRFS_I(inode)->disk_i_size;
787
788	/* truncate file */
789	if (disk_i_size > i_size) {
790		BTRFS_I(inode)->disk_i_size = i_size;
791		ret = 0;
792		goto out;
793	}
794
 
 
795	/*
796	 * if the disk i_size is already at the inode->i_size, or
797	 * this ordered extent is inside the disk i_size, we're done
 
 
798	 */
799	if (disk_i_size == i_size || offset <= disk_i_size) {
800		goto out;
801	}
802
803	/*
804	 * we can't update the disk_isize if there are delalloc bytes
805	 * between disk_i_size and  this ordered extent
806	 */
807	if (test_range_bit(io_tree, disk_i_size, offset - 1,
808			   EXTENT_DELALLOC, 0, NULL)) {
809		goto out;
810	}
811	/*
812	 * walk backward from this ordered extent to disk_i_size.
813	 * if we find an ordered extent then we can't update disk i_size
814	 * yet
815	 */
816	if (ordered) {
817		node = rb_prev(&ordered->rb_node);
818	} else {
819		prev = tree_search(tree, offset);
820		/*
821		 * we insert file extents without involving ordered struct,
822		 * so there should be no ordered struct cover this offset
823		 */
824		if (prev) {
825			test = rb_entry(prev, struct btrfs_ordered_extent,
826					rb_node);
827			BUG_ON(offset_in_entry(test, offset));
828		}
829		node = prev;
830	}
831	while (node) {
832		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
833		if (test->file_offset + test->len <= disk_i_size)
834			break;
835		if (test->file_offset >= i_size)
836			break;
837		if (test->file_offset >= disk_i_size)
838			goto out;
839		node = rb_prev(node);
840	}
841	new_i_size = min_t(u64, offset, i_size);
842
843	/*
844	 * at this point, we know we can safely update i_size to at least
845	 * the offset from this ordered extent.  But, we need to
846	 * walk forward and see if ios from higher up in the file have
847	 * finished.
848	 */
849	if (ordered) {
850		node = rb_next(&ordered->rb_node);
851	} else {
852		if (prev)
853			node = rb_next(prev);
854		else
855			node = rb_first(&tree->tree);
856	}
857	i_size_test = 0;
858	if (node) {
859		/*
860		 * do we have an area where IO might have finished
861		 * between our ordered extent and the next one.
862		 */
863		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
864		if (test->file_offset > offset)
865			i_size_test = test->file_offset;
866	} else {
867		i_size_test = i_size;
868	}
869
870	/*
871	 * i_size_test is the end of a region after this ordered
872	 * extent where there are no ordered extents.  As long as there
873	 * are no delalloc bytes in this area, it is safe to update
874	 * disk_i_size to the end of the region.
875	 */
876	if (i_size_test > offset &&
877	    !test_range_bit(io_tree, offset, i_size_test - 1,
878			    EXTENT_DELALLOC, 0, NULL)) {
879		new_i_size = min_t(u64, i_size_test, i_size);
880	}
881	BTRFS_I(inode)->disk_i_size = new_i_size;
882	ret = 0;
883out:
884	/*
885	 * we need to remove the ordered extent with the tree lock held
886	 * so that other people calling this function don't find our fully
887	 * processed ordered entry and skip updating the i_size
888	 */
889	if (ordered)
890		__btrfs_remove_ordered_extent(inode, ordered);
891	spin_unlock(&tree->lock);
892	if (ordered)
893		wake_up(&ordered->wait);
894	return ret;
895}
896
897/*
898 * search the ordered extents for one corresponding to 'offset' and
899 * try to find a checksum.  This is used because we allow pages to
900 * be reclaimed before their checksum is actually put into the btree
 
 
 
 
 
 
 
 
901 */
902int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
903			   u32 *sum)
 
904{
905	struct btrfs_ordered_sum *ordered_sum;
906	struct btrfs_sector_sum *sector_sums;
907	struct btrfs_ordered_extent *ordered;
908	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
909	unsigned long num_sectors;
910	unsigned long i;
911	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
912	int ret = 1;
913
914	ordered = btrfs_lookup_ordered_extent(inode, offset);
915	if (!ordered)
916		return 1;
917
918	spin_lock(&tree->lock);
919	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
920		if (disk_bytenr >= ordered_sum->bytenr) {
921			num_sectors = ordered_sum->len / sectorsize;
922			sector_sums = ordered_sum->sums;
923			for (i = 0; i < num_sectors; i++) {
924				if (sector_sums[i].bytenr == disk_bytenr) {
925					*sum = sector_sums[i].sum;
926					ret = 0;
927					goto out;
928				}
929			}
930		}
 
 
 
931	}
932out:
933	spin_unlock(&tree->lock);
934	btrfs_put_ordered_extent(ordered);
935	return ret;
936}
937
938
939/*
940 * add a given inode to the list of inodes that must be fully on
941 * disk before a transaction commit finishes.
942 *
943 * This basically gives us the ext3 style data=ordered mode, and it is mostly
944 * used to make sure renamed files are fully on disk.
945 *
946 * It is a noop if the inode is already fully on disk.
947 *
948 * If trans is not null, we'll do a friendly check for a transaction that
949 * is already flushing things and force the IO down ourselves.
950 */
951int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
952				struct btrfs_root *root,
953				struct inode *inode)
954{
955	u64 last_mod;
956
957	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
 
 
 
 
 
 
 
 
958
959	/*
960	 * if this file hasn't been changed since the last transaction
961	 * commit, we can safely return without doing anything
962	 */
963	if (last_mod < root->fs_info->last_trans_committed)
964		return 0;
965
966	/*
967	 * the transaction is already committing.  Just start the IO and
968	 * don't bother with all of this list nonsense
 
969	 */
970	if (trans && root->fs_info->running_transaction->blocked) {
971		btrfs_wait_ordered_range(inode, 0, (u64)-1);
972		return 0;
 
 
 
 
 
 
 
 
 
 
973	}
974
975	spin_lock(&root->fs_info->ordered_extent_lock);
976	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
977		list_add_tail(&BTRFS_I(inode)->ordered_operations,
978			      &root->fs_info->ordered_operations);
979	}
980	spin_unlock(&root->fs_info->ordered_extent_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
981
982	return 0;
 
 
 
 
 
983}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/slab.h>
   7#include <linux/blkdev.h>
   8#include <linux/writeback.h>
   9#include <linux/sched/mm.h>
  10#include "misc.h"
  11#include "ctree.h"
  12#include "transaction.h"
  13#include "btrfs_inode.h"
  14#include "extent_io.h"
  15#include "disk-io.h"
  16#include "compression.h"
  17#include "delalloc-space.h"
  18#include "qgroup.h"
  19#include "subpage.h"
  20
  21static struct kmem_cache *btrfs_ordered_extent_cache;
  22
  23static u64 entry_end(struct btrfs_ordered_extent *entry)
  24{
  25	if (entry->file_offset + entry->num_bytes < entry->file_offset)
  26		return (u64)-1;
  27	return entry->file_offset + entry->num_bytes;
  28}
  29
  30/* returns NULL if the insertion worked, or it returns the node it did find
  31 * in the tree
  32 */
  33static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  34				   struct rb_node *node)
  35{
  36	struct rb_node **p = &root->rb_node;
  37	struct rb_node *parent = NULL;
  38	struct btrfs_ordered_extent *entry;
  39
  40	while (*p) {
  41		parent = *p;
  42		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  43
  44		if (file_offset < entry->file_offset)
  45			p = &(*p)->rb_left;
  46		else if (file_offset >= entry_end(entry))
  47			p = &(*p)->rb_right;
  48		else
  49			return parent;
  50	}
  51
  52	rb_link_node(node, parent, p);
  53	rb_insert_color(node, root);
  54	return NULL;
  55}
  56
  57/*
  58 * look for a given offset in the tree, and if it can't be found return the
  59 * first lesser offset
  60 */
  61static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  62				     struct rb_node **prev_ret)
  63{
  64	struct rb_node *n = root->rb_node;
  65	struct rb_node *prev = NULL;
  66	struct rb_node *test;
  67	struct btrfs_ordered_extent *entry;
  68	struct btrfs_ordered_extent *prev_entry = NULL;
  69
  70	while (n) {
  71		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  72		prev = n;
  73		prev_entry = entry;
  74
  75		if (file_offset < entry->file_offset)
  76			n = n->rb_left;
  77		else if (file_offset >= entry_end(entry))
  78			n = n->rb_right;
  79		else
  80			return n;
  81	}
  82	if (!prev_ret)
  83		return NULL;
  84
  85	while (prev && file_offset >= entry_end(prev_entry)) {
  86		test = rb_next(prev);
  87		if (!test)
  88			break;
  89		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  90				      rb_node);
  91		if (file_offset < entry_end(prev_entry))
  92			break;
  93
  94		prev = test;
  95	}
  96	if (prev)
  97		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
  98				      rb_node);
  99	while (prev && file_offset < entry_end(prev_entry)) {
 100		test = rb_prev(prev);
 101		if (!test)
 102			break;
 103		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 104				      rb_node);
 105		prev = test;
 106	}
 107	*prev_ret = prev;
 108	return NULL;
 109}
 110
 
 
 
 
 
 
 
 
 
 
 
 111static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 112			  u64 len)
 113{
 114	if (file_offset + len <= entry->file_offset ||
 115	    entry->file_offset + entry->num_bytes <= file_offset)
 116		return 0;
 117	return 1;
 118}
 119
 120/*
 121 * look find the first ordered struct that has this offset, otherwise
 122 * the first one less than this offset
 123 */
 124static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 125					  u64 file_offset)
 126{
 127	struct rb_root *root = &tree->tree;
 128	struct rb_node *prev = NULL;
 129	struct rb_node *ret;
 130	struct btrfs_ordered_extent *entry;
 131
 132	if (tree->last) {
 133		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 134				 rb_node);
 135		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
 136			return tree->last;
 137	}
 138	ret = __tree_search(root, file_offset, &prev);
 139	if (!ret)
 140		ret = prev;
 141	if (ret)
 142		tree->last = ret;
 143	return ret;
 144}
 145
 146/*
 147 * Allocate and add a new ordered_extent into the per-inode tree.
 
 
 
 
 
 148 *
 149 * The tree is given a single reference on the ordered extent that was
 150 * inserted.
 151 */
 152static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
 153				      u64 disk_bytenr, u64 num_bytes,
 154				      u64 disk_num_bytes, int type, int dio,
 155				      int compress_type)
 156{
 157	struct btrfs_root *root = inode->root;
 158	struct btrfs_fs_info *fs_info = root->fs_info;
 159	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 160	struct rb_node *node;
 161	struct btrfs_ordered_extent *entry;
 162	int ret;
 163
 164	if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
 165		/* For nocow write, we can release the qgroup rsv right now */
 166		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
 167		if (ret < 0)
 168			return ret;
 169		ret = 0;
 170	} else {
 171		/*
 172		 * The ordered extent has reserved qgroup space, release now
 173		 * and pass the reserved number for qgroup_record to free.
 174		 */
 175		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
 176		if (ret < 0)
 177			return ret;
 178	}
 179	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 180	if (!entry)
 181		return -ENOMEM;
 182
 183	entry->file_offset = file_offset;
 184	entry->disk_bytenr = disk_bytenr;
 185	entry->num_bytes = num_bytes;
 186	entry->disk_num_bytes = disk_num_bytes;
 187	entry->bytes_left = num_bytes;
 188	entry->inode = igrab(&inode->vfs_inode);
 189	entry->compress_type = compress_type;
 190	entry->truncated_len = (u64)-1;
 191	entry->qgroup_rsv = ret;
 192	entry->physical = (u64)-1;
 193
 194	ASSERT(type == BTRFS_ORDERED_REGULAR ||
 195	       type == BTRFS_ORDERED_NOCOW ||
 196	       type == BTRFS_ORDERED_PREALLOC ||
 197	       type == BTRFS_ORDERED_COMPRESSED);
 198	set_bit(type, &entry->flags);
 199
 200	percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
 201				 fs_info->delalloc_batch);
 202
 203	if (dio)
 204		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 205
 206	/* one ref for the tree */
 207	refcount_set(&entry->refs, 1);
 208	init_waitqueue_head(&entry->wait);
 209	INIT_LIST_HEAD(&entry->list);
 210	INIT_LIST_HEAD(&entry->log_list);
 211	INIT_LIST_HEAD(&entry->root_extent_list);
 212	INIT_LIST_HEAD(&entry->work_list);
 213	init_completion(&entry->completion);
 214
 215	trace_btrfs_ordered_extent_add(inode, entry);
 216
 217	spin_lock_irq(&tree->lock);
 218	node = tree_insert(&tree->tree, file_offset,
 219			   &entry->rb_node);
 220	if (node)
 221		btrfs_panic(fs_info, -EEXIST,
 222				"inconsistency in ordered tree at offset %llu",
 223				file_offset);
 224	spin_unlock_irq(&tree->lock);
 225
 226	spin_lock(&root->ordered_extent_lock);
 227	list_add_tail(&entry->root_extent_list,
 228		      &root->ordered_extents);
 229	root->nr_ordered_extents++;
 230	if (root->nr_ordered_extents == 1) {
 231		spin_lock(&fs_info->ordered_root_lock);
 232		BUG_ON(!list_empty(&root->ordered_root));
 233		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
 234		spin_unlock(&fs_info->ordered_root_lock);
 235	}
 236	spin_unlock(&root->ordered_extent_lock);
 237
 238	/*
 239	 * We don't need the count_max_extents here, we can assume that all of
 240	 * that work has been done at higher layers, so this is truly the
 241	 * smallest the extent is going to get.
 242	 */
 243	spin_lock(&inode->lock);
 244	btrfs_mod_outstanding_extents(inode, 1);
 245	spin_unlock(&inode->lock);
 246
 
 247	return 0;
 248}
 249
 250int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
 251			     u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
 252			     int type)
 253{
 254	ASSERT(type == BTRFS_ORDERED_REGULAR ||
 255	       type == BTRFS_ORDERED_NOCOW ||
 256	       type == BTRFS_ORDERED_PREALLOC);
 257	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
 258					  num_bytes, disk_num_bytes, type, 0,
 259					  BTRFS_COMPRESS_NONE);
 260}
 261
 262int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
 263				 u64 disk_bytenr, u64 num_bytes,
 264				 u64 disk_num_bytes, int type)
 265{
 266	ASSERT(type == BTRFS_ORDERED_REGULAR ||
 267	       type == BTRFS_ORDERED_NOCOW ||
 268	       type == BTRFS_ORDERED_PREALLOC);
 269	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
 270					  num_bytes, disk_num_bytes, type, 1,
 271					  BTRFS_COMPRESS_NONE);
 272}
 273
 274int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
 275				      u64 disk_bytenr, u64 num_bytes,
 276				      u64 disk_num_bytes, int compress_type)
 277{
 278	ASSERT(compress_type != BTRFS_COMPRESS_NONE);
 279	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
 280					  num_bytes, disk_num_bytes,
 281					  BTRFS_ORDERED_COMPRESSED, 0,
 282					  compress_type);
 283}
 284
 285/*
 286 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 287 * when an ordered extent is finished.  If the list covers more than one
 288 * ordered extent, it is split across multiples.
 289 */
 290void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
 291			   struct btrfs_ordered_sum *sum)
 
 292{
 293	struct btrfs_ordered_inode_tree *tree;
 294
 295	tree = &BTRFS_I(entry->inode)->ordered_tree;
 296	spin_lock_irq(&tree->lock);
 297	list_add_tail(&sum->list, &entry->list);
 298	spin_unlock_irq(&tree->lock);
 
 299}
 300
 301/*
 302 * Mark all ordered extents io inside the specified range finished.
 
 
 
 303 *
 304 * @page:	 The invovled page for the opeartion.
 305 *		 For uncompressed buffered IO, the page status also needs to be
 306 *		 updated to indicate whether the pending ordered io is finished.
 307 *		 Can be NULL for direct IO and compressed write.
 308 *		 For these cases, callers are ensured they won't execute the
 309 *		 endio function twice.
 310 * @finish_func: The function to be executed when all the IO of an ordered
 311 *		 extent are finished.
 312 *
 313 * This function is called for endio, thus the range must have ordered
 314 * extent(s) coveri it.
 315 */
 316void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
 317				struct page *page, u64 file_offset,
 318				u64 num_bytes, btrfs_func_t finish_func,
 319				bool uptodate)
 320{
 321	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 322	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 323	struct btrfs_workqueue *wq;
 324	struct rb_node *node;
 325	struct btrfs_ordered_extent *entry = NULL;
 326	unsigned long flags;
 327	u64 cur = file_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 328
 329	if (btrfs_is_free_space_inode(inode))
 330		wq = fs_info->endio_freespace_worker;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 331	else
 332		wq = fs_info->endio_write_workers;
 333
 334	if (page)
 335		ASSERT(page->mapping && page_offset(page) <= file_offset &&
 336		       file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
 337
 338	spin_lock_irqsave(&tree->lock, flags);
 339	while (cur < file_offset + num_bytes) {
 340		u64 entry_end;
 341		u64 end;
 342		u32 len;
 343
 344		node = tree_search(tree, cur);
 345		/* No ordered extents at all */
 346		if (!node)
 347			break;
 348
 349		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 350		entry_end = entry->file_offset + entry->num_bytes;
 351		/*
 352		 * |<-- OE --->|  |
 353		 *		  cur
 354		 * Go to next OE.
 355		 */
 356		if (cur >= entry_end) {
 357			node = rb_next(node);
 358			/* No more ordered extents, exit */
 359			if (!node)
 360				break;
 361			entry = rb_entry(node, struct btrfs_ordered_extent,
 362					 rb_node);
 363
 364			/* Go to next ordered extent and continue */
 365			cur = entry->file_offset;
 366			continue;
 367		}
 368		/*
 369		 * |	|<--- OE --->|
 370		 * cur
 371		 * Go to the start of OE.
 372		 */
 373		if (cur < entry->file_offset) {
 374			cur = entry->file_offset;
 375			continue;
 376		}
 377
 378		/*
 379		 * Now we are definitely inside one ordered extent.
 380		 *
 381		 * |<--- OE --->|
 382		 *	|
 383		 *	cur
 384		 */
 385		end = min(entry->file_offset + entry->num_bytes,
 386			  file_offset + num_bytes) - 1;
 387		ASSERT(end + 1 - cur < U32_MAX);
 388		len = end + 1 - cur;
 389
 390		if (page) {
 391			/*
 392			 * Ordered (Private2) bit indicates whether we still
 393			 * have pending io unfinished for the ordered extent.
 394			 *
 395			 * If there's no such bit, we need to skip to next range.
 396			 */
 397			if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
 398				cur += len;
 399				continue;
 400			}
 401			btrfs_page_clear_ordered(fs_info, page, cur, len);
 402		}
 403
 404		/* Now we're fine to update the accounting */
 405		if (unlikely(len > entry->bytes_left)) {
 406			WARN_ON(1);
 407			btrfs_crit(fs_info,
 408"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
 409				   inode->root->root_key.objectid,
 410				   btrfs_ino(inode),
 411				   entry->file_offset,
 412				   entry->num_bytes,
 413				   len, entry->bytes_left);
 414			entry->bytes_left = 0;
 415		} else {
 416			entry->bytes_left -= len;
 417		}
 418
 419		if (!uptodate)
 420			set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 421
 422		/*
 423		 * All the IO of the ordered extent is finished, we need to queue
 424		 * the finish_func to be executed.
 425		 */
 426		if (entry->bytes_left == 0) {
 427			set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 428			cond_wake_up(&entry->wait);
 429			refcount_inc(&entry->refs);
 430			spin_unlock_irqrestore(&tree->lock, flags);
 431			btrfs_init_work(&entry->work, finish_func, NULL, NULL);
 432			btrfs_queue_work(wq, &entry->work);
 433			spin_lock_irqsave(&tree->lock, flags);
 434		}
 435		cur += len;
 436	}
 437	spin_unlock_irqrestore(&tree->lock, flags);
 
 438}
 439
 440/*
 441 * Finish IO for one ordered extent across a given range.  The range can only
 442 * contain one ordered extent.
 443 *
 444 * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
 445 *               search and use the ordered extent directly.
 446 * 		 Will be also used to store the finished ordered extent.
 447 * @file_offset: File offset for the finished IO
 448 * @io_size:	 Length of the finish IO range
 449 * @uptodate:	 If the IO finishes without problem
 450 *
 451 * Return true if the ordered extent is finished in the range, and update
 452 * @cached.
 453 * Return false otherwise.
 454 *
 455 * NOTE: The range can NOT cross multiple ordered extents.
 456 * Thus caller should ensure the range doesn't cross ordered extents.
 457 */
 458bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
 459				    struct btrfs_ordered_extent **cached,
 460				    u64 file_offset, u64 io_size, int uptodate)
 461{
 462	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 463	struct rb_node *node;
 464	struct btrfs_ordered_extent *entry = NULL;
 465	unsigned long flags;
 466	bool finished = false;
 467
 468	spin_lock_irqsave(&tree->lock, flags);
 469	if (cached && *cached) {
 470		entry = *cached;
 471		goto have_entry;
 472	}
 473
 
 
 474	node = tree_search(tree, file_offset);
 475	if (!node)
 
 476		goto out;
 
 477
 478	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 479have_entry:
 480	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 481		goto out;
 
 482
 483	if (io_size > entry->bytes_left)
 484		btrfs_crit(inode->root->fs_info,
 485			   "bad ordered accounting left %llu size %llu",
 486		       entry->bytes_left, io_size);
 487
 488	entry->bytes_left -= io_size;
 489	if (!uptodate)
 490		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 491
 492	if (entry->bytes_left == 0) {
 493		/*
 494		 * Ensure only one caller can set the flag and finished_ret
 495		 * accordingly
 496		 */
 497		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 498		/* test_and_set_bit implies a barrier */
 499		cond_wake_up_nomb(&entry->wait);
 500	}
 501out:
 502	if (finished && cached && entry) {
 503		*cached = entry;
 504		refcount_inc(&entry->refs);
 505	}
 506	spin_unlock_irqrestore(&tree->lock, flags);
 507	return finished;
 508}
 509
 510/*
 511 * used to drop a reference on an ordered extent.  This will free
 512 * the extent if the last reference is dropped
 513 */
 514void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 515{
 516	struct list_head *cur;
 517	struct btrfs_ordered_sum *sum;
 518
 519	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
 520
 521	if (refcount_dec_and_test(&entry->refs)) {
 522		ASSERT(list_empty(&entry->root_extent_list));
 523		ASSERT(list_empty(&entry->log_list));
 524		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
 525		if (entry->inode)
 526			btrfs_add_delayed_iput(entry->inode);
 527		while (!list_empty(&entry->list)) {
 528			cur = entry->list.next;
 529			sum = list_entry(cur, struct btrfs_ordered_sum, list);
 530			list_del(&sum->list);
 531			kvfree(sum);
 532		}
 533		kmem_cache_free(btrfs_ordered_extent_cache, entry);
 534	}
 
 535}
 536
 537/*
 538 * remove an ordered extent from the tree.  No references are dropped
 539 * and waiters are woken up.
 
 540 */
 541void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
 542				 struct btrfs_ordered_extent *entry)
 543{
 544	struct btrfs_ordered_inode_tree *tree;
 545	struct btrfs_root *root = btrfs_inode->root;
 546	struct btrfs_fs_info *fs_info = root->fs_info;
 547	struct rb_node *node;
 548	bool pending;
 549
 550	/* This is paired with btrfs_add_ordered_extent. */
 551	spin_lock(&btrfs_inode->lock);
 552	btrfs_mod_outstanding_extents(btrfs_inode, -1);
 553	spin_unlock(&btrfs_inode->lock);
 554	if (root != fs_info->tree_root)
 555		btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
 556						false);
 557
 558	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
 559				 fs_info->delalloc_batch);
 560
 561	tree = &btrfs_inode->ordered_tree;
 562	spin_lock_irq(&tree->lock);
 563	node = &entry->rb_node;
 564	rb_erase(node, &tree->tree);
 565	RB_CLEAR_NODE(node);
 566	if (tree->last == node)
 567		tree->last = NULL;
 568	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 569	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
 570	spin_unlock_irq(&tree->lock);
 
 
 
 571
 572	/*
 573	 * The current running transaction is waiting on us, we need to let it
 574	 * know that we're complete and wake it up.
 
 575	 */
 576	if (pending) {
 577		struct btrfs_transaction *trans;
 578
 579		/*
 580		 * The checks for trans are just a formality, it should be set,
 581		 * but if it isn't we don't want to deref/assert under the spin
 582		 * lock, so be nice and check if trans is set, but ASSERT() so
 583		 * if it isn't set a developer will notice.
 584		 */
 585		spin_lock(&fs_info->trans_lock);
 586		trans = fs_info->running_transaction;
 587		if (trans)
 588			refcount_inc(&trans->use_count);
 589		spin_unlock(&fs_info->trans_lock);
 590
 591		ASSERT(trans);
 592		if (trans) {
 593			if (atomic_dec_and_test(&trans->pending_ordered))
 594				wake_up(&trans->pending_wait);
 595			btrfs_put_transaction(trans);
 596		}
 597	}
 
 598
 599	spin_lock(&root->ordered_extent_lock);
 600	list_del_init(&entry->root_extent_list);
 601	root->nr_ordered_extents--;
 602
 603	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
 
 
 
 
 
 
 
 
 604
 605	if (!root->nr_ordered_extents) {
 606		spin_lock(&fs_info->ordered_root_lock);
 607		BUG_ON(list_empty(&root->ordered_root));
 608		list_del_init(&root->ordered_root);
 609		spin_unlock(&fs_info->ordered_root_lock);
 610	}
 611	spin_unlock(&root->ordered_extent_lock);
 612	wake_up(&entry->wait);
 613}
 614
 615static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 616{
 617	struct btrfs_ordered_extent *ordered;
 618
 619	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 620	btrfs_start_ordered_extent(ordered, 1);
 621	complete(&ordered->completion);
 622}
 623
 624/*
 625 * wait for all the ordered extents in a root.  This is done when balancing
 626 * space between drives.
 627 */
 628u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
 629			       const u64 range_start, const u64 range_len)
 630{
 631	struct btrfs_fs_info *fs_info = root->fs_info;
 632	LIST_HEAD(splice);
 633	LIST_HEAD(skipped);
 634	LIST_HEAD(works);
 635	struct btrfs_ordered_extent *ordered, *next;
 636	u64 count = 0;
 637	const u64 range_end = range_start + range_len;
 638
 639	mutex_lock(&root->ordered_extent_mutex);
 640	spin_lock(&root->ordered_extent_lock);
 641	list_splice_init(&root->ordered_extents, &splice);
 642	while (!list_empty(&splice) && nr) {
 643		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 644					   root_extent_list);
 645
 646		if (range_end <= ordered->disk_bytenr ||
 647		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
 648			list_move_tail(&ordered->root_extent_list, &skipped);
 649			cond_resched_lock(&root->ordered_extent_lock);
 650			continue;
 651		}
 652
 653		list_move_tail(&ordered->root_extent_list,
 654			       &root->ordered_extents);
 655		refcount_inc(&ordered->refs);
 656		spin_unlock(&root->ordered_extent_lock);
 657
 658		btrfs_init_work(&ordered->flush_work,
 659				btrfs_run_ordered_extent_work, NULL, NULL);
 660		list_add_tail(&ordered->work_list, &works);
 661		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
 
 
 
 
 
 
 
 
 
 
 
 662
 663		cond_resched();
 664		spin_lock(&root->ordered_extent_lock);
 665		if (nr != U64_MAX)
 666			nr--;
 667		count++;
 668	}
 669	list_splice_tail(&skipped, &root->ordered_extents);
 670	list_splice_tail(&splice, &root->ordered_extents);
 671	spin_unlock(&root->ordered_extent_lock);
 672
 673	list_for_each_entry_safe(ordered, next, &works, work_list) {
 674		list_del_init(&ordered->work_list);
 675		wait_for_completion(&ordered->completion);
 676		btrfs_put_ordered_extent(ordered);
 677		cond_resched();
 678	}
 679	mutex_unlock(&root->ordered_extent_mutex);
 680
 681	return count;
 682}
 683
 684void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
 685			     const u64 range_start, const u64 range_len)
 
 
 
 
 
 
 
 
 
 686{
 687	struct btrfs_root *root;
 
 688	struct list_head splice;
 689	u64 done;
 690
 691	INIT_LIST_HEAD(&splice);
 692
 693	mutex_lock(&fs_info->ordered_operations_mutex);
 694	spin_lock(&fs_info->ordered_root_lock);
 695	list_splice_init(&fs_info->ordered_roots, &splice);
 696	while (!list_empty(&splice) && nr) {
 697		root = list_first_entry(&splice, struct btrfs_root,
 698					ordered_root);
 699		root = btrfs_grab_root(root);
 700		BUG_ON(!root);
 701		list_move_tail(&root->ordered_root,
 702			       &fs_info->ordered_roots);
 703		spin_unlock(&fs_info->ordered_root_lock);
 704
 705		done = btrfs_wait_ordered_extents(root, nr,
 706						  range_start, range_len);
 707		btrfs_put_root(root);
 708
 709		spin_lock(&fs_info->ordered_root_lock);
 710		if (nr != U64_MAX) {
 711			nr -= done;
 
 
 
 
 
 
 
 
 
 
 
 712		}
 
 
 
 713	}
 714	list_splice_tail(&splice, &fs_info->ordered_roots);
 715	spin_unlock(&fs_info->ordered_root_lock);
 716	mutex_unlock(&fs_info->ordered_operations_mutex);
 
 
 
 
 717}
 718
 719/*
 720 * Used to start IO or wait for a given ordered extent to finish.
 721 *
 722 * If wait is one, this effectively waits on page writeback for all the pages
 723 * in the extent, and it waits on the io completion code to insert
 724 * metadata into the btree corresponding to the extent
 725 */
 726void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
 
 
 727{
 728	u64 start = entry->file_offset;
 729	u64 end = start + entry->num_bytes - 1;
 730	struct btrfs_inode *inode = BTRFS_I(entry->inode);
 731
 732	trace_btrfs_ordered_extent_start(inode, entry);
 733
 734	/*
 735	 * pages in the range can be dirty, clean or writeback.  We
 736	 * start IO on any dirty ones so the wait doesn't stall waiting
 737	 * for the flusher thread to find them
 738	 */
 739	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 740		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
 741	if (wait) {
 742		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 743						 &entry->flags));
 744	}
 745}
 746
 747/*
 748 * Used to wait on ordered extents across a large range of bytes.
 749 */
 750int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 751{
 752	int ret = 0;
 753	int ret_wb = 0;
 754	u64 end;
 755	u64 orig_end;
 756	struct btrfs_ordered_extent *ordered;
 
 757
 758	if (start + len < start) {
 759		orig_end = INT_LIMIT(loff_t);
 760	} else {
 761		orig_end = start + len - 1;
 762		if (orig_end > INT_LIMIT(loff_t))
 763			orig_end = INT_LIMIT(loff_t);
 764	}
 765
 766	/* start IO across the range first to instantiate any delalloc
 767	 * extents
 768	 */
 769	ret = btrfs_fdatawrite_range(inode, start, orig_end);
 770	if (ret)
 771		return ret;
 772
 773	/*
 774	 * If we have a writeback error don't return immediately. Wait first
 775	 * for any ordered extents that haven't completed yet. This is to make
 776	 * sure no one can dirty the same page ranges and call writepages()
 777	 * before the ordered extents complete - to avoid failures (-EEXIST)
 778	 * when adding the new ordered extents to the ordered tree.
 779	 */
 780	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 
 
 781
 782	end = orig_end;
 
 783	while (1) {
 784		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
 785		if (!ordered)
 786			break;
 787		if (ordered->file_offset > orig_end) {
 788			btrfs_put_ordered_extent(ordered);
 789			break;
 790		}
 791		if (ordered->file_offset + ordered->num_bytes <= start) {
 792			btrfs_put_ordered_extent(ordered);
 793			break;
 794		}
 795		btrfs_start_ordered_extent(ordered, 1);
 
 796		end = ordered->file_offset;
 797		/*
 798		 * If the ordered extent had an error save the error but don't
 799		 * exit without waiting first for all other ordered extents in
 800		 * the range to complete.
 801		 */
 802		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 803			ret = -EIO;
 804		btrfs_put_ordered_extent(ordered);
 805		if (end == 0 || end == start)
 806			break;
 807		end--;
 808	}
 809	return ret_wb ? ret_wb : ret;
 
 
 
 
 
 810}
 811
 812/*
 813 * find an ordered extent corresponding to file_offset.  return NULL if
 814 * nothing is found, otherwise take a reference on the extent and return it
 815 */
 816struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
 817							 u64 file_offset)
 818{
 819	struct btrfs_ordered_inode_tree *tree;
 820	struct rb_node *node;
 821	struct btrfs_ordered_extent *entry = NULL;
 822	unsigned long flags;
 823
 824	tree = &inode->ordered_tree;
 825	spin_lock_irqsave(&tree->lock, flags);
 826	node = tree_search(tree, file_offset);
 827	if (!node)
 828		goto out;
 829
 830	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 831	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 832		entry = NULL;
 833	if (entry)
 834		refcount_inc(&entry->refs);
 835out:
 836	spin_unlock_irqrestore(&tree->lock, flags);
 837	return entry;
 838}
 839
 840/* Since the DIO code tries to lock a wide area we need to look for any ordered
 841 * extents that exist in the range, rather than just the start of the range.
 842 */
 843struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
 844		struct btrfs_inode *inode, u64 file_offset, u64 len)
 
 845{
 846	struct btrfs_ordered_inode_tree *tree;
 847	struct rb_node *node;
 848	struct btrfs_ordered_extent *entry = NULL;
 849
 850	tree = &inode->ordered_tree;
 851	spin_lock_irq(&tree->lock);
 852	node = tree_search(tree, file_offset);
 853	if (!node) {
 854		node = tree_search(tree, file_offset + len);
 855		if (!node)
 856			goto out;
 857	}
 858
 859	while (1) {
 860		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 861		if (range_overlaps(entry, file_offset, len))
 862			break;
 863
 864		if (entry->file_offset >= file_offset + len) {
 865			entry = NULL;
 866			break;
 867		}
 868		entry = NULL;
 869		node = rb_next(node);
 870		if (!node)
 871			break;
 872	}
 873out:
 874	if (entry)
 875		refcount_inc(&entry->refs);
 876	spin_unlock_irq(&tree->lock);
 877	return entry;
 878}
 879
 880/*
 881 * Adds all ordered extents to the given list. The list ends up sorted by the
 882 * file_offset of the ordered extents.
 883 */
 884void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
 885					   struct list_head *list)
 886{
 887	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 888	struct rb_node *n;
 889
 890	ASSERT(inode_is_locked(&inode->vfs_inode));
 891
 892	spin_lock_irq(&tree->lock);
 893	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
 894		struct btrfs_ordered_extent *ordered;
 895
 896		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 897
 898		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
 899			continue;
 900
 901		ASSERT(list_empty(&ordered->log_list));
 902		list_add_tail(&ordered->log_list, list);
 903		refcount_inc(&ordered->refs);
 904	}
 905	spin_unlock_irq(&tree->lock);
 906}
 907
 908/*
 909 * lookup and return any extent before 'file_offset'.  NULL is returned
 910 * if none is found
 911 */
 912struct btrfs_ordered_extent *
 913btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
 914{
 915	struct btrfs_ordered_inode_tree *tree;
 916	struct rb_node *node;
 917	struct btrfs_ordered_extent *entry = NULL;
 918
 919	tree = &inode->ordered_tree;
 920	spin_lock_irq(&tree->lock);
 921	node = tree_search(tree, file_offset);
 922	if (!node)
 923		goto out;
 924
 925	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 926	refcount_inc(&entry->refs);
 927out:
 928	spin_unlock_irq(&tree->lock);
 929	return entry;
 930}
 931
 932/*
 933 * Lookup the first ordered extent that overlaps the range
 934 * [@file_offset, @file_offset + @len).
 935 *
 936 * The difference between this and btrfs_lookup_first_ordered_extent() is
 937 * that this one won't return any ordered extent that does not overlap the range.
 938 * And the difference against btrfs_lookup_ordered_extent() is, this function
 939 * ensures the first ordered extent gets returned.
 940 */
 941struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
 942			struct btrfs_inode *inode, u64 file_offset, u64 len)
 943{
 944	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 
 
 
 
 
 945	struct rb_node *node;
 946	struct rb_node *cur;
 947	struct rb_node *prev;
 948	struct rb_node *next;
 949	struct btrfs_ordered_extent *entry = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 950
 951	spin_lock_irq(&tree->lock);
 952	node = tree->tree.rb_node;
 953	/*
 954	 * Here we don't want to use tree_search() which will use tree->last
 955	 * and screw up the search order.
 956	 * And __tree_search() can't return the adjacent ordered extents
 957	 * either, thus here we do our own search.
 958	 */
 959	while (node) {
 960		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 
 961
 962		if (file_offset < entry->file_offset) {
 963			node = node->rb_left;
 964		} else if (file_offset >= entry_end(entry)) {
 965			node = node->rb_right;
 966		} else {
 967			/*
 968			 * Direct hit, got an ordered extent that starts at
 969			 * @file_offset
 970			 */
 971			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 972		}
 
 973	}
 974	if (!entry) {
 975		/* Empty tree */
 976		goto out;
 
 
 
 
 
 
 977	}
 
 978
 979	cur = &entry->rb_node;
 980	/* We got an entry around @file_offset, check adjacent entries */
 981	if (entry->file_offset < file_offset) {
 982		prev = cur;
 983		next = rb_next(cur);
 
 
 
 984	} else {
 985		prev = rb_prev(cur);
 986		next = cur;
 
 
 987	}
 988	if (prev) {
 989		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
 990		if (range_overlaps(entry, file_offset, len))
 991			goto out;
 
 
 
 
 
 
 
 992	}
 993	if (next) {
 994		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
 995		if (range_overlaps(entry, file_offset, len))
 996			goto out;
 
 
 
 
 
 
 
 997	}
 998	/* No ordered extent in the range */
 999	entry = NULL;
1000out:
1001	if (entry)
1002		refcount_inc(&entry->refs);
1003	spin_unlock_irq(&tree->lock);
1004	return entry;
 
 
 
 
 
 
 
1005}
1006
1007/*
1008 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
1009 * ordered extents in it are run to completion.
1010 *
1011 * @inode:        Inode whose ordered tree is to be searched
1012 * @start:        Beginning of range to flush
1013 * @end:          Last byte of range to lock
1014 * @cached_state: If passed, will return the extent state responsible for the
1015 * locked range. It's the caller's responsibility to free the cached state.
1016 *
1017 * This function always returns with the given range locked, ensuring after it's
1018 * called no order extent can be pending.
1019 */
1020void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1021					u64 end,
1022					struct extent_state **cached_state)
1023{
 
 
1024	struct btrfs_ordered_extent *ordered;
1025	struct extent_state *cache = NULL;
1026	struct extent_state **cachedp = &cache;
1027
1028	if (cached_state)
1029		cachedp = cached_state;
1030
1031	while (1) {
1032		lock_extent_bits(&inode->io_tree, start, end, cachedp);
1033		ordered = btrfs_lookup_ordered_range(inode, start,
1034						     end - start + 1);
1035		if (!ordered) {
1036			/*
1037			 * If no external cached_state has been passed then
1038			 * decrement the extra ref taken for cachedp since we
1039			 * aren't exposing it outside of this function
1040			 */
1041			if (!cached_state)
1042				refcount_dec(&cache->refs);
1043			break;
 
 
 
1044		}
1045		unlock_extent_cached(&inode->io_tree, start, end, cachedp);
1046		btrfs_start_ordered_extent(ordered, 1);
1047		btrfs_put_ordered_extent(ordered);
1048	}
 
 
 
 
1049}
1050
1051static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1052				u64 len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053{
1054	struct inode *inode = ordered->inode;
1055	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1056	u64 file_offset = ordered->file_offset + pos;
1057	u64 disk_bytenr = ordered->disk_bytenr + pos;
1058	u64 num_bytes = len;
1059	u64 disk_num_bytes = len;
1060	int type;
1061	unsigned long flags_masked = ordered->flags & ~(1 << BTRFS_ORDERED_DIRECT);
1062	int compress_type = ordered->compress_type;
1063	unsigned long weight;
1064	int ret;
1065
1066	weight = hweight_long(flags_masked);
1067	WARN_ON_ONCE(weight > 1);
1068	if (!weight)
1069		type = 0;
1070	else
1071		type = __ffs(flags_masked);
1072
1073	/*
1074	 * The splitting extent is already counted and will be added again
1075	 * in btrfs_add_ordered_extent_*(). Subtract num_bytes to avoid
1076	 * double counting.
1077	 */
1078	percpu_counter_add_batch(&fs_info->ordered_bytes, -num_bytes,
1079				 fs_info->delalloc_batch);
1080	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered->flags)) {
1081		WARN_ON_ONCE(1);
1082		ret = btrfs_add_ordered_extent_compress(BTRFS_I(inode),
1083				file_offset, disk_bytenr, num_bytes,
1084				disk_num_bytes, compress_type);
1085	} else if (test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
1086		ret = btrfs_add_ordered_extent_dio(BTRFS_I(inode), file_offset,
1087				disk_bytenr, num_bytes, disk_num_bytes, type);
1088	} else {
1089		ret = btrfs_add_ordered_extent(BTRFS_I(inode), file_offset,
1090				disk_bytenr, num_bytes, disk_num_bytes, type);
1091	}
1092
1093	return ret;
1094}
1095
1096int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1097				u64 post)
1098{
1099	struct inode *inode = ordered->inode;
1100	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1101	struct rb_node *node;
1102	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1103	int ret = 0;
1104
1105	spin_lock_irq(&tree->lock);
1106	/* Remove from tree once */
1107	node = &ordered->rb_node;
1108	rb_erase(node, &tree->tree);
1109	RB_CLEAR_NODE(node);
1110	if (tree->last == node)
1111		tree->last = NULL;
1112
1113	ordered->file_offset += pre;
1114	ordered->disk_bytenr += pre;
1115	ordered->num_bytes -= (pre + post);
1116	ordered->disk_num_bytes -= (pre + post);
1117	ordered->bytes_left -= (pre + post);
1118
1119	/* Re-insert the node */
1120	node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1121	if (node)
1122		btrfs_panic(fs_info, -EEXIST,
1123			"zoned: inconsistency in ordered tree at offset %llu",
1124			    ordered->file_offset);
1125
1126	spin_unlock_irq(&tree->lock);
1127
1128	if (pre)
1129		ret = clone_ordered_extent(ordered, 0, pre);
1130	if (ret == 0 && post)
1131		ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1132					   post);
1133
1134	return ret;
1135}
1136
1137int __init ordered_data_init(void)
1138{
1139	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1140				     sizeof(struct btrfs_ordered_extent), 0,
1141				     SLAB_MEM_SPREAD,
1142				     NULL);
1143	if (!btrfs_ordered_extent_cache)
1144		return -ENOMEM;
1145
1146	return 0;
1147}
1148
1149void __cold ordered_data_exit(void)
1150{
1151	kmem_cache_destroy(btrfs_ordered_extent_cache);
1152}