Loading...
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/slab.h>
20#include <linux/blkdev.h>
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
26#include "extent_io.h"
27
28static u64 entry_end(struct btrfs_ordered_extent *entry)
29{
30 if (entry->file_offset + entry->len < entry->file_offset)
31 return (u64)-1;
32 return entry->file_offset + entry->len;
33}
34
35/* returns NULL if the insertion worked, or it returns the node it did find
36 * in the tree
37 */
38static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 struct rb_node *node)
40{
41 struct rb_node **p = &root->rb_node;
42 struct rb_node *parent = NULL;
43 struct btrfs_ordered_extent *entry;
44
45 while (*p) {
46 parent = *p;
47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
48
49 if (file_offset < entry->file_offset)
50 p = &(*p)->rb_left;
51 else if (file_offset >= entry_end(entry))
52 p = &(*p)->rb_right;
53 else
54 return parent;
55 }
56
57 rb_link_node(node, parent, p);
58 rb_insert_color(node, root);
59 return NULL;
60}
61
62/*
63 * look for a given offset in the tree, and if it can't be found return the
64 * first lesser offset
65 */
66static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
67 struct rb_node **prev_ret)
68{
69 struct rb_node *n = root->rb_node;
70 struct rb_node *prev = NULL;
71 struct rb_node *test;
72 struct btrfs_ordered_extent *entry;
73 struct btrfs_ordered_extent *prev_entry = NULL;
74
75 while (n) {
76 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
77 prev = n;
78 prev_entry = entry;
79
80 if (file_offset < entry->file_offset)
81 n = n->rb_left;
82 else if (file_offset >= entry_end(entry))
83 n = n->rb_right;
84 else
85 return n;
86 }
87 if (!prev_ret)
88 return NULL;
89
90 while (prev && file_offset >= entry_end(prev_entry)) {
91 test = rb_next(prev);
92 if (!test)
93 break;
94 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
95 rb_node);
96 if (file_offset < entry_end(prev_entry))
97 break;
98
99 prev = test;
100 }
101 if (prev)
102 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
103 rb_node);
104 while (prev && file_offset < entry_end(prev_entry)) {
105 test = rb_prev(prev);
106 if (!test)
107 break;
108 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
109 rb_node);
110 prev = test;
111 }
112 *prev_ret = prev;
113 return NULL;
114}
115
116/*
117 * helper to check if a given offset is inside a given entry
118 */
119static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
120{
121 if (file_offset < entry->file_offset ||
122 entry->file_offset + entry->len <= file_offset)
123 return 0;
124 return 1;
125}
126
127static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
128 u64 len)
129{
130 if (file_offset + len <= entry->file_offset ||
131 entry->file_offset + entry->len <= file_offset)
132 return 0;
133 return 1;
134}
135
136/*
137 * look find the first ordered struct that has this offset, otherwise
138 * the first one less than this offset
139 */
140static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
141 u64 file_offset)
142{
143 struct rb_root *root = &tree->tree;
144 struct rb_node *prev = NULL;
145 struct rb_node *ret;
146 struct btrfs_ordered_extent *entry;
147
148 if (tree->last) {
149 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
150 rb_node);
151 if (offset_in_entry(entry, file_offset))
152 return tree->last;
153 }
154 ret = __tree_search(root, file_offset, &prev);
155 if (!ret)
156 ret = prev;
157 if (ret)
158 tree->last = ret;
159 return ret;
160}
161
162/* allocate and add a new ordered_extent into the per-inode tree.
163 * file_offset is the logical offset in the file
164 *
165 * start is the disk block number of an extent already reserved in the
166 * extent allocation tree
167 *
168 * len is the length of the extent
169 *
170 * The tree is given a single reference on the ordered extent that was
171 * inserted.
172 */
173static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
174 u64 start, u64 len, u64 disk_len,
175 int type, int dio, int compress_type)
176{
177 struct btrfs_ordered_inode_tree *tree;
178 struct rb_node *node;
179 struct btrfs_ordered_extent *entry;
180
181 tree = &BTRFS_I(inode)->ordered_tree;
182 entry = kzalloc(sizeof(*entry), GFP_NOFS);
183 if (!entry)
184 return -ENOMEM;
185
186 entry->file_offset = file_offset;
187 entry->start = start;
188 entry->len = len;
189 entry->disk_len = disk_len;
190 entry->bytes_left = len;
191 entry->inode = inode;
192 entry->compress_type = compress_type;
193 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
194 set_bit(type, &entry->flags);
195
196 if (dio)
197 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
198
199 /* one ref for the tree */
200 atomic_set(&entry->refs, 1);
201 init_waitqueue_head(&entry->wait);
202 INIT_LIST_HEAD(&entry->list);
203 INIT_LIST_HEAD(&entry->root_extent_list);
204
205 trace_btrfs_ordered_extent_add(inode, entry);
206
207 spin_lock(&tree->lock);
208 node = tree_insert(&tree->tree, file_offset,
209 &entry->rb_node);
210 BUG_ON(node);
211 spin_unlock(&tree->lock);
212
213 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
214 list_add_tail(&entry->root_extent_list,
215 &BTRFS_I(inode)->root->fs_info->ordered_extents);
216 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
217
218 BUG_ON(node);
219 return 0;
220}
221
222int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
223 u64 start, u64 len, u64 disk_len, int type)
224{
225 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
226 disk_len, type, 0,
227 BTRFS_COMPRESS_NONE);
228}
229
230int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
231 u64 start, u64 len, u64 disk_len, int type)
232{
233 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
234 disk_len, type, 1,
235 BTRFS_COMPRESS_NONE);
236}
237
238int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
239 u64 start, u64 len, u64 disk_len,
240 int type, int compress_type)
241{
242 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
243 disk_len, type, 0,
244 compress_type);
245}
246
247/*
248 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
249 * when an ordered extent is finished. If the list covers more than one
250 * ordered extent, it is split across multiples.
251 */
252int btrfs_add_ordered_sum(struct inode *inode,
253 struct btrfs_ordered_extent *entry,
254 struct btrfs_ordered_sum *sum)
255{
256 struct btrfs_ordered_inode_tree *tree;
257
258 tree = &BTRFS_I(inode)->ordered_tree;
259 spin_lock(&tree->lock);
260 list_add_tail(&sum->list, &entry->list);
261 spin_unlock(&tree->lock);
262 return 0;
263}
264
265/*
266 * this is used to account for finished IO across a given range
267 * of the file. The IO may span ordered extents. If
268 * a given ordered_extent is completely done, 1 is returned, otherwise
269 * 0.
270 *
271 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
272 * to make sure this function only returns 1 once for a given ordered extent.
273 *
274 * file_offset is updated to one byte past the range that is recorded as
275 * complete. This allows you to walk forward in the file.
276 */
277int btrfs_dec_test_first_ordered_pending(struct inode *inode,
278 struct btrfs_ordered_extent **cached,
279 u64 *file_offset, u64 io_size)
280{
281 struct btrfs_ordered_inode_tree *tree;
282 struct rb_node *node;
283 struct btrfs_ordered_extent *entry = NULL;
284 int ret;
285 u64 dec_end;
286 u64 dec_start;
287 u64 to_dec;
288
289 tree = &BTRFS_I(inode)->ordered_tree;
290 spin_lock(&tree->lock);
291 node = tree_search(tree, *file_offset);
292 if (!node) {
293 ret = 1;
294 goto out;
295 }
296
297 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
298 if (!offset_in_entry(entry, *file_offset)) {
299 ret = 1;
300 goto out;
301 }
302
303 dec_start = max(*file_offset, entry->file_offset);
304 dec_end = min(*file_offset + io_size, entry->file_offset +
305 entry->len);
306 *file_offset = dec_end;
307 if (dec_start > dec_end) {
308 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
309 (unsigned long long)dec_start,
310 (unsigned long long)dec_end);
311 }
312 to_dec = dec_end - dec_start;
313 if (to_dec > entry->bytes_left) {
314 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
315 (unsigned long long)entry->bytes_left,
316 (unsigned long long)to_dec);
317 }
318 entry->bytes_left -= to_dec;
319 if (entry->bytes_left == 0)
320 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
321 else
322 ret = 1;
323out:
324 if (!ret && cached && entry) {
325 *cached = entry;
326 atomic_inc(&entry->refs);
327 }
328 spin_unlock(&tree->lock);
329 return ret == 0;
330}
331
332/*
333 * this is used to account for finished IO across a given range
334 * of the file. The IO should not span ordered extents. If
335 * a given ordered_extent is completely done, 1 is returned, otherwise
336 * 0.
337 *
338 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
339 * to make sure this function only returns 1 once for a given ordered extent.
340 */
341int btrfs_dec_test_ordered_pending(struct inode *inode,
342 struct btrfs_ordered_extent **cached,
343 u64 file_offset, u64 io_size)
344{
345 struct btrfs_ordered_inode_tree *tree;
346 struct rb_node *node;
347 struct btrfs_ordered_extent *entry = NULL;
348 int ret;
349
350 tree = &BTRFS_I(inode)->ordered_tree;
351 spin_lock(&tree->lock);
352 node = tree_search(tree, file_offset);
353 if (!node) {
354 ret = 1;
355 goto out;
356 }
357
358 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
359 if (!offset_in_entry(entry, file_offset)) {
360 ret = 1;
361 goto out;
362 }
363
364 if (io_size > entry->bytes_left) {
365 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
366 (unsigned long long)entry->bytes_left,
367 (unsigned long long)io_size);
368 }
369 entry->bytes_left -= io_size;
370 if (entry->bytes_left == 0)
371 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
372 else
373 ret = 1;
374out:
375 if (!ret && cached && entry) {
376 *cached = entry;
377 atomic_inc(&entry->refs);
378 }
379 spin_unlock(&tree->lock);
380 return ret == 0;
381}
382
383/*
384 * used to drop a reference on an ordered extent. This will free
385 * the extent if the last reference is dropped
386 */
387int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
388{
389 struct list_head *cur;
390 struct btrfs_ordered_sum *sum;
391
392 trace_btrfs_ordered_extent_put(entry->inode, entry);
393
394 if (atomic_dec_and_test(&entry->refs)) {
395 while (!list_empty(&entry->list)) {
396 cur = entry->list.next;
397 sum = list_entry(cur, struct btrfs_ordered_sum, list);
398 list_del(&sum->list);
399 kfree(sum);
400 }
401 kfree(entry);
402 }
403 return 0;
404}
405
406/*
407 * remove an ordered extent from the tree. No references are dropped
408 * and you must wake_up entry->wait. You must hold the tree lock
409 * while you call this function.
410 */
411static int __btrfs_remove_ordered_extent(struct inode *inode,
412 struct btrfs_ordered_extent *entry)
413{
414 struct btrfs_ordered_inode_tree *tree;
415 struct btrfs_root *root = BTRFS_I(inode)->root;
416 struct rb_node *node;
417
418 tree = &BTRFS_I(inode)->ordered_tree;
419 node = &entry->rb_node;
420 rb_erase(node, &tree->tree);
421 tree->last = NULL;
422 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
423
424 spin_lock(&root->fs_info->ordered_extent_lock);
425 list_del_init(&entry->root_extent_list);
426
427 trace_btrfs_ordered_extent_remove(inode, entry);
428
429 /*
430 * we have no more ordered extents for this inode and
431 * no dirty pages. We can safely remove it from the
432 * list of ordered extents
433 */
434 if (RB_EMPTY_ROOT(&tree->tree) &&
435 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
436 list_del_init(&BTRFS_I(inode)->ordered_operations);
437 }
438 spin_unlock(&root->fs_info->ordered_extent_lock);
439
440 return 0;
441}
442
443/*
444 * remove an ordered extent from the tree. No references are dropped
445 * but any waiters are woken.
446 */
447int btrfs_remove_ordered_extent(struct inode *inode,
448 struct btrfs_ordered_extent *entry)
449{
450 struct btrfs_ordered_inode_tree *tree;
451 int ret;
452
453 tree = &BTRFS_I(inode)->ordered_tree;
454 spin_lock(&tree->lock);
455 ret = __btrfs_remove_ordered_extent(inode, entry);
456 spin_unlock(&tree->lock);
457 wake_up(&entry->wait);
458
459 return ret;
460}
461
462/*
463 * wait for all the ordered extents in a root. This is done when balancing
464 * space between drives.
465 */
466int btrfs_wait_ordered_extents(struct btrfs_root *root,
467 int nocow_only, int delay_iput)
468{
469 struct list_head splice;
470 struct list_head *cur;
471 struct btrfs_ordered_extent *ordered;
472 struct inode *inode;
473
474 INIT_LIST_HEAD(&splice);
475
476 spin_lock(&root->fs_info->ordered_extent_lock);
477 list_splice_init(&root->fs_info->ordered_extents, &splice);
478 while (!list_empty(&splice)) {
479 cur = splice.next;
480 ordered = list_entry(cur, struct btrfs_ordered_extent,
481 root_extent_list);
482 if (nocow_only &&
483 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
484 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
485 list_move(&ordered->root_extent_list,
486 &root->fs_info->ordered_extents);
487 cond_resched_lock(&root->fs_info->ordered_extent_lock);
488 continue;
489 }
490
491 list_del_init(&ordered->root_extent_list);
492 atomic_inc(&ordered->refs);
493
494 /*
495 * the inode may be getting freed (in sys_unlink path).
496 */
497 inode = igrab(ordered->inode);
498
499 spin_unlock(&root->fs_info->ordered_extent_lock);
500
501 if (inode) {
502 btrfs_start_ordered_extent(inode, ordered, 1);
503 btrfs_put_ordered_extent(ordered);
504 if (delay_iput)
505 btrfs_add_delayed_iput(inode);
506 else
507 iput(inode);
508 } else {
509 btrfs_put_ordered_extent(ordered);
510 }
511
512 spin_lock(&root->fs_info->ordered_extent_lock);
513 }
514 spin_unlock(&root->fs_info->ordered_extent_lock);
515 return 0;
516}
517
518/*
519 * this is used during transaction commit to write all the inodes
520 * added to the ordered operation list. These files must be fully on
521 * disk before the transaction commits.
522 *
523 * we have two modes here, one is to just start the IO via filemap_flush
524 * and the other is to wait for all the io. When we wait, we have an
525 * extra check to make sure the ordered operation list really is empty
526 * before we return
527 */
528int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
529{
530 struct btrfs_inode *btrfs_inode;
531 struct inode *inode;
532 struct list_head splice;
533
534 INIT_LIST_HEAD(&splice);
535
536 mutex_lock(&root->fs_info->ordered_operations_mutex);
537 spin_lock(&root->fs_info->ordered_extent_lock);
538again:
539 list_splice_init(&root->fs_info->ordered_operations, &splice);
540
541 while (!list_empty(&splice)) {
542 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
543 ordered_operations);
544
545 inode = &btrfs_inode->vfs_inode;
546
547 list_del_init(&btrfs_inode->ordered_operations);
548
549 /*
550 * the inode may be getting freed (in sys_unlink path).
551 */
552 inode = igrab(inode);
553
554 if (!wait && inode) {
555 list_add_tail(&BTRFS_I(inode)->ordered_operations,
556 &root->fs_info->ordered_operations);
557 }
558 spin_unlock(&root->fs_info->ordered_extent_lock);
559
560 if (inode) {
561 if (wait)
562 btrfs_wait_ordered_range(inode, 0, (u64)-1);
563 else
564 filemap_flush(inode->i_mapping);
565 btrfs_add_delayed_iput(inode);
566 }
567
568 cond_resched();
569 spin_lock(&root->fs_info->ordered_extent_lock);
570 }
571 if (wait && !list_empty(&root->fs_info->ordered_operations))
572 goto again;
573
574 spin_unlock(&root->fs_info->ordered_extent_lock);
575 mutex_unlock(&root->fs_info->ordered_operations_mutex);
576
577 return 0;
578}
579
580/*
581 * Used to start IO or wait for a given ordered extent to finish.
582 *
583 * If wait is one, this effectively waits on page writeback for all the pages
584 * in the extent, and it waits on the io completion code to insert
585 * metadata into the btree corresponding to the extent
586 */
587void btrfs_start_ordered_extent(struct inode *inode,
588 struct btrfs_ordered_extent *entry,
589 int wait)
590{
591 u64 start = entry->file_offset;
592 u64 end = start + entry->len - 1;
593
594 trace_btrfs_ordered_extent_start(inode, entry);
595
596 /*
597 * pages in the range can be dirty, clean or writeback. We
598 * start IO on any dirty ones so the wait doesn't stall waiting
599 * for pdflush to find them
600 */
601 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
602 filemap_fdatawrite_range(inode->i_mapping, start, end);
603 if (wait) {
604 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
605 &entry->flags));
606 }
607}
608
609/*
610 * Used to wait on ordered extents across a large range of bytes.
611 */
612int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
613{
614 u64 end;
615 u64 orig_end;
616 struct btrfs_ordered_extent *ordered;
617 int found;
618
619 if (start + len < start) {
620 orig_end = INT_LIMIT(loff_t);
621 } else {
622 orig_end = start + len - 1;
623 if (orig_end > INT_LIMIT(loff_t))
624 orig_end = INT_LIMIT(loff_t);
625 }
626again:
627 /* start IO across the range first to instantiate any delalloc
628 * extents
629 */
630 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
631
632 /* The compression code will leave pages locked but return from
633 * writepage without setting the page writeback. Starting again
634 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
635 */
636 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
637
638 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
639
640 end = orig_end;
641 found = 0;
642 while (1) {
643 ordered = btrfs_lookup_first_ordered_extent(inode, end);
644 if (!ordered)
645 break;
646 if (ordered->file_offset > orig_end) {
647 btrfs_put_ordered_extent(ordered);
648 break;
649 }
650 if (ordered->file_offset + ordered->len < start) {
651 btrfs_put_ordered_extent(ordered);
652 break;
653 }
654 found++;
655 btrfs_start_ordered_extent(inode, ordered, 1);
656 end = ordered->file_offset;
657 btrfs_put_ordered_extent(ordered);
658 if (end == 0 || end == start)
659 break;
660 end--;
661 }
662 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
663 EXTENT_DELALLOC, 0, NULL)) {
664 schedule_timeout(1);
665 goto again;
666 }
667 return 0;
668}
669
670/*
671 * find an ordered extent corresponding to file_offset. return NULL if
672 * nothing is found, otherwise take a reference on the extent and return it
673 */
674struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
675 u64 file_offset)
676{
677 struct btrfs_ordered_inode_tree *tree;
678 struct rb_node *node;
679 struct btrfs_ordered_extent *entry = NULL;
680
681 tree = &BTRFS_I(inode)->ordered_tree;
682 spin_lock(&tree->lock);
683 node = tree_search(tree, file_offset);
684 if (!node)
685 goto out;
686
687 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
688 if (!offset_in_entry(entry, file_offset))
689 entry = NULL;
690 if (entry)
691 atomic_inc(&entry->refs);
692out:
693 spin_unlock(&tree->lock);
694 return entry;
695}
696
697/* Since the DIO code tries to lock a wide area we need to look for any ordered
698 * extents that exist in the range, rather than just the start of the range.
699 */
700struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
701 u64 file_offset,
702 u64 len)
703{
704 struct btrfs_ordered_inode_tree *tree;
705 struct rb_node *node;
706 struct btrfs_ordered_extent *entry = NULL;
707
708 tree = &BTRFS_I(inode)->ordered_tree;
709 spin_lock(&tree->lock);
710 node = tree_search(tree, file_offset);
711 if (!node) {
712 node = tree_search(tree, file_offset + len);
713 if (!node)
714 goto out;
715 }
716
717 while (1) {
718 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
719 if (range_overlaps(entry, file_offset, len))
720 break;
721
722 if (entry->file_offset >= file_offset + len) {
723 entry = NULL;
724 break;
725 }
726 entry = NULL;
727 node = rb_next(node);
728 if (!node)
729 break;
730 }
731out:
732 if (entry)
733 atomic_inc(&entry->refs);
734 spin_unlock(&tree->lock);
735 return entry;
736}
737
738/*
739 * lookup and return any extent before 'file_offset'. NULL is returned
740 * if none is found
741 */
742struct btrfs_ordered_extent *
743btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
744{
745 struct btrfs_ordered_inode_tree *tree;
746 struct rb_node *node;
747 struct btrfs_ordered_extent *entry = NULL;
748
749 tree = &BTRFS_I(inode)->ordered_tree;
750 spin_lock(&tree->lock);
751 node = tree_search(tree, file_offset);
752 if (!node)
753 goto out;
754
755 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
756 atomic_inc(&entry->refs);
757out:
758 spin_unlock(&tree->lock);
759 return entry;
760}
761
762/*
763 * After an extent is done, call this to conditionally update the on disk
764 * i_size. i_size is updated to cover any fully written part of the file.
765 */
766int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
767 struct btrfs_ordered_extent *ordered)
768{
769 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
770 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
771 u64 disk_i_size;
772 u64 new_i_size;
773 u64 i_size_test;
774 u64 i_size = i_size_read(inode);
775 struct rb_node *node;
776 struct rb_node *prev = NULL;
777 struct btrfs_ordered_extent *test;
778 int ret = 1;
779
780 if (ordered)
781 offset = entry_end(ordered);
782 else
783 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
784
785 spin_lock(&tree->lock);
786 disk_i_size = BTRFS_I(inode)->disk_i_size;
787
788 /* truncate file */
789 if (disk_i_size > i_size) {
790 BTRFS_I(inode)->disk_i_size = i_size;
791 ret = 0;
792 goto out;
793 }
794
795 /*
796 * if the disk i_size is already at the inode->i_size, or
797 * this ordered extent is inside the disk i_size, we're done
798 */
799 if (disk_i_size == i_size || offset <= disk_i_size) {
800 goto out;
801 }
802
803 /*
804 * we can't update the disk_isize if there are delalloc bytes
805 * between disk_i_size and this ordered extent
806 */
807 if (test_range_bit(io_tree, disk_i_size, offset - 1,
808 EXTENT_DELALLOC, 0, NULL)) {
809 goto out;
810 }
811 /*
812 * walk backward from this ordered extent to disk_i_size.
813 * if we find an ordered extent then we can't update disk i_size
814 * yet
815 */
816 if (ordered) {
817 node = rb_prev(&ordered->rb_node);
818 } else {
819 prev = tree_search(tree, offset);
820 /*
821 * we insert file extents without involving ordered struct,
822 * so there should be no ordered struct cover this offset
823 */
824 if (prev) {
825 test = rb_entry(prev, struct btrfs_ordered_extent,
826 rb_node);
827 BUG_ON(offset_in_entry(test, offset));
828 }
829 node = prev;
830 }
831 while (node) {
832 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
833 if (test->file_offset + test->len <= disk_i_size)
834 break;
835 if (test->file_offset >= i_size)
836 break;
837 if (test->file_offset >= disk_i_size)
838 goto out;
839 node = rb_prev(node);
840 }
841 new_i_size = min_t(u64, offset, i_size);
842
843 /*
844 * at this point, we know we can safely update i_size to at least
845 * the offset from this ordered extent. But, we need to
846 * walk forward and see if ios from higher up in the file have
847 * finished.
848 */
849 if (ordered) {
850 node = rb_next(&ordered->rb_node);
851 } else {
852 if (prev)
853 node = rb_next(prev);
854 else
855 node = rb_first(&tree->tree);
856 }
857 i_size_test = 0;
858 if (node) {
859 /*
860 * do we have an area where IO might have finished
861 * between our ordered extent and the next one.
862 */
863 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
864 if (test->file_offset > offset)
865 i_size_test = test->file_offset;
866 } else {
867 i_size_test = i_size;
868 }
869
870 /*
871 * i_size_test is the end of a region after this ordered
872 * extent where there are no ordered extents. As long as there
873 * are no delalloc bytes in this area, it is safe to update
874 * disk_i_size to the end of the region.
875 */
876 if (i_size_test > offset &&
877 !test_range_bit(io_tree, offset, i_size_test - 1,
878 EXTENT_DELALLOC, 0, NULL)) {
879 new_i_size = min_t(u64, i_size_test, i_size);
880 }
881 BTRFS_I(inode)->disk_i_size = new_i_size;
882 ret = 0;
883out:
884 /*
885 * we need to remove the ordered extent with the tree lock held
886 * so that other people calling this function don't find our fully
887 * processed ordered entry and skip updating the i_size
888 */
889 if (ordered)
890 __btrfs_remove_ordered_extent(inode, ordered);
891 spin_unlock(&tree->lock);
892 if (ordered)
893 wake_up(&ordered->wait);
894 return ret;
895}
896
897/*
898 * search the ordered extents for one corresponding to 'offset' and
899 * try to find a checksum. This is used because we allow pages to
900 * be reclaimed before their checksum is actually put into the btree
901 */
902int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
903 u32 *sum)
904{
905 struct btrfs_ordered_sum *ordered_sum;
906 struct btrfs_sector_sum *sector_sums;
907 struct btrfs_ordered_extent *ordered;
908 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
909 unsigned long num_sectors;
910 unsigned long i;
911 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
912 int ret = 1;
913
914 ordered = btrfs_lookup_ordered_extent(inode, offset);
915 if (!ordered)
916 return 1;
917
918 spin_lock(&tree->lock);
919 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
920 if (disk_bytenr >= ordered_sum->bytenr) {
921 num_sectors = ordered_sum->len / sectorsize;
922 sector_sums = ordered_sum->sums;
923 for (i = 0; i < num_sectors; i++) {
924 if (sector_sums[i].bytenr == disk_bytenr) {
925 *sum = sector_sums[i].sum;
926 ret = 0;
927 goto out;
928 }
929 }
930 }
931 }
932out:
933 spin_unlock(&tree->lock);
934 btrfs_put_ordered_extent(ordered);
935 return ret;
936}
937
938
939/*
940 * add a given inode to the list of inodes that must be fully on
941 * disk before a transaction commit finishes.
942 *
943 * This basically gives us the ext3 style data=ordered mode, and it is mostly
944 * used to make sure renamed files are fully on disk.
945 *
946 * It is a noop if the inode is already fully on disk.
947 *
948 * If trans is not null, we'll do a friendly check for a transaction that
949 * is already flushing things and force the IO down ourselves.
950 */
951int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
952 struct btrfs_root *root,
953 struct inode *inode)
954{
955 u64 last_mod;
956
957 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
958
959 /*
960 * if this file hasn't been changed since the last transaction
961 * commit, we can safely return without doing anything
962 */
963 if (last_mod < root->fs_info->last_trans_committed)
964 return 0;
965
966 /*
967 * the transaction is already committing. Just start the IO and
968 * don't bother with all of this list nonsense
969 */
970 if (trans && root->fs_info->running_transaction->blocked) {
971 btrfs_wait_ordered_range(inode, 0, (u64)-1);
972 return 0;
973 }
974
975 spin_lock(&root->fs_info->ordered_extent_lock);
976 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
977 list_add_tail(&BTRFS_I(inode)->ordered_operations,
978 &root->fs_info->ordered_operations);
979 }
980 spin_unlock(&root->fs_info->ordered_extent_lock);
981
982 return 0;
983}
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/slab.h>
20#include <linux/blkdev.h>
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
26#include "extent_io.h"
27#include "disk-io.h"
28
29static struct kmem_cache *btrfs_ordered_extent_cache;
30
31static u64 entry_end(struct btrfs_ordered_extent *entry)
32{
33 if (entry->file_offset + entry->len < entry->file_offset)
34 return (u64)-1;
35 return entry->file_offset + entry->len;
36}
37
38/* returns NULL if the insertion worked, or it returns the node it did find
39 * in the tree
40 */
41static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 struct rb_node *node)
43{
44 struct rb_node **p = &root->rb_node;
45 struct rb_node *parent = NULL;
46 struct btrfs_ordered_extent *entry;
47
48 while (*p) {
49 parent = *p;
50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51
52 if (file_offset < entry->file_offset)
53 p = &(*p)->rb_left;
54 else if (file_offset >= entry_end(entry))
55 p = &(*p)->rb_right;
56 else
57 return parent;
58 }
59
60 rb_link_node(node, parent, p);
61 rb_insert_color(node, root);
62 return NULL;
63}
64
65static void ordered_data_tree_panic(struct inode *inode, int errno,
66 u64 offset)
67{
68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70 "%llu\n", offset);
71}
72
73/*
74 * look for a given offset in the tree, and if it can't be found return the
75 * first lesser offset
76 */
77static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 struct rb_node **prev_ret)
79{
80 struct rb_node *n = root->rb_node;
81 struct rb_node *prev = NULL;
82 struct rb_node *test;
83 struct btrfs_ordered_extent *entry;
84 struct btrfs_ordered_extent *prev_entry = NULL;
85
86 while (n) {
87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88 prev = n;
89 prev_entry = entry;
90
91 if (file_offset < entry->file_offset)
92 n = n->rb_left;
93 else if (file_offset >= entry_end(entry))
94 n = n->rb_right;
95 else
96 return n;
97 }
98 if (!prev_ret)
99 return NULL;
100
101 while (prev && file_offset >= entry_end(prev_entry)) {
102 test = rb_next(prev);
103 if (!test)
104 break;
105 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 rb_node);
107 if (file_offset < entry_end(prev_entry))
108 break;
109
110 prev = test;
111 }
112 if (prev)
113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 rb_node);
115 while (prev && file_offset < entry_end(prev_entry)) {
116 test = rb_prev(prev);
117 if (!test)
118 break;
119 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 rb_node);
121 prev = test;
122 }
123 *prev_ret = prev;
124 return NULL;
125}
126
127/*
128 * helper to check if a given offset is inside a given entry
129 */
130static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131{
132 if (file_offset < entry->file_offset ||
133 entry->file_offset + entry->len <= file_offset)
134 return 0;
135 return 1;
136}
137
138static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 u64 len)
140{
141 if (file_offset + len <= entry->file_offset ||
142 entry->file_offset + entry->len <= file_offset)
143 return 0;
144 return 1;
145}
146
147/*
148 * look find the first ordered struct that has this offset, otherwise
149 * the first one less than this offset
150 */
151static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 u64 file_offset)
153{
154 struct rb_root *root = &tree->tree;
155 struct rb_node *prev = NULL;
156 struct rb_node *ret;
157 struct btrfs_ordered_extent *entry;
158
159 if (tree->last) {
160 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 rb_node);
162 if (offset_in_entry(entry, file_offset))
163 return tree->last;
164 }
165 ret = __tree_search(root, file_offset, &prev);
166 if (!ret)
167 ret = prev;
168 if (ret)
169 tree->last = ret;
170 return ret;
171}
172
173/* allocate and add a new ordered_extent into the per-inode tree.
174 * file_offset is the logical offset in the file
175 *
176 * start is the disk block number of an extent already reserved in the
177 * extent allocation tree
178 *
179 * len is the length of the extent
180 *
181 * The tree is given a single reference on the ordered extent that was
182 * inserted.
183 */
184static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 u64 start, u64 len, u64 disk_len,
186 int type, int dio, int compress_type)
187{
188 struct btrfs_root *root = BTRFS_I(inode)->root;
189 struct btrfs_ordered_inode_tree *tree;
190 struct rb_node *node;
191 struct btrfs_ordered_extent *entry;
192
193 tree = &BTRFS_I(inode)->ordered_tree;
194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195 if (!entry)
196 return -ENOMEM;
197
198 entry->file_offset = file_offset;
199 entry->start = start;
200 entry->len = len;
201 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
202 !(type == BTRFS_ORDERED_NOCOW))
203 entry->csum_bytes_left = disk_len;
204 entry->disk_len = disk_len;
205 entry->bytes_left = len;
206 entry->inode = igrab(inode);
207 entry->compress_type = compress_type;
208 entry->truncated_len = (u64)-1;
209 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
210 set_bit(type, &entry->flags);
211
212 if (dio)
213 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
214
215 /* one ref for the tree */
216 atomic_set(&entry->refs, 1);
217 init_waitqueue_head(&entry->wait);
218 INIT_LIST_HEAD(&entry->list);
219 INIT_LIST_HEAD(&entry->root_extent_list);
220 INIT_LIST_HEAD(&entry->work_list);
221 init_completion(&entry->completion);
222 INIT_LIST_HEAD(&entry->log_list);
223
224 trace_btrfs_ordered_extent_add(inode, entry);
225
226 spin_lock_irq(&tree->lock);
227 node = tree_insert(&tree->tree, file_offset,
228 &entry->rb_node);
229 if (node)
230 ordered_data_tree_panic(inode, -EEXIST, file_offset);
231 spin_unlock_irq(&tree->lock);
232
233 spin_lock(&root->ordered_extent_lock);
234 list_add_tail(&entry->root_extent_list,
235 &root->ordered_extents);
236 root->nr_ordered_extents++;
237 if (root->nr_ordered_extents == 1) {
238 spin_lock(&root->fs_info->ordered_root_lock);
239 BUG_ON(!list_empty(&root->ordered_root));
240 list_add_tail(&root->ordered_root,
241 &root->fs_info->ordered_roots);
242 spin_unlock(&root->fs_info->ordered_root_lock);
243 }
244 spin_unlock(&root->ordered_extent_lock);
245
246 return 0;
247}
248
249int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
250 u64 start, u64 len, u64 disk_len, int type)
251{
252 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
253 disk_len, type, 0,
254 BTRFS_COMPRESS_NONE);
255}
256
257int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
258 u64 start, u64 len, u64 disk_len, int type)
259{
260 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261 disk_len, type, 1,
262 BTRFS_COMPRESS_NONE);
263}
264
265int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
266 u64 start, u64 len, u64 disk_len,
267 int type, int compress_type)
268{
269 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
270 disk_len, type, 0,
271 compress_type);
272}
273
274/*
275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
276 * when an ordered extent is finished. If the list covers more than one
277 * ordered extent, it is split across multiples.
278 */
279void btrfs_add_ordered_sum(struct inode *inode,
280 struct btrfs_ordered_extent *entry,
281 struct btrfs_ordered_sum *sum)
282{
283 struct btrfs_ordered_inode_tree *tree;
284
285 tree = &BTRFS_I(inode)->ordered_tree;
286 spin_lock_irq(&tree->lock);
287 list_add_tail(&sum->list, &entry->list);
288 WARN_ON(entry->csum_bytes_left < sum->len);
289 entry->csum_bytes_left -= sum->len;
290 if (entry->csum_bytes_left == 0)
291 wake_up(&entry->wait);
292 spin_unlock_irq(&tree->lock);
293}
294
295/*
296 * this is used to account for finished IO across a given range
297 * of the file. The IO may span ordered extents. If
298 * a given ordered_extent is completely done, 1 is returned, otherwise
299 * 0.
300 *
301 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
302 * to make sure this function only returns 1 once for a given ordered extent.
303 *
304 * file_offset is updated to one byte past the range that is recorded as
305 * complete. This allows you to walk forward in the file.
306 */
307int btrfs_dec_test_first_ordered_pending(struct inode *inode,
308 struct btrfs_ordered_extent **cached,
309 u64 *file_offset, u64 io_size, int uptodate)
310{
311 struct btrfs_ordered_inode_tree *tree;
312 struct rb_node *node;
313 struct btrfs_ordered_extent *entry = NULL;
314 int ret;
315 unsigned long flags;
316 u64 dec_end;
317 u64 dec_start;
318 u64 to_dec;
319
320 tree = &BTRFS_I(inode)->ordered_tree;
321 spin_lock_irqsave(&tree->lock, flags);
322 node = tree_search(tree, *file_offset);
323 if (!node) {
324 ret = 1;
325 goto out;
326 }
327
328 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
329 if (!offset_in_entry(entry, *file_offset)) {
330 ret = 1;
331 goto out;
332 }
333
334 dec_start = max(*file_offset, entry->file_offset);
335 dec_end = min(*file_offset + io_size, entry->file_offset +
336 entry->len);
337 *file_offset = dec_end;
338 if (dec_start > dec_end) {
339 btrfs_crit(BTRFS_I(inode)->root->fs_info,
340 "bad ordering dec_start %llu end %llu", dec_start, dec_end);
341 }
342 to_dec = dec_end - dec_start;
343 if (to_dec > entry->bytes_left) {
344 btrfs_crit(BTRFS_I(inode)->root->fs_info,
345 "bad ordered accounting left %llu size %llu",
346 entry->bytes_left, to_dec);
347 }
348 entry->bytes_left -= to_dec;
349 if (!uptodate)
350 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
351
352 if (entry->bytes_left == 0) {
353 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
354 if (waitqueue_active(&entry->wait))
355 wake_up(&entry->wait);
356 } else {
357 ret = 1;
358 }
359out:
360 if (!ret && cached && entry) {
361 *cached = entry;
362 atomic_inc(&entry->refs);
363 }
364 spin_unlock_irqrestore(&tree->lock, flags);
365 return ret == 0;
366}
367
368/*
369 * this is used to account for finished IO across a given range
370 * of the file. The IO should not span ordered extents. If
371 * a given ordered_extent is completely done, 1 is returned, otherwise
372 * 0.
373 *
374 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
375 * to make sure this function only returns 1 once for a given ordered extent.
376 */
377int btrfs_dec_test_ordered_pending(struct inode *inode,
378 struct btrfs_ordered_extent **cached,
379 u64 file_offset, u64 io_size, int uptodate)
380{
381 struct btrfs_ordered_inode_tree *tree;
382 struct rb_node *node;
383 struct btrfs_ordered_extent *entry = NULL;
384 unsigned long flags;
385 int ret;
386
387 tree = &BTRFS_I(inode)->ordered_tree;
388 spin_lock_irqsave(&tree->lock, flags);
389 if (cached && *cached) {
390 entry = *cached;
391 goto have_entry;
392 }
393
394 node = tree_search(tree, file_offset);
395 if (!node) {
396 ret = 1;
397 goto out;
398 }
399
400 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
401have_entry:
402 if (!offset_in_entry(entry, file_offset)) {
403 ret = 1;
404 goto out;
405 }
406
407 if (io_size > entry->bytes_left) {
408 btrfs_crit(BTRFS_I(inode)->root->fs_info,
409 "bad ordered accounting left %llu size %llu",
410 entry->bytes_left, io_size);
411 }
412 entry->bytes_left -= io_size;
413 if (!uptodate)
414 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
415
416 if (entry->bytes_left == 0) {
417 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
418 if (waitqueue_active(&entry->wait))
419 wake_up(&entry->wait);
420 } else {
421 ret = 1;
422 }
423out:
424 if (!ret && cached && entry) {
425 *cached = entry;
426 atomic_inc(&entry->refs);
427 }
428 spin_unlock_irqrestore(&tree->lock, flags);
429 return ret == 0;
430}
431
432/* Needs to either be called under a log transaction or the log_mutex */
433void btrfs_get_logged_extents(struct inode *inode,
434 struct list_head *logged_list)
435{
436 struct btrfs_ordered_inode_tree *tree;
437 struct btrfs_ordered_extent *ordered;
438 struct rb_node *n;
439
440 tree = &BTRFS_I(inode)->ordered_tree;
441 spin_lock_irq(&tree->lock);
442 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
443 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
444 if (!list_empty(&ordered->log_list))
445 continue;
446 list_add_tail(&ordered->log_list, logged_list);
447 atomic_inc(&ordered->refs);
448 }
449 spin_unlock_irq(&tree->lock);
450}
451
452void btrfs_put_logged_extents(struct list_head *logged_list)
453{
454 struct btrfs_ordered_extent *ordered;
455
456 while (!list_empty(logged_list)) {
457 ordered = list_first_entry(logged_list,
458 struct btrfs_ordered_extent,
459 log_list);
460 list_del_init(&ordered->log_list);
461 btrfs_put_ordered_extent(ordered);
462 }
463}
464
465void btrfs_submit_logged_extents(struct list_head *logged_list,
466 struct btrfs_root *log)
467{
468 int index = log->log_transid % 2;
469
470 spin_lock_irq(&log->log_extents_lock[index]);
471 list_splice_tail(logged_list, &log->logged_list[index]);
472 spin_unlock_irq(&log->log_extents_lock[index]);
473}
474
475void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
476{
477 struct btrfs_ordered_extent *ordered;
478 int index = transid % 2;
479
480 spin_lock_irq(&log->log_extents_lock[index]);
481 while (!list_empty(&log->logged_list[index])) {
482 ordered = list_first_entry(&log->logged_list[index],
483 struct btrfs_ordered_extent,
484 log_list);
485 list_del_init(&ordered->log_list);
486 spin_unlock_irq(&log->log_extents_lock[index]);
487 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
488 &ordered->flags));
489 btrfs_put_ordered_extent(ordered);
490 spin_lock_irq(&log->log_extents_lock[index]);
491 }
492 spin_unlock_irq(&log->log_extents_lock[index]);
493}
494
495void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
496{
497 struct btrfs_ordered_extent *ordered;
498 int index = transid % 2;
499
500 spin_lock_irq(&log->log_extents_lock[index]);
501 while (!list_empty(&log->logged_list[index])) {
502 ordered = list_first_entry(&log->logged_list[index],
503 struct btrfs_ordered_extent,
504 log_list);
505 list_del_init(&ordered->log_list);
506 spin_unlock_irq(&log->log_extents_lock[index]);
507 btrfs_put_ordered_extent(ordered);
508 spin_lock_irq(&log->log_extents_lock[index]);
509 }
510 spin_unlock_irq(&log->log_extents_lock[index]);
511}
512
513/*
514 * used to drop a reference on an ordered extent. This will free
515 * the extent if the last reference is dropped
516 */
517void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
518{
519 struct list_head *cur;
520 struct btrfs_ordered_sum *sum;
521
522 trace_btrfs_ordered_extent_put(entry->inode, entry);
523
524 if (atomic_dec_and_test(&entry->refs)) {
525 if (entry->inode)
526 btrfs_add_delayed_iput(entry->inode);
527 while (!list_empty(&entry->list)) {
528 cur = entry->list.next;
529 sum = list_entry(cur, struct btrfs_ordered_sum, list);
530 list_del(&sum->list);
531 kfree(sum);
532 }
533 kmem_cache_free(btrfs_ordered_extent_cache, entry);
534 }
535}
536
537/*
538 * remove an ordered extent from the tree. No references are dropped
539 * and waiters are woken up.
540 */
541void btrfs_remove_ordered_extent(struct inode *inode,
542 struct btrfs_ordered_extent *entry)
543{
544 struct btrfs_ordered_inode_tree *tree;
545 struct btrfs_root *root = BTRFS_I(inode)->root;
546 struct rb_node *node;
547
548 tree = &BTRFS_I(inode)->ordered_tree;
549 spin_lock_irq(&tree->lock);
550 node = &entry->rb_node;
551 rb_erase(node, &tree->tree);
552 if (tree->last == node)
553 tree->last = NULL;
554 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
555 spin_unlock_irq(&tree->lock);
556
557 spin_lock(&root->ordered_extent_lock);
558 list_del_init(&entry->root_extent_list);
559 root->nr_ordered_extents--;
560
561 trace_btrfs_ordered_extent_remove(inode, entry);
562
563 /*
564 * we have no more ordered extents for this inode and
565 * no dirty pages. We can safely remove it from the
566 * list of ordered extents
567 */
568 if (RB_EMPTY_ROOT(&tree->tree) &&
569 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
570 spin_lock(&root->fs_info->ordered_root_lock);
571 list_del_init(&BTRFS_I(inode)->ordered_operations);
572 spin_unlock(&root->fs_info->ordered_root_lock);
573 }
574
575 if (!root->nr_ordered_extents) {
576 spin_lock(&root->fs_info->ordered_root_lock);
577 BUG_ON(list_empty(&root->ordered_root));
578 list_del_init(&root->ordered_root);
579 spin_unlock(&root->fs_info->ordered_root_lock);
580 }
581 spin_unlock(&root->ordered_extent_lock);
582 wake_up(&entry->wait);
583}
584
585static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
586{
587 struct btrfs_ordered_extent *ordered;
588
589 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
590 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
591 complete(&ordered->completion);
592}
593
594/*
595 * wait for all the ordered extents in a root. This is done when balancing
596 * space between drives.
597 */
598int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
599{
600 struct list_head splice, works;
601 struct btrfs_ordered_extent *ordered, *next;
602 int count = 0;
603
604 INIT_LIST_HEAD(&splice);
605 INIT_LIST_HEAD(&works);
606
607 mutex_lock(&root->ordered_extent_mutex);
608 spin_lock(&root->ordered_extent_lock);
609 list_splice_init(&root->ordered_extents, &splice);
610 while (!list_empty(&splice) && nr) {
611 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
612 root_extent_list);
613 list_move_tail(&ordered->root_extent_list,
614 &root->ordered_extents);
615 atomic_inc(&ordered->refs);
616 spin_unlock(&root->ordered_extent_lock);
617
618 btrfs_init_work(&ordered->flush_work,
619 btrfs_run_ordered_extent_work, NULL, NULL);
620 list_add_tail(&ordered->work_list, &works);
621 btrfs_queue_work(root->fs_info->flush_workers,
622 &ordered->flush_work);
623
624 cond_resched();
625 spin_lock(&root->ordered_extent_lock);
626 if (nr != -1)
627 nr--;
628 count++;
629 }
630 list_splice_tail(&splice, &root->ordered_extents);
631 spin_unlock(&root->ordered_extent_lock);
632
633 list_for_each_entry_safe(ordered, next, &works, work_list) {
634 list_del_init(&ordered->work_list);
635 wait_for_completion(&ordered->completion);
636 btrfs_put_ordered_extent(ordered);
637 cond_resched();
638 }
639 mutex_unlock(&root->ordered_extent_mutex);
640
641 return count;
642}
643
644void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
645{
646 struct btrfs_root *root;
647 struct list_head splice;
648 int done;
649
650 INIT_LIST_HEAD(&splice);
651
652 mutex_lock(&fs_info->ordered_operations_mutex);
653 spin_lock(&fs_info->ordered_root_lock);
654 list_splice_init(&fs_info->ordered_roots, &splice);
655 while (!list_empty(&splice) && nr) {
656 root = list_first_entry(&splice, struct btrfs_root,
657 ordered_root);
658 root = btrfs_grab_fs_root(root);
659 BUG_ON(!root);
660 list_move_tail(&root->ordered_root,
661 &fs_info->ordered_roots);
662 spin_unlock(&fs_info->ordered_root_lock);
663
664 done = btrfs_wait_ordered_extents(root, nr);
665 btrfs_put_fs_root(root);
666
667 spin_lock(&fs_info->ordered_root_lock);
668 if (nr != -1) {
669 nr -= done;
670 WARN_ON(nr < 0);
671 }
672 }
673 list_splice_tail(&splice, &fs_info->ordered_roots);
674 spin_unlock(&fs_info->ordered_root_lock);
675 mutex_unlock(&fs_info->ordered_operations_mutex);
676}
677
678/*
679 * this is used during transaction commit to write all the inodes
680 * added to the ordered operation list. These files must be fully on
681 * disk before the transaction commits.
682 *
683 * we have two modes here, one is to just start the IO via filemap_flush
684 * and the other is to wait for all the io. When we wait, we have an
685 * extra check to make sure the ordered operation list really is empty
686 * before we return
687 */
688int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
689 struct btrfs_root *root, int wait)
690{
691 struct btrfs_inode *btrfs_inode;
692 struct inode *inode;
693 struct btrfs_transaction *cur_trans = trans->transaction;
694 struct list_head splice;
695 struct list_head works;
696 struct btrfs_delalloc_work *work, *next;
697 int ret = 0;
698
699 INIT_LIST_HEAD(&splice);
700 INIT_LIST_HEAD(&works);
701
702 mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
703 spin_lock(&root->fs_info->ordered_root_lock);
704 list_splice_init(&cur_trans->ordered_operations, &splice);
705 while (!list_empty(&splice)) {
706 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
707 ordered_operations);
708 inode = &btrfs_inode->vfs_inode;
709
710 list_del_init(&btrfs_inode->ordered_operations);
711
712 /*
713 * the inode may be getting freed (in sys_unlink path).
714 */
715 inode = igrab(inode);
716 if (!inode)
717 continue;
718
719 if (!wait)
720 list_add_tail(&BTRFS_I(inode)->ordered_operations,
721 &cur_trans->ordered_operations);
722 spin_unlock(&root->fs_info->ordered_root_lock);
723
724 work = btrfs_alloc_delalloc_work(inode, wait, 1);
725 if (!work) {
726 spin_lock(&root->fs_info->ordered_root_lock);
727 if (list_empty(&BTRFS_I(inode)->ordered_operations))
728 list_add_tail(&btrfs_inode->ordered_operations,
729 &splice);
730 list_splice_tail(&splice,
731 &cur_trans->ordered_operations);
732 spin_unlock(&root->fs_info->ordered_root_lock);
733 ret = -ENOMEM;
734 goto out;
735 }
736 list_add_tail(&work->list, &works);
737 btrfs_queue_work(root->fs_info->flush_workers,
738 &work->work);
739
740 cond_resched();
741 spin_lock(&root->fs_info->ordered_root_lock);
742 }
743 spin_unlock(&root->fs_info->ordered_root_lock);
744out:
745 list_for_each_entry_safe(work, next, &works, list) {
746 list_del_init(&work->list);
747 btrfs_wait_and_free_delalloc_work(work);
748 }
749 mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
750 return ret;
751}
752
753/*
754 * Used to start IO or wait for a given ordered extent to finish.
755 *
756 * If wait is one, this effectively waits on page writeback for all the pages
757 * in the extent, and it waits on the io completion code to insert
758 * metadata into the btree corresponding to the extent
759 */
760void btrfs_start_ordered_extent(struct inode *inode,
761 struct btrfs_ordered_extent *entry,
762 int wait)
763{
764 u64 start = entry->file_offset;
765 u64 end = start + entry->len - 1;
766
767 trace_btrfs_ordered_extent_start(inode, entry);
768
769 /*
770 * pages in the range can be dirty, clean or writeback. We
771 * start IO on any dirty ones so the wait doesn't stall waiting
772 * for the flusher thread to find them
773 */
774 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
775 filemap_fdatawrite_range(inode->i_mapping, start, end);
776 if (wait) {
777 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
778 &entry->flags));
779 }
780}
781
782/*
783 * Used to wait on ordered extents across a large range of bytes.
784 */
785int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
786{
787 int ret = 0;
788 u64 end;
789 u64 orig_end;
790 struct btrfs_ordered_extent *ordered;
791
792 if (start + len < start) {
793 orig_end = INT_LIMIT(loff_t);
794 } else {
795 orig_end = start + len - 1;
796 if (orig_end > INT_LIMIT(loff_t))
797 orig_end = INT_LIMIT(loff_t);
798 }
799
800 /* start IO across the range first to instantiate any delalloc
801 * extents
802 */
803 ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
804 if (ret)
805 return ret;
806 /*
807 * So with compression we will find and lock a dirty page and clear the
808 * first one as dirty, setup an async extent, and immediately return
809 * with the entire range locked but with nobody actually marked with
810 * writeback. So we can't just filemap_write_and_wait_range() and
811 * expect it to work since it will just kick off a thread to do the
812 * actual work. So we need to call filemap_fdatawrite_range _again_
813 * since it will wait on the page lock, which won't be unlocked until
814 * after the pages have been marked as writeback and so we're good to go
815 * from there. We have to do this otherwise we'll miss the ordered
816 * extents and that results in badness. Please Josef, do not think you
817 * know better and pull this out at some point in the future, it is
818 * right and you are wrong.
819 */
820 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
821 &BTRFS_I(inode)->runtime_flags)) {
822 ret = filemap_fdatawrite_range(inode->i_mapping, start,
823 orig_end);
824 if (ret)
825 return ret;
826 }
827 ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
828 if (ret)
829 return ret;
830
831 end = orig_end;
832 while (1) {
833 ordered = btrfs_lookup_first_ordered_extent(inode, end);
834 if (!ordered)
835 break;
836 if (ordered->file_offset > orig_end) {
837 btrfs_put_ordered_extent(ordered);
838 break;
839 }
840 if (ordered->file_offset + ordered->len <= start) {
841 btrfs_put_ordered_extent(ordered);
842 break;
843 }
844 btrfs_start_ordered_extent(inode, ordered, 1);
845 end = ordered->file_offset;
846 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
847 ret = -EIO;
848 btrfs_put_ordered_extent(ordered);
849 if (ret || end == 0 || end == start)
850 break;
851 end--;
852 }
853 return ret;
854}
855
856/*
857 * find an ordered extent corresponding to file_offset. return NULL if
858 * nothing is found, otherwise take a reference on the extent and return it
859 */
860struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
861 u64 file_offset)
862{
863 struct btrfs_ordered_inode_tree *tree;
864 struct rb_node *node;
865 struct btrfs_ordered_extent *entry = NULL;
866
867 tree = &BTRFS_I(inode)->ordered_tree;
868 spin_lock_irq(&tree->lock);
869 node = tree_search(tree, file_offset);
870 if (!node)
871 goto out;
872
873 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
874 if (!offset_in_entry(entry, file_offset))
875 entry = NULL;
876 if (entry)
877 atomic_inc(&entry->refs);
878out:
879 spin_unlock_irq(&tree->lock);
880 return entry;
881}
882
883/* Since the DIO code tries to lock a wide area we need to look for any ordered
884 * extents that exist in the range, rather than just the start of the range.
885 */
886struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
887 u64 file_offset,
888 u64 len)
889{
890 struct btrfs_ordered_inode_tree *tree;
891 struct rb_node *node;
892 struct btrfs_ordered_extent *entry = NULL;
893
894 tree = &BTRFS_I(inode)->ordered_tree;
895 spin_lock_irq(&tree->lock);
896 node = tree_search(tree, file_offset);
897 if (!node) {
898 node = tree_search(tree, file_offset + len);
899 if (!node)
900 goto out;
901 }
902
903 while (1) {
904 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
905 if (range_overlaps(entry, file_offset, len))
906 break;
907
908 if (entry->file_offset >= file_offset + len) {
909 entry = NULL;
910 break;
911 }
912 entry = NULL;
913 node = rb_next(node);
914 if (!node)
915 break;
916 }
917out:
918 if (entry)
919 atomic_inc(&entry->refs);
920 spin_unlock_irq(&tree->lock);
921 return entry;
922}
923
924/*
925 * lookup and return any extent before 'file_offset'. NULL is returned
926 * if none is found
927 */
928struct btrfs_ordered_extent *
929btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
930{
931 struct btrfs_ordered_inode_tree *tree;
932 struct rb_node *node;
933 struct btrfs_ordered_extent *entry = NULL;
934
935 tree = &BTRFS_I(inode)->ordered_tree;
936 spin_lock_irq(&tree->lock);
937 node = tree_search(tree, file_offset);
938 if (!node)
939 goto out;
940
941 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
942 atomic_inc(&entry->refs);
943out:
944 spin_unlock_irq(&tree->lock);
945 return entry;
946}
947
948/*
949 * After an extent is done, call this to conditionally update the on disk
950 * i_size. i_size is updated to cover any fully written part of the file.
951 */
952int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
953 struct btrfs_ordered_extent *ordered)
954{
955 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
956 u64 disk_i_size;
957 u64 new_i_size;
958 u64 i_size = i_size_read(inode);
959 struct rb_node *node;
960 struct rb_node *prev = NULL;
961 struct btrfs_ordered_extent *test;
962 int ret = 1;
963
964 spin_lock_irq(&tree->lock);
965 if (ordered) {
966 offset = entry_end(ordered);
967 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
968 offset = min(offset,
969 ordered->file_offset +
970 ordered->truncated_len);
971 } else {
972 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
973 }
974 disk_i_size = BTRFS_I(inode)->disk_i_size;
975
976 /* truncate file */
977 if (disk_i_size > i_size) {
978 BTRFS_I(inode)->disk_i_size = i_size;
979 ret = 0;
980 goto out;
981 }
982
983 /*
984 * if the disk i_size is already at the inode->i_size, or
985 * this ordered extent is inside the disk i_size, we're done
986 */
987 if (disk_i_size == i_size)
988 goto out;
989
990 /*
991 * We still need to update disk_i_size if outstanding_isize is greater
992 * than disk_i_size.
993 */
994 if (offset <= disk_i_size &&
995 (!ordered || ordered->outstanding_isize <= disk_i_size))
996 goto out;
997
998 /*
999 * walk backward from this ordered extent to disk_i_size.
1000 * if we find an ordered extent then we can't update disk i_size
1001 * yet
1002 */
1003 if (ordered) {
1004 node = rb_prev(&ordered->rb_node);
1005 } else {
1006 prev = tree_search(tree, offset);
1007 /*
1008 * we insert file extents without involving ordered struct,
1009 * so there should be no ordered struct cover this offset
1010 */
1011 if (prev) {
1012 test = rb_entry(prev, struct btrfs_ordered_extent,
1013 rb_node);
1014 BUG_ON(offset_in_entry(test, offset));
1015 }
1016 node = prev;
1017 }
1018 for (; node; node = rb_prev(node)) {
1019 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1020
1021 /* We treat this entry as if it doesnt exist */
1022 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1023 continue;
1024 if (test->file_offset + test->len <= disk_i_size)
1025 break;
1026 if (test->file_offset >= i_size)
1027 break;
1028 if (entry_end(test) > disk_i_size) {
1029 /*
1030 * we don't update disk_i_size now, so record this
1031 * undealt i_size. Or we will not know the real
1032 * i_size.
1033 */
1034 if (test->outstanding_isize < offset)
1035 test->outstanding_isize = offset;
1036 if (ordered &&
1037 ordered->outstanding_isize >
1038 test->outstanding_isize)
1039 test->outstanding_isize =
1040 ordered->outstanding_isize;
1041 goto out;
1042 }
1043 }
1044 new_i_size = min_t(u64, offset, i_size);
1045
1046 /*
1047 * Some ordered extents may completed before the current one, and
1048 * we hold the real i_size in ->outstanding_isize.
1049 */
1050 if (ordered && ordered->outstanding_isize > new_i_size)
1051 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1052 BTRFS_I(inode)->disk_i_size = new_i_size;
1053 ret = 0;
1054out:
1055 /*
1056 * We need to do this because we can't remove ordered extents until
1057 * after the i_disk_size has been updated and then the inode has been
1058 * updated to reflect the change, so we need to tell anybody who finds
1059 * this ordered extent that we've already done all the real work, we
1060 * just haven't completed all the other work.
1061 */
1062 if (ordered)
1063 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1064 spin_unlock_irq(&tree->lock);
1065 return ret;
1066}
1067
1068/*
1069 * search the ordered extents for one corresponding to 'offset' and
1070 * try to find a checksum. This is used because we allow pages to
1071 * be reclaimed before their checksum is actually put into the btree
1072 */
1073int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1074 u32 *sum, int len)
1075{
1076 struct btrfs_ordered_sum *ordered_sum;
1077 struct btrfs_ordered_extent *ordered;
1078 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1079 unsigned long num_sectors;
1080 unsigned long i;
1081 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1082 int index = 0;
1083
1084 ordered = btrfs_lookup_ordered_extent(inode, offset);
1085 if (!ordered)
1086 return 0;
1087
1088 spin_lock_irq(&tree->lock);
1089 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1090 if (disk_bytenr >= ordered_sum->bytenr &&
1091 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1092 i = (disk_bytenr - ordered_sum->bytenr) >>
1093 inode->i_sb->s_blocksize_bits;
1094 num_sectors = ordered_sum->len >>
1095 inode->i_sb->s_blocksize_bits;
1096 num_sectors = min_t(int, len - index, num_sectors - i);
1097 memcpy(sum + index, ordered_sum->sums + i,
1098 num_sectors);
1099
1100 index += (int)num_sectors;
1101 if (index == len)
1102 goto out;
1103 disk_bytenr += num_sectors * sectorsize;
1104 }
1105 }
1106out:
1107 spin_unlock_irq(&tree->lock);
1108 btrfs_put_ordered_extent(ordered);
1109 return index;
1110}
1111
1112
1113/*
1114 * add a given inode to the list of inodes that must be fully on
1115 * disk before a transaction commit finishes.
1116 *
1117 * This basically gives us the ext3 style data=ordered mode, and it is mostly
1118 * used to make sure renamed files are fully on disk.
1119 *
1120 * It is a noop if the inode is already fully on disk.
1121 *
1122 * If trans is not null, we'll do a friendly check for a transaction that
1123 * is already flushing things and force the IO down ourselves.
1124 */
1125void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1126 struct btrfs_root *root, struct inode *inode)
1127{
1128 struct btrfs_transaction *cur_trans = trans->transaction;
1129 u64 last_mod;
1130
1131 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1132
1133 /*
1134 * if this file hasn't been changed since the last transaction
1135 * commit, we can safely return without doing anything
1136 */
1137 if (last_mod <= root->fs_info->last_trans_committed)
1138 return;
1139
1140 spin_lock(&root->fs_info->ordered_root_lock);
1141 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1142 list_add_tail(&BTRFS_I(inode)->ordered_operations,
1143 &cur_trans->ordered_operations);
1144 }
1145 spin_unlock(&root->fs_info->ordered_root_lock);
1146}
1147
1148int __init ordered_data_init(void)
1149{
1150 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1151 sizeof(struct btrfs_ordered_extent), 0,
1152 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1153 NULL);
1154 if (!btrfs_ordered_extent_cache)
1155 return -ENOMEM;
1156
1157 return 0;
1158}
1159
1160void ordered_data_exit(void)
1161{
1162 if (btrfs_ordered_extent_cache)
1163 kmem_cache_destroy(btrfs_ordered_extent_cache);
1164}