Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
 
 
 
 
  21#include "ctree.h"
  22#include "disk-io.h"
  23#include "transaction.h"
  24#include "print-tree.h"
  25#include "locking.h"
 
 
 
 
 
 
 
 
 
 
 
  26
  27static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  28		      *root, struct btrfs_path *path, int level);
  29static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  30		      *root, struct btrfs_key *ins_key,
  31		      struct btrfs_path *path, int data_size, int extend);
  32static int push_node_left(struct btrfs_trans_handle *trans,
  33			  struct btrfs_root *root, struct extent_buffer *dst,
  34			  struct extent_buffer *src, int empty);
  35static int balance_node_right(struct btrfs_trans_handle *trans,
  36			      struct btrfs_root *root,
  37			      struct extent_buffer *dst_buf,
  38			      struct extent_buffer *src_buf);
  39static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  40		   struct btrfs_path *path, int level, int slot);
  41
  42struct btrfs_path *btrfs_alloc_path(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43{
  44	struct btrfs_path *path;
  45	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  46	return path;
 
 
  47}
  48
  49/*
  50 * set all locked nodes in the path to blocking locks.  This should
  51 * be done before scheduling
 
 
 
 
 
 
 
 
 
  52 */
  53noinline void btrfs_set_path_blocking(struct btrfs_path *p)
 
 
 
  54{
  55	int i;
  56	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  57		if (!p->nodes[i] || !p->locks[i])
  58			continue;
  59		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  60		if (p->locks[i] == BTRFS_READ_LOCK)
  61			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  62		else if (p->locks[i] == BTRFS_WRITE_LOCK)
  63			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  64	}
  65}
  66
  67/*
  68 * reset all the locked nodes in the patch to spinning locks.
  69 *
  70 * held is used to keep lockdep happy, when lockdep is enabled
  71 * we set held to a blocking lock before we go around and
  72 * retake all the spinlocks in the path.  You can safely use NULL
  73 * for held
 
 
 
 
 
 
  74 */
  75noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  76					struct extent_buffer *held, int held_rw)
 
 
  77{
  78	int i;
 
 
  79
  80#ifdef CONFIG_DEBUG_LOCK_ALLOC
  81	/* lockdep really cares that we take all of these spinlocks
  82	 * in the right order.  If any of the locks in the path are not
  83	 * currently blocking, it is going to complain.  So, make really
  84	 * really sure by forcing the path to blocking before we clear
  85	 * the path blocking.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86	 */
  87	if (held) {
  88		btrfs_set_lock_blocking_rw(held, held_rw);
  89		if (held_rw == BTRFS_WRITE_LOCK)
  90			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  91		else if (held_rw == BTRFS_READ_LOCK)
  92			held_rw = BTRFS_READ_LOCK_BLOCKING;
  93	}
  94	btrfs_set_path_blocking(p);
  95#endif
  96
  97	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  98		if (p->nodes[i] && p->locks[i]) {
  99			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
 100			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
 101				p->locks[i] = BTRFS_WRITE_LOCK;
 102			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
 103				p->locks[i] = BTRFS_READ_LOCK;
 104		}
 105	}
 106
 107#ifdef CONFIG_DEBUG_LOCK_ALLOC
 108	if (held)
 109		btrfs_clear_lock_blocking_rw(held, held_rw);
 110#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111}
 112
 113/* this also releases the path */
 114void btrfs_free_path(struct btrfs_path *p)
 115{
 116	if (!p)
 117		return;
 118	btrfs_release_path(p);
 119	kmem_cache_free(btrfs_path_cachep, p);
 120}
 121
 122/*
 123 * path release drops references on the extent buffers in the path
 124 * and it drops any locks held by this path
 125 *
 126 * It is safe to call this on paths that no locks or extent buffers held.
 127 */
 128noinline void btrfs_release_path(struct btrfs_path *p)
 129{
 130	int i;
 131
 132	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 133		p->slots[i] = 0;
 134		if (!p->nodes[i])
 135			continue;
 136		if (p->locks[i]) {
 137			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 138			p->locks[i] = 0;
 139		}
 140		free_extent_buffer(p->nodes[i]);
 141		p->nodes[i] = NULL;
 142	}
 143}
 144
 145/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 146 * safely gets a reference on the root node of a tree.  A lock
 147 * is not taken, so a concurrent writer may put a different node
 148 * at the root of the tree.  See btrfs_lock_root_node for the
 149 * looping required.
 150 *
 151 * The extent buffer returned by this has a reference taken, so
 152 * it won't disappear.  It may stop being the root of the tree
 153 * at any time because there are no locks held.
 154 */
 155struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 156{
 157	struct extent_buffer *eb;
 158
 159	rcu_read_lock();
 160	eb = rcu_dereference(root->node);
 161	extent_buffer_get(eb);
 162	rcu_read_unlock();
 163	return eb;
 164}
 165
 166/* loop around taking references on and locking the root node of the
 167 * tree until you end up with a lock on the root.  A locked buffer
 168 * is returned, with a reference held.
 169 */
 170struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 171{
 172	struct extent_buffer *eb;
 173
 174	while (1) {
 175		eb = btrfs_root_node(root);
 176		btrfs_tree_lock(eb);
 177		if (eb == root->node)
 178			break;
 179		btrfs_tree_unlock(eb);
 180		free_extent_buffer(eb);
 181	}
 182	return eb;
 183}
 184
 185/* loop around taking references on and locking the root node of the
 186 * tree until you end up with a lock on the root.  A locked buffer
 187 * is returned, with a reference held.
 188 */
 189struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 190{
 191	struct extent_buffer *eb;
 192
 193	while (1) {
 194		eb = btrfs_root_node(root);
 195		btrfs_tree_read_lock(eb);
 196		if (eb == root->node)
 197			break;
 198		btrfs_tree_read_unlock(eb);
 199		free_extent_buffer(eb);
 
 200	}
 201	return eb;
 202}
 203
 204/* cowonly root (everything not a reference counted cow subvolume), just get
 205 * put onto a simple dirty list.  transaction.c walks this to make sure they
 206 * get properly updated on disk.
 
 207 */
 208static void add_root_to_dirty_list(struct btrfs_root *root)
 209{
 210	if (root->track_dirty && list_empty(&root->dirty_list)) {
 211		list_add(&root->dirty_list,
 212			 &root->fs_info->dirty_cowonly_roots);
 
 
 
 
 
 
 
 
 
 
 
 
 213	}
 
 214}
 215
 216/*
 217 * used by snapshot creation to make a copy of a root for a tree with
 218 * a given objectid.  The buffer with the new root node is returned in
 219 * cow_ret, and this func returns zero on success or a negative error code.
 220 */
 221int btrfs_copy_root(struct btrfs_trans_handle *trans,
 222		      struct btrfs_root *root,
 223		      struct extent_buffer *buf,
 224		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 225{
 
 226	struct extent_buffer *cow;
 227	int ret = 0;
 228	int level;
 229	struct btrfs_disk_key disk_key;
 230
 231	WARN_ON(root->ref_cows && trans->transid !=
 232		root->fs_info->running_transaction->transid);
 233	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
 
 234
 235	level = btrfs_header_level(buf);
 236	if (level == 0)
 237		btrfs_item_key(buf, &disk_key, 0);
 238	else
 239		btrfs_node_key(buf, &disk_key, 0);
 240
 241	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
 242				     new_root_objectid, &disk_key, level,
 243				     buf->start, 0);
 244	if (IS_ERR(cow))
 245		return PTR_ERR(cow);
 246
 247	copy_extent_buffer(cow, buf, 0, 0, cow->len);
 248	btrfs_set_header_bytenr(cow, cow->start);
 249	btrfs_set_header_generation(cow, trans->transid);
 250	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 251	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 252				     BTRFS_HEADER_FLAG_RELOC);
 253	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 254		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 255	else
 256		btrfs_set_header_owner(cow, new_root_objectid);
 257
 258	write_extent_buffer(cow, root->fs_info->fsid,
 259			    (unsigned long)btrfs_header_fsid(cow),
 260			    BTRFS_FSID_SIZE);
 261
 262	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 263	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 264		ret = btrfs_inc_ref(trans, root, cow, 1);
 265	else
 266		ret = btrfs_inc_ref(trans, root, cow, 0);
 267
 268	if (ret)
 
 
 269		return ret;
 
 270
 271	btrfs_mark_buffer_dirty(cow);
 272	*cow_ret = cow;
 273	return 0;
 274}
 275
 276/*
 277 * check if the tree block can be shared by multiple trees
 278 */
 279int btrfs_block_can_be_shared(struct btrfs_root *root,
 280			      struct extent_buffer *buf)
 281{
 282	/*
 283	 * Tree blocks not in refernece counted trees and tree roots
 284	 * are never shared. If a block was allocated after the last
 285	 * snapshot and the block was not allocated by tree relocation,
 286	 * we know the block is not shared.
 287	 */
 288	if (root->ref_cows &&
 289	    buf != root->node && buf != root->commit_root &&
 290	    (btrfs_header_generation(buf) <=
 291	     btrfs_root_last_snapshot(&root->root_item) ||
 292	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 293		return 1;
 294#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 295	if (root->ref_cows &&
 296	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 297		return 1;
 298#endif
 299	return 0;
 300}
 301
 302static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 303				       struct btrfs_root *root,
 304				       struct extent_buffer *buf,
 305				       struct extent_buffer *cow,
 306				       int *last_ref)
 307{
 
 308	u64 refs;
 309	u64 owner;
 310	u64 flags;
 311	u64 new_flags = 0;
 312	int ret;
 313
 314	/*
 315	 * Backrefs update rules:
 316	 *
 317	 * Always use full backrefs for extent pointers in tree block
 318	 * allocated by tree relocation.
 319	 *
 320	 * If a shared tree block is no longer referenced by its owner
 321	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 322	 * use full backrefs for extent pointers in tree block.
 323	 *
 324	 * If a tree block is been relocating
 325	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 326	 * use full backrefs for extent pointers in tree block.
 327	 * The reason for this is some operations (such as drop tree)
 328	 * are only allowed for blocks use full backrefs.
 329	 */
 330
 331	if (btrfs_block_can_be_shared(root, buf)) {
 332		ret = btrfs_lookup_extent_info(trans, root, buf->start,
 333					       buf->len, &refs, &flags);
 334		BUG_ON(ret);
 335		BUG_ON(refs == 0);
 
 
 
 
 
 
 336	} else {
 337		refs = 1;
 338		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 339		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 340			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 341		else
 342			flags = 0;
 343	}
 344
 345	owner = btrfs_header_owner(buf);
 346	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 347	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 348
 349	if (refs > 1) {
 350		if ((owner == root->root_key.objectid ||
 351		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 352		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 353			ret = btrfs_inc_ref(trans, root, buf, 1);
 354			BUG_ON(ret);
 
 355
 356			if (root->root_key.objectid ==
 357			    BTRFS_TREE_RELOC_OBJECTID) {
 358				ret = btrfs_dec_ref(trans, root, buf, 0);
 359				BUG_ON(ret);
 
 360				ret = btrfs_inc_ref(trans, root, cow, 1);
 361				BUG_ON(ret);
 
 362			}
 363			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 364		} else {
 365
 366			if (root->root_key.objectid ==
 367			    BTRFS_TREE_RELOC_OBJECTID)
 368				ret = btrfs_inc_ref(trans, root, cow, 1);
 369			else
 370				ret = btrfs_inc_ref(trans, root, cow, 0);
 371			BUG_ON(ret);
 
 372		}
 373		if (new_flags != 0) {
 374			ret = btrfs_set_disk_extent_flags(trans, root,
 375							  buf->start,
 376							  buf->len,
 377							  new_flags, 0);
 378			BUG_ON(ret);
 
 379		}
 380	} else {
 381		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 382			if (root->root_key.objectid ==
 383			    BTRFS_TREE_RELOC_OBJECTID)
 384				ret = btrfs_inc_ref(trans, root, cow, 1);
 385			else
 386				ret = btrfs_inc_ref(trans, root, cow, 0);
 387			BUG_ON(ret);
 
 388			ret = btrfs_dec_ref(trans, root, buf, 1);
 389			BUG_ON(ret);
 
 390		}
 391		clean_tree_block(trans, root, buf);
 392		*last_ref = 1;
 393	}
 394	return 0;
 395}
 396
 397/*
 398 * does the dirty work in cow of a single block.  The parent block (if
 399 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 400 * dirty and returned locked.  If you modify the block it needs to be marked
 401 * dirty again.
 402 *
 403 * search_start -- an allocation hint for the new block
 404 *
 405 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 406 * bytes the allocator should try to find free next to the block it returns.
 407 * This is just a hint and may be ignored by the allocator.
 408 */
 409static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
 410			     struct btrfs_root *root,
 411			     struct extent_buffer *buf,
 412			     struct extent_buffer *parent, int parent_slot,
 413			     struct extent_buffer **cow_ret,
 414			     u64 search_start, u64 empty_size)
 
 415{
 
 416	struct btrfs_disk_key disk_key;
 417	struct extent_buffer *cow;
 418	int level;
 419	int last_ref = 0;
 420	int unlock_orig = 0;
 421	u64 parent_start;
 422
 423	if (*cow_ret == buf)
 424		unlock_orig = 1;
 425
 426	btrfs_assert_tree_locked(buf);
 427
 428	WARN_ON(root->ref_cows && trans->transid !=
 429		root->fs_info->running_transaction->transid);
 430	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
 
 431
 432	level = btrfs_header_level(buf);
 433
 434	if (level == 0)
 435		btrfs_item_key(buf, &disk_key, 0);
 436	else
 437		btrfs_node_key(buf, &disk_key, 0);
 438
 439	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
 440		if (parent)
 441			parent_start = parent->start;
 442		else
 443			parent_start = 0;
 444	} else
 445		parent_start = 0;
 446
 447	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
 448				     root->root_key.objectid, &disk_key,
 449				     level, search_start, empty_size);
 450	if (IS_ERR(cow))
 451		return PTR_ERR(cow);
 452
 453	/* cow is set to blocking by btrfs_init_new_buffer */
 454
 455	copy_extent_buffer(cow, buf, 0, 0, cow->len);
 456	btrfs_set_header_bytenr(cow, cow->start);
 457	btrfs_set_header_generation(cow, trans->transid);
 458	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 459	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 460				     BTRFS_HEADER_FLAG_RELOC);
 461	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 462		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 463	else
 464		btrfs_set_header_owner(cow, root->root_key.objectid);
 465
 466	write_extent_buffer(cow, root->fs_info->fsid,
 467			    (unsigned long)btrfs_header_fsid(cow),
 468			    BTRFS_FSID_SIZE);
 469
 470	update_ref_for_cow(trans, root, buf, cow, &last_ref);
 
 
 
 
 
 
 471
 472	if (root->ref_cows)
 473		btrfs_reloc_cow_block(trans, root, buf, cow);
 
 
 
 
 
 
 
 474
 475	if (buf == root->node) {
 476		WARN_ON(parent && parent != buf);
 477		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 478		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 479			parent_start = buf->start;
 480		else
 481			parent_start = 0;
 482
 483		extent_buffer_get(cow);
 
 
 484		rcu_assign_pointer(root->node, cow);
 485
 486		btrfs_free_tree_block(trans, root, buf, parent_start,
 487				      last_ref);
 488		free_extent_buffer(buf);
 489		add_root_to_dirty_list(root);
 490	} else {
 491		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 492			parent_start = parent->start;
 493		else
 494			parent_start = 0;
 495
 496		WARN_ON(trans->transid != btrfs_header_generation(parent));
 
 
 497		btrfs_set_node_blockptr(parent, parent_slot,
 498					cow->start);
 499		btrfs_set_node_ptr_generation(parent, parent_slot,
 500					      trans->transid);
 501		btrfs_mark_buffer_dirty(parent);
 502		btrfs_free_tree_block(trans, root, buf, parent_start,
 503				      last_ref);
 
 
 
 
 
 
 
 
 
 504	}
 505	if (unlock_orig)
 506		btrfs_tree_unlock(buf);
 507	free_extent_buffer(buf);
 508	btrfs_mark_buffer_dirty(cow);
 509	*cow_ret = cow;
 510	return 0;
 511}
 512
 513static inline int should_cow_block(struct btrfs_trans_handle *trans,
 514				   struct btrfs_root *root,
 515				   struct extent_buffer *buf)
 516{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 517	if (btrfs_header_generation(buf) == trans->transid &&
 518	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
 519	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
 520	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 
 521		return 0;
 522	return 1;
 523}
 524
 525/*
 526 * cows a single block, see __btrfs_cow_block for the real work.
 527 * This version of it has extra checks so that a block isn't cow'd more than
 528 * once per transaction, as long as it hasn't been written yet
 529 */
 530noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
 531		    struct btrfs_root *root, struct extent_buffer *buf,
 532		    struct extent_buffer *parent, int parent_slot,
 533		    struct extent_buffer **cow_ret)
 
 534{
 
 535	u64 search_start;
 536	int ret;
 537
 538	if (trans->transaction != root->fs_info->running_transaction) {
 539		printk(KERN_CRIT "trans %llu running %llu\n",
 540		       (unsigned long long)trans->transid,
 541		       (unsigned long long)
 542		       root->fs_info->running_transaction->transid);
 543		WARN_ON(1);
 544	}
 545	if (trans->transid != root->fs_info->generation) {
 546		printk(KERN_CRIT "trans %llu running %llu\n",
 547		       (unsigned long long)trans->transid,
 548		       (unsigned long long)root->fs_info->generation);
 549		WARN_ON(1);
 550	}
 551
 552	if (!should_cow_block(trans, root, buf)) {
 553		*cow_ret = buf;
 554		return 0;
 555	}
 556
 557	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
 558
 559	if (parent)
 560		btrfs_set_lock_blocking(parent);
 561	btrfs_set_lock_blocking(buf);
 562
 
 
 
 
 
 
 
 563	ret = __btrfs_cow_block(trans, root, buf, parent,
 564				 parent_slot, cow_ret, search_start, 0);
 565
 566	trace_btrfs_cow_block(root, buf, *cow_ret);
 567
 568	return ret;
 569}
 
 570
 571/*
 572 * helper function for defrag to decide if two blocks pointed to by a
 573 * node are actually close by
 574 */
 575static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
 576{
 577	if (blocknr < other && other - (blocknr + blocksize) < 32768)
 578		return 1;
 579	if (blocknr > other && blocknr - (other + blocksize) < 32768)
 580		return 1;
 581	return 0;
 582}
 583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 584/*
 585 * compare two keys in a memcmp fashion
 586 */
 587static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
 
 588{
 589	struct btrfs_key k1;
 590
 591	btrfs_disk_key_to_cpu(&k1, disk);
 592
 593	return btrfs_comp_cpu_keys(&k1, k2);
 594}
 
 595
 596/*
 597 * same as comp_keys only with two btrfs_key's
 598 */
 599int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
 600{
 601	if (k1->objectid > k2->objectid)
 602		return 1;
 603	if (k1->objectid < k2->objectid)
 604		return -1;
 605	if (k1->type > k2->type)
 606		return 1;
 607	if (k1->type < k2->type)
 608		return -1;
 609	if (k1->offset > k2->offset)
 610		return 1;
 611	if (k1->offset < k2->offset)
 612		return -1;
 613	return 0;
 614}
 615
 616/*
 617 * this is used by the defrag code to go through all the
 618 * leaves pointed to by a node and reallocate them so that
 619 * disk order is close to key order
 620 */
 621int btrfs_realloc_node(struct btrfs_trans_handle *trans,
 622		       struct btrfs_root *root, struct extent_buffer *parent,
 623		       int start_slot, int cache_only, u64 *last_ret,
 624		       struct btrfs_key *progress)
 625{
 
 626	struct extent_buffer *cur;
 627	u64 blocknr;
 628	u64 gen;
 629	u64 search_start = *last_ret;
 630	u64 last_block = 0;
 631	u64 other;
 632	u32 parent_nritems;
 633	int end_slot;
 634	int i;
 635	int err = 0;
 636	int parent_level;
 637	int uptodate;
 638	u32 blocksize;
 639	int progress_passed = 0;
 640	struct btrfs_disk_key disk_key;
 641
 642	parent_level = btrfs_header_level(parent);
 643	if (cache_only && parent_level != 1)
 644		return 0;
 645
 646	if (trans->transaction != root->fs_info->running_transaction)
 647		WARN_ON(1);
 648	if (trans->transid != root->fs_info->generation)
 649		WARN_ON(1);
 650
 651	parent_nritems = btrfs_header_nritems(parent);
 652	blocksize = btrfs_level_size(root, parent_level - 1);
 653	end_slot = parent_nritems;
 654
 655	if (parent_nritems == 1)
 656		return 0;
 657
 658	btrfs_set_lock_blocking(parent);
 659
 660	for (i = start_slot; i < end_slot; i++) {
 661		int close = 1;
 662
 663		btrfs_node_key(parent, &disk_key, i);
 664		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
 665			continue;
 666
 667		progress_passed = 1;
 668		blocknr = btrfs_node_blockptr(parent, i);
 669		gen = btrfs_node_ptr_generation(parent, i);
 670		if (last_block == 0)
 671			last_block = blocknr;
 672
 673		if (i > 0) {
 674			other = btrfs_node_blockptr(parent, i - 1);
 675			close = close_blocks(blocknr, other, blocksize);
 676		}
 677		if (!close && i < end_slot - 2) {
 678			other = btrfs_node_blockptr(parent, i + 1);
 679			close = close_blocks(blocknr, other, blocksize);
 680		}
 681		if (close) {
 682			last_block = blocknr;
 683			continue;
 684		}
 685
 686		cur = btrfs_find_tree_block(root, blocknr, blocksize);
 687		if (cur)
 688			uptodate = btrfs_buffer_uptodate(cur, gen);
 689		else
 690			uptodate = 0;
 691		if (!cur || !uptodate) {
 692			if (cache_only) {
 693				free_extent_buffer(cur);
 694				continue;
 695			}
 696			if (!cur) {
 697				cur = read_tree_block(root, blocknr,
 698							 blocksize, gen);
 699				if (!cur)
 700					return -EIO;
 701			} else if (!uptodate) {
 702				btrfs_read_buffer(cur, gen);
 703			}
 704		}
 705		if (search_start == 0)
 706			search_start = last_block;
 707
 708		btrfs_tree_lock(cur);
 709		btrfs_set_lock_blocking(cur);
 710		err = __btrfs_cow_block(trans, root, cur, parent, i,
 711					&cur, search_start,
 712					min(16 * blocksize,
 713					    (end_slot - i) * blocksize));
 
 714		if (err) {
 715			btrfs_tree_unlock(cur);
 716			free_extent_buffer(cur);
 717			break;
 718		}
 719		search_start = cur->start;
 720		last_block = cur->start;
 721		*last_ret = search_start;
 722		btrfs_tree_unlock(cur);
 723		free_extent_buffer(cur);
 724	}
 725	return err;
 726}
 727
 728/*
 729 * The leaf data grows from end-to-front in the node.
 730 * this returns the address of the start of the last item,
 731 * which is the stop of the leaf data stack
 732 */
 733static inline unsigned int leaf_data_end(struct btrfs_root *root,
 734					 struct extent_buffer *leaf)
 735{
 736	u32 nr = btrfs_header_nritems(leaf);
 737	if (nr == 0)
 738		return BTRFS_LEAF_DATA_SIZE(root);
 739	return btrfs_item_offset_nr(leaf, nr - 1);
 740}
 741
 742
 743/*
 744 * search for key in the extent_buffer.  The items start at offset p,
 745 * and they are item_size apart.  There are 'max' items in p.
 746 *
 747 * the slot in the array is returned via slot, and it points to
 748 * the place where you would insert key if it is not found in
 749 * the array.
 750 *
 751 * slot may point to max if the key is bigger than all of the keys
 
 752 */
 753static noinline int generic_bin_search(struct extent_buffer *eb,
 754				       unsigned long p,
 755				       int item_size, struct btrfs_key *key,
 756				       int max, int *slot)
 757{
 758	int low = 0;
 759	int high = max;
 760	int mid;
 761	int ret;
 762	struct btrfs_disk_key *tmp = NULL;
 763	struct btrfs_disk_key unaligned;
 764	unsigned long offset;
 765	char *kaddr = NULL;
 766	unsigned long map_start = 0;
 767	unsigned long map_len = 0;
 768	int err;
 
 
 
 
 
 
 
 
 
 
 769
 770	while (low < high) {
 
 
 
 
 
 
 771		mid = (low + high) / 2;
 772		offset = p + mid * item_size;
 
 773
 774		if (!kaddr || offset < map_start ||
 775		    (offset + sizeof(struct btrfs_disk_key)) >
 776		    map_start + map_len) {
 777
 778			err = map_private_extent_buffer(eb, offset,
 779						sizeof(struct btrfs_disk_key),
 780						&kaddr, &map_start, &map_len);
 781
 782			if (!err) {
 783				tmp = (struct btrfs_disk_key *)(kaddr + offset -
 784							map_start);
 785			} else {
 786				read_extent_buffer(eb, &unaligned,
 787						   offset, sizeof(unaligned));
 788				tmp = &unaligned;
 789			}
 790
 
 
 791		} else {
 792			tmp = (struct btrfs_disk_key *)(kaddr + offset -
 793							map_start);
 794		}
 
 795		ret = comp_keys(tmp, key);
 796
 797		if (ret < 0)
 798			low = mid + 1;
 799		else if (ret > 0)
 800			high = mid;
 801		else {
 802			*slot = mid;
 803			return 0;
 804		}
 805	}
 806	*slot = low;
 807	return 1;
 808}
 809
 810/*
 811 * simple bin_search frontend that does the right thing for
 812 * leaves vs nodes
 813 */
 814static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
 815		      int level, int *slot)
 816{
 817	if (level == 0) {
 818		return generic_bin_search(eb,
 819					  offsetof(struct btrfs_leaf, items),
 820					  sizeof(struct btrfs_item),
 821					  key, btrfs_header_nritems(eb),
 822					  slot);
 823	} else {
 824		return generic_bin_search(eb,
 825					  offsetof(struct btrfs_node, ptrs),
 826					  sizeof(struct btrfs_key_ptr),
 827					  key, btrfs_header_nritems(eb),
 828					  slot);
 829	}
 830	return -1;
 831}
 832
 833int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
 834		     int level, int *slot)
 835{
 836	return bin_search(eb, key, level, slot);
 837}
 838
 839static void root_add_used(struct btrfs_root *root, u32 size)
 840{
 841	spin_lock(&root->accounting_lock);
 842	btrfs_set_root_used(&root->root_item,
 843			    btrfs_root_used(&root->root_item) + size);
 844	spin_unlock(&root->accounting_lock);
 845}
 846
 847static void root_sub_used(struct btrfs_root *root, u32 size)
 848{
 849	spin_lock(&root->accounting_lock);
 850	btrfs_set_root_used(&root->root_item,
 851			    btrfs_root_used(&root->root_item) - size);
 852	spin_unlock(&root->accounting_lock);
 853}
 854
 855/* given a node and slot number, this reads the blocks it points to.  The
 856 * extent buffer is returned with a reference taken (but unlocked).
 857 * NULL is returned on error.
 858 */
 859static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
 860				   struct extent_buffer *parent, int slot)
 861{
 862	int level = btrfs_header_level(parent);
 863	if (slot < 0)
 864		return NULL;
 865	if (slot >= btrfs_header_nritems(parent))
 866		return NULL;
 
 867
 868	BUG_ON(level == 0);
 869
 870	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
 871		       btrfs_level_size(root, level - 1),
 872		       btrfs_node_ptr_generation(parent, slot));
 
 
 
 
 
 
 
 
 
 
 
 
 
 873}
 874
 875/*
 876 * node level balancing, used to make sure nodes are in proper order for
 877 * item deletion.  We balance from the top down, so we have to make sure
 878 * that a deletion won't leave an node completely empty later on.
 879 */
 880static noinline int balance_level(struct btrfs_trans_handle *trans,
 881			 struct btrfs_root *root,
 882			 struct btrfs_path *path, int level)
 883{
 
 884	struct extent_buffer *right = NULL;
 885	struct extent_buffer *mid;
 886	struct extent_buffer *left = NULL;
 887	struct extent_buffer *parent = NULL;
 888	int ret = 0;
 889	int wret;
 890	int pslot;
 891	int orig_slot = path->slots[level];
 892	u64 orig_ptr;
 893
 894	if (level == 0)
 895		return 0;
 896
 897	mid = path->nodes[level];
 898
 899	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
 900		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
 901	WARN_ON(btrfs_header_generation(mid) != trans->transid);
 902
 903	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
 904
 905	if (level < BTRFS_MAX_LEVEL - 1)
 906		parent = path->nodes[level + 1];
 907	pslot = path->slots[level + 1];
 
 908
 909	/*
 910	 * deal with the case where there is only one pointer in the root
 911	 * by promoting the node below to a root
 912	 */
 913	if (!parent) {
 914		struct extent_buffer *child;
 915
 916		if (btrfs_header_nritems(mid) != 1)
 917			return 0;
 918
 919		/* promote the child to a root */
 920		child = read_node_slot(root, mid, 0);
 921		BUG_ON(!child);
 
 
 
 
 
 922		btrfs_tree_lock(child);
 923		btrfs_set_lock_blocking(child);
 924		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
 925		if (ret) {
 926			btrfs_tree_unlock(child);
 927			free_extent_buffer(child);
 928			goto enospc;
 929		}
 930
 
 
 931		rcu_assign_pointer(root->node, child);
 932
 933		add_root_to_dirty_list(root);
 934		btrfs_tree_unlock(child);
 935
 936		path->locks[level] = 0;
 937		path->nodes[level] = NULL;
 938		clean_tree_block(trans, root, mid);
 939		btrfs_tree_unlock(mid);
 940		/* once for the path */
 941		free_extent_buffer(mid);
 942
 943		root_sub_used(root, mid->len);
 944		btrfs_free_tree_block(trans, root, mid, 0, 1);
 945		/* once for the root ptr */
 946		free_extent_buffer(mid);
 947		return 0;
 948	}
 949	if (btrfs_header_nritems(mid) >
 950	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
 951		return 0;
 952
 953	btrfs_header_nritems(mid);
 
 
 954
 955	left = read_node_slot(root, parent, pslot - 1);
 956	if (left) {
 957		btrfs_tree_lock(left);
 958		btrfs_set_lock_blocking(left);
 959		wret = btrfs_cow_block(trans, root, left,
 960				       parent, pslot - 1, &left);
 
 961		if (wret) {
 962			ret = wret;
 963			goto enospc;
 964		}
 965	}
 966	right = read_node_slot(root, parent, pslot + 1);
 
 
 
 
 967	if (right) {
 968		btrfs_tree_lock(right);
 969		btrfs_set_lock_blocking(right);
 970		wret = btrfs_cow_block(trans, root, right,
 971				       parent, pslot + 1, &right);
 
 972		if (wret) {
 973			ret = wret;
 974			goto enospc;
 975		}
 976	}
 977
 978	/* first, try to make some room in the middle buffer */
 979	if (left) {
 980		orig_slot += btrfs_header_nritems(left);
 981		wret = push_node_left(trans, root, left, mid, 1);
 982		if (wret < 0)
 983			ret = wret;
 984		btrfs_header_nritems(mid);
 985	}
 986
 987	/*
 988	 * then try to empty the right most buffer into the middle
 989	 */
 990	if (right) {
 991		wret = push_node_left(trans, root, mid, right, 1);
 992		if (wret < 0 && wret != -ENOSPC)
 993			ret = wret;
 994		if (btrfs_header_nritems(right) == 0) {
 995			clean_tree_block(trans, root, right);
 996			btrfs_tree_unlock(right);
 997			wret = del_ptr(trans, root, path, level + 1, pslot +
 998				       1);
 999			if (wret)
1000				ret = wret;
1001			root_sub_used(root, right->len);
1002			btrfs_free_tree_block(trans, root, right, 0, 1);
1003			free_extent_buffer(right);
 
1004			right = NULL;
1005		} else {
1006			struct btrfs_disk_key right_key;
1007			btrfs_node_key(right, &right_key, 0);
 
 
 
1008			btrfs_set_node_key(parent, &right_key, pslot + 1);
1009			btrfs_mark_buffer_dirty(parent);
1010		}
1011	}
1012	if (btrfs_header_nritems(mid) == 1) {
1013		/*
1014		 * we're not allowed to leave a node with one item in the
1015		 * tree during a delete.  A deletion from lower in the tree
1016		 * could try to delete the only pointer in this node.
1017		 * So, pull some keys from the left.
1018		 * There has to be a left pointer at this point because
1019		 * otherwise we would have pulled some pointers from the
1020		 * right
1021		 */
1022		BUG_ON(!left);
1023		wret = balance_node_right(trans, root, mid, left);
 
 
 
 
1024		if (wret < 0) {
1025			ret = wret;
1026			goto enospc;
1027		}
1028		if (wret == 1) {
1029			wret = push_node_left(trans, root, left, mid, 1);
1030			if (wret < 0)
1031				ret = wret;
1032		}
1033		BUG_ON(wret == 1);
1034	}
1035	if (btrfs_header_nritems(mid) == 0) {
1036		clean_tree_block(trans, root, mid);
1037		btrfs_tree_unlock(mid);
1038		wret = del_ptr(trans, root, path, level + 1, pslot);
1039		if (wret)
1040			ret = wret;
1041		root_sub_used(root, mid->len);
1042		btrfs_free_tree_block(trans, root, mid, 0, 1);
1043		free_extent_buffer(mid);
1044		mid = NULL;
1045	} else {
1046		/* update the parent key to reflect our changes */
1047		struct btrfs_disk_key mid_key;
1048		btrfs_node_key(mid, &mid_key, 0);
 
 
 
1049		btrfs_set_node_key(parent, &mid_key, pslot);
1050		btrfs_mark_buffer_dirty(parent);
1051	}
1052
1053	/* update the path */
1054	if (left) {
1055		if (btrfs_header_nritems(left) > orig_slot) {
1056			extent_buffer_get(left);
1057			/* left was locked after cow */
1058			path->nodes[level] = left;
1059			path->slots[level + 1] -= 1;
1060			path->slots[level] = orig_slot;
1061			if (mid) {
1062				btrfs_tree_unlock(mid);
1063				free_extent_buffer(mid);
1064			}
1065		} else {
1066			orig_slot -= btrfs_header_nritems(left);
1067			path->slots[level] = orig_slot;
1068		}
1069	}
1070	/* double check we haven't messed things up */
1071	if (orig_ptr !=
1072	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1073		BUG();
1074enospc:
1075	if (right) {
1076		btrfs_tree_unlock(right);
1077		free_extent_buffer(right);
1078	}
1079	if (left) {
1080		if (path->nodes[level] != left)
1081			btrfs_tree_unlock(left);
1082		free_extent_buffer(left);
1083	}
1084	return ret;
1085}
1086
1087/* Node balancing for insertion.  Here we only split or push nodes around
1088 * when they are completely full.  This is also done top down, so we
1089 * have to be pessimistic.
1090 */
1091static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1092					  struct btrfs_root *root,
1093					  struct btrfs_path *path, int level)
1094{
 
1095	struct extent_buffer *right = NULL;
1096	struct extent_buffer *mid;
1097	struct extent_buffer *left = NULL;
1098	struct extent_buffer *parent = NULL;
1099	int ret = 0;
1100	int wret;
1101	int pslot;
1102	int orig_slot = path->slots[level];
1103
1104	if (level == 0)
1105		return 1;
1106
1107	mid = path->nodes[level];
1108	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1109
1110	if (level < BTRFS_MAX_LEVEL - 1)
1111		parent = path->nodes[level + 1];
1112	pslot = path->slots[level + 1];
 
1113
1114	if (!parent)
1115		return 1;
1116
1117	left = read_node_slot(root, parent, pslot - 1);
 
 
1118
1119	/* first, try to make some room in the middle buffer */
1120	if (left) {
1121		u32 left_nr;
1122
1123		btrfs_tree_lock(left);
1124		btrfs_set_lock_blocking(left);
1125
1126		left_nr = btrfs_header_nritems(left);
1127		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1128			wret = 1;
1129		} else {
1130			ret = btrfs_cow_block(trans, root, left, parent,
1131					      pslot - 1, &left);
 
1132			if (ret)
1133				wret = 1;
1134			else {
1135				wret = push_node_left(trans, root,
1136						      left, mid, 0);
1137			}
1138		}
1139		if (wret < 0)
1140			ret = wret;
1141		if (wret == 0) {
1142			struct btrfs_disk_key disk_key;
1143			orig_slot += left_nr;
1144			btrfs_node_key(mid, &disk_key, 0);
 
 
 
1145			btrfs_set_node_key(parent, &disk_key, pslot);
1146			btrfs_mark_buffer_dirty(parent);
1147			if (btrfs_header_nritems(left) > orig_slot) {
1148				path->nodes[level] = left;
1149				path->slots[level + 1] -= 1;
1150				path->slots[level] = orig_slot;
1151				btrfs_tree_unlock(mid);
1152				free_extent_buffer(mid);
1153			} else {
1154				orig_slot -=
1155					btrfs_header_nritems(left);
1156				path->slots[level] = orig_slot;
1157				btrfs_tree_unlock(left);
1158				free_extent_buffer(left);
1159			}
1160			return 0;
1161		}
1162		btrfs_tree_unlock(left);
1163		free_extent_buffer(left);
1164	}
1165	right = read_node_slot(root, parent, pslot + 1);
 
 
1166
1167	/*
1168	 * then try to empty the right most buffer into the middle
1169	 */
1170	if (right) {
1171		u32 right_nr;
1172
1173		btrfs_tree_lock(right);
1174		btrfs_set_lock_blocking(right);
1175
1176		right_nr = btrfs_header_nritems(right);
1177		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1178			wret = 1;
1179		} else {
1180			ret = btrfs_cow_block(trans, root, right,
1181					      parent, pslot + 1,
1182					      &right);
1183			if (ret)
1184				wret = 1;
1185			else {
1186				wret = balance_node_right(trans, root,
1187							  right, mid);
1188			}
1189		}
1190		if (wret < 0)
1191			ret = wret;
1192		if (wret == 0) {
1193			struct btrfs_disk_key disk_key;
1194
1195			btrfs_node_key(right, &disk_key, 0);
 
 
 
1196			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1197			btrfs_mark_buffer_dirty(parent);
1198
1199			if (btrfs_header_nritems(mid) <= orig_slot) {
1200				path->nodes[level] = right;
1201				path->slots[level + 1] += 1;
1202				path->slots[level] = orig_slot -
1203					btrfs_header_nritems(mid);
1204				btrfs_tree_unlock(mid);
1205				free_extent_buffer(mid);
1206			} else {
1207				btrfs_tree_unlock(right);
1208				free_extent_buffer(right);
1209			}
1210			return 0;
1211		}
1212		btrfs_tree_unlock(right);
1213		free_extent_buffer(right);
1214	}
1215	return 1;
1216}
1217
1218/*
1219 * readahead one full node of leaves, finding things that are close
1220 * to the block in 'slot', and triggering ra on them.
1221 */
1222static void reada_for_search(struct btrfs_root *root,
1223			     struct btrfs_path *path,
1224			     int level, int slot, u64 objectid)
1225{
1226	struct extent_buffer *node;
1227	struct btrfs_disk_key disk_key;
1228	u32 nritems;
1229	u64 search;
1230	u64 target;
1231	u64 nread = 0;
1232	u64 gen;
1233	int direction = path->reada;
1234	struct extent_buffer *eb;
1235	u32 nr;
1236	u32 blocksize;
1237	u32 nscan = 0;
1238
1239	if (level != 1)
1240		return;
1241
1242	if (!path->nodes[level])
1243		return;
1244
1245	node = path->nodes[level];
1246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1247	search = btrfs_node_blockptr(node, slot);
1248	blocksize = btrfs_level_size(root, level - 1);
1249	eb = btrfs_find_tree_block(root, search, blocksize);
1250	if (eb) {
1251		free_extent_buffer(eb);
1252		return;
 
 
 
 
1253	}
1254
1255	target = search;
1256
1257	nritems = btrfs_header_nritems(node);
1258	nr = slot;
1259
1260	while (1) {
1261		if (direction < 0) {
1262			if (nr == 0)
1263				break;
1264			nr--;
1265		} else if (direction > 0) {
 
1266			nr++;
1267			if (nr >= nritems)
1268				break;
1269		}
1270		if (path->reada < 0 && objectid) {
1271			btrfs_node_key(node, &disk_key, nr);
1272			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1273				break;
1274		}
1275		search = btrfs_node_blockptr(node, nr);
1276		if ((search <= target && target - search <= 65536) ||
 
1277		    (search > target && search - target <= 65536)) {
1278			gen = btrfs_node_ptr_generation(node, nr);
1279			readahead_tree_block(root, search, blocksize, gen);
1280			nread += blocksize;
1281		}
1282		nscan++;
1283		if ((nread > 65536 || nscan > 32))
1284			break;
1285	}
1286}
1287
1288/*
1289 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1290 * cache
1291 */
1292static noinline int reada_for_balance(struct btrfs_root *root,
1293				      struct btrfs_path *path, int level)
1294{
 
1295	int slot;
1296	int nritems;
1297	struct extent_buffer *parent;
1298	struct extent_buffer *eb;
1299	u64 gen;
1300	u64 block1 = 0;
1301	u64 block2 = 0;
1302	int ret = 0;
1303	int blocksize;
1304
1305	parent = path->nodes[level + 1];
1306	if (!parent)
1307		return 0;
1308
1309	nritems = btrfs_header_nritems(parent);
1310	slot = path->slots[level + 1];
1311	blocksize = btrfs_level_size(root, level);
1312
1313	if (slot > 0) {
1314		block1 = btrfs_node_blockptr(parent, slot - 1);
1315		gen = btrfs_node_ptr_generation(parent, slot - 1);
1316		eb = btrfs_find_tree_block(root, block1, blocksize);
1317		if (eb && btrfs_buffer_uptodate(eb, gen))
1318			block1 = 0;
1319		free_extent_buffer(eb);
1320	}
1321	if (slot + 1 < nritems) {
1322		block2 = btrfs_node_blockptr(parent, slot + 1);
1323		gen = btrfs_node_ptr_generation(parent, slot + 1);
1324		eb = btrfs_find_tree_block(root, block2, blocksize);
1325		if (eb && btrfs_buffer_uptodate(eb, gen))
1326			block2 = 0;
1327		free_extent_buffer(eb);
1328	}
1329	if (block1 || block2) {
1330		ret = -EAGAIN;
1331
1332		/* release the whole path */
1333		btrfs_release_path(path);
1334
1335		/* read the blocks */
1336		if (block1)
1337			readahead_tree_block(root, block1, blocksize, 0);
1338		if (block2)
1339			readahead_tree_block(root, block2, blocksize, 0);
1340
1341		if (block1) {
1342			eb = read_tree_block(root, block1, blocksize, 0);
1343			free_extent_buffer(eb);
1344		}
1345		if (block2) {
1346			eb = read_tree_block(root, block2, blocksize, 0);
1347			free_extent_buffer(eb);
1348		}
1349	}
1350	return ret;
1351}
1352
1353
1354/*
1355 * when we walk down the tree, it is usually safe to unlock the higher layers
1356 * in the tree.  The exceptions are when our path goes through slot 0, because
1357 * operations on the tree might require changing key pointers higher up in the
1358 * tree.
1359 *
1360 * callers might also have set path->keep_locks, which tells this code to keep
1361 * the lock if the path points to the last slot in the block.  This is part of
1362 * walking through the tree, and selecting the next slot in the higher block.
1363 *
1364 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1365 * if lowest_unlock is 1, level 0 won't be unlocked
1366 */
1367static noinline void unlock_up(struct btrfs_path *path, int level,
1368			       int lowest_unlock)
 
1369{
1370	int i;
1371	int skip_level = level;
1372	int no_skips = 0;
1373	struct extent_buffer *t;
1374
1375	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1376		if (!path->nodes[i])
1377			break;
1378		if (!path->locks[i])
1379			break;
1380		if (!no_skips && path->slots[i] == 0) {
1381			skip_level = i + 1;
1382			continue;
1383		}
1384		if (!no_skips && path->keep_locks) {
1385			u32 nritems;
1386			t = path->nodes[i];
1387			nritems = btrfs_header_nritems(t);
1388			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1389				skip_level = i + 1;
1390				continue;
1391			}
 
 
 
 
 
 
 
 
 
 
1392		}
1393		if (skip_level < i && i >= lowest_unlock)
1394			no_skips = 1;
1395
1396		t = path->nodes[i];
1397		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1398			btrfs_tree_unlock_rw(t, path->locks[i]);
1399			path->locks[i] = 0;
 
 
 
 
 
1400		}
1401	}
1402}
1403
1404/*
1405 * This releases any locks held in the path starting at level and
1406 * going all the way up to the root.
1407 *
1408 * btrfs_search_slot will keep the lock held on higher nodes in a few
1409 * corner cases, such as COW of the block at slot zero in the node.  This
1410 * ignores those rules, and it should only be called when there are no
1411 * more updates to be done higher up in the tree.
1412 */
1413noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1414{
1415	int i;
1416
1417	if (path->keep_locks)
1418		return;
1419
1420	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1421		if (!path->nodes[i])
1422			continue;
1423		if (!path->locks[i])
1424			continue;
1425		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1426		path->locks[i] = 0;
1427	}
1428}
1429
1430/*
1431 * helper function for btrfs_search_slot.  The goal is to find a block
1432 * in cache without setting the path to blocking.  If we find the block
1433 * we return zero and the path is unchanged.
1434 *
1435 * If we can't find the block, we set the path blocking and do some
1436 * reada.  -EAGAIN is returned and the search must be repeated.
1437 */
1438static int
1439read_block_for_search(struct btrfs_trans_handle *trans,
1440		       struct btrfs_root *root, struct btrfs_path *p,
1441		       struct extent_buffer **eb_ret, int level, int slot,
1442		       struct btrfs_key *key)
1443{
 
 
1444	u64 blocknr;
1445	u64 gen;
1446	u32 blocksize;
1447	struct extent_buffer *b = *eb_ret;
1448	struct extent_buffer *tmp;
1449	int ret;
 
 
1450
1451	blocknr = btrfs_node_blockptr(b, slot);
1452	gen = btrfs_node_ptr_generation(b, slot);
1453	blocksize = btrfs_level_size(root, level - 1);
 
 
 
 
 
 
1454
1455	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
 
 
 
 
 
 
 
1456	if (tmp) {
1457		if (btrfs_buffer_uptodate(tmp, 0)) {
1458			if (btrfs_buffer_uptodate(tmp, gen)) {
1459				/*
1460				 * we found an up to date block without
1461				 * sleeping, return
1462				 * right away
1463				 */
1464				*eb_ret = tmp;
1465				return 0;
1466			}
1467			/* the pages were up to date, but we failed
1468			 * the generation number check.  Do a full
1469			 * read for the generation number that is correct.
1470			 * We must do this without dropping locks so
1471			 * we can trust our generation number
1472			 */
 
 
 
 
 
 
 
 
 
 
1473			free_extent_buffer(tmp);
1474			btrfs_set_path_blocking(p);
 
1475
1476			tmp = read_tree_block(root, blocknr, blocksize, gen);
1477			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1478				*eb_ret = tmp;
1479				return 0;
1480			}
 
1481			free_extent_buffer(tmp);
1482			btrfs_release_path(p);
1483			return -EIO;
1484		}
 
 
 
 
 
 
 
 
 
 
 
 
1485	}
1486
1487	/*
1488	 * reduce lock contention at high levels
1489	 * of the btree by dropping locks before
1490	 * we read.  Don't release the lock on the current
1491	 * level because we need to walk this node to figure
1492	 * out which blocks to read.
1493	 */
1494	btrfs_unlock_up_safe(p, level + 1);
1495	btrfs_set_path_blocking(p);
1496
1497	free_extent_buffer(tmp);
1498	if (p->reada)
1499		reada_for_search(root, p, level, slot, key->objectid);
1500
1501	btrfs_release_path(p);
 
 
 
 
 
 
 
 
 
 
 
 
1502
1503	ret = -EAGAIN;
1504	tmp = read_tree_block(root, blocknr, blocksize, 0);
1505	if (tmp) {
1506		/*
1507		 * If the read above didn't mark this buffer up to date,
1508		 * it will never end up being up to date.  Set ret to EIO now
1509		 * and give up so that our caller doesn't loop forever
1510		 * on our EAGAINs.
1511		 */
1512		if (!btrfs_buffer_uptodate(tmp, 0))
1513			ret = -EIO;
1514		free_extent_buffer(tmp);
 
1515	}
 
1516	return ret;
1517}
1518
1519/*
1520 * helper function for btrfs_search_slot.  This does all of the checks
1521 * for node-level blocks and does any balancing required based on
1522 * the ins_len.
1523 *
1524 * If no extra work was required, zero is returned.  If we had to
1525 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1526 * start over
1527 */
1528static int
1529setup_nodes_for_search(struct btrfs_trans_handle *trans,
1530		       struct btrfs_root *root, struct btrfs_path *p,
1531		       struct extent_buffer *b, int level, int ins_len,
1532		       int *write_lock_level)
1533{
1534	int ret;
 
 
1535	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1536	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1537		int sret;
1538
1539		if (*write_lock_level < level + 1) {
1540			*write_lock_level = level + 1;
1541			btrfs_release_path(p);
1542			goto again;
1543		}
1544
1545		sret = reada_for_balance(root, p, level);
1546		if (sret)
1547			goto again;
1548
1549		btrfs_set_path_blocking(p);
1550		sret = split_node(trans, root, p, level);
1551		btrfs_clear_path_blocking(p, NULL, 0);
1552
1553		BUG_ON(sret > 0);
1554		if (sret) {
1555			ret = sret;
1556			goto done;
1557		}
1558		b = p->nodes[level];
1559	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1560		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1561		int sret;
1562
1563		if (*write_lock_level < level + 1) {
1564			*write_lock_level = level + 1;
1565			btrfs_release_path(p);
1566			goto again;
1567		}
1568
1569		sret = reada_for_balance(root, p, level);
1570		if (sret)
1571			goto again;
1572
1573		btrfs_set_path_blocking(p);
1574		sret = balance_level(trans, root, p, level);
1575		btrfs_clear_path_blocking(p, NULL, 0);
1576
1577		if (sret) {
1578			ret = sret;
1579			goto done;
1580		}
1581		b = p->nodes[level];
1582		if (!b) {
1583			btrfs_release_path(p);
1584			goto again;
1585		}
1586		BUG_ON(btrfs_header_nritems(b) == 1);
1587	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1588	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1589
1590again:
1591	ret = -EAGAIN;
1592done:
1593	return ret;
1594}
1595
1596/*
1597 * look for key in the tree.  path is filled in with nodes along the way
1598 * if key is found, we return zero and you can find the item in the leaf
1599 * level of the path (level 0)
1600 *
1601 * If the key isn't found, the path points to the slot where it should
1602 * be inserted, and 1 is returned.  If there are other errors during the
1603 * search a negative error number is returned.
1604 *
1605 * if ins_len > 0, nodes and leaves will be split as we walk down the
1606 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1607 * possible)
1608 */
1609int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1610		      *root, struct btrfs_key *key, struct btrfs_path *p, int
1611		      ins_len, int cow)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1612{
 
1613	struct extent_buffer *b;
1614	int slot;
1615	int ret;
1616	int err;
1617	int level;
1618	int lowest_unlock = 1;
1619	int root_lock;
1620	/* everything at write_lock_level or lower must be write locked */
1621	int write_lock_level = 0;
1622	u8 lowest_level = 0;
 
 
 
 
1623
1624	lowest_level = p->lowest_level;
1625	WARN_ON(lowest_level && ins_len > 0);
1626	WARN_ON(p->nodes[0] != NULL);
 
 
 
 
 
 
 
 
1627
1628	if (ins_len < 0) {
1629		lowest_unlock = 2;
1630
1631		/* when we are removing items, we might have to go up to level
1632		 * two as we update tree pointers  Make sure we keep write
1633		 * for those levels as well
1634		 */
1635		write_lock_level = 2;
1636	} else if (ins_len > 0) {
1637		/*
1638		 * for inserting items, make sure we have a write lock on
1639		 * level 1 so we can update keys
1640		 */
1641		write_lock_level = 1;
1642	}
1643
1644	if (!cow)
1645		write_lock_level = -1;
1646
1647	if (cow && (p->keep_locks || p->lowest_level))
1648		write_lock_level = BTRFS_MAX_LEVEL;
1649
1650again:
1651	/*
1652	 * we try very hard to do read locks on the root
1653	 */
1654	root_lock = BTRFS_READ_LOCK;
1655	level = 0;
1656	if (p->search_commit_root) {
1657		/*
1658		 * the commit roots are read only
1659		 * so we always do read locks
1660		 */
1661		b = root->commit_root;
1662		extent_buffer_get(b);
1663		level = btrfs_header_level(b);
1664		if (!p->skip_locking)
1665			btrfs_tree_read_lock(b);
1666	} else {
1667		if (p->skip_locking) {
1668			b = btrfs_root_node(root);
1669			level = btrfs_header_level(b);
1670		} else {
1671			/* we don't know the level of the root node
1672			 * until we actually have it read locked
1673			 */
1674			b = btrfs_read_lock_root_node(root);
1675			level = btrfs_header_level(b);
1676			if (level <= write_lock_level) {
1677				/* whoops, must trade for write lock */
1678				btrfs_tree_read_unlock(b);
1679				free_extent_buffer(b);
1680				b = btrfs_lock_root_node(root);
1681				root_lock = BTRFS_WRITE_LOCK;
1682
1683				/* the level might have changed, check again */
1684				level = btrfs_header_level(b);
1685			}
 
 
 
 
1686		}
1687	}
1688	p->nodes[level] = b;
1689	if (!p->skip_locking)
1690		p->locks[level] = root_lock;
 
 
 
 
 
1691
1692	while (b) {
 
 
1693		level = btrfs_header_level(b);
1694
1695		/*
1696		 * setup the path here so we can release it under lock
1697		 * contention with the cow code
1698		 */
1699		if (cow) {
 
 
1700			/*
1701			 * if we don't really need to cow this block
1702			 * then we don't want to set the path blocking,
1703			 * so we test it here
1704			 */
1705			if (!should_cow_block(trans, root, b))
1706				goto cow_done;
1707
1708			btrfs_set_path_blocking(p);
1709
1710			/*
1711			 * must have write locks on this node and the
1712			 * parent
1713			 */
1714			if (level + 1 > write_lock_level) {
 
 
 
1715				write_lock_level = level + 1;
1716				btrfs_release_path(p);
1717				goto again;
1718			}
1719
1720			err = btrfs_cow_block(trans, root, b,
1721					      p->nodes[level + 1],
1722					      p->slots[level + 1], &b);
 
 
 
 
 
 
1723			if (err) {
1724				ret = err;
1725				goto done;
1726			}
1727		}
1728cow_done:
1729		BUG_ON(!cow && ins_len);
1730
1731		p->nodes[level] = b;
1732		btrfs_clear_path_blocking(p, NULL, 0);
1733
1734		/*
1735		 * we have a lock on b and as long as we aren't changing
1736		 * the tree, there is no way to for the items in b to change.
1737		 * It is safe to drop the lock on our parent before we
1738		 * go through the expensive btree search on b.
1739		 *
1740		 * If cow is true, then we might be changing slot zero,
1741		 * which may require changing the parent.  So, we can't
1742		 * drop the lock until after we know which slot we're
1743		 * operating on.
1744		 */
1745		if (!cow)
1746			btrfs_unlock_up_safe(p, level + 1);
1747
1748		ret = bin_search(b, key, level, &slot);
1749
1750		if (level != 0) {
1751			int dec = 0;
1752			if (ret && slot > 0) {
1753				dec = 1;
1754				slot -= 1;
1755			}
1756			p->slots[level] = slot;
1757			err = setup_nodes_for_search(trans, root, p, b, level,
1758					     ins_len, &write_lock_level);
1759			if (err == -EAGAIN)
1760				goto again;
1761			if (err) {
1762				ret = err;
1763				goto done;
1764			}
1765			b = p->nodes[level];
1766			slot = p->slots[level];
1767
1768			/*
1769			 * slot 0 is special, if we change the key
1770			 * we have to update the parent pointer
1771			 * which means we must have a write lock
1772			 * on the parent
1773			 */
1774			if (slot == 0 && cow &&
1775			    write_lock_level < level + 1) {
1776				write_lock_level = level + 1;
1777				btrfs_release_path(p);
1778				goto again;
1779			}
1780
1781			unlock_up(p, level, lowest_unlock);
 
 
 
 
 
1782
1783			if (level == lowest_level) {
1784				if (dec)
1785					p->slots[level]++;
1786				goto done;
1787			}
1788
1789			err = read_block_for_search(trans, root, p,
1790						    &b, level, slot, key);
1791			if (err == -EAGAIN)
1792				goto again;
1793			if (err) {
1794				ret = err;
1795				goto done;
1796			}
 
 
 
 
 
 
 
1797
1798			if (!p->skip_locking) {
1799				level = btrfs_header_level(b);
1800				if (level <= write_lock_level) {
1801					err = btrfs_try_tree_write_lock(b);
1802					if (!err) {
1803						btrfs_set_path_blocking(p);
1804						btrfs_tree_lock(b);
1805						btrfs_clear_path_blocking(p, b,
1806								  BTRFS_WRITE_LOCK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1807					}
1808					p->locks[level] = BTRFS_WRITE_LOCK;
1809				} else {
1810					err = btrfs_try_tree_read_lock(b);
1811					if (!err) {
1812						btrfs_set_path_blocking(p);
1813						btrfs_tree_read_lock(b);
1814						btrfs_clear_path_blocking(p, b,
1815								  BTRFS_READ_LOCK);
1816					}
1817					p->locks[level] = BTRFS_READ_LOCK;
1818				}
1819				p->nodes[level] = b;
1820			}
1821		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1822			p->slots[level] = slot;
1823			if (ins_len > 0 &&
1824			    btrfs_leaf_free_space(root, b) < ins_len) {
1825				if (write_lock_level < 1) {
1826					write_lock_level = 1;
1827					btrfs_release_path(p);
1828					goto again;
1829				}
1830
1831				btrfs_set_path_blocking(p);
1832				err = split_leaf(trans, root, key,
1833						 p, ins_len, ret == 0);
1834				btrfs_clear_path_blocking(p, NULL, 0);
1835
1836				BUG_ON(err > 0);
1837				if (err) {
1838					ret = err;
1839					goto done;
1840				}
1841			}
1842			if (!p->search_for_split)
1843				unlock_up(p, level, lowest_unlock);
 
 
 
 
 
1844			goto done;
1845		}
 
 
 
 
 
 
 
 
 
 
1846	}
1847	ret = 1;
1848done:
1849	/*
1850	 * we don't really know what they plan on doing with the path
1851	 * from here on, so for now just mark it as blocking
1852	 */
1853	if (!p->leave_spinning)
1854		btrfs_set_path_blocking(p);
1855	if (ret < 0)
1856		btrfs_release_path(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1857	return ret;
1858}
1859
1860/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1861 * adjust the pointers going up the tree, starting at level
1862 * making sure the right key of each node is points to 'key'.
1863 * This is used after shifting pointers to the left, so it stops
1864 * fixing up pointers when a given leaf/node is not in slot 0 of the
1865 * higher levels
1866 *
1867 * If this fails to write a tree block, it returns -1, but continues
1868 * fixing up the blocks in ram so the tree is consistent.
1869 */
1870static int fixup_low_keys(struct btrfs_trans_handle *trans,
1871			  struct btrfs_root *root, struct btrfs_path *path,
1872			  struct btrfs_disk_key *key, int level)
1873{
1874	int i;
1875	int ret = 0;
1876	struct extent_buffer *t;
 
1877
1878	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1879		int tslot = path->slots[i];
 
1880		if (!path->nodes[i])
1881			break;
1882		t = path->nodes[i];
 
 
 
1883		btrfs_set_node_key(t, key, tslot);
1884		btrfs_mark_buffer_dirty(path->nodes[i]);
1885		if (tslot != 0)
1886			break;
1887	}
1888	return ret;
1889}
1890
1891/*
1892 * update item key.
1893 *
1894 * This function isn't completely safe. It's the caller's responsibility
1895 * that the new key won't break the order
1896 */
1897int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1898			    struct btrfs_root *root, struct btrfs_path *path,
1899			    struct btrfs_key *new_key)
1900{
1901	struct btrfs_disk_key disk_key;
1902	struct extent_buffer *eb;
1903	int slot;
1904
1905	eb = path->nodes[0];
1906	slot = path->slots[0];
1907	if (slot > 0) {
1908		btrfs_item_key(eb, &disk_key, slot - 1);
1909		if (comp_keys(&disk_key, new_key) >= 0)
1910			return -1;
 
 
 
 
 
 
 
 
 
1911	}
1912	if (slot < btrfs_header_nritems(eb) - 1) {
1913		btrfs_item_key(eb, &disk_key, slot + 1);
1914		if (comp_keys(&disk_key, new_key) <= 0)
1915			return -1;
 
 
 
 
 
 
 
 
 
1916	}
1917
1918	btrfs_cpu_key_to_disk(&disk_key, new_key);
1919	btrfs_set_item_key(eb, &disk_key, slot);
1920	btrfs_mark_buffer_dirty(eb);
1921	if (slot == 0)
1922		fixup_low_keys(trans, root, path, &disk_key, 1);
1923	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1924}
1925
1926/*
1927 * try to push data from one node into the next node left in the
1928 * tree.
1929 *
1930 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1931 * error, and > 0 if there was no room in the left hand block.
1932 */
1933static int push_node_left(struct btrfs_trans_handle *trans,
1934			  struct btrfs_root *root, struct extent_buffer *dst,
1935			  struct extent_buffer *src, int empty)
1936{
 
1937	int push_items = 0;
1938	int src_nritems;
1939	int dst_nritems;
1940	int ret = 0;
1941
1942	src_nritems = btrfs_header_nritems(src);
1943	dst_nritems = btrfs_header_nritems(dst);
1944	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1945	WARN_ON(btrfs_header_generation(src) != trans->transid);
1946	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1947
1948	if (!empty && src_nritems <= 8)
1949		return 1;
1950
1951	if (push_items <= 0)
1952		return 1;
1953
1954	if (empty) {
1955		push_items = min(src_nritems, push_items);
1956		if (push_items < src_nritems) {
1957			/* leave at least 8 pointers in the node if
1958			 * we aren't going to empty it
1959			 */
1960			if (src_nritems - push_items < 8) {
1961				if (push_items <= 8)
1962					return 1;
1963				push_items -= 8;
1964			}
1965		}
1966	} else
1967		push_items = min(src_nritems - 8, push_items);
1968
 
 
 
 
 
 
 
 
 
 
 
1969	copy_extent_buffer(dst, src,
1970			   btrfs_node_key_ptr_offset(dst_nritems),
1971			   btrfs_node_key_ptr_offset(0),
1972			   push_items * sizeof(struct btrfs_key_ptr));
1973
1974	if (push_items < src_nritems) {
1975		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1976				      btrfs_node_key_ptr_offset(push_items),
 
 
 
 
1977				      (src_nritems - push_items) *
1978				      sizeof(struct btrfs_key_ptr));
1979	}
1980	btrfs_set_header_nritems(src, src_nritems - push_items);
1981	btrfs_set_header_nritems(dst, dst_nritems + push_items);
1982	btrfs_mark_buffer_dirty(src);
1983	btrfs_mark_buffer_dirty(dst);
1984
1985	return ret;
1986}
1987
1988/*
1989 * try to push data from one node into the next node right in the
1990 * tree.
1991 *
1992 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1993 * error, and > 0 if there was no room in the right hand block.
1994 *
1995 * this will  only push up to 1/2 the contents of the left node over
1996 */
1997static int balance_node_right(struct btrfs_trans_handle *trans,
1998			      struct btrfs_root *root,
1999			      struct extent_buffer *dst,
2000			      struct extent_buffer *src)
2001{
 
2002	int push_items = 0;
2003	int max_push;
2004	int src_nritems;
2005	int dst_nritems;
2006	int ret = 0;
2007
2008	WARN_ON(btrfs_header_generation(src) != trans->transid);
2009	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2010
2011	src_nritems = btrfs_header_nritems(src);
2012	dst_nritems = btrfs_header_nritems(dst);
2013	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2014	if (push_items <= 0)
2015		return 1;
2016
2017	if (src_nritems < 4)
2018		return 1;
2019
2020	max_push = src_nritems / 2 + 1;
2021	/* don't try to empty the node */
2022	if (max_push >= src_nritems)
2023		return 1;
2024
2025	if (max_push < push_items)
2026		push_items = max_push;
2027
2028	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2029				      btrfs_node_key_ptr_offset(0),
 
 
 
 
 
 
 
 
2030				      (dst_nritems) *
2031				      sizeof(struct btrfs_key_ptr));
2032
 
 
 
 
 
 
2033	copy_extent_buffer(dst, src,
2034			   btrfs_node_key_ptr_offset(0),
2035			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2036			   push_items * sizeof(struct btrfs_key_ptr));
2037
2038	btrfs_set_header_nritems(src, src_nritems - push_items);
2039	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2040
2041	btrfs_mark_buffer_dirty(src);
2042	btrfs_mark_buffer_dirty(dst);
2043
2044	return ret;
2045}
2046
2047/*
2048 * helper function to insert a new root level in the tree.
2049 * A new node is allocated, and a single item is inserted to
2050 * point to the existing root
2051 *
2052 * returns zero on success or < 0 on failure.
2053 */
2054static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2055			   struct btrfs_root *root,
2056			   struct btrfs_path *path, int level)
2057{
 
2058	u64 lower_gen;
2059	struct extent_buffer *lower;
2060	struct extent_buffer *c;
2061	struct extent_buffer *old;
2062	struct btrfs_disk_key lower_key;
 
2063
2064	BUG_ON(path->nodes[level]);
2065	BUG_ON(path->nodes[level-1] != root->node);
2066
2067	lower = path->nodes[level-1];
2068	if (level == 1)
2069		btrfs_item_key(lower, &lower_key, 0);
2070	else
2071		btrfs_node_key(lower, &lower_key, 0);
2072
2073	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2074				   root->root_key.objectid, &lower_key,
2075				   level, root->node->start, 0);
2076	if (IS_ERR(c))
2077		return PTR_ERR(c);
2078
2079	root_add_used(root, root->nodesize);
2080
2081	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2082	btrfs_set_header_nritems(c, 1);
2083	btrfs_set_header_level(c, level);
2084	btrfs_set_header_bytenr(c, c->start);
2085	btrfs_set_header_generation(c, trans->transid);
2086	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2087	btrfs_set_header_owner(c, root->root_key.objectid);
2088
2089	write_extent_buffer(c, root->fs_info->fsid,
2090			    (unsigned long)btrfs_header_fsid(c),
2091			    BTRFS_FSID_SIZE);
2092
2093	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2094			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
2095			    BTRFS_UUID_SIZE);
2096
2097	btrfs_set_node_key(c, &lower_key, 0);
2098	btrfs_set_node_blockptr(c, 0, lower->start);
2099	lower_gen = btrfs_header_generation(lower);
2100	WARN_ON(lower_gen != trans->transid);
2101
2102	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2103
2104	btrfs_mark_buffer_dirty(c);
2105
2106	old = root->node;
 
 
2107	rcu_assign_pointer(root->node, c);
2108
2109	/* the super has an extra ref to root->node */
2110	free_extent_buffer(old);
2111
2112	add_root_to_dirty_list(root);
2113	extent_buffer_get(c);
2114	path->nodes[level] = c;
2115	path->locks[level] = BTRFS_WRITE_LOCK;
2116	path->slots[level] = 0;
2117	return 0;
2118}
2119
2120/*
2121 * worker function to insert a single pointer in a node.
2122 * the node should have enough room for the pointer already
2123 *
2124 * slot and level indicate where you want the key to go, and
2125 * blocknr is the block the key points to.
2126 *
2127 * returns zero on success and < 0 on any error
2128 */
2129static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2130		      *root, struct btrfs_path *path, struct btrfs_disk_key
2131		      *key, u64 bytenr, int slot, int level)
 
2132{
2133	struct extent_buffer *lower;
2134	int nritems;
 
2135
2136	BUG_ON(!path->nodes[level]);
2137	btrfs_assert_tree_locked(path->nodes[level]);
2138	lower = path->nodes[level];
2139	nritems = btrfs_header_nritems(lower);
2140	BUG_ON(slot > nritems);
2141	if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2142		BUG();
2143	if (slot != nritems) {
 
 
 
 
 
2144		memmove_extent_buffer(lower,
2145			      btrfs_node_key_ptr_offset(slot + 1),
2146			      btrfs_node_key_ptr_offset(slot),
2147			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2148	}
 
 
 
 
 
2149	btrfs_set_node_key(lower, key, slot);
2150	btrfs_set_node_blockptr(lower, slot, bytenr);
2151	WARN_ON(trans->transid == 0);
2152	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2153	btrfs_set_header_nritems(lower, nritems + 1);
2154	btrfs_mark_buffer_dirty(lower);
2155	return 0;
2156}
2157
2158/*
2159 * split the node at the specified level in path in two.
2160 * The path is corrected to point to the appropriate node after the split
2161 *
2162 * Before splitting this tries to make some room in the node by pushing
2163 * left and right, if either one works, it returns right away.
2164 *
2165 * returns 0 on success and < 0 on failure
2166 */
2167static noinline int split_node(struct btrfs_trans_handle *trans,
2168			       struct btrfs_root *root,
2169			       struct btrfs_path *path, int level)
2170{
 
2171	struct extent_buffer *c;
2172	struct extent_buffer *split;
2173	struct btrfs_disk_key disk_key;
2174	int mid;
2175	int ret;
2176	int wret;
2177	u32 c_nritems;
2178
2179	c = path->nodes[level];
2180	WARN_ON(btrfs_header_generation(c) != trans->transid);
2181	if (c == root->node) {
2182		/* trying to split the root, lets make a new one */
 
 
 
 
 
 
 
 
 
2183		ret = insert_new_root(trans, root, path, level + 1);
2184		if (ret)
2185			return ret;
2186	} else {
2187		ret = push_nodes_for_insert(trans, root, path, level);
2188		c = path->nodes[level];
2189		if (!ret && btrfs_header_nritems(c) <
2190		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2191			return 0;
2192		if (ret < 0)
2193			return ret;
2194	}
2195
2196	c_nritems = btrfs_header_nritems(c);
2197	mid = (c_nritems + 1) / 2;
2198	btrfs_node_key(c, &disk_key, mid);
2199
2200	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2201					root->root_key.objectid,
2202					&disk_key, level, c->start, 0);
2203	if (IS_ERR(split))
2204		return PTR_ERR(split);
2205
2206	root_add_used(root, root->nodesize);
2207
2208	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2209	btrfs_set_header_level(split, btrfs_header_level(c));
2210	btrfs_set_header_bytenr(split, split->start);
2211	btrfs_set_header_generation(split, trans->transid);
2212	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2213	btrfs_set_header_owner(split, root->root_key.objectid);
2214	write_extent_buffer(split, root->fs_info->fsid,
2215			    (unsigned long)btrfs_header_fsid(split),
2216			    BTRFS_FSID_SIZE);
2217	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2218			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
2219			    BTRFS_UUID_SIZE);
2220
2221
 
 
 
 
 
2222	copy_extent_buffer(split, c,
2223			   btrfs_node_key_ptr_offset(0),
2224			   btrfs_node_key_ptr_offset(mid),
2225			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2226	btrfs_set_header_nritems(split, c_nritems - mid);
2227	btrfs_set_header_nritems(c, mid);
2228	ret = 0;
2229
2230	btrfs_mark_buffer_dirty(c);
2231	btrfs_mark_buffer_dirty(split);
2232
2233	wret = insert_ptr(trans, root, path, &disk_key, split->start,
2234			  path->slots[level + 1] + 1,
2235			  level + 1);
2236	if (wret)
2237		ret = wret;
2238
2239	if (path->slots[level] >= mid) {
2240		path->slots[level] -= mid;
2241		btrfs_tree_unlock(c);
2242		free_extent_buffer(c);
2243		path->nodes[level] = split;
2244		path->slots[level + 1] += 1;
2245	} else {
2246		btrfs_tree_unlock(split);
2247		free_extent_buffer(split);
2248	}
2249	return ret;
2250}
2251
2252/*
2253 * how many bytes are required to store the items in a leaf.  start
2254 * and nr indicate which items in the leaf to check.  This totals up the
2255 * space used both by the item structs and the item data
2256 */
2257static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2258{
2259	int data_len;
2260	int nritems = btrfs_header_nritems(l);
2261	int end = min(nritems, start + nr) - 1;
2262
2263	if (!nr)
2264		return 0;
2265	data_len = btrfs_item_end_nr(l, start);
2266	data_len = data_len - btrfs_item_offset_nr(l, end);
2267	data_len += sizeof(struct btrfs_item) * nr;
2268	WARN_ON(data_len < 0);
2269	return data_len;
2270}
2271
2272/*
2273 * The space between the end of the leaf items and
2274 * the start of the leaf data.  IOW, how much room
2275 * the leaf has left for both items and data
2276 */
2277noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2278				   struct extent_buffer *leaf)
2279{
 
2280	int nritems = btrfs_header_nritems(leaf);
2281	int ret;
2282	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
 
2283	if (ret < 0) {
2284		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2285		       "used %d nritems %d\n",
2286		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2287		       leaf_space_used(leaf, 0, nritems), nritems);
 
2288	}
2289	return ret;
2290}
2291
2292/*
2293 * min slot controls the lowest index we're willing to push to the
2294 * right.  We'll push up to and including min_slot, but no lower
2295 */
2296static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2297				      struct btrfs_root *root,
2298				      struct btrfs_path *path,
2299				      int data_size, int empty,
2300				      struct extent_buffer *right,
2301				      int free_space, u32 left_nritems,
2302				      u32 min_slot)
2303{
 
2304	struct extent_buffer *left = path->nodes[0];
2305	struct extent_buffer *upper = path->nodes[1];
 
2306	struct btrfs_disk_key disk_key;
2307	int slot;
2308	u32 i;
2309	int push_space = 0;
2310	int push_items = 0;
2311	struct btrfs_item *item;
2312	u32 nr;
2313	u32 right_nritems;
2314	u32 data_end;
2315	u32 this_item_size;
2316
2317	if (empty)
2318		nr = 0;
2319	else
2320		nr = max_t(u32, 1, min_slot);
2321
2322	if (path->slots[0] >= left_nritems)
2323		push_space += data_size;
2324
2325	slot = path->slots[1];
2326	i = left_nritems - 1;
2327	while (i >= nr) {
2328		item = btrfs_item_nr(left, i);
2329
2330		if (!empty && push_items > 0) {
2331			if (path->slots[0] > i)
2332				break;
2333			if (path->slots[0] == i) {
2334				int space = btrfs_leaf_free_space(root, left);
 
2335				if (space + push_space * 2 > free_space)
2336					break;
2337			}
2338		}
2339
2340		if (path->slots[0] == i)
2341			push_space += data_size;
2342
2343		this_item_size = btrfs_item_size(left, item);
2344		if (this_item_size + sizeof(*item) + push_space > free_space)
 
2345			break;
2346
2347		push_items++;
2348		push_space += this_item_size + sizeof(*item);
2349		if (i == 0)
2350			break;
2351		i--;
2352	}
2353
2354	if (push_items == 0)
2355		goto out_unlock;
2356
2357	if (!empty && push_items == left_nritems)
2358		WARN_ON(1);
2359
2360	/* push left to right */
2361	right_nritems = btrfs_header_nritems(right);
2362
2363	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2364	push_space -= leaf_data_end(root, left);
2365
2366	/* make room in the right data area */
2367	data_end = leaf_data_end(root, right);
2368	memmove_extent_buffer(right,
2369			      btrfs_leaf_data(right) + data_end - push_space,
2370			      btrfs_leaf_data(right) + data_end,
2371			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
2372
2373	/* copy from the left data area */
2374	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2375		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
2376		     btrfs_leaf_data(left) + leaf_data_end(root, left),
2377		     push_space);
2378
2379	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2380			      btrfs_item_nr_offset(0),
2381			      right_nritems * sizeof(struct btrfs_item));
2382
2383	/* copy the items from left to right */
2384	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2385		   btrfs_item_nr_offset(left_nritems - push_items),
2386		   push_items * sizeof(struct btrfs_item));
2387
2388	/* update the item pointers */
 
2389	right_nritems += push_items;
2390	btrfs_set_header_nritems(right, right_nritems);
2391	push_space = BTRFS_LEAF_DATA_SIZE(root);
2392	for (i = 0; i < right_nritems; i++) {
2393		item = btrfs_item_nr(right, i);
2394		push_space -= btrfs_item_size(right, item);
2395		btrfs_set_item_offset(right, item, push_space);
2396	}
2397
2398	left_nritems -= push_items;
2399	btrfs_set_header_nritems(left, left_nritems);
2400
2401	if (left_nritems)
2402		btrfs_mark_buffer_dirty(left);
2403	else
2404		clean_tree_block(trans, root, left);
2405
2406	btrfs_mark_buffer_dirty(right);
2407
2408	btrfs_item_key(right, &disk_key, 0);
2409	btrfs_set_node_key(upper, &disk_key, slot + 1);
2410	btrfs_mark_buffer_dirty(upper);
2411
2412	/* then fixup the leaf pointer in the path */
2413	if (path->slots[0] >= left_nritems) {
2414		path->slots[0] -= left_nritems;
2415		if (btrfs_header_nritems(path->nodes[0]) == 0)
2416			clean_tree_block(trans, root, path->nodes[0]);
2417		btrfs_tree_unlock(path->nodes[0]);
2418		free_extent_buffer(path->nodes[0]);
2419		path->nodes[0] = right;
2420		path->slots[1] += 1;
2421	} else {
2422		btrfs_tree_unlock(right);
2423		free_extent_buffer(right);
2424	}
2425	return 0;
2426
2427out_unlock:
2428	btrfs_tree_unlock(right);
2429	free_extent_buffer(right);
2430	return 1;
2431}
2432
2433/*
2434 * push some data in the path leaf to the right, trying to free up at
2435 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2436 *
2437 * returns 1 if the push failed because the other node didn't have enough
2438 * room, 0 if everything worked out and < 0 if there were major errors.
2439 *
2440 * this will push starting from min_slot to the end of the leaf.  It won't
2441 * push any slot lower than min_slot
2442 */
2443static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2444			   *root, struct btrfs_path *path,
2445			   int min_data_size, int data_size,
2446			   int empty, u32 min_slot)
2447{
2448	struct extent_buffer *left = path->nodes[0];
2449	struct extent_buffer *right;
2450	struct extent_buffer *upper;
2451	int slot;
2452	int free_space;
2453	u32 left_nritems;
2454	int ret;
2455
2456	if (!path->nodes[1])
2457		return 1;
2458
2459	slot = path->slots[1];
2460	upper = path->nodes[1];
2461	if (slot >= btrfs_header_nritems(upper) - 1)
2462		return 1;
2463
2464	btrfs_assert_tree_locked(path->nodes[1]);
2465
2466	right = read_node_slot(root, upper, slot + 1);
2467	if (right == NULL)
 
 
 
 
2468		return 1;
2469
2470	btrfs_tree_lock(right);
2471	btrfs_set_lock_blocking(right);
2472
2473	free_space = btrfs_leaf_free_space(root, right);
2474	if (free_space < data_size)
2475		goto out_unlock;
2476
2477	/* cow and double check */
2478	ret = btrfs_cow_block(trans, root, right, upper,
2479			      slot + 1, &right);
2480	if (ret)
2481		goto out_unlock;
2482
2483	free_space = btrfs_leaf_free_space(root, right);
2484	if (free_space < data_size)
2485		goto out_unlock;
2486
2487	left_nritems = btrfs_header_nritems(left);
2488	if (left_nritems == 0)
2489		goto out_unlock;
2490
2491	return __push_leaf_right(trans, root, path, min_data_size, empty,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2492				right, free_space, left_nritems, min_slot);
2493out_unlock:
2494	btrfs_tree_unlock(right);
2495	free_extent_buffer(right);
2496	return 1;
2497}
2498
2499/*
2500 * push some data in the path leaf to the left, trying to free up at
2501 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2502 *
2503 * max_slot can put a limit on how far into the leaf we'll push items.  The
2504 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2505 * items
2506 */
2507static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2508				     struct btrfs_root *root,
2509				     struct btrfs_path *path, int data_size,
2510				     int empty, struct extent_buffer *left,
2511				     int free_space, u32 right_nritems,
2512				     u32 max_slot)
2513{
 
2514	struct btrfs_disk_key disk_key;
2515	struct extent_buffer *right = path->nodes[0];
2516	int i;
2517	int push_space = 0;
2518	int push_items = 0;
2519	struct btrfs_item *item;
2520	u32 old_left_nritems;
2521	u32 nr;
2522	int ret = 0;
2523	int wret;
2524	u32 this_item_size;
2525	u32 old_left_item_size;
 
2526
2527	if (empty)
2528		nr = min(right_nritems, max_slot);
2529	else
2530		nr = min(right_nritems - 1, max_slot);
2531
2532	for (i = 0; i < nr; i++) {
2533		item = btrfs_item_nr(right, i);
2534
2535		if (!empty && push_items > 0) {
2536			if (path->slots[0] < i)
2537				break;
2538			if (path->slots[0] == i) {
2539				int space = btrfs_leaf_free_space(root, right);
 
2540				if (space + push_space * 2 > free_space)
2541					break;
2542			}
2543		}
2544
2545		if (path->slots[0] == i)
2546			push_space += data_size;
2547
2548		this_item_size = btrfs_item_size(right, item);
2549		if (this_item_size + sizeof(*item) + push_space > free_space)
 
2550			break;
2551
2552		push_items++;
2553		push_space += this_item_size + sizeof(*item);
2554	}
2555
2556	if (push_items == 0) {
2557		ret = 1;
2558		goto out;
2559	}
2560	if (!empty && push_items == btrfs_header_nritems(right))
2561		WARN_ON(1);
2562
2563	/* push data from right to left */
2564	copy_extent_buffer(left, right,
2565			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2566			   btrfs_item_nr_offset(0),
2567			   push_items * sizeof(struct btrfs_item));
2568
2569	push_space = BTRFS_LEAF_DATA_SIZE(root) -
2570		     btrfs_item_offset_nr(right, push_items - 1);
2571
2572	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2573		     leaf_data_end(root, left) - push_space,
2574		     btrfs_leaf_data(right) +
2575		     btrfs_item_offset_nr(right, push_items - 1),
2576		     push_space);
2577	old_left_nritems = btrfs_header_nritems(left);
2578	BUG_ON(old_left_nritems <= 0);
2579
2580	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
 
2581	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2582		u32 ioff;
2583
2584		item = btrfs_item_nr(left, i);
2585
2586		ioff = btrfs_item_offset(left, item);
2587		btrfs_set_item_offset(left, item,
2588		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2589	}
2590	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2591
2592	/* fixup right node */
2593	if (push_items > right_nritems) {
2594		printk(KERN_CRIT "push items %d nr %u\n", push_items,
2595		       right_nritems);
2596		WARN_ON(1);
2597	}
2598
2599	if (push_items < right_nritems) {
2600		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2601						  leaf_data_end(root, right);
2602		memmove_extent_buffer(right, btrfs_leaf_data(right) +
2603				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2604				      btrfs_leaf_data(right) +
2605				      leaf_data_end(root, right), push_space);
2606
2607		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2608			      btrfs_item_nr_offset(push_items),
2609			     (btrfs_header_nritems(right) - push_items) *
2610			     sizeof(struct btrfs_item));
2611	}
 
 
2612	right_nritems -= push_items;
2613	btrfs_set_header_nritems(right, right_nritems);
2614	push_space = BTRFS_LEAF_DATA_SIZE(root);
2615	for (i = 0; i < right_nritems; i++) {
2616		item = btrfs_item_nr(right, i);
2617
2618		push_space = push_space - btrfs_item_size(right, item);
2619		btrfs_set_item_offset(right, item, push_space);
2620	}
2621
2622	btrfs_mark_buffer_dirty(left);
2623	if (right_nritems)
2624		btrfs_mark_buffer_dirty(right);
2625	else
2626		clean_tree_block(trans, root, right);
2627
2628	btrfs_item_key(right, &disk_key, 0);
2629	wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2630	if (wret)
2631		ret = wret;
2632
2633	/* then fixup the leaf pointer in the path */
2634	if (path->slots[0] < push_items) {
2635		path->slots[0] += old_left_nritems;
2636		btrfs_tree_unlock(path->nodes[0]);
2637		free_extent_buffer(path->nodes[0]);
2638		path->nodes[0] = left;
2639		path->slots[1] -= 1;
2640	} else {
2641		btrfs_tree_unlock(left);
2642		free_extent_buffer(left);
2643		path->slots[0] -= push_items;
2644	}
2645	BUG_ON(path->slots[0] < 0);
2646	return ret;
2647out:
2648	btrfs_tree_unlock(left);
2649	free_extent_buffer(left);
2650	return ret;
2651}
2652
2653/*
2654 * push some data in the path leaf to the left, trying to free up at
2655 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2656 *
2657 * max_slot can put a limit on how far into the leaf we'll push items.  The
2658 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
2659 * items
2660 */
2661static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2662			  *root, struct btrfs_path *path, int min_data_size,
2663			  int data_size, int empty, u32 max_slot)
2664{
2665	struct extent_buffer *right = path->nodes[0];
2666	struct extent_buffer *left;
2667	int slot;
2668	int free_space;
2669	u32 right_nritems;
2670	int ret = 0;
2671
2672	slot = path->slots[1];
2673	if (slot == 0)
2674		return 1;
2675	if (!path->nodes[1])
2676		return 1;
2677
2678	right_nritems = btrfs_header_nritems(right);
2679	if (right_nritems == 0)
2680		return 1;
2681
2682	btrfs_assert_tree_locked(path->nodes[1]);
2683
2684	left = read_node_slot(root, path->nodes[1], slot - 1);
2685	if (left == NULL)
 
 
 
 
2686		return 1;
2687
2688	btrfs_tree_lock(left);
2689	btrfs_set_lock_blocking(left);
2690
2691	free_space = btrfs_leaf_free_space(root, left);
2692	if (free_space < data_size) {
2693		ret = 1;
2694		goto out;
2695	}
2696
2697	/* cow and double check */
2698	ret = btrfs_cow_block(trans, root, left,
2699			      path->nodes[1], slot - 1, &left);
 
2700	if (ret) {
2701		/* we hit -ENOSPC, but it isn't fatal here */
2702		ret = 1;
 
2703		goto out;
2704	}
2705
2706	free_space = btrfs_leaf_free_space(root, left);
2707	if (free_space < data_size) {
2708		ret = 1;
2709		goto out;
2710	}
2711
2712	return __push_leaf_left(trans, root, path, min_data_size,
2713			       empty, left, free_space, right_nritems,
2714			       max_slot);
2715out:
2716	btrfs_tree_unlock(left);
2717	free_extent_buffer(left);
2718	return ret;
2719}
2720
2721/*
2722 * split the path's leaf in two, making sure there is at least data_size
2723 * available for the resulting leaf level of the path.
2724 *
2725 * returns 0 if all went well and < 0 on failure.
2726 */
2727static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2728			       struct btrfs_root *root,
2729			       struct btrfs_path *path,
2730			       struct extent_buffer *l,
2731			       struct extent_buffer *right,
2732			       int slot, int mid, int nritems)
2733{
 
2734	int data_copy_size;
2735	int rt_data_off;
2736	int i;
2737	int ret = 0;
2738	int wret;
2739	struct btrfs_disk_key disk_key;
 
2740
2741	nritems = nritems - mid;
2742	btrfs_set_header_nritems(right, nritems);
2743	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2744
2745	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2746			   btrfs_item_nr_offset(mid),
2747			   nritems * sizeof(struct btrfs_item));
2748
2749	copy_extent_buffer(right, l,
2750		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2751		     data_copy_size, btrfs_leaf_data(l) +
2752		     leaf_data_end(root, l), data_copy_size);
2753
2754	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2755		      btrfs_item_end_nr(l, mid);
2756
 
 
 
2757	for (i = 0; i < nritems; i++) {
2758		struct btrfs_item *item = btrfs_item_nr(right, i);
2759		u32 ioff;
2760
2761		ioff = btrfs_item_offset(right, item);
2762		btrfs_set_item_offset(right, item, ioff + rt_data_off);
2763	}
2764
2765	btrfs_set_header_nritems(l, mid);
2766	ret = 0;
2767	btrfs_item_key(right, &disk_key, 0);
2768	wret = insert_ptr(trans, root, path, &disk_key, right->start,
2769			  path->slots[1] + 1, 1);
2770	if (wret)
2771		ret = wret;
2772
2773	btrfs_mark_buffer_dirty(right);
2774	btrfs_mark_buffer_dirty(l);
2775	BUG_ON(path->slots[0] != slot);
2776
2777	if (mid <= slot) {
2778		btrfs_tree_unlock(path->nodes[0]);
2779		free_extent_buffer(path->nodes[0]);
2780		path->nodes[0] = right;
2781		path->slots[0] -= mid;
2782		path->slots[1] += 1;
2783	} else {
2784		btrfs_tree_unlock(right);
2785		free_extent_buffer(right);
2786	}
2787
2788	BUG_ON(path->slots[0] < 0);
2789
2790	return ret;
2791}
2792
2793/*
2794 * double splits happen when we need to insert a big item in the middle
2795 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
2796 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2797 *          A                 B                 C
2798 *
2799 * We avoid this by trying to push the items on either side of our target
2800 * into the adjacent leaves.  If all goes well we can avoid the double split
2801 * completely.
2802 */
2803static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2804					  struct btrfs_root *root,
2805					  struct btrfs_path *path,
2806					  int data_size)
2807{
2808	int ret;
2809	int progress = 0;
2810	int slot;
2811	u32 nritems;
 
2812
2813	slot = path->slots[0];
 
 
2814
2815	/*
2816	 * try to push all the items after our slot into the
2817	 * right leaf
2818	 */
2819	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2820	if (ret < 0)
2821		return ret;
2822
2823	if (ret == 0)
2824		progress++;
2825
2826	nritems = btrfs_header_nritems(path->nodes[0]);
2827	/*
2828	 * our goal is to get our slot at the start or end of a leaf.  If
2829	 * we've done so we're done
2830	 */
2831	if (path->slots[0] == 0 || path->slots[0] == nritems)
2832		return 0;
2833
2834	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2835		return 0;
2836
2837	/* try to push all the items before our slot into the next leaf */
2838	slot = path->slots[0];
2839	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
 
 
 
2840	if (ret < 0)
2841		return ret;
2842
2843	if (ret == 0)
2844		progress++;
2845
2846	if (progress)
2847		return 0;
2848	return 1;
2849}
2850
2851/*
2852 * split the path's leaf in two, making sure there is at least data_size
2853 * available for the resulting leaf level of the path.
2854 *
2855 * returns 0 if all went well and < 0 on failure.
2856 */
2857static noinline int split_leaf(struct btrfs_trans_handle *trans,
2858			       struct btrfs_root *root,
2859			       struct btrfs_key *ins_key,
2860			       struct btrfs_path *path, int data_size,
2861			       int extend)
2862{
2863	struct btrfs_disk_key disk_key;
2864	struct extent_buffer *l;
2865	u32 nritems;
2866	int mid;
2867	int slot;
2868	struct extent_buffer *right;
 
2869	int ret = 0;
2870	int wret;
2871	int split;
2872	int num_doubles = 0;
2873	int tried_avoid_double = 0;
2874
2875	l = path->nodes[0];
2876	slot = path->slots[0];
2877	if (extend && data_size + btrfs_item_size_nr(l, slot) +
2878	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2879		return -EOVERFLOW;
2880
2881	/* first try to make some room by pushing left and right */
2882	if (data_size) {
2883		wret = push_leaf_right(trans, root, path, data_size,
2884				       data_size, 0, 0);
 
 
 
 
 
2885		if (wret < 0)
2886			return wret;
2887		if (wret) {
2888			wret = push_leaf_left(trans, root, path, data_size,
2889					      data_size, 0, (u32)-1);
 
 
 
2890			if (wret < 0)
2891				return wret;
2892		}
2893		l = path->nodes[0];
2894
2895		/* did the pushes work? */
2896		if (btrfs_leaf_free_space(root, l) >= data_size)
2897			return 0;
2898	}
2899
2900	if (!path->nodes[1]) {
2901		ret = insert_new_root(trans, root, path, 1);
2902		if (ret)
2903			return ret;
2904	}
2905again:
2906	split = 1;
2907	l = path->nodes[0];
2908	slot = path->slots[0];
2909	nritems = btrfs_header_nritems(l);
2910	mid = (nritems + 1) / 2;
2911
2912	if (mid <= slot) {
2913		if (nritems == 1 ||
2914		    leaf_space_used(l, mid, nritems - mid) + data_size >
2915			BTRFS_LEAF_DATA_SIZE(root)) {
2916			if (slot >= nritems) {
2917				split = 0;
2918			} else {
2919				mid = slot;
2920				if (mid != nritems &&
2921				    leaf_space_used(l, mid, nritems - mid) +
2922				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2923					if (data_size && !tried_avoid_double)
2924						goto push_for_double;
2925					split = 2;
2926				}
2927			}
2928		}
2929	} else {
2930		if (leaf_space_used(l, 0, mid) + data_size >
2931			BTRFS_LEAF_DATA_SIZE(root)) {
2932			if (!extend && data_size && slot == 0) {
2933				split = 0;
2934			} else if ((extend || !data_size) && slot == 0) {
2935				mid = 1;
2936			} else {
2937				mid = slot;
2938				if (mid != nritems &&
2939				    leaf_space_used(l, mid, nritems - mid) +
2940				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2941					if (data_size && !tried_avoid_double)
2942						goto push_for_double;
2943					split = 2 ;
2944				}
2945			}
2946		}
2947	}
2948
2949	if (split == 0)
2950		btrfs_cpu_key_to_disk(&disk_key, ins_key);
2951	else
2952		btrfs_item_key(l, &disk_key, mid);
2953
2954	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2955					root->root_key.objectid,
2956					&disk_key, 0, l->start, 0);
 
 
 
 
 
 
 
 
 
2957	if (IS_ERR(right))
2958		return PTR_ERR(right);
2959
2960	root_add_used(root, root->leafsize);
2961
2962	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2963	btrfs_set_header_bytenr(right, right->start);
2964	btrfs_set_header_generation(right, trans->transid);
2965	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2966	btrfs_set_header_owner(right, root->root_key.objectid);
2967	btrfs_set_header_level(right, 0);
2968	write_extent_buffer(right, root->fs_info->fsid,
2969			    (unsigned long)btrfs_header_fsid(right),
2970			    BTRFS_FSID_SIZE);
2971
2972	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2973			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
2974			    BTRFS_UUID_SIZE);
2975
2976	if (split == 0) {
2977		if (mid <= slot) {
2978			btrfs_set_header_nritems(right, 0);
2979			wret = insert_ptr(trans, root, path,
2980					  &disk_key, right->start,
2981					  path->slots[1] + 1, 1);
2982			if (wret)
2983				ret = wret;
2984
2985			btrfs_tree_unlock(path->nodes[0]);
2986			free_extent_buffer(path->nodes[0]);
2987			path->nodes[0] = right;
2988			path->slots[0] = 0;
2989			path->slots[1] += 1;
2990		} else {
2991			btrfs_set_header_nritems(right, 0);
2992			wret = insert_ptr(trans, root, path,
2993					  &disk_key,
2994					  right->start,
2995					  path->slots[1], 1);
2996			if (wret)
2997				ret = wret;
2998			btrfs_tree_unlock(path->nodes[0]);
2999			free_extent_buffer(path->nodes[0]);
3000			path->nodes[0] = right;
3001			path->slots[0] = 0;
3002			if (path->slots[1] == 0) {
3003				wret = fixup_low_keys(trans, root,
3004						path, &disk_key, 1);
3005				if (wret)
3006					ret = wret;
3007			}
3008		}
3009		btrfs_mark_buffer_dirty(right);
 
 
 
 
3010		return ret;
3011	}
3012
3013	ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3014	BUG_ON(ret);
3015
3016	if (split == 2) {
3017		BUG_ON(num_doubles != 0);
3018		num_doubles++;
3019		goto again;
3020	}
3021
3022	return ret;
3023
3024push_for_double:
3025	push_for_double_split(trans, root, path, data_size);
3026	tried_avoid_double = 1;
3027	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3028		return 0;
3029	goto again;
3030}
3031
3032static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3033					 struct btrfs_root *root,
3034					 struct btrfs_path *path, int ins_len)
3035{
3036	struct btrfs_key key;
3037	struct extent_buffer *leaf;
3038	struct btrfs_file_extent_item *fi;
3039	u64 extent_len = 0;
3040	u32 item_size;
3041	int ret;
3042
3043	leaf = path->nodes[0];
3044	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3045
3046	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3047	       key.type != BTRFS_EXTENT_CSUM_KEY);
3048
3049	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3050		return 0;
3051
3052	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3053	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3054		fi = btrfs_item_ptr(leaf, path->slots[0],
3055				    struct btrfs_file_extent_item);
3056		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3057	}
3058	btrfs_release_path(path);
3059
3060	path->keep_locks = 1;
3061	path->search_for_split = 1;
3062	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3063	path->search_for_split = 0;
 
 
3064	if (ret < 0)
3065		goto err;
3066
3067	ret = -EAGAIN;
3068	leaf = path->nodes[0];
3069	/* if our item isn't there or got smaller, return now */
3070	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3071		goto err;
3072
3073	/* the leaf has  changed, it now has room.  return now */
3074	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3075		goto err;
3076
3077	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3078		fi = btrfs_item_ptr(leaf, path->slots[0],
3079				    struct btrfs_file_extent_item);
3080		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3081			goto err;
3082	}
3083
3084	btrfs_set_path_blocking(path);
3085	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3086	if (ret)
3087		goto err;
3088
3089	path->keep_locks = 0;
3090	btrfs_unlock_up_safe(path, 1);
3091	return 0;
3092err:
3093	path->keep_locks = 0;
3094	return ret;
3095}
3096
3097static noinline int split_item(struct btrfs_trans_handle *trans,
3098			       struct btrfs_root *root,
3099			       struct btrfs_path *path,
3100			       struct btrfs_key *new_key,
3101			       unsigned long split_offset)
3102{
3103	struct extent_buffer *leaf;
3104	struct btrfs_item *item;
3105	struct btrfs_item *new_item;
3106	int slot;
3107	char *buf;
3108	u32 nritems;
3109	u32 item_size;
3110	u32 orig_offset;
3111	struct btrfs_disk_key disk_key;
3112
3113	leaf = path->nodes[0];
3114	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3115
3116	btrfs_set_path_blocking(path);
3117
3118	item = btrfs_item_nr(leaf, path->slots[0]);
3119	orig_offset = btrfs_item_offset(leaf, item);
3120	item_size = btrfs_item_size(leaf, item);
3121
3122	buf = kmalloc(item_size, GFP_NOFS);
3123	if (!buf)
3124		return -ENOMEM;
3125
3126	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3127			    path->slots[0]), item_size);
3128
3129	slot = path->slots[0] + 1;
3130	nritems = btrfs_header_nritems(leaf);
3131	if (slot != nritems) {
3132		/* shift the items */
3133		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3134				btrfs_item_nr_offset(slot),
3135				(nritems - slot) * sizeof(struct btrfs_item));
3136	}
3137
3138	btrfs_cpu_key_to_disk(&disk_key, new_key);
3139	btrfs_set_item_key(leaf, &disk_key, slot);
3140
3141	new_item = btrfs_item_nr(leaf, slot);
3142
3143	btrfs_set_item_offset(leaf, new_item, orig_offset);
3144	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3145
3146	btrfs_set_item_offset(leaf, item,
3147			      orig_offset + item_size - split_offset);
3148	btrfs_set_item_size(leaf, item, split_offset);
3149
3150	btrfs_set_header_nritems(leaf, nritems + 1);
3151
3152	/* write the data for the start of the original item */
3153	write_extent_buffer(leaf, buf,
3154			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3155			    split_offset);
3156
3157	/* write the data for the new item */
3158	write_extent_buffer(leaf, buf + split_offset,
3159			    btrfs_item_ptr_offset(leaf, slot),
3160			    item_size - split_offset);
3161	btrfs_mark_buffer_dirty(leaf);
3162
3163	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3164	kfree(buf);
3165	return 0;
3166}
3167
3168/*
3169 * This function splits a single item into two items,
3170 * giving 'new_key' to the new item and splitting the
3171 * old one at split_offset (from the start of the item).
3172 *
3173 * The path may be released by this operation.  After
3174 * the split, the path is pointing to the old item.  The
3175 * new item is going to be in the same node as the old one.
3176 *
3177 * Note, the item being split must be smaller enough to live alone on
3178 * a tree block with room for one extra struct btrfs_item
3179 *
3180 * This allows us to split the item in place, keeping a lock on the
3181 * leaf the entire time.
3182 */
3183int btrfs_split_item(struct btrfs_trans_handle *trans,
3184		     struct btrfs_root *root,
3185		     struct btrfs_path *path,
3186		     struct btrfs_key *new_key,
3187		     unsigned long split_offset)
3188{
3189	int ret;
3190	ret = setup_leaf_for_split(trans, root, path,
3191				   sizeof(struct btrfs_item));
3192	if (ret)
3193		return ret;
3194
3195	ret = split_item(trans, root, path, new_key, split_offset);
3196	return ret;
3197}
3198
3199/*
3200 * This function duplicate a item, giving 'new_key' to the new item.
3201 * It guarantees both items live in the same tree leaf and the new item
3202 * is contiguous with the original item.
3203 *
3204 * This allows us to split file extent in place, keeping a lock on the
3205 * leaf the entire time.
3206 */
3207int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3208			 struct btrfs_root *root,
3209			 struct btrfs_path *path,
3210			 struct btrfs_key *new_key)
3211{
3212	struct extent_buffer *leaf;
3213	int ret;
3214	u32 item_size;
3215
3216	leaf = path->nodes[0];
3217	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3218	ret = setup_leaf_for_split(trans, root, path,
3219				   item_size + sizeof(struct btrfs_item));
3220	if (ret)
3221		return ret;
3222
3223	path->slots[0]++;
3224	ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3225				     item_size, item_size +
3226				     sizeof(struct btrfs_item), 1);
3227	BUG_ON(ret);
3228
3229	leaf = path->nodes[0];
3230	memcpy_extent_buffer(leaf,
3231			     btrfs_item_ptr_offset(leaf, path->slots[0]),
3232			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3233			     item_size);
3234	return 0;
3235}
3236
3237/*
3238 * make the item pointed to by the path smaller.  new_size indicates
3239 * how small to make it, and from_end tells us if we just chop bytes
3240 * off the end of the item or if we shift the item to chop bytes off
3241 * the front.
3242 */
3243int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3244			struct btrfs_root *root,
3245			struct btrfs_path *path,
3246			u32 new_size, int from_end)
3247{
3248	int slot;
3249	struct extent_buffer *leaf;
3250	struct btrfs_item *item;
3251	u32 nritems;
3252	unsigned int data_end;
3253	unsigned int old_data_start;
3254	unsigned int old_size;
3255	unsigned int size_diff;
3256	int i;
 
3257
3258	leaf = path->nodes[0];
3259	slot = path->slots[0];
3260
3261	old_size = btrfs_item_size_nr(leaf, slot);
3262	if (old_size == new_size)
3263		return 0;
3264
3265	nritems = btrfs_header_nritems(leaf);
3266	data_end = leaf_data_end(root, leaf);
3267
3268	old_data_start = btrfs_item_offset_nr(leaf, slot);
3269
3270	size_diff = old_size - new_size;
3271
3272	BUG_ON(slot < 0);
3273	BUG_ON(slot >= nritems);
3274
3275	/*
3276	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3277	 */
3278	/* first correct the data pointers */
 
3279	for (i = slot; i < nritems; i++) {
3280		u32 ioff;
3281		item = btrfs_item_nr(leaf, i);
3282
3283		ioff = btrfs_item_offset(leaf, item);
3284		btrfs_set_item_offset(leaf, item, ioff + size_diff);
3285	}
3286
3287	/* shift the data */
3288	if (from_end) {
3289		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3290			      data_end + size_diff, btrfs_leaf_data(leaf) +
3291			      data_end, old_data_start + new_size - data_end);
3292	} else {
3293		struct btrfs_disk_key disk_key;
3294		u64 offset;
3295
3296		btrfs_item_key(leaf, &disk_key, slot);
3297
3298		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3299			unsigned long ptr;
3300			struct btrfs_file_extent_item *fi;
3301
3302			fi = btrfs_item_ptr(leaf, slot,
3303					    struct btrfs_file_extent_item);
3304			fi = (struct btrfs_file_extent_item *)(
3305			     (unsigned long)fi - size_diff);
3306
3307			if (btrfs_file_extent_type(leaf, fi) ==
3308			    BTRFS_FILE_EXTENT_INLINE) {
3309				ptr = btrfs_item_ptr_offset(leaf, slot);
3310				memmove_extent_buffer(leaf, ptr,
3311				      (unsigned long)fi,
3312				      offsetof(struct btrfs_file_extent_item,
3313						 disk_bytenr));
3314			}
3315		}
3316
3317		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3318			      data_end + size_diff, btrfs_leaf_data(leaf) +
3319			      data_end, old_data_start - data_end);
3320
3321		offset = btrfs_disk_key_offset(&disk_key);
3322		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3323		btrfs_set_item_key(leaf, &disk_key, slot);
3324		if (slot == 0)
3325			fixup_low_keys(trans, root, path, &disk_key, 1);
3326	}
3327
3328	item = btrfs_item_nr(leaf, slot);
3329	btrfs_set_item_size(leaf, item, new_size);
3330	btrfs_mark_buffer_dirty(leaf);
3331
3332	if (btrfs_leaf_free_space(root, leaf) < 0) {
3333		btrfs_print_leaf(root, leaf);
3334		BUG();
3335	}
3336	return 0;
3337}
3338
3339/*
3340 * make the item pointed to by the path bigger, data_size is the new size.
3341 */
3342int btrfs_extend_item(struct btrfs_trans_handle *trans,
3343		      struct btrfs_root *root, struct btrfs_path *path,
3344		      u32 data_size)
3345{
3346	int slot;
3347	struct extent_buffer *leaf;
3348	struct btrfs_item *item;
3349	u32 nritems;
3350	unsigned int data_end;
3351	unsigned int old_data;
3352	unsigned int old_size;
3353	int i;
 
3354
3355	leaf = path->nodes[0];
3356
3357	nritems = btrfs_header_nritems(leaf);
3358	data_end = leaf_data_end(root, leaf);
3359
3360	if (btrfs_leaf_free_space(root, leaf) < data_size) {
3361		btrfs_print_leaf(root, leaf);
3362		BUG();
3363	}
3364	slot = path->slots[0];
3365	old_data = btrfs_item_end_nr(leaf, slot);
3366
3367	BUG_ON(slot < 0);
3368	if (slot >= nritems) {
3369		btrfs_print_leaf(root, leaf);
3370		printk(KERN_CRIT "slot %d too large, nritems %d\n",
3371		       slot, nritems);
3372		BUG_ON(1);
3373	}
3374
3375	/*
3376	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3377	 */
3378	/* first correct the data pointers */
 
3379	for (i = slot; i < nritems; i++) {
3380		u32 ioff;
3381		item = btrfs_item_nr(leaf, i);
3382
3383		ioff = btrfs_item_offset(leaf, item);
3384		btrfs_set_item_offset(leaf, item, ioff - data_size);
3385	}
3386
3387	/* shift the data */
3388	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3389		      data_end - data_size, btrfs_leaf_data(leaf) +
3390		      data_end, old_data - data_end);
3391
3392	data_end = old_data;
3393	old_size = btrfs_item_size_nr(leaf, slot);
3394	item = btrfs_item_nr(leaf, slot);
3395	btrfs_set_item_size(leaf, item, old_size + data_size);
3396	btrfs_mark_buffer_dirty(leaf);
3397
3398	if (btrfs_leaf_free_space(root, leaf) < 0) {
3399		btrfs_print_leaf(root, leaf);
3400		BUG();
3401	}
3402	return 0;
3403}
3404
3405/*
3406 * Given a key and some data, insert items into the tree.
3407 * This does all the path init required, making room in the tree if needed.
3408 * Returns the number of keys that were inserted.
 
 
 
 
 
3409 */
3410int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3411			    struct btrfs_root *root,
3412			    struct btrfs_path *path,
3413			    struct btrfs_key *cpu_key, u32 *data_size,
3414			    int nr)
3415{
3416	struct extent_buffer *leaf;
3417	struct btrfs_item *item;
3418	int ret = 0;
3419	int slot;
3420	int i;
3421	u32 nritems;
3422	u32 total_data = 0;
3423	u32 total_size = 0;
3424	unsigned int data_end;
3425	struct btrfs_disk_key disk_key;
3426	struct btrfs_key found_key;
 
 
 
3427
3428	for (i = 0; i < nr; i++) {
3429		if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3430		    BTRFS_LEAF_DATA_SIZE(root)) {
3431			break;
3432			nr = i;
3433		}
3434		total_data += data_size[i];
3435		total_size += data_size[i] + sizeof(struct btrfs_item);
3436	}
3437	BUG_ON(nr == 0);
3438
3439	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3440	if (ret == 0)
3441		return -EEXIST;
3442	if (ret < 0)
3443		goto out;
3444
3445	leaf = path->nodes[0];
 
3446
3447	nritems = btrfs_header_nritems(leaf);
3448	data_end = leaf_data_end(root, leaf);
 
3449
3450	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3451		for (i = nr; i >= 0; i--) {
3452			total_data -= data_size[i];
3453			total_size -= data_size[i] + sizeof(struct btrfs_item);
3454			if (total_size < btrfs_leaf_free_space(root, leaf))
3455				break;
3456		}
3457		nr = i;
3458	}
3459
3460	slot = path->slots[0];
3461	BUG_ON(slot < 0);
3462
3463	if (slot != nritems) {
3464		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3465
3466		item = btrfs_item_nr(leaf, slot);
3467		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3468
3469		/* figure out how many keys we can insert in here */
3470		total_data = data_size[0];
3471		for (i = 1; i < nr; i++) {
3472			if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3473				break;
3474			total_data += data_size[i];
3475		}
3476		nr = i;
3477
3478		if (old_data < data_end) {
3479			btrfs_print_leaf(root, leaf);
3480			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3481			       slot, old_data, data_end);
3482			BUG_ON(1);
 
3483		}
3484		/*
3485		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3486		 */
3487		/* first correct the data pointers */
3488		for (i = slot; i < nritems; i++) {
3489			u32 ioff;
3490
3491			item = btrfs_item_nr(leaf, i);
3492			ioff = btrfs_item_offset(leaf, item);
3493			btrfs_set_item_offset(leaf, item, ioff - total_data);
3494		}
3495		/* shift the items */
3496		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3497			      btrfs_item_nr_offset(slot),
3498			      (nritems - slot) * sizeof(struct btrfs_item));
3499
3500		/* shift the data */
3501		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3502			      data_end - total_data, btrfs_leaf_data(leaf) +
3503			      data_end, old_data - data_end);
3504		data_end = old_data;
3505	} else {
3506		/*
3507		 * this sucks but it has to be done, if we are inserting at
3508		 * the end of the leaf only insert 1 of the items, since we
3509		 * have no way of knowing whats on the next leaf and we'd have
3510		 * to drop our current locks to figure it out
3511		 */
3512		nr = 1;
3513	}
3514
3515	/* setup the item for the new data */
3516	for (i = 0; i < nr; i++) {
3517		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3518		btrfs_set_item_key(leaf, &disk_key, slot + i);
3519		item = btrfs_item_nr(leaf, slot + i);
3520		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3521		data_end -= data_size[i];
3522		btrfs_set_item_size(leaf, item, data_size[i]);
3523	}
3524	btrfs_set_header_nritems(leaf, nritems + nr);
3525	btrfs_mark_buffer_dirty(leaf);
3526
3527	ret = 0;
3528	if (slot == 0) {
3529		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3530		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3531	}
3532
3533	if (btrfs_leaf_free_space(root, leaf) < 0) {
3534		btrfs_print_leaf(root, leaf);
3535		BUG();
3536	}
3537out:
3538	if (!ret)
3539		ret = nr;
3540	return ret;
3541}
3542
3543/*
3544 * this is a helper for btrfs_insert_empty_items, the main goal here is
3545 * to save stack depth by doing the bulk of the work in a function
3546 * that doesn't call btrfs_search_slot
3547 */
3548int setup_items_for_insert(struct btrfs_trans_handle *trans,
3549			   struct btrfs_root *root, struct btrfs_path *path,
3550			   struct btrfs_key *cpu_key, u32 *data_size,
3551			   u32 total_data, u32 total_size, int nr)
3552{
3553	struct btrfs_item *item;
3554	int i;
3555	u32 nritems;
3556	unsigned int data_end;
3557	struct btrfs_disk_key disk_key;
3558	int ret;
3559	struct extent_buffer *leaf;
3560	int slot;
3561
3562	leaf = path->nodes[0];
3563	slot = path->slots[0];
3564
3565	nritems = btrfs_header_nritems(leaf);
3566	data_end = leaf_data_end(root, leaf);
3567
3568	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3569		btrfs_print_leaf(root, leaf);
3570		printk(KERN_CRIT "not enough freespace need %u have %d\n",
3571		       total_size, btrfs_leaf_free_space(root, leaf));
3572		BUG();
3573	}
3574
3575	if (slot != nritems) {
3576		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3577
3578		if (old_data < data_end) {
3579			btrfs_print_leaf(root, leaf);
3580			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3581			       slot, old_data, data_end);
3582			BUG_ON(1);
3583		}
3584		/*
3585		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3586		 */
3587		/* first correct the data pointers */
3588		for (i = slot; i < nritems; i++) {
3589			u32 ioff;
3590
3591			item = btrfs_item_nr(leaf, i);
3592			ioff = btrfs_item_offset(leaf, item);
3593			btrfs_set_item_offset(leaf, item, ioff - total_data);
3594		}
3595		/* shift the items */
3596		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3597			      btrfs_item_nr_offset(slot),
3598			      (nritems - slot) * sizeof(struct btrfs_item));
3599
3600		/* shift the data */
3601		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3602			      data_end - total_data, btrfs_leaf_data(leaf) +
3603			      data_end, old_data - data_end);
3604		data_end = old_data;
3605	}
3606
3607	/* setup the item for the new data */
3608	for (i = 0; i < nr; i++) {
3609		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3610		btrfs_set_item_key(leaf, &disk_key, slot + i);
3611		item = btrfs_item_nr(leaf, slot + i);
3612		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3613		data_end -= data_size[i];
3614		btrfs_set_item_size(leaf, item, data_size[i]);
3615	}
3616
3617	btrfs_set_header_nritems(leaf, nritems + nr);
3618
3619	ret = 0;
3620	if (slot == 0) {
3621		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3622		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3623	}
3624	btrfs_unlock_up_safe(path, 1);
3625	btrfs_mark_buffer_dirty(leaf);
3626
3627	if (btrfs_leaf_free_space(root, leaf) < 0) {
3628		btrfs_print_leaf(root, leaf);
3629		BUG();
3630	}
3631	return ret;
3632}
3633
3634/*
3635 * Given a key and some data, insert items into the tree.
3636 * This does all the path init required, making room in the tree if needed.
3637 */
3638int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3639			    struct btrfs_root *root,
3640			    struct btrfs_path *path,
3641			    struct btrfs_key *cpu_key, u32 *data_size,
3642			    int nr)
3643{
3644	int ret = 0;
3645	int slot;
3646	int i;
3647	u32 total_size = 0;
3648	u32 total_data = 0;
3649
3650	for (i = 0; i < nr; i++)
3651		total_data += data_size[i];
3652
3653	total_size = total_data + (nr * sizeof(struct btrfs_item));
3654	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3655	if (ret == 0)
3656		return -EEXIST;
3657	if (ret < 0)
3658		goto out;
3659
3660	slot = path->slots[0];
3661	BUG_ON(slot < 0);
3662
3663	ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3664			       total_data, total_size, nr);
3665
3666out:
3667	return ret;
3668}
3669
3670/*
3671 * Given a key and some data, insert an item into the tree.
3672 * This does all the path init required, making room in the tree if needed.
3673 */
3674int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3675		      *root, struct btrfs_key *cpu_key, void *data, u32
3676		      data_size)
3677{
3678	int ret = 0;
3679	struct btrfs_path *path;
3680	struct extent_buffer *leaf;
3681	unsigned long ptr;
3682
3683	path = btrfs_alloc_path();
3684	if (!path)
3685		return -ENOMEM;
3686	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3687	if (!ret) {
3688		leaf = path->nodes[0];
3689		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3690		write_extent_buffer(leaf, data, ptr, data_size);
3691		btrfs_mark_buffer_dirty(leaf);
3692	}
3693	btrfs_free_path(path);
3694	return ret;
3695}
3696
3697/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3698 * delete the pointer from a given node.
3699 *
3700 * the tree should have been previously balanced so the deletion does not
3701 * empty a node.
3702 */
3703static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3704		   struct btrfs_path *path, int level, int slot)
3705{
3706	struct extent_buffer *parent = path->nodes[level];
3707	u32 nritems;
3708	int ret = 0;
3709	int wret;
3710
3711	nritems = btrfs_header_nritems(parent);
3712	if (slot != nritems - 1) {
 
 
 
 
 
3713		memmove_extent_buffer(parent,
3714			      btrfs_node_key_ptr_offset(slot),
3715			      btrfs_node_key_ptr_offset(slot + 1),
3716			      sizeof(struct btrfs_key_ptr) *
3717			      (nritems - slot - 1));
 
 
 
 
3718	}
 
3719	nritems--;
3720	btrfs_set_header_nritems(parent, nritems);
3721	if (nritems == 0 && parent == root->node) {
3722		BUG_ON(btrfs_header_level(root->node) != 1);
3723		/* just turn the root into a leaf and break */
3724		btrfs_set_header_level(root->node, 0);
3725	} else if (slot == 0) {
3726		struct btrfs_disk_key disk_key;
3727
3728		btrfs_node_key(parent, &disk_key, 0);
3729		wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3730		if (wret)
3731			ret = wret;
3732	}
3733	btrfs_mark_buffer_dirty(parent);
3734	return ret;
3735}
3736
3737/*
3738 * a helper function to delete the leaf pointed to by path->slots[1] and
3739 * path->nodes[1].
3740 *
3741 * This deletes the pointer in path->nodes[1] and frees the leaf
3742 * block extent.  zero is returned if it all worked out, < 0 otherwise.
3743 *
3744 * The path must have already been setup for deleting the leaf, including
3745 * all the proper balancing.  path->nodes[1] must be locked.
3746 */
3747static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3748				   struct btrfs_root *root,
3749				   struct btrfs_path *path,
3750				   struct extent_buffer *leaf)
3751{
3752	int ret;
3753
3754	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3755	ret = del_ptr(trans, root, path, 1, path->slots[1]);
3756	if (ret)
3757		return ret;
3758
3759	/*
3760	 * btrfs_free_extent is expensive, we want to make sure we
3761	 * aren't holding any locks when we call it
3762	 */
3763	btrfs_unlock_up_safe(path, 0);
3764
3765	root_sub_used(root, leaf->len);
3766
3767	btrfs_free_tree_block(trans, root, leaf, 0, 1);
3768	return 0;
 
3769}
3770/*
3771 * delete the item at the leaf level in path.  If that empties
3772 * the leaf, remove it from the tree
3773 */
3774int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3775		    struct btrfs_path *path, int slot, int nr)
3776{
 
3777	struct extent_buffer *leaf;
3778	struct btrfs_item *item;
3779	int last_off;
3780	int dsize = 0;
3781	int ret = 0;
3782	int wret;
3783	int i;
3784	u32 nritems;
3785
3786	leaf = path->nodes[0];
3787	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3788
3789	for (i = 0; i < nr; i++)
3790		dsize += btrfs_item_size_nr(leaf, slot + i);
3791
3792	nritems = btrfs_header_nritems(leaf);
3793
3794	if (slot + nr != nritems) {
3795		int data_end = leaf_data_end(root, leaf);
 
 
 
 
3796
3797		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3798			      data_end + dsize,
3799			      btrfs_leaf_data(leaf) + data_end,
3800			      last_off - data_end);
3801
 
 
 
 
3802		for (i = slot + nr; i < nritems; i++) {
3803			u32 ioff;
3804
3805			item = btrfs_item_nr(leaf, i);
3806			ioff = btrfs_item_offset(leaf, item);
3807			btrfs_set_item_offset(leaf, item, ioff + dsize);
3808		}
3809
3810		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3811			      btrfs_item_nr_offset(slot + nr),
3812			      sizeof(struct btrfs_item) *
3813			      (nritems - slot - nr));
3814	}
3815	btrfs_set_header_nritems(leaf, nritems - nr);
3816	nritems -= nr;
3817
3818	/* delete the leaf if we've emptied it */
3819	if (nritems == 0) {
3820		if (leaf == root->node) {
3821			btrfs_set_header_level(leaf, 0);
3822		} else {
3823			btrfs_set_path_blocking(path);
3824			clean_tree_block(trans, root, leaf);
3825			ret = btrfs_del_leaf(trans, root, path, leaf);
3826			BUG_ON(ret);
3827		}
3828	} else {
3829		int used = leaf_space_used(leaf, 0, nritems);
3830		if (slot == 0) {
3831			struct btrfs_disk_key disk_key;
3832
3833			btrfs_item_key(leaf, &disk_key, 0);
3834			wret = fixup_low_keys(trans, root, path,
3835					      &disk_key, 1);
3836			if (wret)
3837				ret = wret;
3838		}
3839
3840		/* delete the leaf if it is mostly empty */
3841		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
 
 
 
 
 
 
 
 
 
3842			/* push_leaf_left fixes the path.
3843			 * make sure the path still points to our leaf
3844			 * for possible call to del_ptr below
3845			 */
3846			slot = path->slots[1];
3847			extent_buffer_get(leaf);
3848
3849			btrfs_set_path_blocking(path);
3850			wret = push_leaf_left(trans, root, path, 1, 1,
3851					      1, (u32)-1);
 
 
 
 
3852			if (wret < 0 && wret != -ENOSPC)
3853				ret = wret;
3854
3855			if (path->nodes[0] == leaf &&
3856			    btrfs_header_nritems(leaf)) {
3857				wret = push_leaf_right(trans, root, path, 1,
3858						       1, 1, 0);
 
 
 
 
 
 
 
 
 
 
 
 
3859				if (wret < 0 && wret != -ENOSPC)
3860					ret = wret;
3861			}
3862
3863			if (btrfs_header_nritems(leaf) == 0) {
3864				path->slots[1] = slot;
3865				ret = btrfs_del_leaf(trans, root, path, leaf);
3866				BUG_ON(ret);
3867				free_extent_buffer(leaf);
 
3868			} else {
3869				/* if we're still in the path, make sure
3870				 * we're dirty.  Otherwise, one of the
3871				 * push_leaf functions must have already
3872				 * dirtied this buffer
3873				 */
3874				if (path->nodes[0] == leaf)
3875					btrfs_mark_buffer_dirty(leaf);
3876				free_extent_buffer(leaf);
3877			}
3878		} else {
3879			btrfs_mark_buffer_dirty(leaf);
3880		}
3881	}
3882	return ret;
3883}
3884
3885/*
3886 * search the tree again to find a leaf with lesser keys
3887 * returns 0 if it found something or 1 if there are no lesser leaves.
3888 * returns < 0 on io errors.
3889 *
3890 * This may release the path, and so you may lose any locks held at the
3891 * time you call it.
3892 */
3893int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3894{
3895	struct btrfs_key key;
3896	struct btrfs_disk_key found_key;
3897	int ret;
3898
3899	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3900
3901	if (key.offset > 0)
3902		key.offset--;
3903	else if (key.type > 0)
3904		key.type--;
3905	else if (key.objectid > 0)
 
3906		key.objectid--;
3907	else
 
 
3908		return 1;
 
3909
3910	btrfs_release_path(path);
3911	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3912	if (ret < 0)
3913		return ret;
3914	btrfs_item_key(path->nodes[0], &found_key, 0);
3915	ret = comp_keys(&found_key, &key);
3916	if (ret < 0)
 
 
 
 
 
 
 
 
 
 
3917		return 0;
3918	return 1;
3919}
3920
3921/*
3922 * A helper function to walk down the tree starting at min_key, and looking
3923 * for nodes or leaves that are either in cache or have a minimum
3924 * transaction id.  This is used by the btree defrag code, and tree logging
3925 *
3926 * This does not cow, but it does stuff the starting key it finds back
3927 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3928 * key and get a writable path.
3929 *
3930 * This does lock as it descends, and path->keep_locks should be set
3931 * to 1 by the caller.
3932 *
3933 * This honors path->lowest_level to prevent descent past a given level
3934 * of the tree.
3935 *
3936 * min_trans indicates the oldest transaction that you are interested
3937 * in walking through.  Any nodes or leaves older than min_trans are
3938 * skipped over (without reading them).
3939 *
3940 * returns zero if something useful was found, < 0 on error and 1 if there
3941 * was nothing in the tree that matched the search criteria.
3942 */
3943int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3944			 struct btrfs_key *max_key,
3945			 struct btrfs_path *path, int cache_only,
3946			 u64 min_trans)
3947{
3948	struct extent_buffer *cur;
3949	struct btrfs_key found_key;
3950	int slot;
3951	int sret;
3952	u32 nritems;
3953	int level;
3954	int ret = 1;
 
3955
3956	WARN_ON(!path->keep_locks);
 
3957again:
3958	cur = btrfs_read_lock_root_node(root);
3959	level = btrfs_header_level(cur);
3960	WARN_ON(path->nodes[level]);
3961	path->nodes[level] = cur;
3962	path->locks[level] = BTRFS_READ_LOCK;
3963
3964	if (btrfs_header_generation(cur) < min_trans) {
3965		ret = 1;
3966		goto out;
3967	}
3968	while (1) {
3969		nritems = btrfs_header_nritems(cur);
3970		level = btrfs_header_level(cur);
3971		sret = bin_search(cur, min_key, level, &slot);
 
 
 
 
3972
3973		/* at the lowest level, we're done, setup the path and exit */
3974		if (level == path->lowest_level) {
3975			if (slot >= nritems)
3976				goto find_next_key;
3977			ret = 0;
3978			path->slots[level] = slot;
3979			btrfs_item_key_to_cpu(cur, &found_key, slot);
3980			goto out;
3981		}
3982		if (sret && slot > 0)
3983			slot--;
3984		/*
3985		 * check this node pointer against the cache_only and
3986		 * min_trans parameters.  If it isn't in cache or is too
3987		 * old, skip to the next one.
3988		 */
3989		while (slot < nritems) {
3990			u64 blockptr;
3991			u64 gen;
3992			struct extent_buffer *tmp;
3993			struct btrfs_disk_key disk_key;
3994
3995			blockptr = btrfs_node_blockptr(cur, slot);
3996			gen = btrfs_node_ptr_generation(cur, slot);
3997			if (gen < min_trans) {
3998				slot++;
3999				continue;
4000			}
4001			if (!cache_only)
4002				break;
4003
4004			if (max_key) {
4005				btrfs_node_key(cur, &disk_key, slot);
4006				if (comp_keys(&disk_key, max_key) >= 0) {
4007					ret = 1;
4008					goto out;
4009				}
4010			}
4011
4012			tmp = btrfs_find_tree_block(root, blockptr,
4013					    btrfs_level_size(root, level - 1));
4014
4015			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4016				free_extent_buffer(tmp);
4017				break;
4018			}
4019			if (tmp)
4020				free_extent_buffer(tmp);
4021			slot++;
4022		}
4023find_next_key:
4024		/*
4025		 * we didn't find a candidate key in this node, walk forward
4026		 * and find another one
4027		 */
4028		if (slot >= nritems) {
4029			path->slots[level] = slot;
4030			btrfs_set_path_blocking(path);
4031			sret = btrfs_find_next_key(root, path, min_key, level,
4032						  cache_only, min_trans);
4033			if (sret == 0) {
4034				btrfs_release_path(path);
4035				goto again;
4036			} else {
4037				goto out;
4038			}
4039		}
4040		/* save our key for returning back */
4041		btrfs_node_key_to_cpu(cur, &found_key, slot);
4042		path->slots[level] = slot;
4043		if (level == path->lowest_level) {
4044			ret = 0;
4045			unlock_up(path, level, 1);
4046			goto out;
4047		}
4048		btrfs_set_path_blocking(path);
4049		cur = read_node_slot(root, cur, slot);
4050		BUG_ON(!cur);
 
 
4051
4052		btrfs_tree_read_lock(cur);
4053
4054		path->locks[level - 1] = BTRFS_READ_LOCK;
4055		path->nodes[level - 1] = cur;
4056		unlock_up(path, level, 1);
4057		btrfs_clear_path_blocking(path, NULL, 0);
4058	}
4059out:
4060	if (ret == 0)
 
 
4061		memcpy(min_key, &found_key, sizeof(found_key));
4062	btrfs_set_path_blocking(path);
4063	return ret;
4064}
4065
4066/*
4067 * this is similar to btrfs_next_leaf, but does not try to preserve
4068 * and fixup the path.  It looks for and returns the next key in the
4069 * tree based on the current path and the cache_only and min_trans
4070 * parameters.
4071 *
4072 * 0 is returned if another key is found, < 0 if there are any errors
4073 * and 1 is returned if there are no higher keys in the tree
4074 *
4075 * path->keep_locks should be set to 1 on the search made before
4076 * calling this function.
4077 */
4078int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4079			struct btrfs_key *key, int level,
4080			int cache_only, u64 min_trans)
4081{
4082	int slot;
4083	struct extent_buffer *c;
4084
4085	WARN_ON(!path->keep_locks);
4086	while (level < BTRFS_MAX_LEVEL) {
4087		if (!path->nodes[level])
4088			return 1;
4089
4090		slot = path->slots[level] + 1;
4091		c = path->nodes[level];
4092next:
4093		if (slot >= btrfs_header_nritems(c)) {
4094			int ret;
4095			int orig_lowest;
4096			struct btrfs_key cur_key;
4097			if (level + 1 >= BTRFS_MAX_LEVEL ||
4098			    !path->nodes[level + 1])
4099				return 1;
4100
4101			if (path->locks[level + 1]) {
4102				level++;
4103				continue;
4104			}
4105
4106			slot = btrfs_header_nritems(c) - 1;
4107			if (level == 0)
4108				btrfs_item_key_to_cpu(c, &cur_key, slot);
4109			else
4110				btrfs_node_key_to_cpu(c, &cur_key, slot);
4111
4112			orig_lowest = path->lowest_level;
4113			btrfs_release_path(path);
4114			path->lowest_level = level;
4115			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4116						0, 0);
4117			path->lowest_level = orig_lowest;
4118			if (ret < 0)
4119				return ret;
4120
4121			c = path->nodes[level];
4122			slot = path->slots[level];
4123			if (ret == 0)
4124				slot++;
4125			goto next;
4126		}
4127
4128		if (level == 0)
4129			btrfs_item_key_to_cpu(c, key, slot);
4130		else {
4131			u64 blockptr = btrfs_node_blockptr(c, slot);
4132			u64 gen = btrfs_node_ptr_generation(c, slot);
4133
4134			if (cache_only) {
4135				struct extent_buffer *cur;
4136				cur = btrfs_find_tree_block(root, blockptr,
4137					    btrfs_level_size(root, level - 1));
4138				if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4139					slot++;
4140					if (cur)
4141						free_extent_buffer(cur);
4142					goto next;
4143				}
4144				free_extent_buffer(cur);
4145			}
4146			if (gen < min_trans) {
4147				slot++;
4148				goto next;
4149			}
4150			btrfs_node_key_to_cpu(c, key, slot);
4151		}
4152		return 0;
4153	}
4154	return 1;
4155}
4156
4157/*
4158 * search the tree again to find a leaf with greater keys
4159 * returns 0 if it found something or 1 if there are no greater leaves.
4160 * returns < 0 on io errors.
4161 */
4162int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4163{
4164	int slot;
4165	int level;
4166	struct extent_buffer *c;
4167	struct extent_buffer *next;
 
4168	struct btrfs_key key;
 
4169	u32 nritems;
4170	int ret;
4171	int old_spinning = path->leave_spinning;
4172	int next_rw_lock = 0;
 
 
 
 
 
 
4173
4174	nritems = btrfs_header_nritems(path->nodes[0]);
4175	if (nritems == 0)
4176		return 1;
4177
4178	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4179again:
4180	level = 1;
4181	next = NULL;
4182	next_rw_lock = 0;
4183	btrfs_release_path(path);
4184
4185	path->keep_locks = 1;
4186	path->leave_spinning = 1;
4187
4188	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4189	path->keep_locks = 0;
4190
4191	if (ret < 0)
4192		return ret;
4193
4194	nritems = btrfs_header_nritems(path->nodes[0]);
4195	/*
4196	 * by releasing the path above we dropped all our locks.  A balance
4197	 * could have added more items next to the key that used to be
4198	 * at the very end of the block.  So, check again here and
4199	 * advance the path if there are now more items available.
4200	 */
4201	if (nritems > 0 && path->slots[0] < nritems - 1) {
4202		if (ret == 0)
4203			path->slots[0]++;
4204		ret = 0;
4205		goto done;
4206	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4207
4208	while (level < BTRFS_MAX_LEVEL) {
4209		if (!path->nodes[level]) {
4210			ret = 1;
4211			goto done;
4212		}
4213
4214		slot = path->slots[level] + 1;
4215		c = path->nodes[level];
4216		if (slot >= btrfs_header_nritems(c)) {
4217			level++;
4218			if (level == BTRFS_MAX_LEVEL) {
4219				ret = 1;
4220				goto done;
4221			}
4222			continue;
4223		}
4224
4225		if (next) {
4226			btrfs_tree_unlock_rw(next, next_rw_lock);
4227			free_extent_buffer(next);
 
 
 
 
 
 
 
 
 
 
4228		}
4229
4230		next = c;
4231		next_rw_lock = path->locks[level];
4232		ret = read_block_for_search(NULL, root, path, &next, level,
4233					    slot, &key);
4234		if (ret == -EAGAIN)
4235			goto again;
4236
4237		if (ret < 0) {
4238			btrfs_release_path(path);
4239			goto done;
4240		}
4241
4242		if (!path->skip_locking) {
4243			ret = btrfs_try_tree_read_lock(next);
4244			if (!ret) {
4245				btrfs_set_path_blocking(path);
4246				btrfs_tree_read_lock(next);
4247				btrfs_clear_path_blocking(path, next,
4248							  BTRFS_READ_LOCK);
 
 
 
 
 
 
 
 
 
 
 
4249			}
4250			next_rw_lock = BTRFS_READ_LOCK;
 
4251		}
4252		break;
4253	}
4254	path->slots[level] = slot;
4255	while (1) {
4256		level--;
4257		c = path->nodes[level];
4258		if (path->locks[level])
4259			btrfs_tree_unlock_rw(c, path->locks[level]);
4260
4261		free_extent_buffer(c);
4262		path->nodes[level] = next;
4263		path->slots[level] = 0;
4264		if (!path->skip_locking)
4265			path->locks[level] = next_rw_lock;
4266		if (!level)
4267			break;
4268
4269		ret = read_block_for_search(NULL, root, path, &next, level,
4270					    0, &key);
4271		if (ret == -EAGAIN)
4272			goto again;
4273
4274		if (ret < 0) {
4275			btrfs_release_path(path);
4276			goto done;
4277		}
4278
4279		if (!path->skip_locking) {
4280			ret = btrfs_try_tree_read_lock(next);
4281			if (!ret) {
4282				btrfs_set_path_blocking(path);
 
 
 
4283				btrfs_tree_read_lock(next);
4284				btrfs_clear_path_blocking(path, next,
4285							  BTRFS_READ_LOCK);
4286			}
4287			next_rw_lock = BTRFS_READ_LOCK;
4288		}
4289	}
4290	ret = 0;
4291done:
4292	unlock_up(path, 0, 1);
4293	path->leave_spinning = old_spinning;
4294	if (!old_spinning)
4295		btrfs_set_path_blocking(path);
 
 
 
 
 
 
4296
4297	return ret;
4298}
4299
 
 
 
 
 
 
 
 
4300/*
4301 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4302 * searching until it gets past min_objectid or finds an item of 'type'
4303 *
4304 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4305 */
4306int btrfs_previous_item(struct btrfs_root *root,
4307			struct btrfs_path *path, u64 min_objectid,
4308			int type)
4309{
4310	struct btrfs_key found_key;
4311	struct extent_buffer *leaf;
4312	u32 nritems;
4313	int ret;
4314
4315	while (1) {
4316		if (path->slots[0] == 0) {
4317			btrfs_set_path_blocking(path);
4318			ret = btrfs_prev_leaf(root, path);
4319			if (ret != 0)
4320				return ret;
4321		} else {
4322			path->slots[0]--;
4323		}
4324		leaf = path->nodes[0];
4325		nritems = btrfs_header_nritems(leaf);
4326		if (nritems == 0)
4327			return 1;
4328		if (path->slots[0] == nritems)
4329			path->slots[0]--;
4330
4331		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4332		if (found_key.objectid < min_objectid)
4333			break;
4334		if (found_key.type == type)
4335			return 0;
4336		if (found_key.objectid == min_objectid &&
4337		    found_key.type < type)
4338			break;
4339	}
4340	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4341}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include <linux/error-injection.h>
  11#include "messages.h"
  12#include "ctree.h"
  13#include "disk-io.h"
  14#include "transaction.h"
  15#include "print-tree.h"
  16#include "locking.h"
  17#include "volumes.h"
  18#include "qgroup.h"
  19#include "tree-mod-log.h"
  20#include "tree-checker.h"
  21#include "fs.h"
  22#include "accessors.h"
  23#include "extent-tree.h"
  24#include "relocation.h"
  25#include "file-item.h"
  26
  27static struct kmem_cache *btrfs_path_cachep;
  28
  29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  30		      *root, struct btrfs_path *path, int level);
  31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  32		      const struct btrfs_key *ins_key, struct btrfs_path *path,
  33		      int data_size, int extend);
  34static int push_node_left(struct btrfs_trans_handle *trans,
  35			  struct extent_buffer *dst,
  36			  struct extent_buffer *src, int empty);
  37static int balance_node_right(struct btrfs_trans_handle *trans,
 
  38			      struct extent_buffer *dst_buf,
  39			      struct extent_buffer *src_buf);
  40static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  41		    int level, int slot);
  42
  43static const struct btrfs_csums {
  44	u16		size;
  45	const char	name[10];
  46	const char	driver[12];
  47} btrfs_csums[] = {
  48	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  49	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
  50	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
  51	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
  52				     .driver = "blake2b-256" },
  53};
  54
  55/*
  56 * The leaf data grows from end-to-front in the node.  this returns the address
  57 * of the start of the last item, which is the stop of the leaf data stack.
  58 */
  59static unsigned int leaf_data_end(const struct extent_buffer *leaf)
  60{
  61	u32 nr = btrfs_header_nritems(leaf);
  62
  63	if (nr == 0)
  64		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
  65	return btrfs_item_offset(leaf, nr - 1);
  66}
  67
  68/*
  69 * Move data in a @leaf (using memmove, safe for overlapping ranges).
  70 *
  71 * @leaf:	leaf that we're doing a memmove on
  72 * @dst_offset:	item data offset we're moving to
  73 * @src_offset:	item data offset were' moving from
  74 * @len:	length of the data we're moving
  75 *
  76 * Wrapper around memmove_extent_buffer() that takes into account the header on
  77 * the leaf.  The btrfs_item offset's start directly after the header, so we
  78 * have to adjust any offsets to account for the header in the leaf.  This
  79 * handles that math to simplify the callers.
  80 */
  81static inline void memmove_leaf_data(const struct extent_buffer *leaf,
  82				     unsigned long dst_offset,
  83				     unsigned long src_offset,
  84				     unsigned long len)
  85{
  86	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
  87			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
 
 
 
 
 
 
 
 
  88}
  89
  90/*
  91 * Copy item data from @src into @dst at the given @offset.
  92 *
  93 * @dst:	destination leaf that we're copying into
  94 * @src:	source leaf that we're copying from
  95 * @dst_offset:	item data offset we're copying to
  96 * @src_offset:	item data offset were' copying from
  97 * @len:	length of the data we're copying
  98 *
  99 * Wrapper around copy_extent_buffer() that takes into account the header on
 100 * the leaf.  The btrfs_item offset's start directly after the header, so we
 101 * have to adjust any offsets to account for the header in the leaf.  This
 102 * handles that math to simplify the callers.
 103 */
 104static inline void copy_leaf_data(const struct extent_buffer *dst,
 105				  const struct extent_buffer *src,
 106				  unsigned long dst_offset,
 107				  unsigned long src_offset, unsigned long len)
 108{
 109	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
 110			   btrfs_item_nr_offset(src, 0) + src_offset, len);
 111}
 112
 113/*
 114 * Move items in a @leaf (using memmove).
 115 *
 116 * @dst:	destination leaf for the items
 117 * @dst_item:	the item nr we're copying into
 118 * @src_item:	the item nr we're copying from
 119 * @nr_items:	the number of items to copy
 120 *
 121 * Wrapper around memmove_extent_buffer() that does the math to get the
 122 * appropriate offsets into the leaf from the item numbers.
 123 */
 124static inline void memmove_leaf_items(const struct extent_buffer *leaf,
 125				      int dst_item, int src_item, int nr_items)
 126{
 127	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
 128			      btrfs_item_nr_offset(leaf, src_item),
 129			      nr_items * sizeof(struct btrfs_item));
 130}
 131
 132/*
 133 * Copy items from @src into @dst at the given @offset.
 134 *
 135 * @dst:	destination leaf for the items
 136 * @src:	source leaf for the items
 137 * @dst_item:	the item nr we're copying into
 138 * @src_item:	the item nr we're copying from
 139 * @nr_items:	the number of items to copy
 140 *
 141 * Wrapper around copy_extent_buffer() that does the math to get the
 142 * appropriate offsets into the leaf from the item numbers.
 143 */
 144static inline void copy_leaf_items(const struct extent_buffer *dst,
 145				   const struct extent_buffer *src,
 146				   int dst_item, int src_item, int nr_items)
 147{
 148	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
 149			      btrfs_item_nr_offset(src, src_item),
 150			      nr_items * sizeof(struct btrfs_item));
 151}
 152
 153int btrfs_super_csum_size(const struct btrfs_super_block *s)
 154{
 155	u16 t = btrfs_super_csum_type(s);
 156	/*
 157	 * csum type is validated at mount time
 158	 */
 159	return btrfs_csums[t].size;
 160}
 
 
 
 
 
 
 
 161
 162const char *btrfs_super_csum_name(u16 csum_type)
 163{
 164	/* csum type is validated at mount time */
 165	return btrfs_csums[csum_type].name;
 166}
 
 
 
 
 167
 168/*
 169 * Return driver name if defined, otherwise the name that's also a valid driver
 170 * name
 171 */
 172const char *btrfs_super_csum_driver(u16 csum_type)
 173{
 174	/* csum type is validated at mount time */
 175	return btrfs_csums[csum_type].driver[0] ?
 176		btrfs_csums[csum_type].driver :
 177		btrfs_csums[csum_type].name;
 178}
 179
 180size_t __attribute_const__ btrfs_get_num_csums(void)
 181{
 182	return ARRAY_SIZE(btrfs_csums);
 183}
 184
 185struct btrfs_path *btrfs_alloc_path(void)
 186{
 187	might_sleep();
 188
 189	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
 190}
 191
 192/* this also releases the path */
 193void btrfs_free_path(struct btrfs_path *p)
 194{
 195	if (!p)
 196		return;
 197	btrfs_release_path(p);
 198	kmem_cache_free(btrfs_path_cachep, p);
 199}
 200
 201/*
 202 * path release drops references on the extent buffers in the path
 203 * and it drops any locks held by this path
 204 *
 205 * It is safe to call this on paths that no locks or extent buffers held.
 206 */
 207noinline void btrfs_release_path(struct btrfs_path *p)
 208{
 209	int i;
 210
 211	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 212		p->slots[i] = 0;
 213		if (!p->nodes[i])
 214			continue;
 215		if (p->locks[i]) {
 216			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 217			p->locks[i] = 0;
 218		}
 219		free_extent_buffer(p->nodes[i]);
 220		p->nodes[i] = NULL;
 221	}
 222}
 223
 224/*
 225 * We want the transaction abort to print stack trace only for errors where the
 226 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
 227 * caused by external factors.
 228 */
 229bool __cold abort_should_print_stack(int errno)
 230{
 231	switch (errno) {
 232	case -EIO:
 233	case -EROFS:
 234	case -ENOMEM:
 235		return false;
 236	}
 237	return true;
 238}
 239
 240/*
 241 * safely gets a reference on the root node of a tree.  A lock
 242 * is not taken, so a concurrent writer may put a different node
 243 * at the root of the tree.  See btrfs_lock_root_node for the
 244 * looping required.
 245 *
 246 * The extent buffer returned by this has a reference taken, so
 247 * it won't disappear.  It may stop being the root of the tree
 248 * at any time because there are no locks held.
 249 */
 250struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 251{
 252	struct extent_buffer *eb;
 253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 254	while (1) {
 255		rcu_read_lock();
 256		eb = rcu_dereference(root->node);
 
 
 
 
 
 
 
 257
 258		/*
 259		 * RCU really hurts here, we could free up the root node because
 260		 * it was COWed but we may not get the new root node yet so do
 261		 * the inc_not_zero dance and if it doesn't work then
 262		 * synchronize_rcu and try again.
 263		 */
 264		if (atomic_inc_not_zero(&eb->refs)) {
 265			rcu_read_unlock();
 
 
 
 
 266			break;
 267		}
 268		rcu_read_unlock();
 269		synchronize_rcu();
 270	}
 271	return eb;
 272}
 273
 274/*
 275 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 276 * just get put onto a simple dirty list.  Transaction walks this list to make
 277 * sure they get properly updated on disk.
 278 */
 279static void add_root_to_dirty_list(struct btrfs_root *root)
 280{
 281	struct btrfs_fs_info *fs_info = root->fs_info;
 282
 283	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 284	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 285		return;
 286
 287	spin_lock(&fs_info->trans_lock);
 288	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 289		/* Want the extent tree to be the last on the list */
 290		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
 291			list_move_tail(&root->dirty_list,
 292				       &fs_info->dirty_cowonly_roots);
 293		else
 294			list_move(&root->dirty_list,
 295				  &fs_info->dirty_cowonly_roots);
 296	}
 297	spin_unlock(&fs_info->trans_lock);
 298}
 299
 300/*
 301 * used by snapshot creation to make a copy of a root for a tree with
 302 * a given objectid.  The buffer with the new root node is returned in
 303 * cow_ret, and this func returns zero on success or a negative error code.
 304 */
 305int btrfs_copy_root(struct btrfs_trans_handle *trans,
 306		      struct btrfs_root *root,
 307		      struct extent_buffer *buf,
 308		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 309{
 310	struct btrfs_fs_info *fs_info = root->fs_info;
 311	struct extent_buffer *cow;
 312	int ret = 0;
 313	int level;
 314	struct btrfs_disk_key disk_key;
 315
 316	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 317		trans->transid != fs_info->running_transaction->transid);
 318	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 319		trans->transid != root->last_trans);
 320
 321	level = btrfs_header_level(buf);
 322	if (level == 0)
 323		btrfs_item_key(buf, &disk_key, 0);
 324	else
 325		btrfs_node_key(buf, &disk_key, 0);
 326
 327	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 328				     &disk_key, level, buf->start, 0,
 329				     BTRFS_NESTING_NEW_ROOT);
 330	if (IS_ERR(cow))
 331		return PTR_ERR(cow);
 332
 333	copy_extent_buffer_full(cow, buf);
 334	btrfs_set_header_bytenr(cow, cow->start);
 335	btrfs_set_header_generation(cow, trans->transid);
 336	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 337	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 338				     BTRFS_HEADER_FLAG_RELOC);
 339	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 340		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 341	else
 342		btrfs_set_header_owner(cow, new_root_objectid);
 343
 344	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 
 
 345
 346	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 347	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 348		ret = btrfs_inc_ref(trans, root, cow, 1);
 349	else
 350		ret = btrfs_inc_ref(trans, root, cow, 0);
 351	if (ret) {
 352		btrfs_tree_unlock(cow);
 353		free_extent_buffer(cow);
 354		btrfs_abort_transaction(trans, ret);
 355		return ret;
 356	}
 357
 358	btrfs_mark_buffer_dirty(cow);
 359	*cow_ret = cow;
 360	return 0;
 361}
 362
 363/*
 364 * check if the tree block can be shared by multiple trees
 365 */
 366int btrfs_block_can_be_shared(struct btrfs_root *root,
 367			      struct extent_buffer *buf)
 368{
 369	/*
 370	 * Tree blocks not in shareable trees and tree roots are never shared.
 371	 * If a block was allocated after the last snapshot and the block was
 372	 * not allocated by tree relocation, we know the block is not shared.
 
 373	 */
 374	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 375	    buf != root->node && buf != root->commit_root &&
 376	    (btrfs_header_generation(buf) <=
 377	     btrfs_root_last_snapshot(&root->root_item) ||
 378	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 379		return 1;
 380
 
 
 
 
 381	return 0;
 382}
 383
 384static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 385				       struct btrfs_root *root,
 386				       struct extent_buffer *buf,
 387				       struct extent_buffer *cow,
 388				       int *last_ref)
 389{
 390	struct btrfs_fs_info *fs_info = root->fs_info;
 391	u64 refs;
 392	u64 owner;
 393	u64 flags;
 394	u64 new_flags = 0;
 395	int ret;
 396
 397	/*
 398	 * Backrefs update rules:
 399	 *
 400	 * Always use full backrefs for extent pointers in tree block
 401	 * allocated by tree relocation.
 402	 *
 403	 * If a shared tree block is no longer referenced by its owner
 404	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 405	 * use full backrefs for extent pointers in tree block.
 406	 *
 407	 * If a tree block is been relocating
 408	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 409	 * use full backrefs for extent pointers in tree block.
 410	 * The reason for this is some operations (such as drop tree)
 411	 * are only allowed for blocks use full backrefs.
 412	 */
 413
 414	if (btrfs_block_can_be_shared(root, buf)) {
 415		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 416					       btrfs_header_level(buf), 1,
 417					       &refs, &flags);
 418		if (ret)
 419			return ret;
 420		if (refs == 0) {
 421			ret = -EROFS;
 422			btrfs_handle_fs_error(fs_info, ret, NULL);
 423			return ret;
 424		}
 425	} else {
 426		refs = 1;
 427		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 428		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 429			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 430		else
 431			flags = 0;
 432	}
 433
 434	owner = btrfs_header_owner(buf);
 435	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 436	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 437
 438	if (refs > 1) {
 439		if ((owner == root->root_key.objectid ||
 440		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 441		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 442			ret = btrfs_inc_ref(trans, root, buf, 1);
 443			if (ret)
 444				return ret;
 445
 446			if (root->root_key.objectid ==
 447			    BTRFS_TREE_RELOC_OBJECTID) {
 448				ret = btrfs_dec_ref(trans, root, buf, 0);
 449				if (ret)
 450					return ret;
 451				ret = btrfs_inc_ref(trans, root, cow, 1);
 452				if (ret)
 453					return ret;
 454			}
 455			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 456		} else {
 457
 458			if (root->root_key.objectid ==
 459			    BTRFS_TREE_RELOC_OBJECTID)
 460				ret = btrfs_inc_ref(trans, root, cow, 1);
 461			else
 462				ret = btrfs_inc_ref(trans, root, cow, 0);
 463			if (ret)
 464				return ret;
 465		}
 466		if (new_flags != 0) {
 467			int level = btrfs_header_level(buf);
 468
 469			ret = btrfs_set_disk_extent_flags(trans, buf,
 470							  new_flags, level);
 471			if (ret)
 472				return ret;
 473		}
 474	} else {
 475		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 476			if (root->root_key.objectid ==
 477			    BTRFS_TREE_RELOC_OBJECTID)
 478				ret = btrfs_inc_ref(trans, root, cow, 1);
 479			else
 480				ret = btrfs_inc_ref(trans, root, cow, 0);
 481			if (ret)
 482				return ret;
 483			ret = btrfs_dec_ref(trans, root, buf, 1);
 484			if (ret)
 485				return ret;
 486		}
 487		btrfs_clean_tree_block(buf);
 488		*last_ref = 1;
 489	}
 490	return 0;
 491}
 492
 493/*
 494 * does the dirty work in cow of a single block.  The parent block (if
 495 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 496 * dirty and returned locked.  If you modify the block it needs to be marked
 497 * dirty again.
 498 *
 499 * search_start -- an allocation hint for the new block
 500 *
 501 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 502 * bytes the allocator should try to find free next to the block it returns.
 503 * This is just a hint and may be ignored by the allocator.
 504 */
 505static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
 506			     struct btrfs_root *root,
 507			     struct extent_buffer *buf,
 508			     struct extent_buffer *parent, int parent_slot,
 509			     struct extent_buffer **cow_ret,
 510			     u64 search_start, u64 empty_size,
 511			     enum btrfs_lock_nesting nest)
 512{
 513	struct btrfs_fs_info *fs_info = root->fs_info;
 514	struct btrfs_disk_key disk_key;
 515	struct extent_buffer *cow;
 516	int level, ret;
 517	int last_ref = 0;
 518	int unlock_orig = 0;
 519	u64 parent_start = 0;
 520
 521	if (*cow_ret == buf)
 522		unlock_orig = 1;
 523
 524	btrfs_assert_tree_write_locked(buf);
 525
 526	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 527		trans->transid != fs_info->running_transaction->transid);
 528	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 529		trans->transid != root->last_trans);
 530
 531	level = btrfs_header_level(buf);
 532
 533	if (level == 0)
 534		btrfs_item_key(buf, &disk_key, 0);
 535	else
 536		btrfs_node_key(buf, &disk_key, 0);
 537
 538	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
 539		parent_start = parent->start;
 
 
 
 
 
 540
 541	cow = btrfs_alloc_tree_block(trans, root, parent_start,
 542				     root->root_key.objectid, &disk_key, level,
 543				     search_start, empty_size, nest);
 544	if (IS_ERR(cow))
 545		return PTR_ERR(cow);
 546
 547	/* cow is set to blocking by btrfs_init_new_buffer */
 548
 549	copy_extent_buffer_full(cow, buf);
 550	btrfs_set_header_bytenr(cow, cow->start);
 551	btrfs_set_header_generation(cow, trans->transid);
 552	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 553	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 554				     BTRFS_HEADER_FLAG_RELOC);
 555	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 556		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 557	else
 558		btrfs_set_header_owner(cow, root->root_key.objectid);
 559
 560	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 
 
 561
 562	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
 563	if (ret) {
 564		btrfs_tree_unlock(cow);
 565		free_extent_buffer(cow);
 566		btrfs_abort_transaction(trans, ret);
 567		return ret;
 568	}
 569
 570	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
 571		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
 572		if (ret) {
 573			btrfs_tree_unlock(cow);
 574			free_extent_buffer(cow);
 575			btrfs_abort_transaction(trans, ret);
 576			return ret;
 577		}
 578	}
 579
 580	if (buf == root->node) {
 581		WARN_ON(parent && parent != buf);
 582		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 583		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 584			parent_start = buf->start;
 
 
 585
 586		atomic_inc(&cow->refs);
 587		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
 588		BUG_ON(ret < 0);
 589		rcu_assign_pointer(root->node, cow);
 590
 591		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 592				      parent_start, last_ref);
 593		free_extent_buffer(buf);
 594		add_root_to_dirty_list(root);
 595	} else {
 
 
 
 
 
 596		WARN_ON(trans->transid != btrfs_header_generation(parent));
 597		btrfs_tree_mod_log_insert_key(parent, parent_slot,
 598					      BTRFS_MOD_LOG_KEY_REPLACE);
 599		btrfs_set_node_blockptr(parent, parent_slot,
 600					cow->start);
 601		btrfs_set_node_ptr_generation(parent, parent_slot,
 602					      trans->transid);
 603		btrfs_mark_buffer_dirty(parent);
 604		if (last_ref) {
 605			ret = btrfs_tree_mod_log_free_eb(buf);
 606			if (ret) {
 607				btrfs_tree_unlock(cow);
 608				free_extent_buffer(cow);
 609				btrfs_abort_transaction(trans, ret);
 610				return ret;
 611			}
 612		}
 613		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
 614				      parent_start, last_ref);
 615	}
 616	if (unlock_orig)
 617		btrfs_tree_unlock(buf);
 618	free_extent_buffer_stale(buf);
 619	btrfs_mark_buffer_dirty(cow);
 620	*cow_ret = cow;
 621	return 0;
 622}
 623
 624static inline int should_cow_block(struct btrfs_trans_handle *trans,
 625				   struct btrfs_root *root,
 626				   struct extent_buffer *buf)
 627{
 628	if (btrfs_is_testing(root->fs_info))
 629		return 0;
 630
 631	/* Ensure we can see the FORCE_COW bit */
 632	smp_mb__before_atomic();
 633
 634	/*
 635	 * We do not need to cow a block if
 636	 * 1) this block is not created or changed in this transaction;
 637	 * 2) this block does not belong to TREE_RELOC tree;
 638	 * 3) the root is not forced COW.
 639	 *
 640	 * What is forced COW:
 641	 *    when we create snapshot during committing the transaction,
 642	 *    after we've finished copying src root, we must COW the shared
 643	 *    block to ensure the metadata consistency.
 644	 */
 645	if (btrfs_header_generation(buf) == trans->transid &&
 646	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
 647	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
 648	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
 649	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
 650		return 0;
 651	return 1;
 652}
 653
 654/*
 655 * cows a single block, see __btrfs_cow_block for the real work.
 656 * This version of it has extra checks so that a block isn't COWed more than
 657 * once per transaction, as long as it hasn't been written yet
 658 */
 659noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
 660		    struct btrfs_root *root, struct extent_buffer *buf,
 661		    struct extent_buffer *parent, int parent_slot,
 662		    struct extent_buffer **cow_ret,
 663		    enum btrfs_lock_nesting nest)
 664{
 665	struct btrfs_fs_info *fs_info = root->fs_info;
 666	u64 search_start;
 667	int ret;
 668
 669	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
 670		btrfs_err(fs_info,
 671			"COW'ing blocks on a fs root that's being dropped");
 672
 673	if (trans->transaction != fs_info->running_transaction)
 674		WARN(1, KERN_CRIT "trans %llu running %llu\n",
 675		       trans->transid,
 676		       fs_info->running_transaction->transid);
 677
 678	if (trans->transid != fs_info->generation)
 679		WARN(1, KERN_CRIT "trans %llu running %llu\n",
 680		       trans->transid, fs_info->generation);
 
 681
 682	if (!should_cow_block(trans, root, buf)) {
 683		*cow_ret = buf;
 684		return 0;
 685	}
 686
 687	search_start = buf->start & ~((u64)SZ_1G - 1);
 
 
 
 
 688
 689	/*
 690	 * Before CoWing this block for later modification, check if it's
 691	 * the subtree root and do the delayed subtree trace if needed.
 692	 *
 693	 * Also We don't care about the error, as it's handled internally.
 694	 */
 695	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
 696	ret = __btrfs_cow_block(trans, root, buf, parent,
 697				 parent_slot, cow_ret, search_start, 0, nest);
 698
 699	trace_btrfs_cow_block(root, buf, *cow_ret);
 700
 701	return ret;
 702}
 703ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
 704
 705/*
 706 * helper function for defrag to decide if two blocks pointed to by a
 707 * node are actually close by
 708 */
 709static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
 710{
 711	if (blocknr < other && other - (blocknr + blocksize) < 32768)
 712		return 1;
 713	if (blocknr > other && blocknr - (other + blocksize) < 32768)
 714		return 1;
 715	return 0;
 716}
 717
 718#ifdef __LITTLE_ENDIAN
 719
 720/*
 721 * Compare two keys, on little-endian the disk order is same as CPU order and
 722 * we can avoid the conversion.
 723 */
 724static int comp_keys(const struct btrfs_disk_key *disk_key,
 725		     const struct btrfs_key *k2)
 726{
 727	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
 728
 729	return btrfs_comp_cpu_keys(k1, k2);
 730}
 731
 732#else
 733
 734/*
 735 * compare two keys in a memcmp fashion
 736 */
 737static int comp_keys(const struct btrfs_disk_key *disk,
 738		     const struct btrfs_key *k2)
 739{
 740	struct btrfs_key k1;
 741
 742	btrfs_disk_key_to_cpu(&k1, disk);
 743
 744	return btrfs_comp_cpu_keys(&k1, k2);
 745}
 746#endif
 747
 748/*
 749 * same as comp_keys only with two btrfs_key's
 750 */
 751int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
 752{
 753	if (k1->objectid > k2->objectid)
 754		return 1;
 755	if (k1->objectid < k2->objectid)
 756		return -1;
 757	if (k1->type > k2->type)
 758		return 1;
 759	if (k1->type < k2->type)
 760		return -1;
 761	if (k1->offset > k2->offset)
 762		return 1;
 763	if (k1->offset < k2->offset)
 764		return -1;
 765	return 0;
 766}
 767
 768/*
 769 * this is used by the defrag code to go through all the
 770 * leaves pointed to by a node and reallocate them so that
 771 * disk order is close to key order
 772 */
 773int btrfs_realloc_node(struct btrfs_trans_handle *trans,
 774		       struct btrfs_root *root, struct extent_buffer *parent,
 775		       int start_slot, u64 *last_ret,
 776		       struct btrfs_key *progress)
 777{
 778	struct btrfs_fs_info *fs_info = root->fs_info;
 779	struct extent_buffer *cur;
 780	u64 blocknr;
 
 781	u64 search_start = *last_ret;
 782	u64 last_block = 0;
 783	u64 other;
 784	u32 parent_nritems;
 785	int end_slot;
 786	int i;
 787	int err = 0;
 
 
 788	u32 blocksize;
 789	int progress_passed = 0;
 790	struct btrfs_disk_key disk_key;
 791
 792	WARN_ON(trans->transaction != fs_info->running_transaction);
 793	WARN_ON(trans->transid != fs_info->generation);
 
 
 
 
 
 
 794
 795	parent_nritems = btrfs_header_nritems(parent);
 796	blocksize = fs_info->nodesize;
 797	end_slot = parent_nritems - 1;
 798
 799	if (parent_nritems <= 1)
 800		return 0;
 801
 802	for (i = start_slot; i <= end_slot; i++) {
 
 
 803		int close = 1;
 804
 805		btrfs_node_key(parent, &disk_key, i);
 806		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
 807			continue;
 808
 809		progress_passed = 1;
 810		blocknr = btrfs_node_blockptr(parent, i);
 
 811		if (last_block == 0)
 812			last_block = blocknr;
 813
 814		if (i > 0) {
 815			other = btrfs_node_blockptr(parent, i - 1);
 816			close = close_blocks(blocknr, other, blocksize);
 817		}
 818		if (!close && i < end_slot) {
 819			other = btrfs_node_blockptr(parent, i + 1);
 820			close = close_blocks(blocknr, other, blocksize);
 821		}
 822		if (close) {
 823			last_block = blocknr;
 824			continue;
 825		}
 826
 827		cur = btrfs_read_node_slot(parent, i);
 828		if (IS_ERR(cur))
 829			return PTR_ERR(cur);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 830		if (search_start == 0)
 831			search_start = last_block;
 832
 833		btrfs_tree_lock(cur);
 
 834		err = __btrfs_cow_block(trans, root, cur, parent, i,
 835					&cur, search_start,
 836					min(16 * blocksize,
 837					    (end_slot - i) * blocksize),
 838					BTRFS_NESTING_COW);
 839		if (err) {
 840			btrfs_tree_unlock(cur);
 841			free_extent_buffer(cur);
 842			break;
 843		}
 844		search_start = cur->start;
 845		last_block = cur->start;
 846		*last_ret = search_start;
 847		btrfs_tree_unlock(cur);
 848		free_extent_buffer(cur);
 849	}
 850	return err;
 851}
 852
 853/*
 854 * Search for a key in the given extent_buffer.
 855 *
 856 * The lower boundary for the search is specified by the slot number @low. Use a
 857 * value of 0 to search over the whole extent buffer.
 
 
 
 
 
 
 
 
 
 
 
 
 
 858 *
 859 * The slot in the extent buffer is returned via @slot. If the key exists in the
 860 * extent buffer, then @slot will point to the slot where the key is, otherwise
 861 * it points to the slot where you would insert the key.
 862 *
 863 * Slot may point to the total number of items (i.e. one position beyond the last
 864 * key) if the key is bigger than the last key in the extent buffer.
 865 */
 866static noinline int generic_bin_search(struct extent_buffer *eb, int low,
 867				       const struct btrfs_key *key, int *slot)
 
 
 868{
 869	unsigned long p;
 870	int item_size;
 871	int high = btrfs_header_nritems(eb);
 872	int ret;
 873	const int key_size = sizeof(struct btrfs_disk_key);
 874
 875	if (low > high) {
 876		btrfs_err(eb->fs_info,
 877		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
 878			  __func__, low, high, eb->start,
 879			  btrfs_header_owner(eb), btrfs_header_level(eb));
 880		return -EINVAL;
 881	}
 882
 883	if (btrfs_header_level(eb) == 0) {
 884		p = offsetof(struct btrfs_leaf, items);
 885		item_size = sizeof(struct btrfs_item);
 886	} else {
 887		p = offsetof(struct btrfs_node, ptrs);
 888		item_size = sizeof(struct btrfs_key_ptr);
 889	}
 890
 891	while (low < high) {
 892		unsigned long oip;
 893		unsigned long offset;
 894		struct btrfs_disk_key *tmp;
 895		struct btrfs_disk_key unaligned;
 896		int mid;
 897
 898		mid = (low + high) / 2;
 899		offset = p + mid * item_size;
 900		oip = offset_in_page(offset);
 901
 902		if (oip + key_size <= PAGE_SIZE) {
 903			const unsigned long idx = get_eb_page_index(offset);
 904			char *kaddr = page_address(eb->pages[idx]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 905
 906			oip = get_eb_offset_in_page(eb, offset);
 907			tmp = (struct btrfs_disk_key *)(kaddr + oip);
 908		} else {
 909			read_extent_buffer(eb, &unaligned, offset, key_size);
 910			tmp = &unaligned;
 911		}
 912
 913		ret = comp_keys(tmp, key);
 914
 915		if (ret < 0)
 916			low = mid + 1;
 917		else if (ret > 0)
 918			high = mid;
 919		else {
 920			*slot = mid;
 921			return 0;
 922		}
 923	}
 924	*slot = low;
 925	return 1;
 926}
 927
 928/*
 929 * Simple binary search on an extent buffer. Works for both leaves and nodes, and
 930 * always searches over the whole range of keys (slot 0 to slot 'nritems - 1').
 931 */
 932int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
 933		     int *slot)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934{
 935	return generic_bin_search(eb, 0, key, slot);
 936}
 937
 938static void root_add_used(struct btrfs_root *root, u32 size)
 939{
 940	spin_lock(&root->accounting_lock);
 941	btrfs_set_root_used(&root->root_item,
 942			    btrfs_root_used(&root->root_item) + size);
 943	spin_unlock(&root->accounting_lock);
 944}
 945
 946static void root_sub_used(struct btrfs_root *root, u32 size)
 947{
 948	spin_lock(&root->accounting_lock);
 949	btrfs_set_root_used(&root->root_item,
 950			    btrfs_root_used(&root->root_item) - size);
 951	spin_unlock(&root->accounting_lock);
 952}
 953
 954/* given a node and slot number, this reads the blocks it points to.  The
 955 * extent buffer is returned with a reference taken (but unlocked).
 
 956 */
 957struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
 958					   int slot)
 959{
 960	int level = btrfs_header_level(parent);
 961	struct btrfs_tree_parent_check check = { 0 };
 962	struct extent_buffer *eb;
 963
 964	if (slot < 0 || slot >= btrfs_header_nritems(parent))
 965		return ERR_PTR(-ENOENT);
 966
 967	BUG_ON(level == 0);
 968
 969	check.level = level - 1;
 970	check.transid = btrfs_node_ptr_generation(parent, slot);
 971	check.owner_root = btrfs_header_owner(parent);
 972	check.has_first_key = true;
 973	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
 974
 975	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
 976			     &check);
 977	if (IS_ERR(eb))
 978		return eb;
 979	if (!extent_buffer_uptodate(eb)) {
 980		free_extent_buffer(eb);
 981		return ERR_PTR(-EIO);
 982	}
 983
 984	return eb;
 985}
 986
 987/*
 988 * node level balancing, used to make sure nodes are in proper order for
 989 * item deletion.  We balance from the top down, so we have to make sure
 990 * that a deletion won't leave an node completely empty later on.
 991 */
 992static noinline int balance_level(struct btrfs_trans_handle *trans,
 993			 struct btrfs_root *root,
 994			 struct btrfs_path *path, int level)
 995{
 996	struct btrfs_fs_info *fs_info = root->fs_info;
 997	struct extent_buffer *right = NULL;
 998	struct extent_buffer *mid;
 999	struct extent_buffer *left = NULL;
1000	struct extent_buffer *parent = NULL;
1001	int ret = 0;
1002	int wret;
1003	int pslot;
1004	int orig_slot = path->slots[level];
1005	u64 orig_ptr;
1006
1007	ASSERT(level > 0);
 
1008
1009	mid = path->nodes[level];
1010
1011	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
 
1012	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1013
1014	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1015
1016	if (level < BTRFS_MAX_LEVEL - 1) {
1017		parent = path->nodes[level + 1];
1018		pslot = path->slots[level + 1];
1019	}
1020
1021	/*
1022	 * deal with the case where there is only one pointer in the root
1023	 * by promoting the node below to a root
1024	 */
1025	if (!parent) {
1026		struct extent_buffer *child;
1027
1028		if (btrfs_header_nritems(mid) != 1)
1029			return 0;
1030
1031		/* promote the child to a root */
1032		child = btrfs_read_node_slot(mid, 0);
1033		if (IS_ERR(child)) {
1034			ret = PTR_ERR(child);
1035			btrfs_handle_fs_error(fs_info, ret, NULL);
1036			goto enospc;
1037		}
1038
1039		btrfs_tree_lock(child);
1040		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1041				      BTRFS_NESTING_COW);
1042		if (ret) {
1043			btrfs_tree_unlock(child);
1044			free_extent_buffer(child);
1045			goto enospc;
1046		}
1047
1048		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1049		BUG_ON(ret < 0);
1050		rcu_assign_pointer(root->node, child);
1051
1052		add_root_to_dirty_list(root);
1053		btrfs_tree_unlock(child);
1054
1055		path->locks[level] = 0;
1056		path->nodes[level] = NULL;
1057		btrfs_clean_tree_block(mid);
1058		btrfs_tree_unlock(mid);
1059		/* once for the path */
1060		free_extent_buffer(mid);
1061
1062		root_sub_used(root, mid->len);
1063		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1064		/* once for the root ptr */
1065		free_extent_buffer_stale(mid);
1066		return 0;
1067	}
1068	if (btrfs_header_nritems(mid) >
1069	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1070		return 0;
1071
1072	left = btrfs_read_node_slot(parent, pslot - 1);
1073	if (IS_ERR(left))
1074		left = NULL;
1075
 
1076	if (left) {
1077		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
 
1078		wret = btrfs_cow_block(trans, root, left,
1079				       parent, pslot - 1, &left,
1080				       BTRFS_NESTING_LEFT_COW);
1081		if (wret) {
1082			ret = wret;
1083			goto enospc;
1084		}
1085	}
1086
1087	right = btrfs_read_node_slot(parent, pslot + 1);
1088	if (IS_ERR(right))
1089		right = NULL;
1090
1091	if (right) {
1092		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
 
1093		wret = btrfs_cow_block(trans, root, right,
1094				       parent, pslot + 1, &right,
1095				       BTRFS_NESTING_RIGHT_COW);
1096		if (wret) {
1097			ret = wret;
1098			goto enospc;
1099		}
1100	}
1101
1102	/* first, try to make some room in the middle buffer */
1103	if (left) {
1104		orig_slot += btrfs_header_nritems(left);
1105		wret = push_node_left(trans, left, mid, 1);
1106		if (wret < 0)
1107			ret = wret;
 
1108	}
1109
1110	/*
1111	 * then try to empty the right most buffer into the middle
1112	 */
1113	if (right) {
1114		wret = push_node_left(trans, mid, right, 1);
1115		if (wret < 0 && wret != -ENOSPC)
1116			ret = wret;
1117		if (btrfs_header_nritems(right) == 0) {
1118			btrfs_clean_tree_block(right);
1119			btrfs_tree_unlock(right);
1120			del_ptr(root, path, level + 1, pslot + 1);
 
 
 
1121			root_sub_used(root, right->len);
1122			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1123					      0, 1);
1124			free_extent_buffer_stale(right);
1125			right = NULL;
1126		} else {
1127			struct btrfs_disk_key right_key;
1128			btrfs_node_key(right, &right_key, 0);
1129			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1130					BTRFS_MOD_LOG_KEY_REPLACE);
1131			BUG_ON(ret < 0);
1132			btrfs_set_node_key(parent, &right_key, pslot + 1);
1133			btrfs_mark_buffer_dirty(parent);
1134		}
1135	}
1136	if (btrfs_header_nritems(mid) == 1) {
1137		/*
1138		 * we're not allowed to leave a node with one item in the
1139		 * tree during a delete.  A deletion from lower in the tree
1140		 * could try to delete the only pointer in this node.
1141		 * So, pull some keys from the left.
1142		 * There has to be a left pointer at this point because
1143		 * otherwise we would have pulled some pointers from the
1144		 * right
1145		 */
1146		if (!left) {
1147			ret = -EROFS;
1148			btrfs_handle_fs_error(fs_info, ret, NULL);
1149			goto enospc;
1150		}
1151		wret = balance_node_right(trans, mid, left);
1152		if (wret < 0) {
1153			ret = wret;
1154			goto enospc;
1155		}
1156		if (wret == 1) {
1157			wret = push_node_left(trans, left, mid, 1);
1158			if (wret < 0)
1159				ret = wret;
1160		}
1161		BUG_ON(wret == 1);
1162	}
1163	if (btrfs_header_nritems(mid) == 0) {
1164		btrfs_clean_tree_block(mid);
1165		btrfs_tree_unlock(mid);
1166		del_ptr(root, path, level + 1, pslot);
 
 
1167		root_sub_used(root, mid->len);
1168		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1169		free_extent_buffer_stale(mid);
1170		mid = NULL;
1171	} else {
1172		/* update the parent key to reflect our changes */
1173		struct btrfs_disk_key mid_key;
1174		btrfs_node_key(mid, &mid_key, 0);
1175		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1176						    BTRFS_MOD_LOG_KEY_REPLACE);
1177		BUG_ON(ret < 0);
1178		btrfs_set_node_key(parent, &mid_key, pslot);
1179		btrfs_mark_buffer_dirty(parent);
1180	}
1181
1182	/* update the path */
1183	if (left) {
1184		if (btrfs_header_nritems(left) > orig_slot) {
1185			atomic_inc(&left->refs);
1186			/* left was locked after cow */
1187			path->nodes[level] = left;
1188			path->slots[level + 1] -= 1;
1189			path->slots[level] = orig_slot;
1190			if (mid) {
1191				btrfs_tree_unlock(mid);
1192				free_extent_buffer(mid);
1193			}
1194		} else {
1195			orig_slot -= btrfs_header_nritems(left);
1196			path->slots[level] = orig_slot;
1197		}
1198	}
1199	/* double check we haven't messed things up */
1200	if (orig_ptr !=
1201	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1202		BUG();
1203enospc:
1204	if (right) {
1205		btrfs_tree_unlock(right);
1206		free_extent_buffer(right);
1207	}
1208	if (left) {
1209		if (path->nodes[level] != left)
1210			btrfs_tree_unlock(left);
1211		free_extent_buffer(left);
1212	}
1213	return ret;
1214}
1215
1216/* Node balancing for insertion.  Here we only split or push nodes around
1217 * when they are completely full.  This is also done top down, so we
1218 * have to be pessimistic.
1219 */
1220static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1221					  struct btrfs_root *root,
1222					  struct btrfs_path *path, int level)
1223{
1224	struct btrfs_fs_info *fs_info = root->fs_info;
1225	struct extent_buffer *right = NULL;
1226	struct extent_buffer *mid;
1227	struct extent_buffer *left = NULL;
1228	struct extent_buffer *parent = NULL;
1229	int ret = 0;
1230	int wret;
1231	int pslot;
1232	int orig_slot = path->slots[level];
1233
1234	if (level == 0)
1235		return 1;
1236
1237	mid = path->nodes[level];
1238	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1239
1240	if (level < BTRFS_MAX_LEVEL - 1) {
1241		parent = path->nodes[level + 1];
1242		pslot = path->slots[level + 1];
1243	}
1244
1245	if (!parent)
1246		return 1;
1247
1248	left = btrfs_read_node_slot(parent, pslot - 1);
1249	if (IS_ERR(left))
1250		left = NULL;
1251
1252	/* first, try to make some room in the middle buffer */
1253	if (left) {
1254		u32 left_nr;
1255
1256		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
 
1257
1258		left_nr = btrfs_header_nritems(left);
1259		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1260			wret = 1;
1261		} else {
1262			ret = btrfs_cow_block(trans, root, left, parent,
1263					      pslot - 1, &left,
1264					      BTRFS_NESTING_LEFT_COW);
1265			if (ret)
1266				wret = 1;
1267			else {
1268				wret = push_node_left(trans, left, mid, 0);
 
1269			}
1270		}
1271		if (wret < 0)
1272			ret = wret;
1273		if (wret == 0) {
1274			struct btrfs_disk_key disk_key;
1275			orig_slot += left_nr;
1276			btrfs_node_key(mid, &disk_key, 0);
1277			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1278					BTRFS_MOD_LOG_KEY_REPLACE);
1279			BUG_ON(ret < 0);
1280			btrfs_set_node_key(parent, &disk_key, pslot);
1281			btrfs_mark_buffer_dirty(parent);
1282			if (btrfs_header_nritems(left) > orig_slot) {
1283				path->nodes[level] = left;
1284				path->slots[level + 1] -= 1;
1285				path->slots[level] = orig_slot;
1286				btrfs_tree_unlock(mid);
1287				free_extent_buffer(mid);
1288			} else {
1289				orig_slot -=
1290					btrfs_header_nritems(left);
1291				path->slots[level] = orig_slot;
1292				btrfs_tree_unlock(left);
1293				free_extent_buffer(left);
1294			}
1295			return 0;
1296		}
1297		btrfs_tree_unlock(left);
1298		free_extent_buffer(left);
1299	}
1300	right = btrfs_read_node_slot(parent, pslot + 1);
1301	if (IS_ERR(right))
1302		right = NULL;
1303
1304	/*
1305	 * then try to empty the right most buffer into the middle
1306	 */
1307	if (right) {
1308		u32 right_nr;
1309
1310		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
 
1311
1312		right_nr = btrfs_header_nritems(right);
1313		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1314			wret = 1;
1315		} else {
1316			ret = btrfs_cow_block(trans, root, right,
1317					      parent, pslot + 1,
1318					      &right, BTRFS_NESTING_RIGHT_COW);
1319			if (ret)
1320				wret = 1;
1321			else {
1322				wret = balance_node_right(trans, right, mid);
 
1323			}
1324		}
1325		if (wret < 0)
1326			ret = wret;
1327		if (wret == 0) {
1328			struct btrfs_disk_key disk_key;
1329
1330			btrfs_node_key(right, &disk_key, 0);
1331			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1332					BTRFS_MOD_LOG_KEY_REPLACE);
1333			BUG_ON(ret < 0);
1334			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1335			btrfs_mark_buffer_dirty(parent);
1336
1337			if (btrfs_header_nritems(mid) <= orig_slot) {
1338				path->nodes[level] = right;
1339				path->slots[level + 1] += 1;
1340				path->slots[level] = orig_slot -
1341					btrfs_header_nritems(mid);
1342				btrfs_tree_unlock(mid);
1343				free_extent_buffer(mid);
1344			} else {
1345				btrfs_tree_unlock(right);
1346				free_extent_buffer(right);
1347			}
1348			return 0;
1349		}
1350		btrfs_tree_unlock(right);
1351		free_extent_buffer(right);
1352	}
1353	return 1;
1354}
1355
1356/*
1357 * readahead one full node of leaves, finding things that are close
1358 * to the block in 'slot', and triggering ra on them.
1359 */
1360static void reada_for_search(struct btrfs_fs_info *fs_info,
1361			     struct btrfs_path *path,
1362			     int level, int slot, u64 objectid)
1363{
1364	struct extent_buffer *node;
1365	struct btrfs_disk_key disk_key;
1366	u32 nritems;
1367	u64 search;
1368	u64 target;
1369	u64 nread = 0;
1370	u64 nread_max;
 
 
1371	u32 nr;
1372	u32 blocksize;
1373	u32 nscan = 0;
1374
1375	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1376		return;
1377
1378	if (!path->nodes[level])
1379		return;
1380
1381	node = path->nodes[level];
1382
1383	/*
1384	 * Since the time between visiting leaves is much shorter than the time
1385	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1386	 * much IO at once (possibly random).
1387	 */
1388	if (path->reada == READA_FORWARD_ALWAYS) {
1389		if (level > 1)
1390			nread_max = node->fs_info->nodesize;
1391		else
1392			nread_max = SZ_128K;
1393	} else {
1394		nread_max = SZ_64K;
1395	}
1396
1397	search = btrfs_node_blockptr(node, slot);
1398	blocksize = fs_info->nodesize;
1399	if (path->reada != READA_FORWARD_ALWAYS) {
1400		struct extent_buffer *eb;
1401
1402		eb = find_extent_buffer(fs_info, search);
1403		if (eb) {
1404			free_extent_buffer(eb);
1405			return;
1406		}
1407	}
1408
1409	target = search;
1410
1411	nritems = btrfs_header_nritems(node);
1412	nr = slot;
1413
1414	while (1) {
1415		if (path->reada == READA_BACK) {
1416			if (nr == 0)
1417				break;
1418			nr--;
1419		} else if (path->reada == READA_FORWARD ||
1420			   path->reada == READA_FORWARD_ALWAYS) {
1421			nr++;
1422			if (nr >= nritems)
1423				break;
1424		}
1425		if (path->reada == READA_BACK && objectid) {
1426			btrfs_node_key(node, &disk_key, nr);
1427			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1428				break;
1429		}
1430		search = btrfs_node_blockptr(node, nr);
1431		if (path->reada == READA_FORWARD_ALWAYS ||
1432		    (search <= target && target - search <= 65536) ||
1433		    (search > target && search - target <= 65536)) {
1434			btrfs_readahead_node_child(node, nr);
 
1435			nread += blocksize;
1436		}
1437		nscan++;
1438		if (nread > nread_max || nscan > 32)
1439			break;
1440	}
1441}
1442
1443static noinline void reada_for_balance(struct btrfs_path *path, int level)
 
 
 
 
 
1444{
1445	struct extent_buffer *parent;
1446	int slot;
1447	int nritems;
 
 
 
 
 
 
 
1448
1449	parent = path->nodes[level + 1];
1450	if (!parent)
1451		return;
1452
1453	nritems = btrfs_header_nritems(parent);
1454	slot = path->slots[level + 1];
 
1455
1456	if (slot > 0)
1457		btrfs_readahead_node_child(parent, slot - 1);
1458	if (slot + 1 < nritems)
1459		btrfs_readahead_node_child(parent, slot + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460}
1461
1462
1463/*
1464 * when we walk down the tree, it is usually safe to unlock the higher layers
1465 * in the tree.  The exceptions are when our path goes through slot 0, because
1466 * operations on the tree might require changing key pointers higher up in the
1467 * tree.
1468 *
1469 * callers might also have set path->keep_locks, which tells this code to keep
1470 * the lock if the path points to the last slot in the block.  This is part of
1471 * walking through the tree, and selecting the next slot in the higher block.
1472 *
1473 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1474 * if lowest_unlock is 1, level 0 won't be unlocked
1475 */
1476static noinline void unlock_up(struct btrfs_path *path, int level,
1477			       int lowest_unlock, int min_write_lock_level,
1478			       int *write_lock_level)
1479{
1480	int i;
1481	int skip_level = level;
1482	bool check_skip = true;
 
1483
1484	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1485		if (!path->nodes[i])
1486			break;
1487		if (!path->locks[i])
1488			break;
1489
1490		if (check_skip) {
1491			if (path->slots[i] == 0) {
 
 
 
 
 
 
1492				skip_level = i + 1;
1493				continue;
1494			}
1495
1496			if (path->keep_locks) {
1497				u32 nritems;
1498
1499				nritems = btrfs_header_nritems(path->nodes[i]);
1500				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1501					skip_level = i + 1;
1502					continue;
1503				}
1504			}
1505		}
 
 
1506
1507		if (i >= lowest_unlock && i > skip_level) {
1508			check_skip = false;
1509			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1510			path->locks[i] = 0;
1511			if (write_lock_level &&
1512			    i > min_write_lock_level &&
1513			    i <= *write_lock_level) {
1514				*write_lock_level = i - 1;
1515			}
1516		}
1517	}
1518}
1519
1520/*
1521 * Helper function for btrfs_search_slot() and other functions that do a search
1522 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1523 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1524 * its pages from disk.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1525 *
1526 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1527 * whole btree search, starting again from the current root node.
1528 */
1529static int
1530read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1531		      struct extent_buffer **eb_ret, int level, int slot,
1532		      const struct btrfs_key *key)
 
1533{
1534	struct btrfs_fs_info *fs_info = root->fs_info;
1535	struct btrfs_tree_parent_check check = { 0 };
1536	u64 blocknr;
1537	u64 gen;
 
 
1538	struct extent_buffer *tmp;
1539	int ret;
1540	int parent_level;
1541	bool unlock_up;
1542
1543	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1544	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1545	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1546	parent_level = btrfs_header_level(*eb_ret);
1547	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1548	check.has_first_key = true;
1549	check.level = parent_level - 1;
1550	check.transid = gen;
1551	check.owner_root = root->root_key.objectid;
1552
1553	/*
1554	 * If we need to read an extent buffer from disk and we are holding locks
1555	 * on upper level nodes, we unlock all the upper nodes before reading the
1556	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1557	 * restart the search. We don't release the lock on the current level
1558	 * because we need to walk this node to figure out which blocks to read.
1559	 */
1560	tmp = find_extent_buffer(fs_info, blocknr);
1561	if (tmp) {
1562		if (p->reada == READA_FORWARD_ALWAYS)
1563			reada_for_search(fs_info, p, level, slot, key->objectid);
1564
1565		/* first we do an atomic uptodate check */
1566		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1567			/*
1568			 * Do extra check for first_key, eb can be stale due to
1569			 * being cached, read from scrub, or have multiple
1570			 * parents (shared tree blocks).
 
 
 
 
 
 
1571			 */
1572			if (btrfs_verify_level_key(tmp,
1573					parent_level - 1, &check.first_key, gen)) {
1574				free_extent_buffer(tmp);
1575				return -EUCLEAN;
1576			}
1577			*eb_ret = tmp;
1578			return 0;
1579		}
1580
1581		if (p->nowait) {
1582			free_extent_buffer(tmp);
1583			return -EAGAIN;
1584		}
1585
1586		if (unlock_up)
1587			btrfs_unlock_up_safe(p, level + 1);
1588
1589		/* now we're allowed to do a blocking uptodate check */
1590		ret = btrfs_read_extent_buffer(tmp, &check);
1591		if (ret) {
1592			free_extent_buffer(tmp);
1593			btrfs_release_path(p);
1594			return -EIO;
1595		}
1596		if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1597			free_extent_buffer(tmp);
1598			btrfs_release_path(p);
1599			return -EUCLEAN;
1600		}
1601
1602		if (unlock_up)
1603			ret = -EAGAIN;
1604
1605		goto out;
1606	} else if (p->nowait) {
1607		return -EAGAIN;
1608	}
1609
1610	if (unlock_up) {
1611		btrfs_unlock_up_safe(p, level + 1);
1612		ret = -EAGAIN;
1613	} else {
1614		ret = 0;
1615	}
 
 
 
1616
1617	if (p->reada != READA_NONE)
1618		reada_for_search(fs_info, p, level, slot, key->objectid);
 
1619
1620	tmp = read_tree_block(fs_info, blocknr, &check);
1621	if (IS_ERR(tmp)) {
1622		btrfs_release_path(p);
1623		return PTR_ERR(tmp);
1624	}
1625	/*
1626	 * If the read above didn't mark this buffer up to date,
1627	 * it will never end up being up to date.  Set ret to EIO now
1628	 * and give up so that our caller doesn't loop forever
1629	 * on our EAGAINs.
1630	 */
1631	if (!extent_buffer_uptodate(tmp))
1632		ret = -EIO;
1633
1634out:
1635	if (ret == 0) {
1636		*eb_ret = tmp;
1637	} else {
 
 
 
 
 
 
 
1638		free_extent_buffer(tmp);
1639		btrfs_release_path(p);
1640	}
1641
1642	return ret;
1643}
1644
1645/*
1646 * helper function for btrfs_search_slot.  This does all of the checks
1647 * for node-level blocks and does any balancing required based on
1648 * the ins_len.
1649 *
1650 * If no extra work was required, zero is returned.  If we had to
1651 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1652 * start over
1653 */
1654static int
1655setup_nodes_for_search(struct btrfs_trans_handle *trans,
1656		       struct btrfs_root *root, struct btrfs_path *p,
1657		       struct extent_buffer *b, int level, int ins_len,
1658		       int *write_lock_level)
1659{
1660	struct btrfs_fs_info *fs_info = root->fs_info;
1661	int ret = 0;
1662
1663	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1664	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
 
1665
1666		if (*write_lock_level < level + 1) {
1667			*write_lock_level = level + 1;
1668			btrfs_release_path(p);
1669			return -EAGAIN;
1670		}
1671
1672		reada_for_balance(p, level);
1673		ret = split_node(trans, root, p, level);
 
 
 
 
 
1674
 
 
 
 
 
1675		b = p->nodes[level];
1676	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1677		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
 
1678
1679		if (*write_lock_level < level + 1) {
1680			*write_lock_level = level + 1;
1681			btrfs_release_path(p);
1682			return -EAGAIN;
1683		}
1684
1685		reada_for_balance(p, level);
1686		ret = balance_level(trans, root, p, level);
1687		if (ret)
1688			return ret;
 
 
 
1689
 
 
 
 
1690		b = p->nodes[level];
1691		if (!b) {
1692			btrfs_release_path(p);
1693			return -EAGAIN;
1694		}
1695		BUG_ON(btrfs_header_nritems(b) == 1);
1696	}
1697	return ret;
1698}
1699
1700int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1701		u64 iobjectid, u64 ioff, u8 key_type,
1702		struct btrfs_key *found_key)
1703{
1704	int ret;
1705	struct btrfs_key key;
1706	struct extent_buffer *eb;
1707
1708	ASSERT(path);
1709	ASSERT(found_key);
1710
1711	key.type = key_type;
1712	key.objectid = iobjectid;
1713	key.offset = ioff;
1714
1715	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1716	if (ret < 0)
1717		return ret;
1718
1719	eb = path->nodes[0];
1720	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1721		ret = btrfs_next_leaf(fs_root, path);
1722		if (ret)
1723			return ret;
1724		eb = path->nodes[0];
1725	}
1726
1727	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1728	if (found_key->type != key.type ||
1729			found_key->objectid != key.objectid)
1730		return 1;
1731
1732	return 0;
1733}
1734
1735static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1736							struct btrfs_path *p,
1737							int write_lock_level)
1738{
1739	struct extent_buffer *b;
1740	int root_lock = 0;
1741	int level = 0;
1742
1743	if (p->search_commit_root) {
1744		b = root->commit_root;
1745		atomic_inc(&b->refs);
1746		level = btrfs_header_level(b);
1747		/*
1748		 * Ensure that all callers have set skip_locking when
1749		 * p->search_commit_root = 1.
1750		 */
1751		ASSERT(p->skip_locking == 1);
1752
1753		goto out;
1754	}
1755
1756	if (p->skip_locking) {
1757		b = btrfs_root_node(root);
1758		level = btrfs_header_level(b);
1759		goto out;
1760	}
1761
1762	/* We try very hard to do read locks on the root */
1763	root_lock = BTRFS_READ_LOCK;
1764
1765	/*
1766	 * If the level is set to maximum, we can skip trying to get the read
1767	 * lock.
1768	 */
1769	if (write_lock_level < BTRFS_MAX_LEVEL) {
1770		/*
1771		 * We don't know the level of the root node until we actually
1772		 * have it read locked
1773		 */
1774		if (p->nowait) {
1775			b = btrfs_try_read_lock_root_node(root);
1776			if (IS_ERR(b))
1777				return b;
1778		} else {
1779			b = btrfs_read_lock_root_node(root);
1780		}
1781		level = btrfs_header_level(b);
1782		if (level > write_lock_level)
1783			goto out;
1784
1785		/* Whoops, must trade for write lock */
1786		btrfs_tree_read_unlock(b);
1787		free_extent_buffer(b);
1788	}
1789
1790	b = btrfs_lock_root_node(root);
1791	root_lock = BTRFS_WRITE_LOCK;
1792
1793	/* The level might have changed, check again */
1794	level = btrfs_header_level(b);
1795
1796out:
1797	/*
1798	 * The root may have failed to write out at some point, and thus is no
1799	 * longer valid, return an error in this case.
1800	 */
1801	if (!extent_buffer_uptodate(b)) {
1802		if (root_lock)
1803			btrfs_tree_unlock_rw(b, root_lock);
1804		free_extent_buffer(b);
1805		return ERR_PTR(-EIO);
1806	}
1807
1808	p->nodes[level] = b;
1809	if (!p->skip_locking)
1810		p->locks[level] = root_lock;
1811	/*
1812	 * Callers are responsible for dropping b's references.
1813	 */
1814	return b;
1815}
1816
1817/*
1818 * Replace the extent buffer at the lowest level of the path with a cloned
1819 * version. The purpose is to be able to use it safely, after releasing the
1820 * commit root semaphore, even if relocation is happening in parallel, the
1821 * transaction used for relocation is committed and the extent buffer is
1822 * reallocated in the next transaction.
1823 *
1824 * This is used in a context where the caller does not prevent transaction
1825 * commits from happening, either by holding a transaction handle or holding
1826 * some lock, while it's doing searches through a commit root.
1827 * At the moment it's only used for send operations.
1828 */
1829static int finish_need_commit_sem_search(struct btrfs_path *path)
1830{
1831	const int i = path->lowest_level;
1832	const int slot = path->slots[i];
1833	struct extent_buffer *lowest = path->nodes[i];
1834	struct extent_buffer *clone;
1835
1836	ASSERT(path->need_commit_sem);
1837
1838	if (!lowest)
1839		return 0;
1840
1841	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1842
1843	clone = btrfs_clone_extent_buffer(lowest);
1844	if (!clone)
1845		return -ENOMEM;
1846
1847	btrfs_release_path(path);
1848	path->nodes[i] = clone;
1849	path->slots[i] = slot;
1850
1851	return 0;
1852}
1853
1854static inline int search_for_key_slot(struct extent_buffer *eb,
1855				      int search_low_slot,
1856				      const struct btrfs_key *key,
1857				      int prev_cmp,
1858				      int *slot)
1859{
1860	/*
1861	 * If a previous call to btrfs_bin_search() on a parent node returned an
1862	 * exact match (prev_cmp == 0), we can safely assume the target key will
1863	 * always be at slot 0 on lower levels, since each key pointer
1864	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1865	 * subtree it points to. Thus we can skip searching lower levels.
1866	 */
1867	if (prev_cmp == 0) {
1868		*slot = 0;
1869		return 0;
1870	}
1871
1872	return generic_bin_search(eb, search_low_slot, key, slot);
1873}
1874
1875static int search_leaf(struct btrfs_trans_handle *trans,
1876		       struct btrfs_root *root,
1877		       const struct btrfs_key *key,
1878		       struct btrfs_path *path,
1879		       int ins_len,
1880		       int prev_cmp)
1881{
1882	struct extent_buffer *leaf = path->nodes[0];
1883	int leaf_free_space = -1;
1884	int search_low_slot = 0;
1885	int ret;
1886	bool do_bin_search = true;
1887
1888	/*
1889	 * If we are doing an insertion, the leaf has enough free space and the
1890	 * destination slot for the key is not slot 0, then we can unlock our
1891	 * write lock on the parent, and any other upper nodes, before doing the
1892	 * binary search on the leaf (with search_for_key_slot()), allowing other
1893	 * tasks to lock the parent and any other upper nodes.
1894	 */
1895	if (ins_len > 0) {
1896		/*
1897		 * Cache the leaf free space, since we will need it later and it
1898		 * will not change until then.
1899		 */
1900		leaf_free_space = btrfs_leaf_free_space(leaf);
1901
1902		/*
1903		 * !path->locks[1] means we have a single node tree, the leaf is
1904		 * the root of the tree.
1905		 */
1906		if (path->locks[1] && leaf_free_space >= ins_len) {
1907			struct btrfs_disk_key first_key;
1908
1909			ASSERT(btrfs_header_nritems(leaf) > 0);
1910			btrfs_item_key(leaf, &first_key, 0);
1911
1912			/*
1913			 * Doing the extra comparison with the first key is cheap,
1914			 * taking into account that the first key is very likely
1915			 * already in a cache line because it immediately follows
1916			 * the extent buffer's header and we have recently accessed
1917			 * the header's level field.
1918			 */
1919			ret = comp_keys(&first_key, key);
1920			if (ret < 0) {
1921				/*
1922				 * The first key is smaller than the key we want
1923				 * to insert, so we are safe to unlock all upper
1924				 * nodes and we have to do the binary search.
1925				 *
1926				 * We do use btrfs_unlock_up_safe() and not
1927				 * unlock_up() because the later does not unlock
1928				 * nodes with a slot of 0 - we can safely unlock
1929				 * any node even if its slot is 0 since in this
1930				 * case the key does not end up at slot 0 of the
1931				 * leaf and there's no need to split the leaf.
1932				 */
1933				btrfs_unlock_up_safe(path, 1);
1934				search_low_slot = 1;
1935			} else {
1936				/*
1937				 * The first key is >= then the key we want to
1938				 * insert, so we can skip the binary search as
1939				 * the target key will be at slot 0.
1940				 *
1941				 * We can not unlock upper nodes when the key is
1942				 * less than the first key, because we will need
1943				 * to update the key at slot 0 of the parent node
1944				 * and possibly of other upper nodes too.
1945				 * If the key matches the first key, then we can
1946				 * unlock all the upper nodes, using
1947				 * btrfs_unlock_up_safe() instead of unlock_up()
1948				 * as stated above.
1949				 */
1950				if (ret == 0)
1951					btrfs_unlock_up_safe(path, 1);
1952				/*
1953				 * ret is already 0 or 1, matching the result of
1954				 * a btrfs_bin_search() call, so there is no need
1955				 * to adjust it.
1956				 */
1957				do_bin_search = false;
1958				path->slots[0] = 0;
1959			}
1960		}
1961	}
1962
1963	if (do_bin_search) {
1964		ret = search_for_key_slot(leaf, search_low_slot, key,
1965					  prev_cmp, &path->slots[0]);
1966		if (ret < 0)
1967			return ret;
1968	}
1969
1970	if (ins_len > 0) {
1971		/*
1972		 * Item key already exists. In this case, if we are allowed to
1973		 * insert the item (for example, in dir_item case, item key
1974		 * collision is allowed), it will be merged with the original
1975		 * item. Only the item size grows, no new btrfs item will be
1976		 * added. If search_for_extension is not set, ins_len already
1977		 * accounts the size btrfs_item, deduct it here so leaf space
1978		 * check will be correct.
1979		 */
1980		if (ret == 0 && !path->search_for_extension) {
1981			ASSERT(ins_len >= sizeof(struct btrfs_item));
1982			ins_len -= sizeof(struct btrfs_item);
1983		}
1984
1985		ASSERT(leaf_free_space >= 0);
1986
1987		if (leaf_free_space < ins_len) {
1988			int err;
1989
1990			err = split_leaf(trans, root, key, path, ins_len,
1991					 (ret == 0));
1992			ASSERT(err <= 0);
1993			if (WARN_ON(err > 0))
1994				err = -EUCLEAN;
1995			if (err)
1996				ret = err;
1997		}
1998	}
1999
 
 
 
2000	return ret;
2001}
2002
2003/*
2004 * btrfs_search_slot - look for a key in a tree and perform necessary
2005 * modifications to preserve tree invariants.
2006 *
2007 * @trans:	Handle of transaction, used when modifying the tree
2008 * @p:		Holds all btree nodes along the search path
2009 * @root:	The root node of the tree
2010 * @key:	The key we are looking for
2011 * @ins_len:	Indicates purpose of search:
2012 *              >0  for inserts it's size of item inserted (*)
2013 *              <0  for deletions
2014 *               0  for plain searches, not modifying the tree
2015 *
2016 *              (*) If size of item inserted doesn't include
2017 *              sizeof(struct btrfs_item), then p->search_for_extension must
2018 *              be set.
2019 * @cow:	boolean should CoW operations be performed. Must always be 1
2020 *		when modifying the tree.
2021 *
2022 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2023 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2024 *
2025 * If @key is found, 0 is returned and you can find the item in the leaf level
2026 * of the path (level 0)
2027 *
2028 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2029 * points to the slot where it should be inserted
2030 *
2031 * If an error is encountered while searching the tree a negative error number
2032 * is returned
2033 */
2034int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2035		      const struct btrfs_key *key, struct btrfs_path *p,
2036		      int ins_len, int cow)
2037{
2038	struct btrfs_fs_info *fs_info = root->fs_info;
2039	struct extent_buffer *b;
2040	int slot;
2041	int ret;
2042	int err;
2043	int level;
2044	int lowest_unlock = 1;
 
2045	/* everything at write_lock_level or lower must be write locked */
2046	int write_lock_level = 0;
2047	u8 lowest_level = 0;
2048	int min_write_lock_level;
2049	int prev_cmp;
2050
2051	might_sleep();
2052
2053	lowest_level = p->lowest_level;
2054	WARN_ON(lowest_level && ins_len > 0);
2055	WARN_ON(p->nodes[0] != NULL);
2056	BUG_ON(!cow && ins_len);
2057
2058	/*
2059	 * For now only allow nowait for read only operations.  There's no
2060	 * strict reason why we can't, we just only need it for reads so it's
2061	 * only implemented for reads.
2062	 */
2063	ASSERT(!p->nowait || !cow);
2064
2065	if (ins_len < 0) {
2066		lowest_unlock = 2;
2067
2068		/* when we are removing items, we might have to go up to level
2069		 * two as we update tree pointers  Make sure we keep write
2070		 * for those levels as well
2071		 */
2072		write_lock_level = 2;
2073	} else if (ins_len > 0) {
2074		/*
2075		 * for inserting items, make sure we have a write lock on
2076		 * level 1 so we can update keys
2077		 */
2078		write_lock_level = 1;
2079	}
2080
2081	if (!cow)
2082		write_lock_level = -1;
2083
2084	if (cow && (p->keep_locks || p->lowest_level))
2085		write_lock_level = BTRFS_MAX_LEVEL;
2086
2087	min_write_lock_level = write_lock_level;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2088
2089	if (p->need_commit_sem) {
2090		ASSERT(p->search_commit_root);
2091		if (p->nowait) {
2092			if (!down_read_trylock(&fs_info->commit_root_sem))
2093				return -EAGAIN;
2094		} else {
2095			down_read(&fs_info->commit_root_sem);
2096		}
2097	}
2098
2099again:
2100	prev_cmp = -1;
2101	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2102	if (IS_ERR(b)) {
2103		ret = PTR_ERR(b);
2104		goto done;
2105	}
2106
2107	while (b) {
2108		int dec = 0;
2109
2110		level = btrfs_header_level(b);
2111
 
 
 
 
2112		if (cow) {
2113			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2114
2115			/*
2116			 * if we don't really need to cow this block
2117			 * then we don't want to set the path blocking,
2118			 * so we test it here
2119			 */
2120			if (!should_cow_block(trans, root, b))
2121				goto cow_done;
2122
 
 
2123			/*
2124			 * must have write locks on this node and the
2125			 * parent
2126			 */
2127			if (level > write_lock_level ||
2128			    (level + 1 > write_lock_level &&
2129			    level + 1 < BTRFS_MAX_LEVEL &&
2130			    p->nodes[level + 1])) {
2131				write_lock_level = level + 1;
2132				btrfs_release_path(p);
2133				goto again;
2134			}
2135
2136			if (last_level)
2137				err = btrfs_cow_block(trans, root, b, NULL, 0,
2138						      &b,
2139						      BTRFS_NESTING_COW);
2140			else
2141				err = btrfs_cow_block(trans, root, b,
2142						      p->nodes[level + 1],
2143						      p->slots[level + 1], &b,
2144						      BTRFS_NESTING_COW);
2145			if (err) {
2146				ret = err;
2147				goto done;
2148			}
2149		}
2150cow_done:
 
 
2151		p->nodes[level] = b;
 
2152
2153		/*
2154		 * we have a lock on b and as long as we aren't changing
2155		 * the tree, there is no way to for the items in b to change.
2156		 * It is safe to drop the lock on our parent before we
2157		 * go through the expensive btree search on b.
2158		 *
2159		 * If we're inserting or deleting (ins_len != 0), then we might
2160		 * be changing slot zero, which may require changing the parent.
2161		 * So, we can't drop the lock until after we know which slot
2162		 * we're operating on.
2163		 */
2164		if (!ins_len && !p->keep_locks) {
2165			int u = level + 1;
 
 
2166
2167			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2168				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2169				p->locks[u] = 0;
 
 
 
 
 
 
 
 
 
 
 
2170			}
2171		}
 
2172
2173		if (level == 0) {
2174			if (ins_len > 0)
2175				ASSERT(write_lock_level >= 1);
 
 
 
 
 
 
 
 
 
2176
2177			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2178			if (!p->search_for_split)
2179				unlock_up(p, level, lowest_unlock,
2180					  min_write_lock_level, NULL);
2181			goto done;
2182		}
2183
2184		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2185		if (ret < 0)
2186			goto done;
2187		prev_cmp = ret;
 
2188
2189		if (ret && slot > 0) {
2190			dec = 1;
2191			slot--;
2192		}
2193		p->slots[level] = slot;
2194		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2195					     &write_lock_level);
2196		if (err == -EAGAIN)
2197			goto again;
2198		if (err) {
2199			ret = err;
2200			goto done;
2201		}
2202		b = p->nodes[level];
2203		slot = p->slots[level];
2204
2205		/*
2206		 * Slot 0 is special, if we change the key we have to update
2207		 * the parent pointer which means we must have a write lock on
2208		 * the parent
2209		 */
2210		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2211			write_lock_level = level + 1;
2212			btrfs_release_path(p);
2213			goto again;
2214		}
2215
2216		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2217			  &write_lock_level);
2218
2219		if (level == lowest_level) {
2220			if (dec)
2221				p->slots[level]++;
2222			goto done;
2223		}
2224
2225		err = read_block_for_search(root, p, &b, level, slot, key);
2226		if (err == -EAGAIN)
2227			goto again;
2228		if (err) {
2229			ret = err;
2230			goto done;
2231		}
2232
2233		if (!p->skip_locking) {
2234			level = btrfs_header_level(b);
2235
2236			btrfs_maybe_reset_lockdep_class(root, b);
2237
2238			if (level <= write_lock_level) {
2239				btrfs_tree_lock(b);
2240				p->locks[level] = BTRFS_WRITE_LOCK;
2241			} else {
2242				if (p->nowait) {
2243					if (!btrfs_try_tree_read_lock(b)) {
2244						free_extent_buffer(b);
2245						ret = -EAGAIN;
2246						goto done;
2247					}
 
2248				} else {
2249					btrfs_tree_read_lock(b);
 
 
 
 
 
 
 
2250				}
2251				p->locks[level] = BTRFS_READ_LOCK;
2252			}
2253			p->nodes[level] = b;
2254		}
2255	}
2256	ret = 1;
2257done:
2258	if (ret < 0 && !p->skip_release_on_error)
2259		btrfs_release_path(p);
2260
2261	if (p->need_commit_sem) {
2262		int ret2;
2263
2264		ret2 = finish_need_commit_sem_search(p);
2265		up_read(&fs_info->commit_root_sem);
2266		if (ret2)
2267			ret = ret2;
2268	}
2269
2270	return ret;
2271}
2272ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2273
2274/*
2275 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2276 * current state of the tree together with the operations recorded in the tree
2277 * modification log to search for the key in a previous version of this tree, as
2278 * denoted by the time_seq parameter.
2279 *
2280 * Naturally, there is no support for insert, delete or cow operations.
2281 *
2282 * The resulting path and return value will be set up as if we called
2283 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2284 */
2285int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2286			  struct btrfs_path *p, u64 time_seq)
2287{
2288	struct btrfs_fs_info *fs_info = root->fs_info;
2289	struct extent_buffer *b;
2290	int slot;
2291	int ret;
2292	int err;
2293	int level;
2294	int lowest_unlock = 1;
2295	u8 lowest_level = 0;
2296
2297	lowest_level = p->lowest_level;
2298	WARN_ON(p->nodes[0] != NULL);
2299	ASSERT(!p->nowait);
2300
2301	if (p->search_commit_root) {
2302		BUG_ON(time_seq);
2303		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2304	}
2305
2306again:
2307	b = btrfs_get_old_root(root, time_seq);
2308	if (!b) {
2309		ret = -EIO;
2310		goto done;
2311	}
2312	level = btrfs_header_level(b);
2313	p->locks[level] = BTRFS_READ_LOCK;
2314
2315	while (b) {
2316		int dec = 0;
2317
2318		level = btrfs_header_level(b);
2319		p->nodes[level] = b;
2320
2321		/*
2322		 * we have a lock on b and as long as we aren't changing
2323		 * the tree, there is no way to for the items in b to change.
2324		 * It is safe to drop the lock on our parent before we
2325		 * go through the expensive btree search on b.
2326		 */
2327		btrfs_unlock_up_safe(p, level + 1);
2328
2329		ret = btrfs_bin_search(b, key, &slot);
2330		if (ret < 0)
2331			goto done;
2332
2333		if (level == 0) {
2334			p->slots[level] = slot;
2335			unlock_up(p, level, lowest_unlock, 0, NULL);
2336			goto done;
2337		}
 
 
 
 
2338
2339		if (ret && slot > 0) {
2340			dec = 1;
2341			slot--;
2342		}
2343		p->slots[level] = slot;
2344		unlock_up(p, level, lowest_unlock, 0, NULL);
2345
2346		if (level == lowest_level) {
2347			if (dec)
2348				p->slots[level]++;
2349			goto done;
2350		}
2351
2352		err = read_block_for_search(root, p, &b, level, slot, key);
2353		if (err == -EAGAIN)
2354			goto again;
2355		if (err) {
2356			ret = err;
2357			goto done;
2358		}
2359
2360		level = btrfs_header_level(b);
2361		btrfs_tree_read_lock(b);
2362		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2363		if (!b) {
2364			ret = -ENOMEM;
2365			goto done;
2366		}
2367		p->locks[level] = BTRFS_READ_LOCK;
2368		p->nodes[level] = b;
2369	}
2370	ret = 1;
2371done:
 
 
 
 
 
 
2372	if (ret < 0)
2373		btrfs_release_path(p);
2374
2375	return ret;
2376}
2377
2378/*
2379 * helper to use instead of search slot if no exact match is needed but
2380 * instead the next or previous item should be returned.
2381 * When find_higher is true, the next higher item is returned, the next lower
2382 * otherwise.
2383 * When return_any and find_higher are both true, and no higher item is found,
2384 * return the next lower instead.
2385 * When return_any is true and find_higher is false, and no lower item is found,
2386 * return the next higher instead.
2387 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2388 * < 0 on error
2389 */
2390int btrfs_search_slot_for_read(struct btrfs_root *root,
2391			       const struct btrfs_key *key,
2392			       struct btrfs_path *p, int find_higher,
2393			       int return_any)
2394{
2395	int ret;
2396	struct extent_buffer *leaf;
2397
2398again:
2399	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2400	if (ret <= 0)
2401		return ret;
2402	/*
2403	 * a return value of 1 means the path is at the position where the
2404	 * item should be inserted. Normally this is the next bigger item,
2405	 * but in case the previous item is the last in a leaf, path points
2406	 * to the first free slot in the previous leaf, i.e. at an invalid
2407	 * item.
2408	 */
2409	leaf = p->nodes[0];
2410
2411	if (find_higher) {
2412		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2413			ret = btrfs_next_leaf(root, p);
2414			if (ret <= 0)
2415				return ret;
2416			if (!return_any)
2417				return 1;
2418			/*
2419			 * no higher item found, return the next
2420			 * lower instead
2421			 */
2422			return_any = 0;
2423			find_higher = 0;
2424			btrfs_release_path(p);
2425			goto again;
2426		}
2427	} else {
2428		if (p->slots[0] == 0) {
2429			ret = btrfs_prev_leaf(root, p);
2430			if (ret < 0)
2431				return ret;
2432			if (!ret) {
2433				leaf = p->nodes[0];
2434				if (p->slots[0] == btrfs_header_nritems(leaf))
2435					p->slots[0]--;
2436				return 0;
2437			}
2438			if (!return_any)
2439				return 1;
2440			/*
2441			 * no lower item found, return the next
2442			 * higher instead
2443			 */
2444			return_any = 0;
2445			find_higher = 1;
2446			btrfs_release_path(p);
2447			goto again;
2448		} else {
2449			--p->slots[0];
2450		}
2451	}
2452	return 0;
2453}
2454
2455/*
2456 * Execute search and call btrfs_previous_item to traverse backwards if the item
2457 * was not found.
2458 *
2459 * Return 0 if found, 1 if not found and < 0 if error.
2460 */
2461int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2462			   struct btrfs_path *path)
2463{
2464	int ret;
2465
2466	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2467	if (ret > 0)
2468		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2469
2470	if (ret == 0)
2471		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2472
2473	return ret;
2474}
2475
2476/*
2477 * Search for a valid slot for the given path.
2478 *
2479 * @root:	The root node of the tree.
2480 * @key:	Will contain a valid item if found.
2481 * @path:	The starting point to validate the slot.
2482 *
2483 * Return: 0  if the item is valid
2484 *         1  if not found
2485 *         <0 if error.
2486 */
2487int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2488			      struct btrfs_path *path)
2489{
2490	while (1) {
2491		int ret;
2492		const int slot = path->slots[0];
2493		const struct extent_buffer *leaf = path->nodes[0];
2494
2495		/* This is where we start walking the path. */
2496		if (slot >= btrfs_header_nritems(leaf)) {
2497			/*
2498			 * If we've reached the last slot in this leaf we need
2499			 * to go to the next leaf and reset the path.
2500			 */
2501			ret = btrfs_next_leaf(root, path);
2502			if (ret)
2503				return ret;
2504			continue;
2505		}
2506		/* Store the found, valid item in @key. */
2507		btrfs_item_key_to_cpu(leaf, key, slot);
2508		break;
2509	}
2510	return 0;
2511}
2512
2513/*
2514 * adjust the pointers going up the tree, starting at level
2515 * making sure the right key of each node is points to 'key'.
2516 * This is used after shifting pointers to the left, so it stops
2517 * fixing up pointers when a given leaf/node is not in slot 0 of the
2518 * higher levels
2519 *
 
 
2520 */
2521static void fixup_low_keys(struct btrfs_path *path,
2522			   struct btrfs_disk_key *key, int level)
 
2523{
2524	int i;
 
2525	struct extent_buffer *t;
2526	int ret;
2527
2528	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2529		int tslot = path->slots[i];
2530
2531		if (!path->nodes[i])
2532			break;
2533		t = path->nodes[i];
2534		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2535						    BTRFS_MOD_LOG_KEY_REPLACE);
2536		BUG_ON(ret < 0);
2537		btrfs_set_node_key(t, key, tslot);
2538		btrfs_mark_buffer_dirty(path->nodes[i]);
2539		if (tslot != 0)
2540			break;
2541	}
 
2542}
2543
2544/*
2545 * update item key.
2546 *
2547 * This function isn't completely safe. It's the caller's responsibility
2548 * that the new key won't break the order
2549 */
2550void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2551			     struct btrfs_path *path,
2552			     const struct btrfs_key *new_key)
2553{
2554	struct btrfs_disk_key disk_key;
2555	struct extent_buffer *eb;
2556	int slot;
2557
2558	eb = path->nodes[0];
2559	slot = path->slots[0];
2560	if (slot > 0) {
2561		btrfs_item_key(eb, &disk_key, slot - 1);
2562		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2563			btrfs_crit(fs_info,
2564		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2565				   slot, btrfs_disk_key_objectid(&disk_key),
2566				   btrfs_disk_key_type(&disk_key),
2567				   btrfs_disk_key_offset(&disk_key),
2568				   new_key->objectid, new_key->type,
2569				   new_key->offset);
2570			btrfs_print_leaf(eb);
2571			BUG();
2572		}
2573	}
2574	if (slot < btrfs_header_nritems(eb) - 1) {
2575		btrfs_item_key(eb, &disk_key, slot + 1);
2576		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2577			btrfs_crit(fs_info,
2578		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2579				   slot, btrfs_disk_key_objectid(&disk_key),
2580				   btrfs_disk_key_type(&disk_key),
2581				   btrfs_disk_key_offset(&disk_key),
2582				   new_key->objectid, new_key->type,
2583				   new_key->offset);
2584			btrfs_print_leaf(eb);
2585			BUG();
2586		}
2587	}
2588
2589	btrfs_cpu_key_to_disk(&disk_key, new_key);
2590	btrfs_set_item_key(eb, &disk_key, slot);
2591	btrfs_mark_buffer_dirty(eb);
2592	if (slot == 0)
2593		fixup_low_keys(path, &disk_key, 1);
2594}
2595
2596/*
2597 * Check key order of two sibling extent buffers.
2598 *
2599 * Return true if something is wrong.
2600 * Return false if everything is fine.
2601 *
2602 * Tree-checker only works inside one tree block, thus the following
2603 * corruption can not be detected by tree-checker:
2604 *
2605 * Leaf @left			| Leaf @right
2606 * --------------------------------------------------------------
2607 * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2608 *
2609 * Key f6 in leaf @left itself is valid, but not valid when the next
2610 * key in leaf @right is 7.
2611 * This can only be checked at tree block merge time.
2612 * And since tree checker has ensured all key order in each tree block
2613 * is correct, we only need to bother the last key of @left and the first
2614 * key of @right.
2615 */
2616static bool check_sibling_keys(struct extent_buffer *left,
2617			       struct extent_buffer *right)
2618{
2619	struct btrfs_key left_last;
2620	struct btrfs_key right_first;
2621	int level = btrfs_header_level(left);
2622	int nr_left = btrfs_header_nritems(left);
2623	int nr_right = btrfs_header_nritems(right);
2624
2625	/* No key to check in one of the tree blocks */
2626	if (!nr_left || !nr_right)
2627		return false;
2628
2629	if (level) {
2630		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2631		btrfs_node_key_to_cpu(right, &right_first, 0);
2632	} else {
2633		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2634		btrfs_item_key_to_cpu(right, &right_first, 0);
2635	}
2636
2637	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2638		btrfs_crit(left->fs_info,
2639"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2640			   left_last.objectid, left_last.type,
2641			   left_last.offset, right_first.objectid,
2642			   right_first.type, right_first.offset);
2643		return true;
2644	}
2645	return false;
2646}
2647
2648/*
2649 * try to push data from one node into the next node left in the
2650 * tree.
2651 *
2652 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2653 * error, and > 0 if there was no room in the left hand block.
2654 */
2655static int push_node_left(struct btrfs_trans_handle *trans,
2656			  struct extent_buffer *dst,
2657			  struct extent_buffer *src, int empty)
2658{
2659	struct btrfs_fs_info *fs_info = trans->fs_info;
2660	int push_items = 0;
2661	int src_nritems;
2662	int dst_nritems;
2663	int ret = 0;
2664
2665	src_nritems = btrfs_header_nritems(src);
2666	dst_nritems = btrfs_header_nritems(dst);
2667	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2668	WARN_ON(btrfs_header_generation(src) != trans->transid);
2669	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2670
2671	if (!empty && src_nritems <= 8)
2672		return 1;
2673
2674	if (push_items <= 0)
2675		return 1;
2676
2677	if (empty) {
2678		push_items = min(src_nritems, push_items);
2679		if (push_items < src_nritems) {
2680			/* leave at least 8 pointers in the node if
2681			 * we aren't going to empty it
2682			 */
2683			if (src_nritems - push_items < 8) {
2684				if (push_items <= 8)
2685					return 1;
2686				push_items -= 8;
2687			}
2688		}
2689	} else
2690		push_items = min(src_nritems - 8, push_items);
2691
2692	/* dst is the left eb, src is the middle eb */
2693	if (check_sibling_keys(dst, src)) {
2694		ret = -EUCLEAN;
2695		btrfs_abort_transaction(trans, ret);
2696		return ret;
2697	}
2698	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2699	if (ret) {
2700		btrfs_abort_transaction(trans, ret);
2701		return ret;
2702	}
2703	copy_extent_buffer(dst, src,
2704			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2705			   btrfs_node_key_ptr_offset(src, 0),
2706			   push_items * sizeof(struct btrfs_key_ptr));
2707
2708	if (push_items < src_nritems) {
2709		/*
2710		 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2711		 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2712		 */
2713		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2714				      btrfs_node_key_ptr_offset(src, push_items),
2715				      (src_nritems - push_items) *
2716				      sizeof(struct btrfs_key_ptr));
2717	}
2718	btrfs_set_header_nritems(src, src_nritems - push_items);
2719	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2720	btrfs_mark_buffer_dirty(src);
2721	btrfs_mark_buffer_dirty(dst);
2722
2723	return ret;
2724}
2725
2726/*
2727 * try to push data from one node into the next node right in the
2728 * tree.
2729 *
2730 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2731 * error, and > 0 if there was no room in the right hand block.
2732 *
2733 * this will  only push up to 1/2 the contents of the left node over
2734 */
2735static int balance_node_right(struct btrfs_trans_handle *trans,
 
2736			      struct extent_buffer *dst,
2737			      struct extent_buffer *src)
2738{
2739	struct btrfs_fs_info *fs_info = trans->fs_info;
2740	int push_items = 0;
2741	int max_push;
2742	int src_nritems;
2743	int dst_nritems;
2744	int ret = 0;
2745
2746	WARN_ON(btrfs_header_generation(src) != trans->transid);
2747	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2748
2749	src_nritems = btrfs_header_nritems(src);
2750	dst_nritems = btrfs_header_nritems(dst);
2751	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2752	if (push_items <= 0)
2753		return 1;
2754
2755	if (src_nritems < 4)
2756		return 1;
2757
2758	max_push = src_nritems / 2 + 1;
2759	/* don't try to empty the node */
2760	if (max_push >= src_nritems)
2761		return 1;
2762
2763	if (max_push < push_items)
2764		push_items = max_push;
2765
2766	/* dst is the right eb, src is the middle eb */
2767	if (check_sibling_keys(src, dst)) {
2768		ret = -EUCLEAN;
2769		btrfs_abort_transaction(trans, ret);
2770		return ret;
2771	}
2772	ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2773	BUG_ON(ret < 0);
2774	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2775				      btrfs_node_key_ptr_offset(dst, 0),
2776				      (dst_nritems) *
2777				      sizeof(struct btrfs_key_ptr));
2778
2779	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2780					 push_items);
2781	if (ret) {
2782		btrfs_abort_transaction(trans, ret);
2783		return ret;
2784	}
2785	copy_extent_buffer(dst, src,
2786			   btrfs_node_key_ptr_offset(dst, 0),
2787			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2788			   push_items * sizeof(struct btrfs_key_ptr));
2789
2790	btrfs_set_header_nritems(src, src_nritems - push_items);
2791	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2792
2793	btrfs_mark_buffer_dirty(src);
2794	btrfs_mark_buffer_dirty(dst);
2795
2796	return ret;
2797}
2798
2799/*
2800 * helper function to insert a new root level in the tree.
2801 * A new node is allocated, and a single item is inserted to
2802 * point to the existing root
2803 *
2804 * returns zero on success or < 0 on failure.
2805 */
2806static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2807			   struct btrfs_root *root,
2808			   struct btrfs_path *path, int level)
2809{
2810	struct btrfs_fs_info *fs_info = root->fs_info;
2811	u64 lower_gen;
2812	struct extent_buffer *lower;
2813	struct extent_buffer *c;
2814	struct extent_buffer *old;
2815	struct btrfs_disk_key lower_key;
2816	int ret;
2817
2818	BUG_ON(path->nodes[level]);
2819	BUG_ON(path->nodes[level-1] != root->node);
2820
2821	lower = path->nodes[level-1];
2822	if (level == 1)
2823		btrfs_item_key(lower, &lower_key, 0);
2824	else
2825		btrfs_node_key(lower, &lower_key, 0);
2826
2827	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2828				   &lower_key, level, root->node->start, 0,
2829				   BTRFS_NESTING_NEW_ROOT);
2830	if (IS_ERR(c))
2831		return PTR_ERR(c);
2832
2833	root_add_used(root, fs_info->nodesize);
2834
 
2835	btrfs_set_header_nritems(c, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2836	btrfs_set_node_key(c, &lower_key, 0);
2837	btrfs_set_node_blockptr(c, 0, lower->start);
2838	lower_gen = btrfs_header_generation(lower);
2839	WARN_ON(lower_gen != trans->transid);
2840
2841	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2842
2843	btrfs_mark_buffer_dirty(c);
2844
2845	old = root->node;
2846	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2847	BUG_ON(ret < 0);
2848	rcu_assign_pointer(root->node, c);
2849
2850	/* the super has an extra ref to root->node */
2851	free_extent_buffer(old);
2852
2853	add_root_to_dirty_list(root);
2854	atomic_inc(&c->refs);
2855	path->nodes[level] = c;
2856	path->locks[level] = BTRFS_WRITE_LOCK;
2857	path->slots[level] = 0;
2858	return 0;
2859}
2860
2861/*
2862 * worker function to insert a single pointer in a node.
2863 * the node should have enough room for the pointer already
2864 *
2865 * slot and level indicate where you want the key to go, and
2866 * blocknr is the block the key points to.
 
 
2867 */
2868static void insert_ptr(struct btrfs_trans_handle *trans,
2869		       struct btrfs_path *path,
2870		       struct btrfs_disk_key *key, u64 bytenr,
2871		       int slot, int level)
2872{
2873	struct extent_buffer *lower;
2874	int nritems;
2875	int ret;
2876
2877	BUG_ON(!path->nodes[level]);
2878	btrfs_assert_tree_write_locked(path->nodes[level]);
2879	lower = path->nodes[level];
2880	nritems = btrfs_header_nritems(lower);
2881	BUG_ON(slot > nritems);
2882	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
 
2883	if (slot != nritems) {
2884		if (level) {
2885			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2886					slot, nritems - slot);
2887			BUG_ON(ret < 0);
2888		}
2889		memmove_extent_buffer(lower,
2890			      btrfs_node_key_ptr_offset(lower, slot + 1),
2891			      btrfs_node_key_ptr_offset(lower, slot),
2892			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2893	}
2894	if (level) {
2895		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2896						    BTRFS_MOD_LOG_KEY_ADD);
2897		BUG_ON(ret < 0);
2898	}
2899	btrfs_set_node_key(lower, key, slot);
2900	btrfs_set_node_blockptr(lower, slot, bytenr);
2901	WARN_ON(trans->transid == 0);
2902	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2903	btrfs_set_header_nritems(lower, nritems + 1);
2904	btrfs_mark_buffer_dirty(lower);
 
2905}
2906
2907/*
2908 * split the node at the specified level in path in two.
2909 * The path is corrected to point to the appropriate node after the split
2910 *
2911 * Before splitting this tries to make some room in the node by pushing
2912 * left and right, if either one works, it returns right away.
2913 *
2914 * returns 0 on success and < 0 on failure
2915 */
2916static noinline int split_node(struct btrfs_trans_handle *trans,
2917			       struct btrfs_root *root,
2918			       struct btrfs_path *path, int level)
2919{
2920	struct btrfs_fs_info *fs_info = root->fs_info;
2921	struct extent_buffer *c;
2922	struct extent_buffer *split;
2923	struct btrfs_disk_key disk_key;
2924	int mid;
2925	int ret;
 
2926	u32 c_nritems;
2927
2928	c = path->nodes[level];
2929	WARN_ON(btrfs_header_generation(c) != trans->transid);
2930	if (c == root->node) {
2931		/*
2932		 * trying to split the root, lets make a new one
2933		 *
2934		 * tree mod log: We don't log_removal old root in
2935		 * insert_new_root, because that root buffer will be kept as a
2936		 * normal node. We are going to log removal of half of the
2937		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2938		 * holding a tree lock on the buffer, which is why we cannot
2939		 * race with other tree_mod_log users.
2940		 */
2941		ret = insert_new_root(trans, root, path, level + 1);
2942		if (ret)
2943			return ret;
2944	} else {
2945		ret = push_nodes_for_insert(trans, root, path, level);
2946		c = path->nodes[level];
2947		if (!ret && btrfs_header_nritems(c) <
2948		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2949			return 0;
2950		if (ret < 0)
2951			return ret;
2952	}
2953
2954	c_nritems = btrfs_header_nritems(c);
2955	mid = (c_nritems + 1) / 2;
2956	btrfs_node_key(c, &disk_key, mid);
2957
2958	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2959				       &disk_key, level, c->start, 0,
2960				       BTRFS_NESTING_SPLIT);
2961	if (IS_ERR(split))
2962		return PTR_ERR(split);
2963
2964	root_add_used(root, fs_info->nodesize);
2965	ASSERT(btrfs_header_level(c) == level);
 
 
 
 
 
 
 
 
 
 
 
 
 
2966
2967	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2968	if (ret) {
2969		btrfs_abort_transaction(trans, ret);
2970		return ret;
2971	}
2972	copy_extent_buffer(split, c,
2973			   btrfs_node_key_ptr_offset(split, 0),
2974			   btrfs_node_key_ptr_offset(c, mid),
2975			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2976	btrfs_set_header_nritems(split, c_nritems - mid);
2977	btrfs_set_header_nritems(c, mid);
 
2978
2979	btrfs_mark_buffer_dirty(c);
2980	btrfs_mark_buffer_dirty(split);
2981
2982	insert_ptr(trans, path, &disk_key, split->start,
2983		   path->slots[level + 1] + 1, level + 1);
 
 
 
2984
2985	if (path->slots[level] >= mid) {
2986		path->slots[level] -= mid;
2987		btrfs_tree_unlock(c);
2988		free_extent_buffer(c);
2989		path->nodes[level] = split;
2990		path->slots[level + 1] += 1;
2991	} else {
2992		btrfs_tree_unlock(split);
2993		free_extent_buffer(split);
2994	}
2995	return 0;
2996}
2997
2998/*
2999 * how many bytes are required to store the items in a leaf.  start
3000 * and nr indicate which items in the leaf to check.  This totals up the
3001 * space used both by the item structs and the item data
3002 */
3003static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3004{
3005	int data_len;
3006	int nritems = btrfs_header_nritems(l);
3007	int end = min(nritems, start + nr) - 1;
3008
3009	if (!nr)
3010		return 0;
3011	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3012	data_len = data_len - btrfs_item_offset(l, end);
3013	data_len += sizeof(struct btrfs_item) * nr;
3014	WARN_ON(data_len < 0);
3015	return data_len;
3016}
3017
3018/*
3019 * The space between the end of the leaf items and
3020 * the start of the leaf data.  IOW, how much room
3021 * the leaf has left for both items and data
3022 */
3023noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
 
3024{
3025	struct btrfs_fs_info *fs_info = leaf->fs_info;
3026	int nritems = btrfs_header_nritems(leaf);
3027	int ret;
3028
3029	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3030	if (ret < 0) {
3031		btrfs_crit(fs_info,
3032			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3033			   ret,
3034			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3035			   leaf_space_used(leaf, 0, nritems), nritems);
3036	}
3037	return ret;
3038}
3039
3040/*
3041 * min slot controls the lowest index we're willing to push to the
3042 * right.  We'll push up to and including min_slot, but no lower
3043 */
3044static noinline int __push_leaf_right(struct btrfs_path *path,
 
 
3045				      int data_size, int empty,
3046				      struct extent_buffer *right,
3047				      int free_space, u32 left_nritems,
3048				      u32 min_slot)
3049{
3050	struct btrfs_fs_info *fs_info = right->fs_info;
3051	struct extent_buffer *left = path->nodes[0];
3052	struct extent_buffer *upper = path->nodes[1];
3053	struct btrfs_map_token token;
3054	struct btrfs_disk_key disk_key;
3055	int slot;
3056	u32 i;
3057	int push_space = 0;
3058	int push_items = 0;
 
3059	u32 nr;
3060	u32 right_nritems;
3061	u32 data_end;
3062	u32 this_item_size;
3063
3064	if (empty)
3065		nr = 0;
3066	else
3067		nr = max_t(u32, 1, min_slot);
3068
3069	if (path->slots[0] >= left_nritems)
3070		push_space += data_size;
3071
3072	slot = path->slots[1];
3073	i = left_nritems - 1;
3074	while (i >= nr) {
 
 
3075		if (!empty && push_items > 0) {
3076			if (path->slots[0] > i)
3077				break;
3078			if (path->slots[0] == i) {
3079				int space = btrfs_leaf_free_space(left);
3080
3081				if (space + push_space * 2 > free_space)
3082					break;
3083			}
3084		}
3085
3086		if (path->slots[0] == i)
3087			push_space += data_size;
3088
3089		this_item_size = btrfs_item_size(left, i);
3090		if (this_item_size + sizeof(struct btrfs_item) +
3091		    push_space > free_space)
3092			break;
3093
3094		push_items++;
3095		push_space += this_item_size + sizeof(struct btrfs_item);
3096		if (i == 0)
3097			break;
3098		i--;
3099	}
3100
3101	if (push_items == 0)
3102		goto out_unlock;
3103
3104	WARN_ON(!empty && push_items == left_nritems);
 
3105
3106	/* push left to right */
3107	right_nritems = btrfs_header_nritems(right);
3108
3109	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3110	push_space -= leaf_data_end(left);
3111
3112	/* make room in the right data area */
3113	data_end = leaf_data_end(right);
3114	memmove_leaf_data(right, data_end - push_space, data_end,
3115			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
 
 
3116
3117	/* copy from the left data area */
3118	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3119		       leaf_data_end(left), push_space);
3120
3121	memmove_leaf_items(right, push_items, 0, right_nritems);
 
 
 
 
3122
3123	/* copy the items from left to right */
3124	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
 
 
3125
3126	/* update the item pointers */
3127	btrfs_init_map_token(&token, right);
3128	right_nritems += push_items;
3129	btrfs_set_header_nritems(right, right_nritems);
3130	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3131	for (i = 0; i < right_nritems; i++) {
3132		push_space -= btrfs_token_item_size(&token, i);
3133		btrfs_set_token_item_offset(&token, i, push_space);
 
3134	}
3135
3136	left_nritems -= push_items;
3137	btrfs_set_header_nritems(left, left_nritems);
3138
3139	if (left_nritems)
3140		btrfs_mark_buffer_dirty(left);
3141	else
3142		btrfs_clean_tree_block(left);
3143
3144	btrfs_mark_buffer_dirty(right);
3145
3146	btrfs_item_key(right, &disk_key, 0);
3147	btrfs_set_node_key(upper, &disk_key, slot + 1);
3148	btrfs_mark_buffer_dirty(upper);
3149
3150	/* then fixup the leaf pointer in the path */
3151	if (path->slots[0] >= left_nritems) {
3152		path->slots[0] -= left_nritems;
3153		if (btrfs_header_nritems(path->nodes[0]) == 0)
3154			btrfs_clean_tree_block(path->nodes[0]);
3155		btrfs_tree_unlock(path->nodes[0]);
3156		free_extent_buffer(path->nodes[0]);
3157		path->nodes[0] = right;
3158		path->slots[1] += 1;
3159	} else {
3160		btrfs_tree_unlock(right);
3161		free_extent_buffer(right);
3162	}
3163	return 0;
3164
3165out_unlock:
3166	btrfs_tree_unlock(right);
3167	free_extent_buffer(right);
3168	return 1;
3169}
3170
3171/*
3172 * push some data in the path leaf to the right, trying to free up at
3173 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3174 *
3175 * returns 1 if the push failed because the other node didn't have enough
3176 * room, 0 if everything worked out and < 0 if there were major errors.
3177 *
3178 * this will push starting from min_slot to the end of the leaf.  It won't
3179 * push any slot lower than min_slot
3180 */
3181static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3182			   *root, struct btrfs_path *path,
3183			   int min_data_size, int data_size,
3184			   int empty, u32 min_slot)
3185{
3186	struct extent_buffer *left = path->nodes[0];
3187	struct extent_buffer *right;
3188	struct extent_buffer *upper;
3189	int slot;
3190	int free_space;
3191	u32 left_nritems;
3192	int ret;
3193
3194	if (!path->nodes[1])
3195		return 1;
3196
3197	slot = path->slots[1];
3198	upper = path->nodes[1];
3199	if (slot >= btrfs_header_nritems(upper) - 1)
3200		return 1;
3201
3202	btrfs_assert_tree_write_locked(path->nodes[1]);
3203
3204	right = btrfs_read_node_slot(upper, slot + 1);
3205	/*
3206	 * slot + 1 is not valid or we fail to read the right node,
3207	 * no big deal, just return.
3208	 */
3209	if (IS_ERR(right))
3210		return 1;
3211
3212	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
 
3213
3214	free_space = btrfs_leaf_free_space(right);
3215	if (free_space < data_size)
3216		goto out_unlock;
3217
 
3218	ret = btrfs_cow_block(trans, root, right, upper,
3219			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3220	if (ret)
3221		goto out_unlock;
3222
 
 
 
 
3223	left_nritems = btrfs_header_nritems(left);
3224	if (left_nritems == 0)
3225		goto out_unlock;
3226
3227	if (check_sibling_keys(left, right)) {
3228		ret = -EUCLEAN;
3229		btrfs_tree_unlock(right);
3230		free_extent_buffer(right);
3231		return ret;
3232	}
3233	if (path->slots[0] == left_nritems && !empty) {
3234		/* Key greater than all keys in the leaf, right neighbor has
3235		 * enough room for it and we're not emptying our leaf to delete
3236		 * it, therefore use right neighbor to insert the new item and
3237		 * no need to touch/dirty our left leaf. */
3238		btrfs_tree_unlock(left);
3239		free_extent_buffer(left);
3240		path->nodes[0] = right;
3241		path->slots[0] = 0;
3242		path->slots[1]++;
3243		return 0;
3244	}
3245
3246	return __push_leaf_right(path, min_data_size, empty,
3247				right, free_space, left_nritems, min_slot);
3248out_unlock:
3249	btrfs_tree_unlock(right);
3250	free_extent_buffer(right);
3251	return 1;
3252}
3253
3254/*
3255 * push some data in the path leaf to the left, trying to free up at
3256 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3257 *
3258 * max_slot can put a limit on how far into the leaf we'll push items.  The
3259 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3260 * items
3261 */
3262static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
 
 
3263				     int empty, struct extent_buffer *left,
3264				     int free_space, u32 right_nritems,
3265				     u32 max_slot)
3266{
3267	struct btrfs_fs_info *fs_info = left->fs_info;
3268	struct btrfs_disk_key disk_key;
3269	struct extent_buffer *right = path->nodes[0];
3270	int i;
3271	int push_space = 0;
3272	int push_items = 0;
 
3273	u32 old_left_nritems;
3274	u32 nr;
3275	int ret = 0;
 
3276	u32 this_item_size;
3277	u32 old_left_item_size;
3278	struct btrfs_map_token token;
3279
3280	if (empty)
3281		nr = min(right_nritems, max_slot);
3282	else
3283		nr = min(right_nritems - 1, max_slot);
3284
3285	for (i = 0; i < nr; i++) {
 
 
3286		if (!empty && push_items > 0) {
3287			if (path->slots[0] < i)
3288				break;
3289			if (path->slots[0] == i) {
3290				int space = btrfs_leaf_free_space(right);
3291
3292				if (space + push_space * 2 > free_space)
3293					break;
3294			}
3295		}
3296
3297		if (path->slots[0] == i)
3298			push_space += data_size;
3299
3300		this_item_size = btrfs_item_size(right, i);
3301		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3302		    free_space)
3303			break;
3304
3305		push_items++;
3306		push_space += this_item_size + sizeof(struct btrfs_item);
3307	}
3308
3309	if (push_items == 0) {
3310		ret = 1;
3311		goto out;
3312	}
3313	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
 
3314
3315	/* push data from right to left */
3316	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3317
3318	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3319		     btrfs_item_offset(right, push_items - 1);
3320
3321	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3322		       btrfs_item_offset(right, push_items - 1), push_space);
 
 
 
 
 
 
3323	old_left_nritems = btrfs_header_nritems(left);
3324	BUG_ON(old_left_nritems <= 0);
3325
3326	btrfs_init_map_token(&token, left);
3327	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3328	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3329		u32 ioff;
3330
3331		ioff = btrfs_token_item_offset(&token, i);
3332		btrfs_set_token_item_offset(&token, i,
3333		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
 
 
3334	}
3335	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3336
3337	/* fixup right node */
3338	if (push_items > right_nritems)
3339		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3340		       right_nritems);
 
 
3341
3342	if (push_items < right_nritems) {
3343		push_space = btrfs_item_offset(right, push_items - 1) -
3344						  leaf_data_end(right);
3345		memmove_leaf_data(right,
3346				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3347				  leaf_data_end(right), push_space);
3348
3349		memmove_leaf_items(right, 0, push_items,
3350				   btrfs_header_nritems(right) - push_items);
 
 
 
3351	}
3352
3353	btrfs_init_map_token(&token, right);
3354	right_nritems -= push_items;
3355	btrfs_set_header_nritems(right, right_nritems);
3356	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3357	for (i = 0; i < right_nritems; i++) {
3358		push_space = push_space - btrfs_token_item_size(&token, i);
3359		btrfs_set_token_item_offset(&token, i, push_space);
 
 
3360	}
3361
3362	btrfs_mark_buffer_dirty(left);
3363	if (right_nritems)
3364		btrfs_mark_buffer_dirty(right);
3365	else
3366		btrfs_clean_tree_block(right);
3367
3368	btrfs_item_key(right, &disk_key, 0);
3369	fixup_low_keys(path, &disk_key, 1);
 
 
3370
3371	/* then fixup the leaf pointer in the path */
3372	if (path->slots[0] < push_items) {
3373		path->slots[0] += old_left_nritems;
3374		btrfs_tree_unlock(path->nodes[0]);
3375		free_extent_buffer(path->nodes[0]);
3376		path->nodes[0] = left;
3377		path->slots[1] -= 1;
3378	} else {
3379		btrfs_tree_unlock(left);
3380		free_extent_buffer(left);
3381		path->slots[0] -= push_items;
3382	}
3383	BUG_ON(path->slots[0] < 0);
3384	return ret;
3385out:
3386	btrfs_tree_unlock(left);
3387	free_extent_buffer(left);
3388	return ret;
3389}
3390
3391/*
3392 * push some data in the path leaf to the left, trying to free up at
3393 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3394 *
3395 * max_slot can put a limit on how far into the leaf we'll push items.  The
3396 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3397 * items
3398 */
3399static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3400			  *root, struct btrfs_path *path, int min_data_size,
3401			  int data_size, int empty, u32 max_slot)
3402{
3403	struct extent_buffer *right = path->nodes[0];
3404	struct extent_buffer *left;
3405	int slot;
3406	int free_space;
3407	u32 right_nritems;
3408	int ret = 0;
3409
3410	slot = path->slots[1];
3411	if (slot == 0)
3412		return 1;
3413	if (!path->nodes[1])
3414		return 1;
3415
3416	right_nritems = btrfs_header_nritems(right);
3417	if (right_nritems == 0)
3418		return 1;
3419
3420	btrfs_assert_tree_write_locked(path->nodes[1]);
3421
3422	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3423	/*
3424	 * slot - 1 is not valid or we fail to read the left node,
3425	 * no big deal, just return.
3426	 */
3427	if (IS_ERR(left))
3428		return 1;
3429
3430	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
 
3431
3432	free_space = btrfs_leaf_free_space(left);
3433	if (free_space < data_size) {
3434		ret = 1;
3435		goto out;
3436	}
3437
 
3438	ret = btrfs_cow_block(trans, root, left,
3439			      path->nodes[1], slot - 1, &left,
3440			      BTRFS_NESTING_LEFT_COW);
3441	if (ret) {
3442		/* we hit -ENOSPC, but it isn't fatal here */
3443		if (ret == -ENOSPC)
3444			ret = 1;
3445		goto out;
3446	}
3447
3448	if (check_sibling_keys(left, right)) {
3449		ret = -EUCLEAN;
 
3450		goto out;
3451	}
3452	return __push_leaf_left(path, min_data_size,
 
3453			       empty, left, free_space, right_nritems,
3454			       max_slot);
3455out:
3456	btrfs_tree_unlock(left);
3457	free_extent_buffer(left);
3458	return ret;
3459}
3460
3461/*
3462 * split the path's leaf in two, making sure there is at least data_size
3463 * available for the resulting leaf level of the path.
 
 
3464 */
3465static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3466				    struct btrfs_path *path,
3467				    struct extent_buffer *l,
3468				    struct extent_buffer *right,
3469				    int slot, int mid, int nritems)
 
3470{
3471	struct btrfs_fs_info *fs_info = trans->fs_info;
3472	int data_copy_size;
3473	int rt_data_off;
3474	int i;
 
 
3475	struct btrfs_disk_key disk_key;
3476	struct btrfs_map_token token;
3477
3478	nritems = nritems - mid;
3479	btrfs_set_header_nritems(right, nritems);
3480	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3481
3482	copy_leaf_items(right, l, 0, mid, nritems);
 
 
 
 
 
 
 
3483
3484	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3485		       leaf_data_end(l), data_copy_size);
3486
3487	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3488
3489	btrfs_init_map_token(&token, right);
3490	for (i = 0; i < nritems; i++) {
 
3491		u32 ioff;
3492
3493		ioff = btrfs_token_item_offset(&token, i);
3494		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3495	}
3496
3497	btrfs_set_header_nritems(l, mid);
 
3498	btrfs_item_key(right, &disk_key, 0);
3499	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
 
 
 
3500
3501	btrfs_mark_buffer_dirty(right);
3502	btrfs_mark_buffer_dirty(l);
3503	BUG_ON(path->slots[0] != slot);
3504
3505	if (mid <= slot) {
3506		btrfs_tree_unlock(path->nodes[0]);
3507		free_extent_buffer(path->nodes[0]);
3508		path->nodes[0] = right;
3509		path->slots[0] -= mid;
3510		path->slots[1] += 1;
3511	} else {
3512		btrfs_tree_unlock(right);
3513		free_extent_buffer(right);
3514	}
3515
3516	BUG_ON(path->slots[0] < 0);
 
 
3517}
3518
3519/*
3520 * double splits happen when we need to insert a big item in the middle
3521 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3522 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3523 *          A                 B                 C
3524 *
3525 * We avoid this by trying to push the items on either side of our target
3526 * into the adjacent leaves.  If all goes well we can avoid the double split
3527 * completely.
3528 */
3529static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3530					  struct btrfs_root *root,
3531					  struct btrfs_path *path,
3532					  int data_size)
3533{
3534	int ret;
3535	int progress = 0;
3536	int slot;
3537	u32 nritems;
3538	int space_needed = data_size;
3539
3540	slot = path->slots[0];
3541	if (slot < btrfs_header_nritems(path->nodes[0]))
3542		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3543
3544	/*
3545	 * try to push all the items after our slot into the
3546	 * right leaf
3547	 */
3548	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3549	if (ret < 0)
3550		return ret;
3551
3552	if (ret == 0)
3553		progress++;
3554
3555	nritems = btrfs_header_nritems(path->nodes[0]);
3556	/*
3557	 * our goal is to get our slot at the start or end of a leaf.  If
3558	 * we've done so we're done
3559	 */
3560	if (path->slots[0] == 0 || path->slots[0] == nritems)
3561		return 0;
3562
3563	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3564		return 0;
3565
3566	/* try to push all the items before our slot into the next leaf */
3567	slot = path->slots[0];
3568	space_needed = data_size;
3569	if (slot > 0)
3570		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3571	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3572	if (ret < 0)
3573		return ret;
3574
3575	if (ret == 0)
3576		progress++;
3577
3578	if (progress)
3579		return 0;
3580	return 1;
3581}
3582
3583/*
3584 * split the path's leaf in two, making sure there is at least data_size
3585 * available for the resulting leaf level of the path.
3586 *
3587 * returns 0 if all went well and < 0 on failure.
3588 */
3589static noinline int split_leaf(struct btrfs_trans_handle *trans,
3590			       struct btrfs_root *root,
3591			       const struct btrfs_key *ins_key,
3592			       struct btrfs_path *path, int data_size,
3593			       int extend)
3594{
3595	struct btrfs_disk_key disk_key;
3596	struct extent_buffer *l;
3597	u32 nritems;
3598	int mid;
3599	int slot;
3600	struct extent_buffer *right;
3601	struct btrfs_fs_info *fs_info = root->fs_info;
3602	int ret = 0;
3603	int wret;
3604	int split;
3605	int num_doubles = 0;
3606	int tried_avoid_double = 0;
3607
3608	l = path->nodes[0];
3609	slot = path->slots[0];
3610	if (extend && data_size + btrfs_item_size(l, slot) +
3611	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3612		return -EOVERFLOW;
3613
3614	/* first try to make some room by pushing left and right */
3615	if (data_size && path->nodes[1]) {
3616		int space_needed = data_size;
3617
3618		if (slot < btrfs_header_nritems(l))
3619			space_needed -= btrfs_leaf_free_space(l);
3620
3621		wret = push_leaf_right(trans, root, path, space_needed,
3622				       space_needed, 0, 0);
3623		if (wret < 0)
3624			return wret;
3625		if (wret) {
3626			space_needed = data_size;
3627			if (slot > 0)
3628				space_needed -= btrfs_leaf_free_space(l);
3629			wret = push_leaf_left(trans, root, path, space_needed,
3630					      space_needed, 0, (u32)-1);
3631			if (wret < 0)
3632				return wret;
3633		}
3634		l = path->nodes[0];
3635
3636		/* did the pushes work? */
3637		if (btrfs_leaf_free_space(l) >= data_size)
3638			return 0;
3639	}
3640
3641	if (!path->nodes[1]) {
3642		ret = insert_new_root(trans, root, path, 1);
3643		if (ret)
3644			return ret;
3645	}
3646again:
3647	split = 1;
3648	l = path->nodes[0];
3649	slot = path->slots[0];
3650	nritems = btrfs_header_nritems(l);
3651	mid = (nritems + 1) / 2;
3652
3653	if (mid <= slot) {
3654		if (nritems == 1 ||
3655		    leaf_space_used(l, mid, nritems - mid) + data_size >
3656			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3657			if (slot >= nritems) {
3658				split = 0;
3659			} else {
3660				mid = slot;
3661				if (mid != nritems &&
3662				    leaf_space_used(l, mid, nritems - mid) +
3663				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3664					if (data_size && !tried_avoid_double)
3665						goto push_for_double;
3666					split = 2;
3667				}
3668			}
3669		}
3670	} else {
3671		if (leaf_space_used(l, 0, mid) + data_size >
3672			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3673			if (!extend && data_size && slot == 0) {
3674				split = 0;
3675			} else if ((extend || !data_size) && slot == 0) {
3676				mid = 1;
3677			} else {
3678				mid = slot;
3679				if (mid != nritems &&
3680				    leaf_space_used(l, mid, nritems - mid) +
3681				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3682					if (data_size && !tried_avoid_double)
3683						goto push_for_double;
3684					split = 2;
3685				}
3686			}
3687		}
3688	}
3689
3690	if (split == 0)
3691		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3692	else
3693		btrfs_item_key(l, &disk_key, mid);
3694
3695	/*
3696	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3697	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3698	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3699	 * out.  In the future we could add a
3700	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3701	 * use BTRFS_NESTING_NEW_ROOT.
3702	 */
3703	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3704				       &disk_key, 0, l->start, 0,
3705				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3706				       BTRFS_NESTING_SPLIT);
3707	if (IS_ERR(right))
3708		return PTR_ERR(right);
3709
3710	root_add_used(root, fs_info->nodesize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3711
3712	if (split == 0) {
3713		if (mid <= slot) {
3714			btrfs_set_header_nritems(right, 0);
3715			insert_ptr(trans, path, &disk_key,
3716				   right->start, path->slots[1] + 1, 1);
 
 
 
 
3717			btrfs_tree_unlock(path->nodes[0]);
3718			free_extent_buffer(path->nodes[0]);
3719			path->nodes[0] = right;
3720			path->slots[0] = 0;
3721			path->slots[1] += 1;
3722		} else {
3723			btrfs_set_header_nritems(right, 0);
3724			insert_ptr(trans, path, &disk_key,
3725				   right->start, path->slots[1], 1);
 
 
 
 
3726			btrfs_tree_unlock(path->nodes[0]);
3727			free_extent_buffer(path->nodes[0]);
3728			path->nodes[0] = right;
3729			path->slots[0] = 0;
3730			if (path->slots[1] == 0)
3731				fixup_low_keys(path, &disk_key, 1);
 
 
 
 
3732		}
3733		/*
3734		 * We create a new leaf 'right' for the required ins_len and
3735		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3736		 * the content of ins_len to 'right'.
3737		 */
3738		return ret;
3739	}
3740
3741	copy_for_split(trans, path, l, right, slot, mid, nritems);
 
3742
3743	if (split == 2) {
3744		BUG_ON(num_doubles != 0);
3745		num_doubles++;
3746		goto again;
3747	}
3748
3749	return 0;
3750
3751push_for_double:
3752	push_for_double_split(trans, root, path, data_size);
3753	tried_avoid_double = 1;
3754	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3755		return 0;
3756	goto again;
3757}
3758
3759static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3760					 struct btrfs_root *root,
3761					 struct btrfs_path *path, int ins_len)
3762{
3763	struct btrfs_key key;
3764	struct extent_buffer *leaf;
3765	struct btrfs_file_extent_item *fi;
3766	u64 extent_len = 0;
3767	u32 item_size;
3768	int ret;
3769
3770	leaf = path->nodes[0];
3771	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3772
3773	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3774	       key.type != BTRFS_EXTENT_CSUM_KEY);
3775
3776	if (btrfs_leaf_free_space(leaf) >= ins_len)
3777		return 0;
3778
3779	item_size = btrfs_item_size(leaf, path->slots[0]);
3780	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3781		fi = btrfs_item_ptr(leaf, path->slots[0],
3782				    struct btrfs_file_extent_item);
3783		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3784	}
3785	btrfs_release_path(path);
3786
3787	path->keep_locks = 1;
3788	path->search_for_split = 1;
3789	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3790	path->search_for_split = 0;
3791	if (ret > 0)
3792		ret = -EAGAIN;
3793	if (ret < 0)
3794		goto err;
3795
3796	ret = -EAGAIN;
3797	leaf = path->nodes[0];
3798	/* if our item isn't there, return now */
3799	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3800		goto err;
3801
3802	/* the leaf has  changed, it now has room.  return now */
3803	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3804		goto err;
3805
3806	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3807		fi = btrfs_item_ptr(leaf, path->slots[0],
3808				    struct btrfs_file_extent_item);
3809		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3810			goto err;
3811	}
3812
 
3813	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3814	if (ret)
3815		goto err;
3816
3817	path->keep_locks = 0;
3818	btrfs_unlock_up_safe(path, 1);
3819	return 0;
3820err:
3821	path->keep_locks = 0;
3822	return ret;
3823}
3824
3825static noinline int split_item(struct btrfs_path *path,
3826			       const struct btrfs_key *new_key,
 
 
3827			       unsigned long split_offset)
3828{
3829	struct extent_buffer *leaf;
3830	int orig_slot, slot;
 
 
3831	char *buf;
3832	u32 nritems;
3833	u32 item_size;
3834	u32 orig_offset;
3835	struct btrfs_disk_key disk_key;
3836
3837	leaf = path->nodes[0];
3838	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3839
3840	orig_slot = path->slots[0];
3841	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3842	item_size = btrfs_item_size(leaf, path->slots[0]);
 
 
3843
3844	buf = kmalloc(item_size, GFP_NOFS);
3845	if (!buf)
3846		return -ENOMEM;
3847
3848	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3849			    path->slots[0]), item_size);
3850
3851	slot = path->slots[0] + 1;
3852	nritems = btrfs_header_nritems(leaf);
3853	if (slot != nritems) {
3854		/* shift the items */
3855		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
 
 
3856	}
3857
3858	btrfs_cpu_key_to_disk(&disk_key, new_key);
3859	btrfs_set_item_key(leaf, &disk_key, slot);
3860
3861	btrfs_set_item_offset(leaf, slot, orig_offset);
3862	btrfs_set_item_size(leaf, slot, item_size - split_offset);
 
 
3863
3864	btrfs_set_item_offset(leaf, orig_slot,
3865				 orig_offset + item_size - split_offset);
3866	btrfs_set_item_size(leaf, orig_slot, split_offset);
3867
3868	btrfs_set_header_nritems(leaf, nritems + 1);
3869
3870	/* write the data for the start of the original item */
3871	write_extent_buffer(leaf, buf,
3872			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3873			    split_offset);
3874
3875	/* write the data for the new item */
3876	write_extent_buffer(leaf, buf + split_offset,
3877			    btrfs_item_ptr_offset(leaf, slot),
3878			    item_size - split_offset);
3879	btrfs_mark_buffer_dirty(leaf);
3880
3881	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3882	kfree(buf);
3883	return 0;
3884}
3885
3886/*
3887 * This function splits a single item into two items,
3888 * giving 'new_key' to the new item and splitting the
3889 * old one at split_offset (from the start of the item).
3890 *
3891 * The path may be released by this operation.  After
3892 * the split, the path is pointing to the old item.  The
3893 * new item is going to be in the same node as the old one.
3894 *
3895 * Note, the item being split must be smaller enough to live alone on
3896 * a tree block with room for one extra struct btrfs_item
3897 *
3898 * This allows us to split the item in place, keeping a lock on the
3899 * leaf the entire time.
3900 */
3901int btrfs_split_item(struct btrfs_trans_handle *trans,
3902		     struct btrfs_root *root,
3903		     struct btrfs_path *path,
3904		     const struct btrfs_key *new_key,
3905		     unsigned long split_offset)
3906{
3907	int ret;
3908	ret = setup_leaf_for_split(trans, root, path,
3909				   sizeof(struct btrfs_item));
3910	if (ret)
3911		return ret;
3912
3913	ret = split_item(path, new_key, split_offset);
3914	return ret;
3915}
3916
3917/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3918 * make the item pointed to by the path smaller.  new_size indicates
3919 * how small to make it, and from_end tells us if we just chop bytes
3920 * off the end of the item or if we shift the item to chop bytes off
3921 * the front.
3922 */
3923void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
 
 
 
3924{
3925	int slot;
3926	struct extent_buffer *leaf;
 
3927	u32 nritems;
3928	unsigned int data_end;
3929	unsigned int old_data_start;
3930	unsigned int old_size;
3931	unsigned int size_diff;
3932	int i;
3933	struct btrfs_map_token token;
3934
3935	leaf = path->nodes[0];
3936	slot = path->slots[0];
3937
3938	old_size = btrfs_item_size(leaf, slot);
3939	if (old_size == new_size)
3940		return;
3941
3942	nritems = btrfs_header_nritems(leaf);
3943	data_end = leaf_data_end(leaf);
3944
3945	old_data_start = btrfs_item_offset(leaf, slot);
3946
3947	size_diff = old_size - new_size;
3948
3949	BUG_ON(slot < 0);
3950	BUG_ON(slot >= nritems);
3951
3952	/*
3953	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3954	 */
3955	/* first correct the data pointers */
3956	btrfs_init_map_token(&token, leaf);
3957	for (i = slot; i < nritems; i++) {
3958		u32 ioff;
 
3959
3960		ioff = btrfs_token_item_offset(&token, i);
3961		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
3962	}
3963
3964	/* shift the data */
3965	if (from_end) {
3966		memmove_leaf_data(leaf, data_end + size_diff, data_end,
3967				  old_data_start + new_size - data_end);
 
3968	} else {
3969		struct btrfs_disk_key disk_key;
3970		u64 offset;
3971
3972		btrfs_item_key(leaf, &disk_key, slot);
3973
3974		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3975			unsigned long ptr;
3976			struct btrfs_file_extent_item *fi;
3977
3978			fi = btrfs_item_ptr(leaf, slot,
3979					    struct btrfs_file_extent_item);
3980			fi = (struct btrfs_file_extent_item *)(
3981			     (unsigned long)fi - size_diff);
3982
3983			if (btrfs_file_extent_type(leaf, fi) ==
3984			    BTRFS_FILE_EXTENT_INLINE) {
3985				ptr = btrfs_item_ptr_offset(leaf, slot);
3986				memmove_extent_buffer(leaf, ptr,
3987				      (unsigned long)fi,
3988				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
 
3989			}
3990		}
3991
3992		memmove_leaf_data(leaf, data_end + size_diff, data_end,
3993				  old_data_start - data_end);
 
3994
3995		offset = btrfs_disk_key_offset(&disk_key);
3996		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3997		btrfs_set_item_key(leaf, &disk_key, slot);
3998		if (slot == 0)
3999			fixup_low_keys(path, &disk_key, 1);
4000	}
4001
4002	btrfs_set_item_size(leaf, slot, new_size);
 
4003	btrfs_mark_buffer_dirty(leaf);
4004
4005	if (btrfs_leaf_free_space(leaf) < 0) {
4006		btrfs_print_leaf(leaf);
4007		BUG();
4008	}
 
4009}
4010
4011/*
4012 * make the item pointed to by the path bigger, data_size is the added size.
4013 */
4014void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
 
 
4015{
4016	int slot;
4017	struct extent_buffer *leaf;
 
4018	u32 nritems;
4019	unsigned int data_end;
4020	unsigned int old_data;
4021	unsigned int old_size;
4022	int i;
4023	struct btrfs_map_token token;
4024
4025	leaf = path->nodes[0];
4026
4027	nritems = btrfs_header_nritems(leaf);
4028	data_end = leaf_data_end(leaf);
4029
4030	if (btrfs_leaf_free_space(leaf) < data_size) {
4031		btrfs_print_leaf(leaf);
4032		BUG();
4033	}
4034	slot = path->slots[0];
4035	old_data = btrfs_item_data_end(leaf, slot);
4036
4037	BUG_ON(slot < 0);
4038	if (slot >= nritems) {
4039		btrfs_print_leaf(leaf);
4040		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4041			   slot, nritems);
4042		BUG();
4043	}
4044
4045	/*
4046	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4047	 */
4048	/* first correct the data pointers */
4049	btrfs_init_map_token(&token, leaf);
4050	for (i = slot; i < nritems; i++) {
4051		u32 ioff;
 
4052
4053		ioff = btrfs_token_item_offset(&token, i);
4054		btrfs_set_token_item_offset(&token, i, ioff - data_size);
4055	}
4056
4057	/* shift the data */
4058	memmove_leaf_data(leaf, data_end - data_size, data_end,
4059			  old_data - data_end);
 
4060
4061	data_end = old_data;
4062	old_size = btrfs_item_size(leaf, slot);
4063	btrfs_set_item_size(leaf, slot, old_size + data_size);
 
4064	btrfs_mark_buffer_dirty(leaf);
4065
4066	if (btrfs_leaf_free_space(leaf) < 0) {
4067		btrfs_print_leaf(leaf);
4068		BUG();
4069	}
 
4070}
4071
4072/*
4073 * Make space in the node before inserting one or more items.
4074 *
4075 * @root:	root we are inserting items to
4076 * @path:	points to the leaf/slot where we are going to insert new items
4077 * @batch:      information about the batch of items to insert
4078 *
4079 * Main purpose is to save stack depth by doing the bulk of the work in a
4080 * function that doesn't call btrfs_search_slot
4081 */
4082static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4083				   const struct btrfs_item_batch *batch)
 
 
 
4084{
4085	struct btrfs_fs_info *fs_info = root->fs_info;
 
 
 
4086	int i;
4087	u32 nritems;
 
 
4088	unsigned int data_end;
4089	struct btrfs_disk_key disk_key;
4090	struct extent_buffer *leaf;
4091	int slot;
4092	struct btrfs_map_token token;
4093	u32 total_size;
4094
4095	/*
4096	 * Before anything else, update keys in the parent and other ancestors
4097	 * if needed, then release the write locks on them, so that other tasks
4098	 * can use them while we modify the leaf.
4099	 */
4100	if (path->slots[0] == 0) {
4101		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4102		fixup_low_keys(path, &disk_key, 1);
4103	}
4104	btrfs_unlock_up_safe(path, 1);
 
 
 
 
 
 
4105
4106	leaf = path->nodes[0];
4107	slot = path->slots[0];
4108
4109	nritems = btrfs_header_nritems(leaf);
4110	data_end = leaf_data_end(leaf);
4111	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4112
4113	if (btrfs_leaf_free_space(leaf) < total_size) {
4114		btrfs_print_leaf(leaf);
4115		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4116			   total_size, btrfs_leaf_free_space(leaf));
4117		BUG();
 
 
 
4118	}
4119
4120	btrfs_init_map_token(&token, leaf);
 
 
4121	if (slot != nritems) {
4122		unsigned int old_data = btrfs_item_data_end(leaf, slot);
 
 
 
 
 
 
 
 
 
 
 
 
4123
4124		if (old_data < data_end) {
4125			btrfs_print_leaf(leaf);
4126			btrfs_crit(fs_info,
4127		"item at slot %d with data offset %u beyond data end of leaf %u",
4128				   slot, old_data, data_end);
4129			BUG();
4130		}
4131		/*
4132		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4133		 */
4134		/* first correct the data pointers */
4135		for (i = slot; i < nritems; i++) {
4136			u32 ioff;
4137
4138			ioff = btrfs_token_item_offset(&token, i);
4139			btrfs_set_token_item_offset(&token, i,
4140						       ioff - batch->total_data_size);
4141		}
4142		/* shift the items */
4143		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
 
 
4144
4145		/* shift the data */
4146		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4147				  data_end, old_data - data_end);
 
4148		data_end = old_data;
 
 
 
 
 
 
 
 
4149	}
4150
4151	/* setup the item for the new data */
4152	for (i = 0; i < batch->nr; i++) {
4153		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4154		btrfs_set_item_key(leaf, &disk_key, slot + i);
4155		data_end -= batch->data_sizes[i];
4156		btrfs_set_token_item_offset(&token, slot + i, data_end);
4157		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
 
4158	}
 
 
4159
4160	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4161	btrfs_mark_buffer_dirty(leaf);
 
 
 
4162
4163	if (btrfs_leaf_free_space(leaf) < 0) {
4164		btrfs_print_leaf(leaf);
4165		BUG();
4166	}
 
 
 
 
4167}
4168
4169/*
4170 * Insert a new item into a leaf.
4171 *
4172 * @root:      The root of the btree.
4173 * @path:      A path pointing to the target leaf and slot.
4174 * @key:       The key of the new item.
4175 * @data_size: The size of the data associated with the new key.
4176 */
4177void btrfs_setup_item_for_insert(struct btrfs_root *root,
4178				 struct btrfs_path *path,
4179				 const struct btrfs_key *key,
4180				 u32 data_size)
4181{
4182	struct btrfs_item_batch batch;
4183
4184	batch.keys = key;
4185	batch.data_sizes = &data_size;
4186	batch.total_data_size = data_size;
4187	batch.nr = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4188
4189	setup_items_for_insert(root, path, &batch);
 
 
 
 
4190}
4191
4192/*
4193 * Given a key and some data, insert items into the tree.
4194 * This does all the path init required, making room in the tree if needed.
4195 */
4196int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4197			    struct btrfs_root *root,
4198			    struct btrfs_path *path,
4199			    const struct btrfs_item_batch *batch)
 
4200{
4201	int ret = 0;
4202	int slot;
4203	u32 total_size;
 
 
4204
4205	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4206	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
 
 
 
4207	if (ret == 0)
4208		return -EEXIST;
4209	if (ret < 0)
4210		return ret;
4211
4212	slot = path->slots[0];
4213	BUG_ON(slot < 0);
4214
4215	setup_items_for_insert(root, path, batch);
4216	return 0;
 
 
 
4217}
4218
4219/*
4220 * Given a key and some data, insert an item into the tree.
4221 * This does all the path init required, making room in the tree if needed.
4222 */
4223int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4224		      const struct btrfs_key *cpu_key, void *data,
4225		      u32 data_size)
4226{
4227	int ret = 0;
4228	struct btrfs_path *path;
4229	struct extent_buffer *leaf;
4230	unsigned long ptr;
4231
4232	path = btrfs_alloc_path();
4233	if (!path)
4234		return -ENOMEM;
4235	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4236	if (!ret) {
4237		leaf = path->nodes[0];
4238		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4239		write_extent_buffer(leaf, data, ptr, data_size);
4240		btrfs_mark_buffer_dirty(leaf);
4241	}
4242	btrfs_free_path(path);
4243	return ret;
4244}
4245
4246/*
4247 * This function duplicates an item, giving 'new_key' to the new item.
4248 * It guarantees both items live in the same tree leaf and the new item is
4249 * contiguous with the original item.
4250 *
4251 * This allows us to split a file extent in place, keeping a lock on the leaf
4252 * the entire time.
4253 */
4254int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4255			 struct btrfs_root *root,
4256			 struct btrfs_path *path,
4257			 const struct btrfs_key *new_key)
4258{
4259	struct extent_buffer *leaf;
4260	int ret;
4261	u32 item_size;
4262
4263	leaf = path->nodes[0];
4264	item_size = btrfs_item_size(leaf, path->slots[0]);
4265	ret = setup_leaf_for_split(trans, root, path,
4266				   item_size + sizeof(struct btrfs_item));
4267	if (ret)
4268		return ret;
4269
4270	path->slots[0]++;
4271	btrfs_setup_item_for_insert(root, path, new_key, item_size);
4272	leaf = path->nodes[0];
4273	memcpy_extent_buffer(leaf,
4274			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4275			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4276			     item_size);
4277	return 0;
4278}
4279
4280/*
4281 * delete the pointer from a given node.
4282 *
4283 * the tree should have been previously balanced so the deletion does not
4284 * empty a node.
4285 */
4286static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4287		    int level, int slot)
4288{
4289	struct extent_buffer *parent = path->nodes[level];
4290	u32 nritems;
4291	int ret;
 
4292
4293	nritems = btrfs_header_nritems(parent);
4294	if (slot != nritems - 1) {
4295		if (level) {
4296			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4297					slot + 1, nritems - slot - 1);
4298			BUG_ON(ret < 0);
4299		}
4300		memmove_extent_buffer(parent,
4301			      btrfs_node_key_ptr_offset(parent, slot),
4302			      btrfs_node_key_ptr_offset(parent, slot + 1),
4303			      sizeof(struct btrfs_key_ptr) *
4304			      (nritems - slot - 1));
4305	} else if (level) {
4306		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4307						    BTRFS_MOD_LOG_KEY_REMOVE);
4308		BUG_ON(ret < 0);
4309	}
4310
4311	nritems--;
4312	btrfs_set_header_nritems(parent, nritems);
4313	if (nritems == 0 && parent == root->node) {
4314		BUG_ON(btrfs_header_level(root->node) != 1);
4315		/* just turn the root into a leaf and break */
4316		btrfs_set_header_level(root->node, 0);
4317	} else if (slot == 0) {
4318		struct btrfs_disk_key disk_key;
4319
4320		btrfs_node_key(parent, &disk_key, 0);
4321		fixup_low_keys(path, &disk_key, level + 1);
 
 
4322	}
4323	btrfs_mark_buffer_dirty(parent);
 
4324}
4325
4326/*
4327 * a helper function to delete the leaf pointed to by path->slots[1] and
4328 * path->nodes[1].
4329 *
4330 * This deletes the pointer in path->nodes[1] and frees the leaf
4331 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4332 *
4333 * The path must have already been setup for deleting the leaf, including
4334 * all the proper balancing.  path->nodes[1] must be locked.
4335 */
4336static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4337				    struct btrfs_root *root,
4338				    struct btrfs_path *path,
4339				    struct extent_buffer *leaf)
4340{
 
 
4341	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4342	del_ptr(root, path, 1, path->slots[1]);
 
 
4343
4344	/*
4345	 * btrfs_free_extent is expensive, we want to make sure we
4346	 * aren't holding any locks when we call it
4347	 */
4348	btrfs_unlock_up_safe(path, 0);
4349
4350	root_sub_used(root, leaf->len);
4351
4352	atomic_inc(&leaf->refs);
4353	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4354	free_extent_buffer_stale(leaf);
4355}
4356/*
4357 * delete the item at the leaf level in path.  If that empties
4358 * the leaf, remove it from the tree
4359 */
4360int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4361		    struct btrfs_path *path, int slot, int nr)
4362{
4363	struct btrfs_fs_info *fs_info = root->fs_info;
4364	struct extent_buffer *leaf;
 
 
 
4365	int ret = 0;
4366	int wret;
 
4367	u32 nritems;
4368
4369	leaf = path->nodes[0];
 
 
 
 
 
4370	nritems = btrfs_header_nritems(leaf);
4371
4372	if (slot + nr != nritems) {
4373		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4374		const int data_end = leaf_data_end(leaf);
4375		struct btrfs_map_token token;
4376		u32 dsize = 0;
4377		int i;
4378
4379		for (i = 0; i < nr; i++)
4380			dsize += btrfs_item_size(leaf, slot + i);
 
 
4381
4382		memmove_leaf_data(leaf, data_end + dsize, data_end,
4383				  last_off - data_end);
4384
4385		btrfs_init_map_token(&token, leaf);
4386		for (i = slot + nr; i < nritems; i++) {
4387			u32 ioff;
4388
4389			ioff = btrfs_token_item_offset(&token, i);
4390			btrfs_set_token_item_offset(&token, i, ioff + dsize);
 
4391		}
4392
4393		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
 
 
 
4394	}
4395	btrfs_set_header_nritems(leaf, nritems - nr);
4396	nritems -= nr;
4397
4398	/* delete the leaf if we've emptied it */
4399	if (nritems == 0) {
4400		if (leaf == root->node) {
4401			btrfs_set_header_level(leaf, 0);
4402		} else {
4403			btrfs_clean_tree_block(leaf);
4404			btrfs_del_leaf(trans, root, path, leaf);
 
 
4405		}
4406	} else {
4407		int used = leaf_space_used(leaf, 0, nritems);
4408		if (slot == 0) {
4409			struct btrfs_disk_key disk_key;
4410
4411			btrfs_item_key(leaf, &disk_key, 0);
4412			fixup_low_keys(path, &disk_key, 1);
 
 
 
4413		}
4414
4415		/*
4416		 * Try to delete the leaf if it is mostly empty. We do this by
4417		 * trying to move all its items into its left and right neighbours.
4418		 * If we can't move all the items, then we don't delete it - it's
4419		 * not ideal, but future insertions might fill the leaf with more
4420		 * items, or items from other leaves might be moved later into our
4421		 * leaf due to deletions on those leaves.
4422		 */
4423		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4424			u32 min_push_space;
4425
4426			/* push_leaf_left fixes the path.
4427			 * make sure the path still points to our leaf
4428			 * for possible call to del_ptr below
4429			 */
4430			slot = path->slots[1];
4431			atomic_inc(&leaf->refs);
4432			/*
4433			 * We want to be able to at least push one item to the
4434			 * left neighbour leaf, and that's the first item.
4435			 */
4436			min_push_space = sizeof(struct btrfs_item) +
4437				btrfs_item_size(leaf, 0);
4438			wret = push_leaf_left(trans, root, path, 0,
4439					      min_push_space, 1, (u32)-1);
4440			if (wret < 0 && wret != -ENOSPC)
4441				ret = wret;
4442
4443			if (path->nodes[0] == leaf &&
4444			    btrfs_header_nritems(leaf)) {
4445				/*
4446				 * If we were not able to push all items from our
4447				 * leaf to its left neighbour, then attempt to
4448				 * either push all the remaining items to the
4449				 * right neighbour or none. There's no advantage
4450				 * in pushing only some items, instead of all, as
4451				 * it's pointless to end up with a leaf having
4452				 * too few items while the neighbours can be full
4453				 * or nearly full.
4454				 */
4455				nritems = btrfs_header_nritems(leaf);
4456				min_push_space = leaf_space_used(leaf, 0, nritems);
4457				wret = push_leaf_right(trans, root, path, 0,
4458						       min_push_space, 1, 0);
4459				if (wret < 0 && wret != -ENOSPC)
4460					ret = wret;
4461			}
4462
4463			if (btrfs_header_nritems(leaf) == 0) {
4464				path->slots[1] = slot;
4465				btrfs_del_leaf(trans, root, path, leaf);
 
4466				free_extent_buffer(leaf);
4467				ret = 0;
4468			} else {
4469				/* if we're still in the path, make sure
4470				 * we're dirty.  Otherwise, one of the
4471				 * push_leaf functions must have already
4472				 * dirtied this buffer
4473				 */
4474				if (path->nodes[0] == leaf)
4475					btrfs_mark_buffer_dirty(leaf);
4476				free_extent_buffer(leaf);
4477			}
4478		} else {
4479			btrfs_mark_buffer_dirty(leaf);
4480		}
4481	}
4482	return ret;
4483}
4484
4485/*
4486 * search the tree again to find a leaf with lesser keys
4487 * returns 0 if it found something or 1 if there are no lesser leaves.
4488 * returns < 0 on io errors.
4489 *
4490 * This may release the path, and so you may lose any locks held at the
4491 * time you call it.
4492 */
4493int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4494{
4495	struct btrfs_key key;
4496	struct btrfs_disk_key found_key;
4497	int ret;
4498
4499	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4500
4501	if (key.offset > 0) {
4502		key.offset--;
4503	} else if (key.type > 0) {
4504		key.type--;
4505		key.offset = (u64)-1;
4506	} else if (key.objectid > 0) {
4507		key.objectid--;
4508		key.type = (u8)-1;
4509		key.offset = (u64)-1;
4510	} else {
4511		return 1;
4512	}
4513
4514	btrfs_release_path(path);
4515	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4516	if (ret < 0)
4517		return ret;
4518	btrfs_item_key(path->nodes[0], &found_key, 0);
4519	ret = comp_keys(&found_key, &key);
4520	/*
4521	 * We might have had an item with the previous key in the tree right
4522	 * before we released our path. And after we released our path, that
4523	 * item might have been pushed to the first slot (0) of the leaf we
4524	 * were holding due to a tree balance. Alternatively, an item with the
4525	 * previous key can exist as the only element of a leaf (big fat item).
4526	 * Therefore account for these 2 cases, so that our callers (like
4527	 * btrfs_previous_item) don't miss an existing item with a key matching
4528	 * the previous key we computed above.
4529	 */
4530	if (ret <= 0)
4531		return 0;
4532	return 1;
4533}
4534
4535/*
4536 * A helper function to walk down the tree starting at min_key, and looking
4537 * for nodes or leaves that are have a minimum transaction id.
4538 * This is used by the btree defrag code, and tree logging
4539 *
4540 * This does not cow, but it does stuff the starting key it finds back
4541 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4542 * key and get a writable path.
4543 *
 
 
 
4544 * This honors path->lowest_level to prevent descent past a given level
4545 * of the tree.
4546 *
4547 * min_trans indicates the oldest transaction that you are interested
4548 * in walking through.  Any nodes or leaves older than min_trans are
4549 * skipped over (without reading them).
4550 *
4551 * returns zero if something useful was found, < 0 on error and 1 if there
4552 * was nothing in the tree that matched the search criteria.
4553 */
4554int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4555			 struct btrfs_path *path,
 
4556			 u64 min_trans)
4557{
4558	struct extent_buffer *cur;
4559	struct btrfs_key found_key;
4560	int slot;
4561	int sret;
4562	u32 nritems;
4563	int level;
4564	int ret = 1;
4565	int keep_locks = path->keep_locks;
4566
4567	ASSERT(!path->nowait);
4568	path->keep_locks = 1;
4569again:
4570	cur = btrfs_read_lock_root_node(root);
4571	level = btrfs_header_level(cur);
4572	WARN_ON(path->nodes[level]);
4573	path->nodes[level] = cur;
4574	path->locks[level] = BTRFS_READ_LOCK;
4575
4576	if (btrfs_header_generation(cur) < min_trans) {
4577		ret = 1;
4578		goto out;
4579	}
4580	while (1) {
4581		nritems = btrfs_header_nritems(cur);
4582		level = btrfs_header_level(cur);
4583		sret = btrfs_bin_search(cur, min_key, &slot);
4584		if (sret < 0) {
4585			ret = sret;
4586			goto out;
4587		}
4588
4589		/* at the lowest level, we're done, setup the path and exit */
4590		if (level == path->lowest_level) {
4591			if (slot >= nritems)
4592				goto find_next_key;
4593			ret = 0;
4594			path->slots[level] = slot;
4595			btrfs_item_key_to_cpu(cur, &found_key, slot);
4596			goto out;
4597		}
4598		if (sret && slot > 0)
4599			slot--;
4600		/*
4601		 * check this node pointer against the min_trans parameters.
4602		 * If it is too old, skip to the next one.
 
4603		 */
4604		while (slot < nritems) {
 
4605			u64 gen;
 
 
4606
 
4607			gen = btrfs_node_ptr_generation(cur, slot);
4608			if (gen < min_trans) {
4609				slot++;
4610				continue;
4611			}
4612			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4613		}
4614find_next_key:
4615		/*
4616		 * we didn't find a candidate key in this node, walk forward
4617		 * and find another one
4618		 */
4619		if (slot >= nritems) {
4620			path->slots[level] = slot;
 
4621			sret = btrfs_find_next_key(root, path, min_key, level,
4622						  min_trans);
4623			if (sret == 0) {
4624				btrfs_release_path(path);
4625				goto again;
4626			} else {
4627				goto out;
4628			}
4629		}
4630		/* save our key for returning back */
4631		btrfs_node_key_to_cpu(cur, &found_key, slot);
4632		path->slots[level] = slot;
4633		if (level == path->lowest_level) {
4634			ret = 0;
 
4635			goto out;
4636		}
4637		cur = btrfs_read_node_slot(cur, slot);
4638		if (IS_ERR(cur)) {
4639			ret = PTR_ERR(cur);
4640			goto out;
4641		}
4642
4643		btrfs_tree_read_lock(cur);
4644
4645		path->locks[level - 1] = BTRFS_READ_LOCK;
4646		path->nodes[level - 1] = cur;
4647		unlock_up(path, level, 1, 0, NULL);
 
4648	}
4649out:
4650	path->keep_locks = keep_locks;
4651	if (ret == 0) {
4652		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4653		memcpy(min_key, &found_key, sizeof(found_key));
4654	}
4655	return ret;
4656}
4657
4658/*
4659 * this is similar to btrfs_next_leaf, but does not try to preserve
4660 * and fixup the path.  It looks for and returns the next key in the
4661 * tree based on the current path and the min_trans parameters.
 
4662 *
4663 * 0 is returned if another key is found, < 0 if there are any errors
4664 * and 1 is returned if there are no higher keys in the tree
4665 *
4666 * path->keep_locks should be set to 1 on the search made before
4667 * calling this function.
4668 */
4669int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4670			struct btrfs_key *key, int level, u64 min_trans)
 
4671{
4672	int slot;
4673	struct extent_buffer *c;
4674
4675	WARN_ON(!path->keep_locks && !path->skip_locking);
4676	while (level < BTRFS_MAX_LEVEL) {
4677		if (!path->nodes[level])
4678			return 1;
4679
4680		slot = path->slots[level] + 1;
4681		c = path->nodes[level];
4682next:
4683		if (slot >= btrfs_header_nritems(c)) {
4684			int ret;
4685			int orig_lowest;
4686			struct btrfs_key cur_key;
4687			if (level + 1 >= BTRFS_MAX_LEVEL ||
4688			    !path->nodes[level + 1])
4689				return 1;
4690
4691			if (path->locks[level + 1] || path->skip_locking) {
4692				level++;
4693				continue;
4694			}
4695
4696			slot = btrfs_header_nritems(c) - 1;
4697			if (level == 0)
4698				btrfs_item_key_to_cpu(c, &cur_key, slot);
4699			else
4700				btrfs_node_key_to_cpu(c, &cur_key, slot);
4701
4702			orig_lowest = path->lowest_level;
4703			btrfs_release_path(path);
4704			path->lowest_level = level;
4705			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4706						0, 0);
4707			path->lowest_level = orig_lowest;
4708			if (ret < 0)
4709				return ret;
4710
4711			c = path->nodes[level];
4712			slot = path->slots[level];
4713			if (ret == 0)
4714				slot++;
4715			goto next;
4716		}
4717
4718		if (level == 0)
4719			btrfs_item_key_to_cpu(c, key, slot);
4720		else {
 
4721			u64 gen = btrfs_node_ptr_generation(c, slot);
4722
 
 
 
 
 
 
 
 
 
 
 
 
4723			if (gen < min_trans) {
4724				slot++;
4725				goto next;
4726			}
4727			btrfs_node_key_to_cpu(c, key, slot);
4728		}
4729		return 0;
4730	}
4731	return 1;
4732}
4733
4734int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4735			u64 time_seq)
 
 
 
 
4736{
4737	int slot;
4738	int level;
4739	struct extent_buffer *c;
4740	struct extent_buffer *next;
4741	struct btrfs_fs_info *fs_info = root->fs_info;
4742	struct btrfs_key key;
4743	bool need_commit_sem = false;
4744	u32 nritems;
4745	int ret;
4746	int i;
4747
4748	/*
4749	 * The nowait semantics are used only for write paths, where we don't
4750	 * use the tree mod log and sequence numbers.
4751	 */
4752	if (time_seq)
4753		ASSERT(!path->nowait);
4754
4755	nritems = btrfs_header_nritems(path->nodes[0]);
4756	if (nritems == 0)
4757		return 1;
4758
4759	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4760again:
4761	level = 1;
4762	next = NULL;
 
4763	btrfs_release_path(path);
4764
4765	path->keep_locks = 1;
 
4766
4767	if (time_seq) {
4768		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4769	} else {
4770		if (path->need_commit_sem) {
4771			path->need_commit_sem = 0;
4772			need_commit_sem = true;
4773			if (path->nowait) {
4774				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4775					ret = -EAGAIN;
4776					goto done;
4777				}
4778			} else {
4779				down_read(&fs_info->commit_root_sem);
4780			}
4781		}
4782		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4783	}
4784	path->keep_locks = 0;
4785
4786	if (ret < 0)
4787		goto done;
4788
4789	nritems = btrfs_header_nritems(path->nodes[0]);
4790	/*
4791	 * by releasing the path above we dropped all our locks.  A balance
4792	 * could have added more items next to the key that used to be
4793	 * at the very end of the block.  So, check again here and
4794	 * advance the path if there are now more items available.
4795	 */
4796	if (nritems > 0 && path->slots[0] < nritems - 1) {
4797		if (ret == 0)
4798			path->slots[0]++;
4799		ret = 0;
4800		goto done;
4801	}
4802	/*
4803	 * So the above check misses one case:
4804	 * - after releasing the path above, someone has removed the item that
4805	 *   used to be at the very end of the block, and balance between leafs
4806	 *   gets another one with bigger key.offset to replace it.
4807	 *
4808	 * This one should be returned as well, or we can get leaf corruption
4809	 * later(esp. in __btrfs_drop_extents()).
4810	 *
4811	 * And a bit more explanation about this check,
4812	 * with ret > 0, the key isn't found, the path points to the slot
4813	 * where it should be inserted, so the path->slots[0] item must be the
4814	 * bigger one.
4815	 */
4816	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4817		ret = 0;
4818		goto done;
4819	}
4820
4821	while (level < BTRFS_MAX_LEVEL) {
4822		if (!path->nodes[level]) {
4823			ret = 1;
4824			goto done;
4825		}
4826
4827		slot = path->slots[level] + 1;
4828		c = path->nodes[level];
4829		if (slot >= btrfs_header_nritems(c)) {
4830			level++;
4831			if (level == BTRFS_MAX_LEVEL) {
4832				ret = 1;
4833				goto done;
4834			}
4835			continue;
4836		}
4837
4838
4839		/*
4840		 * Our current level is where we're going to start from, and to
4841		 * make sure lockdep doesn't complain we need to drop our locks
4842		 * and nodes from 0 to our current level.
4843		 */
4844		for (i = 0; i < level; i++) {
4845			if (path->locks[level]) {
4846				btrfs_tree_read_unlock(path->nodes[i]);
4847				path->locks[i] = 0;
4848			}
4849			free_extent_buffer(path->nodes[i]);
4850			path->nodes[i] = NULL;
4851		}
4852
4853		next = c;
4854		ret = read_block_for_search(root, path, &next, level,
 
4855					    slot, &key);
4856		if (ret == -EAGAIN && !path->nowait)
4857			goto again;
4858
4859		if (ret < 0) {
4860			btrfs_release_path(path);
4861			goto done;
4862		}
4863
4864		if (!path->skip_locking) {
4865			ret = btrfs_try_tree_read_lock(next);
4866			if (!ret && path->nowait) {
4867				ret = -EAGAIN;
4868				goto done;
4869			}
4870			if (!ret && time_seq) {
4871				/*
4872				 * If we don't get the lock, we may be racing
4873				 * with push_leaf_left, holding that lock while
4874				 * itself waiting for the leaf we've currently
4875				 * locked. To solve this situation, we give up
4876				 * on our lock and cycle.
4877				 */
4878				free_extent_buffer(next);
4879				btrfs_release_path(path);
4880				cond_resched();
4881				goto again;
4882			}
4883			if (!ret)
4884				btrfs_tree_read_lock(next);
4885		}
4886		break;
4887	}
4888	path->slots[level] = slot;
4889	while (1) {
4890		level--;
 
 
 
 
 
4891		path->nodes[level] = next;
4892		path->slots[level] = 0;
4893		if (!path->skip_locking)
4894			path->locks[level] = BTRFS_READ_LOCK;
4895		if (!level)
4896			break;
4897
4898		ret = read_block_for_search(root, path, &next, level,
4899					    0, &key);
4900		if (ret == -EAGAIN && !path->nowait)
4901			goto again;
4902
4903		if (ret < 0) {
4904			btrfs_release_path(path);
4905			goto done;
4906		}
4907
4908		if (!path->skip_locking) {
4909			if (path->nowait) {
4910				if (!btrfs_try_tree_read_lock(next)) {
4911					ret = -EAGAIN;
4912					goto done;
4913				}
4914			} else {
4915				btrfs_tree_read_lock(next);
 
 
4916			}
 
4917		}
4918	}
4919	ret = 0;
4920done:
4921	unlock_up(path, 0, 1, 0, NULL);
4922	if (need_commit_sem) {
4923		int ret2;
4924
4925		path->need_commit_sem = 1;
4926		ret2 = finish_need_commit_sem_search(path);
4927		up_read(&fs_info->commit_root_sem);
4928		if (ret2)
4929			ret = ret2;
4930	}
4931
4932	return ret;
4933}
4934
4935int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4936{
4937	path->slots[0]++;
4938	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4939		return btrfs_next_old_leaf(root, path, time_seq);
4940	return 0;
4941}
4942
4943/*
4944 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4945 * searching until it gets past min_objectid or finds an item of 'type'
4946 *
4947 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4948 */
4949int btrfs_previous_item(struct btrfs_root *root,
4950			struct btrfs_path *path, u64 min_objectid,
4951			int type)
4952{
4953	struct btrfs_key found_key;
4954	struct extent_buffer *leaf;
4955	u32 nritems;
4956	int ret;
4957
4958	while (1) {
4959		if (path->slots[0] == 0) {
 
4960			ret = btrfs_prev_leaf(root, path);
4961			if (ret != 0)
4962				return ret;
4963		} else {
4964			path->slots[0]--;
4965		}
4966		leaf = path->nodes[0];
4967		nritems = btrfs_header_nritems(leaf);
4968		if (nritems == 0)
4969			return 1;
4970		if (path->slots[0] == nritems)
4971			path->slots[0]--;
4972
4973		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4974		if (found_key.objectid < min_objectid)
4975			break;
4976		if (found_key.type == type)
4977			return 0;
4978		if (found_key.objectid == min_objectid &&
4979		    found_key.type < type)
4980			break;
4981	}
4982	return 1;
4983}
4984
4985/*
4986 * search in extent tree to find a previous Metadata/Data extent item with
4987 * min objecitd.
4988 *
4989 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4990 */
4991int btrfs_previous_extent_item(struct btrfs_root *root,
4992			struct btrfs_path *path, u64 min_objectid)
4993{
4994	struct btrfs_key found_key;
4995	struct extent_buffer *leaf;
4996	u32 nritems;
4997	int ret;
4998
4999	while (1) {
5000		if (path->slots[0] == 0) {
5001			ret = btrfs_prev_leaf(root, path);
5002			if (ret != 0)
5003				return ret;
5004		} else {
5005			path->slots[0]--;
5006		}
5007		leaf = path->nodes[0];
5008		nritems = btrfs_header_nritems(leaf);
5009		if (nritems == 0)
5010			return 1;
5011		if (path->slots[0] == nritems)
5012			path->slots[0]--;
5013
5014		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5015		if (found_key.objectid < min_objectid)
5016			break;
5017		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5018		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5019			return 0;
5020		if (found_key.objectid == min_objectid &&
5021		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5022			break;
5023	}
5024	return 1;
5025}
5026
5027int __init btrfs_ctree_init(void)
5028{
5029	btrfs_path_cachep = kmem_cache_create("btrfs_path",
5030			sizeof(struct btrfs_path), 0,
5031			SLAB_MEM_SPREAD, NULL);
5032	if (!btrfs_path_cachep)
5033		return -ENOMEM;
5034	return 0;
5035}
5036
5037void __cold btrfs_ctree_exit(void)
5038{
5039	kmem_cache_destroy(btrfs_path_cachep);
5040}