Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
 
  21#include "ctree.h"
  22#include "disk-io.h"
  23#include "transaction.h"
  24#include "print-tree.h"
  25#include "locking.h"
  26
  27static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  28		      *root, struct btrfs_path *path, int level);
  29static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  30		      *root, struct btrfs_key *ins_key,
  31		      struct btrfs_path *path, int data_size, int extend);
  32static int push_node_left(struct btrfs_trans_handle *trans,
  33			  struct btrfs_root *root, struct extent_buffer *dst,
  34			  struct extent_buffer *src, int empty);
  35static int balance_node_right(struct btrfs_trans_handle *trans,
  36			      struct btrfs_root *root,
  37			      struct extent_buffer *dst_buf,
  38			      struct extent_buffer *src_buf);
  39static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  40		   struct btrfs_path *path, int level, int slot);
 
 
  41
  42struct btrfs_path *btrfs_alloc_path(void)
  43{
  44	struct btrfs_path *path;
  45	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  46	return path;
  47}
  48
  49/*
  50 * set all locked nodes in the path to blocking locks.  This should
  51 * be done before scheduling
  52 */
  53noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  54{
  55	int i;
  56	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  57		if (!p->nodes[i] || !p->locks[i])
  58			continue;
  59		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  60		if (p->locks[i] == BTRFS_READ_LOCK)
  61			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  62		else if (p->locks[i] == BTRFS_WRITE_LOCK)
  63			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  64	}
  65}
  66
  67/*
  68 * reset all the locked nodes in the patch to spinning locks.
  69 *
  70 * held is used to keep lockdep happy, when lockdep is enabled
  71 * we set held to a blocking lock before we go around and
  72 * retake all the spinlocks in the path.  You can safely use NULL
  73 * for held
  74 */
  75noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  76					struct extent_buffer *held, int held_rw)
  77{
  78	int i;
  79
  80#ifdef CONFIG_DEBUG_LOCK_ALLOC
  81	/* lockdep really cares that we take all of these spinlocks
  82	 * in the right order.  If any of the locks in the path are not
  83	 * currently blocking, it is going to complain.  So, make really
  84	 * really sure by forcing the path to blocking before we clear
  85	 * the path blocking.
  86	 */
  87	if (held) {
  88		btrfs_set_lock_blocking_rw(held, held_rw);
  89		if (held_rw == BTRFS_WRITE_LOCK)
  90			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  91		else if (held_rw == BTRFS_READ_LOCK)
  92			held_rw = BTRFS_READ_LOCK_BLOCKING;
  93	}
  94	btrfs_set_path_blocking(p);
  95#endif
  96
  97	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  98		if (p->nodes[i] && p->locks[i]) {
  99			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
 100			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
 101				p->locks[i] = BTRFS_WRITE_LOCK;
 102			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
 103				p->locks[i] = BTRFS_READ_LOCK;
 104		}
 105	}
 106
 107#ifdef CONFIG_DEBUG_LOCK_ALLOC
 108	if (held)
 109		btrfs_clear_lock_blocking_rw(held, held_rw);
 110#endif
 111}
 112
 113/* this also releases the path */
 114void btrfs_free_path(struct btrfs_path *p)
 115{
 116	if (!p)
 117		return;
 118	btrfs_release_path(p);
 119	kmem_cache_free(btrfs_path_cachep, p);
 120}
 121
 122/*
 123 * path release drops references on the extent buffers in the path
 124 * and it drops any locks held by this path
 125 *
 126 * It is safe to call this on paths that no locks or extent buffers held.
 127 */
 128noinline void btrfs_release_path(struct btrfs_path *p)
 129{
 130	int i;
 131
 132	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 133		p->slots[i] = 0;
 134		if (!p->nodes[i])
 135			continue;
 136		if (p->locks[i]) {
 137			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 138			p->locks[i] = 0;
 139		}
 140		free_extent_buffer(p->nodes[i]);
 141		p->nodes[i] = NULL;
 142	}
 143}
 144
 145/*
 146 * safely gets a reference on the root node of a tree.  A lock
 147 * is not taken, so a concurrent writer may put a different node
 148 * at the root of the tree.  See btrfs_lock_root_node for the
 149 * looping required.
 150 *
 151 * The extent buffer returned by this has a reference taken, so
 152 * it won't disappear.  It may stop being the root of the tree
 153 * at any time because there are no locks held.
 154 */
 155struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 156{
 157	struct extent_buffer *eb;
 158
 159	rcu_read_lock();
 160	eb = rcu_dereference(root->node);
 161	extent_buffer_get(eb);
 162	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 163	return eb;
 164}
 165
 166/* loop around taking references on and locking the root node of the
 167 * tree until you end up with a lock on the root.  A locked buffer
 168 * is returned, with a reference held.
 169 */
 170struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 171{
 172	struct extent_buffer *eb;
 173
 174	while (1) {
 175		eb = btrfs_root_node(root);
 176		btrfs_tree_lock(eb);
 177		if (eb == root->node)
 178			break;
 179		btrfs_tree_unlock(eb);
 180		free_extent_buffer(eb);
 181	}
 182	return eb;
 183}
 184
 185/* loop around taking references on and locking the root node of the
 186 * tree until you end up with a lock on the root.  A locked buffer
 187 * is returned, with a reference held.
 188 */
 189struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 190{
 191	struct extent_buffer *eb;
 192
 193	while (1) {
 194		eb = btrfs_root_node(root);
 195		btrfs_tree_read_lock(eb);
 196		if (eb == root->node)
 197			break;
 198		btrfs_tree_read_unlock(eb);
 199		free_extent_buffer(eb);
 200	}
 201	return eb;
 202}
 203
 204/* cowonly root (everything not a reference counted cow subvolume), just get
 205 * put onto a simple dirty list.  transaction.c walks this to make sure they
 206 * get properly updated on disk.
 207 */
 208static void add_root_to_dirty_list(struct btrfs_root *root)
 209{
 
 210	if (root->track_dirty && list_empty(&root->dirty_list)) {
 211		list_add(&root->dirty_list,
 212			 &root->fs_info->dirty_cowonly_roots);
 213	}
 
 214}
 215
 216/*
 217 * used by snapshot creation to make a copy of a root for a tree with
 218 * a given objectid.  The buffer with the new root node is returned in
 219 * cow_ret, and this func returns zero on success or a negative error code.
 220 */
 221int btrfs_copy_root(struct btrfs_trans_handle *trans,
 222		      struct btrfs_root *root,
 223		      struct extent_buffer *buf,
 224		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 225{
 226	struct extent_buffer *cow;
 227	int ret = 0;
 228	int level;
 229	struct btrfs_disk_key disk_key;
 230
 231	WARN_ON(root->ref_cows && trans->transid !=
 232		root->fs_info->running_transaction->transid);
 233	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
 234
 235	level = btrfs_header_level(buf);
 236	if (level == 0)
 237		btrfs_item_key(buf, &disk_key, 0);
 238	else
 239		btrfs_node_key(buf, &disk_key, 0);
 240
 241	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
 242				     new_root_objectid, &disk_key, level,
 243				     buf->start, 0);
 244	if (IS_ERR(cow))
 245		return PTR_ERR(cow);
 246
 247	copy_extent_buffer(cow, buf, 0, 0, cow->len);
 248	btrfs_set_header_bytenr(cow, cow->start);
 249	btrfs_set_header_generation(cow, trans->transid);
 250	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 251	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 252				     BTRFS_HEADER_FLAG_RELOC);
 253	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 254		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 255	else
 256		btrfs_set_header_owner(cow, new_root_objectid);
 257
 258	write_extent_buffer(cow, root->fs_info->fsid,
 259			    (unsigned long)btrfs_header_fsid(cow),
 260			    BTRFS_FSID_SIZE);
 261
 262	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 263	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 264		ret = btrfs_inc_ref(trans, root, cow, 1);
 265	else
 266		ret = btrfs_inc_ref(trans, root, cow, 0);
 267
 268	if (ret)
 269		return ret;
 270
 271	btrfs_mark_buffer_dirty(cow);
 272	*cow_ret = cow;
 273	return 0;
 274}
 275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 276/*
 277 * check if the tree block can be shared by multiple trees
 278 */
 279int btrfs_block_can_be_shared(struct btrfs_root *root,
 280			      struct extent_buffer *buf)
 281{
 282	/*
 283	 * Tree blocks not in refernece counted trees and tree roots
 284	 * are never shared. If a block was allocated after the last
 285	 * snapshot and the block was not allocated by tree relocation,
 286	 * we know the block is not shared.
 287	 */
 288	if (root->ref_cows &&
 289	    buf != root->node && buf != root->commit_root &&
 290	    (btrfs_header_generation(buf) <=
 291	     btrfs_root_last_snapshot(&root->root_item) ||
 292	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 293		return 1;
 294#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 295	if (root->ref_cows &&
 296	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 297		return 1;
 298#endif
 299	return 0;
 300}
 301
 302static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 303				       struct btrfs_root *root,
 304				       struct extent_buffer *buf,
 305				       struct extent_buffer *cow,
 306				       int *last_ref)
 307{
 308	u64 refs;
 309	u64 owner;
 310	u64 flags;
 311	u64 new_flags = 0;
 312	int ret;
 313
 314	/*
 315	 * Backrefs update rules:
 316	 *
 317	 * Always use full backrefs for extent pointers in tree block
 318	 * allocated by tree relocation.
 319	 *
 320	 * If a shared tree block is no longer referenced by its owner
 321	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 322	 * use full backrefs for extent pointers in tree block.
 323	 *
 324	 * If a tree block is been relocating
 325	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 326	 * use full backrefs for extent pointers in tree block.
 327	 * The reason for this is some operations (such as drop tree)
 328	 * are only allowed for blocks use full backrefs.
 329	 */
 330
 331	if (btrfs_block_can_be_shared(root, buf)) {
 332		ret = btrfs_lookup_extent_info(trans, root, buf->start,
 333					       buf->len, &refs, &flags);
 334		BUG_ON(ret);
 335		BUG_ON(refs == 0);
 
 
 
 
 
 
 336	} else {
 337		refs = 1;
 338		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 339		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 340			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 341		else
 342			flags = 0;
 343	}
 344
 345	owner = btrfs_header_owner(buf);
 346	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 347	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 348
 349	if (refs > 1) {
 350		if ((owner == root->root_key.objectid ||
 351		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 352		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 353			ret = btrfs_inc_ref(trans, root, buf, 1);
 354			BUG_ON(ret);
 355
 356			if (root->root_key.objectid ==
 357			    BTRFS_TREE_RELOC_OBJECTID) {
 358				ret = btrfs_dec_ref(trans, root, buf, 0);
 359				BUG_ON(ret);
 360				ret = btrfs_inc_ref(trans, root, cow, 1);
 361				BUG_ON(ret);
 362			}
 363			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 364		} else {
 365
 366			if (root->root_key.objectid ==
 367			    BTRFS_TREE_RELOC_OBJECTID)
 368				ret = btrfs_inc_ref(trans, root, cow, 1);
 369			else
 370				ret = btrfs_inc_ref(trans, root, cow, 0);
 371			BUG_ON(ret);
 372		}
 373		if (new_flags != 0) {
 
 
 374			ret = btrfs_set_disk_extent_flags(trans, root,
 375							  buf->start,
 376							  buf->len,
 377							  new_flags, 0);
 378			BUG_ON(ret);
 
 379		}
 380	} else {
 381		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 382			if (root->root_key.objectid ==
 383			    BTRFS_TREE_RELOC_OBJECTID)
 384				ret = btrfs_inc_ref(trans, root, cow, 1);
 385			else
 386				ret = btrfs_inc_ref(trans, root, cow, 0);
 387			BUG_ON(ret);
 388			ret = btrfs_dec_ref(trans, root, buf, 1);
 389			BUG_ON(ret);
 390		}
 391		clean_tree_block(trans, root, buf);
 392		*last_ref = 1;
 393	}
 394	return 0;
 395}
 396
 397/*
 398 * does the dirty work in cow of a single block.  The parent block (if
 399 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 400 * dirty and returned locked.  If you modify the block it needs to be marked
 401 * dirty again.
 402 *
 403 * search_start -- an allocation hint for the new block
 404 *
 405 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 406 * bytes the allocator should try to find free next to the block it returns.
 407 * This is just a hint and may be ignored by the allocator.
 408 */
 409static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
 410			     struct btrfs_root *root,
 411			     struct extent_buffer *buf,
 412			     struct extent_buffer *parent, int parent_slot,
 413			     struct extent_buffer **cow_ret,
 414			     u64 search_start, u64 empty_size)
 415{
 416	struct btrfs_disk_key disk_key;
 417	struct extent_buffer *cow;
 418	int level;
 419	int last_ref = 0;
 420	int unlock_orig = 0;
 421	u64 parent_start;
 422
 423	if (*cow_ret == buf)
 424		unlock_orig = 1;
 425
 426	btrfs_assert_tree_locked(buf);
 427
 428	WARN_ON(root->ref_cows && trans->transid !=
 429		root->fs_info->running_transaction->transid);
 430	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
 431
 432	level = btrfs_header_level(buf);
 433
 434	if (level == 0)
 435		btrfs_item_key(buf, &disk_key, 0);
 436	else
 437		btrfs_node_key(buf, &disk_key, 0);
 438
 439	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
 440		if (parent)
 441			parent_start = parent->start;
 442		else
 443			parent_start = 0;
 444	} else
 445		parent_start = 0;
 446
 447	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
 448				     root->root_key.objectid, &disk_key,
 449				     level, search_start, empty_size);
 450	if (IS_ERR(cow))
 451		return PTR_ERR(cow);
 452
 453	/* cow is set to blocking by btrfs_init_new_buffer */
 454
 455	copy_extent_buffer(cow, buf, 0, 0, cow->len);
 456	btrfs_set_header_bytenr(cow, cow->start);
 457	btrfs_set_header_generation(cow, trans->transid);
 458	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 459	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 460				     BTRFS_HEADER_FLAG_RELOC);
 461	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 462		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 463	else
 464		btrfs_set_header_owner(cow, root->root_key.objectid);
 465
 466	write_extent_buffer(cow, root->fs_info->fsid,
 467			    (unsigned long)btrfs_header_fsid(cow),
 468			    BTRFS_FSID_SIZE);
 469
 470	update_ref_for_cow(trans, root, buf, cow, &last_ref);
 
 
 
 
 471
 472	if (root->ref_cows)
 473		btrfs_reloc_cow_block(trans, root, buf, cow);
 
 
 
 474
 475	if (buf == root->node) {
 476		WARN_ON(parent && parent != buf);
 477		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 478		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 479			parent_start = buf->start;
 480		else
 481			parent_start = 0;
 482
 483		extent_buffer_get(cow);
 
 484		rcu_assign_pointer(root->node, cow);
 485
 486		btrfs_free_tree_block(trans, root, buf, parent_start,
 487				      last_ref);
 488		free_extent_buffer(buf);
 489		add_root_to_dirty_list(root);
 490	} else {
 491		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 492			parent_start = parent->start;
 493		else
 494			parent_start = 0;
 495
 496		WARN_ON(trans->transid != btrfs_header_generation(parent));
 
 
 497		btrfs_set_node_blockptr(parent, parent_slot,
 498					cow->start);
 499		btrfs_set_node_ptr_generation(parent, parent_slot,
 500					      trans->transid);
 501		btrfs_mark_buffer_dirty(parent);
 
 
 
 
 
 
 
 502		btrfs_free_tree_block(trans, root, buf, parent_start,
 503				      last_ref);
 504	}
 505	if (unlock_orig)
 506		btrfs_tree_unlock(buf);
 507	free_extent_buffer(buf);
 508	btrfs_mark_buffer_dirty(cow);
 509	*cow_ret = cow;
 510	return 0;
 511}
 512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 513static inline int should_cow_block(struct btrfs_trans_handle *trans,
 514				   struct btrfs_root *root,
 515				   struct extent_buffer *buf)
 516{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 517	if (btrfs_header_generation(buf) == trans->transid &&
 518	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
 519	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
 520	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 
 521		return 0;
 522	return 1;
 523}
 524
 525/*
 526 * cows a single block, see __btrfs_cow_block for the real work.
 527 * This version of it has extra checks so that a block isn't cow'd more than
 528 * once per transaction, as long as it hasn't been written yet
 529 */
 530noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
 531		    struct btrfs_root *root, struct extent_buffer *buf,
 532		    struct extent_buffer *parent, int parent_slot,
 533		    struct extent_buffer **cow_ret)
 534{
 535	u64 search_start;
 536	int ret;
 537
 538	if (trans->transaction != root->fs_info->running_transaction) {
 539		printk(KERN_CRIT "trans %llu running %llu\n",
 540		       (unsigned long long)trans->transid,
 541		       (unsigned long long)
 542		       root->fs_info->running_transaction->transid);
 543		WARN_ON(1);
 544	}
 545	if (trans->transid != root->fs_info->generation) {
 546		printk(KERN_CRIT "trans %llu running %llu\n",
 547		       (unsigned long long)trans->transid,
 548		       (unsigned long long)root->fs_info->generation);
 549		WARN_ON(1);
 550	}
 551
 552	if (!should_cow_block(trans, root, buf)) {
 553		*cow_ret = buf;
 554		return 0;
 555	}
 556
 557	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
 558
 559	if (parent)
 560		btrfs_set_lock_blocking(parent);
 561	btrfs_set_lock_blocking(buf);
 562
 563	ret = __btrfs_cow_block(trans, root, buf, parent,
 564				 parent_slot, cow_ret, search_start, 0);
 565
 566	trace_btrfs_cow_block(root, buf, *cow_ret);
 567
 568	return ret;
 569}
 570
 571/*
 572 * helper function for defrag to decide if two blocks pointed to by a
 573 * node are actually close by
 574 */
 575static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
 576{
 577	if (blocknr < other && other - (blocknr + blocksize) < 32768)
 578		return 1;
 579	if (blocknr > other && blocknr - (other + blocksize) < 32768)
 580		return 1;
 581	return 0;
 582}
 583
 584/*
 585 * compare two keys in a memcmp fashion
 586 */
 587static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
 588{
 589	struct btrfs_key k1;
 590
 591	btrfs_disk_key_to_cpu(&k1, disk);
 592
 593	return btrfs_comp_cpu_keys(&k1, k2);
 594}
 595
 596/*
 597 * same as comp_keys only with two btrfs_key's
 598 */
 599int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
 600{
 601	if (k1->objectid > k2->objectid)
 602		return 1;
 603	if (k1->objectid < k2->objectid)
 604		return -1;
 605	if (k1->type > k2->type)
 606		return 1;
 607	if (k1->type < k2->type)
 608		return -1;
 609	if (k1->offset > k2->offset)
 610		return 1;
 611	if (k1->offset < k2->offset)
 612		return -1;
 613	return 0;
 614}
 615
 616/*
 617 * this is used by the defrag code to go through all the
 618 * leaves pointed to by a node and reallocate them so that
 619 * disk order is close to key order
 620 */
 621int btrfs_realloc_node(struct btrfs_trans_handle *trans,
 622		       struct btrfs_root *root, struct extent_buffer *parent,
 623		       int start_slot, int cache_only, u64 *last_ret,
 624		       struct btrfs_key *progress)
 625{
 626	struct extent_buffer *cur;
 627	u64 blocknr;
 628	u64 gen;
 629	u64 search_start = *last_ret;
 630	u64 last_block = 0;
 631	u64 other;
 632	u32 parent_nritems;
 633	int end_slot;
 634	int i;
 635	int err = 0;
 636	int parent_level;
 637	int uptodate;
 638	u32 blocksize;
 639	int progress_passed = 0;
 640	struct btrfs_disk_key disk_key;
 641
 642	parent_level = btrfs_header_level(parent);
 643	if (cache_only && parent_level != 1)
 644		return 0;
 645
 646	if (trans->transaction != root->fs_info->running_transaction)
 647		WARN_ON(1);
 648	if (trans->transid != root->fs_info->generation)
 649		WARN_ON(1);
 650
 651	parent_nritems = btrfs_header_nritems(parent);
 652	blocksize = btrfs_level_size(root, parent_level - 1);
 653	end_slot = parent_nritems;
 654
 655	if (parent_nritems == 1)
 656		return 0;
 657
 658	btrfs_set_lock_blocking(parent);
 659
 660	for (i = start_slot; i < end_slot; i++) {
 661		int close = 1;
 662
 663		btrfs_node_key(parent, &disk_key, i);
 664		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
 665			continue;
 666
 667		progress_passed = 1;
 668		blocknr = btrfs_node_blockptr(parent, i);
 669		gen = btrfs_node_ptr_generation(parent, i);
 670		if (last_block == 0)
 671			last_block = blocknr;
 672
 673		if (i > 0) {
 674			other = btrfs_node_blockptr(parent, i - 1);
 675			close = close_blocks(blocknr, other, blocksize);
 676		}
 677		if (!close && i < end_slot - 2) {
 678			other = btrfs_node_blockptr(parent, i + 1);
 679			close = close_blocks(blocknr, other, blocksize);
 680		}
 681		if (close) {
 682			last_block = blocknr;
 683			continue;
 684		}
 685
 686		cur = btrfs_find_tree_block(root, blocknr, blocksize);
 687		if (cur)
 688			uptodate = btrfs_buffer_uptodate(cur, gen);
 689		else
 690			uptodate = 0;
 691		if (!cur || !uptodate) {
 692			if (cache_only) {
 693				free_extent_buffer(cur);
 694				continue;
 695			}
 696			if (!cur) {
 697				cur = read_tree_block(root, blocknr,
 698							 blocksize, gen);
 699				if (!cur)
 
 700					return -EIO;
 
 701			} else if (!uptodate) {
 702				btrfs_read_buffer(cur, gen);
 
 
 
 
 703			}
 704		}
 705		if (search_start == 0)
 706			search_start = last_block;
 707
 708		btrfs_tree_lock(cur);
 709		btrfs_set_lock_blocking(cur);
 710		err = __btrfs_cow_block(trans, root, cur, parent, i,
 711					&cur, search_start,
 712					min(16 * blocksize,
 713					    (end_slot - i) * blocksize));
 714		if (err) {
 715			btrfs_tree_unlock(cur);
 716			free_extent_buffer(cur);
 717			break;
 718		}
 719		search_start = cur->start;
 720		last_block = cur->start;
 721		*last_ret = search_start;
 722		btrfs_tree_unlock(cur);
 723		free_extent_buffer(cur);
 724	}
 725	return err;
 726}
 727
 728/*
 729 * The leaf data grows from end-to-front in the node.
 730 * this returns the address of the start of the last item,
 731 * which is the stop of the leaf data stack
 732 */
 733static inline unsigned int leaf_data_end(struct btrfs_root *root,
 734					 struct extent_buffer *leaf)
 735{
 736	u32 nr = btrfs_header_nritems(leaf);
 737	if (nr == 0)
 738		return BTRFS_LEAF_DATA_SIZE(root);
 739	return btrfs_item_offset_nr(leaf, nr - 1);
 740}
 741
 742
 743/*
 744 * search for key in the extent_buffer.  The items start at offset p,
 745 * and they are item_size apart.  There are 'max' items in p.
 746 *
 747 * the slot in the array is returned via slot, and it points to
 748 * the place where you would insert key if it is not found in
 749 * the array.
 750 *
 751 * slot may point to max if the key is bigger than all of the keys
 752 */
 753static noinline int generic_bin_search(struct extent_buffer *eb,
 754				       unsigned long p,
 755				       int item_size, struct btrfs_key *key,
 756				       int max, int *slot)
 757{
 758	int low = 0;
 759	int high = max;
 760	int mid;
 761	int ret;
 762	struct btrfs_disk_key *tmp = NULL;
 763	struct btrfs_disk_key unaligned;
 764	unsigned long offset;
 765	char *kaddr = NULL;
 766	unsigned long map_start = 0;
 767	unsigned long map_len = 0;
 768	int err;
 769
 770	while (low < high) {
 771		mid = (low + high) / 2;
 772		offset = p + mid * item_size;
 773
 774		if (!kaddr || offset < map_start ||
 775		    (offset + sizeof(struct btrfs_disk_key)) >
 776		    map_start + map_len) {
 777
 778			err = map_private_extent_buffer(eb, offset,
 779						sizeof(struct btrfs_disk_key),
 780						&kaddr, &map_start, &map_len);
 781
 782			if (!err) {
 783				tmp = (struct btrfs_disk_key *)(kaddr + offset -
 784							map_start);
 785			} else {
 786				read_extent_buffer(eb, &unaligned,
 787						   offset, sizeof(unaligned));
 788				tmp = &unaligned;
 789			}
 790
 791		} else {
 792			tmp = (struct btrfs_disk_key *)(kaddr + offset -
 793							map_start);
 794		}
 795		ret = comp_keys(tmp, key);
 796
 797		if (ret < 0)
 798			low = mid + 1;
 799		else if (ret > 0)
 800			high = mid;
 801		else {
 802			*slot = mid;
 803			return 0;
 804		}
 805	}
 806	*slot = low;
 807	return 1;
 808}
 809
 810/*
 811 * simple bin_search frontend that does the right thing for
 812 * leaves vs nodes
 813 */
 814static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
 815		      int level, int *slot)
 816{
 817	if (level == 0) {
 818		return generic_bin_search(eb,
 819					  offsetof(struct btrfs_leaf, items),
 820					  sizeof(struct btrfs_item),
 821					  key, btrfs_header_nritems(eb),
 822					  slot);
 823	} else {
 824		return generic_bin_search(eb,
 825					  offsetof(struct btrfs_node, ptrs),
 826					  sizeof(struct btrfs_key_ptr),
 827					  key, btrfs_header_nritems(eb),
 828					  slot);
 829	}
 830	return -1;
 831}
 832
 833int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
 834		     int level, int *slot)
 835{
 836	return bin_search(eb, key, level, slot);
 837}
 838
 839static void root_add_used(struct btrfs_root *root, u32 size)
 840{
 841	spin_lock(&root->accounting_lock);
 842	btrfs_set_root_used(&root->root_item,
 843			    btrfs_root_used(&root->root_item) + size);
 844	spin_unlock(&root->accounting_lock);
 845}
 846
 847static void root_sub_used(struct btrfs_root *root, u32 size)
 848{
 849	spin_lock(&root->accounting_lock);
 850	btrfs_set_root_used(&root->root_item,
 851			    btrfs_root_used(&root->root_item) - size);
 852	spin_unlock(&root->accounting_lock);
 853}
 854
 855/* given a node and slot number, this reads the blocks it points to.  The
 856 * extent buffer is returned with a reference taken (but unlocked).
 857 * NULL is returned on error.
 858 */
 859static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
 860				   struct extent_buffer *parent, int slot)
 861{
 862	int level = btrfs_header_level(parent);
 
 
 863	if (slot < 0)
 864		return NULL;
 865	if (slot >= btrfs_header_nritems(parent))
 866		return NULL;
 867
 868	BUG_ON(level == 0);
 869
 870	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
 871		       btrfs_level_size(root, level - 1),
 872		       btrfs_node_ptr_generation(parent, slot));
 
 
 
 
 
 
 873}
 874
 875/*
 876 * node level balancing, used to make sure nodes are in proper order for
 877 * item deletion.  We balance from the top down, so we have to make sure
 878 * that a deletion won't leave an node completely empty later on.
 879 */
 880static noinline int balance_level(struct btrfs_trans_handle *trans,
 881			 struct btrfs_root *root,
 882			 struct btrfs_path *path, int level)
 883{
 884	struct extent_buffer *right = NULL;
 885	struct extent_buffer *mid;
 886	struct extent_buffer *left = NULL;
 887	struct extent_buffer *parent = NULL;
 888	int ret = 0;
 889	int wret;
 890	int pslot;
 891	int orig_slot = path->slots[level];
 892	u64 orig_ptr;
 893
 894	if (level == 0)
 895		return 0;
 896
 897	mid = path->nodes[level];
 898
 899	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
 900		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
 901	WARN_ON(btrfs_header_generation(mid) != trans->transid);
 902
 903	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
 904
 905	if (level < BTRFS_MAX_LEVEL - 1)
 906		parent = path->nodes[level + 1];
 907	pslot = path->slots[level + 1];
 
 908
 909	/*
 910	 * deal with the case where there is only one pointer in the root
 911	 * by promoting the node below to a root
 912	 */
 913	if (!parent) {
 914		struct extent_buffer *child;
 915
 916		if (btrfs_header_nritems(mid) != 1)
 917			return 0;
 918
 919		/* promote the child to a root */
 920		child = read_node_slot(root, mid, 0);
 921		BUG_ON(!child);
 
 
 
 
 
 922		btrfs_tree_lock(child);
 923		btrfs_set_lock_blocking(child);
 924		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
 925		if (ret) {
 926			btrfs_tree_unlock(child);
 927			free_extent_buffer(child);
 928			goto enospc;
 929		}
 930
 
 931		rcu_assign_pointer(root->node, child);
 932
 933		add_root_to_dirty_list(root);
 934		btrfs_tree_unlock(child);
 935
 936		path->locks[level] = 0;
 937		path->nodes[level] = NULL;
 938		clean_tree_block(trans, root, mid);
 939		btrfs_tree_unlock(mid);
 940		/* once for the path */
 941		free_extent_buffer(mid);
 942
 943		root_sub_used(root, mid->len);
 944		btrfs_free_tree_block(trans, root, mid, 0, 1);
 945		/* once for the root ptr */
 946		free_extent_buffer(mid);
 947		return 0;
 948	}
 949	if (btrfs_header_nritems(mid) >
 950	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
 951		return 0;
 952
 953	btrfs_header_nritems(mid);
 954
 955	left = read_node_slot(root, parent, pslot - 1);
 956	if (left) {
 957		btrfs_tree_lock(left);
 958		btrfs_set_lock_blocking(left);
 959		wret = btrfs_cow_block(trans, root, left,
 960				       parent, pslot - 1, &left);
 961		if (wret) {
 962			ret = wret;
 963			goto enospc;
 964		}
 965	}
 966	right = read_node_slot(root, parent, pslot + 1);
 967	if (right) {
 968		btrfs_tree_lock(right);
 969		btrfs_set_lock_blocking(right);
 970		wret = btrfs_cow_block(trans, root, right,
 971				       parent, pslot + 1, &right);
 972		if (wret) {
 973			ret = wret;
 974			goto enospc;
 975		}
 976	}
 977
 978	/* first, try to make some room in the middle buffer */
 979	if (left) {
 980		orig_slot += btrfs_header_nritems(left);
 981		wret = push_node_left(trans, root, left, mid, 1);
 982		if (wret < 0)
 983			ret = wret;
 984		btrfs_header_nritems(mid);
 985	}
 986
 987	/*
 988	 * then try to empty the right most buffer into the middle
 989	 */
 990	if (right) {
 991		wret = push_node_left(trans, root, mid, right, 1);
 992		if (wret < 0 && wret != -ENOSPC)
 993			ret = wret;
 994		if (btrfs_header_nritems(right) == 0) {
 995			clean_tree_block(trans, root, right);
 996			btrfs_tree_unlock(right);
 997			wret = del_ptr(trans, root, path, level + 1, pslot +
 998				       1);
 999			if (wret)
1000				ret = wret;
1001			root_sub_used(root, right->len);
1002			btrfs_free_tree_block(trans, root, right, 0, 1);
1003			free_extent_buffer(right);
1004			right = NULL;
1005		} else {
1006			struct btrfs_disk_key right_key;
1007			btrfs_node_key(right, &right_key, 0);
 
 
1008			btrfs_set_node_key(parent, &right_key, pslot + 1);
1009			btrfs_mark_buffer_dirty(parent);
1010		}
1011	}
1012	if (btrfs_header_nritems(mid) == 1) {
1013		/*
1014		 * we're not allowed to leave a node with one item in the
1015		 * tree during a delete.  A deletion from lower in the tree
1016		 * could try to delete the only pointer in this node.
1017		 * So, pull some keys from the left.
1018		 * There has to be a left pointer at this point because
1019		 * otherwise we would have pulled some pointers from the
1020		 * right
1021		 */
1022		BUG_ON(!left);
 
 
 
 
1023		wret = balance_node_right(trans, root, mid, left);
1024		if (wret < 0) {
1025			ret = wret;
1026			goto enospc;
1027		}
1028		if (wret == 1) {
1029			wret = push_node_left(trans, root, left, mid, 1);
1030			if (wret < 0)
1031				ret = wret;
1032		}
1033		BUG_ON(wret == 1);
1034	}
1035	if (btrfs_header_nritems(mid) == 0) {
1036		clean_tree_block(trans, root, mid);
1037		btrfs_tree_unlock(mid);
1038		wret = del_ptr(trans, root, path, level + 1, pslot);
1039		if (wret)
1040			ret = wret;
1041		root_sub_used(root, mid->len);
1042		btrfs_free_tree_block(trans, root, mid, 0, 1);
1043		free_extent_buffer(mid);
1044		mid = NULL;
1045	} else {
1046		/* update the parent key to reflect our changes */
1047		struct btrfs_disk_key mid_key;
1048		btrfs_node_key(mid, &mid_key, 0);
 
 
1049		btrfs_set_node_key(parent, &mid_key, pslot);
1050		btrfs_mark_buffer_dirty(parent);
1051	}
1052
1053	/* update the path */
1054	if (left) {
1055		if (btrfs_header_nritems(left) > orig_slot) {
1056			extent_buffer_get(left);
1057			/* left was locked after cow */
1058			path->nodes[level] = left;
1059			path->slots[level + 1] -= 1;
1060			path->slots[level] = orig_slot;
1061			if (mid) {
1062				btrfs_tree_unlock(mid);
1063				free_extent_buffer(mid);
1064			}
1065		} else {
1066			orig_slot -= btrfs_header_nritems(left);
1067			path->slots[level] = orig_slot;
1068		}
1069	}
1070	/* double check we haven't messed things up */
1071	if (orig_ptr !=
1072	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1073		BUG();
1074enospc:
1075	if (right) {
1076		btrfs_tree_unlock(right);
1077		free_extent_buffer(right);
1078	}
1079	if (left) {
1080		if (path->nodes[level] != left)
1081			btrfs_tree_unlock(left);
1082		free_extent_buffer(left);
1083	}
1084	return ret;
1085}
1086
1087/* Node balancing for insertion.  Here we only split or push nodes around
1088 * when they are completely full.  This is also done top down, so we
1089 * have to be pessimistic.
1090 */
1091static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1092					  struct btrfs_root *root,
1093					  struct btrfs_path *path, int level)
1094{
1095	struct extent_buffer *right = NULL;
1096	struct extent_buffer *mid;
1097	struct extent_buffer *left = NULL;
1098	struct extent_buffer *parent = NULL;
1099	int ret = 0;
1100	int wret;
1101	int pslot;
1102	int orig_slot = path->slots[level];
1103
1104	if (level == 0)
1105		return 1;
1106
1107	mid = path->nodes[level];
1108	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1109
1110	if (level < BTRFS_MAX_LEVEL - 1)
1111		parent = path->nodes[level + 1];
1112	pslot = path->slots[level + 1];
 
1113
1114	if (!parent)
1115		return 1;
1116
1117	left = read_node_slot(root, parent, pslot - 1);
1118
1119	/* first, try to make some room in the middle buffer */
1120	if (left) {
1121		u32 left_nr;
1122
1123		btrfs_tree_lock(left);
1124		btrfs_set_lock_blocking(left);
1125
1126		left_nr = btrfs_header_nritems(left);
1127		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1128			wret = 1;
1129		} else {
1130			ret = btrfs_cow_block(trans, root, left, parent,
1131					      pslot - 1, &left);
1132			if (ret)
1133				wret = 1;
1134			else {
1135				wret = push_node_left(trans, root,
1136						      left, mid, 0);
1137			}
1138		}
1139		if (wret < 0)
1140			ret = wret;
1141		if (wret == 0) {
1142			struct btrfs_disk_key disk_key;
1143			orig_slot += left_nr;
1144			btrfs_node_key(mid, &disk_key, 0);
 
 
1145			btrfs_set_node_key(parent, &disk_key, pslot);
1146			btrfs_mark_buffer_dirty(parent);
1147			if (btrfs_header_nritems(left) > orig_slot) {
1148				path->nodes[level] = left;
1149				path->slots[level + 1] -= 1;
1150				path->slots[level] = orig_slot;
1151				btrfs_tree_unlock(mid);
1152				free_extent_buffer(mid);
1153			} else {
1154				orig_slot -=
1155					btrfs_header_nritems(left);
1156				path->slots[level] = orig_slot;
1157				btrfs_tree_unlock(left);
1158				free_extent_buffer(left);
1159			}
1160			return 0;
1161		}
1162		btrfs_tree_unlock(left);
1163		free_extent_buffer(left);
1164	}
1165	right = read_node_slot(root, parent, pslot + 1);
1166
1167	/*
1168	 * then try to empty the right most buffer into the middle
1169	 */
1170	if (right) {
1171		u32 right_nr;
1172
1173		btrfs_tree_lock(right);
1174		btrfs_set_lock_blocking(right);
1175
1176		right_nr = btrfs_header_nritems(right);
1177		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1178			wret = 1;
1179		} else {
1180			ret = btrfs_cow_block(trans, root, right,
1181					      parent, pslot + 1,
1182					      &right);
1183			if (ret)
1184				wret = 1;
1185			else {
1186				wret = balance_node_right(trans, root,
1187							  right, mid);
1188			}
1189		}
1190		if (wret < 0)
1191			ret = wret;
1192		if (wret == 0) {
1193			struct btrfs_disk_key disk_key;
1194
1195			btrfs_node_key(right, &disk_key, 0);
 
 
1196			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1197			btrfs_mark_buffer_dirty(parent);
1198
1199			if (btrfs_header_nritems(mid) <= orig_slot) {
1200				path->nodes[level] = right;
1201				path->slots[level + 1] += 1;
1202				path->slots[level] = orig_slot -
1203					btrfs_header_nritems(mid);
1204				btrfs_tree_unlock(mid);
1205				free_extent_buffer(mid);
1206			} else {
1207				btrfs_tree_unlock(right);
1208				free_extent_buffer(right);
1209			}
1210			return 0;
1211		}
1212		btrfs_tree_unlock(right);
1213		free_extent_buffer(right);
1214	}
1215	return 1;
1216}
1217
1218/*
1219 * readahead one full node of leaves, finding things that are close
1220 * to the block in 'slot', and triggering ra on them.
1221 */
1222static void reada_for_search(struct btrfs_root *root,
1223			     struct btrfs_path *path,
1224			     int level, int slot, u64 objectid)
1225{
1226	struct extent_buffer *node;
1227	struct btrfs_disk_key disk_key;
1228	u32 nritems;
1229	u64 search;
1230	u64 target;
1231	u64 nread = 0;
1232	u64 gen;
1233	int direction = path->reada;
1234	struct extent_buffer *eb;
1235	u32 nr;
1236	u32 blocksize;
1237	u32 nscan = 0;
1238
1239	if (level != 1)
1240		return;
1241
1242	if (!path->nodes[level])
1243		return;
1244
1245	node = path->nodes[level];
1246
1247	search = btrfs_node_blockptr(node, slot);
1248	blocksize = btrfs_level_size(root, level - 1);
1249	eb = btrfs_find_tree_block(root, search, blocksize);
1250	if (eb) {
1251		free_extent_buffer(eb);
1252		return;
1253	}
1254
1255	target = search;
1256
1257	nritems = btrfs_header_nritems(node);
1258	nr = slot;
1259
1260	while (1) {
1261		if (direction < 0) {
1262			if (nr == 0)
1263				break;
1264			nr--;
1265		} else if (direction > 0) {
1266			nr++;
1267			if (nr >= nritems)
1268				break;
1269		}
1270		if (path->reada < 0 && objectid) {
1271			btrfs_node_key(node, &disk_key, nr);
1272			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1273				break;
1274		}
1275		search = btrfs_node_blockptr(node, nr);
1276		if ((search <= target && target - search <= 65536) ||
1277		    (search > target && search - target <= 65536)) {
1278			gen = btrfs_node_ptr_generation(node, nr);
1279			readahead_tree_block(root, search, blocksize, gen);
1280			nread += blocksize;
1281		}
1282		nscan++;
1283		if ((nread > 65536 || nscan > 32))
1284			break;
1285	}
1286}
1287
1288/*
1289 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1290 * cache
1291 */
1292static noinline int reada_for_balance(struct btrfs_root *root,
1293				      struct btrfs_path *path, int level)
1294{
1295	int slot;
1296	int nritems;
1297	struct extent_buffer *parent;
1298	struct extent_buffer *eb;
1299	u64 gen;
1300	u64 block1 = 0;
1301	u64 block2 = 0;
1302	int ret = 0;
1303	int blocksize;
1304
1305	parent = path->nodes[level + 1];
1306	if (!parent)
1307		return 0;
1308
1309	nritems = btrfs_header_nritems(parent);
1310	slot = path->slots[level + 1];
1311	blocksize = btrfs_level_size(root, level);
1312
1313	if (slot > 0) {
1314		block1 = btrfs_node_blockptr(parent, slot - 1);
1315		gen = btrfs_node_ptr_generation(parent, slot - 1);
1316		eb = btrfs_find_tree_block(root, block1, blocksize);
1317		if (eb && btrfs_buffer_uptodate(eb, gen))
 
 
 
 
 
1318			block1 = 0;
1319		free_extent_buffer(eb);
1320	}
1321	if (slot + 1 < nritems) {
1322		block2 = btrfs_node_blockptr(parent, slot + 1);
1323		gen = btrfs_node_ptr_generation(parent, slot + 1);
1324		eb = btrfs_find_tree_block(root, block2, blocksize);
1325		if (eb && btrfs_buffer_uptodate(eb, gen))
1326			block2 = 0;
1327		free_extent_buffer(eb);
1328	}
1329	if (block1 || block2) {
1330		ret = -EAGAIN;
1331
1332		/* release the whole path */
1333		btrfs_release_path(path);
1334
1335		/* read the blocks */
1336		if (block1)
1337			readahead_tree_block(root, block1, blocksize, 0);
1338		if (block2)
1339			readahead_tree_block(root, block2, blocksize, 0);
1340
1341		if (block1) {
1342			eb = read_tree_block(root, block1, blocksize, 0);
1343			free_extent_buffer(eb);
1344		}
1345		if (block2) {
1346			eb = read_tree_block(root, block2, blocksize, 0);
1347			free_extent_buffer(eb);
1348		}
1349	}
1350	return ret;
1351}
1352
1353
1354/*
1355 * when we walk down the tree, it is usually safe to unlock the higher layers
1356 * in the tree.  The exceptions are when our path goes through slot 0, because
1357 * operations on the tree might require changing key pointers higher up in the
1358 * tree.
1359 *
1360 * callers might also have set path->keep_locks, which tells this code to keep
1361 * the lock if the path points to the last slot in the block.  This is part of
1362 * walking through the tree, and selecting the next slot in the higher block.
1363 *
1364 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1365 * if lowest_unlock is 1, level 0 won't be unlocked
1366 */
1367static noinline void unlock_up(struct btrfs_path *path, int level,
1368			       int lowest_unlock)
 
1369{
1370	int i;
1371	int skip_level = level;
1372	int no_skips = 0;
1373	struct extent_buffer *t;
1374
1375	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1376		if (!path->nodes[i])
1377			break;
1378		if (!path->locks[i])
1379			break;
1380		if (!no_skips && path->slots[i] == 0) {
1381			skip_level = i + 1;
1382			continue;
1383		}
1384		if (!no_skips && path->keep_locks) {
1385			u32 nritems;
1386			t = path->nodes[i];
1387			nritems = btrfs_header_nritems(t);
1388			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1389				skip_level = i + 1;
1390				continue;
1391			}
1392		}
1393		if (skip_level < i && i >= lowest_unlock)
1394			no_skips = 1;
1395
1396		t = path->nodes[i];
1397		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1398			btrfs_tree_unlock_rw(t, path->locks[i]);
1399			path->locks[i] = 0;
 
 
 
 
 
1400		}
1401	}
1402}
1403
1404/*
1405 * This releases any locks held in the path starting at level and
1406 * going all the way up to the root.
1407 *
1408 * btrfs_search_slot will keep the lock held on higher nodes in a few
1409 * corner cases, such as COW of the block at slot zero in the node.  This
1410 * ignores those rules, and it should only be called when there are no
1411 * more updates to be done higher up in the tree.
1412 */
1413noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1414{
1415	int i;
1416
1417	if (path->keep_locks)
1418		return;
1419
1420	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1421		if (!path->nodes[i])
1422			continue;
1423		if (!path->locks[i])
1424			continue;
1425		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1426		path->locks[i] = 0;
1427	}
1428}
1429
1430/*
1431 * helper function for btrfs_search_slot.  The goal is to find a block
1432 * in cache without setting the path to blocking.  If we find the block
1433 * we return zero and the path is unchanged.
1434 *
1435 * If we can't find the block, we set the path blocking and do some
1436 * reada.  -EAGAIN is returned and the search must be repeated.
1437 */
1438static int
1439read_block_for_search(struct btrfs_trans_handle *trans,
1440		       struct btrfs_root *root, struct btrfs_path *p,
1441		       struct extent_buffer **eb_ret, int level, int slot,
1442		       struct btrfs_key *key)
1443{
1444	u64 blocknr;
1445	u64 gen;
1446	u32 blocksize;
1447	struct extent_buffer *b = *eb_ret;
1448	struct extent_buffer *tmp;
1449	int ret;
1450
1451	blocknr = btrfs_node_blockptr(b, slot);
1452	gen = btrfs_node_ptr_generation(b, slot);
1453	blocksize = btrfs_level_size(root, level - 1);
1454
1455	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1456	if (tmp) {
1457		if (btrfs_buffer_uptodate(tmp, 0)) {
1458			if (btrfs_buffer_uptodate(tmp, gen)) {
1459				/*
1460				 * we found an up to date block without
1461				 * sleeping, return
1462				 * right away
1463				 */
1464				*eb_ret = tmp;
1465				return 0;
1466			}
1467			/* the pages were up to date, but we failed
1468			 * the generation number check.  Do a full
1469			 * read for the generation number that is correct.
1470			 * We must do this without dropping locks so
1471			 * we can trust our generation number
1472			 */
1473			free_extent_buffer(tmp);
1474			btrfs_set_path_blocking(p);
1475
1476			tmp = read_tree_block(root, blocknr, blocksize, gen);
1477			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1478				*eb_ret = tmp;
1479				return 0;
1480			}
1481			free_extent_buffer(tmp);
1482			btrfs_release_path(p);
1483			return -EIO;
 
 
 
 
 
1484		}
 
 
 
1485	}
1486
1487	/*
1488	 * reduce lock contention at high levels
1489	 * of the btree by dropping locks before
1490	 * we read.  Don't release the lock on the current
1491	 * level because we need to walk this node to figure
1492	 * out which blocks to read.
1493	 */
1494	btrfs_unlock_up_safe(p, level + 1);
1495	btrfs_set_path_blocking(p);
1496
1497	free_extent_buffer(tmp);
1498	if (p->reada)
1499		reada_for_search(root, p, level, slot, key->objectid);
1500
1501	btrfs_release_path(p);
1502
1503	ret = -EAGAIN;
1504	tmp = read_tree_block(root, blocknr, blocksize, 0);
1505	if (tmp) {
1506		/*
1507		 * If the read above didn't mark this buffer up to date,
1508		 * it will never end up being up to date.  Set ret to EIO now
1509		 * and give up so that our caller doesn't loop forever
1510		 * on our EAGAINs.
1511		 */
1512		if (!btrfs_buffer_uptodate(tmp, 0))
1513			ret = -EIO;
1514		free_extent_buffer(tmp);
1515	}
1516	return ret;
1517}
1518
1519/*
1520 * helper function for btrfs_search_slot.  This does all of the checks
1521 * for node-level blocks and does any balancing required based on
1522 * the ins_len.
1523 *
1524 * If no extra work was required, zero is returned.  If we had to
1525 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1526 * start over
1527 */
1528static int
1529setup_nodes_for_search(struct btrfs_trans_handle *trans,
1530		       struct btrfs_root *root, struct btrfs_path *p,
1531		       struct extent_buffer *b, int level, int ins_len,
1532		       int *write_lock_level)
1533{
1534	int ret;
1535	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1536	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1537		int sret;
1538
1539		if (*write_lock_level < level + 1) {
1540			*write_lock_level = level + 1;
1541			btrfs_release_path(p);
1542			goto again;
1543		}
1544
1545		sret = reada_for_balance(root, p, level);
1546		if (sret)
1547			goto again;
1548
1549		btrfs_set_path_blocking(p);
 
1550		sret = split_node(trans, root, p, level);
1551		btrfs_clear_path_blocking(p, NULL, 0);
1552
1553		BUG_ON(sret > 0);
1554		if (sret) {
1555			ret = sret;
1556			goto done;
1557		}
1558		b = p->nodes[level];
1559	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1560		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1561		int sret;
1562
1563		if (*write_lock_level < level + 1) {
1564			*write_lock_level = level + 1;
1565			btrfs_release_path(p);
1566			goto again;
1567		}
1568
1569		sret = reada_for_balance(root, p, level);
1570		if (sret)
1571			goto again;
1572
1573		btrfs_set_path_blocking(p);
 
1574		sret = balance_level(trans, root, p, level);
1575		btrfs_clear_path_blocking(p, NULL, 0);
1576
1577		if (sret) {
1578			ret = sret;
1579			goto done;
1580		}
1581		b = p->nodes[level];
1582		if (!b) {
1583			btrfs_release_path(p);
1584			goto again;
1585		}
1586		BUG_ON(btrfs_header_nritems(b) == 1);
1587	}
1588	return 0;
1589
1590again:
1591	ret = -EAGAIN;
1592done:
1593	return ret;
1594}
1595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1596/*
1597 * look for key in the tree.  path is filled in with nodes along the way
1598 * if key is found, we return zero and you can find the item in the leaf
1599 * level of the path (level 0)
1600 *
1601 * If the key isn't found, the path points to the slot where it should
1602 * be inserted, and 1 is returned.  If there are other errors during the
1603 * search a negative error number is returned.
1604 *
1605 * if ins_len > 0, nodes and leaves will be split as we walk down the
1606 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1607 * possible)
1608 */
1609int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1610		      *root, struct btrfs_key *key, struct btrfs_path *p, int
1611		      ins_len, int cow)
1612{
1613	struct extent_buffer *b;
1614	int slot;
1615	int ret;
1616	int err;
1617	int level;
1618	int lowest_unlock = 1;
1619	int root_lock;
1620	/* everything at write_lock_level or lower must be write locked */
1621	int write_lock_level = 0;
1622	u8 lowest_level = 0;
 
 
1623
1624	lowest_level = p->lowest_level;
1625	WARN_ON(lowest_level && ins_len > 0);
1626	WARN_ON(p->nodes[0] != NULL);
 
1627
1628	if (ins_len < 0) {
1629		lowest_unlock = 2;
1630
1631		/* when we are removing items, we might have to go up to level
1632		 * two as we update tree pointers  Make sure we keep write
1633		 * for those levels as well
1634		 */
1635		write_lock_level = 2;
1636	} else if (ins_len > 0) {
1637		/*
1638		 * for inserting items, make sure we have a write lock on
1639		 * level 1 so we can update keys
1640		 */
1641		write_lock_level = 1;
1642	}
1643
1644	if (!cow)
1645		write_lock_level = -1;
1646
1647	if (cow && (p->keep_locks || p->lowest_level))
1648		write_lock_level = BTRFS_MAX_LEVEL;
1649
 
 
1650again:
 
1651	/*
1652	 * we try very hard to do read locks on the root
1653	 */
1654	root_lock = BTRFS_READ_LOCK;
1655	level = 0;
1656	if (p->search_commit_root) {
1657		/*
1658		 * the commit roots are read only
1659		 * so we always do read locks
1660		 */
 
 
1661		b = root->commit_root;
1662		extent_buffer_get(b);
1663		level = btrfs_header_level(b);
 
 
1664		if (!p->skip_locking)
1665			btrfs_tree_read_lock(b);
1666	} else {
1667		if (p->skip_locking) {
1668			b = btrfs_root_node(root);
1669			level = btrfs_header_level(b);
1670		} else {
1671			/* we don't know the level of the root node
1672			 * until we actually have it read locked
1673			 */
1674			b = btrfs_read_lock_root_node(root);
1675			level = btrfs_header_level(b);
1676			if (level <= write_lock_level) {
1677				/* whoops, must trade for write lock */
1678				btrfs_tree_read_unlock(b);
1679				free_extent_buffer(b);
1680				b = btrfs_lock_root_node(root);
1681				root_lock = BTRFS_WRITE_LOCK;
1682
1683				/* the level might have changed, check again */
1684				level = btrfs_header_level(b);
1685			}
1686		}
1687	}
1688	p->nodes[level] = b;
1689	if (!p->skip_locking)
1690		p->locks[level] = root_lock;
1691
1692	while (b) {
1693		level = btrfs_header_level(b);
1694
1695		/*
1696		 * setup the path here so we can release it under lock
1697		 * contention with the cow code
1698		 */
1699		if (cow) {
1700			/*
1701			 * if we don't really need to cow this block
1702			 * then we don't want to set the path blocking,
1703			 * so we test it here
1704			 */
1705			if (!should_cow_block(trans, root, b))
1706				goto cow_done;
1707
1708			btrfs_set_path_blocking(p);
1709
1710			/*
1711			 * must have write locks on this node and the
1712			 * parent
1713			 */
1714			if (level + 1 > write_lock_level) {
 
 
 
1715				write_lock_level = level + 1;
1716				btrfs_release_path(p);
1717				goto again;
1718			}
1719
1720			err = btrfs_cow_block(trans, root, b,
1721					      p->nodes[level + 1],
1722					      p->slots[level + 1], &b);
1723			if (err) {
1724				ret = err;
1725				goto done;
1726			}
1727		}
1728cow_done:
1729		BUG_ON(!cow && ins_len);
1730
1731		p->nodes[level] = b;
1732		btrfs_clear_path_blocking(p, NULL, 0);
1733
1734		/*
1735		 * we have a lock on b and as long as we aren't changing
1736		 * the tree, there is no way to for the items in b to change.
1737		 * It is safe to drop the lock on our parent before we
1738		 * go through the expensive btree search on b.
1739		 *
1740		 * If cow is true, then we might be changing slot zero,
1741		 * which may require changing the parent.  So, we can't
1742		 * drop the lock until after we know which slot we're
1743		 * operating on.
1744		 */
1745		if (!cow)
1746			btrfs_unlock_up_safe(p, level + 1);
 
 
 
 
 
 
1747
1748		ret = bin_search(b, key, level, &slot);
1749
1750		if (level != 0) {
1751			int dec = 0;
1752			if (ret && slot > 0) {
1753				dec = 1;
1754				slot -= 1;
1755			}
1756			p->slots[level] = slot;
1757			err = setup_nodes_for_search(trans, root, p, b, level,
1758					     ins_len, &write_lock_level);
1759			if (err == -EAGAIN)
1760				goto again;
1761			if (err) {
1762				ret = err;
1763				goto done;
1764			}
1765			b = p->nodes[level];
1766			slot = p->slots[level];
1767
1768			/*
1769			 * slot 0 is special, if we change the key
1770			 * we have to update the parent pointer
1771			 * which means we must have a write lock
1772			 * on the parent
1773			 */
1774			if (slot == 0 && cow &&
1775			    write_lock_level < level + 1) {
1776				write_lock_level = level + 1;
1777				btrfs_release_path(p);
1778				goto again;
1779			}
1780
1781			unlock_up(p, level, lowest_unlock);
 
1782
1783			if (level == lowest_level) {
1784				if (dec)
1785					p->slots[level]++;
1786				goto done;
1787			}
1788
1789			err = read_block_for_search(trans, root, p,
1790						    &b, level, slot, key);
1791			if (err == -EAGAIN)
1792				goto again;
1793			if (err) {
1794				ret = err;
1795				goto done;
1796			}
1797
1798			if (!p->skip_locking) {
1799				level = btrfs_header_level(b);
1800				if (level <= write_lock_level) {
1801					err = btrfs_try_tree_write_lock(b);
1802					if (!err) {
1803						btrfs_set_path_blocking(p);
1804						btrfs_tree_lock(b);
1805						btrfs_clear_path_blocking(p, b,
1806								  BTRFS_WRITE_LOCK);
1807					}
1808					p->locks[level] = BTRFS_WRITE_LOCK;
1809				} else {
1810					err = btrfs_try_tree_read_lock(b);
1811					if (!err) {
1812						btrfs_set_path_blocking(p);
1813						btrfs_tree_read_lock(b);
1814						btrfs_clear_path_blocking(p, b,
1815								  BTRFS_READ_LOCK);
1816					}
1817					p->locks[level] = BTRFS_READ_LOCK;
1818				}
1819				p->nodes[level] = b;
1820			}
1821		} else {
1822			p->slots[level] = slot;
1823			if (ins_len > 0 &&
1824			    btrfs_leaf_free_space(root, b) < ins_len) {
1825				if (write_lock_level < 1) {
1826					write_lock_level = 1;
1827					btrfs_release_path(p);
1828					goto again;
1829				}
1830
1831				btrfs_set_path_blocking(p);
1832				err = split_leaf(trans, root, key,
1833						 p, ins_len, ret == 0);
1834				btrfs_clear_path_blocking(p, NULL, 0);
1835
1836				BUG_ON(err > 0);
1837				if (err) {
1838					ret = err;
1839					goto done;
1840				}
1841			}
1842			if (!p->search_for_split)
1843				unlock_up(p, level, lowest_unlock);
 
1844			goto done;
1845		}
1846	}
1847	ret = 1;
1848done:
1849	/*
1850	 * we don't really know what they plan on doing with the path
1851	 * from here on, so for now just mark it as blocking
1852	 */
1853	if (!p->leave_spinning)
1854		btrfs_set_path_blocking(p);
1855	if (ret < 0)
1856		btrfs_release_path(p);
1857	return ret;
1858}
1859
1860/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1861 * adjust the pointers going up the tree, starting at level
1862 * making sure the right key of each node is points to 'key'.
1863 * This is used after shifting pointers to the left, so it stops
1864 * fixing up pointers when a given leaf/node is not in slot 0 of the
1865 * higher levels
1866 *
1867 * If this fails to write a tree block, it returns -1, but continues
1868 * fixing up the blocks in ram so the tree is consistent.
1869 */
1870static int fixup_low_keys(struct btrfs_trans_handle *trans,
1871			  struct btrfs_root *root, struct btrfs_path *path,
1872			  struct btrfs_disk_key *key, int level)
1873{
1874	int i;
1875	int ret = 0;
1876	struct extent_buffer *t;
1877
1878	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1879		int tslot = path->slots[i];
1880		if (!path->nodes[i])
1881			break;
1882		t = path->nodes[i];
 
1883		btrfs_set_node_key(t, key, tslot);
1884		btrfs_mark_buffer_dirty(path->nodes[i]);
1885		if (tslot != 0)
1886			break;
1887	}
1888	return ret;
1889}
1890
1891/*
1892 * update item key.
1893 *
1894 * This function isn't completely safe. It's the caller's responsibility
1895 * that the new key won't break the order
1896 */
1897int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1898			    struct btrfs_root *root, struct btrfs_path *path,
1899			    struct btrfs_key *new_key)
1900{
1901	struct btrfs_disk_key disk_key;
1902	struct extent_buffer *eb;
1903	int slot;
1904
1905	eb = path->nodes[0];
1906	slot = path->slots[0];
1907	if (slot > 0) {
1908		btrfs_item_key(eb, &disk_key, slot - 1);
1909		if (comp_keys(&disk_key, new_key) >= 0)
1910			return -1;
1911	}
1912	if (slot < btrfs_header_nritems(eb) - 1) {
1913		btrfs_item_key(eb, &disk_key, slot + 1);
1914		if (comp_keys(&disk_key, new_key) <= 0)
1915			return -1;
1916	}
1917
1918	btrfs_cpu_key_to_disk(&disk_key, new_key);
1919	btrfs_set_item_key(eb, &disk_key, slot);
1920	btrfs_mark_buffer_dirty(eb);
1921	if (slot == 0)
1922		fixup_low_keys(trans, root, path, &disk_key, 1);
1923	return 0;
1924}
1925
1926/*
1927 * try to push data from one node into the next node left in the
1928 * tree.
1929 *
1930 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1931 * error, and > 0 if there was no room in the left hand block.
1932 */
1933static int push_node_left(struct btrfs_trans_handle *trans,
1934			  struct btrfs_root *root, struct extent_buffer *dst,
1935			  struct extent_buffer *src, int empty)
1936{
1937	int push_items = 0;
1938	int src_nritems;
1939	int dst_nritems;
1940	int ret = 0;
1941
1942	src_nritems = btrfs_header_nritems(src);
1943	dst_nritems = btrfs_header_nritems(dst);
1944	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1945	WARN_ON(btrfs_header_generation(src) != trans->transid);
1946	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1947
1948	if (!empty && src_nritems <= 8)
1949		return 1;
1950
1951	if (push_items <= 0)
1952		return 1;
1953
1954	if (empty) {
1955		push_items = min(src_nritems, push_items);
1956		if (push_items < src_nritems) {
1957			/* leave at least 8 pointers in the node if
1958			 * we aren't going to empty it
1959			 */
1960			if (src_nritems - push_items < 8) {
1961				if (push_items <= 8)
1962					return 1;
1963				push_items -= 8;
1964			}
1965		}
1966	} else
1967		push_items = min(src_nritems - 8, push_items);
1968
 
 
 
 
 
 
1969	copy_extent_buffer(dst, src,
1970			   btrfs_node_key_ptr_offset(dst_nritems),
1971			   btrfs_node_key_ptr_offset(0),
1972			   push_items * sizeof(struct btrfs_key_ptr));
1973
1974	if (push_items < src_nritems) {
 
 
 
 
1975		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1976				      btrfs_node_key_ptr_offset(push_items),
1977				      (src_nritems - push_items) *
1978				      sizeof(struct btrfs_key_ptr));
1979	}
1980	btrfs_set_header_nritems(src, src_nritems - push_items);
1981	btrfs_set_header_nritems(dst, dst_nritems + push_items);
1982	btrfs_mark_buffer_dirty(src);
1983	btrfs_mark_buffer_dirty(dst);
1984
1985	return ret;
1986}
1987
1988/*
1989 * try to push data from one node into the next node right in the
1990 * tree.
1991 *
1992 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1993 * error, and > 0 if there was no room in the right hand block.
1994 *
1995 * this will  only push up to 1/2 the contents of the left node over
1996 */
1997static int balance_node_right(struct btrfs_trans_handle *trans,
1998			      struct btrfs_root *root,
1999			      struct extent_buffer *dst,
2000			      struct extent_buffer *src)
2001{
2002	int push_items = 0;
2003	int max_push;
2004	int src_nritems;
2005	int dst_nritems;
2006	int ret = 0;
2007
2008	WARN_ON(btrfs_header_generation(src) != trans->transid);
2009	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2010
2011	src_nritems = btrfs_header_nritems(src);
2012	dst_nritems = btrfs_header_nritems(dst);
2013	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2014	if (push_items <= 0)
2015		return 1;
2016
2017	if (src_nritems < 4)
2018		return 1;
2019
2020	max_push = src_nritems / 2 + 1;
2021	/* don't try to empty the node */
2022	if (max_push >= src_nritems)
2023		return 1;
2024
2025	if (max_push < push_items)
2026		push_items = max_push;
2027
 
2028	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2029				      btrfs_node_key_ptr_offset(0),
2030				      (dst_nritems) *
2031				      sizeof(struct btrfs_key_ptr));
2032
 
 
 
 
 
 
2033	copy_extent_buffer(dst, src,
2034			   btrfs_node_key_ptr_offset(0),
2035			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2036			   push_items * sizeof(struct btrfs_key_ptr));
2037
2038	btrfs_set_header_nritems(src, src_nritems - push_items);
2039	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2040
2041	btrfs_mark_buffer_dirty(src);
2042	btrfs_mark_buffer_dirty(dst);
2043
2044	return ret;
2045}
2046
2047/*
2048 * helper function to insert a new root level in the tree.
2049 * A new node is allocated, and a single item is inserted to
2050 * point to the existing root
2051 *
2052 * returns zero on success or < 0 on failure.
2053 */
2054static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2055			   struct btrfs_root *root,
2056			   struct btrfs_path *path, int level)
2057{
2058	u64 lower_gen;
2059	struct extent_buffer *lower;
2060	struct extent_buffer *c;
2061	struct extent_buffer *old;
2062	struct btrfs_disk_key lower_key;
2063
2064	BUG_ON(path->nodes[level]);
2065	BUG_ON(path->nodes[level-1] != root->node);
2066
2067	lower = path->nodes[level-1];
2068	if (level == 1)
2069		btrfs_item_key(lower, &lower_key, 0);
2070	else
2071		btrfs_node_key(lower, &lower_key, 0);
2072
2073	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2074				   root->root_key.objectid, &lower_key,
2075				   level, root->node->start, 0);
2076	if (IS_ERR(c))
2077		return PTR_ERR(c);
2078
2079	root_add_used(root, root->nodesize);
2080
2081	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2082	btrfs_set_header_nritems(c, 1);
2083	btrfs_set_header_level(c, level);
2084	btrfs_set_header_bytenr(c, c->start);
2085	btrfs_set_header_generation(c, trans->transid);
2086	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2087	btrfs_set_header_owner(c, root->root_key.objectid);
2088
2089	write_extent_buffer(c, root->fs_info->fsid,
2090			    (unsigned long)btrfs_header_fsid(c),
2091			    BTRFS_FSID_SIZE);
2092
2093	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2094			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
2095			    BTRFS_UUID_SIZE);
2096
2097	btrfs_set_node_key(c, &lower_key, 0);
2098	btrfs_set_node_blockptr(c, 0, lower->start);
2099	lower_gen = btrfs_header_generation(lower);
2100	WARN_ON(lower_gen != trans->transid);
2101
2102	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2103
2104	btrfs_mark_buffer_dirty(c);
2105
2106	old = root->node;
 
2107	rcu_assign_pointer(root->node, c);
2108
2109	/* the super has an extra ref to root->node */
2110	free_extent_buffer(old);
2111
2112	add_root_to_dirty_list(root);
2113	extent_buffer_get(c);
2114	path->nodes[level] = c;
2115	path->locks[level] = BTRFS_WRITE_LOCK;
2116	path->slots[level] = 0;
2117	return 0;
2118}
2119
2120/*
2121 * worker function to insert a single pointer in a node.
2122 * the node should have enough room for the pointer already
2123 *
2124 * slot and level indicate where you want the key to go, and
2125 * blocknr is the block the key points to.
2126 *
2127 * returns zero on success and < 0 on any error
2128 */
2129static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2130		      *root, struct btrfs_path *path, struct btrfs_disk_key
2131		      *key, u64 bytenr, int slot, int level)
 
2132{
2133	struct extent_buffer *lower;
2134	int nritems;
 
2135
2136	BUG_ON(!path->nodes[level]);
2137	btrfs_assert_tree_locked(path->nodes[level]);
2138	lower = path->nodes[level];
2139	nritems = btrfs_header_nritems(lower);
2140	BUG_ON(slot > nritems);
2141	if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2142		BUG();
2143	if (slot != nritems) {
 
 
 
2144		memmove_extent_buffer(lower,
2145			      btrfs_node_key_ptr_offset(slot + 1),
2146			      btrfs_node_key_ptr_offset(slot),
2147			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2148	}
 
 
 
 
 
2149	btrfs_set_node_key(lower, key, slot);
2150	btrfs_set_node_blockptr(lower, slot, bytenr);
2151	WARN_ON(trans->transid == 0);
2152	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2153	btrfs_set_header_nritems(lower, nritems + 1);
2154	btrfs_mark_buffer_dirty(lower);
2155	return 0;
2156}
2157
2158/*
2159 * split the node at the specified level in path in two.
2160 * The path is corrected to point to the appropriate node after the split
2161 *
2162 * Before splitting this tries to make some room in the node by pushing
2163 * left and right, if either one works, it returns right away.
2164 *
2165 * returns 0 on success and < 0 on failure
2166 */
2167static noinline int split_node(struct btrfs_trans_handle *trans,
2168			       struct btrfs_root *root,
2169			       struct btrfs_path *path, int level)
2170{
2171	struct extent_buffer *c;
2172	struct extent_buffer *split;
2173	struct btrfs_disk_key disk_key;
2174	int mid;
2175	int ret;
2176	int wret;
2177	u32 c_nritems;
2178
2179	c = path->nodes[level];
2180	WARN_ON(btrfs_header_generation(c) != trans->transid);
2181	if (c == root->node) {
2182		/* trying to split the root, lets make a new one */
 
 
 
 
 
 
 
 
 
2183		ret = insert_new_root(trans, root, path, level + 1);
2184		if (ret)
2185			return ret;
2186	} else {
2187		ret = push_nodes_for_insert(trans, root, path, level);
2188		c = path->nodes[level];
2189		if (!ret && btrfs_header_nritems(c) <
2190		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2191			return 0;
2192		if (ret < 0)
2193			return ret;
2194	}
2195
2196	c_nritems = btrfs_header_nritems(c);
2197	mid = (c_nritems + 1) / 2;
2198	btrfs_node_key(c, &disk_key, mid);
2199
2200	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2201					root->root_key.objectid,
2202					&disk_key, level, c->start, 0);
2203	if (IS_ERR(split))
2204		return PTR_ERR(split);
2205
2206	root_add_used(root, root->nodesize);
2207
2208	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2209	btrfs_set_header_level(split, btrfs_header_level(c));
2210	btrfs_set_header_bytenr(split, split->start);
2211	btrfs_set_header_generation(split, trans->transid);
2212	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2213	btrfs_set_header_owner(split, root->root_key.objectid);
2214	write_extent_buffer(split, root->fs_info->fsid,
2215			    (unsigned long)btrfs_header_fsid(split),
2216			    BTRFS_FSID_SIZE);
2217	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2218			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
2219			    BTRFS_UUID_SIZE);
2220
2221
 
 
 
 
 
2222	copy_extent_buffer(split, c,
2223			   btrfs_node_key_ptr_offset(0),
2224			   btrfs_node_key_ptr_offset(mid),
2225			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2226	btrfs_set_header_nritems(split, c_nritems - mid);
2227	btrfs_set_header_nritems(c, mid);
2228	ret = 0;
2229
2230	btrfs_mark_buffer_dirty(c);
2231	btrfs_mark_buffer_dirty(split);
2232
2233	wret = insert_ptr(trans, root, path, &disk_key, split->start,
2234			  path->slots[level + 1] + 1,
2235			  level + 1);
2236	if (wret)
2237		ret = wret;
2238
2239	if (path->slots[level] >= mid) {
2240		path->slots[level] -= mid;
2241		btrfs_tree_unlock(c);
2242		free_extent_buffer(c);
2243		path->nodes[level] = split;
2244		path->slots[level + 1] += 1;
2245	} else {
2246		btrfs_tree_unlock(split);
2247		free_extent_buffer(split);
2248	}
2249	return ret;
2250}
2251
2252/*
2253 * how many bytes are required to store the items in a leaf.  start
2254 * and nr indicate which items in the leaf to check.  This totals up the
2255 * space used both by the item structs and the item data
2256 */
2257static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2258{
 
 
 
2259	int data_len;
2260	int nritems = btrfs_header_nritems(l);
2261	int end = min(nritems, start + nr) - 1;
2262
2263	if (!nr)
2264		return 0;
2265	data_len = btrfs_item_end_nr(l, start);
2266	data_len = data_len - btrfs_item_offset_nr(l, end);
 
 
 
 
2267	data_len += sizeof(struct btrfs_item) * nr;
2268	WARN_ON(data_len < 0);
2269	return data_len;
2270}
2271
2272/*
2273 * The space between the end of the leaf items and
2274 * the start of the leaf data.  IOW, how much room
2275 * the leaf has left for both items and data
2276 */
2277noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2278				   struct extent_buffer *leaf)
2279{
2280	int nritems = btrfs_header_nritems(leaf);
2281	int ret;
2282	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2283	if (ret < 0) {
2284		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2285		       "used %d nritems %d\n",
2286		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2287		       leaf_space_used(leaf, 0, nritems), nritems);
2288	}
2289	return ret;
2290}
2291
2292/*
2293 * min slot controls the lowest index we're willing to push to the
2294 * right.  We'll push up to and including min_slot, but no lower
2295 */
2296static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2297				      struct btrfs_root *root,
2298				      struct btrfs_path *path,
2299				      int data_size, int empty,
2300				      struct extent_buffer *right,
2301				      int free_space, u32 left_nritems,
2302				      u32 min_slot)
2303{
2304	struct extent_buffer *left = path->nodes[0];
2305	struct extent_buffer *upper = path->nodes[1];
 
2306	struct btrfs_disk_key disk_key;
2307	int slot;
2308	u32 i;
2309	int push_space = 0;
2310	int push_items = 0;
2311	struct btrfs_item *item;
2312	u32 nr;
2313	u32 right_nritems;
2314	u32 data_end;
2315	u32 this_item_size;
2316
 
 
2317	if (empty)
2318		nr = 0;
2319	else
2320		nr = max_t(u32, 1, min_slot);
2321
2322	if (path->slots[0] >= left_nritems)
2323		push_space += data_size;
2324
2325	slot = path->slots[1];
2326	i = left_nritems - 1;
2327	while (i >= nr) {
2328		item = btrfs_item_nr(left, i);
2329
2330		if (!empty && push_items > 0) {
2331			if (path->slots[0] > i)
2332				break;
2333			if (path->slots[0] == i) {
2334				int space = btrfs_leaf_free_space(root, left);
2335				if (space + push_space * 2 > free_space)
2336					break;
2337			}
2338		}
2339
2340		if (path->slots[0] == i)
2341			push_space += data_size;
2342
2343		this_item_size = btrfs_item_size(left, item);
2344		if (this_item_size + sizeof(*item) + push_space > free_space)
2345			break;
2346
2347		push_items++;
2348		push_space += this_item_size + sizeof(*item);
2349		if (i == 0)
2350			break;
2351		i--;
2352	}
2353
2354	if (push_items == 0)
2355		goto out_unlock;
2356
2357	if (!empty && push_items == left_nritems)
2358		WARN_ON(1);
2359
2360	/* push left to right */
2361	right_nritems = btrfs_header_nritems(right);
2362
2363	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2364	push_space -= leaf_data_end(root, left);
2365
2366	/* make room in the right data area */
2367	data_end = leaf_data_end(root, right);
2368	memmove_extent_buffer(right,
2369			      btrfs_leaf_data(right) + data_end - push_space,
2370			      btrfs_leaf_data(right) + data_end,
2371			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
2372
2373	/* copy from the left data area */
2374	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2375		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
2376		     btrfs_leaf_data(left) + leaf_data_end(root, left),
2377		     push_space);
2378
2379	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2380			      btrfs_item_nr_offset(0),
2381			      right_nritems * sizeof(struct btrfs_item));
2382
2383	/* copy the items from left to right */
2384	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2385		   btrfs_item_nr_offset(left_nritems - push_items),
2386		   push_items * sizeof(struct btrfs_item));
2387
2388	/* update the item pointers */
2389	right_nritems += push_items;
2390	btrfs_set_header_nritems(right, right_nritems);
2391	push_space = BTRFS_LEAF_DATA_SIZE(root);
2392	for (i = 0; i < right_nritems; i++) {
2393		item = btrfs_item_nr(right, i);
2394		push_space -= btrfs_item_size(right, item);
2395		btrfs_set_item_offset(right, item, push_space);
2396	}
2397
2398	left_nritems -= push_items;
2399	btrfs_set_header_nritems(left, left_nritems);
2400
2401	if (left_nritems)
2402		btrfs_mark_buffer_dirty(left);
2403	else
2404		clean_tree_block(trans, root, left);
2405
2406	btrfs_mark_buffer_dirty(right);
2407
2408	btrfs_item_key(right, &disk_key, 0);
2409	btrfs_set_node_key(upper, &disk_key, slot + 1);
2410	btrfs_mark_buffer_dirty(upper);
2411
2412	/* then fixup the leaf pointer in the path */
2413	if (path->slots[0] >= left_nritems) {
2414		path->slots[0] -= left_nritems;
2415		if (btrfs_header_nritems(path->nodes[0]) == 0)
2416			clean_tree_block(trans, root, path->nodes[0]);
2417		btrfs_tree_unlock(path->nodes[0]);
2418		free_extent_buffer(path->nodes[0]);
2419		path->nodes[0] = right;
2420		path->slots[1] += 1;
2421	} else {
2422		btrfs_tree_unlock(right);
2423		free_extent_buffer(right);
2424	}
2425	return 0;
2426
2427out_unlock:
2428	btrfs_tree_unlock(right);
2429	free_extent_buffer(right);
2430	return 1;
2431}
2432
2433/*
2434 * push some data in the path leaf to the right, trying to free up at
2435 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2436 *
2437 * returns 1 if the push failed because the other node didn't have enough
2438 * room, 0 if everything worked out and < 0 if there were major errors.
2439 *
2440 * this will push starting from min_slot to the end of the leaf.  It won't
2441 * push any slot lower than min_slot
2442 */
2443static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2444			   *root, struct btrfs_path *path,
2445			   int min_data_size, int data_size,
2446			   int empty, u32 min_slot)
2447{
2448	struct extent_buffer *left = path->nodes[0];
2449	struct extent_buffer *right;
2450	struct extent_buffer *upper;
2451	int slot;
2452	int free_space;
2453	u32 left_nritems;
2454	int ret;
2455
2456	if (!path->nodes[1])
2457		return 1;
2458
2459	slot = path->slots[1];
2460	upper = path->nodes[1];
2461	if (slot >= btrfs_header_nritems(upper) - 1)
2462		return 1;
2463
2464	btrfs_assert_tree_locked(path->nodes[1]);
2465
2466	right = read_node_slot(root, upper, slot + 1);
2467	if (right == NULL)
2468		return 1;
2469
2470	btrfs_tree_lock(right);
2471	btrfs_set_lock_blocking(right);
2472
2473	free_space = btrfs_leaf_free_space(root, right);
2474	if (free_space < data_size)
2475		goto out_unlock;
2476
2477	/* cow and double check */
2478	ret = btrfs_cow_block(trans, root, right, upper,
2479			      slot + 1, &right);
2480	if (ret)
2481		goto out_unlock;
2482
2483	free_space = btrfs_leaf_free_space(root, right);
2484	if (free_space < data_size)
2485		goto out_unlock;
2486
2487	left_nritems = btrfs_header_nritems(left);
2488	if (left_nritems == 0)
2489		goto out_unlock;
2490
 
 
 
 
 
 
 
 
 
 
 
 
 
2491	return __push_leaf_right(trans, root, path, min_data_size, empty,
2492				right, free_space, left_nritems, min_slot);
2493out_unlock:
2494	btrfs_tree_unlock(right);
2495	free_extent_buffer(right);
2496	return 1;
2497}
2498
2499/*
2500 * push some data in the path leaf to the left, trying to free up at
2501 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2502 *
2503 * max_slot can put a limit on how far into the leaf we'll push items.  The
2504 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2505 * items
2506 */
2507static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2508				     struct btrfs_root *root,
2509				     struct btrfs_path *path, int data_size,
2510				     int empty, struct extent_buffer *left,
2511				     int free_space, u32 right_nritems,
2512				     u32 max_slot)
2513{
2514	struct btrfs_disk_key disk_key;
2515	struct extent_buffer *right = path->nodes[0];
2516	int i;
2517	int push_space = 0;
2518	int push_items = 0;
2519	struct btrfs_item *item;
2520	u32 old_left_nritems;
2521	u32 nr;
2522	int ret = 0;
2523	int wret;
2524	u32 this_item_size;
2525	u32 old_left_item_size;
 
 
 
2526
2527	if (empty)
2528		nr = min(right_nritems, max_slot);
2529	else
2530		nr = min(right_nritems - 1, max_slot);
2531
2532	for (i = 0; i < nr; i++) {
2533		item = btrfs_item_nr(right, i);
2534
2535		if (!empty && push_items > 0) {
2536			if (path->slots[0] < i)
2537				break;
2538			if (path->slots[0] == i) {
2539				int space = btrfs_leaf_free_space(root, right);
2540				if (space + push_space * 2 > free_space)
2541					break;
2542			}
2543		}
2544
2545		if (path->slots[0] == i)
2546			push_space += data_size;
2547
2548		this_item_size = btrfs_item_size(right, item);
2549		if (this_item_size + sizeof(*item) + push_space > free_space)
2550			break;
2551
2552		push_items++;
2553		push_space += this_item_size + sizeof(*item);
2554	}
2555
2556	if (push_items == 0) {
2557		ret = 1;
2558		goto out;
2559	}
2560	if (!empty && push_items == btrfs_header_nritems(right))
2561		WARN_ON(1);
2562
2563	/* push data from right to left */
2564	copy_extent_buffer(left, right,
2565			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2566			   btrfs_item_nr_offset(0),
2567			   push_items * sizeof(struct btrfs_item));
2568
2569	push_space = BTRFS_LEAF_DATA_SIZE(root) -
2570		     btrfs_item_offset_nr(right, push_items - 1);
2571
2572	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2573		     leaf_data_end(root, left) - push_space,
2574		     btrfs_leaf_data(right) +
2575		     btrfs_item_offset_nr(right, push_items - 1),
2576		     push_space);
2577	old_left_nritems = btrfs_header_nritems(left);
2578	BUG_ON(old_left_nritems <= 0);
2579
2580	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2581	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2582		u32 ioff;
2583
2584		item = btrfs_item_nr(left, i);
2585
2586		ioff = btrfs_item_offset(left, item);
2587		btrfs_set_item_offset(left, item,
2588		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
 
2589	}
2590	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2591
2592	/* fixup right node */
2593	if (push_items > right_nritems) {
2594		printk(KERN_CRIT "push items %d nr %u\n", push_items,
2595		       right_nritems);
2596		WARN_ON(1);
2597	}
2598
2599	if (push_items < right_nritems) {
2600		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2601						  leaf_data_end(root, right);
2602		memmove_extent_buffer(right, btrfs_leaf_data(right) +
2603				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2604				      btrfs_leaf_data(right) +
2605				      leaf_data_end(root, right), push_space);
2606
2607		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2608			      btrfs_item_nr_offset(push_items),
2609			     (btrfs_header_nritems(right) - push_items) *
2610			     sizeof(struct btrfs_item));
2611	}
2612	right_nritems -= push_items;
2613	btrfs_set_header_nritems(right, right_nritems);
2614	push_space = BTRFS_LEAF_DATA_SIZE(root);
2615	for (i = 0; i < right_nritems; i++) {
2616		item = btrfs_item_nr(right, i);
2617
2618		push_space = push_space - btrfs_item_size(right, item);
2619		btrfs_set_item_offset(right, item, push_space);
 
2620	}
2621
2622	btrfs_mark_buffer_dirty(left);
2623	if (right_nritems)
2624		btrfs_mark_buffer_dirty(right);
2625	else
2626		clean_tree_block(trans, root, right);
2627
2628	btrfs_item_key(right, &disk_key, 0);
2629	wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2630	if (wret)
2631		ret = wret;
2632
2633	/* then fixup the leaf pointer in the path */
2634	if (path->slots[0] < push_items) {
2635		path->slots[0] += old_left_nritems;
2636		btrfs_tree_unlock(path->nodes[0]);
2637		free_extent_buffer(path->nodes[0]);
2638		path->nodes[0] = left;
2639		path->slots[1] -= 1;
2640	} else {
2641		btrfs_tree_unlock(left);
2642		free_extent_buffer(left);
2643		path->slots[0] -= push_items;
2644	}
2645	BUG_ON(path->slots[0] < 0);
2646	return ret;
2647out:
2648	btrfs_tree_unlock(left);
2649	free_extent_buffer(left);
2650	return ret;
2651}
2652
2653/*
2654 * push some data in the path leaf to the left, trying to free up at
2655 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2656 *
2657 * max_slot can put a limit on how far into the leaf we'll push items.  The
2658 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
2659 * items
2660 */
2661static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2662			  *root, struct btrfs_path *path, int min_data_size,
2663			  int data_size, int empty, u32 max_slot)
2664{
2665	struct extent_buffer *right = path->nodes[0];
2666	struct extent_buffer *left;
2667	int slot;
2668	int free_space;
2669	u32 right_nritems;
2670	int ret = 0;
2671
2672	slot = path->slots[1];
2673	if (slot == 0)
2674		return 1;
2675	if (!path->nodes[1])
2676		return 1;
2677
2678	right_nritems = btrfs_header_nritems(right);
2679	if (right_nritems == 0)
2680		return 1;
2681
2682	btrfs_assert_tree_locked(path->nodes[1]);
2683
2684	left = read_node_slot(root, path->nodes[1], slot - 1);
2685	if (left == NULL)
2686		return 1;
2687
2688	btrfs_tree_lock(left);
2689	btrfs_set_lock_blocking(left);
2690
2691	free_space = btrfs_leaf_free_space(root, left);
2692	if (free_space < data_size) {
2693		ret = 1;
2694		goto out;
2695	}
2696
2697	/* cow and double check */
2698	ret = btrfs_cow_block(trans, root, left,
2699			      path->nodes[1], slot - 1, &left);
2700	if (ret) {
2701		/* we hit -ENOSPC, but it isn't fatal here */
2702		ret = 1;
 
2703		goto out;
2704	}
2705
2706	free_space = btrfs_leaf_free_space(root, left);
2707	if (free_space < data_size) {
2708		ret = 1;
2709		goto out;
2710	}
2711
2712	return __push_leaf_left(trans, root, path, min_data_size,
2713			       empty, left, free_space, right_nritems,
2714			       max_slot);
2715out:
2716	btrfs_tree_unlock(left);
2717	free_extent_buffer(left);
2718	return ret;
2719}
2720
2721/*
2722 * split the path's leaf in two, making sure there is at least data_size
2723 * available for the resulting leaf level of the path.
2724 *
2725 * returns 0 if all went well and < 0 on failure.
2726 */
2727static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2728			       struct btrfs_root *root,
2729			       struct btrfs_path *path,
2730			       struct extent_buffer *l,
2731			       struct extent_buffer *right,
2732			       int slot, int mid, int nritems)
2733{
2734	int data_copy_size;
2735	int rt_data_off;
2736	int i;
2737	int ret = 0;
2738	int wret;
2739	struct btrfs_disk_key disk_key;
 
 
 
2740
2741	nritems = nritems - mid;
2742	btrfs_set_header_nritems(right, nritems);
2743	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2744
2745	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2746			   btrfs_item_nr_offset(mid),
2747			   nritems * sizeof(struct btrfs_item));
2748
2749	copy_extent_buffer(right, l,
2750		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2751		     data_copy_size, btrfs_leaf_data(l) +
2752		     leaf_data_end(root, l), data_copy_size);
2753
2754	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2755		      btrfs_item_end_nr(l, mid);
2756
2757	for (i = 0; i < nritems; i++) {
2758		struct btrfs_item *item = btrfs_item_nr(right, i);
2759		u32 ioff;
2760
2761		ioff = btrfs_item_offset(right, item);
2762		btrfs_set_item_offset(right, item, ioff + rt_data_off);
 
2763	}
2764
2765	btrfs_set_header_nritems(l, mid);
2766	ret = 0;
2767	btrfs_item_key(right, &disk_key, 0);
2768	wret = insert_ptr(trans, root, path, &disk_key, right->start,
2769			  path->slots[1] + 1, 1);
2770	if (wret)
2771		ret = wret;
2772
2773	btrfs_mark_buffer_dirty(right);
2774	btrfs_mark_buffer_dirty(l);
2775	BUG_ON(path->slots[0] != slot);
2776
2777	if (mid <= slot) {
2778		btrfs_tree_unlock(path->nodes[0]);
2779		free_extent_buffer(path->nodes[0]);
2780		path->nodes[0] = right;
2781		path->slots[0] -= mid;
2782		path->slots[1] += 1;
2783	} else {
2784		btrfs_tree_unlock(right);
2785		free_extent_buffer(right);
2786	}
2787
2788	BUG_ON(path->slots[0] < 0);
2789
2790	return ret;
2791}
2792
2793/*
2794 * double splits happen when we need to insert a big item in the middle
2795 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
2796 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2797 *          A                 B                 C
2798 *
2799 * We avoid this by trying to push the items on either side of our target
2800 * into the adjacent leaves.  If all goes well we can avoid the double split
2801 * completely.
2802 */
2803static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2804					  struct btrfs_root *root,
2805					  struct btrfs_path *path,
2806					  int data_size)
2807{
2808	int ret;
2809	int progress = 0;
2810	int slot;
2811	u32 nritems;
 
2812
2813	slot = path->slots[0];
 
 
2814
2815	/*
2816	 * try to push all the items after our slot into the
2817	 * right leaf
2818	 */
2819	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2820	if (ret < 0)
2821		return ret;
2822
2823	if (ret == 0)
2824		progress++;
2825
2826	nritems = btrfs_header_nritems(path->nodes[0]);
2827	/*
2828	 * our goal is to get our slot at the start or end of a leaf.  If
2829	 * we've done so we're done
2830	 */
2831	if (path->slots[0] == 0 || path->slots[0] == nritems)
2832		return 0;
2833
2834	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2835		return 0;
2836
2837	/* try to push all the items before our slot into the next leaf */
2838	slot = path->slots[0];
2839	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2840	if (ret < 0)
2841		return ret;
2842
2843	if (ret == 0)
2844		progress++;
2845
2846	if (progress)
2847		return 0;
2848	return 1;
2849}
2850
2851/*
2852 * split the path's leaf in two, making sure there is at least data_size
2853 * available for the resulting leaf level of the path.
2854 *
2855 * returns 0 if all went well and < 0 on failure.
2856 */
2857static noinline int split_leaf(struct btrfs_trans_handle *trans,
2858			       struct btrfs_root *root,
2859			       struct btrfs_key *ins_key,
2860			       struct btrfs_path *path, int data_size,
2861			       int extend)
2862{
2863	struct btrfs_disk_key disk_key;
2864	struct extent_buffer *l;
2865	u32 nritems;
2866	int mid;
2867	int slot;
2868	struct extent_buffer *right;
2869	int ret = 0;
2870	int wret;
2871	int split;
2872	int num_doubles = 0;
2873	int tried_avoid_double = 0;
2874
2875	l = path->nodes[0];
2876	slot = path->slots[0];
2877	if (extend && data_size + btrfs_item_size_nr(l, slot) +
2878	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2879		return -EOVERFLOW;
2880
2881	/* first try to make some room by pushing left and right */
2882	if (data_size) {
2883		wret = push_leaf_right(trans, root, path, data_size,
2884				       data_size, 0, 0);
 
 
 
 
 
2885		if (wret < 0)
2886			return wret;
2887		if (wret) {
2888			wret = push_leaf_left(trans, root, path, data_size,
2889					      data_size, 0, (u32)-1);
2890			if (wret < 0)
2891				return wret;
2892		}
2893		l = path->nodes[0];
2894
2895		/* did the pushes work? */
2896		if (btrfs_leaf_free_space(root, l) >= data_size)
2897			return 0;
2898	}
2899
2900	if (!path->nodes[1]) {
2901		ret = insert_new_root(trans, root, path, 1);
2902		if (ret)
2903			return ret;
2904	}
2905again:
2906	split = 1;
2907	l = path->nodes[0];
2908	slot = path->slots[0];
2909	nritems = btrfs_header_nritems(l);
2910	mid = (nritems + 1) / 2;
2911
2912	if (mid <= slot) {
2913		if (nritems == 1 ||
2914		    leaf_space_used(l, mid, nritems - mid) + data_size >
2915			BTRFS_LEAF_DATA_SIZE(root)) {
2916			if (slot >= nritems) {
2917				split = 0;
2918			} else {
2919				mid = slot;
2920				if (mid != nritems &&
2921				    leaf_space_used(l, mid, nritems - mid) +
2922				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2923					if (data_size && !tried_avoid_double)
2924						goto push_for_double;
2925					split = 2;
2926				}
2927			}
2928		}
2929	} else {
2930		if (leaf_space_used(l, 0, mid) + data_size >
2931			BTRFS_LEAF_DATA_SIZE(root)) {
2932			if (!extend && data_size && slot == 0) {
2933				split = 0;
2934			} else if ((extend || !data_size) && slot == 0) {
2935				mid = 1;
2936			} else {
2937				mid = slot;
2938				if (mid != nritems &&
2939				    leaf_space_used(l, mid, nritems - mid) +
2940				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2941					if (data_size && !tried_avoid_double)
2942						goto push_for_double;
2943					split = 2 ;
2944				}
2945			}
2946		}
2947	}
2948
2949	if (split == 0)
2950		btrfs_cpu_key_to_disk(&disk_key, ins_key);
2951	else
2952		btrfs_item_key(l, &disk_key, mid);
2953
2954	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2955					root->root_key.objectid,
2956					&disk_key, 0, l->start, 0);
2957	if (IS_ERR(right))
2958		return PTR_ERR(right);
2959
2960	root_add_used(root, root->leafsize);
2961
2962	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2963	btrfs_set_header_bytenr(right, right->start);
2964	btrfs_set_header_generation(right, trans->transid);
2965	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2966	btrfs_set_header_owner(right, root->root_key.objectid);
2967	btrfs_set_header_level(right, 0);
2968	write_extent_buffer(right, root->fs_info->fsid,
2969			    (unsigned long)btrfs_header_fsid(right),
2970			    BTRFS_FSID_SIZE);
2971
2972	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2973			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
2974			    BTRFS_UUID_SIZE);
2975
2976	if (split == 0) {
2977		if (mid <= slot) {
2978			btrfs_set_header_nritems(right, 0);
2979			wret = insert_ptr(trans, root, path,
2980					  &disk_key, right->start,
2981					  path->slots[1] + 1, 1);
2982			if (wret)
2983				ret = wret;
2984
2985			btrfs_tree_unlock(path->nodes[0]);
2986			free_extent_buffer(path->nodes[0]);
2987			path->nodes[0] = right;
2988			path->slots[0] = 0;
2989			path->slots[1] += 1;
2990		} else {
2991			btrfs_set_header_nritems(right, 0);
2992			wret = insert_ptr(trans, root, path,
2993					  &disk_key,
2994					  right->start,
2995					  path->slots[1], 1);
2996			if (wret)
2997				ret = wret;
2998			btrfs_tree_unlock(path->nodes[0]);
2999			free_extent_buffer(path->nodes[0]);
3000			path->nodes[0] = right;
3001			path->slots[0] = 0;
3002			if (path->slots[1] == 0) {
3003				wret = fixup_low_keys(trans, root,
3004						path, &disk_key, 1);
3005				if (wret)
3006					ret = wret;
3007			}
3008		}
3009		btrfs_mark_buffer_dirty(right);
3010		return ret;
3011	}
3012
3013	ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3014	BUG_ON(ret);
3015
3016	if (split == 2) {
3017		BUG_ON(num_doubles != 0);
3018		num_doubles++;
3019		goto again;
3020	}
3021
3022	return ret;
3023
3024push_for_double:
3025	push_for_double_split(trans, root, path, data_size);
3026	tried_avoid_double = 1;
3027	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3028		return 0;
3029	goto again;
3030}
3031
3032static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3033					 struct btrfs_root *root,
3034					 struct btrfs_path *path, int ins_len)
3035{
3036	struct btrfs_key key;
3037	struct extent_buffer *leaf;
3038	struct btrfs_file_extent_item *fi;
3039	u64 extent_len = 0;
3040	u32 item_size;
3041	int ret;
3042
3043	leaf = path->nodes[0];
3044	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3045
3046	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3047	       key.type != BTRFS_EXTENT_CSUM_KEY);
3048
3049	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3050		return 0;
3051
3052	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3053	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3054		fi = btrfs_item_ptr(leaf, path->slots[0],
3055				    struct btrfs_file_extent_item);
3056		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3057	}
3058	btrfs_release_path(path);
3059
3060	path->keep_locks = 1;
3061	path->search_for_split = 1;
3062	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3063	path->search_for_split = 0;
3064	if (ret < 0)
3065		goto err;
3066
3067	ret = -EAGAIN;
3068	leaf = path->nodes[0];
3069	/* if our item isn't there or got smaller, return now */
3070	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3071		goto err;
3072
3073	/* the leaf has  changed, it now has room.  return now */
3074	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3075		goto err;
3076
3077	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3078		fi = btrfs_item_ptr(leaf, path->slots[0],
3079				    struct btrfs_file_extent_item);
3080		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3081			goto err;
3082	}
3083
3084	btrfs_set_path_blocking(path);
3085	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3086	if (ret)
3087		goto err;
3088
3089	path->keep_locks = 0;
3090	btrfs_unlock_up_safe(path, 1);
3091	return 0;
3092err:
3093	path->keep_locks = 0;
3094	return ret;
3095}
3096
3097static noinline int split_item(struct btrfs_trans_handle *trans,
3098			       struct btrfs_root *root,
3099			       struct btrfs_path *path,
3100			       struct btrfs_key *new_key,
3101			       unsigned long split_offset)
3102{
3103	struct extent_buffer *leaf;
3104	struct btrfs_item *item;
3105	struct btrfs_item *new_item;
3106	int slot;
3107	char *buf;
3108	u32 nritems;
3109	u32 item_size;
3110	u32 orig_offset;
3111	struct btrfs_disk_key disk_key;
3112
3113	leaf = path->nodes[0];
3114	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3115
3116	btrfs_set_path_blocking(path);
3117
3118	item = btrfs_item_nr(leaf, path->slots[0]);
3119	orig_offset = btrfs_item_offset(leaf, item);
3120	item_size = btrfs_item_size(leaf, item);
3121
3122	buf = kmalloc(item_size, GFP_NOFS);
3123	if (!buf)
3124		return -ENOMEM;
3125
3126	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3127			    path->slots[0]), item_size);
3128
3129	slot = path->slots[0] + 1;
3130	nritems = btrfs_header_nritems(leaf);
3131	if (slot != nritems) {
3132		/* shift the items */
3133		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3134				btrfs_item_nr_offset(slot),
3135				(nritems - slot) * sizeof(struct btrfs_item));
3136	}
3137
3138	btrfs_cpu_key_to_disk(&disk_key, new_key);
3139	btrfs_set_item_key(leaf, &disk_key, slot);
3140
3141	new_item = btrfs_item_nr(leaf, slot);
3142
3143	btrfs_set_item_offset(leaf, new_item, orig_offset);
3144	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3145
3146	btrfs_set_item_offset(leaf, item,
3147			      orig_offset + item_size - split_offset);
3148	btrfs_set_item_size(leaf, item, split_offset);
3149
3150	btrfs_set_header_nritems(leaf, nritems + 1);
3151
3152	/* write the data for the start of the original item */
3153	write_extent_buffer(leaf, buf,
3154			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3155			    split_offset);
3156
3157	/* write the data for the new item */
3158	write_extent_buffer(leaf, buf + split_offset,
3159			    btrfs_item_ptr_offset(leaf, slot),
3160			    item_size - split_offset);
3161	btrfs_mark_buffer_dirty(leaf);
3162
3163	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3164	kfree(buf);
3165	return 0;
3166}
3167
3168/*
3169 * This function splits a single item into two items,
3170 * giving 'new_key' to the new item and splitting the
3171 * old one at split_offset (from the start of the item).
3172 *
3173 * The path may be released by this operation.  After
3174 * the split, the path is pointing to the old item.  The
3175 * new item is going to be in the same node as the old one.
3176 *
3177 * Note, the item being split must be smaller enough to live alone on
3178 * a tree block with room for one extra struct btrfs_item
3179 *
3180 * This allows us to split the item in place, keeping a lock on the
3181 * leaf the entire time.
3182 */
3183int btrfs_split_item(struct btrfs_trans_handle *trans,
3184		     struct btrfs_root *root,
3185		     struct btrfs_path *path,
3186		     struct btrfs_key *new_key,
3187		     unsigned long split_offset)
3188{
3189	int ret;
3190	ret = setup_leaf_for_split(trans, root, path,
3191				   sizeof(struct btrfs_item));
3192	if (ret)
3193		return ret;
3194
3195	ret = split_item(trans, root, path, new_key, split_offset);
3196	return ret;
3197}
3198
3199/*
3200 * This function duplicate a item, giving 'new_key' to the new item.
3201 * It guarantees both items live in the same tree leaf and the new item
3202 * is contiguous with the original item.
3203 *
3204 * This allows us to split file extent in place, keeping a lock on the
3205 * leaf the entire time.
3206 */
3207int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3208			 struct btrfs_root *root,
3209			 struct btrfs_path *path,
3210			 struct btrfs_key *new_key)
3211{
3212	struct extent_buffer *leaf;
3213	int ret;
3214	u32 item_size;
3215
3216	leaf = path->nodes[0];
3217	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3218	ret = setup_leaf_for_split(trans, root, path,
3219				   item_size + sizeof(struct btrfs_item));
3220	if (ret)
3221		return ret;
3222
3223	path->slots[0]++;
3224	ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3225				     item_size, item_size +
3226				     sizeof(struct btrfs_item), 1);
3227	BUG_ON(ret);
3228
3229	leaf = path->nodes[0];
3230	memcpy_extent_buffer(leaf,
3231			     btrfs_item_ptr_offset(leaf, path->slots[0]),
3232			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3233			     item_size);
3234	return 0;
3235}
3236
3237/*
3238 * make the item pointed to by the path smaller.  new_size indicates
3239 * how small to make it, and from_end tells us if we just chop bytes
3240 * off the end of the item or if we shift the item to chop bytes off
3241 * the front.
3242 */
3243int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3244			struct btrfs_root *root,
3245			struct btrfs_path *path,
3246			u32 new_size, int from_end)
3247{
3248	int slot;
3249	struct extent_buffer *leaf;
3250	struct btrfs_item *item;
3251	u32 nritems;
3252	unsigned int data_end;
3253	unsigned int old_data_start;
3254	unsigned int old_size;
3255	unsigned int size_diff;
3256	int i;
 
 
 
3257
3258	leaf = path->nodes[0];
3259	slot = path->slots[0];
3260
3261	old_size = btrfs_item_size_nr(leaf, slot);
3262	if (old_size == new_size)
3263		return 0;
3264
3265	nritems = btrfs_header_nritems(leaf);
3266	data_end = leaf_data_end(root, leaf);
3267
3268	old_data_start = btrfs_item_offset_nr(leaf, slot);
3269
3270	size_diff = old_size - new_size;
3271
3272	BUG_ON(slot < 0);
3273	BUG_ON(slot >= nritems);
3274
3275	/*
3276	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3277	 */
3278	/* first correct the data pointers */
3279	for (i = slot; i < nritems; i++) {
3280		u32 ioff;
3281		item = btrfs_item_nr(leaf, i);
3282
3283		ioff = btrfs_item_offset(leaf, item);
3284		btrfs_set_item_offset(leaf, item, ioff + size_diff);
 
3285	}
3286
3287	/* shift the data */
3288	if (from_end) {
3289		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3290			      data_end + size_diff, btrfs_leaf_data(leaf) +
3291			      data_end, old_data_start + new_size - data_end);
3292	} else {
3293		struct btrfs_disk_key disk_key;
3294		u64 offset;
3295
3296		btrfs_item_key(leaf, &disk_key, slot);
3297
3298		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3299			unsigned long ptr;
3300			struct btrfs_file_extent_item *fi;
3301
3302			fi = btrfs_item_ptr(leaf, slot,
3303					    struct btrfs_file_extent_item);
3304			fi = (struct btrfs_file_extent_item *)(
3305			     (unsigned long)fi - size_diff);
3306
3307			if (btrfs_file_extent_type(leaf, fi) ==
3308			    BTRFS_FILE_EXTENT_INLINE) {
3309				ptr = btrfs_item_ptr_offset(leaf, slot);
3310				memmove_extent_buffer(leaf, ptr,
3311				      (unsigned long)fi,
3312				      offsetof(struct btrfs_file_extent_item,
3313						 disk_bytenr));
3314			}
3315		}
3316
3317		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3318			      data_end + size_diff, btrfs_leaf_data(leaf) +
3319			      data_end, old_data_start - data_end);
3320
3321		offset = btrfs_disk_key_offset(&disk_key);
3322		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3323		btrfs_set_item_key(leaf, &disk_key, slot);
3324		if (slot == 0)
3325			fixup_low_keys(trans, root, path, &disk_key, 1);
3326	}
3327
3328	item = btrfs_item_nr(leaf, slot);
3329	btrfs_set_item_size(leaf, item, new_size);
3330	btrfs_mark_buffer_dirty(leaf);
3331
3332	if (btrfs_leaf_free_space(root, leaf) < 0) {
3333		btrfs_print_leaf(root, leaf);
3334		BUG();
3335	}
3336	return 0;
3337}
3338
3339/*
3340 * make the item pointed to by the path bigger, data_size is the new size.
3341 */
3342int btrfs_extend_item(struct btrfs_trans_handle *trans,
3343		      struct btrfs_root *root, struct btrfs_path *path,
3344		      u32 data_size)
3345{
3346	int slot;
3347	struct extent_buffer *leaf;
3348	struct btrfs_item *item;
3349	u32 nritems;
3350	unsigned int data_end;
3351	unsigned int old_data;
3352	unsigned int old_size;
3353	int i;
 
 
 
3354
3355	leaf = path->nodes[0];
3356
3357	nritems = btrfs_header_nritems(leaf);
3358	data_end = leaf_data_end(root, leaf);
3359
3360	if (btrfs_leaf_free_space(root, leaf) < data_size) {
3361		btrfs_print_leaf(root, leaf);
3362		BUG();
3363	}
3364	slot = path->slots[0];
3365	old_data = btrfs_item_end_nr(leaf, slot);
3366
3367	BUG_ON(slot < 0);
3368	if (slot >= nritems) {
3369		btrfs_print_leaf(root, leaf);
3370		printk(KERN_CRIT "slot %d too large, nritems %d\n",
3371		       slot, nritems);
3372		BUG_ON(1);
3373	}
3374
3375	/*
3376	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3377	 */
3378	/* first correct the data pointers */
3379	for (i = slot; i < nritems; i++) {
3380		u32 ioff;
3381		item = btrfs_item_nr(leaf, i);
3382
3383		ioff = btrfs_item_offset(leaf, item);
3384		btrfs_set_item_offset(leaf, item, ioff - data_size);
 
3385	}
3386
3387	/* shift the data */
3388	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3389		      data_end - data_size, btrfs_leaf_data(leaf) +
3390		      data_end, old_data - data_end);
3391
3392	data_end = old_data;
3393	old_size = btrfs_item_size_nr(leaf, slot);
3394	item = btrfs_item_nr(leaf, slot);
3395	btrfs_set_item_size(leaf, item, old_size + data_size);
3396	btrfs_mark_buffer_dirty(leaf);
3397
3398	if (btrfs_leaf_free_space(root, leaf) < 0) {
3399		btrfs_print_leaf(root, leaf);
3400		BUG();
3401	}
3402	return 0;
3403}
3404
3405/*
3406 * Given a key and some data, insert items into the tree.
3407 * This does all the path init required, making room in the tree if needed.
3408 * Returns the number of keys that were inserted.
3409 */
3410int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3411			    struct btrfs_root *root,
3412			    struct btrfs_path *path,
3413			    struct btrfs_key *cpu_key, u32 *data_size,
3414			    int nr)
3415{
3416	struct extent_buffer *leaf;
3417	struct btrfs_item *item;
3418	int ret = 0;
3419	int slot;
3420	int i;
3421	u32 nritems;
3422	u32 total_data = 0;
3423	u32 total_size = 0;
3424	unsigned int data_end;
3425	struct btrfs_disk_key disk_key;
3426	struct btrfs_key found_key;
3427
3428	for (i = 0; i < nr; i++) {
3429		if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3430		    BTRFS_LEAF_DATA_SIZE(root)) {
3431			break;
3432			nr = i;
3433		}
3434		total_data += data_size[i];
3435		total_size += data_size[i] + sizeof(struct btrfs_item);
3436	}
3437	BUG_ON(nr == 0);
3438
3439	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3440	if (ret == 0)
3441		return -EEXIST;
3442	if (ret < 0)
3443		goto out;
3444
3445	leaf = path->nodes[0];
3446
3447	nritems = btrfs_header_nritems(leaf);
3448	data_end = leaf_data_end(root, leaf);
3449
3450	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3451		for (i = nr; i >= 0; i--) {
3452			total_data -= data_size[i];
3453			total_size -= data_size[i] + sizeof(struct btrfs_item);
3454			if (total_size < btrfs_leaf_free_space(root, leaf))
3455				break;
3456		}
3457		nr = i;
3458	}
3459
3460	slot = path->slots[0];
3461	BUG_ON(slot < 0);
3462
3463	if (slot != nritems) {
3464		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3465
3466		item = btrfs_item_nr(leaf, slot);
3467		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3468
3469		/* figure out how many keys we can insert in here */
3470		total_data = data_size[0];
3471		for (i = 1; i < nr; i++) {
3472			if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3473				break;
3474			total_data += data_size[i];
3475		}
3476		nr = i;
3477
3478		if (old_data < data_end) {
3479			btrfs_print_leaf(root, leaf);
3480			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3481			       slot, old_data, data_end);
3482			BUG_ON(1);
3483		}
3484		/*
3485		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3486		 */
3487		/* first correct the data pointers */
3488		for (i = slot; i < nritems; i++) {
3489			u32 ioff;
3490
3491			item = btrfs_item_nr(leaf, i);
3492			ioff = btrfs_item_offset(leaf, item);
3493			btrfs_set_item_offset(leaf, item, ioff - total_data);
3494		}
3495		/* shift the items */
3496		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3497			      btrfs_item_nr_offset(slot),
3498			      (nritems - slot) * sizeof(struct btrfs_item));
3499
3500		/* shift the data */
3501		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3502			      data_end - total_data, btrfs_leaf_data(leaf) +
3503			      data_end, old_data - data_end);
3504		data_end = old_data;
3505	} else {
3506		/*
3507		 * this sucks but it has to be done, if we are inserting at
3508		 * the end of the leaf only insert 1 of the items, since we
3509		 * have no way of knowing whats on the next leaf and we'd have
3510		 * to drop our current locks to figure it out
3511		 */
3512		nr = 1;
3513	}
3514
3515	/* setup the item for the new data */
3516	for (i = 0; i < nr; i++) {
3517		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3518		btrfs_set_item_key(leaf, &disk_key, slot + i);
3519		item = btrfs_item_nr(leaf, slot + i);
3520		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3521		data_end -= data_size[i];
3522		btrfs_set_item_size(leaf, item, data_size[i]);
3523	}
3524	btrfs_set_header_nritems(leaf, nritems + nr);
3525	btrfs_mark_buffer_dirty(leaf);
3526
3527	ret = 0;
3528	if (slot == 0) {
3529		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3530		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3531	}
3532
3533	if (btrfs_leaf_free_space(root, leaf) < 0) {
3534		btrfs_print_leaf(root, leaf);
3535		BUG();
3536	}
3537out:
3538	if (!ret)
3539		ret = nr;
3540	return ret;
3541}
3542
3543/*
3544 * this is a helper for btrfs_insert_empty_items, the main goal here is
3545 * to save stack depth by doing the bulk of the work in a function
3546 * that doesn't call btrfs_search_slot
3547 */
3548int setup_items_for_insert(struct btrfs_trans_handle *trans,
3549			   struct btrfs_root *root, struct btrfs_path *path,
3550			   struct btrfs_key *cpu_key, u32 *data_size,
3551			   u32 total_data, u32 total_size, int nr)
3552{
3553	struct btrfs_item *item;
3554	int i;
3555	u32 nritems;
3556	unsigned int data_end;
3557	struct btrfs_disk_key disk_key;
3558	int ret;
3559	struct extent_buffer *leaf;
3560	int slot;
 
 
 
3561
3562	leaf = path->nodes[0];
3563	slot = path->slots[0];
3564
3565	nritems = btrfs_header_nritems(leaf);
3566	data_end = leaf_data_end(root, leaf);
3567
3568	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3569		btrfs_print_leaf(root, leaf);
3570		printk(KERN_CRIT "not enough freespace need %u have %d\n",
3571		       total_size, btrfs_leaf_free_space(root, leaf));
3572		BUG();
3573	}
3574
3575	if (slot != nritems) {
3576		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3577
3578		if (old_data < data_end) {
3579			btrfs_print_leaf(root, leaf);
3580			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3581			       slot, old_data, data_end);
3582			BUG_ON(1);
3583		}
3584		/*
3585		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3586		 */
3587		/* first correct the data pointers */
3588		for (i = slot; i < nritems; i++) {
3589			u32 ioff;
3590
3591			item = btrfs_item_nr(leaf, i);
3592			ioff = btrfs_item_offset(leaf, item);
3593			btrfs_set_item_offset(leaf, item, ioff - total_data);
 
3594		}
3595		/* shift the items */
3596		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3597			      btrfs_item_nr_offset(slot),
3598			      (nritems - slot) * sizeof(struct btrfs_item));
3599
3600		/* shift the data */
3601		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3602			      data_end - total_data, btrfs_leaf_data(leaf) +
3603			      data_end, old_data - data_end);
3604		data_end = old_data;
3605	}
3606
3607	/* setup the item for the new data */
3608	for (i = 0; i < nr; i++) {
3609		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3610		btrfs_set_item_key(leaf, &disk_key, slot + i);
3611		item = btrfs_item_nr(leaf, slot + i);
3612		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
 
3613		data_end -= data_size[i];
3614		btrfs_set_item_size(leaf, item, data_size[i]);
3615	}
3616
3617	btrfs_set_header_nritems(leaf, nritems + nr);
3618
3619	ret = 0;
3620	if (slot == 0) {
3621		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3622		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3623	}
3624	btrfs_unlock_up_safe(path, 1);
3625	btrfs_mark_buffer_dirty(leaf);
3626
3627	if (btrfs_leaf_free_space(root, leaf) < 0) {
3628		btrfs_print_leaf(root, leaf);
3629		BUG();
3630	}
3631	return ret;
3632}
3633
3634/*
3635 * Given a key and some data, insert items into the tree.
3636 * This does all the path init required, making room in the tree if needed.
3637 */
3638int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3639			    struct btrfs_root *root,
3640			    struct btrfs_path *path,
3641			    struct btrfs_key *cpu_key, u32 *data_size,
3642			    int nr)
3643{
3644	int ret = 0;
3645	int slot;
3646	int i;
3647	u32 total_size = 0;
3648	u32 total_data = 0;
3649
3650	for (i = 0; i < nr; i++)
3651		total_data += data_size[i];
3652
3653	total_size = total_data + (nr * sizeof(struct btrfs_item));
3654	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3655	if (ret == 0)
3656		return -EEXIST;
3657	if (ret < 0)
3658		goto out;
3659
3660	slot = path->slots[0];
3661	BUG_ON(slot < 0);
3662
3663	ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3664			       total_data, total_size, nr);
3665
3666out:
3667	return ret;
3668}
3669
3670/*
3671 * Given a key and some data, insert an item into the tree.
3672 * This does all the path init required, making room in the tree if needed.
3673 */
3674int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3675		      *root, struct btrfs_key *cpu_key, void *data, u32
3676		      data_size)
3677{
3678	int ret = 0;
3679	struct btrfs_path *path;
3680	struct extent_buffer *leaf;
3681	unsigned long ptr;
3682
3683	path = btrfs_alloc_path();
3684	if (!path)
3685		return -ENOMEM;
3686	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3687	if (!ret) {
3688		leaf = path->nodes[0];
3689		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3690		write_extent_buffer(leaf, data, ptr, data_size);
3691		btrfs_mark_buffer_dirty(leaf);
3692	}
3693	btrfs_free_path(path);
3694	return ret;
3695}
3696
3697/*
3698 * delete the pointer from a given node.
3699 *
3700 * the tree should have been previously balanced so the deletion does not
3701 * empty a node.
3702 */
3703static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3704		   struct btrfs_path *path, int level, int slot)
3705{
3706	struct extent_buffer *parent = path->nodes[level];
3707	u32 nritems;
3708	int ret = 0;
3709	int wret;
3710
3711	nritems = btrfs_header_nritems(parent);
3712	if (slot != nritems - 1) {
 
 
 
3713		memmove_extent_buffer(parent,
3714			      btrfs_node_key_ptr_offset(slot),
3715			      btrfs_node_key_ptr_offset(slot + 1),
3716			      sizeof(struct btrfs_key_ptr) *
3717			      (nritems - slot - 1));
 
 
 
 
3718	}
 
3719	nritems--;
3720	btrfs_set_header_nritems(parent, nritems);
3721	if (nritems == 0 && parent == root->node) {
3722		BUG_ON(btrfs_header_level(root->node) != 1);
3723		/* just turn the root into a leaf and break */
3724		btrfs_set_header_level(root->node, 0);
3725	} else if (slot == 0) {
3726		struct btrfs_disk_key disk_key;
3727
3728		btrfs_node_key(parent, &disk_key, 0);
3729		wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3730		if (wret)
3731			ret = wret;
3732	}
3733	btrfs_mark_buffer_dirty(parent);
3734	return ret;
3735}
3736
3737/*
3738 * a helper function to delete the leaf pointed to by path->slots[1] and
3739 * path->nodes[1].
3740 *
3741 * This deletes the pointer in path->nodes[1] and frees the leaf
3742 * block extent.  zero is returned if it all worked out, < 0 otherwise.
3743 *
3744 * The path must have already been setup for deleting the leaf, including
3745 * all the proper balancing.  path->nodes[1] must be locked.
3746 */
3747static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3748				   struct btrfs_root *root,
3749				   struct btrfs_path *path,
3750				   struct extent_buffer *leaf)
3751{
3752	int ret;
3753
3754	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3755	ret = del_ptr(trans, root, path, 1, path->slots[1]);
3756	if (ret)
3757		return ret;
3758
3759	/*
3760	 * btrfs_free_extent is expensive, we want to make sure we
3761	 * aren't holding any locks when we call it
3762	 */
3763	btrfs_unlock_up_safe(path, 0);
3764
3765	root_sub_used(root, leaf->len);
3766
 
3767	btrfs_free_tree_block(trans, root, leaf, 0, 1);
3768	return 0;
3769}
3770/*
3771 * delete the item at the leaf level in path.  If that empties
3772 * the leaf, remove it from the tree
3773 */
3774int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3775		    struct btrfs_path *path, int slot, int nr)
3776{
3777	struct extent_buffer *leaf;
3778	struct btrfs_item *item;
3779	int last_off;
3780	int dsize = 0;
3781	int ret = 0;
3782	int wret;
3783	int i;
3784	u32 nritems;
 
 
 
3785
3786	leaf = path->nodes[0];
3787	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3788
3789	for (i = 0; i < nr; i++)
3790		dsize += btrfs_item_size_nr(leaf, slot + i);
3791
3792	nritems = btrfs_header_nritems(leaf);
3793
3794	if (slot + nr != nritems) {
3795		int data_end = leaf_data_end(root, leaf);
3796
3797		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3798			      data_end + dsize,
3799			      btrfs_leaf_data(leaf) + data_end,
3800			      last_off - data_end);
3801
3802		for (i = slot + nr; i < nritems; i++) {
3803			u32 ioff;
3804
3805			item = btrfs_item_nr(leaf, i);
3806			ioff = btrfs_item_offset(leaf, item);
3807			btrfs_set_item_offset(leaf, item, ioff + dsize);
 
3808		}
3809
3810		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3811			      btrfs_item_nr_offset(slot + nr),
3812			      sizeof(struct btrfs_item) *
3813			      (nritems - slot - nr));
3814	}
3815	btrfs_set_header_nritems(leaf, nritems - nr);
3816	nritems -= nr;
3817
3818	/* delete the leaf if we've emptied it */
3819	if (nritems == 0) {
3820		if (leaf == root->node) {
3821			btrfs_set_header_level(leaf, 0);
3822		} else {
3823			btrfs_set_path_blocking(path);
3824			clean_tree_block(trans, root, leaf);
3825			ret = btrfs_del_leaf(trans, root, path, leaf);
3826			BUG_ON(ret);
3827		}
3828	} else {
3829		int used = leaf_space_used(leaf, 0, nritems);
3830		if (slot == 0) {
3831			struct btrfs_disk_key disk_key;
3832
3833			btrfs_item_key(leaf, &disk_key, 0);
3834			wret = fixup_low_keys(trans, root, path,
3835					      &disk_key, 1);
3836			if (wret)
3837				ret = wret;
3838		}
3839
3840		/* delete the leaf if it is mostly empty */
3841		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3842			/* push_leaf_left fixes the path.
3843			 * make sure the path still points to our leaf
3844			 * for possible call to del_ptr below
3845			 */
3846			slot = path->slots[1];
3847			extent_buffer_get(leaf);
3848
3849			btrfs_set_path_blocking(path);
3850			wret = push_leaf_left(trans, root, path, 1, 1,
3851					      1, (u32)-1);
3852			if (wret < 0 && wret != -ENOSPC)
3853				ret = wret;
3854
3855			if (path->nodes[0] == leaf &&
3856			    btrfs_header_nritems(leaf)) {
3857				wret = push_leaf_right(trans, root, path, 1,
3858						       1, 1, 0);
3859				if (wret < 0 && wret != -ENOSPC)
3860					ret = wret;
3861			}
3862
3863			if (btrfs_header_nritems(leaf) == 0) {
3864				path->slots[1] = slot;
3865				ret = btrfs_del_leaf(trans, root, path, leaf);
3866				BUG_ON(ret);
3867				free_extent_buffer(leaf);
 
3868			} else {
3869				/* if we're still in the path, make sure
3870				 * we're dirty.  Otherwise, one of the
3871				 * push_leaf functions must have already
3872				 * dirtied this buffer
3873				 */
3874				if (path->nodes[0] == leaf)
3875					btrfs_mark_buffer_dirty(leaf);
3876				free_extent_buffer(leaf);
3877			}
3878		} else {
3879			btrfs_mark_buffer_dirty(leaf);
3880		}
3881	}
3882	return ret;
3883}
3884
3885/*
3886 * search the tree again to find a leaf with lesser keys
3887 * returns 0 if it found something or 1 if there are no lesser leaves.
3888 * returns < 0 on io errors.
3889 *
3890 * This may release the path, and so you may lose any locks held at the
3891 * time you call it.
3892 */
3893int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3894{
3895	struct btrfs_key key;
3896	struct btrfs_disk_key found_key;
3897	int ret;
3898
3899	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3900
3901	if (key.offset > 0)
3902		key.offset--;
3903	else if (key.type > 0)
3904		key.type--;
3905	else if (key.objectid > 0)
 
3906		key.objectid--;
3907	else
 
 
3908		return 1;
 
3909
3910	btrfs_release_path(path);
3911	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3912	if (ret < 0)
3913		return ret;
3914	btrfs_item_key(path->nodes[0], &found_key, 0);
3915	ret = comp_keys(&found_key, &key);
3916	if (ret < 0)
3917		return 0;
3918	return 1;
3919}
3920
3921/*
3922 * A helper function to walk down the tree starting at min_key, and looking
3923 * for nodes or leaves that are either in cache or have a minimum
3924 * transaction id.  This is used by the btree defrag code, and tree logging
3925 *
3926 * This does not cow, but it does stuff the starting key it finds back
3927 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3928 * key and get a writable path.
3929 *
3930 * This does lock as it descends, and path->keep_locks should be set
3931 * to 1 by the caller.
3932 *
3933 * This honors path->lowest_level to prevent descent past a given level
3934 * of the tree.
3935 *
3936 * min_trans indicates the oldest transaction that you are interested
3937 * in walking through.  Any nodes or leaves older than min_trans are
3938 * skipped over (without reading them).
3939 *
3940 * returns zero if something useful was found, < 0 on error and 1 if there
3941 * was nothing in the tree that matched the search criteria.
3942 */
3943int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3944			 struct btrfs_key *max_key,
3945			 struct btrfs_path *path, int cache_only,
3946			 u64 min_trans)
3947{
3948	struct extent_buffer *cur;
3949	struct btrfs_key found_key;
3950	int slot;
3951	int sret;
3952	u32 nritems;
3953	int level;
3954	int ret = 1;
3955
3956	WARN_ON(!path->keep_locks);
3957again:
3958	cur = btrfs_read_lock_root_node(root);
3959	level = btrfs_header_level(cur);
3960	WARN_ON(path->nodes[level]);
3961	path->nodes[level] = cur;
3962	path->locks[level] = BTRFS_READ_LOCK;
3963
3964	if (btrfs_header_generation(cur) < min_trans) {
3965		ret = 1;
3966		goto out;
3967	}
3968	while (1) {
3969		nritems = btrfs_header_nritems(cur);
3970		level = btrfs_header_level(cur);
3971		sret = bin_search(cur, min_key, level, &slot);
3972
3973		/* at the lowest level, we're done, setup the path and exit */
3974		if (level == path->lowest_level) {
3975			if (slot >= nritems)
3976				goto find_next_key;
3977			ret = 0;
3978			path->slots[level] = slot;
3979			btrfs_item_key_to_cpu(cur, &found_key, slot);
3980			goto out;
3981		}
3982		if (sret && slot > 0)
3983			slot--;
3984		/*
3985		 * check this node pointer against the cache_only and
3986		 * min_trans parameters.  If it isn't in cache or is too
3987		 * old, skip to the next one.
3988		 */
3989		while (slot < nritems) {
3990			u64 blockptr;
3991			u64 gen;
3992			struct extent_buffer *tmp;
3993			struct btrfs_disk_key disk_key;
3994
3995			blockptr = btrfs_node_blockptr(cur, slot);
3996			gen = btrfs_node_ptr_generation(cur, slot);
3997			if (gen < min_trans) {
3998				slot++;
3999				continue;
4000			}
4001			if (!cache_only)
4002				break;
4003
4004			if (max_key) {
4005				btrfs_node_key(cur, &disk_key, slot);
4006				if (comp_keys(&disk_key, max_key) >= 0) {
4007					ret = 1;
4008					goto out;
4009				}
4010			}
4011
4012			tmp = btrfs_find_tree_block(root, blockptr,
4013					    btrfs_level_size(root, level - 1));
4014
4015			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4016				free_extent_buffer(tmp);
4017				break;
4018			}
4019			if (tmp)
4020				free_extent_buffer(tmp);
4021			slot++;
4022		}
4023find_next_key:
4024		/*
4025		 * we didn't find a candidate key in this node, walk forward
4026		 * and find another one
4027		 */
4028		if (slot >= nritems) {
4029			path->slots[level] = slot;
4030			btrfs_set_path_blocking(path);
4031			sret = btrfs_find_next_key(root, path, min_key, level,
4032						  cache_only, min_trans);
4033			if (sret == 0) {
4034				btrfs_release_path(path);
4035				goto again;
4036			} else {
4037				goto out;
4038			}
4039		}
4040		/* save our key for returning back */
4041		btrfs_node_key_to_cpu(cur, &found_key, slot);
4042		path->slots[level] = slot;
4043		if (level == path->lowest_level) {
4044			ret = 0;
4045			unlock_up(path, level, 1);
4046			goto out;
4047		}
4048		btrfs_set_path_blocking(path);
4049		cur = read_node_slot(root, cur, slot);
4050		BUG_ON(!cur);
4051
4052		btrfs_tree_read_lock(cur);
4053
4054		path->locks[level - 1] = BTRFS_READ_LOCK;
4055		path->nodes[level - 1] = cur;
4056		unlock_up(path, level, 1);
4057		btrfs_clear_path_blocking(path, NULL, 0);
4058	}
4059out:
4060	if (ret == 0)
4061		memcpy(min_key, &found_key, sizeof(found_key));
4062	btrfs_set_path_blocking(path);
4063	return ret;
4064}
4065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4066/*
4067 * this is similar to btrfs_next_leaf, but does not try to preserve
4068 * and fixup the path.  It looks for and returns the next key in the
4069 * tree based on the current path and the cache_only and min_trans
4070 * parameters.
4071 *
4072 * 0 is returned if another key is found, < 0 if there are any errors
4073 * and 1 is returned if there are no higher keys in the tree
4074 *
4075 * path->keep_locks should be set to 1 on the search made before
4076 * calling this function.
4077 */
4078int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4079			struct btrfs_key *key, int level,
4080			int cache_only, u64 min_trans)
4081{
4082	int slot;
4083	struct extent_buffer *c;
4084
4085	WARN_ON(!path->keep_locks);
4086	while (level < BTRFS_MAX_LEVEL) {
4087		if (!path->nodes[level])
4088			return 1;
4089
4090		slot = path->slots[level] + 1;
4091		c = path->nodes[level];
4092next:
4093		if (slot >= btrfs_header_nritems(c)) {
4094			int ret;
4095			int orig_lowest;
4096			struct btrfs_key cur_key;
4097			if (level + 1 >= BTRFS_MAX_LEVEL ||
4098			    !path->nodes[level + 1])
4099				return 1;
4100
4101			if (path->locks[level + 1]) {
4102				level++;
4103				continue;
4104			}
4105
4106			slot = btrfs_header_nritems(c) - 1;
4107			if (level == 0)
4108				btrfs_item_key_to_cpu(c, &cur_key, slot);
4109			else
4110				btrfs_node_key_to_cpu(c, &cur_key, slot);
4111
4112			orig_lowest = path->lowest_level;
4113			btrfs_release_path(path);
4114			path->lowest_level = level;
4115			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4116						0, 0);
4117			path->lowest_level = orig_lowest;
4118			if (ret < 0)
4119				return ret;
4120
4121			c = path->nodes[level];
4122			slot = path->slots[level];
4123			if (ret == 0)
4124				slot++;
4125			goto next;
4126		}
4127
4128		if (level == 0)
4129			btrfs_item_key_to_cpu(c, key, slot);
4130		else {
4131			u64 blockptr = btrfs_node_blockptr(c, slot);
4132			u64 gen = btrfs_node_ptr_generation(c, slot);
4133
4134			if (cache_only) {
4135				struct extent_buffer *cur;
4136				cur = btrfs_find_tree_block(root, blockptr,
4137					    btrfs_level_size(root, level - 1));
4138				if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4139					slot++;
4140					if (cur)
4141						free_extent_buffer(cur);
4142					goto next;
4143				}
4144				free_extent_buffer(cur);
4145			}
4146			if (gen < min_trans) {
4147				slot++;
4148				goto next;
4149			}
4150			btrfs_node_key_to_cpu(c, key, slot);
4151		}
4152		return 0;
4153	}
4154	return 1;
4155}
4156
4157/*
4158 * search the tree again to find a leaf with greater keys
4159 * returns 0 if it found something or 1 if there are no greater leaves.
4160 * returns < 0 on io errors.
4161 */
4162int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4163{
 
 
 
 
 
 
4164	int slot;
4165	int level;
4166	struct extent_buffer *c;
4167	struct extent_buffer *next;
4168	struct btrfs_key key;
4169	u32 nritems;
4170	int ret;
4171	int old_spinning = path->leave_spinning;
4172	int next_rw_lock = 0;
4173
4174	nritems = btrfs_header_nritems(path->nodes[0]);
4175	if (nritems == 0)
4176		return 1;
4177
4178	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4179again:
4180	level = 1;
4181	next = NULL;
4182	next_rw_lock = 0;
4183	btrfs_release_path(path);
4184
4185	path->keep_locks = 1;
4186	path->leave_spinning = 1;
4187
4188	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 
 
 
4189	path->keep_locks = 0;
4190
4191	if (ret < 0)
4192		return ret;
4193
4194	nritems = btrfs_header_nritems(path->nodes[0]);
4195	/*
4196	 * by releasing the path above we dropped all our locks.  A balance
4197	 * could have added more items next to the key that used to be
4198	 * at the very end of the block.  So, check again here and
4199	 * advance the path if there are now more items available.
4200	 */
4201	if (nritems > 0 && path->slots[0] < nritems - 1) {
4202		if (ret == 0)
4203			path->slots[0]++;
4204		ret = 0;
4205		goto done;
4206	}
4207
4208	while (level < BTRFS_MAX_LEVEL) {
4209		if (!path->nodes[level]) {
4210			ret = 1;
4211			goto done;
4212		}
4213
4214		slot = path->slots[level] + 1;
4215		c = path->nodes[level];
4216		if (slot >= btrfs_header_nritems(c)) {
4217			level++;
4218			if (level == BTRFS_MAX_LEVEL) {
4219				ret = 1;
4220				goto done;
4221			}
4222			continue;
4223		}
4224
4225		if (next) {
4226			btrfs_tree_unlock_rw(next, next_rw_lock);
4227			free_extent_buffer(next);
4228		}
4229
4230		next = c;
4231		next_rw_lock = path->locks[level];
4232		ret = read_block_for_search(NULL, root, path, &next, level,
4233					    slot, &key);
4234		if (ret == -EAGAIN)
4235			goto again;
4236
4237		if (ret < 0) {
4238			btrfs_release_path(path);
4239			goto done;
4240		}
4241
4242		if (!path->skip_locking) {
4243			ret = btrfs_try_tree_read_lock(next);
 
 
 
 
 
 
 
 
 
 
 
 
 
4244			if (!ret) {
4245				btrfs_set_path_blocking(path);
4246				btrfs_tree_read_lock(next);
4247				btrfs_clear_path_blocking(path, next,
4248							  BTRFS_READ_LOCK);
4249			}
4250			next_rw_lock = BTRFS_READ_LOCK;
4251		}
4252		break;
4253	}
4254	path->slots[level] = slot;
4255	while (1) {
4256		level--;
4257		c = path->nodes[level];
4258		if (path->locks[level])
4259			btrfs_tree_unlock_rw(c, path->locks[level]);
4260
4261		free_extent_buffer(c);
4262		path->nodes[level] = next;
4263		path->slots[level] = 0;
4264		if (!path->skip_locking)
4265			path->locks[level] = next_rw_lock;
4266		if (!level)
4267			break;
4268
4269		ret = read_block_for_search(NULL, root, path, &next, level,
4270					    0, &key);
4271		if (ret == -EAGAIN)
4272			goto again;
4273
4274		if (ret < 0) {
4275			btrfs_release_path(path);
4276			goto done;
4277		}
4278
4279		if (!path->skip_locking) {
4280			ret = btrfs_try_tree_read_lock(next);
4281			if (!ret) {
4282				btrfs_set_path_blocking(path);
4283				btrfs_tree_read_lock(next);
4284				btrfs_clear_path_blocking(path, next,
4285							  BTRFS_READ_LOCK);
4286			}
4287			next_rw_lock = BTRFS_READ_LOCK;
4288		}
4289	}
4290	ret = 0;
4291done:
4292	unlock_up(path, 0, 1);
4293	path->leave_spinning = old_spinning;
4294	if (!old_spinning)
4295		btrfs_set_path_blocking(path);
4296
4297	return ret;
4298}
4299
4300/*
4301 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4302 * searching until it gets past min_objectid or finds an item of 'type'
4303 *
4304 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4305 */
4306int btrfs_previous_item(struct btrfs_root *root,
4307			struct btrfs_path *path, u64 min_objectid,
4308			int type)
4309{
4310	struct btrfs_key found_key;
4311	struct extent_buffer *leaf;
4312	u32 nritems;
4313	int ret;
4314
4315	while (1) {
4316		if (path->slots[0] == 0) {
4317			btrfs_set_path_blocking(path);
4318			ret = btrfs_prev_leaf(root, path);
4319			if (ret != 0)
4320				return ret;
4321		} else {
4322			path->slots[0]--;
4323		}
4324		leaf = path->nodes[0];
4325		nritems = btrfs_header_nritems(leaf);
4326		if (nritems == 0)
4327			return 1;
4328		if (path->slots[0] == nritems)
4329			path->slots[0]--;
4330
4331		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4332		if (found_key.objectid < min_objectid)
4333			break;
4334		if (found_key.type == type)
4335			return 0;
4336		if (found_key.objectid == min_objectid &&
4337		    found_key.type < type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4338			break;
4339	}
4340	return 1;
4341}
v3.15
   1/*
   2 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/rbtree.h>
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "print-tree.h"
  26#include "locking.h"
  27
  28static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  29		      *root, struct btrfs_path *path, int level);
  30static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  31		      *root, struct btrfs_key *ins_key,
  32		      struct btrfs_path *path, int data_size, int extend);
  33static int push_node_left(struct btrfs_trans_handle *trans,
  34			  struct btrfs_root *root, struct extent_buffer *dst,
  35			  struct extent_buffer *src, int empty);
  36static int balance_node_right(struct btrfs_trans_handle *trans,
  37			      struct btrfs_root *root,
  38			      struct extent_buffer *dst_buf,
  39			      struct extent_buffer *src_buf);
  40static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  41		    int level, int slot);
  42static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
  43				 struct extent_buffer *eb);
  44
  45struct btrfs_path *btrfs_alloc_path(void)
  46{
  47	struct btrfs_path *path;
  48	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  49	return path;
  50}
  51
  52/*
  53 * set all locked nodes in the path to blocking locks.  This should
  54 * be done before scheduling
  55 */
  56noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  57{
  58	int i;
  59	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  60		if (!p->nodes[i] || !p->locks[i])
  61			continue;
  62		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  63		if (p->locks[i] == BTRFS_READ_LOCK)
  64			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  65		else if (p->locks[i] == BTRFS_WRITE_LOCK)
  66			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  67	}
  68}
  69
  70/*
  71 * reset all the locked nodes in the patch to spinning locks.
  72 *
  73 * held is used to keep lockdep happy, when lockdep is enabled
  74 * we set held to a blocking lock before we go around and
  75 * retake all the spinlocks in the path.  You can safely use NULL
  76 * for held
  77 */
  78noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  79					struct extent_buffer *held, int held_rw)
  80{
  81	int i;
  82
  83#ifdef CONFIG_DEBUG_LOCK_ALLOC
  84	/* lockdep really cares that we take all of these spinlocks
  85	 * in the right order.  If any of the locks in the path are not
  86	 * currently blocking, it is going to complain.  So, make really
  87	 * really sure by forcing the path to blocking before we clear
  88	 * the path blocking.
  89	 */
  90	if (held) {
  91		btrfs_set_lock_blocking_rw(held, held_rw);
  92		if (held_rw == BTRFS_WRITE_LOCK)
  93			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  94		else if (held_rw == BTRFS_READ_LOCK)
  95			held_rw = BTRFS_READ_LOCK_BLOCKING;
  96	}
  97	btrfs_set_path_blocking(p);
  98#endif
  99
 100	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
 101		if (p->nodes[i] && p->locks[i]) {
 102			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
 103			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
 104				p->locks[i] = BTRFS_WRITE_LOCK;
 105			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
 106				p->locks[i] = BTRFS_READ_LOCK;
 107		}
 108	}
 109
 110#ifdef CONFIG_DEBUG_LOCK_ALLOC
 111	if (held)
 112		btrfs_clear_lock_blocking_rw(held, held_rw);
 113#endif
 114}
 115
 116/* this also releases the path */
 117void btrfs_free_path(struct btrfs_path *p)
 118{
 119	if (!p)
 120		return;
 121	btrfs_release_path(p);
 122	kmem_cache_free(btrfs_path_cachep, p);
 123}
 124
 125/*
 126 * path release drops references on the extent buffers in the path
 127 * and it drops any locks held by this path
 128 *
 129 * It is safe to call this on paths that no locks or extent buffers held.
 130 */
 131noinline void btrfs_release_path(struct btrfs_path *p)
 132{
 133	int i;
 134
 135	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 136		p->slots[i] = 0;
 137		if (!p->nodes[i])
 138			continue;
 139		if (p->locks[i]) {
 140			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 141			p->locks[i] = 0;
 142		}
 143		free_extent_buffer(p->nodes[i]);
 144		p->nodes[i] = NULL;
 145	}
 146}
 147
 148/*
 149 * safely gets a reference on the root node of a tree.  A lock
 150 * is not taken, so a concurrent writer may put a different node
 151 * at the root of the tree.  See btrfs_lock_root_node for the
 152 * looping required.
 153 *
 154 * The extent buffer returned by this has a reference taken, so
 155 * it won't disappear.  It may stop being the root of the tree
 156 * at any time because there are no locks held.
 157 */
 158struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 159{
 160	struct extent_buffer *eb;
 161
 162	while (1) {
 163		rcu_read_lock();
 164		eb = rcu_dereference(root->node);
 165
 166		/*
 167		 * RCU really hurts here, we could free up the root node because
 168		 * it was cow'ed but we may not get the new root node yet so do
 169		 * the inc_not_zero dance and if it doesn't work then
 170		 * synchronize_rcu and try again.
 171		 */
 172		if (atomic_inc_not_zero(&eb->refs)) {
 173			rcu_read_unlock();
 174			break;
 175		}
 176		rcu_read_unlock();
 177		synchronize_rcu();
 178	}
 179	return eb;
 180}
 181
 182/* loop around taking references on and locking the root node of the
 183 * tree until you end up with a lock on the root.  A locked buffer
 184 * is returned, with a reference held.
 185 */
 186struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 187{
 188	struct extent_buffer *eb;
 189
 190	while (1) {
 191		eb = btrfs_root_node(root);
 192		btrfs_tree_lock(eb);
 193		if (eb == root->node)
 194			break;
 195		btrfs_tree_unlock(eb);
 196		free_extent_buffer(eb);
 197	}
 198	return eb;
 199}
 200
 201/* loop around taking references on and locking the root node of the
 202 * tree until you end up with a lock on the root.  A locked buffer
 203 * is returned, with a reference held.
 204 */
 205static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 206{
 207	struct extent_buffer *eb;
 208
 209	while (1) {
 210		eb = btrfs_root_node(root);
 211		btrfs_tree_read_lock(eb);
 212		if (eb == root->node)
 213			break;
 214		btrfs_tree_read_unlock(eb);
 215		free_extent_buffer(eb);
 216	}
 217	return eb;
 218}
 219
 220/* cowonly root (everything not a reference counted cow subvolume), just get
 221 * put onto a simple dirty list.  transaction.c walks this to make sure they
 222 * get properly updated on disk.
 223 */
 224static void add_root_to_dirty_list(struct btrfs_root *root)
 225{
 226	spin_lock(&root->fs_info->trans_lock);
 227	if (root->track_dirty && list_empty(&root->dirty_list)) {
 228		list_add(&root->dirty_list,
 229			 &root->fs_info->dirty_cowonly_roots);
 230	}
 231	spin_unlock(&root->fs_info->trans_lock);
 232}
 233
 234/*
 235 * used by snapshot creation to make a copy of a root for a tree with
 236 * a given objectid.  The buffer with the new root node is returned in
 237 * cow_ret, and this func returns zero on success or a negative error code.
 238 */
 239int btrfs_copy_root(struct btrfs_trans_handle *trans,
 240		      struct btrfs_root *root,
 241		      struct extent_buffer *buf,
 242		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 243{
 244	struct extent_buffer *cow;
 245	int ret = 0;
 246	int level;
 247	struct btrfs_disk_key disk_key;
 248
 249	WARN_ON(root->ref_cows && trans->transid !=
 250		root->fs_info->running_transaction->transid);
 251	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
 252
 253	level = btrfs_header_level(buf);
 254	if (level == 0)
 255		btrfs_item_key(buf, &disk_key, 0);
 256	else
 257		btrfs_node_key(buf, &disk_key, 0);
 258
 259	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
 260				     new_root_objectid, &disk_key, level,
 261				     buf->start, 0);
 262	if (IS_ERR(cow))
 263		return PTR_ERR(cow);
 264
 265	copy_extent_buffer(cow, buf, 0, 0, cow->len);
 266	btrfs_set_header_bytenr(cow, cow->start);
 267	btrfs_set_header_generation(cow, trans->transid);
 268	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 269	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 270				     BTRFS_HEADER_FLAG_RELOC);
 271	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 272		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 273	else
 274		btrfs_set_header_owner(cow, new_root_objectid);
 275
 276	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
 
 277			    BTRFS_FSID_SIZE);
 278
 279	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 280	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 281		ret = btrfs_inc_ref(trans, root, cow, 1, 1);
 282	else
 283		ret = btrfs_inc_ref(trans, root, cow, 0, 1);
 284
 285	if (ret)
 286		return ret;
 287
 288	btrfs_mark_buffer_dirty(cow);
 289	*cow_ret = cow;
 290	return 0;
 291}
 292
 293enum mod_log_op {
 294	MOD_LOG_KEY_REPLACE,
 295	MOD_LOG_KEY_ADD,
 296	MOD_LOG_KEY_REMOVE,
 297	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 298	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 299	MOD_LOG_MOVE_KEYS,
 300	MOD_LOG_ROOT_REPLACE,
 301};
 302
 303struct tree_mod_move {
 304	int dst_slot;
 305	int nr_items;
 306};
 307
 308struct tree_mod_root {
 309	u64 logical;
 310	u8 level;
 311};
 312
 313struct tree_mod_elem {
 314	struct rb_node node;
 315	u64 index;		/* shifted logical */
 316	u64 seq;
 317	enum mod_log_op op;
 318
 319	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 320	int slot;
 321
 322	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 323	u64 generation;
 324
 325	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 326	struct btrfs_disk_key key;
 327	u64 blockptr;
 328
 329	/* this is used for op == MOD_LOG_MOVE_KEYS */
 330	struct tree_mod_move move;
 331
 332	/* this is used for op == MOD_LOG_ROOT_REPLACE */
 333	struct tree_mod_root old_root;
 334};
 335
 336static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
 337{
 338	read_lock(&fs_info->tree_mod_log_lock);
 339}
 340
 341static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
 342{
 343	read_unlock(&fs_info->tree_mod_log_lock);
 344}
 345
 346static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
 347{
 348	write_lock(&fs_info->tree_mod_log_lock);
 349}
 350
 351static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
 352{
 353	write_unlock(&fs_info->tree_mod_log_lock);
 354}
 355
 356/*
 357 * Increment the upper half of tree_mod_seq, set lower half zero.
 358 *
 359 * Must be called with fs_info->tree_mod_seq_lock held.
 360 */
 361static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
 362{
 363	u64 seq = atomic64_read(&fs_info->tree_mod_seq);
 364	seq &= 0xffffffff00000000ull;
 365	seq += 1ull << 32;
 366	atomic64_set(&fs_info->tree_mod_seq, seq);
 367	return seq;
 368}
 369
 370/*
 371 * Increment the lower half of tree_mod_seq.
 372 *
 373 * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
 374 * are generated should not technically require a spin lock here. (Rationale:
 375 * incrementing the minor while incrementing the major seq number is between its
 376 * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
 377 * just returns a unique sequence number as usual.) We have decided to leave
 378 * that requirement in here and rethink it once we notice it really imposes a
 379 * problem on some workload.
 380 */
 381static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
 382{
 383	return atomic64_inc_return(&fs_info->tree_mod_seq);
 384}
 385
 386/*
 387 * return the last minor in the previous major tree_mod_seq number
 388 */
 389u64 btrfs_tree_mod_seq_prev(u64 seq)
 390{
 391	return (seq & 0xffffffff00000000ull) - 1ull;
 392}
 393
 394/*
 395 * This adds a new blocker to the tree mod log's blocker list if the @elem
 396 * passed does not already have a sequence number set. So when a caller expects
 397 * to record tree modifications, it should ensure to set elem->seq to zero
 398 * before calling btrfs_get_tree_mod_seq.
 399 * Returns a fresh, unused tree log modification sequence number, even if no new
 400 * blocker was added.
 401 */
 402u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 403			   struct seq_list *elem)
 404{
 405	u64 seq;
 406
 407	tree_mod_log_write_lock(fs_info);
 408	spin_lock(&fs_info->tree_mod_seq_lock);
 409	if (!elem->seq) {
 410		elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
 411		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 412	}
 413	seq = btrfs_inc_tree_mod_seq_minor(fs_info);
 414	spin_unlock(&fs_info->tree_mod_seq_lock);
 415	tree_mod_log_write_unlock(fs_info);
 416
 417	return seq;
 418}
 419
 420void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 421			    struct seq_list *elem)
 422{
 423	struct rb_root *tm_root;
 424	struct rb_node *node;
 425	struct rb_node *next;
 426	struct seq_list *cur_elem;
 427	struct tree_mod_elem *tm;
 428	u64 min_seq = (u64)-1;
 429	u64 seq_putting = elem->seq;
 430
 431	if (!seq_putting)
 432		return;
 433
 434	spin_lock(&fs_info->tree_mod_seq_lock);
 435	list_del(&elem->list);
 436	elem->seq = 0;
 437
 438	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 439		if (cur_elem->seq < min_seq) {
 440			if (seq_putting > cur_elem->seq) {
 441				/*
 442				 * blocker with lower sequence number exists, we
 443				 * cannot remove anything from the log
 444				 */
 445				spin_unlock(&fs_info->tree_mod_seq_lock);
 446				return;
 447			}
 448			min_seq = cur_elem->seq;
 449		}
 450	}
 451	spin_unlock(&fs_info->tree_mod_seq_lock);
 452
 453	/*
 454	 * anything that's lower than the lowest existing (read: blocked)
 455	 * sequence number can be removed from the tree.
 456	 */
 457	tree_mod_log_write_lock(fs_info);
 458	tm_root = &fs_info->tree_mod_log;
 459	for (node = rb_first(tm_root); node; node = next) {
 460		next = rb_next(node);
 461		tm = container_of(node, struct tree_mod_elem, node);
 462		if (tm->seq > min_seq)
 463			continue;
 464		rb_erase(node, tm_root);
 465		kfree(tm);
 466	}
 467	tree_mod_log_write_unlock(fs_info);
 468}
 469
 470/*
 471 * key order of the log:
 472 *       index -> sequence
 473 *
 474 * the index is the shifted logical of the *new* root node for root replace
 475 * operations, or the shifted logical of the affected block for all other
 476 * operations.
 477 *
 478 * Note: must be called with write lock (tree_mod_log_write_lock).
 479 */
 480static noinline int
 481__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 482{
 483	struct rb_root *tm_root;
 484	struct rb_node **new;
 485	struct rb_node *parent = NULL;
 486	struct tree_mod_elem *cur;
 487
 488	BUG_ON(!tm);
 489
 490	spin_lock(&fs_info->tree_mod_seq_lock);
 491	tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
 492	spin_unlock(&fs_info->tree_mod_seq_lock);
 493
 494	tm_root = &fs_info->tree_mod_log;
 495	new = &tm_root->rb_node;
 496	while (*new) {
 497		cur = container_of(*new, struct tree_mod_elem, node);
 498		parent = *new;
 499		if (cur->index < tm->index)
 500			new = &((*new)->rb_left);
 501		else if (cur->index > tm->index)
 502			new = &((*new)->rb_right);
 503		else if (cur->seq < tm->seq)
 504			new = &((*new)->rb_left);
 505		else if (cur->seq > tm->seq)
 506			new = &((*new)->rb_right);
 507		else
 508			return -EEXIST;
 509	}
 510
 511	rb_link_node(&tm->node, parent, new);
 512	rb_insert_color(&tm->node, tm_root);
 513	return 0;
 514}
 515
 516/*
 517 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 518 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 519 * this until all tree mod log insertions are recorded in the rb tree and then
 520 * call tree_mod_log_write_unlock() to release.
 521 */
 522static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 523				    struct extent_buffer *eb) {
 524	smp_mb();
 525	if (list_empty(&(fs_info)->tree_mod_seq_list))
 526		return 1;
 527	if (eb && btrfs_header_level(eb) == 0)
 528		return 1;
 529
 530	tree_mod_log_write_lock(fs_info);
 531	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 532		tree_mod_log_write_unlock(fs_info);
 533		return 1;
 534	}
 535
 536	return 0;
 537}
 538
 539/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 540static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 541				    struct extent_buffer *eb)
 542{
 543	smp_mb();
 544	if (list_empty(&(fs_info)->tree_mod_seq_list))
 545		return 0;
 546	if (eb && btrfs_header_level(eb) == 0)
 547		return 0;
 548
 549	return 1;
 550}
 551
 552static struct tree_mod_elem *
 553alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 554		    enum mod_log_op op, gfp_t flags)
 555{
 556	struct tree_mod_elem *tm;
 557
 558	tm = kzalloc(sizeof(*tm), flags);
 559	if (!tm)
 560		return NULL;
 561
 562	tm->index = eb->start >> PAGE_CACHE_SHIFT;
 563	if (op != MOD_LOG_KEY_ADD) {
 564		btrfs_node_key(eb, &tm->key, slot);
 565		tm->blockptr = btrfs_node_blockptr(eb, slot);
 566	}
 567	tm->op = op;
 568	tm->slot = slot;
 569	tm->generation = btrfs_node_ptr_generation(eb, slot);
 570	RB_CLEAR_NODE(&tm->node);
 571
 572	return tm;
 573}
 574
 575static noinline int
 576tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
 577			struct extent_buffer *eb, int slot,
 578			enum mod_log_op op, gfp_t flags)
 579{
 580	struct tree_mod_elem *tm;
 581	int ret;
 582
 583	if (!tree_mod_need_log(fs_info, eb))
 584		return 0;
 585
 586	tm = alloc_tree_mod_elem(eb, slot, op, flags);
 587	if (!tm)
 588		return -ENOMEM;
 589
 590	if (tree_mod_dont_log(fs_info, eb)) {
 591		kfree(tm);
 592		return 0;
 593	}
 594
 595	ret = __tree_mod_log_insert(fs_info, tm);
 596	tree_mod_log_write_unlock(fs_info);
 597	if (ret)
 598		kfree(tm);
 599
 600	return ret;
 601}
 602
 603static noinline int
 604tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
 605			 struct extent_buffer *eb, int dst_slot, int src_slot,
 606			 int nr_items, gfp_t flags)
 607{
 608	struct tree_mod_elem *tm = NULL;
 609	struct tree_mod_elem **tm_list = NULL;
 610	int ret = 0;
 611	int i;
 612	int locked = 0;
 613
 614	if (!tree_mod_need_log(fs_info, eb))
 615		return 0;
 616
 617	tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags);
 618	if (!tm_list)
 619		return -ENOMEM;
 620
 621	tm = kzalloc(sizeof(*tm), flags);
 622	if (!tm) {
 623		ret = -ENOMEM;
 624		goto free_tms;
 625	}
 626
 627	tm->index = eb->start >> PAGE_CACHE_SHIFT;
 628	tm->slot = src_slot;
 629	tm->move.dst_slot = dst_slot;
 630	tm->move.nr_items = nr_items;
 631	tm->op = MOD_LOG_MOVE_KEYS;
 632
 633	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 634		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 635		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
 636		if (!tm_list[i]) {
 637			ret = -ENOMEM;
 638			goto free_tms;
 639		}
 640	}
 641
 642	if (tree_mod_dont_log(fs_info, eb))
 643		goto free_tms;
 644	locked = 1;
 645
 646	/*
 647	 * When we override something during the move, we log these removals.
 648	 * This can only happen when we move towards the beginning of the
 649	 * buffer, i.e. dst_slot < src_slot.
 650	 */
 651	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 652		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 653		if (ret)
 654			goto free_tms;
 655	}
 656
 657	ret = __tree_mod_log_insert(fs_info, tm);
 658	if (ret)
 659		goto free_tms;
 660	tree_mod_log_write_unlock(fs_info);
 661	kfree(tm_list);
 662
 663	return 0;
 664free_tms:
 665	for (i = 0; i < nr_items; i++) {
 666		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 667			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 668		kfree(tm_list[i]);
 669	}
 670	if (locked)
 671		tree_mod_log_write_unlock(fs_info);
 672	kfree(tm_list);
 673	kfree(tm);
 674
 675	return ret;
 676}
 677
 678static inline int
 679__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 680		       struct tree_mod_elem **tm_list,
 681		       int nritems)
 682{
 683	int i, j;
 684	int ret;
 685
 686	for (i = nritems - 1; i >= 0; i--) {
 687		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 688		if (ret) {
 689			for (j = nritems - 1; j > i; j--)
 690				rb_erase(&tm_list[j]->node,
 691					 &fs_info->tree_mod_log);
 692			return ret;
 693		}
 694	}
 695
 696	return 0;
 697}
 698
 699static noinline int
 700tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
 701			 struct extent_buffer *old_root,
 702			 struct extent_buffer *new_root, gfp_t flags,
 703			 int log_removal)
 704{
 705	struct tree_mod_elem *tm = NULL;
 706	struct tree_mod_elem **tm_list = NULL;
 707	int nritems = 0;
 708	int ret = 0;
 709	int i;
 710
 711	if (!tree_mod_need_log(fs_info, NULL))
 712		return 0;
 713
 714	if (log_removal && btrfs_header_level(old_root) > 0) {
 715		nritems = btrfs_header_nritems(old_root);
 716		tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
 717				  flags);
 718		if (!tm_list) {
 719			ret = -ENOMEM;
 720			goto free_tms;
 721		}
 722		for (i = 0; i < nritems; i++) {
 723			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 724			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
 725			if (!tm_list[i]) {
 726				ret = -ENOMEM;
 727				goto free_tms;
 728			}
 729		}
 730	}
 731
 732	tm = kzalloc(sizeof(*tm), flags);
 733	if (!tm) {
 734		ret = -ENOMEM;
 735		goto free_tms;
 736	}
 737
 738	tm->index = new_root->start >> PAGE_CACHE_SHIFT;
 739	tm->old_root.logical = old_root->start;
 740	tm->old_root.level = btrfs_header_level(old_root);
 741	tm->generation = btrfs_header_generation(old_root);
 742	tm->op = MOD_LOG_ROOT_REPLACE;
 743
 744	if (tree_mod_dont_log(fs_info, NULL))
 745		goto free_tms;
 746
 747	if (tm_list)
 748		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 749	if (!ret)
 750		ret = __tree_mod_log_insert(fs_info, tm);
 751
 752	tree_mod_log_write_unlock(fs_info);
 753	if (ret)
 754		goto free_tms;
 755	kfree(tm_list);
 756
 757	return ret;
 758
 759free_tms:
 760	if (tm_list) {
 761		for (i = 0; i < nritems; i++)
 762			kfree(tm_list[i]);
 763		kfree(tm_list);
 764	}
 765	kfree(tm);
 766
 767	return ret;
 768}
 769
 770static struct tree_mod_elem *
 771__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 772		      int smallest)
 773{
 774	struct rb_root *tm_root;
 775	struct rb_node *node;
 776	struct tree_mod_elem *cur = NULL;
 777	struct tree_mod_elem *found = NULL;
 778	u64 index = start >> PAGE_CACHE_SHIFT;
 779
 780	tree_mod_log_read_lock(fs_info);
 781	tm_root = &fs_info->tree_mod_log;
 782	node = tm_root->rb_node;
 783	while (node) {
 784		cur = container_of(node, struct tree_mod_elem, node);
 785		if (cur->index < index) {
 786			node = node->rb_left;
 787		} else if (cur->index > index) {
 788			node = node->rb_right;
 789		} else if (cur->seq < min_seq) {
 790			node = node->rb_left;
 791		} else if (!smallest) {
 792			/* we want the node with the highest seq */
 793			if (found)
 794				BUG_ON(found->seq > cur->seq);
 795			found = cur;
 796			node = node->rb_left;
 797		} else if (cur->seq > min_seq) {
 798			/* we want the node with the smallest seq */
 799			if (found)
 800				BUG_ON(found->seq < cur->seq);
 801			found = cur;
 802			node = node->rb_right;
 803		} else {
 804			found = cur;
 805			break;
 806		}
 807	}
 808	tree_mod_log_read_unlock(fs_info);
 809
 810	return found;
 811}
 812
 813/*
 814 * this returns the element from the log with the smallest time sequence
 815 * value that's in the log (the oldest log item). any element with a time
 816 * sequence lower than min_seq will be ignored.
 817 */
 818static struct tree_mod_elem *
 819tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 820			   u64 min_seq)
 821{
 822	return __tree_mod_log_search(fs_info, start, min_seq, 1);
 823}
 824
 825/*
 826 * this returns the element from the log with the largest time sequence
 827 * value that's in the log (the most recent log item). any element with
 828 * a time sequence lower than min_seq will be ignored.
 829 */
 830static struct tree_mod_elem *
 831tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 832{
 833	return __tree_mod_log_search(fs_info, start, min_seq, 0);
 834}
 835
 836static noinline int
 837tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 838		     struct extent_buffer *src, unsigned long dst_offset,
 839		     unsigned long src_offset, int nr_items)
 840{
 841	int ret = 0;
 842	struct tree_mod_elem **tm_list = NULL;
 843	struct tree_mod_elem **tm_list_add, **tm_list_rem;
 844	int i;
 845	int locked = 0;
 846
 847	if (!tree_mod_need_log(fs_info, NULL))
 848		return 0;
 849
 850	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 851		return 0;
 852
 853	tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *),
 854			  GFP_NOFS);
 855	if (!tm_list)
 856		return -ENOMEM;
 857
 858	tm_list_add = tm_list;
 859	tm_list_rem = tm_list + nr_items;
 860	for (i = 0; i < nr_items; i++) {
 861		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 862		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 863		if (!tm_list_rem[i]) {
 864			ret = -ENOMEM;
 865			goto free_tms;
 866		}
 867
 868		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 869		    MOD_LOG_KEY_ADD, GFP_NOFS);
 870		if (!tm_list_add[i]) {
 871			ret = -ENOMEM;
 872			goto free_tms;
 873		}
 874	}
 875
 876	if (tree_mod_dont_log(fs_info, NULL))
 877		goto free_tms;
 878	locked = 1;
 879
 880	for (i = 0; i < nr_items; i++) {
 881		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 882		if (ret)
 883			goto free_tms;
 884		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 885		if (ret)
 886			goto free_tms;
 887	}
 888
 889	tree_mod_log_write_unlock(fs_info);
 890	kfree(tm_list);
 891
 892	return 0;
 893
 894free_tms:
 895	for (i = 0; i < nr_items * 2; i++) {
 896		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 897			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 898		kfree(tm_list[i]);
 899	}
 900	if (locked)
 901		tree_mod_log_write_unlock(fs_info);
 902	kfree(tm_list);
 903
 904	return ret;
 905}
 906
 907static inline void
 908tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 909		     int dst_offset, int src_offset, int nr_items)
 910{
 911	int ret;
 912	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
 913				       nr_items, GFP_NOFS);
 914	BUG_ON(ret < 0);
 915}
 916
 917static noinline void
 918tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
 919			  struct extent_buffer *eb, int slot, int atomic)
 920{
 921	int ret;
 922
 923	ret = tree_mod_log_insert_key(fs_info, eb, slot,
 924					MOD_LOG_KEY_REPLACE,
 925					atomic ? GFP_ATOMIC : GFP_NOFS);
 926	BUG_ON(ret < 0);
 927}
 928
 929static noinline int
 930tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
 931{
 932	struct tree_mod_elem **tm_list = NULL;
 933	int nritems = 0;
 934	int i;
 935	int ret = 0;
 936
 937	if (btrfs_header_level(eb) == 0)
 938		return 0;
 939
 940	if (!tree_mod_need_log(fs_info, NULL))
 941		return 0;
 942
 943	nritems = btrfs_header_nritems(eb);
 944	tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
 945			  GFP_NOFS);
 946	if (!tm_list)
 947		return -ENOMEM;
 948
 949	for (i = 0; i < nritems; i++) {
 950		tm_list[i] = alloc_tree_mod_elem(eb, i,
 951		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 952		if (!tm_list[i]) {
 953			ret = -ENOMEM;
 954			goto free_tms;
 955		}
 956	}
 957
 958	if (tree_mod_dont_log(fs_info, eb))
 959		goto free_tms;
 960
 961	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 962	tree_mod_log_write_unlock(fs_info);
 963	if (ret)
 964		goto free_tms;
 965	kfree(tm_list);
 966
 967	return 0;
 968
 969free_tms:
 970	for (i = 0; i < nritems; i++)
 971		kfree(tm_list[i]);
 972	kfree(tm_list);
 973
 974	return ret;
 975}
 976
 977static noinline void
 978tree_mod_log_set_root_pointer(struct btrfs_root *root,
 979			      struct extent_buffer *new_root_node,
 980			      int log_removal)
 981{
 982	int ret;
 983	ret = tree_mod_log_insert_root(root->fs_info, root->node,
 984				       new_root_node, GFP_NOFS, log_removal);
 985	BUG_ON(ret < 0);
 986}
 987
 988/*
 989 * check if the tree block can be shared by multiple trees
 990 */
 991int btrfs_block_can_be_shared(struct btrfs_root *root,
 992			      struct extent_buffer *buf)
 993{
 994	/*
 995	 * Tree blocks not in refernece counted trees and tree roots
 996	 * are never shared. If a block was allocated after the last
 997	 * snapshot and the block was not allocated by tree relocation,
 998	 * we know the block is not shared.
 999	 */
1000	if (root->ref_cows &&
1001	    buf != root->node && buf != root->commit_root &&
1002	    (btrfs_header_generation(buf) <=
1003	     btrfs_root_last_snapshot(&root->root_item) ||
1004	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
1005		return 1;
1006#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1007	if (root->ref_cows &&
1008	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1009		return 1;
1010#endif
1011	return 0;
1012}
1013
1014static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
1015				       struct btrfs_root *root,
1016				       struct extent_buffer *buf,
1017				       struct extent_buffer *cow,
1018				       int *last_ref)
1019{
1020	u64 refs;
1021	u64 owner;
1022	u64 flags;
1023	u64 new_flags = 0;
1024	int ret;
1025
1026	/*
1027	 * Backrefs update rules:
1028	 *
1029	 * Always use full backrefs for extent pointers in tree block
1030	 * allocated by tree relocation.
1031	 *
1032	 * If a shared tree block is no longer referenced by its owner
1033	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
1034	 * use full backrefs for extent pointers in tree block.
1035	 *
1036	 * If a tree block is been relocating
1037	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1038	 * use full backrefs for extent pointers in tree block.
1039	 * The reason for this is some operations (such as drop tree)
1040	 * are only allowed for blocks use full backrefs.
1041	 */
1042
1043	if (btrfs_block_can_be_shared(root, buf)) {
1044		ret = btrfs_lookup_extent_info(trans, root, buf->start,
1045					       btrfs_header_level(buf), 1,
1046					       &refs, &flags);
1047		if (ret)
1048			return ret;
1049		if (refs == 0) {
1050			ret = -EROFS;
1051			btrfs_std_error(root->fs_info, ret);
1052			return ret;
1053		}
1054	} else {
1055		refs = 1;
1056		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1057		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1058			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1059		else
1060			flags = 0;
1061	}
1062
1063	owner = btrfs_header_owner(buf);
1064	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1065	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1066
1067	if (refs > 1) {
1068		if ((owner == root->root_key.objectid ||
1069		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1070		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1071			ret = btrfs_inc_ref(trans, root, buf, 1, 1);
1072			BUG_ON(ret); /* -ENOMEM */
1073
1074			if (root->root_key.objectid ==
1075			    BTRFS_TREE_RELOC_OBJECTID) {
1076				ret = btrfs_dec_ref(trans, root, buf, 0, 1);
1077				BUG_ON(ret); /* -ENOMEM */
1078				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1079				BUG_ON(ret); /* -ENOMEM */
1080			}
1081			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1082		} else {
1083
1084			if (root->root_key.objectid ==
1085			    BTRFS_TREE_RELOC_OBJECTID)
1086				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1087			else
1088				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
1089			BUG_ON(ret); /* -ENOMEM */
1090		}
1091		if (new_flags != 0) {
1092			int level = btrfs_header_level(buf);
1093
1094			ret = btrfs_set_disk_extent_flags(trans, root,
1095							  buf->start,
1096							  buf->len,
1097							  new_flags, level, 0);
1098			if (ret)
1099				return ret;
1100		}
1101	} else {
1102		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1103			if (root->root_key.objectid ==
1104			    BTRFS_TREE_RELOC_OBJECTID)
1105				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1106			else
1107				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
1108			BUG_ON(ret); /* -ENOMEM */
1109			ret = btrfs_dec_ref(trans, root, buf, 1, 1);
1110			BUG_ON(ret); /* -ENOMEM */
1111		}
1112		clean_tree_block(trans, root, buf);
1113		*last_ref = 1;
1114	}
1115	return 0;
1116}
1117
1118/*
1119 * does the dirty work in cow of a single block.  The parent block (if
1120 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1121 * dirty and returned locked.  If you modify the block it needs to be marked
1122 * dirty again.
1123 *
1124 * search_start -- an allocation hint for the new block
1125 *
1126 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1127 * bytes the allocator should try to find free next to the block it returns.
1128 * This is just a hint and may be ignored by the allocator.
1129 */
1130static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1131			     struct btrfs_root *root,
1132			     struct extent_buffer *buf,
1133			     struct extent_buffer *parent, int parent_slot,
1134			     struct extent_buffer **cow_ret,
1135			     u64 search_start, u64 empty_size)
1136{
1137	struct btrfs_disk_key disk_key;
1138	struct extent_buffer *cow;
1139	int level, ret;
1140	int last_ref = 0;
1141	int unlock_orig = 0;
1142	u64 parent_start;
1143
1144	if (*cow_ret == buf)
1145		unlock_orig = 1;
1146
1147	btrfs_assert_tree_locked(buf);
1148
1149	WARN_ON(root->ref_cows && trans->transid !=
1150		root->fs_info->running_transaction->transid);
1151	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
1152
1153	level = btrfs_header_level(buf);
1154
1155	if (level == 0)
1156		btrfs_item_key(buf, &disk_key, 0);
1157	else
1158		btrfs_node_key(buf, &disk_key, 0);
1159
1160	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1161		if (parent)
1162			parent_start = parent->start;
1163		else
1164			parent_start = 0;
1165	} else
1166		parent_start = 0;
1167
1168	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1169				     root->root_key.objectid, &disk_key,
1170				     level, search_start, empty_size);
1171	if (IS_ERR(cow))
1172		return PTR_ERR(cow);
1173
1174	/* cow is set to blocking by btrfs_init_new_buffer */
1175
1176	copy_extent_buffer(cow, buf, 0, 0, cow->len);
1177	btrfs_set_header_bytenr(cow, cow->start);
1178	btrfs_set_header_generation(cow, trans->transid);
1179	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1180	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1181				     BTRFS_HEADER_FLAG_RELOC);
1182	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1183		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1184	else
1185		btrfs_set_header_owner(cow, root->root_key.objectid);
1186
1187	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
 
1188			    BTRFS_FSID_SIZE);
1189
1190	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1191	if (ret) {
1192		btrfs_abort_transaction(trans, root, ret);
1193		return ret;
1194	}
1195
1196	if (root->ref_cows) {
1197		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1198		if (ret)
1199			return ret;
1200	}
1201
1202	if (buf == root->node) {
1203		WARN_ON(parent && parent != buf);
1204		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1205		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1206			parent_start = buf->start;
1207		else
1208			parent_start = 0;
1209
1210		extent_buffer_get(cow);
1211		tree_mod_log_set_root_pointer(root, cow, 1);
1212		rcu_assign_pointer(root->node, cow);
1213
1214		btrfs_free_tree_block(trans, root, buf, parent_start,
1215				      last_ref);
1216		free_extent_buffer(buf);
1217		add_root_to_dirty_list(root);
1218	} else {
1219		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1220			parent_start = parent->start;
1221		else
1222			parent_start = 0;
1223
1224		WARN_ON(trans->transid != btrfs_header_generation(parent));
1225		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1226					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1227		btrfs_set_node_blockptr(parent, parent_slot,
1228					cow->start);
1229		btrfs_set_node_ptr_generation(parent, parent_slot,
1230					      trans->transid);
1231		btrfs_mark_buffer_dirty(parent);
1232		if (last_ref) {
1233			ret = tree_mod_log_free_eb(root->fs_info, buf);
1234			if (ret) {
1235				btrfs_abort_transaction(trans, root, ret);
1236				return ret;
1237			}
1238		}
1239		btrfs_free_tree_block(trans, root, buf, parent_start,
1240				      last_ref);
1241	}
1242	if (unlock_orig)
1243		btrfs_tree_unlock(buf);
1244	free_extent_buffer_stale(buf);
1245	btrfs_mark_buffer_dirty(cow);
1246	*cow_ret = cow;
1247	return 0;
1248}
1249
1250/*
1251 * returns the logical address of the oldest predecessor of the given root.
1252 * entries older than time_seq are ignored.
1253 */
1254static struct tree_mod_elem *
1255__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1256			   struct extent_buffer *eb_root, u64 time_seq)
1257{
1258	struct tree_mod_elem *tm;
1259	struct tree_mod_elem *found = NULL;
1260	u64 root_logical = eb_root->start;
1261	int looped = 0;
1262
1263	if (!time_seq)
1264		return NULL;
1265
1266	/*
1267	 * the very last operation that's logged for a root is the replacement
1268	 * operation (if it is replaced at all). this has the index of the *new*
1269	 * root, making it the very first operation that's logged for this root.
1270	 */
1271	while (1) {
1272		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1273						time_seq);
1274		if (!looped && !tm)
1275			return NULL;
1276		/*
1277		 * if there are no tree operation for the oldest root, we simply
1278		 * return it. this should only happen if that (old) root is at
1279		 * level 0.
1280		 */
1281		if (!tm)
1282			break;
1283
1284		/*
1285		 * if there's an operation that's not a root replacement, we
1286		 * found the oldest version of our root. normally, we'll find a
1287		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1288		 */
1289		if (tm->op != MOD_LOG_ROOT_REPLACE)
1290			break;
1291
1292		found = tm;
1293		root_logical = tm->old_root.logical;
1294		looped = 1;
1295	}
1296
1297	/* if there's no old root to return, return what we found instead */
1298	if (!found)
1299		found = tm;
1300
1301	return found;
1302}
1303
1304/*
1305 * tm is a pointer to the first operation to rewind within eb. then, all
1306 * previous operations will be rewinded (until we reach something older than
1307 * time_seq).
1308 */
1309static void
1310__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1311		      u64 time_seq, struct tree_mod_elem *first_tm)
1312{
1313	u32 n;
1314	struct rb_node *next;
1315	struct tree_mod_elem *tm = first_tm;
1316	unsigned long o_dst;
1317	unsigned long o_src;
1318	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1319
1320	n = btrfs_header_nritems(eb);
1321	tree_mod_log_read_lock(fs_info);
1322	while (tm && tm->seq >= time_seq) {
1323		/*
1324		 * all the operations are recorded with the operator used for
1325		 * the modification. as we're going backwards, we do the
1326		 * opposite of each operation here.
1327		 */
1328		switch (tm->op) {
1329		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1330			BUG_ON(tm->slot < n);
1331			/* Fallthrough */
1332		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1333		case MOD_LOG_KEY_REMOVE:
1334			btrfs_set_node_key(eb, &tm->key, tm->slot);
1335			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1336			btrfs_set_node_ptr_generation(eb, tm->slot,
1337						      tm->generation);
1338			n++;
1339			break;
1340		case MOD_LOG_KEY_REPLACE:
1341			BUG_ON(tm->slot >= n);
1342			btrfs_set_node_key(eb, &tm->key, tm->slot);
1343			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1344			btrfs_set_node_ptr_generation(eb, tm->slot,
1345						      tm->generation);
1346			break;
1347		case MOD_LOG_KEY_ADD:
1348			/* if a move operation is needed it's in the log */
1349			n--;
1350			break;
1351		case MOD_LOG_MOVE_KEYS:
1352			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1353			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1354			memmove_extent_buffer(eb, o_dst, o_src,
1355					      tm->move.nr_items * p_size);
1356			break;
1357		case MOD_LOG_ROOT_REPLACE:
1358			/*
1359			 * this operation is special. for roots, this must be
1360			 * handled explicitly before rewinding.
1361			 * for non-roots, this operation may exist if the node
1362			 * was a root: root A -> child B; then A gets empty and
1363			 * B is promoted to the new root. in the mod log, we'll
1364			 * have a root-replace operation for B, a tree block
1365			 * that is no root. we simply ignore that operation.
1366			 */
1367			break;
1368		}
1369		next = rb_next(&tm->node);
1370		if (!next)
1371			break;
1372		tm = container_of(next, struct tree_mod_elem, node);
1373		if (tm->index != first_tm->index)
1374			break;
1375	}
1376	tree_mod_log_read_unlock(fs_info);
1377	btrfs_set_header_nritems(eb, n);
1378}
1379
1380/*
1381 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1382 * is returned. If rewind operations happen, a fresh buffer is returned. The
1383 * returned buffer is always read-locked. If the returned buffer is not the
1384 * input buffer, the lock on the input buffer is released and the input buffer
1385 * is freed (its refcount is decremented).
1386 */
1387static struct extent_buffer *
1388tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1389		    struct extent_buffer *eb, u64 time_seq)
1390{
1391	struct extent_buffer *eb_rewin;
1392	struct tree_mod_elem *tm;
1393
1394	if (!time_seq)
1395		return eb;
1396
1397	if (btrfs_header_level(eb) == 0)
1398		return eb;
1399
1400	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1401	if (!tm)
1402		return eb;
1403
1404	btrfs_set_path_blocking(path);
1405	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1406
1407	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1408		BUG_ON(tm->slot != 0);
1409		eb_rewin = alloc_dummy_extent_buffer(eb->start,
1410						fs_info->tree_root->nodesize);
1411		if (!eb_rewin) {
1412			btrfs_tree_read_unlock_blocking(eb);
1413			free_extent_buffer(eb);
1414			return NULL;
1415		}
1416		btrfs_set_header_bytenr(eb_rewin, eb->start);
1417		btrfs_set_header_backref_rev(eb_rewin,
1418					     btrfs_header_backref_rev(eb));
1419		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1420		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1421	} else {
1422		eb_rewin = btrfs_clone_extent_buffer(eb);
1423		if (!eb_rewin) {
1424			btrfs_tree_read_unlock_blocking(eb);
1425			free_extent_buffer(eb);
1426			return NULL;
1427		}
1428	}
1429
1430	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1431	btrfs_tree_read_unlock_blocking(eb);
1432	free_extent_buffer(eb);
1433
1434	extent_buffer_get(eb_rewin);
1435	btrfs_tree_read_lock(eb_rewin);
1436	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1437	WARN_ON(btrfs_header_nritems(eb_rewin) >
1438		BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1439
1440	return eb_rewin;
1441}
1442
1443/*
1444 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1445 * value. If there are no changes, the current root->root_node is returned. If
1446 * anything changed in between, there's a fresh buffer allocated on which the
1447 * rewind operations are done. In any case, the returned buffer is read locked.
1448 * Returns NULL on error (with no locks held).
1449 */
1450static inline struct extent_buffer *
1451get_old_root(struct btrfs_root *root, u64 time_seq)
1452{
1453	struct tree_mod_elem *tm;
1454	struct extent_buffer *eb = NULL;
1455	struct extent_buffer *eb_root;
1456	struct extent_buffer *old;
1457	struct tree_mod_root *old_root = NULL;
1458	u64 old_generation = 0;
1459	u64 logical;
1460	u32 blocksize;
1461
1462	eb_root = btrfs_read_lock_root_node(root);
1463	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1464	if (!tm)
1465		return eb_root;
1466
1467	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1468		old_root = &tm->old_root;
1469		old_generation = tm->generation;
1470		logical = old_root->logical;
1471	} else {
1472		logical = eb_root->start;
1473	}
1474
1475	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1476	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1477		btrfs_tree_read_unlock(eb_root);
1478		free_extent_buffer(eb_root);
1479		blocksize = btrfs_level_size(root, old_root->level);
1480		old = read_tree_block(root, logical, blocksize, 0);
1481		if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1482			free_extent_buffer(old);
1483			btrfs_warn(root->fs_info,
1484				"failed to read tree block %llu from get_old_root", logical);
1485		} else {
1486			eb = btrfs_clone_extent_buffer(old);
1487			free_extent_buffer(old);
1488		}
1489	} else if (old_root) {
1490		btrfs_tree_read_unlock(eb_root);
1491		free_extent_buffer(eb_root);
1492		eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1493	} else {
1494		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1495		eb = btrfs_clone_extent_buffer(eb_root);
1496		btrfs_tree_read_unlock_blocking(eb_root);
1497		free_extent_buffer(eb_root);
1498	}
1499
1500	if (!eb)
1501		return NULL;
1502	extent_buffer_get(eb);
1503	btrfs_tree_read_lock(eb);
1504	if (old_root) {
1505		btrfs_set_header_bytenr(eb, eb->start);
1506		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1507		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1508		btrfs_set_header_level(eb, old_root->level);
1509		btrfs_set_header_generation(eb, old_generation);
1510	}
1511	if (tm)
1512		__tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1513	else
1514		WARN_ON(btrfs_header_level(eb) != 0);
1515	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1516
1517	return eb;
1518}
1519
1520int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1521{
1522	struct tree_mod_elem *tm;
1523	int level;
1524	struct extent_buffer *eb_root = btrfs_root_node(root);
1525
1526	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1527	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1528		level = tm->old_root.level;
1529	} else {
1530		level = btrfs_header_level(eb_root);
1531	}
1532	free_extent_buffer(eb_root);
1533
1534	return level;
1535}
1536
1537static inline int should_cow_block(struct btrfs_trans_handle *trans,
1538				   struct btrfs_root *root,
1539				   struct extent_buffer *buf)
1540{
1541	/* ensure we can see the force_cow */
1542	smp_rmb();
1543
1544	/*
1545	 * We do not need to cow a block if
1546	 * 1) this block is not created or changed in this transaction;
1547	 * 2) this block does not belong to TREE_RELOC tree;
1548	 * 3) the root is not forced COW.
1549	 *
1550	 * What is forced COW:
1551	 *    when we create snapshot during commiting the transaction,
1552	 *    after we've finished coping src root, we must COW the shared
1553	 *    block to ensure the metadata consistency.
1554	 */
1555	if (btrfs_header_generation(buf) == trans->transid &&
1556	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1557	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1558	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1559	    !root->force_cow)
1560		return 0;
1561	return 1;
1562}
1563
1564/*
1565 * cows a single block, see __btrfs_cow_block for the real work.
1566 * This version of it has extra checks so that a block isn't cow'd more than
1567 * once per transaction, as long as it hasn't been written yet
1568 */
1569noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1570		    struct btrfs_root *root, struct extent_buffer *buf,
1571		    struct extent_buffer *parent, int parent_slot,
1572		    struct extent_buffer **cow_ret)
1573{
1574	u64 search_start;
1575	int ret;
1576
1577	if (trans->transaction != root->fs_info->running_transaction)
1578		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1579		       trans->transid,
 
1580		       root->fs_info->running_transaction->transid);
1581
1582	if (trans->transid != root->fs_info->generation)
1583		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1584		       trans->transid, root->fs_info->generation);
 
 
 
 
1585
1586	if (!should_cow_block(trans, root, buf)) {
1587		*cow_ret = buf;
1588		return 0;
1589	}
1590
1591	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1592
1593	if (parent)
1594		btrfs_set_lock_blocking(parent);
1595	btrfs_set_lock_blocking(buf);
1596
1597	ret = __btrfs_cow_block(trans, root, buf, parent,
1598				 parent_slot, cow_ret, search_start, 0);
1599
1600	trace_btrfs_cow_block(root, buf, *cow_ret);
1601
1602	return ret;
1603}
1604
1605/*
1606 * helper function for defrag to decide if two blocks pointed to by a
1607 * node are actually close by
1608 */
1609static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1610{
1611	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1612		return 1;
1613	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1614		return 1;
1615	return 0;
1616}
1617
1618/*
1619 * compare two keys in a memcmp fashion
1620 */
1621static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1622{
1623	struct btrfs_key k1;
1624
1625	btrfs_disk_key_to_cpu(&k1, disk);
1626
1627	return btrfs_comp_cpu_keys(&k1, k2);
1628}
1629
1630/*
1631 * same as comp_keys only with two btrfs_key's
1632 */
1633int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1634{
1635	if (k1->objectid > k2->objectid)
1636		return 1;
1637	if (k1->objectid < k2->objectid)
1638		return -1;
1639	if (k1->type > k2->type)
1640		return 1;
1641	if (k1->type < k2->type)
1642		return -1;
1643	if (k1->offset > k2->offset)
1644		return 1;
1645	if (k1->offset < k2->offset)
1646		return -1;
1647	return 0;
1648}
1649
1650/*
1651 * this is used by the defrag code to go through all the
1652 * leaves pointed to by a node and reallocate them so that
1653 * disk order is close to key order
1654 */
1655int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1656		       struct btrfs_root *root, struct extent_buffer *parent,
1657		       int start_slot, u64 *last_ret,
1658		       struct btrfs_key *progress)
1659{
1660	struct extent_buffer *cur;
1661	u64 blocknr;
1662	u64 gen;
1663	u64 search_start = *last_ret;
1664	u64 last_block = 0;
1665	u64 other;
1666	u32 parent_nritems;
1667	int end_slot;
1668	int i;
1669	int err = 0;
1670	int parent_level;
1671	int uptodate;
1672	u32 blocksize;
1673	int progress_passed = 0;
1674	struct btrfs_disk_key disk_key;
1675
1676	parent_level = btrfs_header_level(parent);
 
 
1677
1678	WARN_ON(trans->transaction != root->fs_info->running_transaction);
1679	WARN_ON(trans->transid != root->fs_info->generation);
 
 
1680
1681	parent_nritems = btrfs_header_nritems(parent);
1682	blocksize = btrfs_level_size(root, parent_level - 1);
1683	end_slot = parent_nritems;
1684
1685	if (parent_nritems == 1)
1686		return 0;
1687
1688	btrfs_set_lock_blocking(parent);
1689
1690	for (i = start_slot; i < end_slot; i++) {
1691		int close = 1;
1692
1693		btrfs_node_key(parent, &disk_key, i);
1694		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1695			continue;
1696
1697		progress_passed = 1;
1698		blocknr = btrfs_node_blockptr(parent, i);
1699		gen = btrfs_node_ptr_generation(parent, i);
1700		if (last_block == 0)
1701			last_block = blocknr;
1702
1703		if (i > 0) {
1704			other = btrfs_node_blockptr(parent, i - 1);
1705			close = close_blocks(blocknr, other, blocksize);
1706		}
1707		if (!close && i < end_slot - 2) {
1708			other = btrfs_node_blockptr(parent, i + 1);
1709			close = close_blocks(blocknr, other, blocksize);
1710		}
1711		if (close) {
1712			last_block = blocknr;
1713			continue;
1714		}
1715
1716		cur = btrfs_find_tree_block(root, blocknr, blocksize);
1717		if (cur)
1718			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1719		else
1720			uptodate = 0;
1721		if (!cur || !uptodate) {
 
 
 
 
1722			if (!cur) {
1723				cur = read_tree_block(root, blocknr,
1724							 blocksize, gen);
1725				if (!cur || !extent_buffer_uptodate(cur)) {
1726					free_extent_buffer(cur);
1727					return -EIO;
1728				}
1729			} else if (!uptodate) {
1730				err = btrfs_read_buffer(cur, gen);
1731				if (err) {
1732					free_extent_buffer(cur);
1733					return err;
1734				}
1735			}
1736		}
1737		if (search_start == 0)
1738			search_start = last_block;
1739
1740		btrfs_tree_lock(cur);
1741		btrfs_set_lock_blocking(cur);
1742		err = __btrfs_cow_block(trans, root, cur, parent, i,
1743					&cur, search_start,
1744					min(16 * blocksize,
1745					    (end_slot - i) * blocksize));
1746		if (err) {
1747			btrfs_tree_unlock(cur);
1748			free_extent_buffer(cur);
1749			break;
1750		}
1751		search_start = cur->start;
1752		last_block = cur->start;
1753		*last_ret = search_start;
1754		btrfs_tree_unlock(cur);
1755		free_extent_buffer(cur);
1756	}
1757	return err;
1758}
1759
1760/*
1761 * The leaf data grows from end-to-front in the node.
1762 * this returns the address of the start of the last item,
1763 * which is the stop of the leaf data stack
1764 */
1765static inline unsigned int leaf_data_end(struct btrfs_root *root,
1766					 struct extent_buffer *leaf)
1767{
1768	u32 nr = btrfs_header_nritems(leaf);
1769	if (nr == 0)
1770		return BTRFS_LEAF_DATA_SIZE(root);
1771	return btrfs_item_offset_nr(leaf, nr - 1);
1772}
1773
1774
1775/*
1776 * search for key in the extent_buffer.  The items start at offset p,
1777 * and they are item_size apart.  There are 'max' items in p.
1778 *
1779 * the slot in the array is returned via slot, and it points to
1780 * the place where you would insert key if it is not found in
1781 * the array.
1782 *
1783 * slot may point to max if the key is bigger than all of the keys
1784 */
1785static noinline int generic_bin_search(struct extent_buffer *eb,
1786				       unsigned long p,
1787				       int item_size, struct btrfs_key *key,
1788				       int max, int *slot)
1789{
1790	int low = 0;
1791	int high = max;
1792	int mid;
1793	int ret;
1794	struct btrfs_disk_key *tmp = NULL;
1795	struct btrfs_disk_key unaligned;
1796	unsigned long offset;
1797	char *kaddr = NULL;
1798	unsigned long map_start = 0;
1799	unsigned long map_len = 0;
1800	int err;
1801
1802	while (low < high) {
1803		mid = (low + high) / 2;
1804		offset = p + mid * item_size;
1805
1806		if (!kaddr || offset < map_start ||
1807		    (offset + sizeof(struct btrfs_disk_key)) >
1808		    map_start + map_len) {
1809
1810			err = map_private_extent_buffer(eb, offset,
1811						sizeof(struct btrfs_disk_key),
1812						&kaddr, &map_start, &map_len);
1813
1814			if (!err) {
1815				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1816							map_start);
1817			} else {
1818				read_extent_buffer(eb, &unaligned,
1819						   offset, sizeof(unaligned));
1820				tmp = &unaligned;
1821			}
1822
1823		} else {
1824			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1825							map_start);
1826		}
1827		ret = comp_keys(tmp, key);
1828
1829		if (ret < 0)
1830			low = mid + 1;
1831		else if (ret > 0)
1832			high = mid;
1833		else {
1834			*slot = mid;
1835			return 0;
1836		}
1837	}
1838	*slot = low;
1839	return 1;
1840}
1841
1842/*
1843 * simple bin_search frontend that does the right thing for
1844 * leaves vs nodes
1845 */
1846static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1847		      int level, int *slot)
1848{
1849	if (level == 0)
1850		return generic_bin_search(eb,
1851					  offsetof(struct btrfs_leaf, items),
1852					  sizeof(struct btrfs_item),
1853					  key, btrfs_header_nritems(eb),
1854					  slot);
1855	else
1856		return generic_bin_search(eb,
1857					  offsetof(struct btrfs_node, ptrs),
1858					  sizeof(struct btrfs_key_ptr),
1859					  key, btrfs_header_nritems(eb),
1860					  slot);
 
 
1861}
1862
1863int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1864		     int level, int *slot)
1865{
1866	return bin_search(eb, key, level, slot);
1867}
1868
1869static void root_add_used(struct btrfs_root *root, u32 size)
1870{
1871	spin_lock(&root->accounting_lock);
1872	btrfs_set_root_used(&root->root_item,
1873			    btrfs_root_used(&root->root_item) + size);
1874	spin_unlock(&root->accounting_lock);
1875}
1876
1877static void root_sub_used(struct btrfs_root *root, u32 size)
1878{
1879	spin_lock(&root->accounting_lock);
1880	btrfs_set_root_used(&root->root_item,
1881			    btrfs_root_used(&root->root_item) - size);
1882	spin_unlock(&root->accounting_lock);
1883}
1884
1885/* given a node and slot number, this reads the blocks it points to.  The
1886 * extent buffer is returned with a reference taken (but unlocked).
1887 * NULL is returned on error.
1888 */
1889static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1890				   struct extent_buffer *parent, int slot)
1891{
1892	int level = btrfs_header_level(parent);
1893	struct extent_buffer *eb;
1894
1895	if (slot < 0)
1896		return NULL;
1897	if (slot >= btrfs_header_nritems(parent))
1898		return NULL;
1899
1900	BUG_ON(level == 0);
1901
1902	eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1903			     btrfs_level_size(root, level - 1),
1904			     btrfs_node_ptr_generation(parent, slot));
1905	if (eb && !extent_buffer_uptodate(eb)) {
1906		free_extent_buffer(eb);
1907		eb = NULL;
1908	}
1909
1910	return eb;
1911}
1912
1913/*
1914 * node level balancing, used to make sure nodes are in proper order for
1915 * item deletion.  We balance from the top down, so we have to make sure
1916 * that a deletion won't leave an node completely empty later on.
1917 */
1918static noinline int balance_level(struct btrfs_trans_handle *trans,
1919			 struct btrfs_root *root,
1920			 struct btrfs_path *path, int level)
1921{
1922	struct extent_buffer *right = NULL;
1923	struct extent_buffer *mid;
1924	struct extent_buffer *left = NULL;
1925	struct extent_buffer *parent = NULL;
1926	int ret = 0;
1927	int wret;
1928	int pslot;
1929	int orig_slot = path->slots[level];
1930	u64 orig_ptr;
1931
1932	if (level == 0)
1933		return 0;
1934
1935	mid = path->nodes[level];
1936
1937	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1938		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1939	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1940
1941	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1942
1943	if (level < BTRFS_MAX_LEVEL - 1) {
1944		parent = path->nodes[level + 1];
1945		pslot = path->slots[level + 1];
1946	}
1947
1948	/*
1949	 * deal with the case where there is only one pointer in the root
1950	 * by promoting the node below to a root
1951	 */
1952	if (!parent) {
1953		struct extent_buffer *child;
1954
1955		if (btrfs_header_nritems(mid) != 1)
1956			return 0;
1957
1958		/* promote the child to a root */
1959		child = read_node_slot(root, mid, 0);
1960		if (!child) {
1961			ret = -EROFS;
1962			btrfs_std_error(root->fs_info, ret);
1963			goto enospc;
1964		}
1965
1966		btrfs_tree_lock(child);
1967		btrfs_set_lock_blocking(child);
1968		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1969		if (ret) {
1970			btrfs_tree_unlock(child);
1971			free_extent_buffer(child);
1972			goto enospc;
1973		}
1974
1975		tree_mod_log_set_root_pointer(root, child, 1);
1976		rcu_assign_pointer(root->node, child);
1977
1978		add_root_to_dirty_list(root);
1979		btrfs_tree_unlock(child);
1980
1981		path->locks[level] = 0;
1982		path->nodes[level] = NULL;
1983		clean_tree_block(trans, root, mid);
1984		btrfs_tree_unlock(mid);
1985		/* once for the path */
1986		free_extent_buffer(mid);
1987
1988		root_sub_used(root, mid->len);
1989		btrfs_free_tree_block(trans, root, mid, 0, 1);
1990		/* once for the root ptr */
1991		free_extent_buffer_stale(mid);
1992		return 0;
1993	}
1994	if (btrfs_header_nritems(mid) >
1995	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1996		return 0;
1997
 
 
1998	left = read_node_slot(root, parent, pslot - 1);
1999	if (left) {
2000		btrfs_tree_lock(left);
2001		btrfs_set_lock_blocking(left);
2002		wret = btrfs_cow_block(trans, root, left,
2003				       parent, pslot - 1, &left);
2004		if (wret) {
2005			ret = wret;
2006			goto enospc;
2007		}
2008	}
2009	right = read_node_slot(root, parent, pslot + 1);
2010	if (right) {
2011		btrfs_tree_lock(right);
2012		btrfs_set_lock_blocking(right);
2013		wret = btrfs_cow_block(trans, root, right,
2014				       parent, pslot + 1, &right);
2015		if (wret) {
2016			ret = wret;
2017			goto enospc;
2018		}
2019	}
2020
2021	/* first, try to make some room in the middle buffer */
2022	if (left) {
2023		orig_slot += btrfs_header_nritems(left);
2024		wret = push_node_left(trans, root, left, mid, 1);
2025		if (wret < 0)
2026			ret = wret;
 
2027	}
2028
2029	/*
2030	 * then try to empty the right most buffer into the middle
2031	 */
2032	if (right) {
2033		wret = push_node_left(trans, root, mid, right, 1);
2034		if (wret < 0 && wret != -ENOSPC)
2035			ret = wret;
2036		if (btrfs_header_nritems(right) == 0) {
2037			clean_tree_block(trans, root, right);
2038			btrfs_tree_unlock(right);
2039			del_ptr(root, path, level + 1, pslot + 1);
 
 
 
2040			root_sub_used(root, right->len);
2041			btrfs_free_tree_block(trans, root, right, 0, 1);
2042			free_extent_buffer_stale(right);
2043			right = NULL;
2044		} else {
2045			struct btrfs_disk_key right_key;
2046			btrfs_node_key(right, &right_key, 0);
2047			tree_mod_log_set_node_key(root->fs_info, parent,
2048						  pslot + 1, 0);
2049			btrfs_set_node_key(parent, &right_key, pslot + 1);
2050			btrfs_mark_buffer_dirty(parent);
2051		}
2052	}
2053	if (btrfs_header_nritems(mid) == 1) {
2054		/*
2055		 * we're not allowed to leave a node with one item in the
2056		 * tree during a delete.  A deletion from lower in the tree
2057		 * could try to delete the only pointer in this node.
2058		 * So, pull some keys from the left.
2059		 * There has to be a left pointer at this point because
2060		 * otherwise we would have pulled some pointers from the
2061		 * right
2062		 */
2063		if (!left) {
2064			ret = -EROFS;
2065			btrfs_std_error(root->fs_info, ret);
2066			goto enospc;
2067		}
2068		wret = balance_node_right(trans, root, mid, left);
2069		if (wret < 0) {
2070			ret = wret;
2071			goto enospc;
2072		}
2073		if (wret == 1) {
2074			wret = push_node_left(trans, root, left, mid, 1);
2075			if (wret < 0)
2076				ret = wret;
2077		}
2078		BUG_ON(wret == 1);
2079	}
2080	if (btrfs_header_nritems(mid) == 0) {
2081		clean_tree_block(trans, root, mid);
2082		btrfs_tree_unlock(mid);
2083		del_ptr(root, path, level + 1, pslot);
 
 
2084		root_sub_used(root, mid->len);
2085		btrfs_free_tree_block(trans, root, mid, 0, 1);
2086		free_extent_buffer_stale(mid);
2087		mid = NULL;
2088	} else {
2089		/* update the parent key to reflect our changes */
2090		struct btrfs_disk_key mid_key;
2091		btrfs_node_key(mid, &mid_key, 0);
2092		tree_mod_log_set_node_key(root->fs_info, parent,
2093					  pslot, 0);
2094		btrfs_set_node_key(parent, &mid_key, pslot);
2095		btrfs_mark_buffer_dirty(parent);
2096	}
2097
2098	/* update the path */
2099	if (left) {
2100		if (btrfs_header_nritems(left) > orig_slot) {
2101			extent_buffer_get(left);
2102			/* left was locked after cow */
2103			path->nodes[level] = left;
2104			path->slots[level + 1] -= 1;
2105			path->slots[level] = orig_slot;
2106			if (mid) {
2107				btrfs_tree_unlock(mid);
2108				free_extent_buffer(mid);
2109			}
2110		} else {
2111			orig_slot -= btrfs_header_nritems(left);
2112			path->slots[level] = orig_slot;
2113		}
2114	}
2115	/* double check we haven't messed things up */
2116	if (orig_ptr !=
2117	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2118		BUG();
2119enospc:
2120	if (right) {
2121		btrfs_tree_unlock(right);
2122		free_extent_buffer(right);
2123	}
2124	if (left) {
2125		if (path->nodes[level] != left)
2126			btrfs_tree_unlock(left);
2127		free_extent_buffer(left);
2128	}
2129	return ret;
2130}
2131
2132/* Node balancing for insertion.  Here we only split or push nodes around
2133 * when they are completely full.  This is also done top down, so we
2134 * have to be pessimistic.
2135 */
2136static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2137					  struct btrfs_root *root,
2138					  struct btrfs_path *path, int level)
2139{
2140	struct extent_buffer *right = NULL;
2141	struct extent_buffer *mid;
2142	struct extent_buffer *left = NULL;
2143	struct extent_buffer *parent = NULL;
2144	int ret = 0;
2145	int wret;
2146	int pslot;
2147	int orig_slot = path->slots[level];
2148
2149	if (level == 0)
2150		return 1;
2151
2152	mid = path->nodes[level];
2153	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2154
2155	if (level < BTRFS_MAX_LEVEL - 1) {
2156		parent = path->nodes[level + 1];
2157		pslot = path->slots[level + 1];
2158	}
2159
2160	if (!parent)
2161		return 1;
2162
2163	left = read_node_slot(root, parent, pslot - 1);
2164
2165	/* first, try to make some room in the middle buffer */
2166	if (left) {
2167		u32 left_nr;
2168
2169		btrfs_tree_lock(left);
2170		btrfs_set_lock_blocking(left);
2171
2172		left_nr = btrfs_header_nritems(left);
2173		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2174			wret = 1;
2175		} else {
2176			ret = btrfs_cow_block(trans, root, left, parent,
2177					      pslot - 1, &left);
2178			if (ret)
2179				wret = 1;
2180			else {
2181				wret = push_node_left(trans, root,
2182						      left, mid, 0);
2183			}
2184		}
2185		if (wret < 0)
2186			ret = wret;
2187		if (wret == 0) {
2188			struct btrfs_disk_key disk_key;
2189			orig_slot += left_nr;
2190			btrfs_node_key(mid, &disk_key, 0);
2191			tree_mod_log_set_node_key(root->fs_info, parent,
2192						  pslot, 0);
2193			btrfs_set_node_key(parent, &disk_key, pslot);
2194			btrfs_mark_buffer_dirty(parent);
2195			if (btrfs_header_nritems(left) > orig_slot) {
2196				path->nodes[level] = left;
2197				path->slots[level + 1] -= 1;
2198				path->slots[level] = orig_slot;
2199				btrfs_tree_unlock(mid);
2200				free_extent_buffer(mid);
2201			} else {
2202				orig_slot -=
2203					btrfs_header_nritems(left);
2204				path->slots[level] = orig_slot;
2205				btrfs_tree_unlock(left);
2206				free_extent_buffer(left);
2207			}
2208			return 0;
2209		}
2210		btrfs_tree_unlock(left);
2211		free_extent_buffer(left);
2212	}
2213	right = read_node_slot(root, parent, pslot + 1);
2214
2215	/*
2216	 * then try to empty the right most buffer into the middle
2217	 */
2218	if (right) {
2219		u32 right_nr;
2220
2221		btrfs_tree_lock(right);
2222		btrfs_set_lock_blocking(right);
2223
2224		right_nr = btrfs_header_nritems(right);
2225		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2226			wret = 1;
2227		} else {
2228			ret = btrfs_cow_block(trans, root, right,
2229					      parent, pslot + 1,
2230					      &right);
2231			if (ret)
2232				wret = 1;
2233			else {
2234				wret = balance_node_right(trans, root,
2235							  right, mid);
2236			}
2237		}
2238		if (wret < 0)
2239			ret = wret;
2240		if (wret == 0) {
2241			struct btrfs_disk_key disk_key;
2242
2243			btrfs_node_key(right, &disk_key, 0);
2244			tree_mod_log_set_node_key(root->fs_info, parent,
2245						  pslot + 1, 0);
2246			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2247			btrfs_mark_buffer_dirty(parent);
2248
2249			if (btrfs_header_nritems(mid) <= orig_slot) {
2250				path->nodes[level] = right;
2251				path->slots[level + 1] += 1;
2252				path->slots[level] = orig_slot -
2253					btrfs_header_nritems(mid);
2254				btrfs_tree_unlock(mid);
2255				free_extent_buffer(mid);
2256			} else {
2257				btrfs_tree_unlock(right);
2258				free_extent_buffer(right);
2259			}
2260			return 0;
2261		}
2262		btrfs_tree_unlock(right);
2263		free_extent_buffer(right);
2264	}
2265	return 1;
2266}
2267
2268/*
2269 * readahead one full node of leaves, finding things that are close
2270 * to the block in 'slot', and triggering ra on them.
2271 */
2272static void reada_for_search(struct btrfs_root *root,
2273			     struct btrfs_path *path,
2274			     int level, int slot, u64 objectid)
2275{
2276	struct extent_buffer *node;
2277	struct btrfs_disk_key disk_key;
2278	u32 nritems;
2279	u64 search;
2280	u64 target;
2281	u64 nread = 0;
2282	u64 gen;
2283	int direction = path->reada;
2284	struct extent_buffer *eb;
2285	u32 nr;
2286	u32 blocksize;
2287	u32 nscan = 0;
2288
2289	if (level != 1)
2290		return;
2291
2292	if (!path->nodes[level])
2293		return;
2294
2295	node = path->nodes[level];
2296
2297	search = btrfs_node_blockptr(node, slot);
2298	blocksize = btrfs_level_size(root, level - 1);
2299	eb = btrfs_find_tree_block(root, search, blocksize);
2300	if (eb) {
2301		free_extent_buffer(eb);
2302		return;
2303	}
2304
2305	target = search;
2306
2307	nritems = btrfs_header_nritems(node);
2308	nr = slot;
2309
2310	while (1) {
2311		if (direction < 0) {
2312			if (nr == 0)
2313				break;
2314			nr--;
2315		} else if (direction > 0) {
2316			nr++;
2317			if (nr >= nritems)
2318				break;
2319		}
2320		if (path->reada < 0 && objectid) {
2321			btrfs_node_key(node, &disk_key, nr);
2322			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2323				break;
2324		}
2325		search = btrfs_node_blockptr(node, nr);
2326		if ((search <= target && target - search <= 65536) ||
2327		    (search > target && search - target <= 65536)) {
2328			gen = btrfs_node_ptr_generation(node, nr);
2329			readahead_tree_block(root, search, blocksize, gen);
2330			nread += blocksize;
2331		}
2332		nscan++;
2333		if ((nread > 65536 || nscan > 32))
2334			break;
2335	}
2336}
2337
2338static noinline void reada_for_balance(struct btrfs_root *root,
2339				       struct btrfs_path *path, int level)
 
 
 
 
2340{
2341	int slot;
2342	int nritems;
2343	struct extent_buffer *parent;
2344	struct extent_buffer *eb;
2345	u64 gen;
2346	u64 block1 = 0;
2347	u64 block2 = 0;
 
2348	int blocksize;
2349
2350	parent = path->nodes[level + 1];
2351	if (!parent)
2352		return;
2353
2354	nritems = btrfs_header_nritems(parent);
2355	slot = path->slots[level + 1];
2356	blocksize = btrfs_level_size(root, level);
2357
2358	if (slot > 0) {
2359		block1 = btrfs_node_blockptr(parent, slot - 1);
2360		gen = btrfs_node_ptr_generation(parent, slot - 1);
2361		eb = btrfs_find_tree_block(root, block1, blocksize);
2362		/*
2363		 * if we get -eagain from btrfs_buffer_uptodate, we
2364		 * don't want to return eagain here.  That will loop
2365		 * forever
2366		 */
2367		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2368			block1 = 0;
2369		free_extent_buffer(eb);
2370	}
2371	if (slot + 1 < nritems) {
2372		block2 = btrfs_node_blockptr(parent, slot + 1);
2373		gen = btrfs_node_ptr_generation(parent, slot + 1);
2374		eb = btrfs_find_tree_block(root, block2, blocksize);
2375		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2376			block2 = 0;
2377		free_extent_buffer(eb);
2378	}
 
 
2379
2380	if (block1)
2381		readahead_tree_block(root, block1, blocksize, 0);
2382	if (block2)
2383		readahead_tree_block(root, block2, blocksize, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2384}
2385
2386
2387/*
2388 * when we walk down the tree, it is usually safe to unlock the higher layers
2389 * in the tree.  The exceptions are when our path goes through slot 0, because
2390 * operations on the tree might require changing key pointers higher up in the
2391 * tree.
2392 *
2393 * callers might also have set path->keep_locks, which tells this code to keep
2394 * the lock if the path points to the last slot in the block.  This is part of
2395 * walking through the tree, and selecting the next slot in the higher block.
2396 *
2397 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2398 * if lowest_unlock is 1, level 0 won't be unlocked
2399 */
2400static noinline void unlock_up(struct btrfs_path *path, int level,
2401			       int lowest_unlock, int min_write_lock_level,
2402			       int *write_lock_level)
2403{
2404	int i;
2405	int skip_level = level;
2406	int no_skips = 0;
2407	struct extent_buffer *t;
2408
2409	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2410		if (!path->nodes[i])
2411			break;
2412		if (!path->locks[i])
2413			break;
2414		if (!no_skips && path->slots[i] == 0) {
2415			skip_level = i + 1;
2416			continue;
2417		}
2418		if (!no_skips && path->keep_locks) {
2419			u32 nritems;
2420			t = path->nodes[i];
2421			nritems = btrfs_header_nritems(t);
2422			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2423				skip_level = i + 1;
2424				continue;
2425			}
2426		}
2427		if (skip_level < i && i >= lowest_unlock)
2428			no_skips = 1;
2429
2430		t = path->nodes[i];
2431		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2432			btrfs_tree_unlock_rw(t, path->locks[i]);
2433			path->locks[i] = 0;
2434			if (write_lock_level &&
2435			    i > min_write_lock_level &&
2436			    i <= *write_lock_level) {
2437				*write_lock_level = i - 1;
2438			}
2439		}
2440	}
2441}
2442
2443/*
2444 * This releases any locks held in the path starting at level and
2445 * going all the way up to the root.
2446 *
2447 * btrfs_search_slot will keep the lock held on higher nodes in a few
2448 * corner cases, such as COW of the block at slot zero in the node.  This
2449 * ignores those rules, and it should only be called when there are no
2450 * more updates to be done higher up in the tree.
2451 */
2452noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2453{
2454	int i;
2455
2456	if (path->keep_locks)
2457		return;
2458
2459	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2460		if (!path->nodes[i])
2461			continue;
2462		if (!path->locks[i])
2463			continue;
2464		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2465		path->locks[i] = 0;
2466	}
2467}
2468
2469/*
2470 * helper function for btrfs_search_slot.  The goal is to find a block
2471 * in cache without setting the path to blocking.  If we find the block
2472 * we return zero and the path is unchanged.
2473 *
2474 * If we can't find the block, we set the path blocking and do some
2475 * reada.  -EAGAIN is returned and the search must be repeated.
2476 */
2477static int
2478read_block_for_search(struct btrfs_trans_handle *trans,
2479		       struct btrfs_root *root, struct btrfs_path *p,
2480		       struct extent_buffer **eb_ret, int level, int slot,
2481		       struct btrfs_key *key, u64 time_seq)
2482{
2483	u64 blocknr;
2484	u64 gen;
2485	u32 blocksize;
2486	struct extent_buffer *b = *eb_ret;
2487	struct extent_buffer *tmp;
2488	int ret;
2489
2490	blocknr = btrfs_node_blockptr(b, slot);
2491	gen = btrfs_node_ptr_generation(b, slot);
2492	blocksize = btrfs_level_size(root, level - 1);
2493
2494	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2495	if (tmp) {
2496		/* first we do an atomic uptodate check */
2497		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2498			*eb_ret = tmp;
2499			return 0;
2500		}
 
 
 
 
 
 
 
 
 
 
 
 
 
2501
2502		/* the pages were up to date, but we failed
2503		 * the generation number check.  Do a full
2504		 * read for the generation number that is correct.
2505		 * We must do this without dropping locks so
2506		 * we can trust our generation number
2507		 */
2508		btrfs_set_path_blocking(p);
2509
2510		/* now we're allowed to do a blocking uptodate check */
2511		ret = btrfs_read_buffer(tmp, gen);
2512		if (!ret) {
2513			*eb_ret = tmp;
2514			return 0;
2515		}
2516		free_extent_buffer(tmp);
2517		btrfs_release_path(p);
2518		return -EIO;
2519	}
2520
2521	/*
2522	 * reduce lock contention at high levels
2523	 * of the btree by dropping locks before
2524	 * we read.  Don't release the lock on the current
2525	 * level because we need to walk this node to figure
2526	 * out which blocks to read.
2527	 */
2528	btrfs_unlock_up_safe(p, level + 1);
2529	btrfs_set_path_blocking(p);
2530
2531	free_extent_buffer(tmp);
2532	if (p->reada)
2533		reada_for_search(root, p, level, slot, key->objectid);
2534
2535	btrfs_release_path(p);
2536
2537	ret = -EAGAIN;
2538	tmp = read_tree_block(root, blocknr, blocksize, 0);
2539	if (tmp) {
2540		/*
2541		 * If the read above didn't mark this buffer up to date,
2542		 * it will never end up being up to date.  Set ret to EIO now
2543		 * and give up so that our caller doesn't loop forever
2544		 * on our EAGAINs.
2545		 */
2546		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2547			ret = -EIO;
2548		free_extent_buffer(tmp);
2549	}
2550	return ret;
2551}
2552
2553/*
2554 * helper function for btrfs_search_slot.  This does all of the checks
2555 * for node-level blocks and does any balancing required based on
2556 * the ins_len.
2557 *
2558 * If no extra work was required, zero is returned.  If we had to
2559 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2560 * start over
2561 */
2562static int
2563setup_nodes_for_search(struct btrfs_trans_handle *trans,
2564		       struct btrfs_root *root, struct btrfs_path *p,
2565		       struct extent_buffer *b, int level, int ins_len,
2566		       int *write_lock_level)
2567{
2568	int ret;
2569	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2570	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2571		int sret;
2572
2573		if (*write_lock_level < level + 1) {
2574			*write_lock_level = level + 1;
2575			btrfs_release_path(p);
2576			goto again;
2577		}
2578
 
 
 
 
2579		btrfs_set_path_blocking(p);
2580		reada_for_balance(root, p, level);
2581		sret = split_node(trans, root, p, level);
2582		btrfs_clear_path_blocking(p, NULL, 0);
2583
2584		BUG_ON(sret > 0);
2585		if (sret) {
2586			ret = sret;
2587			goto done;
2588		}
2589		b = p->nodes[level];
2590	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2591		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2592		int sret;
2593
2594		if (*write_lock_level < level + 1) {
2595			*write_lock_level = level + 1;
2596			btrfs_release_path(p);
2597			goto again;
2598		}
2599
 
 
 
 
2600		btrfs_set_path_blocking(p);
2601		reada_for_balance(root, p, level);
2602		sret = balance_level(trans, root, p, level);
2603		btrfs_clear_path_blocking(p, NULL, 0);
2604
2605		if (sret) {
2606			ret = sret;
2607			goto done;
2608		}
2609		b = p->nodes[level];
2610		if (!b) {
2611			btrfs_release_path(p);
2612			goto again;
2613		}
2614		BUG_ON(btrfs_header_nritems(b) == 1);
2615	}
2616	return 0;
2617
2618again:
2619	ret = -EAGAIN;
2620done:
2621	return ret;
2622}
2623
2624static void key_search_validate(struct extent_buffer *b,
2625				struct btrfs_key *key,
2626				int level)
2627{
2628#ifdef CONFIG_BTRFS_ASSERT
2629	struct btrfs_disk_key disk_key;
2630
2631	btrfs_cpu_key_to_disk(&disk_key, key);
2632
2633	if (level == 0)
2634		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2635		    offsetof(struct btrfs_leaf, items[0].key),
2636		    sizeof(disk_key)));
2637	else
2638		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2639		    offsetof(struct btrfs_node, ptrs[0].key),
2640		    sizeof(disk_key)));
2641#endif
2642}
2643
2644static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2645		      int level, int *prev_cmp, int *slot)
2646{
2647	if (*prev_cmp != 0) {
2648		*prev_cmp = bin_search(b, key, level, slot);
2649		return *prev_cmp;
2650	}
2651
2652	key_search_validate(b, key, level);
2653	*slot = 0;
2654
2655	return 0;
2656}
2657
2658int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
2659		u64 iobjectid, u64 ioff, u8 key_type,
2660		struct btrfs_key *found_key)
2661{
2662	int ret;
2663	struct btrfs_key key;
2664	struct extent_buffer *eb;
2665	struct btrfs_path *path;
2666
2667	key.type = key_type;
2668	key.objectid = iobjectid;
2669	key.offset = ioff;
2670
2671	if (found_path == NULL) {
2672		path = btrfs_alloc_path();
2673		if (!path)
2674			return -ENOMEM;
2675	} else
2676		path = found_path;
2677
2678	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2679	if ((ret < 0) || (found_key == NULL)) {
2680		if (path != found_path)
2681			btrfs_free_path(path);
2682		return ret;
2683	}
2684
2685	eb = path->nodes[0];
2686	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2687		ret = btrfs_next_leaf(fs_root, path);
2688		if (ret)
2689			return ret;
2690		eb = path->nodes[0];
2691	}
2692
2693	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2694	if (found_key->type != key.type ||
2695			found_key->objectid != key.objectid)
2696		return 1;
2697
2698	return 0;
2699}
2700
2701/*
2702 * look for key in the tree.  path is filled in with nodes along the way
2703 * if key is found, we return zero and you can find the item in the leaf
2704 * level of the path (level 0)
2705 *
2706 * If the key isn't found, the path points to the slot where it should
2707 * be inserted, and 1 is returned.  If there are other errors during the
2708 * search a negative error number is returned.
2709 *
2710 * if ins_len > 0, nodes and leaves will be split as we walk down the
2711 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2712 * possible)
2713 */
2714int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2715		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2716		      ins_len, int cow)
2717{
2718	struct extent_buffer *b;
2719	int slot;
2720	int ret;
2721	int err;
2722	int level;
2723	int lowest_unlock = 1;
2724	int root_lock;
2725	/* everything at write_lock_level or lower must be write locked */
2726	int write_lock_level = 0;
2727	u8 lowest_level = 0;
2728	int min_write_lock_level;
2729	int prev_cmp;
2730
2731	lowest_level = p->lowest_level;
2732	WARN_ON(lowest_level && ins_len > 0);
2733	WARN_ON(p->nodes[0] != NULL);
2734	BUG_ON(!cow && ins_len);
2735
2736	if (ins_len < 0) {
2737		lowest_unlock = 2;
2738
2739		/* when we are removing items, we might have to go up to level
2740		 * two as we update tree pointers  Make sure we keep write
2741		 * for those levels as well
2742		 */
2743		write_lock_level = 2;
2744	} else if (ins_len > 0) {
2745		/*
2746		 * for inserting items, make sure we have a write lock on
2747		 * level 1 so we can update keys
2748		 */
2749		write_lock_level = 1;
2750	}
2751
2752	if (!cow)
2753		write_lock_level = -1;
2754
2755	if (cow && (p->keep_locks || p->lowest_level))
2756		write_lock_level = BTRFS_MAX_LEVEL;
2757
2758	min_write_lock_level = write_lock_level;
2759
2760again:
2761	prev_cmp = -1;
2762	/*
2763	 * we try very hard to do read locks on the root
2764	 */
2765	root_lock = BTRFS_READ_LOCK;
2766	level = 0;
2767	if (p->search_commit_root) {
2768		/*
2769		 * the commit roots are read only
2770		 * so we always do read locks
2771		 */
2772		if (p->need_commit_sem)
2773			down_read(&root->fs_info->commit_root_sem);
2774		b = root->commit_root;
2775		extent_buffer_get(b);
2776		level = btrfs_header_level(b);
2777		if (p->need_commit_sem)
2778			up_read(&root->fs_info->commit_root_sem);
2779		if (!p->skip_locking)
2780			btrfs_tree_read_lock(b);
2781	} else {
2782		if (p->skip_locking) {
2783			b = btrfs_root_node(root);
2784			level = btrfs_header_level(b);
2785		} else {
2786			/* we don't know the level of the root node
2787			 * until we actually have it read locked
2788			 */
2789			b = btrfs_read_lock_root_node(root);
2790			level = btrfs_header_level(b);
2791			if (level <= write_lock_level) {
2792				/* whoops, must trade for write lock */
2793				btrfs_tree_read_unlock(b);
2794				free_extent_buffer(b);
2795				b = btrfs_lock_root_node(root);
2796				root_lock = BTRFS_WRITE_LOCK;
2797
2798				/* the level might have changed, check again */
2799				level = btrfs_header_level(b);
2800			}
2801		}
2802	}
2803	p->nodes[level] = b;
2804	if (!p->skip_locking)
2805		p->locks[level] = root_lock;
2806
2807	while (b) {
2808		level = btrfs_header_level(b);
2809
2810		/*
2811		 * setup the path here so we can release it under lock
2812		 * contention with the cow code
2813		 */
2814		if (cow) {
2815			/*
2816			 * if we don't really need to cow this block
2817			 * then we don't want to set the path blocking,
2818			 * so we test it here
2819			 */
2820			if (!should_cow_block(trans, root, b))
2821				goto cow_done;
2822
2823			btrfs_set_path_blocking(p);
2824
2825			/*
2826			 * must have write locks on this node and the
2827			 * parent
2828			 */
2829			if (level > write_lock_level ||
2830			    (level + 1 > write_lock_level &&
2831			    level + 1 < BTRFS_MAX_LEVEL &&
2832			    p->nodes[level + 1])) {
2833				write_lock_level = level + 1;
2834				btrfs_release_path(p);
2835				goto again;
2836			}
2837
2838			err = btrfs_cow_block(trans, root, b,
2839					      p->nodes[level + 1],
2840					      p->slots[level + 1], &b);
2841			if (err) {
2842				ret = err;
2843				goto done;
2844			}
2845		}
2846cow_done:
 
 
2847		p->nodes[level] = b;
2848		btrfs_clear_path_blocking(p, NULL, 0);
2849
2850		/*
2851		 * we have a lock on b and as long as we aren't changing
2852		 * the tree, there is no way to for the items in b to change.
2853		 * It is safe to drop the lock on our parent before we
2854		 * go through the expensive btree search on b.
2855		 *
2856		 * If we're inserting or deleting (ins_len != 0), then we might
2857		 * be changing slot zero, which may require changing the parent.
2858		 * So, we can't drop the lock until after we know which slot
2859		 * we're operating on.
2860		 */
2861		if (!ins_len && !p->keep_locks) {
2862			int u = level + 1;
2863
2864			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2865				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2866				p->locks[u] = 0;
2867			}
2868		}
2869
2870		ret = key_search(b, key, level, &prev_cmp, &slot);
2871
2872		if (level != 0) {
2873			int dec = 0;
2874			if (ret && slot > 0) {
2875				dec = 1;
2876				slot -= 1;
2877			}
2878			p->slots[level] = slot;
2879			err = setup_nodes_for_search(trans, root, p, b, level,
2880					     ins_len, &write_lock_level);
2881			if (err == -EAGAIN)
2882				goto again;
2883			if (err) {
2884				ret = err;
2885				goto done;
2886			}
2887			b = p->nodes[level];
2888			slot = p->slots[level];
2889
2890			/*
2891			 * slot 0 is special, if we change the key
2892			 * we have to update the parent pointer
2893			 * which means we must have a write lock
2894			 * on the parent
2895			 */
2896			if (slot == 0 && ins_len &&
2897			    write_lock_level < level + 1) {
2898				write_lock_level = level + 1;
2899				btrfs_release_path(p);
2900				goto again;
2901			}
2902
2903			unlock_up(p, level, lowest_unlock,
2904				  min_write_lock_level, &write_lock_level);
2905
2906			if (level == lowest_level) {
2907				if (dec)
2908					p->slots[level]++;
2909				goto done;
2910			}
2911
2912			err = read_block_for_search(trans, root, p,
2913						    &b, level, slot, key, 0);
2914			if (err == -EAGAIN)
2915				goto again;
2916			if (err) {
2917				ret = err;
2918				goto done;
2919			}
2920
2921			if (!p->skip_locking) {
2922				level = btrfs_header_level(b);
2923				if (level <= write_lock_level) {
2924					err = btrfs_try_tree_write_lock(b);
2925					if (!err) {
2926						btrfs_set_path_blocking(p);
2927						btrfs_tree_lock(b);
2928						btrfs_clear_path_blocking(p, b,
2929								  BTRFS_WRITE_LOCK);
2930					}
2931					p->locks[level] = BTRFS_WRITE_LOCK;
2932				} else {
2933					err = btrfs_try_tree_read_lock(b);
2934					if (!err) {
2935						btrfs_set_path_blocking(p);
2936						btrfs_tree_read_lock(b);
2937						btrfs_clear_path_blocking(p, b,
2938								  BTRFS_READ_LOCK);
2939					}
2940					p->locks[level] = BTRFS_READ_LOCK;
2941				}
2942				p->nodes[level] = b;
2943			}
2944		} else {
2945			p->slots[level] = slot;
2946			if (ins_len > 0 &&
2947			    btrfs_leaf_free_space(root, b) < ins_len) {
2948				if (write_lock_level < 1) {
2949					write_lock_level = 1;
2950					btrfs_release_path(p);
2951					goto again;
2952				}
2953
2954				btrfs_set_path_blocking(p);
2955				err = split_leaf(trans, root, key,
2956						 p, ins_len, ret == 0);
2957				btrfs_clear_path_blocking(p, NULL, 0);
2958
2959				BUG_ON(err > 0);
2960				if (err) {
2961					ret = err;
2962					goto done;
2963				}
2964			}
2965			if (!p->search_for_split)
2966				unlock_up(p, level, lowest_unlock,
2967					  min_write_lock_level, &write_lock_level);
2968			goto done;
2969		}
2970	}
2971	ret = 1;
2972done:
2973	/*
2974	 * we don't really know what they plan on doing with the path
2975	 * from here on, so for now just mark it as blocking
2976	 */
2977	if (!p->leave_spinning)
2978		btrfs_set_path_blocking(p);
2979	if (ret < 0)
2980		btrfs_release_path(p);
2981	return ret;
2982}
2983
2984/*
2985 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2986 * current state of the tree together with the operations recorded in the tree
2987 * modification log to search for the key in a previous version of this tree, as
2988 * denoted by the time_seq parameter.
2989 *
2990 * Naturally, there is no support for insert, delete or cow operations.
2991 *
2992 * The resulting path and return value will be set up as if we called
2993 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2994 */
2995int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2996			  struct btrfs_path *p, u64 time_seq)
2997{
2998	struct extent_buffer *b;
2999	int slot;
3000	int ret;
3001	int err;
3002	int level;
3003	int lowest_unlock = 1;
3004	u8 lowest_level = 0;
3005	int prev_cmp = -1;
3006
3007	lowest_level = p->lowest_level;
3008	WARN_ON(p->nodes[0] != NULL);
3009
3010	if (p->search_commit_root) {
3011		BUG_ON(time_seq);
3012		return btrfs_search_slot(NULL, root, key, p, 0, 0);
3013	}
3014
3015again:
3016	b = get_old_root(root, time_seq);
3017	level = btrfs_header_level(b);
3018	p->locks[level] = BTRFS_READ_LOCK;
3019
3020	while (b) {
3021		level = btrfs_header_level(b);
3022		p->nodes[level] = b;
3023		btrfs_clear_path_blocking(p, NULL, 0);
3024
3025		/*
3026		 * we have a lock on b and as long as we aren't changing
3027		 * the tree, there is no way to for the items in b to change.
3028		 * It is safe to drop the lock on our parent before we
3029		 * go through the expensive btree search on b.
3030		 */
3031		btrfs_unlock_up_safe(p, level + 1);
3032
3033		/*
3034		 * Since we can unwind eb's we want to do a real search every
3035		 * time.
3036		 */
3037		prev_cmp = -1;
3038		ret = key_search(b, key, level, &prev_cmp, &slot);
3039
3040		if (level != 0) {
3041			int dec = 0;
3042			if (ret && slot > 0) {
3043				dec = 1;
3044				slot -= 1;
3045			}
3046			p->slots[level] = slot;
3047			unlock_up(p, level, lowest_unlock, 0, NULL);
3048
3049			if (level == lowest_level) {
3050				if (dec)
3051					p->slots[level]++;
3052				goto done;
3053			}
3054
3055			err = read_block_for_search(NULL, root, p, &b, level,
3056						    slot, key, time_seq);
3057			if (err == -EAGAIN)
3058				goto again;
3059			if (err) {
3060				ret = err;
3061				goto done;
3062			}
3063
3064			level = btrfs_header_level(b);
3065			err = btrfs_try_tree_read_lock(b);
3066			if (!err) {
3067				btrfs_set_path_blocking(p);
3068				btrfs_tree_read_lock(b);
3069				btrfs_clear_path_blocking(p, b,
3070							  BTRFS_READ_LOCK);
3071			}
3072			b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3073			if (!b) {
3074				ret = -ENOMEM;
3075				goto done;
3076			}
3077			p->locks[level] = BTRFS_READ_LOCK;
3078			p->nodes[level] = b;
3079		} else {
3080			p->slots[level] = slot;
3081			unlock_up(p, level, lowest_unlock, 0, NULL);
3082			goto done;
3083		}
3084	}
3085	ret = 1;
3086done:
3087	if (!p->leave_spinning)
3088		btrfs_set_path_blocking(p);
3089	if (ret < 0)
3090		btrfs_release_path(p);
3091
3092	return ret;
3093}
3094
3095/*
3096 * helper to use instead of search slot if no exact match is needed but
3097 * instead the next or previous item should be returned.
3098 * When find_higher is true, the next higher item is returned, the next lower
3099 * otherwise.
3100 * When return_any and find_higher are both true, and no higher item is found,
3101 * return the next lower instead.
3102 * When return_any is true and find_higher is false, and no lower item is found,
3103 * return the next higher instead.
3104 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3105 * < 0 on error
3106 */
3107int btrfs_search_slot_for_read(struct btrfs_root *root,
3108			       struct btrfs_key *key, struct btrfs_path *p,
3109			       int find_higher, int return_any)
3110{
3111	int ret;
3112	struct extent_buffer *leaf;
3113
3114again:
3115	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3116	if (ret <= 0)
3117		return ret;
3118	/*
3119	 * a return value of 1 means the path is at the position where the
3120	 * item should be inserted. Normally this is the next bigger item,
3121	 * but in case the previous item is the last in a leaf, path points
3122	 * to the first free slot in the previous leaf, i.e. at an invalid
3123	 * item.
3124	 */
3125	leaf = p->nodes[0];
3126
3127	if (find_higher) {
3128		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3129			ret = btrfs_next_leaf(root, p);
3130			if (ret <= 0)
3131				return ret;
3132			if (!return_any)
3133				return 1;
3134			/*
3135			 * no higher item found, return the next
3136			 * lower instead
3137			 */
3138			return_any = 0;
3139			find_higher = 0;
3140			btrfs_release_path(p);
3141			goto again;
3142		}
3143	} else {
3144		if (p->slots[0] == 0) {
3145			ret = btrfs_prev_leaf(root, p);
3146			if (ret < 0)
3147				return ret;
3148			if (!ret) {
3149				leaf = p->nodes[0];
3150				if (p->slots[0] == btrfs_header_nritems(leaf))
3151					p->slots[0]--;
3152				return 0;
3153			}
3154			if (!return_any)
3155				return 1;
3156			/*
3157			 * no lower item found, return the next
3158			 * higher instead
3159			 */
3160			return_any = 0;
3161			find_higher = 1;
3162			btrfs_release_path(p);
3163			goto again;
3164		} else {
3165			--p->slots[0];
3166		}
3167	}
3168	return 0;
3169}
3170
3171/*
3172 * adjust the pointers going up the tree, starting at level
3173 * making sure the right key of each node is points to 'key'.
3174 * This is used after shifting pointers to the left, so it stops
3175 * fixing up pointers when a given leaf/node is not in slot 0 of the
3176 * higher levels
3177 *
 
 
3178 */
3179static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
3180			   struct btrfs_disk_key *key, int level)
 
3181{
3182	int i;
 
3183	struct extent_buffer *t;
3184
3185	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3186		int tslot = path->slots[i];
3187		if (!path->nodes[i])
3188			break;
3189		t = path->nodes[i];
3190		tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
3191		btrfs_set_node_key(t, key, tslot);
3192		btrfs_mark_buffer_dirty(path->nodes[i]);
3193		if (tslot != 0)
3194			break;
3195	}
 
3196}
3197
3198/*
3199 * update item key.
3200 *
3201 * This function isn't completely safe. It's the caller's responsibility
3202 * that the new key won't break the order
3203 */
3204void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3205			     struct btrfs_key *new_key)
 
3206{
3207	struct btrfs_disk_key disk_key;
3208	struct extent_buffer *eb;
3209	int slot;
3210
3211	eb = path->nodes[0];
3212	slot = path->slots[0];
3213	if (slot > 0) {
3214		btrfs_item_key(eb, &disk_key, slot - 1);
3215		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
 
3216	}
3217	if (slot < btrfs_header_nritems(eb) - 1) {
3218		btrfs_item_key(eb, &disk_key, slot + 1);
3219		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
 
3220	}
3221
3222	btrfs_cpu_key_to_disk(&disk_key, new_key);
3223	btrfs_set_item_key(eb, &disk_key, slot);
3224	btrfs_mark_buffer_dirty(eb);
3225	if (slot == 0)
3226		fixup_low_keys(root, path, &disk_key, 1);
 
3227}
3228
3229/*
3230 * try to push data from one node into the next node left in the
3231 * tree.
3232 *
3233 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3234 * error, and > 0 if there was no room in the left hand block.
3235 */
3236static int push_node_left(struct btrfs_trans_handle *trans,
3237			  struct btrfs_root *root, struct extent_buffer *dst,
3238			  struct extent_buffer *src, int empty)
3239{
3240	int push_items = 0;
3241	int src_nritems;
3242	int dst_nritems;
3243	int ret = 0;
3244
3245	src_nritems = btrfs_header_nritems(src);
3246	dst_nritems = btrfs_header_nritems(dst);
3247	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3248	WARN_ON(btrfs_header_generation(src) != trans->transid);
3249	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3250
3251	if (!empty && src_nritems <= 8)
3252		return 1;
3253
3254	if (push_items <= 0)
3255		return 1;
3256
3257	if (empty) {
3258		push_items = min(src_nritems, push_items);
3259		if (push_items < src_nritems) {
3260			/* leave at least 8 pointers in the node if
3261			 * we aren't going to empty it
3262			 */
3263			if (src_nritems - push_items < 8) {
3264				if (push_items <= 8)
3265					return 1;
3266				push_items -= 8;
3267			}
3268		}
3269	} else
3270		push_items = min(src_nritems - 8, push_items);
3271
3272	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3273				   push_items);
3274	if (ret) {
3275		btrfs_abort_transaction(trans, root, ret);
3276		return ret;
3277	}
3278	copy_extent_buffer(dst, src,
3279			   btrfs_node_key_ptr_offset(dst_nritems),
3280			   btrfs_node_key_ptr_offset(0),
3281			   push_items * sizeof(struct btrfs_key_ptr));
3282
3283	if (push_items < src_nritems) {
3284		/*
3285		 * don't call tree_mod_log_eb_move here, key removal was already
3286		 * fully logged by tree_mod_log_eb_copy above.
3287		 */
3288		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3289				      btrfs_node_key_ptr_offset(push_items),
3290				      (src_nritems - push_items) *
3291				      sizeof(struct btrfs_key_ptr));
3292	}
3293	btrfs_set_header_nritems(src, src_nritems - push_items);
3294	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3295	btrfs_mark_buffer_dirty(src);
3296	btrfs_mark_buffer_dirty(dst);
3297
3298	return ret;
3299}
3300
3301/*
3302 * try to push data from one node into the next node right in the
3303 * tree.
3304 *
3305 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3306 * error, and > 0 if there was no room in the right hand block.
3307 *
3308 * this will  only push up to 1/2 the contents of the left node over
3309 */
3310static int balance_node_right(struct btrfs_trans_handle *trans,
3311			      struct btrfs_root *root,
3312			      struct extent_buffer *dst,
3313			      struct extent_buffer *src)
3314{
3315	int push_items = 0;
3316	int max_push;
3317	int src_nritems;
3318	int dst_nritems;
3319	int ret = 0;
3320
3321	WARN_ON(btrfs_header_generation(src) != trans->transid);
3322	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3323
3324	src_nritems = btrfs_header_nritems(src);
3325	dst_nritems = btrfs_header_nritems(dst);
3326	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3327	if (push_items <= 0)
3328		return 1;
3329
3330	if (src_nritems < 4)
3331		return 1;
3332
3333	max_push = src_nritems / 2 + 1;
3334	/* don't try to empty the node */
3335	if (max_push >= src_nritems)
3336		return 1;
3337
3338	if (max_push < push_items)
3339		push_items = max_push;
3340
3341	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3342	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3343				      btrfs_node_key_ptr_offset(0),
3344				      (dst_nritems) *
3345				      sizeof(struct btrfs_key_ptr));
3346
3347	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3348				   src_nritems - push_items, push_items);
3349	if (ret) {
3350		btrfs_abort_transaction(trans, root, ret);
3351		return ret;
3352	}
3353	copy_extent_buffer(dst, src,
3354			   btrfs_node_key_ptr_offset(0),
3355			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3356			   push_items * sizeof(struct btrfs_key_ptr));
3357
3358	btrfs_set_header_nritems(src, src_nritems - push_items);
3359	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3360
3361	btrfs_mark_buffer_dirty(src);
3362	btrfs_mark_buffer_dirty(dst);
3363
3364	return ret;
3365}
3366
3367/*
3368 * helper function to insert a new root level in the tree.
3369 * A new node is allocated, and a single item is inserted to
3370 * point to the existing root
3371 *
3372 * returns zero on success or < 0 on failure.
3373 */
3374static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3375			   struct btrfs_root *root,
3376			   struct btrfs_path *path, int level)
3377{
3378	u64 lower_gen;
3379	struct extent_buffer *lower;
3380	struct extent_buffer *c;
3381	struct extent_buffer *old;
3382	struct btrfs_disk_key lower_key;
3383
3384	BUG_ON(path->nodes[level]);
3385	BUG_ON(path->nodes[level-1] != root->node);
3386
3387	lower = path->nodes[level-1];
3388	if (level == 1)
3389		btrfs_item_key(lower, &lower_key, 0);
3390	else
3391		btrfs_node_key(lower, &lower_key, 0);
3392
3393	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3394				   root->root_key.objectid, &lower_key,
3395				   level, root->node->start, 0);
3396	if (IS_ERR(c))
3397		return PTR_ERR(c);
3398
3399	root_add_used(root, root->nodesize);
3400
3401	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3402	btrfs_set_header_nritems(c, 1);
3403	btrfs_set_header_level(c, level);
3404	btrfs_set_header_bytenr(c, c->start);
3405	btrfs_set_header_generation(c, trans->transid);
3406	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3407	btrfs_set_header_owner(c, root->root_key.objectid);
3408
3409	write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
 
3410			    BTRFS_FSID_SIZE);
3411
3412	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3413			    btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
 
3414
3415	btrfs_set_node_key(c, &lower_key, 0);
3416	btrfs_set_node_blockptr(c, 0, lower->start);
3417	lower_gen = btrfs_header_generation(lower);
3418	WARN_ON(lower_gen != trans->transid);
3419
3420	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3421
3422	btrfs_mark_buffer_dirty(c);
3423
3424	old = root->node;
3425	tree_mod_log_set_root_pointer(root, c, 0);
3426	rcu_assign_pointer(root->node, c);
3427
3428	/* the super has an extra ref to root->node */
3429	free_extent_buffer(old);
3430
3431	add_root_to_dirty_list(root);
3432	extent_buffer_get(c);
3433	path->nodes[level] = c;
3434	path->locks[level] = BTRFS_WRITE_LOCK;
3435	path->slots[level] = 0;
3436	return 0;
3437}
3438
3439/*
3440 * worker function to insert a single pointer in a node.
3441 * the node should have enough room for the pointer already
3442 *
3443 * slot and level indicate where you want the key to go, and
3444 * blocknr is the block the key points to.
 
 
3445 */
3446static void insert_ptr(struct btrfs_trans_handle *trans,
3447		       struct btrfs_root *root, struct btrfs_path *path,
3448		       struct btrfs_disk_key *key, u64 bytenr,
3449		       int slot, int level)
3450{
3451	struct extent_buffer *lower;
3452	int nritems;
3453	int ret;
3454
3455	BUG_ON(!path->nodes[level]);
3456	btrfs_assert_tree_locked(path->nodes[level]);
3457	lower = path->nodes[level];
3458	nritems = btrfs_header_nritems(lower);
3459	BUG_ON(slot > nritems);
3460	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
 
3461	if (slot != nritems) {
3462		if (level)
3463			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3464					     slot, nritems - slot);
3465		memmove_extent_buffer(lower,
3466			      btrfs_node_key_ptr_offset(slot + 1),
3467			      btrfs_node_key_ptr_offset(slot),
3468			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3469	}
3470	if (level) {
3471		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3472					      MOD_LOG_KEY_ADD, GFP_NOFS);
3473		BUG_ON(ret < 0);
3474	}
3475	btrfs_set_node_key(lower, key, slot);
3476	btrfs_set_node_blockptr(lower, slot, bytenr);
3477	WARN_ON(trans->transid == 0);
3478	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3479	btrfs_set_header_nritems(lower, nritems + 1);
3480	btrfs_mark_buffer_dirty(lower);
 
3481}
3482
3483/*
3484 * split the node at the specified level in path in two.
3485 * The path is corrected to point to the appropriate node after the split
3486 *
3487 * Before splitting this tries to make some room in the node by pushing
3488 * left and right, if either one works, it returns right away.
3489 *
3490 * returns 0 on success and < 0 on failure
3491 */
3492static noinline int split_node(struct btrfs_trans_handle *trans,
3493			       struct btrfs_root *root,
3494			       struct btrfs_path *path, int level)
3495{
3496	struct extent_buffer *c;
3497	struct extent_buffer *split;
3498	struct btrfs_disk_key disk_key;
3499	int mid;
3500	int ret;
 
3501	u32 c_nritems;
3502
3503	c = path->nodes[level];
3504	WARN_ON(btrfs_header_generation(c) != trans->transid);
3505	if (c == root->node) {
3506		/*
3507		 * trying to split the root, lets make a new one
3508		 *
3509		 * tree mod log: We don't log_removal old root in
3510		 * insert_new_root, because that root buffer will be kept as a
3511		 * normal node. We are going to log removal of half of the
3512		 * elements below with tree_mod_log_eb_copy. We're holding a
3513		 * tree lock on the buffer, which is why we cannot race with
3514		 * other tree_mod_log users.
3515		 */
3516		ret = insert_new_root(trans, root, path, level + 1);
3517		if (ret)
3518			return ret;
3519	} else {
3520		ret = push_nodes_for_insert(trans, root, path, level);
3521		c = path->nodes[level];
3522		if (!ret && btrfs_header_nritems(c) <
3523		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3524			return 0;
3525		if (ret < 0)
3526			return ret;
3527	}
3528
3529	c_nritems = btrfs_header_nritems(c);
3530	mid = (c_nritems + 1) / 2;
3531	btrfs_node_key(c, &disk_key, mid);
3532
3533	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3534					root->root_key.objectid,
3535					&disk_key, level, c->start, 0);
3536	if (IS_ERR(split))
3537		return PTR_ERR(split);
3538
3539	root_add_used(root, root->nodesize);
3540
3541	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3542	btrfs_set_header_level(split, btrfs_header_level(c));
3543	btrfs_set_header_bytenr(split, split->start);
3544	btrfs_set_header_generation(split, trans->transid);
3545	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3546	btrfs_set_header_owner(split, root->root_key.objectid);
3547	write_extent_buffer(split, root->fs_info->fsid,
3548			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
 
3549	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3550			    btrfs_header_chunk_tree_uuid(split),
3551			    BTRFS_UUID_SIZE);
3552
3553	ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3554				   mid, c_nritems - mid);
3555	if (ret) {
3556		btrfs_abort_transaction(trans, root, ret);
3557		return ret;
3558	}
3559	copy_extent_buffer(split, c,
3560			   btrfs_node_key_ptr_offset(0),
3561			   btrfs_node_key_ptr_offset(mid),
3562			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3563	btrfs_set_header_nritems(split, c_nritems - mid);
3564	btrfs_set_header_nritems(c, mid);
3565	ret = 0;
3566
3567	btrfs_mark_buffer_dirty(c);
3568	btrfs_mark_buffer_dirty(split);
3569
3570	insert_ptr(trans, root, path, &disk_key, split->start,
3571		   path->slots[level + 1] + 1, level + 1);
 
 
 
3572
3573	if (path->slots[level] >= mid) {
3574		path->slots[level] -= mid;
3575		btrfs_tree_unlock(c);
3576		free_extent_buffer(c);
3577		path->nodes[level] = split;
3578		path->slots[level + 1] += 1;
3579	} else {
3580		btrfs_tree_unlock(split);
3581		free_extent_buffer(split);
3582	}
3583	return ret;
3584}
3585
3586/*
3587 * how many bytes are required to store the items in a leaf.  start
3588 * and nr indicate which items in the leaf to check.  This totals up the
3589 * space used both by the item structs and the item data
3590 */
3591static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3592{
3593	struct btrfs_item *start_item;
3594	struct btrfs_item *end_item;
3595	struct btrfs_map_token token;
3596	int data_len;
3597	int nritems = btrfs_header_nritems(l);
3598	int end = min(nritems, start + nr) - 1;
3599
3600	if (!nr)
3601		return 0;
3602	btrfs_init_map_token(&token);
3603	start_item = btrfs_item_nr(start);
3604	end_item = btrfs_item_nr(end);
3605	data_len = btrfs_token_item_offset(l, start_item, &token) +
3606		btrfs_token_item_size(l, start_item, &token);
3607	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3608	data_len += sizeof(struct btrfs_item) * nr;
3609	WARN_ON(data_len < 0);
3610	return data_len;
3611}
3612
3613/*
3614 * The space between the end of the leaf items and
3615 * the start of the leaf data.  IOW, how much room
3616 * the leaf has left for both items and data
3617 */
3618noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3619				   struct extent_buffer *leaf)
3620{
3621	int nritems = btrfs_header_nritems(leaf);
3622	int ret;
3623	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3624	if (ret < 0) {
3625		btrfs_crit(root->fs_info,
3626			"leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3627		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3628		       leaf_space_used(leaf, 0, nritems), nritems);
3629	}
3630	return ret;
3631}
3632
3633/*
3634 * min slot controls the lowest index we're willing to push to the
3635 * right.  We'll push up to and including min_slot, but no lower
3636 */
3637static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3638				      struct btrfs_root *root,
3639				      struct btrfs_path *path,
3640				      int data_size, int empty,
3641				      struct extent_buffer *right,
3642				      int free_space, u32 left_nritems,
3643				      u32 min_slot)
3644{
3645	struct extent_buffer *left = path->nodes[0];
3646	struct extent_buffer *upper = path->nodes[1];
3647	struct btrfs_map_token token;
3648	struct btrfs_disk_key disk_key;
3649	int slot;
3650	u32 i;
3651	int push_space = 0;
3652	int push_items = 0;
3653	struct btrfs_item *item;
3654	u32 nr;
3655	u32 right_nritems;
3656	u32 data_end;
3657	u32 this_item_size;
3658
3659	btrfs_init_map_token(&token);
3660
3661	if (empty)
3662		nr = 0;
3663	else
3664		nr = max_t(u32, 1, min_slot);
3665
3666	if (path->slots[0] >= left_nritems)
3667		push_space += data_size;
3668
3669	slot = path->slots[1];
3670	i = left_nritems - 1;
3671	while (i >= nr) {
3672		item = btrfs_item_nr(i);
3673
3674		if (!empty && push_items > 0) {
3675			if (path->slots[0] > i)
3676				break;
3677			if (path->slots[0] == i) {
3678				int space = btrfs_leaf_free_space(root, left);
3679				if (space + push_space * 2 > free_space)
3680					break;
3681			}
3682		}
3683
3684		if (path->slots[0] == i)
3685			push_space += data_size;
3686
3687		this_item_size = btrfs_item_size(left, item);
3688		if (this_item_size + sizeof(*item) + push_space > free_space)
3689			break;
3690
3691		push_items++;
3692		push_space += this_item_size + sizeof(*item);
3693		if (i == 0)
3694			break;
3695		i--;
3696	}
3697
3698	if (push_items == 0)
3699		goto out_unlock;
3700
3701	WARN_ON(!empty && push_items == left_nritems);
 
3702
3703	/* push left to right */
3704	right_nritems = btrfs_header_nritems(right);
3705
3706	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3707	push_space -= leaf_data_end(root, left);
3708
3709	/* make room in the right data area */
3710	data_end = leaf_data_end(root, right);
3711	memmove_extent_buffer(right,
3712			      btrfs_leaf_data(right) + data_end - push_space,
3713			      btrfs_leaf_data(right) + data_end,
3714			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3715
3716	/* copy from the left data area */
3717	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3718		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3719		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3720		     push_space);
3721
3722	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3723			      btrfs_item_nr_offset(0),
3724			      right_nritems * sizeof(struct btrfs_item));
3725
3726	/* copy the items from left to right */
3727	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3728		   btrfs_item_nr_offset(left_nritems - push_items),
3729		   push_items * sizeof(struct btrfs_item));
3730
3731	/* update the item pointers */
3732	right_nritems += push_items;
3733	btrfs_set_header_nritems(right, right_nritems);
3734	push_space = BTRFS_LEAF_DATA_SIZE(root);
3735	for (i = 0; i < right_nritems; i++) {
3736		item = btrfs_item_nr(i);
3737		push_space -= btrfs_token_item_size(right, item, &token);
3738		btrfs_set_token_item_offset(right, item, push_space, &token);
3739	}
3740
3741	left_nritems -= push_items;
3742	btrfs_set_header_nritems(left, left_nritems);
3743
3744	if (left_nritems)
3745		btrfs_mark_buffer_dirty(left);
3746	else
3747		clean_tree_block(trans, root, left);
3748
3749	btrfs_mark_buffer_dirty(right);
3750
3751	btrfs_item_key(right, &disk_key, 0);
3752	btrfs_set_node_key(upper, &disk_key, slot + 1);
3753	btrfs_mark_buffer_dirty(upper);
3754
3755	/* then fixup the leaf pointer in the path */
3756	if (path->slots[0] >= left_nritems) {
3757		path->slots[0] -= left_nritems;
3758		if (btrfs_header_nritems(path->nodes[0]) == 0)
3759			clean_tree_block(trans, root, path->nodes[0]);
3760		btrfs_tree_unlock(path->nodes[0]);
3761		free_extent_buffer(path->nodes[0]);
3762		path->nodes[0] = right;
3763		path->slots[1] += 1;
3764	} else {
3765		btrfs_tree_unlock(right);
3766		free_extent_buffer(right);
3767	}
3768	return 0;
3769
3770out_unlock:
3771	btrfs_tree_unlock(right);
3772	free_extent_buffer(right);
3773	return 1;
3774}
3775
3776/*
3777 * push some data in the path leaf to the right, trying to free up at
3778 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3779 *
3780 * returns 1 if the push failed because the other node didn't have enough
3781 * room, 0 if everything worked out and < 0 if there were major errors.
3782 *
3783 * this will push starting from min_slot to the end of the leaf.  It won't
3784 * push any slot lower than min_slot
3785 */
3786static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3787			   *root, struct btrfs_path *path,
3788			   int min_data_size, int data_size,
3789			   int empty, u32 min_slot)
3790{
3791	struct extent_buffer *left = path->nodes[0];
3792	struct extent_buffer *right;
3793	struct extent_buffer *upper;
3794	int slot;
3795	int free_space;
3796	u32 left_nritems;
3797	int ret;
3798
3799	if (!path->nodes[1])
3800		return 1;
3801
3802	slot = path->slots[1];
3803	upper = path->nodes[1];
3804	if (slot >= btrfs_header_nritems(upper) - 1)
3805		return 1;
3806
3807	btrfs_assert_tree_locked(path->nodes[1]);
3808
3809	right = read_node_slot(root, upper, slot + 1);
3810	if (right == NULL)
3811		return 1;
3812
3813	btrfs_tree_lock(right);
3814	btrfs_set_lock_blocking(right);
3815
3816	free_space = btrfs_leaf_free_space(root, right);
3817	if (free_space < data_size)
3818		goto out_unlock;
3819
3820	/* cow and double check */
3821	ret = btrfs_cow_block(trans, root, right, upper,
3822			      slot + 1, &right);
3823	if (ret)
3824		goto out_unlock;
3825
3826	free_space = btrfs_leaf_free_space(root, right);
3827	if (free_space < data_size)
3828		goto out_unlock;
3829
3830	left_nritems = btrfs_header_nritems(left);
3831	if (left_nritems == 0)
3832		goto out_unlock;
3833
3834	if (path->slots[0] == left_nritems && !empty) {
3835		/* Key greater than all keys in the leaf, right neighbor has
3836		 * enough room for it and we're not emptying our leaf to delete
3837		 * it, therefore use right neighbor to insert the new item and
3838		 * no need to touch/dirty our left leaft. */
3839		btrfs_tree_unlock(left);
3840		free_extent_buffer(left);
3841		path->nodes[0] = right;
3842		path->slots[0] = 0;
3843		path->slots[1]++;
3844		return 0;
3845	}
3846
3847	return __push_leaf_right(trans, root, path, min_data_size, empty,
3848				right, free_space, left_nritems, min_slot);
3849out_unlock:
3850	btrfs_tree_unlock(right);
3851	free_extent_buffer(right);
3852	return 1;
3853}
3854
3855/*
3856 * push some data in the path leaf to the left, trying to free up at
3857 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3858 *
3859 * max_slot can put a limit on how far into the leaf we'll push items.  The
3860 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3861 * items
3862 */
3863static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3864				     struct btrfs_root *root,
3865				     struct btrfs_path *path, int data_size,
3866				     int empty, struct extent_buffer *left,
3867				     int free_space, u32 right_nritems,
3868				     u32 max_slot)
3869{
3870	struct btrfs_disk_key disk_key;
3871	struct extent_buffer *right = path->nodes[0];
3872	int i;
3873	int push_space = 0;
3874	int push_items = 0;
3875	struct btrfs_item *item;
3876	u32 old_left_nritems;
3877	u32 nr;
3878	int ret = 0;
 
3879	u32 this_item_size;
3880	u32 old_left_item_size;
3881	struct btrfs_map_token token;
3882
3883	btrfs_init_map_token(&token);
3884
3885	if (empty)
3886		nr = min(right_nritems, max_slot);
3887	else
3888		nr = min(right_nritems - 1, max_slot);
3889
3890	for (i = 0; i < nr; i++) {
3891		item = btrfs_item_nr(i);
3892
3893		if (!empty && push_items > 0) {
3894			if (path->slots[0] < i)
3895				break;
3896			if (path->slots[0] == i) {
3897				int space = btrfs_leaf_free_space(root, right);
3898				if (space + push_space * 2 > free_space)
3899					break;
3900			}
3901		}
3902
3903		if (path->slots[0] == i)
3904			push_space += data_size;
3905
3906		this_item_size = btrfs_item_size(right, item);
3907		if (this_item_size + sizeof(*item) + push_space > free_space)
3908			break;
3909
3910		push_items++;
3911		push_space += this_item_size + sizeof(*item);
3912	}
3913
3914	if (push_items == 0) {
3915		ret = 1;
3916		goto out;
3917	}
3918	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
 
3919
3920	/* push data from right to left */
3921	copy_extent_buffer(left, right,
3922			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3923			   btrfs_item_nr_offset(0),
3924			   push_items * sizeof(struct btrfs_item));
3925
3926	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3927		     btrfs_item_offset_nr(right, push_items - 1);
3928
3929	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3930		     leaf_data_end(root, left) - push_space,
3931		     btrfs_leaf_data(right) +
3932		     btrfs_item_offset_nr(right, push_items - 1),
3933		     push_space);
3934	old_left_nritems = btrfs_header_nritems(left);
3935	BUG_ON(old_left_nritems <= 0);
3936
3937	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3938	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3939		u32 ioff;
3940
3941		item = btrfs_item_nr(i);
3942
3943		ioff = btrfs_token_item_offset(left, item, &token);
3944		btrfs_set_token_item_offset(left, item,
3945		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3946		      &token);
3947	}
3948	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3949
3950	/* fixup right node */
3951	if (push_items > right_nritems)
3952		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3953		       right_nritems);
 
 
3954
3955	if (push_items < right_nritems) {
3956		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3957						  leaf_data_end(root, right);
3958		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3959				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3960				      btrfs_leaf_data(right) +
3961				      leaf_data_end(root, right), push_space);
3962
3963		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3964			      btrfs_item_nr_offset(push_items),
3965			     (btrfs_header_nritems(right) - push_items) *
3966			     sizeof(struct btrfs_item));
3967	}
3968	right_nritems -= push_items;
3969	btrfs_set_header_nritems(right, right_nritems);
3970	push_space = BTRFS_LEAF_DATA_SIZE(root);
3971	for (i = 0; i < right_nritems; i++) {
3972		item = btrfs_item_nr(i);
3973
3974		push_space = push_space - btrfs_token_item_size(right,
3975								item, &token);
3976		btrfs_set_token_item_offset(right, item, push_space, &token);
3977	}
3978
3979	btrfs_mark_buffer_dirty(left);
3980	if (right_nritems)
3981		btrfs_mark_buffer_dirty(right);
3982	else
3983		clean_tree_block(trans, root, right);
3984
3985	btrfs_item_key(right, &disk_key, 0);
3986	fixup_low_keys(root, path, &disk_key, 1);
 
 
3987
3988	/* then fixup the leaf pointer in the path */
3989	if (path->slots[0] < push_items) {
3990		path->slots[0] += old_left_nritems;
3991		btrfs_tree_unlock(path->nodes[0]);
3992		free_extent_buffer(path->nodes[0]);
3993		path->nodes[0] = left;
3994		path->slots[1] -= 1;
3995	} else {
3996		btrfs_tree_unlock(left);
3997		free_extent_buffer(left);
3998		path->slots[0] -= push_items;
3999	}
4000	BUG_ON(path->slots[0] < 0);
4001	return ret;
4002out:
4003	btrfs_tree_unlock(left);
4004	free_extent_buffer(left);
4005	return ret;
4006}
4007
4008/*
4009 * push some data in the path leaf to the left, trying to free up at
4010 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
4011 *
4012 * max_slot can put a limit on how far into the leaf we'll push items.  The
4013 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
4014 * items
4015 */
4016static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4017			  *root, struct btrfs_path *path, int min_data_size,
4018			  int data_size, int empty, u32 max_slot)
4019{
4020	struct extent_buffer *right = path->nodes[0];
4021	struct extent_buffer *left;
4022	int slot;
4023	int free_space;
4024	u32 right_nritems;
4025	int ret = 0;
4026
4027	slot = path->slots[1];
4028	if (slot == 0)
4029		return 1;
4030	if (!path->nodes[1])
4031		return 1;
4032
4033	right_nritems = btrfs_header_nritems(right);
4034	if (right_nritems == 0)
4035		return 1;
4036
4037	btrfs_assert_tree_locked(path->nodes[1]);
4038
4039	left = read_node_slot(root, path->nodes[1], slot - 1);
4040	if (left == NULL)
4041		return 1;
4042
4043	btrfs_tree_lock(left);
4044	btrfs_set_lock_blocking(left);
4045
4046	free_space = btrfs_leaf_free_space(root, left);
4047	if (free_space < data_size) {
4048		ret = 1;
4049		goto out;
4050	}
4051
4052	/* cow and double check */
4053	ret = btrfs_cow_block(trans, root, left,
4054			      path->nodes[1], slot - 1, &left);
4055	if (ret) {
4056		/* we hit -ENOSPC, but it isn't fatal here */
4057		if (ret == -ENOSPC)
4058			ret = 1;
4059		goto out;
4060	}
4061
4062	free_space = btrfs_leaf_free_space(root, left);
4063	if (free_space < data_size) {
4064		ret = 1;
4065		goto out;
4066	}
4067
4068	return __push_leaf_left(trans, root, path, min_data_size,
4069			       empty, left, free_space, right_nritems,
4070			       max_slot);
4071out:
4072	btrfs_tree_unlock(left);
4073	free_extent_buffer(left);
4074	return ret;
4075}
4076
4077/*
4078 * split the path's leaf in two, making sure there is at least data_size
4079 * available for the resulting leaf level of the path.
 
 
4080 */
4081static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4082				    struct btrfs_root *root,
4083				    struct btrfs_path *path,
4084				    struct extent_buffer *l,
4085				    struct extent_buffer *right,
4086				    int slot, int mid, int nritems)
4087{
4088	int data_copy_size;
4089	int rt_data_off;
4090	int i;
 
 
4091	struct btrfs_disk_key disk_key;
4092	struct btrfs_map_token token;
4093
4094	btrfs_init_map_token(&token);
4095
4096	nritems = nritems - mid;
4097	btrfs_set_header_nritems(right, nritems);
4098	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4099
4100	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4101			   btrfs_item_nr_offset(mid),
4102			   nritems * sizeof(struct btrfs_item));
4103
4104	copy_extent_buffer(right, l,
4105		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4106		     data_copy_size, btrfs_leaf_data(l) +
4107		     leaf_data_end(root, l), data_copy_size);
4108
4109	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4110		      btrfs_item_end_nr(l, mid);
4111
4112	for (i = 0; i < nritems; i++) {
4113		struct btrfs_item *item = btrfs_item_nr(i);
4114		u32 ioff;
4115
4116		ioff = btrfs_token_item_offset(right, item, &token);
4117		btrfs_set_token_item_offset(right, item,
4118					    ioff + rt_data_off, &token);
4119	}
4120
4121	btrfs_set_header_nritems(l, mid);
 
4122	btrfs_item_key(right, &disk_key, 0);
4123	insert_ptr(trans, root, path, &disk_key, right->start,
4124		   path->slots[1] + 1, 1);
 
 
4125
4126	btrfs_mark_buffer_dirty(right);
4127	btrfs_mark_buffer_dirty(l);
4128	BUG_ON(path->slots[0] != slot);
4129
4130	if (mid <= slot) {
4131		btrfs_tree_unlock(path->nodes[0]);
4132		free_extent_buffer(path->nodes[0]);
4133		path->nodes[0] = right;
4134		path->slots[0] -= mid;
4135		path->slots[1] += 1;
4136	} else {
4137		btrfs_tree_unlock(right);
4138		free_extent_buffer(right);
4139	}
4140
4141	BUG_ON(path->slots[0] < 0);
 
 
4142}
4143
4144/*
4145 * double splits happen when we need to insert a big item in the middle
4146 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4147 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4148 *          A                 B                 C
4149 *
4150 * We avoid this by trying to push the items on either side of our target
4151 * into the adjacent leaves.  If all goes well we can avoid the double split
4152 * completely.
4153 */
4154static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4155					  struct btrfs_root *root,
4156					  struct btrfs_path *path,
4157					  int data_size)
4158{
4159	int ret;
4160	int progress = 0;
4161	int slot;
4162	u32 nritems;
4163	int space_needed = data_size;
4164
4165	slot = path->slots[0];
4166	if (slot < btrfs_header_nritems(path->nodes[0]))
4167		space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4168
4169	/*
4170	 * try to push all the items after our slot into the
4171	 * right leaf
4172	 */
4173	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4174	if (ret < 0)
4175		return ret;
4176
4177	if (ret == 0)
4178		progress++;
4179
4180	nritems = btrfs_header_nritems(path->nodes[0]);
4181	/*
4182	 * our goal is to get our slot at the start or end of a leaf.  If
4183	 * we've done so we're done
4184	 */
4185	if (path->slots[0] == 0 || path->slots[0] == nritems)
4186		return 0;
4187
4188	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4189		return 0;
4190
4191	/* try to push all the items before our slot into the next leaf */
4192	slot = path->slots[0];
4193	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4194	if (ret < 0)
4195		return ret;
4196
4197	if (ret == 0)
4198		progress++;
4199
4200	if (progress)
4201		return 0;
4202	return 1;
4203}
4204
4205/*
4206 * split the path's leaf in two, making sure there is at least data_size
4207 * available for the resulting leaf level of the path.
4208 *
4209 * returns 0 if all went well and < 0 on failure.
4210 */
4211static noinline int split_leaf(struct btrfs_trans_handle *trans,
4212			       struct btrfs_root *root,
4213			       struct btrfs_key *ins_key,
4214			       struct btrfs_path *path, int data_size,
4215			       int extend)
4216{
4217	struct btrfs_disk_key disk_key;
4218	struct extent_buffer *l;
4219	u32 nritems;
4220	int mid;
4221	int slot;
4222	struct extent_buffer *right;
4223	int ret = 0;
4224	int wret;
4225	int split;
4226	int num_doubles = 0;
4227	int tried_avoid_double = 0;
4228
4229	l = path->nodes[0];
4230	slot = path->slots[0];
4231	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4232	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4233		return -EOVERFLOW;
4234
4235	/* first try to make some room by pushing left and right */
4236	if (data_size && path->nodes[1]) {
4237		int space_needed = data_size;
4238
4239		if (slot < btrfs_header_nritems(l))
4240			space_needed -= btrfs_leaf_free_space(root, l);
4241
4242		wret = push_leaf_right(trans, root, path, space_needed,
4243				       space_needed, 0, 0);
4244		if (wret < 0)
4245			return wret;
4246		if (wret) {
4247			wret = push_leaf_left(trans, root, path, space_needed,
4248					      space_needed, 0, (u32)-1);
4249			if (wret < 0)
4250				return wret;
4251		}
4252		l = path->nodes[0];
4253
4254		/* did the pushes work? */
4255		if (btrfs_leaf_free_space(root, l) >= data_size)
4256			return 0;
4257	}
4258
4259	if (!path->nodes[1]) {
4260		ret = insert_new_root(trans, root, path, 1);
4261		if (ret)
4262			return ret;
4263	}
4264again:
4265	split = 1;
4266	l = path->nodes[0];
4267	slot = path->slots[0];
4268	nritems = btrfs_header_nritems(l);
4269	mid = (nritems + 1) / 2;
4270
4271	if (mid <= slot) {
4272		if (nritems == 1 ||
4273		    leaf_space_used(l, mid, nritems - mid) + data_size >
4274			BTRFS_LEAF_DATA_SIZE(root)) {
4275			if (slot >= nritems) {
4276				split = 0;
4277			} else {
4278				mid = slot;
4279				if (mid != nritems &&
4280				    leaf_space_used(l, mid, nritems - mid) +
4281				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4282					if (data_size && !tried_avoid_double)
4283						goto push_for_double;
4284					split = 2;
4285				}
4286			}
4287		}
4288	} else {
4289		if (leaf_space_used(l, 0, mid) + data_size >
4290			BTRFS_LEAF_DATA_SIZE(root)) {
4291			if (!extend && data_size && slot == 0) {
4292				split = 0;
4293			} else if ((extend || !data_size) && slot == 0) {
4294				mid = 1;
4295			} else {
4296				mid = slot;
4297				if (mid != nritems &&
4298				    leaf_space_used(l, mid, nritems - mid) +
4299				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4300					if (data_size && !tried_avoid_double)
4301						goto push_for_double;
4302					split = 2;
4303				}
4304			}
4305		}
4306	}
4307
4308	if (split == 0)
4309		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4310	else
4311		btrfs_item_key(l, &disk_key, mid);
4312
4313	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4314					root->root_key.objectid,
4315					&disk_key, 0, l->start, 0);
4316	if (IS_ERR(right))
4317		return PTR_ERR(right);
4318
4319	root_add_used(root, root->leafsize);
4320
4321	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4322	btrfs_set_header_bytenr(right, right->start);
4323	btrfs_set_header_generation(right, trans->transid);
4324	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4325	btrfs_set_header_owner(right, root->root_key.objectid);
4326	btrfs_set_header_level(right, 0);
4327	write_extent_buffer(right, root->fs_info->fsid,
4328			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
 
4329
4330	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4331			    btrfs_header_chunk_tree_uuid(right),
4332			    BTRFS_UUID_SIZE);
4333
4334	if (split == 0) {
4335		if (mid <= slot) {
4336			btrfs_set_header_nritems(right, 0);
4337			insert_ptr(trans, root, path, &disk_key, right->start,
4338				   path->slots[1] + 1, 1);
 
 
 
 
4339			btrfs_tree_unlock(path->nodes[0]);
4340			free_extent_buffer(path->nodes[0]);
4341			path->nodes[0] = right;
4342			path->slots[0] = 0;
4343			path->slots[1] += 1;
4344		} else {
4345			btrfs_set_header_nritems(right, 0);
4346			insert_ptr(trans, root, path, &disk_key, right->start,
 
 
4347					  path->slots[1], 1);
 
 
4348			btrfs_tree_unlock(path->nodes[0]);
4349			free_extent_buffer(path->nodes[0]);
4350			path->nodes[0] = right;
4351			path->slots[0] = 0;
4352			if (path->slots[1] == 0)
4353				fixup_low_keys(root, path, &disk_key, 1);
 
 
 
 
4354		}
4355		btrfs_mark_buffer_dirty(right);
4356		return ret;
4357	}
4358
4359	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
 
4360
4361	if (split == 2) {
4362		BUG_ON(num_doubles != 0);
4363		num_doubles++;
4364		goto again;
4365	}
4366
4367	return 0;
4368
4369push_for_double:
4370	push_for_double_split(trans, root, path, data_size);
4371	tried_avoid_double = 1;
4372	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4373		return 0;
4374	goto again;
4375}
4376
4377static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4378					 struct btrfs_root *root,
4379					 struct btrfs_path *path, int ins_len)
4380{
4381	struct btrfs_key key;
4382	struct extent_buffer *leaf;
4383	struct btrfs_file_extent_item *fi;
4384	u64 extent_len = 0;
4385	u32 item_size;
4386	int ret;
4387
4388	leaf = path->nodes[0];
4389	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4390
4391	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4392	       key.type != BTRFS_EXTENT_CSUM_KEY);
4393
4394	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4395		return 0;
4396
4397	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4398	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4399		fi = btrfs_item_ptr(leaf, path->slots[0],
4400				    struct btrfs_file_extent_item);
4401		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4402	}
4403	btrfs_release_path(path);
4404
4405	path->keep_locks = 1;
4406	path->search_for_split = 1;
4407	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4408	path->search_for_split = 0;
4409	if (ret < 0)
4410		goto err;
4411
4412	ret = -EAGAIN;
4413	leaf = path->nodes[0];
4414	/* if our item isn't there or got smaller, return now */
4415	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4416		goto err;
4417
4418	/* the leaf has  changed, it now has room.  return now */
4419	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4420		goto err;
4421
4422	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4423		fi = btrfs_item_ptr(leaf, path->slots[0],
4424				    struct btrfs_file_extent_item);
4425		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4426			goto err;
4427	}
4428
4429	btrfs_set_path_blocking(path);
4430	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4431	if (ret)
4432		goto err;
4433
4434	path->keep_locks = 0;
4435	btrfs_unlock_up_safe(path, 1);
4436	return 0;
4437err:
4438	path->keep_locks = 0;
4439	return ret;
4440}
4441
4442static noinline int split_item(struct btrfs_trans_handle *trans,
4443			       struct btrfs_root *root,
4444			       struct btrfs_path *path,
4445			       struct btrfs_key *new_key,
4446			       unsigned long split_offset)
4447{
4448	struct extent_buffer *leaf;
4449	struct btrfs_item *item;
4450	struct btrfs_item *new_item;
4451	int slot;
4452	char *buf;
4453	u32 nritems;
4454	u32 item_size;
4455	u32 orig_offset;
4456	struct btrfs_disk_key disk_key;
4457
4458	leaf = path->nodes[0];
4459	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4460
4461	btrfs_set_path_blocking(path);
4462
4463	item = btrfs_item_nr(path->slots[0]);
4464	orig_offset = btrfs_item_offset(leaf, item);
4465	item_size = btrfs_item_size(leaf, item);
4466
4467	buf = kmalloc(item_size, GFP_NOFS);
4468	if (!buf)
4469		return -ENOMEM;
4470
4471	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4472			    path->slots[0]), item_size);
4473
4474	slot = path->slots[0] + 1;
4475	nritems = btrfs_header_nritems(leaf);
4476	if (slot != nritems) {
4477		/* shift the items */
4478		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4479				btrfs_item_nr_offset(slot),
4480				(nritems - slot) * sizeof(struct btrfs_item));
4481	}
4482
4483	btrfs_cpu_key_to_disk(&disk_key, new_key);
4484	btrfs_set_item_key(leaf, &disk_key, slot);
4485
4486	new_item = btrfs_item_nr(slot);
4487
4488	btrfs_set_item_offset(leaf, new_item, orig_offset);
4489	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4490
4491	btrfs_set_item_offset(leaf, item,
4492			      orig_offset + item_size - split_offset);
4493	btrfs_set_item_size(leaf, item, split_offset);
4494
4495	btrfs_set_header_nritems(leaf, nritems + 1);
4496
4497	/* write the data for the start of the original item */
4498	write_extent_buffer(leaf, buf,
4499			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4500			    split_offset);
4501
4502	/* write the data for the new item */
4503	write_extent_buffer(leaf, buf + split_offset,
4504			    btrfs_item_ptr_offset(leaf, slot),
4505			    item_size - split_offset);
4506	btrfs_mark_buffer_dirty(leaf);
4507
4508	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4509	kfree(buf);
4510	return 0;
4511}
4512
4513/*
4514 * This function splits a single item into two items,
4515 * giving 'new_key' to the new item and splitting the
4516 * old one at split_offset (from the start of the item).
4517 *
4518 * The path may be released by this operation.  After
4519 * the split, the path is pointing to the old item.  The
4520 * new item is going to be in the same node as the old one.
4521 *
4522 * Note, the item being split must be smaller enough to live alone on
4523 * a tree block with room for one extra struct btrfs_item
4524 *
4525 * This allows us to split the item in place, keeping a lock on the
4526 * leaf the entire time.
4527 */
4528int btrfs_split_item(struct btrfs_trans_handle *trans,
4529		     struct btrfs_root *root,
4530		     struct btrfs_path *path,
4531		     struct btrfs_key *new_key,
4532		     unsigned long split_offset)
4533{
4534	int ret;
4535	ret = setup_leaf_for_split(trans, root, path,
4536				   sizeof(struct btrfs_item));
4537	if (ret)
4538		return ret;
4539
4540	ret = split_item(trans, root, path, new_key, split_offset);
4541	return ret;
4542}
4543
4544/*
4545 * This function duplicate a item, giving 'new_key' to the new item.
4546 * It guarantees both items live in the same tree leaf and the new item
4547 * is contiguous with the original item.
4548 *
4549 * This allows us to split file extent in place, keeping a lock on the
4550 * leaf the entire time.
4551 */
4552int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4553			 struct btrfs_root *root,
4554			 struct btrfs_path *path,
4555			 struct btrfs_key *new_key)
4556{
4557	struct extent_buffer *leaf;
4558	int ret;
4559	u32 item_size;
4560
4561	leaf = path->nodes[0];
4562	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4563	ret = setup_leaf_for_split(trans, root, path,
4564				   item_size + sizeof(struct btrfs_item));
4565	if (ret)
4566		return ret;
4567
4568	path->slots[0]++;
4569	setup_items_for_insert(root, path, new_key, &item_size,
4570			       item_size, item_size +
4571			       sizeof(struct btrfs_item), 1);
 
 
4572	leaf = path->nodes[0];
4573	memcpy_extent_buffer(leaf,
4574			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4575			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4576			     item_size);
4577	return 0;
4578}
4579
4580/*
4581 * make the item pointed to by the path smaller.  new_size indicates
4582 * how small to make it, and from_end tells us if we just chop bytes
4583 * off the end of the item or if we shift the item to chop bytes off
4584 * the front.
4585 */
4586void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4587			 u32 new_size, int from_end)
 
 
4588{
4589	int slot;
4590	struct extent_buffer *leaf;
4591	struct btrfs_item *item;
4592	u32 nritems;
4593	unsigned int data_end;
4594	unsigned int old_data_start;
4595	unsigned int old_size;
4596	unsigned int size_diff;
4597	int i;
4598	struct btrfs_map_token token;
4599
4600	btrfs_init_map_token(&token);
4601
4602	leaf = path->nodes[0];
4603	slot = path->slots[0];
4604
4605	old_size = btrfs_item_size_nr(leaf, slot);
4606	if (old_size == new_size)
4607		return;
4608
4609	nritems = btrfs_header_nritems(leaf);
4610	data_end = leaf_data_end(root, leaf);
4611
4612	old_data_start = btrfs_item_offset_nr(leaf, slot);
4613
4614	size_diff = old_size - new_size;
4615
4616	BUG_ON(slot < 0);
4617	BUG_ON(slot >= nritems);
4618
4619	/*
4620	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4621	 */
4622	/* first correct the data pointers */
4623	for (i = slot; i < nritems; i++) {
4624		u32 ioff;
4625		item = btrfs_item_nr(i);
4626
4627		ioff = btrfs_token_item_offset(leaf, item, &token);
4628		btrfs_set_token_item_offset(leaf, item,
4629					    ioff + size_diff, &token);
4630	}
4631
4632	/* shift the data */
4633	if (from_end) {
4634		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4635			      data_end + size_diff, btrfs_leaf_data(leaf) +
4636			      data_end, old_data_start + new_size - data_end);
4637	} else {
4638		struct btrfs_disk_key disk_key;
4639		u64 offset;
4640
4641		btrfs_item_key(leaf, &disk_key, slot);
4642
4643		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4644			unsigned long ptr;
4645			struct btrfs_file_extent_item *fi;
4646
4647			fi = btrfs_item_ptr(leaf, slot,
4648					    struct btrfs_file_extent_item);
4649			fi = (struct btrfs_file_extent_item *)(
4650			     (unsigned long)fi - size_diff);
4651
4652			if (btrfs_file_extent_type(leaf, fi) ==
4653			    BTRFS_FILE_EXTENT_INLINE) {
4654				ptr = btrfs_item_ptr_offset(leaf, slot);
4655				memmove_extent_buffer(leaf, ptr,
4656				      (unsigned long)fi,
4657				      offsetof(struct btrfs_file_extent_item,
4658						 disk_bytenr));
4659			}
4660		}
4661
4662		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4663			      data_end + size_diff, btrfs_leaf_data(leaf) +
4664			      data_end, old_data_start - data_end);
4665
4666		offset = btrfs_disk_key_offset(&disk_key);
4667		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4668		btrfs_set_item_key(leaf, &disk_key, slot);
4669		if (slot == 0)
4670			fixup_low_keys(root, path, &disk_key, 1);
4671	}
4672
4673	item = btrfs_item_nr(slot);
4674	btrfs_set_item_size(leaf, item, new_size);
4675	btrfs_mark_buffer_dirty(leaf);
4676
4677	if (btrfs_leaf_free_space(root, leaf) < 0) {
4678		btrfs_print_leaf(root, leaf);
4679		BUG();
4680	}
 
4681}
4682
4683/*
4684 * make the item pointed to by the path bigger, data_size is the added size.
4685 */
4686void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4687		       u32 data_size)
 
4688{
4689	int slot;
4690	struct extent_buffer *leaf;
4691	struct btrfs_item *item;
4692	u32 nritems;
4693	unsigned int data_end;
4694	unsigned int old_data;
4695	unsigned int old_size;
4696	int i;
4697	struct btrfs_map_token token;
4698
4699	btrfs_init_map_token(&token);
4700
4701	leaf = path->nodes[0];
4702
4703	nritems = btrfs_header_nritems(leaf);
4704	data_end = leaf_data_end(root, leaf);
4705
4706	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4707		btrfs_print_leaf(root, leaf);
4708		BUG();
4709	}
4710	slot = path->slots[0];
4711	old_data = btrfs_item_end_nr(leaf, slot);
4712
4713	BUG_ON(slot < 0);
4714	if (slot >= nritems) {
4715		btrfs_print_leaf(root, leaf);
4716		btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4717		       slot, nritems);
4718		BUG_ON(1);
4719	}
4720
4721	/*
4722	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4723	 */
4724	/* first correct the data pointers */
4725	for (i = slot; i < nritems; i++) {
4726		u32 ioff;
4727		item = btrfs_item_nr(i);
4728
4729		ioff = btrfs_token_item_offset(leaf, item, &token);
4730		btrfs_set_token_item_offset(leaf, item,
4731					    ioff - data_size, &token);
4732	}
4733
4734	/* shift the data */
4735	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4736		      data_end - data_size, btrfs_leaf_data(leaf) +
4737		      data_end, old_data - data_end);
4738
4739	data_end = old_data;
4740	old_size = btrfs_item_size_nr(leaf, slot);
4741	item = btrfs_item_nr(slot);
4742	btrfs_set_item_size(leaf, item, old_size + data_size);
4743	btrfs_mark_buffer_dirty(leaf);
4744
4745	if (btrfs_leaf_free_space(root, leaf) < 0) {
4746		btrfs_print_leaf(root, leaf);
4747		BUG();
4748	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4749}
4750
4751/*
4752 * this is a helper for btrfs_insert_empty_items, the main goal here is
4753 * to save stack depth by doing the bulk of the work in a function
4754 * that doesn't call btrfs_search_slot
4755 */
4756void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4757			    struct btrfs_key *cpu_key, u32 *data_size,
4758			    u32 total_data, u32 total_size, int nr)
 
4759{
4760	struct btrfs_item *item;
4761	int i;
4762	u32 nritems;
4763	unsigned int data_end;
4764	struct btrfs_disk_key disk_key;
 
4765	struct extent_buffer *leaf;
4766	int slot;
4767	struct btrfs_map_token token;
4768
4769	btrfs_init_map_token(&token);
4770
4771	leaf = path->nodes[0];
4772	slot = path->slots[0];
4773
4774	nritems = btrfs_header_nritems(leaf);
4775	data_end = leaf_data_end(root, leaf);
4776
4777	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4778		btrfs_print_leaf(root, leaf);
4779		btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4780		       total_size, btrfs_leaf_free_space(root, leaf));
4781		BUG();
4782	}
4783
4784	if (slot != nritems) {
4785		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4786
4787		if (old_data < data_end) {
4788			btrfs_print_leaf(root, leaf);
4789			btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4790			       slot, old_data, data_end);
4791			BUG_ON(1);
4792		}
4793		/*
4794		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4795		 */
4796		/* first correct the data pointers */
4797		for (i = slot; i < nritems; i++) {
4798			u32 ioff;
4799
4800			item = btrfs_item_nr( i);
4801			ioff = btrfs_token_item_offset(leaf, item, &token);
4802			btrfs_set_token_item_offset(leaf, item,
4803						    ioff - total_data, &token);
4804		}
4805		/* shift the items */
4806		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4807			      btrfs_item_nr_offset(slot),
4808			      (nritems - slot) * sizeof(struct btrfs_item));
4809
4810		/* shift the data */
4811		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4812			      data_end - total_data, btrfs_leaf_data(leaf) +
4813			      data_end, old_data - data_end);
4814		data_end = old_data;
4815	}
4816
4817	/* setup the item for the new data */
4818	for (i = 0; i < nr; i++) {
4819		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4820		btrfs_set_item_key(leaf, &disk_key, slot + i);
4821		item = btrfs_item_nr(slot + i);
4822		btrfs_set_token_item_offset(leaf, item,
4823					    data_end - data_size[i], &token);
4824		data_end -= data_size[i];
4825		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4826	}
4827
4828	btrfs_set_header_nritems(leaf, nritems + nr);
4829
 
4830	if (slot == 0) {
4831		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4832		fixup_low_keys(root, path, &disk_key, 1);
4833	}
4834	btrfs_unlock_up_safe(path, 1);
4835	btrfs_mark_buffer_dirty(leaf);
4836
4837	if (btrfs_leaf_free_space(root, leaf) < 0) {
4838		btrfs_print_leaf(root, leaf);
4839		BUG();
4840	}
 
4841}
4842
4843/*
4844 * Given a key and some data, insert items into the tree.
4845 * This does all the path init required, making room in the tree if needed.
4846 */
4847int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4848			    struct btrfs_root *root,
4849			    struct btrfs_path *path,
4850			    struct btrfs_key *cpu_key, u32 *data_size,
4851			    int nr)
4852{
4853	int ret = 0;
4854	int slot;
4855	int i;
4856	u32 total_size = 0;
4857	u32 total_data = 0;
4858
4859	for (i = 0; i < nr; i++)
4860		total_data += data_size[i];
4861
4862	total_size = total_data + (nr * sizeof(struct btrfs_item));
4863	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4864	if (ret == 0)
4865		return -EEXIST;
4866	if (ret < 0)
4867		return ret;
4868
4869	slot = path->slots[0];
4870	BUG_ON(slot < 0);
4871
4872	setup_items_for_insert(root, path, cpu_key, data_size,
4873			       total_data, total_size, nr);
4874	return 0;
 
 
4875}
4876
4877/*
4878 * Given a key and some data, insert an item into the tree.
4879 * This does all the path init required, making room in the tree if needed.
4880 */
4881int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4882		      *root, struct btrfs_key *cpu_key, void *data, u32
4883		      data_size)
4884{
4885	int ret = 0;
4886	struct btrfs_path *path;
4887	struct extent_buffer *leaf;
4888	unsigned long ptr;
4889
4890	path = btrfs_alloc_path();
4891	if (!path)
4892		return -ENOMEM;
4893	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4894	if (!ret) {
4895		leaf = path->nodes[0];
4896		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4897		write_extent_buffer(leaf, data, ptr, data_size);
4898		btrfs_mark_buffer_dirty(leaf);
4899	}
4900	btrfs_free_path(path);
4901	return ret;
4902}
4903
4904/*
4905 * delete the pointer from a given node.
4906 *
4907 * the tree should have been previously balanced so the deletion does not
4908 * empty a node.
4909 */
4910static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4911		    int level, int slot)
4912{
4913	struct extent_buffer *parent = path->nodes[level];
4914	u32 nritems;
4915	int ret;
 
4916
4917	nritems = btrfs_header_nritems(parent);
4918	if (slot != nritems - 1) {
4919		if (level)
4920			tree_mod_log_eb_move(root->fs_info, parent, slot,
4921					     slot + 1, nritems - slot - 1);
4922		memmove_extent_buffer(parent,
4923			      btrfs_node_key_ptr_offset(slot),
4924			      btrfs_node_key_ptr_offset(slot + 1),
4925			      sizeof(struct btrfs_key_ptr) *
4926			      (nritems - slot - 1));
4927	} else if (level) {
4928		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4929					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4930		BUG_ON(ret < 0);
4931	}
4932
4933	nritems--;
4934	btrfs_set_header_nritems(parent, nritems);
4935	if (nritems == 0 && parent == root->node) {
4936		BUG_ON(btrfs_header_level(root->node) != 1);
4937		/* just turn the root into a leaf and break */
4938		btrfs_set_header_level(root->node, 0);
4939	} else if (slot == 0) {
4940		struct btrfs_disk_key disk_key;
4941
4942		btrfs_node_key(parent, &disk_key, 0);
4943		fixup_low_keys(root, path, &disk_key, level + 1);
 
 
4944	}
4945	btrfs_mark_buffer_dirty(parent);
 
4946}
4947
4948/*
4949 * a helper function to delete the leaf pointed to by path->slots[1] and
4950 * path->nodes[1].
4951 *
4952 * This deletes the pointer in path->nodes[1] and frees the leaf
4953 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4954 *
4955 * The path must have already been setup for deleting the leaf, including
4956 * all the proper balancing.  path->nodes[1] must be locked.
4957 */
4958static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4959				    struct btrfs_root *root,
4960				    struct btrfs_path *path,
4961				    struct extent_buffer *leaf)
4962{
 
 
4963	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4964	del_ptr(root, path, 1, path->slots[1]);
 
 
4965
4966	/*
4967	 * btrfs_free_extent is expensive, we want to make sure we
4968	 * aren't holding any locks when we call it
4969	 */
4970	btrfs_unlock_up_safe(path, 0);
4971
4972	root_sub_used(root, leaf->len);
4973
4974	extent_buffer_get(leaf);
4975	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4976	free_extent_buffer_stale(leaf);
4977}
4978/*
4979 * delete the item at the leaf level in path.  If that empties
4980 * the leaf, remove it from the tree
4981 */
4982int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4983		    struct btrfs_path *path, int slot, int nr)
4984{
4985	struct extent_buffer *leaf;
4986	struct btrfs_item *item;
4987	int last_off;
4988	int dsize = 0;
4989	int ret = 0;
4990	int wret;
4991	int i;
4992	u32 nritems;
4993	struct btrfs_map_token token;
4994
4995	btrfs_init_map_token(&token);
4996
4997	leaf = path->nodes[0];
4998	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4999
5000	for (i = 0; i < nr; i++)
5001		dsize += btrfs_item_size_nr(leaf, slot + i);
5002
5003	nritems = btrfs_header_nritems(leaf);
5004
5005	if (slot + nr != nritems) {
5006		int data_end = leaf_data_end(root, leaf);
5007
5008		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
5009			      data_end + dsize,
5010			      btrfs_leaf_data(leaf) + data_end,
5011			      last_off - data_end);
5012
5013		for (i = slot + nr; i < nritems; i++) {
5014			u32 ioff;
5015
5016			item = btrfs_item_nr(i);
5017			ioff = btrfs_token_item_offset(leaf, item, &token);
5018			btrfs_set_token_item_offset(leaf, item,
5019						    ioff + dsize, &token);
5020		}
5021
5022		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5023			      btrfs_item_nr_offset(slot + nr),
5024			      sizeof(struct btrfs_item) *
5025			      (nritems - slot - nr));
5026	}
5027	btrfs_set_header_nritems(leaf, nritems - nr);
5028	nritems -= nr;
5029
5030	/* delete the leaf if we've emptied it */
5031	if (nritems == 0) {
5032		if (leaf == root->node) {
5033			btrfs_set_header_level(leaf, 0);
5034		} else {
5035			btrfs_set_path_blocking(path);
5036			clean_tree_block(trans, root, leaf);
5037			btrfs_del_leaf(trans, root, path, leaf);
 
5038		}
5039	} else {
5040		int used = leaf_space_used(leaf, 0, nritems);
5041		if (slot == 0) {
5042			struct btrfs_disk_key disk_key;
5043
5044			btrfs_item_key(leaf, &disk_key, 0);
5045			fixup_low_keys(root, path, &disk_key, 1);
 
 
 
5046		}
5047
5048		/* delete the leaf if it is mostly empty */
5049		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5050			/* push_leaf_left fixes the path.
5051			 * make sure the path still points to our leaf
5052			 * for possible call to del_ptr below
5053			 */
5054			slot = path->slots[1];
5055			extent_buffer_get(leaf);
5056
5057			btrfs_set_path_blocking(path);
5058			wret = push_leaf_left(trans, root, path, 1, 1,
5059					      1, (u32)-1);
5060			if (wret < 0 && wret != -ENOSPC)
5061				ret = wret;
5062
5063			if (path->nodes[0] == leaf &&
5064			    btrfs_header_nritems(leaf)) {
5065				wret = push_leaf_right(trans, root, path, 1,
5066						       1, 1, 0);
5067				if (wret < 0 && wret != -ENOSPC)
5068					ret = wret;
5069			}
5070
5071			if (btrfs_header_nritems(leaf) == 0) {
5072				path->slots[1] = slot;
5073				btrfs_del_leaf(trans, root, path, leaf);
 
5074				free_extent_buffer(leaf);
5075				ret = 0;
5076			} else {
5077				/* if we're still in the path, make sure
5078				 * we're dirty.  Otherwise, one of the
5079				 * push_leaf functions must have already
5080				 * dirtied this buffer
5081				 */
5082				if (path->nodes[0] == leaf)
5083					btrfs_mark_buffer_dirty(leaf);
5084				free_extent_buffer(leaf);
5085			}
5086		} else {
5087			btrfs_mark_buffer_dirty(leaf);
5088		}
5089	}
5090	return ret;
5091}
5092
5093/*
5094 * search the tree again to find a leaf with lesser keys
5095 * returns 0 if it found something or 1 if there are no lesser leaves.
5096 * returns < 0 on io errors.
5097 *
5098 * This may release the path, and so you may lose any locks held at the
5099 * time you call it.
5100 */
5101int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5102{
5103	struct btrfs_key key;
5104	struct btrfs_disk_key found_key;
5105	int ret;
5106
5107	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5108
5109	if (key.offset > 0) {
5110		key.offset--;
5111	} else if (key.type > 0) {
5112		key.type--;
5113		key.offset = (u64)-1;
5114	} else if (key.objectid > 0) {
5115		key.objectid--;
5116		key.type = (u8)-1;
5117		key.offset = (u64)-1;
5118	} else {
5119		return 1;
5120	}
5121
5122	btrfs_release_path(path);
5123	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5124	if (ret < 0)
5125		return ret;
5126	btrfs_item_key(path->nodes[0], &found_key, 0);
5127	ret = comp_keys(&found_key, &key);
5128	if (ret < 0)
5129		return 0;
5130	return 1;
5131}
5132
5133/*
5134 * A helper function to walk down the tree starting at min_key, and looking
5135 * for nodes or leaves that are have a minimum transaction id.
5136 * This is used by the btree defrag code, and tree logging
5137 *
5138 * This does not cow, but it does stuff the starting key it finds back
5139 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5140 * key and get a writable path.
5141 *
5142 * This does lock as it descends, and path->keep_locks should be set
5143 * to 1 by the caller.
5144 *
5145 * This honors path->lowest_level to prevent descent past a given level
5146 * of the tree.
5147 *
5148 * min_trans indicates the oldest transaction that you are interested
5149 * in walking through.  Any nodes or leaves older than min_trans are
5150 * skipped over (without reading them).
5151 *
5152 * returns zero if something useful was found, < 0 on error and 1 if there
5153 * was nothing in the tree that matched the search criteria.
5154 */
5155int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5156			 struct btrfs_path *path,
 
5157			 u64 min_trans)
5158{
5159	struct extent_buffer *cur;
5160	struct btrfs_key found_key;
5161	int slot;
5162	int sret;
5163	u32 nritems;
5164	int level;
5165	int ret = 1;
5166
5167	WARN_ON(!path->keep_locks);
5168again:
5169	cur = btrfs_read_lock_root_node(root);
5170	level = btrfs_header_level(cur);
5171	WARN_ON(path->nodes[level]);
5172	path->nodes[level] = cur;
5173	path->locks[level] = BTRFS_READ_LOCK;
5174
5175	if (btrfs_header_generation(cur) < min_trans) {
5176		ret = 1;
5177		goto out;
5178	}
5179	while (1) {
5180		nritems = btrfs_header_nritems(cur);
5181		level = btrfs_header_level(cur);
5182		sret = bin_search(cur, min_key, level, &slot);
5183
5184		/* at the lowest level, we're done, setup the path and exit */
5185		if (level == path->lowest_level) {
5186			if (slot >= nritems)
5187				goto find_next_key;
5188			ret = 0;
5189			path->slots[level] = slot;
5190			btrfs_item_key_to_cpu(cur, &found_key, slot);
5191			goto out;
5192		}
5193		if (sret && slot > 0)
5194			slot--;
5195		/*
5196		 * check this node pointer against the min_trans parameters.
5197		 * If it is too old, old, skip to the next one.
 
5198		 */
5199		while (slot < nritems) {
 
5200			u64 gen;
 
 
5201
 
5202			gen = btrfs_node_ptr_generation(cur, slot);
5203			if (gen < min_trans) {
5204				slot++;
5205				continue;
5206			}
5207			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5208		}
5209find_next_key:
5210		/*
5211		 * we didn't find a candidate key in this node, walk forward
5212		 * and find another one
5213		 */
5214		if (slot >= nritems) {
5215			path->slots[level] = slot;
5216			btrfs_set_path_blocking(path);
5217			sret = btrfs_find_next_key(root, path, min_key, level,
5218						  min_trans);
5219			if (sret == 0) {
5220				btrfs_release_path(path);
5221				goto again;
5222			} else {
5223				goto out;
5224			}
5225		}
5226		/* save our key for returning back */
5227		btrfs_node_key_to_cpu(cur, &found_key, slot);
5228		path->slots[level] = slot;
5229		if (level == path->lowest_level) {
5230			ret = 0;
5231			unlock_up(path, level, 1, 0, NULL);
5232			goto out;
5233		}
5234		btrfs_set_path_blocking(path);
5235		cur = read_node_slot(root, cur, slot);
5236		BUG_ON(!cur); /* -ENOMEM */
5237
5238		btrfs_tree_read_lock(cur);
5239
5240		path->locks[level - 1] = BTRFS_READ_LOCK;
5241		path->nodes[level - 1] = cur;
5242		unlock_up(path, level, 1, 0, NULL);
5243		btrfs_clear_path_blocking(path, NULL, 0);
5244	}
5245out:
5246	if (ret == 0)
5247		memcpy(min_key, &found_key, sizeof(found_key));
5248	btrfs_set_path_blocking(path);
5249	return ret;
5250}
5251
5252static void tree_move_down(struct btrfs_root *root,
5253			   struct btrfs_path *path,
5254			   int *level, int root_level)
5255{
5256	BUG_ON(*level == 0);
5257	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5258					path->slots[*level]);
5259	path->slots[*level - 1] = 0;
5260	(*level)--;
5261}
5262
5263static int tree_move_next_or_upnext(struct btrfs_root *root,
5264				    struct btrfs_path *path,
5265				    int *level, int root_level)
5266{
5267	int ret = 0;
5268	int nritems;
5269	nritems = btrfs_header_nritems(path->nodes[*level]);
5270
5271	path->slots[*level]++;
5272
5273	while (path->slots[*level] >= nritems) {
5274		if (*level == root_level)
5275			return -1;
5276
5277		/* move upnext */
5278		path->slots[*level] = 0;
5279		free_extent_buffer(path->nodes[*level]);
5280		path->nodes[*level] = NULL;
5281		(*level)++;
5282		path->slots[*level]++;
5283
5284		nritems = btrfs_header_nritems(path->nodes[*level]);
5285		ret = 1;
5286	}
5287	return ret;
5288}
5289
5290/*
5291 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5292 * or down.
5293 */
5294static int tree_advance(struct btrfs_root *root,
5295			struct btrfs_path *path,
5296			int *level, int root_level,
5297			int allow_down,
5298			struct btrfs_key *key)
5299{
5300	int ret;
5301
5302	if (*level == 0 || !allow_down) {
5303		ret = tree_move_next_or_upnext(root, path, level, root_level);
5304	} else {
5305		tree_move_down(root, path, level, root_level);
5306		ret = 0;
5307	}
5308	if (ret >= 0) {
5309		if (*level == 0)
5310			btrfs_item_key_to_cpu(path->nodes[*level], key,
5311					path->slots[*level]);
5312		else
5313			btrfs_node_key_to_cpu(path->nodes[*level], key,
5314					path->slots[*level]);
5315	}
5316	return ret;
5317}
5318
5319static int tree_compare_item(struct btrfs_root *left_root,
5320			     struct btrfs_path *left_path,
5321			     struct btrfs_path *right_path,
5322			     char *tmp_buf)
5323{
5324	int cmp;
5325	int len1, len2;
5326	unsigned long off1, off2;
5327
5328	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5329	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5330	if (len1 != len2)
5331		return 1;
5332
5333	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5334	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5335				right_path->slots[0]);
5336
5337	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5338
5339	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5340	if (cmp)
5341		return 1;
5342	return 0;
5343}
5344
5345#define ADVANCE 1
5346#define ADVANCE_ONLY_NEXT -1
5347
5348/*
5349 * This function compares two trees and calls the provided callback for
5350 * every changed/new/deleted item it finds.
5351 * If shared tree blocks are encountered, whole subtrees are skipped, making
5352 * the compare pretty fast on snapshotted subvolumes.
5353 *
5354 * This currently works on commit roots only. As commit roots are read only,
5355 * we don't do any locking. The commit roots are protected with transactions.
5356 * Transactions are ended and rejoined when a commit is tried in between.
5357 *
5358 * This function checks for modifications done to the trees while comparing.
5359 * If it detects a change, it aborts immediately.
5360 */
5361int btrfs_compare_trees(struct btrfs_root *left_root,
5362			struct btrfs_root *right_root,
5363			btrfs_changed_cb_t changed_cb, void *ctx)
5364{
5365	int ret;
5366	int cmp;
5367	struct btrfs_path *left_path = NULL;
5368	struct btrfs_path *right_path = NULL;
5369	struct btrfs_key left_key;
5370	struct btrfs_key right_key;
5371	char *tmp_buf = NULL;
5372	int left_root_level;
5373	int right_root_level;
5374	int left_level;
5375	int right_level;
5376	int left_end_reached;
5377	int right_end_reached;
5378	int advance_left;
5379	int advance_right;
5380	u64 left_blockptr;
5381	u64 right_blockptr;
5382	u64 left_gen;
5383	u64 right_gen;
5384
5385	left_path = btrfs_alloc_path();
5386	if (!left_path) {
5387		ret = -ENOMEM;
5388		goto out;
5389	}
5390	right_path = btrfs_alloc_path();
5391	if (!right_path) {
5392		ret = -ENOMEM;
5393		goto out;
5394	}
5395
5396	tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5397	if (!tmp_buf) {
5398		ret = -ENOMEM;
5399		goto out;
5400	}
5401
5402	left_path->search_commit_root = 1;
5403	left_path->skip_locking = 1;
5404	right_path->search_commit_root = 1;
5405	right_path->skip_locking = 1;
5406
5407	/*
5408	 * Strategy: Go to the first items of both trees. Then do
5409	 *
5410	 * If both trees are at level 0
5411	 *   Compare keys of current items
5412	 *     If left < right treat left item as new, advance left tree
5413	 *       and repeat
5414	 *     If left > right treat right item as deleted, advance right tree
5415	 *       and repeat
5416	 *     If left == right do deep compare of items, treat as changed if
5417	 *       needed, advance both trees and repeat
5418	 * If both trees are at the same level but not at level 0
5419	 *   Compare keys of current nodes/leafs
5420	 *     If left < right advance left tree and repeat
5421	 *     If left > right advance right tree and repeat
5422	 *     If left == right compare blockptrs of the next nodes/leafs
5423	 *       If they match advance both trees but stay at the same level
5424	 *         and repeat
5425	 *       If they don't match advance both trees while allowing to go
5426	 *         deeper and repeat
5427	 * If tree levels are different
5428	 *   Advance the tree that needs it and repeat
5429	 *
5430	 * Advancing a tree means:
5431	 *   If we are at level 0, try to go to the next slot. If that's not
5432	 *   possible, go one level up and repeat. Stop when we found a level
5433	 *   where we could go to the next slot. We may at this point be on a
5434	 *   node or a leaf.
5435	 *
5436	 *   If we are not at level 0 and not on shared tree blocks, go one
5437	 *   level deeper.
5438	 *
5439	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5440	 *   the right if possible or go up and right.
5441	 */
5442
5443	down_read(&left_root->fs_info->commit_root_sem);
5444	left_level = btrfs_header_level(left_root->commit_root);
5445	left_root_level = left_level;
5446	left_path->nodes[left_level] = left_root->commit_root;
5447	extent_buffer_get(left_path->nodes[left_level]);
5448
5449	right_level = btrfs_header_level(right_root->commit_root);
5450	right_root_level = right_level;
5451	right_path->nodes[right_level] = right_root->commit_root;
5452	extent_buffer_get(right_path->nodes[right_level]);
5453	up_read(&left_root->fs_info->commit_root_sem);
5454
5455	if (left_level == 0)
5456		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5457				&left_key, left_path->slots[left_level]);
5458	else
5459		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5460				&left_key, left_path->slots[left_level]);
5461	if (right_level == 0)
5462		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5463				&right_key, right_path->slots[right_level]);
5464	else
5465		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5466				&right_key, right_path->slots[right_level]);
5467
5468	left_end_reached = right_end_reached = 0;
5469	advance_left = advance_right = 0;
5470
5471	while (1) {
5472		if (advance_left && !left_end_reached) {
5473			ret = tree_advance(left_root, left_path, &left_level,
5474					left_root_level,
5475					advance_left != ADVANCE_ONLY_NEXT,
5476					&left_key);
5477			if (ret < 0)
5478				left_end_reached = ADVANCE;
5479			advance_left = 0;
5480		}
5481		if (advance_right && !right_end_reached) {
5482			ret = tree_advance(right_root, right_path, &right_level,
5483					right_root_level,
5484					advance_right != ADVANCE_ONLY_NEXT,
5485					&right_key);
5486			if (ret < 0)
5487				right_end_reached = ADVANCE;
5488			advance_right = 0;
5489		}
5490
5491		if (left_end_reached && right_end_reached) {
5492			ret = 0;
5493			goto out;
5494		} else if (left_end_reached) {
5495			if (right_level == 0) {
5496				ret = changed_cb(left_root, right_root,
5497						left_path, right_path,
5498						&right_key,
5499						BTRFS_COMPARE_TREE_DELETED,
5500						ctx);
5501				if (ret < 0)
5502					goto out;
5503			}
5504			advance_right = ADVANCE;
5505			continue;
5506		} else if (right_end_reached) {
5507			if (left_level == 0) {
5508				ret = changed_cb(left_root, right_root,
5509						left_path, right_path,
5510						&left_key,
5511						BTRFS_COMPARE_TREE_NEW,
5512						ctx);
5513				if (ret < 0)
5514					goto out;
5515			}
5516			advance_left = ADVANCE;
5517			continue;
5518		}
5519
5520		if (left_level == 0 && right_level == 0) {
5521			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5522			if (cmp < 0) {
5523				ret = changed_cb(left_root, right_root,
5524						left_path, right_path,
5525						&left_key,
5526						BTRFS_COMPARE_TREE_NEW,
5527						ctx);
5528				if (ret < 0)
5529					goto out;
5530				advance_left = ADVANCE;
5531			} else if (cmp > 0) {
5532				ret = changed_cb(left_root, right_root,
5533						left_path, right_path,
5534						&right_key,
5535						BTRFS_COMPARE_TREE_DELETED,
5536						ctx);
5537				if (ret < 0)
5538					goto out;
5539				advance_right = ADVANCE;
5540			} else {
5541				enum btrfs_compare_tree_result cmp;
5542
5543				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5544				ret = tree_compare_item(left_root, left_path,
5545						right_path, tmp_buf);
5546				if (ret)
5547					cmp = BTRFS_COMPARE_TREE_CHANGED;
5548				else
5549					cmp = BTRFS_COMPARE_TREE_SAME;
5550				ret = changed_cb(left_root, right_root,
5551						 left_path, right_path,
5552						 &left_key, cmp, ctx);
5553				if (ret < 0)
5554					goto out;
5555				advance_left = ADVANCE;
5556				advance_right = ADVANCE;
5557			}
5558		} else if (left_level == right_level) {
5559			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5560			if (cmp < 0) {
5561				advance_left = ADVANCE;
5562			} else if (cmp > 0) {
5563				advance_right = ADVANCE;
5564			} else {
5565				left_blockptr = btrfs_node_blockptr(
5566						left_path->nodes[left_level],
5567						left_path->slots[left_level]);
5568				right_blockptr = btrfs_node_blockptr(
5569						right_path->nodes[right_level],
5570						right_path->slots[right_level]);
5571				left_gen = btrfs_node_ptr_generation(
5572						left_path->nodes[left_level],
5573						left_path->slots[left_level]);
5574				right_gen = btrfs_node_ptr_generation(
5575						right_path->nodes[right_level],
5576						right_path->slots[right_level]);
5577				if (left_blockptr == right_blockptr &&
5578				    left_gen == right_gen) {
5579					/*
5580					 * As we're on a shared block, don't
5581					 * allow to go deeper.
5582					 */
5583					advance_left = ADVANCE_ONLY_NEXT;
5584					advance_right = ADVANCE_ONLY_NEXT;
5585				} else {
5586					advance_left = ADVANCE;
5587					advance_right = ADVANCE;
5588				}
5589			}
5590		} else if (left_level < right_level) {
5591			advance_right = ADVANCE;
5592		} else {
5593			advance_left = ADVANCE;
5594		}
5595	}
5596
5597out:
5598	btrfs_free_path(left_path);
5599	btrfs_free_path(right_path);
5600	kfree(tmp_buf);
5601	return ret;
5602}
5603
5604/*
5605 * this is similar to btrfs_next_leaf, but does not try to preserve
5606 * and fixup the path.  It looks for and returns the next key in the
5607 * tree based on the current path and the min_trans parameters.
 
5608 *
5609 * 0 is returned if another key is found, < 0 if there are any errors
5610 * and 1 is returned if there are no higher keys in the tree
5611 *
5612 * path->keep_locks should be set to 1 on the search made before
5613 * calling this function.
5614 */
5615int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5616			struct btrfs_key *key, int level, u64 min_trans)
 
5617{
5618	int slot;
5619	struct extent_buffer *c;
5620
5621	WARN_ON(!path->keep_locks);
5622	while (level < BTRFS_MAX_LEVEL) {
5623		if (!path->nodes[level])
5624			return 1;
5625
5626		slot = path->slots[level] + 1;
5627		c = path->nodes[level];
5628next:
5629		if (slot >= btrfs_header_nritems(c)) {
5630			int ret;
5631			int orig_lowest;
5632			struct btrfs_key cur_key;
5633			if (level + 1 >= BTRFS_MAX_LEVEL ||
5634			    !path->nodes[level + 1])
5635				return 1;
5636
5637			if (path->locks[level + 1]) {
5638				level++;
5639				continue;
5640			}
5641
5642			slot = btrfs_header_nritems(c) - 1;
5643			if (level == 0)
5644				btrfs_item_key_to_cpu(c, &cur_key, slot);
5645			else
5646				btrfs_node_key_to_cpu(c, &cur_key, slot);
5647
5648			orig_lowest = path->lowest_level;
5649			btrfs_release_path(path);
5650			path->lowest_level = level;
5651			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5652						0, 0);
5653			path->lowest_level = orig_lowest;
5654			if (ret < 0)
5655				return ret;
5656
5657			c = path->nodes[level];
5658			slot = path->slots[level];
5659			if (ret == 0)
5660				slot++;
5661			goto next;
5662		}
5663
5664		if (level == 0)
5665			btrfs_item_key_to_cpu(c, key, slot);
5666		else {
 
5667			u64 gen = btrfs_node_ptr_generation(c, slot);
5668
 
 
 
 
 
 
 
 
 
 
 
 
5669			if (gen < min_trans) {
5670				slot++;
5671				goto next;
5672			}
5673			btrfs_node_key_to_cpu(c, key, slot);
5674		}
5675		return 0;
5676	}
5677	return 1;
5678}
5679
5680/*
5681 * search the tree again to find a leaf with greater keys
5682 * returns 0 if it found something or 1 if there are no greater leaves.
5683 * returns < 0 on io errors.
5684 */
5685int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5686{
5687	return btrfs_next_old_leaf(root, path, 0);
5688}
5689
5690int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5691			u64 time_seq)
5692{
5693	int slot;
5694	int level;
5695	struct extent_buffer *c;
5696	struct extent_buffer *next;
5697	struct btrfs_key key;
5698	u32 nritems;
5699	int ret;
5700	int old_spinning = path->leave_spinning;
5701	int next_rw_lock = 0;
5702
5703	nritems = btrfs_header_nritems(path->nodes[0]);
5704	if (nritems == 0)
5705		return 1;
5706
5707	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5708again:
5709	level = 1;
5710	next = NULL;
5711	next_rw_lock = 0;
5712	btrfs_release_path(path);
5713
5714	path->keep_locks = 1;
5715	path->leave_spinning = 1;
5716
5717	if (time_seq)
5718		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5719	else
5720		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5721	path->keep_locks = 0;
5722
5723	if (ret < 0)
5724		return ret;
5725
5726	nritems = btrfs_header_nritems(path->nodes[0]);
5727	/*
5728	 * by releasing the path above we dropped all our locks.  A balance
5729	 * could have added more items next to the key that used to be
5730	 * at the very end of the block.  So, check again here and
5731	 * advance the path if there are now more items available.
5732	 */
5733	if (nritems > 0 && path->slots[0] < nritems - 1) {
5734		if (ret == 0)
5735			path->slots[0]++;
5736		ret = 0;
5737		goto done;
5738	}
5739
5740	while (level < BTRFS_MAX_LEVEL) {
5741		if (!path->nodes[level]) {
5742			ret = 1;
5743			goto done;
5744		}
5745
5746		slot = path->slots[level] + 1;
5747		c = path->nodes[level];
5748		if (slot >= btrfs_header_nritems(c)) {
5749			level++;
5750			if (level == BTRFS_MAX_LEVEL) {
5751				ret = 1;
5752				goto done;
5753			}
5754			continue;
5755		}
5756
5757		if (next) {
5758			btrfs_tree_unlock_rw(next, next_rw_lock);
5759			free_extent_buffer(next);
5760		}
5761
5762		next = c;
5763		next_rw_lock = path->locks[level];
5764		ret = read_block_for_search(NULL, root, path, &next, level,
5765					    slot, &key, 0);
5766		if (ret == -EAGAIN)
5767			goto again;
5768
5769		if (ret < 0) {
5770			btrfs_release_path(path);
5771			goto done;
5772		}
5773
5774		if (!path->skip_locking) {
5775			ret = btrfs_try_tree_read_lock(next);
5776			if (!ret && time_seq) {
5777				/*
5778				 * If we don't get the lock, we may be racing
5779				 * with push_leaf_left, holding that lock while
5780				 * itself waiting for the leaf we've currently
5781				 * locked. To solve this situation, we give up
5782				 * on our lock and cycle.
5783				 */
5784				free_extent_buffer(next);
5785				btrfs_release_path(path);
5786				cond_resched();
5787				goto again;
5788			}
5789			if (!ret) {
5790				btrfs_set_path_blocking(path);
5791				btrfs_tree_read_lock(next);
5792				btrfs_clear_path_blocking(path, next,
5793							  BTRFS_READ_LOCK);
5794			}
5795			next_rw_lock = BTRFS_READ_LOCK;
5796		}
5797		break;
5798	}
5799	path->slots[level] = slot;
5800	while (1) {
5801		level--;
5802		c = path->nodes[level];
5803		if (path->locks[level])
5804			btrfs_tree_unlock_rw(c, path->locks[level]);
5805
5806		free_extent_buffer(c);
5807		path->nodes[level] = next;
5808		path->slots[level] = 0;
5809		if (!path->skip_locking)
5810			path->locks[level] = next_rw_lock;
5811		if (!level)
5812			break;
5813
5814		ret = read_block_for_search(NULL, root, path, &next, level,
5815					    0, &key, 0);
5816		if (ret == -EAGAIN)
5817			goto again;
5818
5819		if (ret < 0) {
5820			btrfs_release_path(path);
5821			goto done;
5822		}
5823
5824		if (!path->skip_locking) {
5825			ret = btrfs_try_tree_read_lock(next);
5826			if (!ret) {
5827				btrfs_set_path_blocking(path);
5828				btrfs_tree_read_lock(next);
5829				btrfs_clear_path_blocking(path, next,
5830							  BTRFS_READ_LOCK);
5831			}
5832			next_rw_lock = BTRFS_READ_LOCK;
5833		}
5834	}
5835	ret = 0;
5836done:
5837	unlock_up(path, 0, 1, 0, NULL);
5838	path->leave_spinning = old_spinning;
5839	if (!old_spinning)
5840		btrfs_set_path_blocking(path);
5841
5842	return ret;
5843}
5844
5845/*
5846 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5847 * searching until it gets past min_objectid or finds an item of 'type'
5848 *
5849 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5850 */
5851int btrfs_previous_item(struct btrfs_root *root,
5852			struct btrfs_path *path, u64 min_objectid,
5853			int type)
5854{
5855	struct btrfs_key found_key;
5856	struct extent_buffer *leaf;
5857	u32 nritems;
5858	int ret;
5859
5860	while (1) {
5861		if (path->slots[0] == 0) {
5862			btrfs_set_path_blocking(path);
5863			ret = btrfs_prev_leaf(root, path);
5864			if (ret != 0)
5865				return ret;
5866		} else {
5867			path->slots[0]--;
5868		}
5869		leaf = path->nodes[0];
5870		nritems = btrfs_header_nritems(leaf);
5871		if (nritems == 0)
5872			return 1;
5873		if (path->slots[0] == nritems)
5874			path->slots[0]--;
5875
5876		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5877		if (found_key.objectid < min_objectid)
5878			break;
5879		if (found_key.type == type)
5880			return 0;
5881		if (found_key.objectid == min_objectid &&
5882		    found_key.type < type)
5883			break;
5884	}
5885	return 1;
5886}
5887
5888/*
5889 * search in extent tree to find a previous Metadata/Data extent item with
5890 * min objecitd.
5891 *
5892 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5893 */
5894int btrfs_previous_extent_item(struct btrfs_root *root,
5895			struct btrfs_path *path, u64 min_objectid)
5896{
5897	struct btrfs_key found_key;
5898	struct extent_buffer *leaf;
5899	u32 nritems;
5900	int ret;
5901
5902	while (1) {
5903		if (path->slots[0] == 0) {
5904			btrfs_set_path_blocking(path);
5905			ret = btrfs_prev_leaf(root, path);
5906			if (ret != 0)
5907				return ret;
5908		} else {
5909			path->slots[0]--;
5910		}
5911		leaf = path->nodes[0];
5912		nritems = btrfs_header_nritems(leaf);
5913		if (nritems == 0)
5914			return 1;
5915		if (path->slots[0] == nritems)
5916			path->slots[0]--;
5917
5918		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5919		if (found_key.objectid < min_objectid)
5920			break;
5921		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5922		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5923			return 0;
5924		if (found_key.objectid == min_objectid &&
5925		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5926			break;
5927	}
5928	return 1;
5929}