Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v3.1
   1/*
   2 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
 
 
  21#include "ctree.h"
  22#include "disk-io.h"
  23#include "transaction.h"
  24#include "print-tree.h"
  25#include "locking.h"
  26
  27static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  28		      *root, struct btrfs_path *path, int level);
  29static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  30		      *root, struct btrfs_key *ins_key,
  31		      struct btrfs_path *path, int data_size, int extend);
  32static int push_node_left(struct btrfs_trans_handle *trans,
  33			  struct btrfs_root *root, struct extent_buffer *dst,
 
  34			  struct extent_buffer *src, int empty);
  35static int balance_node_right(struct btrfs_trans_handle *trans,
  36			      struct btrfs_root *root,
  37			      struct extent_buffer *dst_buf,
  38			      struct extent_buffer *src_buf);
  39static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  40		   struct btrfs_path *path, int level, int slot);
 
 
  41
  42struct btrfs_path *btrfs_alloc_path(void)
  43{
  44	struct btrfs_path *path;
  45	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  46	return path;
  47}
  48
  49/*
  50 * set all locked nodes in the path to blocking locks.  This should
  51 * be done before scheduling
  52 */
  53noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  54{
  55	int i;
  56	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  57		if (!p->nodes[i] || !p->locks[i])
  58			continue;
  59		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  60		if (p->locks[i] == BTRFS_READ_LOCK)
  61			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  62		else if (p->locks[i] == BTRFS_WRITE_LOCK)
  63			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  64	}
  65}
  66
  67/*
  68 * reset all the locked nodes in the patch to spinning locks.
  69 *
  70 * held is used to keep lockdep happy, when lockdep is enabled
  71 * we set held to a blocking lock before we go around and
  72 * retake all the spinlocks in the path.  You can safely use NULL
  73 * for held
  74 */
  75noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  76					struct extent_buffer *held, int held_rw)
  77{
  78	int i;
  79
  80#ifdef CONFIG_DEBUG_LOCK_ALLOC
  81	/* lockdep really cares that we take all of these spinlocks
  82	 * in the right order.  If any of the locks in the path are not
  83	 * currently blocking, it is going to complain.  So, make really
  84	 * really sure by forcing the path to blocking before we clear
  85	 * the path blocking.
  86	 */
  87	if (held) {
  88		btrfs_set_lock_blocking_rw(held, held_rw);
  89		if (held_rw == BTRFS_WRITE_LOCK)
  90			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  91		else if (held_rw == BTRFS_READ_LOCK)
  92			held_rw = BTRFS_READ_LOCK_BLOCKING;
  93	}
  94	btrfs_set_path_blocking(p);
  95#endif
  96
  97	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  98		if (p->nodes[i] && p->locks[i]) {
  99			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
 100			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
 101				p->locks[i] = BTRFS_WRITE_LOCK;
 102			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
 103				p->locks[i] = BTRFS_READ_LOCK;
 104		}
 105	}
 106
 107#ifdef CONFIG_DEBUG_LOCK_ALLOC
 108	if (held)
 109		btrfs_clear_lock_blocking_rw(held, held_rw);
 110#endif
 111}
 112
 113/* this also releases the path */
 114void btrfs_free_path(struct btrfs_path *p)
 115{
 116	if (!p)
 117		return;
 118	btrfs_release_path(p);
 119	kmem_cache_free(btrfs_path_cachep, p);
 120}
 121
 122/*
 123 * path release drops references on the extent buffers in the path
 124 * and it drops any locks held by this path
 125 *
 126 * It is safe to call this on paths that no locks or extent buffers held.
 127 */
 128noinline void btrfs_release_path(struct btrfs_path *p)
 129{
 130	int i;
 131
 132	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 133		p->slots[i] = 0;
 134		if (!p->nodes[i])
 135			continue;
 136		if (p->locks[i]) {
 137			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 138			p->locks[i] = 0;
 139		}
 140		free_extent_buffer(p->nodes[i]);
 141		p->nodes[i] = NULL;
 142	}
 143}
 144
 145/*
 146 * safely gets a reference on the root node of a tree.  A lock
 147 * is not taken, so a concurrent writer may put a different node
 148 * at the root of the tree.  See btrfs_lock_root_node for the
 149 * looping required.
 150 *
 151 * The extent buffer returned by this has a reference taken, so
 152 * it won't disappear.  It may stop being the root of the tree
 153 * at any time because there are no locks held.
 154 */
 155struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 156{
 157	struct extent_buffer *eb;
 158
 159	rcu_read_lock();
 160	eb = rcu_dereference(root->node);
 161	extent_buffer_get(eb);
 162	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 163	return eb;
 164}
 165
 166/* loop around taking references on and locking the root node of the
 167 * tree until you end up with a lock on the root.  A locked buffer
 168 * is returned, with a reference held.
 169 */
 170struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 171{
 172	struct extent_buffer *eb;
 173
 174	while (1) {
 175		eb = btrfs_root_node(root);
 176		btrfs_tree_lock(eb);
 177		if (eb == root->node)
 178			break;
 179		btrfs_tree_unlock(eb);
 180		free_extent_buffer(eb);
 181	}
 182	return eb;
 183}
 184
 185/* loop around taking references on and locking the root node of the
 186 * tree until you end up with a lock on the root.  A locked buffer
 187 * is returned, with a reference held.
 188 */
 189struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 190{
 191	struct extent_buffer *eb;
 192
 193	while (1) {
 194		eb = btrfs_root_node(root);
 195		btrfs_tree_read_lock(eb);
 196		if (eb == root->node)
 197			break;
 198		btrfs_tree_read_unlock(eb);
 199		free_extent_buffer(eb);
 200	}
 201	return eb;
 202}
 203
 204/* cowonly root (everything not a reference counted cow subvolume), just get
 205 * put onto a simple dirty list.  transaction.c walks this to make sure they
 206 * get properly updated on disk.
 207 */
 208static void add_root_to_dirty_list(struct btrfs_root *root)
 209{
 210	if (root->track_dirty && list_empty(&root->dirty_list)) {
 211		list_add(&root->dirty_list,
 212			 &root->fs_info->dirty_cowonly_roots);
 
 
 
 
 
 
 
 
 
 
 
 
 213	}
 
 214}
 215
 216/*
 217 * used by snapshot creation to make a copy of a root for a tree with
 218 * a given objectid.  The buffer with the new root node is returned in
 219 * cow_ret, and this func returns zero on success or a negative error code.
 220 */
 221int btrfs_copy_root(struct btrfs_trans_handle *trans,
 222		      struct btrfs_root *root,
 223		      struct extent_buffer *buf,
 224		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 225{
 
 226	struct extent_buffer *cow;
 227	int ret = 0;
 228	int level;
 229	struct btrfs_disk_key disk_key;
 230
 231	WARN_ON(root->ref_cows && trans->transid !=
 232		root->fs_info->running_transaction->transid);
 233	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
 
 234
 235	level = btrfs_header_level(buf);
 236	if (level == 0)
 237		btrfs_item_key(buf, &disk_key, 0);
 238	else
 239		btrfs_node_key(buf, &disk_key, 0);
 240
 241	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
 242				     new_root_objectid, &disk_key, level,
 243				     buf->start, 0);
 244	if (IS_ERR(cow))
 245		return PTR_ERR(cow);
 246
 247	copy_extent_buffer(cow, buf, 0, 0, cow->len);
 248	btrfs_set_header_bytenr(cow, cow->start);
 249	btrfs_set_header_generation(cow, trans->transid);
 250	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 251	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 252				     BTRFS_HEADER_FLAG_RELOC);
 253	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 254		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 255	else
 256		btrfs_set_header_owner(cow, new_root_objectid);
 257
 258	write_extent_buffer(cow, root->fs_info->fsid,
 259			    (unsigned long)btrfs_header_fsid(cow),
 260			    BTRFS_FSID_SIZE);
 261
 262	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 263	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 264		ret = btrfs_inc_ref(trans, root, cow, 1);
 265	else
 266		ret = btrfs_inc_ref(trans, root, cow, 0);
 267
 268	if (ret)
 269		return ret;
 270
 271	btrfs_mark_buffer_dirty(cow);
 272	*cow_ret = cow;
 273	return 0;
 274}
 275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 276/*
 277 * check if the tree block can be shared by multiple trees
 278 */
 279int btrfs_block_can_be_shared(struct btrfs_root *root,
 280			      struct extent_buffer *buf)
 281{
 282	/*
 283	 * Tree blocks not in refernece counted trees and tree roots
 284	 * are never shared. If a block was allocated after the last
 285	 * snapshot and the block was not allocated by tree relocation,
 286	 * we know the block is not shared.
 287	 */
 288	if (root->ref_cows &&
 289	    buf != root->node && buf != root->commit_root &&
 290	    (btrfs_header_generation(buf) <=
 291	     btrfs_root_last_snapshot(&root->root_item) ||
 292	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 293		return 1;
 294#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 295	if (root->ref_cows &&
 296	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 297		return 1;
 298#endif
 299	return 0;
 300}
 301
 302static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 303				       struct btrfs_root *root,
 304				       struct extent_buffer *buf,
 305				       struct extent_buffer *cow,
 306				       int *last_ref)
 307{
 
 308	u64 refs;
 309	u64 owner;
 310	u64 flags;
 311	u64 new_flags = 0;
 312	int ret;
 313
 314	/*
 315	 * Backrefs update rules:
 316	 *
 317	 * Always use full backrefs for extent pointers in tree block
 318	 * allocated by tree relocation.
 319	 *
 320	 * If a shared tree block is no longer referenced by its owner
 321	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 322	 * use full backrefs for extent pointers in tree block.
 323	 *
 324	 * If a tree block is been relocating
 325	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 326	 * use full backrefs for extent pointers in tree block.
 327	 * The reason for this is some operations (such as drop tree)
 328	 * are only allowed for blocks use full backrefs.
 329	 */
 330
 331	if (btrfs_block_can_be_shared(root, buf)) {
 332		ret = btrfs_lookup_extent_info(trans, root, buf->start,
 333					       buf->len, &refs, &flags);
 334		BUG_ON(ret);
 335		BUG_ON(refs == 0);
 
 
 
 
 
 
 336	} else {
 337		refs = 1;
 338		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 339		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 340			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 341		else
 342			flags = 0;
 343	}
 344
 345	owner = btrfs_header_owner(buf);
 346	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 347	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 348
 349	if (refs > 1) {
 350		if ((owner == root->root_key.objectid ||
 351		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 352		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 353			ret = btrfs_inc_ref(trans, root, buf, 1);
 354			BUG_ON(ret);
 355
 356			if (root->root_key.objectid ==
 357			    BTRFS_TREE_RELOC_OBJECTID) {
 358				ret = btrfs_dec_ref(trans, root, buf, 0);
 359				BUG_ON(ret);
 360				ret = btrfs_inc_ref(trans, root, cow, 1);
 361				BUG_ON(ret);
 362			}
 363			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 364		} else {
 365
 366			if (root->root_key.objectid ==
 367			    BTRFS_TREE_RELOC_OBJECTID)
 368				ret = btrfs_inc_ref(trans, root, cow, 1);
 369			else
 370				ret = btrfs_inc_ref(trans, root, cow, 0);
 371			BUG_ON(ret);
 372		}
 373		if (new_flags != 0) {
 374			ret = btrfs_set_disk_extent_flags(trans, root,
 
 
 375							  buf->start,
 376							  buf->len,
 377							  new_flags, 0);
 378			BUG_ON(ret);
 
 379		}
 380	} else {
 381		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 382			if (root->root_key.objectid ==
 383			    BTRFS_TREE_RELOC_OBJECTID)
 384				ret = btrfs_inc_ref(trans, root, cow, 1);
 385			else
 386				ret = btrfs_inc_ref(trans, root, cow, 0);
 387			BUG_ON(ret);
 388			ret = btrfs_dec_ref(trans, root, buf, 1);
 389			BUG_ON(ret);
 390		}
 391		clean_tree_block(trans, root, buf);
 392		*last_ref = 1;
 393	}
 394	return 0;
 395}
 396
 397/*
 398 * does the dirty work in cow of a single block.  The parent block (if
 399 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 400 * dirty and returned locked.  If you modify the block it needs to be marked
 401 * dirty again.
 402 *
 403 * search_start -- an allocation hint for the new block
 404 *
 405 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 406 * bytes the allocator should try to find free next to the block it returns.
 407 * This is just a hint and may be ignored by the allocator.
 408 */
 409static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
 410			     struct btrfs_root *root,
 411			     struct extent_buffer *buf,
 412			     struct extent_buffer *parent, int parent_slot,
 413			     struct extent_buffer **cow_ret,
 414			     u64 search_start, u64 empty_size)
 415{
 
 416	struct btrfs_disk_key disk_key;
 417	struct extent_buffer *cow;
 418	int level;
 419	int last_ref = 0;
 420	int unlock_orig = 0;
 421	u64 parent_start;
 422
 423	if (*cow_ret == buf)
 424		unlock_orig = 1;
 425
 426	btrfs_assert_tree_locked(buf);
 427
 428	WARN_ON(root->ref_cows && trans->transid !=
 429		root->fs_info->running_transaction->transid);
 430	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
 
 431
 432	level = btrfs_header_level(buf);
 433
 434	if (level == 0)
 435		btrfs_item_key(buf, &disk_key, 0);
 436	else
 437		btrfs_node_key(buf, &disk_key, 0);
 438
 439	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
 440		if (parent)
 441			parent_start = parent->start;
 442		else
 443			parent_start = 0;
 444	} else
 445		parent_start = 0;
 446
 447	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
 448				     root->root_key.objectid, &disk_key,
 449				     level, search_start, empty_size);
 450	if (IS_ERR(cow))
 451		return PTR_ERR(cow);
 452
 453	/* cow is set to blocking by btrfs_init_new_buffer */
 454
 455	copy_extent_buffer(cow, buf, 0, 0, cow->len);
 456	btrfs_set_header_bytenr(cow, cow->start);
 457	btrfs_set_header_generation(cow, trans->transid);
 458	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 459	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 460				     BTRFS_HEADER_FLAG_RELOC);
 461	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 462		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 463	else
 464		btrfs_set_header_owner(cow, root->root_key.objectid);
 465
 466	write_extent_buffer(cow, root->fs_info->fsid,
 467			    (unsigned long)btrfs_header_fsid(cow),
 468			    BTRFS_FSID_SIZE);
 469
 470	update_ref_for_cow(trans, root, buf, cow, &last_ref);
 
 
 
 
 471
 472	if (root->ref_cows)
 473		btrfs_reloc_cow_block(trans, root, buf, cow);
 
 
 
 
 
 474
 475	if (buf == root->node) {
 476		WARN_ON(parent && parent != buf);
 477		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 478		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 479			parent_start = buf->start;
 480		else
 481			parent_start = 0;
 482
 483		extent_buffer_get(cow);
 
 484		rcu_assign_pointer(root->node, cow);
 485
 486		btrfs_free_tree_block(trans, root, buf, parent_start,
 487				      last_ref);
 488		free_extent_buffer(buf);
 489		add_root_to_dirty_list(root);
 490	} else {
 491		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 492			parent_start = parent->start;
 493		else
 494			parent_start = 0;
 495
 496		WARN_ON(trans->transid != btrfs_header_generation(parent));
 
 
 497		btrfs_set_node_blockptr(parent, parent_slot,
 498					cow->start);
 499		btrfs_set_node_ptr_generation(parent, parent_slot,
 500					      trans->transid);
 501		btrfs_mark_buffer_dirty(parent);
 
 
 
 
 
 
 
 502		btrfs_free_tree_block(trans, root, buf, parent_start,
 503				      last_ref);
 504	}
 505	if (unlock_orig)
 506		btrfs_tree_unlock(buf);
 507	free_extent_buffer(buf);
 508	btrfs_mark_buffer_dirty(cow);
 509	*cow_ret = cow;
 510	return 0;
 511}
 512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 513static inline int should_cow_block(struct btrfs_trans_handle *trans,
 514				   struct btrfs_root *root,
 515				   struct extent_buffer *buf)
 516{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 517	if (btrfs_header_generation(buf) == trans->transid &&
 518	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
 519	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
 520	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 
 521		return 0;
 522	return 1;
 523}
 524
 525/*
 526 * cows a single block, see __btrfs_cow_block for the real work.
 527 * This version of it has extra checks so that a block isn't cow'd more than
 528 * once per transaction, as long as it hasn't been written yet
 529 */
 530noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
 531		    struct btrfs_root *root, struct extent_buffer *buf,
 532		    struct extent_buffer *parent, int parent_slot,
 533		    struct extent_buffer **cow_ret)
 534{
 
 535	u64 search_start;
 536	int ret;
 537
 538	if (trans->transaction != root->fs_info->running_transaction) {
 539		printk(KERN_CRIT "trans %llu running %llu\n",
 540		       (unsigned long long)trans->transid,
 541		       (unsigned long long)
 542		       root->fs_info->running_transaction->transid);
 543		WARN_ON(1);
 544	}
 545	if (trans->transid != root->fs_info->generation) {
 546		printk(KERN_CRIT "trans %llu running %llu\n",
 547		       (unsigned long long)trans->transid,
 548		       (unsigned long long)root->fs_info->generation);
 549		WARN_ON(1);
 550	}
 551
 552	if (!should_cow_block(trans, root, buf)) {
 
 553		*cow_ret = buf;
 554		return 0;
 555	}
 556
 557	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
 558
 559	if (parent)
 560		btrfs_set_lock_blocking(parent);
 561	btrfs_set_lock_blocking(buf);
 562
 563	ret = __btrfs_cow_block(trans, root, buf, parent,
 564				 parent_slot, cow_ret, search_start, 0);
 565
 566	trace_btrfs_cow_block(root, buf, *cow_ret);
 567
 568	return ret;
 569}
 570
 571/*
 572 * helper function for defrag to decide if two blocks pointed to by a
 573 * node are actually close by
 574 */
 575static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
 576{
 577	if (blocknr < other && other - (blocknr + blocksize) < 32768)
 578		return 1;
 579	if (blocknr > other && blocknr - (other + blocksize) < 32768)
 580		return 1;
 581	return 0;
 582}
 583
 584/*
 585 * compare two keys in a memcmp fashion
 586 */
 587static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
 588{
 589	struct btrfs_key k1;
 590
 591	btrfs_disk_key_to_cpu(&k1, disk);
 592
 593	return btrfs_comp_cpu_keys(&k1, k2);
 594}
 595
 596/*
 597 * same as comp_keys only with two btrfs_key's
 598 */
 599int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
 600{
 601	if (k1->objectid > k2->objectid)
 602		return 1;
 603	if (k1->objectid < k2->objectid)
 604		return -1;
 605	if (k1->type > k2->type)
 606		return 1;
 607	if (k1->type < k2->type)
 608		return -1;
 609	if (k1->offset > k2->offset)
 610		return 1;
 611	if (k1->offset < k2->offset)
 612		return -1;
 613	return 0;
 614}
 615
 616/*
 617 * this is used by the defrag code to go through all the
 618 * leaves pointed to by a node and reallocate them so that
 619 * disk order is close to key order
 620 */
 621int btrfs_realloc_node(struct btrfs_trans_handle *trans,
 622		       struct btrfs_root *root, struct extent_buffer *parent,
 623		       int start_slot, int cache_only, u64 *last_ret,
 624		       struct btrfs_key *progress)
 625{
 
 626	struct extent_buffer *cur;
 627	u64 blocknr;
 628	u64 gen;
 629	u64 search_start = *last_ret;
 630	u64 last_block = 0;
 631	u64 other;
 632	u32 parent_nritems;
 633	int end_slot;
 634	int i;
 635	int err = 0;
 636	int parent_level;
 637	int uptodate;
 638	u32 blocksize;
 639	int progress_passed = 0;
 640	struct btrfs_disk_key disk_key;
 641
 642	parent_level = btrfs_header_level(parent);
 643	if (cache_only && parent_level != 1)
 644		return 0;
 645
 646	if (trans->transaction != root->fs_info->running_transaction)
 647		WARN_ON(1);
 648	if (trans->transid != root->fs_info->generation)
 649		WARN_ON(1);
 650
 651	parent_nritems = btrfs_header_nritems(parent);
 652	blocksize = btrfs_level_size(root, parent_level - 1);
 653	end_slot = parent_nritems;
 654
 655	if (parent_nritems == 1)
 656		return 0;
 657
 658	btrfs_set_lock_blocking(parent);
 659
 660	for (i = start_slot; i < end_slot; i++) {
 661		int close = 1;
 662
 663		btrfs_node_key(parent, &disk_key, i);
 664		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
 665			continue;
 666
 667		progress_passed = 1;
 668		blocknr = btrfs_node_blockptr(parent, i);
 669		gen = btrfs_node_ptr_generation(parent, i);
 670		if (last_block == 0)
 671			last_block = blocknr;
 672
 673		if (i > 0) {
 674			other = btrfs_node_blockptr(parent, i - 1);
 675			close = close_blocks(blocknr, other, blocksize);
 676		}
 677		if (!close && i < end_slot - 2) {
 678			other = btrfs_node_blockptr(parent, i + 1);
 679			close = close_blocks(blocknr, other, blocksize);
 680		}
 681		if (close) {
 682			last_block = blocknr;
 683			continue;
 684		}
 685
 686		cur = btrfs_find_tree_block(root, blocknr, blocksize);
 687		if (cur)
 688			uptodate = btrfs_buffer_uptodate(cur, gen);
 689		else
 690			uptodate = 0;
 691		if (!cur || !uptodate) {
 692			if (cache_only) {
 693				free_extent_buffer(cur);
 694				continue;
 695			}
 696			if (!cur) {
 697				cur = read_tree_block(root, blocknr,
 698							 blocksize, gen);
 699				if (!cur)
 
 
 700					return -EIO;
 
 701			} else if (!uptodate) {
 702				btrfs_read_buffer(cur, gen);
 
 
 
 
 703			}
 704		}
 705		if (search_start == 0)
 706			search_start = last_block;
 707
 708		btrfs_tree_lock(cur);
 709		btrfs_set_lock_blocking(cur);
 710		err = __btrfs_cow_block(trans, root, cur, parent, i,
 711					&cur, search_start,
 712					min(16 * blocksize,
 713					    (end_slot - i) * blocksize));
 714		if (err) {
 715			btrfs_tree_unlock(cur);
 716			free_extent_buffer(cur);
 717			break;
 718		}
 719		search_start = cur->start;
 720		last_block = cur->start;
 721		*last_ret = search_start;
 722		btrfs_tree_unlock(cur);
 723		free_extent_buffer(cur);
 724	}
 725	return err;
 726}
 727
 728/*
 729 * The leaf data grows from end-to-front in the node.
 730 * this returns the address of the start of the last item,
 731 * which is the stop of the leaf data stack
 732 */
 733static inline unsigned int leaf_data_end(struct btrfs_root *root,
 734					 struct extent_buffer *leaf)
 735{
 736	u32 nr = btrfs_header_nritems(leaf);
 737	if (nr == 0)
 738		return BTRFS_LEAF_DATA_SIZE(root);
 739	return btrfs_item_offset_nr(leaf, nr - 1);
 740}
 741
 742
 743/*
 744 * search for key in the extent_buffer.  The items start at offset p,
 745 * and they are item_size apart.  There are 'max' items in p.
 746 *
 747 * the slot in the array is returned via slot, and it points to
 748 * the place where you would insert key if it is not found in
 749 * the array.
 750 *
 751 * slot may point to max if the key is bigger than all of the keys
 752 */
 753static noinline int generic_bin_search(struct extent_buffer *eb,
 754				       unsigned long p,
 755				       int item_size, struct btrfs_key *key,
 756				       int max, int *slot)
 757{
 758	int low = 0;
 759	int high = max;
 760	int mid;
 761	int ret;
 762	struct btrfs_disk_key *tmp = NULL;
 763	struct btrfs_disk_key unaligned;
 764	unsigned long offset;
 765	char *kaddr = NULL;
 766	unsigned long map_start = 0;
 767	unsigned long map_len = 0;
 768	int err;
 769
 
 
 
 
 
 
 
 
 770	while (low < high) {
 771		mid = (low + high) / 2;
 772		offset = p + mid * item_size;
 773
 774		if (!kaddr || offset < map_start ||
 775		    (offset + sizeof(struct btrfs_disk_key)) >
 776		    map_start + map_len) {
 777
 778			err = map_private_extent_buffer(eb, offset,
 779						sizeof(struct btrfs_disk_key),
 780						&kaddr, &map_start, &map_len);
 781
 782			if (!err) {
 783				tmp = (struct btrfs_disk_key *)(kaddr + offset -
 784							map_start);
 785			} else {
 786				read_extent_buffer(eb, &unaligned,
 787						   offset, sizeof(unaligned));
 788				tmp = &unaligned;
 
 
 789			}
 790
 791		} else {
 792			tmp = (struct btrfs_disk_key *)(kaddr + offset -
 793							map_start);
 794		}
 795		ret = comp_keys(tmp, key);
 796
 797		if (ret < 0)
 798			low = mid + 1;
 799		else if (ret > 0)
 800			high = mid;
 801		else {
 802			*slot = mid;
 803			return 0;
 804		}
 805	}
 806	*slot = low;
 807	return 1;
 808}
 809
 810/*
 811 * simple bin_search frontend that does the right thing for
 812 * leaves vs nodes
 813 */
 814static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
 815		      int level, int *slot)
 816{
 817	if (level == 0) {
 818		return generic_bin_search(eb,
 819					  offsetof(struct btrfs_leaf, items),
 820					  sizeof(struct btrfs_item),
 821					  key, btrfs_header_nritems(eb),
 822					  slot);
 823	} else {
 824		return generic_bin_search(eb,
 825					  offsetof(struct btrfs_node, ptrs),
 826					  sizeof(struct btrfs_key_ptr),
 827					  key, btrfs_header_nritems(eb),
 828					  slot);
 829	}
 830	return -1;
 831}
 832
 833int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
 834		     int level, int *slot)
 835{
 836	return bin_search(eb, key, level, slot);
 837}
 838
 839static void root_add_used(struct btrfs_root *root, u32 size)
 840{
 841	spin_lock(&root->accounting_lock);
 842	btrfs_set_root_used(&root->root_item,
 843			    btrfs_root_used(&root->root_item) + size);
 844	spin_unlock(&root->accounting_lock);
 845}
 846
 847static void root_sub_used(struct btrfs_root *root, u32 size)
 848{
 849	spin_lock(&root->accounting_lock);
 850	btrfs_set_root_used(&root->root_item,
 851			    btrfs_root_used(&root->root_item) - size);
 852	spin_unlock(&root->accounting_lock);
 853}
 854
 855/* given a node and slot number, this reads the blocks it points to.  The
 856 * extent buffer is returned with a reference taken (but unlocked).
 857 * NULL is returned on error.
 858 */
 859static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
 860				   struct extent_buffer *parent, int slot)
 
 861{
 862	int level = btrfs_header_level(parent);
 863	if (slot < 0)
 864		return NULL;
 865	if (slot >= btrfs_header_nritems(parent))
 866		return NULL;
 867
 868	BUG_ON(level == 0);
 869
 870	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
 871		       btrfs_level_size(root, level - 1),
 872		       btrfs_node_ptr_generation(parent, slot));
 
 
 
 
 
 873}
 874
 875/*
 876 * node level balancing, used to make sure nodes are in proper order for
 877 * item deletion.  We balance from the top down, so we have to make sure
 878 * that a deletion won't leave an node completely empty later on.
 879 */
 880static noinline int balance_level(struct btrfs_trans_handle *trans,
 881			 struct btrfs_root *root,
 882			 struct btrfs_path *path, int level)
 883{
 
 884	struct extent_buffer *right = NULL;
 885	struct extent_buffer *mid;
 886	struct extent_buffer *left = NULL;
 887	struct extent_buffer *parent = NULL;
 888	int ret = 0;
 889	int wret;
 890	int pslot;
 891	int orig_slot = path->slots[level];
 892	u64 orig_ptr;
 893
 894	if (level == 0)
 895		return 0;
 896
 897	mid = path->nodes[level];
 898
 899	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
 900		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
 901	WARN_ON(btrfs_header_generation(mid) != trans->transid);
 902
 903	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
 904
 905	if (level < BTRFS_MAX_LEVEL - 1)
 906		parent = path->nodes[level + 1];
 907	pslot = path->slots[level + 1];
 
 908
 909	/*
 910	 * deal with the case where there is only one pointer in the root
 911	 * by promoting the node below to a root
 912	 */
 913	if (!parent) {
 914		struct extent_buffer *child;
 915
 916		if (btrfs_header_nritems(mid) != 1)
 917			return 0;
 918
 919		/* promote the child to a root */
 920		child = read_node_slot(root, mid, 0);
 921		BUG_ON(!child);
 
 
 
 
 
 922		btrfs_tree_lock(child);
 923		btrfs_set_lock_blocking(child);
 924		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
 925		if (ret) {
 926			btrfs_tree_unlock(child);
 927			free_extent_buffer(child);
 928			goto enospc;
 929		}
 930
 
 931		rcu_assign_pointer(root->node, child);
 932
 933		add_root_to_dirty_list(root);
 934		btrfs_tree_unlock(child);
 935
 936		path->locks[level] = 0;
 937		path->nodes[level] = NULL;
 938		clean_tree_block(trans, root, mid);
 939		btrfs_tree_unlock(mid);
 940		/* once for the path */
 941		free_extent_buffer(mid);
 942
 943		root_sub_used(root, mid->len);
 944		btrfs_free_tree_block(trans, root, mid, 0, 1);
 945		/* once for the root ptr */
 946		free_extent_buffer(mid);
 947		return 0;
 948	}
 949	if (btrfs_header_nritems(mid) >
 950	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
 951		return 0;
 952
 953	btrfs_header_nritems(mid);
 
 
 954
 955	left = read_node_slot(root, parent, pslot - 1);
 956	if (left) {
 957		btrfs_tree_lock(left);
 958		btrfs_set_lock_blocking(left);
 959		wret = btrfs_cow_block(trans, root, left,
 960				       parent, pslot - 1, &left);
 961		if (wret) {
 962			ret = wret;
 963			goto enospc;
 964		}
 965	}
 966	right = read_node_slot(root, parent, pslot + 1);
 
 
 
 
 967	if (right) {
 968		btrfs_tree_lock(right);
 969		btrfs_set_lock_blocking(right);
 970		wret = btrfs_cow_block(trans, root, right,
 971				       parent, pslot + 1, &right);
 972		if (wret) {
 973			ret = wret;
 974			goto enospc;
 975		}
 976	}
 977
 978	/* first, try to make some room in the middle buffer */
 979	if (left) {
 980		orig_slot += btrfs_header_nritems(left);
 981		wret = push_node_left(trans, root, left, mid, 1);
 982		if (wret < 0)
 983			ret = wret;
 984		btrfs_header_nritems(mid);
 985	}
 986
 987	/*
 988	 * then try to empty the right most buffer into the middle
 989	 */
 990	if (right) {
 991		wret = push_node_left(trans, root, mid, right, 1);
 992		if (wret < 0 && wret != -ENOSPC)
 993			ret = wret;
 994		if (btrfs_header_nritems(right) == 0) {
 995			clean_tree_block(trans, root, right);
 996			btrfs_tree_unlock(right);
 997			wret = del_ptr(trans, root, path, level + 1, pslot +
 998				       1);
 999			if (wret)
1000				ret = wret;
1001			root_sub_used(root, right->len);
1002			btrfs_free_tree_block(trans, root, right, 0, 1);
1003			free_extent_buffer(right);
1004			right = NULL;
1005		} else {
1006			struct btrfs_disk_key right_key;
1007			btrfs_node_key(right, &right_key, 0);
 
 
1008			btrfs_set_node_key(parent, &right_key, pslot + 1);
1009			btrfs_mark_buffer_dirty(parent);
1010		}
1011	}
1012	if (btrfs_header_nritems(mid) == 1) {
1013		/*
1014		 * we're not allowed to leave a node with one item in the
1015		 * tree during a delete.  A deletion from lower in the tree
1016		 * could try to delete the only pointer in this node.
1017		 * So, pull some keys from the left.
1018		 * There has to be a left pointer at this point because
1019		 * otherwise we would have pulled some pointers from the
1020		 * right
1021		 */
1022		BUG_ON(!left);
1023		wret = balance_node_right(trans, root, mid, left);
 
 
 
 
1024		if (wret < 0) {
1025			ret = wret;
1026			goto enospc;
1027		}
1028		if (wret == 1) {
1029			wret = push_node_left(trans, root, left, mid, 1);
1030			if (wret < 0)
1031				ret = wret;
1032		}
1033		BUG_ON(wret == 1);
1034	}
1035	if (btrfs_header_nritems(mid) == 0) {
1036		clean_tree_block(trans, root, mid);
1037		btrfs_tree_unlock(mid);
1038		wret = del_ptr(trans, root, path, level + 1, pslot);
1039		if (wret)
1040			ret = wret;
1041		root_sub_used(root, mid->len);
1042		btrfs_free_tree_block(trans, root, mid, 0, 1);
1043		free_extent_buffer(mid);
1044		mid = NULL;
1045	} else {
1046		/* update the parent key to reflect our changes */
1047		struct btrfs_disk_key mid_key;
1048		btrfs_node_key(mid, &mid_key, 0);
 
1049		btrfs_set_node_key(parent, &mid_key, pslot);
1050		btrfs_mark_buffer_dirty(parent);
1051	}
1052
1053	/* update the path */
1054	if (left) {
1055		if (btrfs_header_nritems(left) > orig_slot) {
1056			extent_buffer_get(left);
1057			/* left was locked after cow */
1058			path->nodes[level] = left;
1059			path->slots[level + 1] -= 1;
1060			path->slots[level] = orig_slot;
1061			if (mid) {
1062				btrfs_tree_unlock(mid);
1063				free_extent_buffer(mid);
1064			}
1065		} else {
1066			orig_slot -= btrfs_header_nritems(left);
1067			path->slots[level] = orig_slot;
1068		}
1069	}
1070	/* double check we haven't messed things up */
1071	if (orig_ptr !=
1072	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1073		BUG();
1074enospc:
1075	if (right) {
1076		btrfs_tree_unlock(right);
1077		free_extent_buffer(right);
1078	}
1079	if (left) {
1080		if (path->nodes[level] != left)
1081			btrfs_tree_unlock(left);
1082		free_extent_buffer(left);
1083	}
1084	return ret;
1085}
1086
1087/* Node balancing for insertion.  Here we only split or push nodes around
1088 * when they are completely full.  This is also done top down, so we
1089 * have to be pessimistic.
1090 */
1091static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1092					  struct btrfs_root *root,
1093					  struct btrfs_path *path, int level)
1094{
 
1095	struct extent_buffer *right = NULL;
1096	struct extent_buffer *mid;
1097	struct extent_buffer *left = NULL;
1098	struct extent_buffer *parent = NULL;
1099	int ret = 0;
1100	int wret;
1101	int pslot;
1102	int orig_slot = path->slots[level];
1103
1104	if (level == 0)
1105		return 1;
1106
1107	mid = path->nodes[level];
1108	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1109
1110	if (level < BTRFS_MAX_LEVEL - 1)
1111		parent = path->nodes[level + 1];
1112	pslot = path->slots[level + 1];
 
1113
1114	if (!parent)
1115		return 1;
1116
1117	left = read_node_slot(root, parent, pslot - 1);
 
 
1118
1119	/* first, try to make some room in the middle buffer */
1120	if (left) {
1121		u32 left_nr;
1122
1123		btrfs_tree_lock(left);
1124		btrfs_set_lock_blocking(left);
1125
1126		left_nr = btrfs_header_nritems(left);
1127		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1128			wret = 1;
1129		} else {
1130			ret = btrfs_cow_block(trans, root, left, parent,
1131					      pslot - 1, &left);
1132			if (ret)
1133				wret = 1;
1134			else {
1135				wret = push_node_left(trans, root,
1136						      left, mid, 0);
1137			}
1138		}
1139		if (wret < 0)
1140			ret = wret;
1141		if (wret == 0) {
1142			struct btrfs_disk_key disk_key;
1143			orig_slot += left_nr;
1144			btrfs_node_key(mid, &disk_key, 0);
 
1145			btrfs_set_node_key(parent, &disk_key, pslot);
1146			btrfs_mark_buffer_dirty(parent);
1147			if (btrfs_header_nritems(left) > orig_slot) {
1148				path->nodes[level] = left;
1149				path->slots[level + 1] -= 1;
1150				path->slots[level] = orig_slot;
1151				btrfs_tree_unlock(mid);
1152				free_extent_buffer(mid);
1153			} else {
1154				orig_slot -=
1155					btrfs_header_nritems(left);
1156				path->slots[level] = orig_slot;
1157				btrfs_tree_unlock(left);
1158				free_extent_buffer(left);
1159			}
1160			return 0;
1161		}
1162		btrfs_tree_unlock(left);
1163		free_extent_buffer(left);
1164	}
1165	right = read_node_slot(root, parent, pslot + 1);
 
 
1166
1167	/*
1168	 * then try to empty the right most buffer into the middle
1169	 */
1170	if (right) {
1171		u32 right_nr;
1172
1173		btrfs_tree_lock(right);
1174		btrfs_set_lock_blocking(right);
1175
1176		right_nr = btrfs_header_nritems(right);
1177		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1178			wret = 1;
1179		} else {
1180			ret = btrfs_cow_block(trans, root, right,
1181					      parent, pslot + 1,
1182					      &right);
1183			if (ret)
1184				wret = 1;
1185			else {
1186				wret = balance_node_right(trans, root,
1187							  right, mid);
1188			}
1189		}
1190		if (wret < 0)
1191			ret = wret;
1192		if (wret == 0) {
1193			struct btrfs_disk_key disk_key;
1194
1195			btrfs_node_key(right, &disk_key, 0);
 
 
1196			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1197			btrfs_mark_buffer_dirty(parent);
1198
1199			if (btrfs_header_nritems(mid) <= orig_slot) {
1200				path->nodes[level] = right;
1201				path->slots[level + 1] += 1;
1202				path->slots[level] = orig_slot -
1203					btrfs_header_nritems(mid);
1204				btrfs_tree_unlock(mid);
1205				free_extent_buffer(mid);
1206			} else {
1207				btrfs_tree_unlock(right);
1208				free_extent_buffer(right);
1209			}
1210			return 0;
1211		}
1212		btrfs_tree_unlock(right);
1213		free_extent_buffer(right);
1214	}
1215	return 1;
1216}
1217
1218/*
1219 * readahead one full node of leaves, finding things that are close
1220 * to the block in 'slot', and triggering ra on them.
1221 */
1222static void reada_for_search(struct btrfs_root *root,
1223			     struct btrfs_path *path,
1224			     int level, int slot, u64 objectid)
1225{
1226	struct extent_buffer *node;
1227	struct btrfs_disk_key disk_key;
1228	u32 nritems;
1229	u64 search;
1230	u64 target;
1231	u64 nread = 0;
1232	u64 gen;
1233	int direction = path->reada;
1234	struct extent_buffer *eb;
1235	u32 nr;
1236	u32 blocksize;
1237	u32 nscan = 0;
1238
1239	if (level != 1)
1240		return;
1241
1242	if (!path->nodes[level])
1243		return;
1244
1245	node = path->nodes[level];
1246
1247	search = btrfs_node_blockptr(node, slot);
1248	blocksize = btrfs_level_size(root, level - 1);
1249	eb = btrfs_find_tree_block(root, search, blocksize);
1250	if (eb) {
1251		free_extent_buffer(eb);
1252		return;
1253	}
1254
1255	target = search;
1256
1257	nritems = btrfs_header_nritems(node);
1258	nr = slot;
1259
1260	while (1) {
1261		if (direction < 0) {
1262			if (nr == 0)
1263				break;
1264			nr--;
1265		} else if (direction > 0) {
1266			nr++;
1267			if (nr >= nritems)
1268				break;
1269		}
1270		if (path->reada < 0 && objectid) {
1271			btrfs_node_key(node, &disk_key, nr);
1272			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1273				break;
1274		}
1275		search = btrfs_node_blockptr(node, nr);
1276		if ((search <= target && target - search <= 65536) ||
1277		    (search > target && search - target <= 65536)) {
1278			gen = btrfs_node_ptr_generation(node, nr);
1279			readahead_tree_block(root, search, blocksize, gen);
1280			nread += blocksize;
1281		}
1282		nscan++;
1283		if ((nread > 65536 || nscan > 32))
1284			break;
1285	}
1286}
1287
1288/*
1289 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1290 * cache
1291 */
1292static noinline int reada_for_balance(struct btrfs_root *root,
1293				      struct btrfs_path *path, int level)
1294{
1295	int slot;
1296	int nritems;
1297	struct extent_buffer *parent;
1298	struct extent_buffer *eb;
1299	u64 gen;
1300	u64 block1 = 0;
1301	u64 block2 = 0;
1302	int ret = 0;
1303	int blocksize;
1304
1305	parent = path->nodes[level + 1];
1306	if (!parent)
1307		return 0;
1308
1309	nritems = btrfs_header_nritems(parent);
1310	slot = path->slots[level + 1];
1311	blocksize = btrfs_level_size(root, level);
1312
1313	if (slot > 0) {
1314		block1 = btrfs_node_blockptr(parent, slot - 1);
1315		gen = btrfs_node_ptr_generation(parent, slot - 1);
1316		eb = btrfs_find_tree_block(root, block1, blocksize);
1317		if (eb && btrfs_buffer_uptodate(eb, gen))
 
 
 
 
 
1318			block1 = 0;
1319		free_extent_buffer(eb);
1320	}
1321	if (slot + 1 < nritems) {
1322		block2 = btrfs_node_blockptr(parent, slot + 1);
1323		gen = btrfs_node_ptr_generation(parent, slot + 1);
1324		eb = btrfs_find_tree_block(root, block2, blocksize);
1325		if (eb && btrfs_buffer_uptodate(eb, gen))
1326			block2 = 0;
1327		free_extent_buffer(eb);
1328	}
1329	if (block1 || block2) {
1330		ret = -EAGAIN;
1331
1332		/* release the whole path */
1333		btrfs_release_path(path);
1334
1335		/* read the blocks */
1336		if (block1)
1337			readahead_tree_block(root, block1, blocksize, 0);
1338		if (block2)
1339			readahead_tree_block(root, block2, blocksize, 0);
1340
1341		if (block1) {
1342			eb = read_tree_block(root, block1, blocksize, 0);
1343			free_extent_buffer(eb);
1344		}
1345		if (block2) {
1346			eb = read_tree_block(root, block2, blocksize, 0);
1347			free_extent_buffer(eb);
1348		}
1349	}
1350	return ret;
1351}
1352
1353
1354/*
1355 * when we walk down the tree, it is usually safe to unlock the higher layers
1356 * in the tree.  The exceptions are when our path goes through slot 0, because
1357 * operations on the tree might require changing key pointers higher up in the
1358 * tree.
1359 *
1360 * callers might also have set path->keep_locks, which tells this code to keep
1361 * the lock if the path points to the last slot in the block.  This is part of
1362 * walking through the tree, and selecting the next slot in the higher block.
1363 *
1364 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1365 * if lowest_unlock is 1, level 0 won't be unlocked
1366 */
1367static noinline void unlock_up(struct btrfs_path *path, int level,
1368			       int lowest_unlock)
 
1369{
1370	int i;
1371	int skip_level = level;
1372	int no_skips = 0;
1373	struct extent_buffer *t;
1374
1375	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1376		if (!path->nodes[i])
1377			break;
1378		if (!path->locks[i])
1379			break;
1380		if (!no_skips && path->slots[i] == 0) {
1381			skip_level = i + 1;
1382			continue;
1383		}
1384		if (!no_skips && path->keep_locks) {
1385			u32 nritems;
1386			t = path->nodes[i];
1387			nritems = btrfs_header_nritems(t);
1388			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1389				skip_level = i + 1;
1390				continue;
1391			}
1392		}
1393		if (skip_level < i && i >= lowest_unlock)
1394			no_skips = 1;
1395
1396		t = path->nodes[i];
1397		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1398			btrfs_tree_unlock_rw(t, path->locks[i]);
1399			path->locks[i] = 0;
 
 
 
 
 
1400		}
1401	}
1402}
1403
1404/*
1405 * This releases any locks held in the path starting at level and
1406 * going all the way up to the root.
1407 *
1408 * btrfs_search_slot will keep the lock held on higher nodes in a few
1409 * corner cases, such as COW of the block at slot zero in the node.  This
1410 * ignores those rules, and it should only be called when there are no
1411 * more updates to be done higher up in the tree.
1412 */
1413noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1414{
1415	int i;
1416
1417	if (path->keep_locks)
1418		return;
1419
1420	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1421		if (!path->nodes[i])
1422			continue;
1423		if (!path->locks[i])
1424			continue;
1425		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1426		path->locks[i] = 0;
1427	}
1428}
1429
1430/*
1431 * helper function for btrfs_search_slot.  The goal is to find a block
1432 * in cache without setting the path to blocking.  If we find the block
1433 * we return zero and the path is unchanged.
1434 *
1435 * If we can't find the block, we set the path blocking and do some
1436 * reada.  -EAGAIN is returned and the search must be repeated.
1437 */
1438static int
1439read_block_for_search(struct btrfs_trans_handle *trans,
1440		       struct btrfs_root *root, struct btrfs_path *p,
1441		       struct extent_buffer **eb_ret, int level, int slot,
1442		       struct btrfs_key *key)
1443{
 
1444	u64 blocknr;
1445	u64 gen;
1446	u32 blocksize;
1447	struct extent_buffer *b = *eb_ret;
1448	struct extent_buffer *tmp;
1449	int ret;
1450
1451	blocknr = btrfs_node_blockptr(b, slot);
1452	gen = btrfs_node_ptr_generation(b, slot);
1453	blocksize = btrfs_level_size(root, level - 1);
1454
1455	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1456	if (tmp) {
1457		if (btrfs_buffer_uptodate(tmp, 0)) {
1458			if (btrfs_buffer_uptodate(tmp, gen)) {
1459				/*
1460				 * we found an up to date block without
1461				 * sleeping, return
1462				 * right away
1463				 */
1464				*eb_ret = tmp;
1465				return 0;
1466			}
1467			/* the pages were up to date, but we failed
1468			 * the generation number check.  Do a full
1469			 * read for the generation number that is correct.
1470			 * We must do this without dropping locks so
1471			 * we can trust our generation number
1472			 */
1473			free_extent_buffer(tmp);
1474			btrfs_set_path_blocking(p);
1475
1476			tmp = read_tree_block(root, blocknr, blocksize, gen);
1477			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1478				*eb_ret = tmp;
1479				return 0;
1480			}
1481			free_extent_buffer(tmp);
1482			btrfs_release_path(p);
1483			return -EIO;
 
 
 
 
 
1484		}
 
 
 
1485	}
1486
1487	/*
1488	 * reduce lock contention at high levels
1489	 * of the btree by dropping locks before
1490	 * we read.  Don't release the lock on the current
1491	 * level because we need to walk this node to figure
1492	 * out which blocks to read.
1493	 */
1494	btrfs_unlock_up_safe(p, level + 1);
1495	btrfs_set_path_blocking(p);
1496
1497	free_extent_buffer(tmp);
1498	if (p->reada)
1499		reada_for_search(root, p, level, slot, key->objectid);
1500
1501	btrfs_release_path(p);
1502
1503	ret = -EAGAIN;
1504	tmp = read_tree_block(root, blocknr, blocksize, 0);
1505	if (tmp) {
1506		/*
1507		 * If the read above didn't mark this buffer up to date,
1508		 * it will never end up being up to date.  Set ret to EIO now
1509		 * and give up so that our caller doesn't loop forever
1510		 * on our EAGAINs.
1511		 */
1512		if (!btrfs_buffer_uptodate(tmp, 0))
1513			ret = -EIO;
1514		free_extent_buffer(tmp);
 
 
1515	}
1516	return ret;
1517}
1518
1519/*
1520 * helper function for btrfs_search_slot.  This does all of the checks
1521 * for node-level blocks and does any balancing required based on
1522 * the ins_len.
1523 *
1524 * If no extra work was required, zero is returned.  If we had to
1525 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1526 * start over
1527 */
1528static int
1529setup_nodes_for_search(struct btrfs_trans_handle *trans,
1530		       struct btrfs_root *root, struct btrfs_path *p,
1531		       struct extent_buffer *b, int level, int ins_len,
1532		       int *write_lock_level)
1533{
 
1534	int ret;
 
1535	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1536	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1537		int sret;
1538
1539		if (*write_lock_level < level + 1) {
1540			*write_lock_level = level + 1;
1541			btrfs_release_path(p);
1542			goto again;
1543		}
1544
1545		sret = reada_for_balance(root, p, level);
1546		if (sret)
1547			goto again;
1548
1549		btrfs_set_path_blocking(p);
 
1550		sret = split_node(trans, root, p, level);
1551		btrfs_clear_path_blocking(p, NULL, 0);
1552
1553		BUG_ON(sret > 0);
1554		if (sret) {
1555			ret = sret;
1556			goto done;
1557		}
1558		b = p->nodes[level];
1559	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1560		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1561		int sret;
1562
1563		if (*write_lock_level < level + 1) {
1564			*write_lock_level = level + 1;
1565			btrfs_release_path(p);
1566			goto again;
1567		}
1568
1569		sret = reada_for_balance(root, p, level);
1570		if (sret)
1571			goto again;
1572
1573		btrfs_set_path_blocking(p);
 
1574		sret = balance_level(trans, root, p, level);
1575		btrfs_clear_path_blocking(p, NULL, 0);
1576
1577		if (sret) {
1578			ret = sret;
1579			goto done;
1580		}
1581		b = p->nodes[level];
1582		if (!b) {
1583			btrfs_release_path(p);
1584			goto again;
1585		}
1586		BUG_ON(btrfs_header_nritems(b) == 1);
1587	}
1588	return 0;
1589
1590again:
1591	ret = -EAGAIN;
1592done:
1593	return ret;
1594}
1595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1596/*
1597 * look for key in the tree.  path is filled in with nodes along the way
1598 * if key is found, we return zero and you can find the item in the leaf
1599 * level of the path (level 0)
1600 *
1601 * If the key isn't found, the path points to the slot where it should
1602 * be inserted, and 1 is returned.  If there are other errors during the
1603 * search a negative error number is returned.
1604 *
1605 * if ins_len > 0, nodes and leaves will be split as we walk down the
1606 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1607 * possible)
1608 */
1609int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1610		      *root, struct btrfs_key *key, struct btrfs_path *p, int
1611		      ins_len, int cow)
1612{
 
1613	struct extent_buffer *b;
1614	int slot;
1615	int ret;
1616	int err;
1617	int level;
1618	int lowest_unlock = 1;
1619	int root_lock;
1620	/* everything at write_lock_level or lower must be write locked */
1621	int write_lock_level = 0;
1622	u8 lowest_level = 0;
 
 
1623
1624	lowest_level = p->lowest_level;
1625	WARN_ON(lowest_level && ins_len > 0);
1626	WARN_ON(p->nodes[0] != NULL);
 
1627
1628	if (ins_len < 0) {
1629		lowest_unlock = 2;
1630
1631		/* when we are removing items, we might have to go up to level
1632		 * two as we update tree pointers  Make sure we keep write
1633		 * for those levels as well
1634		 */
1635		write_lock_level = 2;
1636	} else if (ins_len > 0) {
1637		/*
1638		 * for inserting items, make sure we have a write lock on
1639		 * level 1 so we can update keys
1640		 */
1641		write_lock_level = 1;
1642	}
1643
1644	if (!cow)
1645		write_lock_level = -1;
1646
1647	if (cow && (p->keep_locks || p->lowest_level))
1648		write_lock_level = BTRFS_MAX_LEVEL;
1649
 
 
1650again:
 
1651	/*
1652	 * we try very hard to do read locks on the root
1653	 */
1654	root_lock = BTRFS_READ_LOCK;
1655	level = 0;
1656	if (p->search_commit_root) {
1657		/*
1658		 * the commit roots are read only
1659		 * so we always do read locks
1660		 */
 
 
1661		b = root->commit_root;
1662		extent_buffer_get(b);
1663		level = btrfs_header_level(b);
 
 
1664		if (!p->skip_locking)
1665			btrfs_tree_read_lock(b);
1666	} else {
1667		if (p->skip_locking) {
1668			b = btrfs_root_node(root);
1669			level = btrfs_header_level(b);
1670		} else {
1671			/* we don't know the level of the root node
1672			 * until we actually have it read locked
1673			 */
1674			b = btrfs_read_lock_root_node(root);
1675			level = btrfs_header_level(b);
1676			if (level <= write_lock_level) {
1677				/* whoops, must trade for write lock */
1678				btrfs_tree_read_unlock(b);
1679				free_extent_buffer(b);
1680				b = btrfs_lock_root_node(root);
1681				root_lock = BTRFS_WRITE_LOCK;
1682
1683				/* the level might have changed, check again */
1684				level = btrfs_header_level(b);
1685			}
1686		}
1687	}
1688	p->nodes[level] = b;
1689	if (!p->skip_locking)
1690		p->locks[level] = root_lock;
1691
1692	while (b) {
1693		level = btrfs_header_level(b);
1694
1695		/*
1696		 * setup the path here so we can release it under lock
1697		 * contention with the cow code
1698		 */
1699		if (cow) {
1700			/*
1701			 * if we don't really need to cow this block
1702			 * then we don't want to set the path blocking,
1703			 * so we test it here
1704			 */
1705			if (!should_cow_block(trans, root, b))
 
1706				goto cow_done;
1707
1708			btrfs_set_path_blocking(p);
1709
1710			/*
1711			 * must have write locks on this node and the
1712			 * parent
1713			 */
1714			if (level + 1 > write_lock_level) {
 
 
 
1715				write_lock_level = level + 1;
1716				btrfs_release_path(p);
1717				goto again;
1718			}
1719
 
1720			err = btrfs_cow_block(trans, root, b,
1721					      p->nodes[level + 1],
1722					      p->slots[level + 1], &b);
1723			if (err) {
1724				ret = err;
1725				goto done;
1726			}
1727		}
1728cow_done:
1729		BUG_ON(!cow && ins_len);
1730
1731		p->nodes[level] = b;
1732		btrfs_clear_path_blocking(p, NULL, 0);
1733
1734		/*
1735		 * we have a lock on b and as long as we aren't changing
1736		 * the tree, there is no way to for the items in b to change.
1737		 * It is safe to drop the lock on our parent before we
1738		 * go through the expensive btree search on b.
1739		 *
1740		 * If cow is true, then we might be changing slot zero,
1741		 * which may require changing the parent.  So, we can't
1742		 * drop the lock until after we know which slot we're
1743		 * operating on.
1744		 */
1745		if (!cow)
1746			btrfs_unlock_up_safe(p, level + 1);
1747
1748		ret = bin_search(b, key, level, &slot);
 
 
 
 
 
 
 
 
1749
1750		if (level != 0) {
1751			int dec = 0;
1752			if (ret && slot > 0) {
1753				dec = 1;
1754				slot -= 1;
1755			}
1756			p->slots[level] = slot;
1757			err = setup_nodes_for_search(trans, root, p, b, level,
1758					     ins_len, &write_lock_level);
1759			if (err == -EAGAIN)
1760				goto again;
1761			if (err) {
1762				ret = err;
1763				goto done;
1764			}
1765			b = p->nodes[level];
1766			slot = p->slots[level];
1767
1768			/*
1769			 * slot 0 is special, if we change the key
1770			 * we have to update the parent pointer
1771			 * which means we must have a write lock
1772			 * on the parent
1773			 */
1774			if (slot == 0 && cow &&
1775			    write_lock_level < level + 1) {
1776				write_lock_level = level + 1;
1777				btrfs_release_path(p);
1778				goto again;
1779			}
1780
1781			unlock_up(p, level, lowest_unlock);
 
1782
1783			if (level == lowest_level) {
1784				if (dec)
1785					p->slots[level]++;
1786				goto done;
1787			}
1788
1789			err = read_block_for_search(trans, root, p,
1790						    &b, level, slot, key);
1791			if (err == -EAGAIN)
1792				goto again;
1793			if (err) {
1794				ret = err;
1795				goto done;
1796			}
1797
1798			if (!p->skip_locking) {
1799				level = btrfs_header_level(b);
1800				if (level <= write_lock_level) {
1801					err = btrfs_try_tree_write_lock(b);
1802					if (!err) {
1803						btrfs_set_path_blocking(p);
1804						btrfs_tree_lock(b);
1805						btrfs_clear_path_blocking(p, b,
1806								  BTRFS_WRITE_LOCK);
1807					}
1808					p->locks[level] = BTRFS_WRITE_LOCK;
1809				} else {
1810					err = btrfs_try_tree_read_lock(b);
1811					if (!err) {
1812						btrfs_set_path_blocking(p);
1813						btrfs_tree_read_lock(b);
1814						btrfs_clear_path_blocking(p, b,
1815								  BTRFS_READ_LOCK);
1816					}
1817					p->locks[level] = BTRFS_READ_LOCK;
1818				}
1819				p->nodes[level] = b;
1820			}
1821		} else {
1822			p->slots[level] = slot;
1823			if (ins_len > 0 &&
1824			    btrfs_leaf_free_space(root, b) < ins_len) {
1825				if (write_lock_level < 1) {
1826					write_lock_level = 1;
1827					btrfs_release_path(p);
1828					goto again;
1829				}
1830
1831				btrfs_set_path_blocking(p);
1832				err = split_leaf(trans, root, key,
1833						 p, ins_len, ret == 0);
1834				btrfs_clear_path_blocking(p, NULL, 0);
1835
1836				BUG_ON(err > 0);
1837				if (err) {
1838					ret = err;
1839					goto done;
1840				}
1841			}
1842			if (!p->search_for_split)
1843				unlock_up(p, level, lowest_unlock);
 
1844			goto done;
1845		}
1846	}
1847	ret = 1;
1848done:
1849	/*
1850	 * we don't really know what they plan on doing with the path
1851	 * from here on, so for now just mark it as blocking
1852	 */
1853	if (!p->leave_spinning)
1854		btrfs_set_path_blocking(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1855	if (ret < 0)
1856		btrfs_release_path(p);
 
1857	return ret;
1858}
1859
1860/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1861 * adjust the pointers going up the tree, starting at level
1862 * making sure the right key of each node is points to 'key'.
1863 * This is used after shifting pointers to the left, so it stops
1864 * fixing up pointers when a given leaf/node is not in slot 0 of the
1865 * higher levels
1866 *
1867 * If this fails to write a tree block, it returns -1, but continues
1868 * fixing up the blocks in ram so the tree is consistent.
1869 */
1870static int fixup_low_keys(struct btrfs_trans_handle *trans,
1871			  struct btrfs_root *root, struct btrfs_path *path,
1872			  struct btrfs_disk_key *key, int level)
1873{
1874	int i;
1875	int ret = 0;
1876	struct extent_buffer *t;
1877
1878	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1879		int tslot = path->slots[i];
1880		if (!path->nodes[i])
1881			break;
1882		t = path->nodes[i];
 
1883		btrfs_set_node_key(t, key, tslot);
1884		btrfs_mark_buffer_dirty(path->nodes[i]);
1885		if (tslot != 0)
1886			break;
1887	}
1888	return ret;
1889}
1890
1891/*
1892 * update item key.
1893 *
1894 * This function isn't completely safe. It's the caller's responsibility
1895 * that the new key won't break the order
1896 */
1897int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1898			    struct btrfs_root *root, struct btrfs_path *path,
1899			    struct btrfs_key *new_key)
1900{
1901	struct btrfs_disk_key disk_key;
1902	struct extent_buffer *eb;
1903	int slot;
1904
1905	eb = path->nodes[0];
1906	slot = path->slots[0];
1907	if (slot > 0) {
1908		btrfs_item_key(eb, &disk_key, slot - 1);
1909		if (comp_keys(&disk_key, new_key) >= 0)
1910			return -1;
1911	}
1912	if (slot < btrfs_header_nritems(eb) - 1) {
1913		btrfs_item_key(eb, &disk_key, slot + 1);
1914		if (comp_keys(&disk_key, new_key) <= 0)
1915			return -1;
1916	}
1917
1918	btrfs_cpu_key_to_disk(&disk_key, new_key);
1919	btrfs_set_item_key(eb, &disk_key, slot);
1920	btrfs_mark_buffer_dirty(eb);
1921	if (slot == 0)
1922		fixup_low_keys(trans, root, path, &disk_key, 1);
1923	return 0;
1924}
1925
1926/*
1927 * try to push data from one node into the next node left in the
1928 * tree.
1929 *
1930 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1931 * error, and > 0 if there was no room in the left hand block.
1932 */
1933static int push_node_left(struct btrfs_trans_handle *trans,
1934			  struct btrfs_root *root, struct extent_buffer *dst,
 
1935			  struct extent_buffer *src, int empty)
1936{
1937	int push_items = 0;
1938	int src_nritems;
1939	int dst_nritems;
1940	int ret = 0;
1941
1942	src_nritems = btrfs_header_nritems(src);
1943	dst_nritems = btrfs_header_nritems(dst);
1944	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1945	WARN_ON(btrfs_header_generation(src) != trans->transid);
1946	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1947
1948	if (!empty && src_nritems <= 8)
1949		return 1;
1950
1951	if (push_items <= 0)
1952		return 1;
1953
1954	if (empty) {
1955		push_items = min(src_nritems, push_items);
1956		if (push_items < src_nritems) {
1957			/* leave at least 8 pointers in the node if
1958			 * we aren't going to empty it
1959			 */
1960			if (src_nritems - push_items < 8) {
1961				if (push_items <= 8)
1962					return 1;
1963				push_items -= 8;
1964			}
1965		}
1966	} else
1967		push_items = min(src_nritems - 8, push_items);
1968
 
 
 
 
 
 
1969	copy_extent_buffer(dst, src,
1970			   btrfs_node_key_ptr_offset(dst_nritems),
1971			   btrfs_node_key_ptr_offset(0),
1972			   push_items * sizeof(struct btrfs_key_ptr));
1973
1974	if (push_items < src_nritems) {
 
 
 
 
1975		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1976				      btrfs_node_key_ptr_offset(push_items),
1977				      (src_nritems - push_items) *
1978				      sizeof(struct btrfs_key_ptr));
1979	}
1980	btrfs_set_header_nritems(src, src_nritems - push_items);
1981	btrfs_set_header_nritems(dst, dst_nritems + push_items);
1982	btrfs_mark_buffer_dirty(src);
1983	btrfs_mark_buffer_dirty(dst);
1984
1985	return ret;
1986}
1987
1988/*
1989 * try to push data from one node into the next node right in the
1990 * tree.
1991 *
1992 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1993 * error, and > 0 if there was no room in the right hand block.
1994 *
1995 * this will  only push up to 1/2 the contents of the left node over
1996 */
1997static int balance_node_right(struct btrfs_trans_handle *trans,
1998			      struct btrfs_root *root,
1999			      struct extent_buffer *dst,
2000			      struct extent_buffer *src)
2001{
2002	int push_items = 0;
2003	int max_push;
2004	int src_nritems;
2005	int dst_nritems;
2006	int ret = 0;
2007
2008	WARN_ON(btrfs_header_generation(src) != trans->transid);
2009	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2010
2011	src_nritems = btrfs_header_nritems(src);
2012	dst_nritems = btrfs_header_nritems(dst);
2013	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2014	if (push_items <= 0)
2015		return 1;
2016
2017	if (src_nritems < 4)
2018		return 1;
2019
2020	max_push = src_nritems / 2 + 1;
2021	/* don't try to empty the node */
2022	if (max_push >= src_nritems)
2023		return 1;
2024
2025	if (max_push < push_items)
2026		push_items = max_push;
2027
 
2028	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2029				      btrfs_node_key_ptr_offset(0),
2030				      (dst_nritems) *
2031				      sizeof(struct btrfs_key_ptr));
2032
 
 
 
 
 
 
2033	copy_extent_buffer(dst, src,
2034			   btrfs_node_key_ptr_offset(0),
2035			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2036			   push_items * sizeof(struct btrfs_key_ptr));
2037
2038	btrfs_set_header_nritems(src, src_nritems - push_items);
2039	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2040
2041	btrfs_mark_buffer_dirty(src);
2042	btrfs_mark_buffer_dirty(dst);
2043
2044	return ret;
2045}
2046
2047/*
2048 * helper function to insert a new root level in the tree.
2049 * A new node is allocated, and a single item is inserted to
2050 * point to the existing root
2051 *
2052 * returns zero on success or < 0 on failure.
2053 */
2054static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2055			   struct btrfs_root *root,
2056			   struct btrfs_path *path, int level)
2057{
 
2058	u64 lower_gen;
2059	struct extent_buffer *lower;
2060	struct extent_buffer *c;
2061	struct extent_buffer *old;
2062	struct btrfs_disk_key lower_key;
2063
2064	BUG_ON(path->nodes[level]);
2065	BUG_ON(path->nodes[level-1] != root->node);
2066
2067	lower = path->nodes[level-1];
2068	if (level == 1)
2069		btrfs_item_key(lower, &lower_key, 0);
2070	else
2071		btrfs_node_key(lower, &lower_key, 0);
2072
2073	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2074				   root->root_key.objectid, &lower_key,
2075				   level, root->node->start, 0);
2076	if (IS_ERR(c))
2077		return PTR_ERR(c);
2078
2079	root_add_used(root, root->nodesize);
2080
2081	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2082	btrfs_set_header_nritems(c, 1);
2083	btrfs_set_header_level(c, level);
2084	btrfs_set_header_bytenr(c, c->start);
2085	btrfs_set_header_generation(c, trans->transid);
2086	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2087	btrfs_set_header_owner(c, root->root_key.objectid);
2088
2089	write_extent_buffer(c, root->fs_info->fsid,
2090			    (unsigned long)btrfs_header_fsid(c),
2091			    BTRFS_FSID_SIZE);
2092
2093	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2094			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
2095			    BTRFS_UUID_SIZE);
2096
2097	btrfs_set_node_key(c, &lower_key, 0);
2098	btrfs_set_node_blockptr(c, 0, lower->start);
2099	lower_gen = btrfs_header_generation(lower);
2100	WARN_ON(lower_gen != trans->transid);
2101
2102	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2103
2104	btrfs_mark_buffer_dirty(c);
2105
2106	old = root->node;
 
2107	rcu_assign_pointer(root->node, c);
2108
2109	/* the super has an extra ref to root->node */
2110	free_extent_buffer(old);
2111
2112	add_root_to_dirty_list(root);
2113	extent_buffer_get(c);
2114	path->nodes[level] = c;
2115	path->locks[level] = BTRFS_WRITE_LOCK;
2116	path->slots[level] = 0;
2117	return 0;
2118}
2119
2120/*
2121 * worker function to insert a single pointer in a node.
2122 * the node should have enough room for the pointer already
2123 *
2124 * slot and level indicate where you want the key to go, and
2125 * blocknr is the block the key points to.
2126 *
2127 * returns zero on success and < 0 on any error
2128 */
2129static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2130		      *root, struct btrfs_path *path, struct btrfs_disk_key
2131		      *key, u64 bytenr, int slot, int level)
 
2132{
2133	struct extent_buffer *lower;
2134	int nritems;
 
2135
2136	BUG_ON(!path->nodes[level]);
2137	btrfs_assert_tree_locked(path->nodes[level]);
2138	lower = path->nodes[level];
2139	nritems = btrfs_header_nritems(lower);
2140	BUG_ON(slot > nritems);
2141	if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2142		BUG();
2143	if (slot != nritems) {
 
 
 
2144		memmove_extent_buffer(lower,
2145			      btrfs_node_key_ptr_offset(slot + 1),
2146			      btrfs_node_key_ptr_offset(slot),
2147			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2148	}
 
 
 
 
 
2149	btrfs_set_node_key(lower, key, slot);
2150	btrfs_set_node_blockptr(lower, slot, bytenr);
2151	WARN_ON(trans->transid == 0);
2152	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2153	btrfs_set_header_nritems(lower, nritems + 1);
2154	btrfs_mark_buffer_dirty(lower);
2155	return 0;
2156}
2157
2158/*
2159 * split the node at the specified level in path in two.
2160 * The path is corrected to point to the appropriate node after the split
2161 *
2162 * Before splitting this tries to make some room in the node by pushing
2163 * left and right, if either one works, it returns right away.
2164 *
2165 * returns 0 on success and < 0 on failure
2166 */
2167static noinline int split_node(struct btrfs_trans_handle *trans,
2168			       struct btrfs_root *root,
2169			       struct btrfs_path *path, int level)
2170{
 
2171	struct extent_buffer *c;
2172	struct extent_buffer *split;
2173	struct btrfs_disk_key disk_key;
2174	int mid;
2175	int ret;
2176	int wret;
2177	u32 c_nritems;
2178
2179	c = path->nodes[level];
2180	WARN_ON(btrfs_header_generation(c) != trans->transid);
2181	if (c == root->node) {
2182		/* trying to split the root, lets make a new one */
 
 
 
 
 
 
 
 
 
2183		ret = insert_new_root(trans, root, path, level + 1);
2184		if (ret)
2185			return ret;
2186	} else {
2187		ret = push_nodes_for_insert(trans, root, path, level);
2188		c = path->nodes[level];
2189		if (!ret && btrfs_header_nritems(c) <
2190		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2191			return 0;
2192		if (ret < 0)
2193			return ret;
2194	}
2195
2196	c_nritems = btrfs_header_nritems(c);
2197	mid = (c_nritems + 1) / 2;
2198	btrfs_node_key(c, &disk_key, mid);
2199
2200	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2201					root->root_key.objectid,
2202					&disk_key, level, c->start, 0);
2203	if (IS_ERR(split))
2204		return PTR_ERR(split);
2205
2206	root_add_used(root, root->nodesize);
2207
2208	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2209	btrfs_set_header_level(split, btrfs_header_level(c));
2210	btrfs_set_header_bytenr(split, split->start);
2211	btrfs_set_header_generation(split, trans->transid);
2212	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2213	btrfs_set_header_owner(split, root->root_key.objectid);
2214	write_extent_buffer(split, root->fs_info->fsid,
2215			    (unsigned long)btrfs_header_fsid(split),
2216			    BTRFS_FSID_SIZE);
2217	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2218			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
2219			    BTRFS_UUID_SIZE);
2220
2221
 
 
 
 
 
2222	copy_extent_buffer(split, c,
2223			   btrfs_node_key_ptr_offset(0),
2224			   btrfs_node_key_ptr_offset(mid),
2225			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2226	btrfs_set_header_nritems(split, c_nritems - mid);
2227	btrfs_set_header_nritems(c, mid);
2228	ret = 0;
2229
2230	btrfs_mark_buffer_dirty(c);
2231	btrfs_mark_buffer_dirty(split);
2232
2233	wret = insert_ptr(trans, root, path, &disk_key, split->start,
2234			  path->slots[level + 1] + 1,
2235			  level + 1);
2236	if (wret)
2237		ret = wret;
2238
2239	if (path->slots[level] >= mid) {
2240		path->slots[level] -= mid;
2241		btrfs_tree_unlock(c);
2242		free_extent_buffer(c);
2243		path->nodes[level] = split;
2244		path->slots[level + 1] += 1;
2245	} else {
2246		btrfs_tree_unlock(split);
2247		free_extent_buffer(split);
2248	}
2249	return ret;
2250}
2251
2252/*
2253 * how many bytes are required to store the items in a leaf.  start
2254 * and nr indicate which items in the leaf to check.  This totals up the
2255 * space used both by the item structs and the item data
2256 */
2257static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2258{
 
 
 
2259	int data_len;
2260	int nritems = btrfs_header_nritems(l);
2261	int end = min(nritems, start + nr) - 1;
2262
2263	if (!nr)
2264		return 0;
2265	data_len = btrfs_item_end_nr(l, start);
2266	data_len = data_len - btrfs_item_offset_nr(l, end);
 
 
 
 
2267	data_len += sizeof(struct btrfs_item) * nr;
2268	WARN_ON(data_len < 0);
2269	return data_len;
2270}
2271
2272/*
2273 * The space between the end of the leaf items and
2274 * the start of the leaf data.  IOW, how much room
2275 * the leaf has left for both items and data
2276 */
2277noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2278				   struct extent_buffer *leaf)
2279{
2280	int nritems = btrfs_header_nritems(leaf);
2281	int ret;
2282	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
 
2283	if (ret < 0) {
2284		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2285		       "used %d nritems %d\n",
2286		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2287		       leaf_space_used(leaf, 0, nritems), nritems);
 
2288	}
2289	return ret;
2290}
2291
2292/*
2293 * min slot controls the lowest index we're willing to push to the
2294 * right.  We'll push up to and including min_slot, but no lower
2295 */
2296static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2297				      struct btrfs_root *root,
2298				      struct btrfs_path *path,
2299				      int data_size, int empty,
2300				      struct extent_buffer *right,
2301				      int free_space, u32 left_nritems,
2302				      u32 min_slot)
2303{
2304	struct extent_buffer *left = path->nodes[0];
2305	struct extent_buffer *upper = path->nodes[1];
 
2306	struct btrfs_disk_key disk_key;
2307	int slot;
2308	u32 i;
2309	int push_space = 0;
2310	int push_items = 0;
2311	struct btrfs_item *item;
2312	u32 nr;
2313	u32 right_nritems;
2314	u32 data_end;
2315	u32 this_item_size;
2316
 
 
2317	if (empty)
2318		nr = 0;
2319	else
2320		nr = max_t(u32, 1, min_slot);
2321
2322	if (path->slots[0] >= left_nritems)
2323		push_space += data_size;
2324
2325	slot = path->slots[1];
2326	i = left_nritems - 1;
2327	while (i >= nr) {
2328		item = btrfs_item_nr(left, i);
2329
2330		if (!empty && push_items > 0) {
2331			if (path->slots[0] > i)
2332				break;
2333			if (path->slots[0] == i) {
2334				int space = btrfs_leaf_free_space(root, left);
2335				if (space + push_space * 2 > free_space)
2336					break;
2337			}
2338		}
2339
2340		if (path->slots[0] == i)
2341			push_space += data_size;
2342
2343		this_item_size = btrfs_item_size(left, item);
2344		if (this_item_size + sizeof(*item) + push_space > free_space)
2345			break;
2346
2347		push_items++;
2348		push_space += this_item_size + sizeof(*item);
2349		if (i == 0)
2350			break;
2351		i--;
2352	}
2353
2354	if (push_items == 0)
2355		goto out_unlock;
2356
2357	if (!empty && push_items == left_nritems)
2358		WARN_ON(1);
2359
2360	/* push left to right */
2361	right_nritems = btrfs_header_nritems(right);
2362
2363	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2364	push_space -= leaf_data_end(root, left);
2365
2366	/* make room in the right data area */
2367	data_end = leaf_data_end(root, right);
2368	memmove_extent_buffer(right,
2369			      btrfs_leaf_data(right) + data_end - push_space,
2370			      btrfs_leaf_data(right) + data_end,
2371			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
2372
2373	/* copy from the left data area */
2374	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2375		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
2376		     btrfs_leaf_data(left) + leaf_data_end(root, left),
2377		     push_space);
2378
2379	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2380			      btrfs_item_nr_offset(0),
2381			      right_nritems * sizeof(struct btrfs_item));
2382
2383	/* copy the items from left to right */
2384	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2385		   btrfs_item_nr_offset(left_nritems - push_items),
2386		   push_items * sizeof(struct btrfs_item));
2387
2388	/* update the item pointers */
2389	right_nritems += push_items;
2390	btrfs_set_header_nritems(right, right_nritems);
2391	push_space = BTRFS_LEAF_DATA_SIZE(root);
2392	for (i = 0; i < right_nritems; i++) {
2393		item = btrfs_item_nr(right, i);
2394		push_space -= btrfs_item_size(right, item);
2395		btrfs_set_item_offset(right, item, push_space);
2396	}
2397
2398	left_nritems -= push_items;
2399	btrfs_set_header_nritems(left, left_nritems);
2400
2401	if (left_nritems)
2402		btrfs_mark_buffer_dirty(left);
2403	else
2404		clean_tree_block(trans, root, left);
2405
2406	btrfs_mark_buffer_dirty(right);
2407
2408	btrfs_item_key(right, &disk_key, 0);
2409	btrfs_set_node_key(upper, &disk_key, slot + 1);
2410	btrfs_mark_buffer_dirty(upper);
2411
2412	/* then fixup the leaf pointer in the path */
2413	if (path->slots[0] >= left_nritems) {
2414		path->slots[0] -= left_nritems;
2415		if (btrfs_header_nritems(path->nodes[0]) == 0)
2416			clean_tree_block(trans, root, path->nodes[0]);
2417		btrfs_tree_unlock(path->nodes[0]);
2418		free_extent_buffer(path->nodes[0]);
2419		path->nodes[0] = right;
2420		path->slots[1] += 1;
2421	} else {
2422		btrfs_tree_unlock(right);
2423		free_extent_buffer(right);
2424	}
2425	return 0;
2426
2427out_unlock:
2428	btrfs_tree_unlock(right);
2429	free_extent_buffer(right);
2430	return 1;
2431}
2432
2433/*
2434 * push some data in the path leaf to the right, trying to free up at
2435 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2436 *
2437 * returns 1 if the push failed because the other node didn't have enough
2438 * room, 0 if everything worked out and < 0 if there were major errors.
2439 *
2440 * this will push starting from min_slot to the end of the leaf.  It won't
2441 * push any slot lower than min_slot
2442 */
2443static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2444			   *root, struct btrfs_path *path,
2445			   int min_data_size, int data_size,
2446			   int empty, u32 min_slot)
2447{
 
2448	struct extent_buffer *left = path->nodes[0];
2449	struct extent_buffer *right;
2450	struct extent_buffer *upper;
2451	int slot;
2452	int free_space;
2453	u32 left_nritems;
2454	int ret;
2455
2456	if (!path->nodes[1])
2457		return 1;
2458
2459	slot = path->slots[1];
2460	upper = path->nodes[1];
2461	if (slot >= btrfs_header_nritems(upper) - 1)
2462		return 1;
2463
2464	btrfs_assert_tree_locked(path->nodes[1]);
2465
2466	right = read_node_slot(root, upper, slot + 1);
2467	if (right == NULL)
 
 
 
 
2468		return 1;
2469
2470	btrfs_tree_lock(right);
2471	btrfs_set_lock_blocking(right);
2472
2473	free_space = btrfs_leaf_free_space(root, right);
2474	if (free_space < data_size)
2475		goto out_unlock;
2476
2477	/* cow and double check */
2478	ret = btrfs_cow_block(trans, root, right, upper,
2479			      slot + 1, &right);
2480	if (ret)
2481		goto out_unlock;
2482
2483	free_space = btrfs_leaf_free_space(root, right);
2484	if (free_space < data_size)
2485		goto out_unlock;
2486
2487	left_nritems = btrfs_header_nritems(left);
2488	if (left_nritems == 0)
2489		goto out_unlock;
2490
2491	return __push_leaf_right(trans, root, path, min_data_size, empty,
 
 
 
 
 
 
 
 
 
 
 
 
 
2492				right, free_space, left_nritems, min_slot);
2493out_unlock:
2494	btrfs_tree_unlock(right);
2495	free_extent_buffer(right);
2496	return 1;
2497}
2498
2499/*
2500 * push some data in the path leaf to the left, trying to free up at
2501 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2502 *
2503 * max_slot can put a limit on how far into the leaf we'll push items.  The
2504 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2505 * items
2506 */
2507static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2508				     struct btrfs_root *root,
2509				     struct btrfs_path *path, int data_size,
2510				     int empty, struct extent_buffer *left,
2511				     int free_space, u32 right_nritems,
2512				     u32 max_slot)
2513{
2514	struct btrfs_disk_key disk_key;
2515	struct extent_buffer *right = path->nodes[0];
2516	int i;
2517	int push_space = 0;
2518	int push_items = 0;
2519	struct btrfs_item *item;
2520	u32 old_left_nritems;
2521	u32 nr;
2522	int ret = 0;
2523	int wret;
2524	u32 this_item_size;
2525	u32 old_left_item_size;
 
 
 
2526
2527	if (empty)
2528		nr = min(right_nritems, max_slot);
2529	else
2530		nr = min(right_nritems - 1, max_slot);
2531
2532	for (i = 0; i < nr; i++) {
2533		item = btrfs_item_nr(right, i);
2534
2535		if (!empty && push_items > 0) {
2536			if (path->slots[0] < i)
2537				break;
2538			if (path->slots[0] == i) {
2539				int space = btrfs_leaf_free_space(root, right);
2540				if (space + push_space * 2 > free_space)
2541					break;
2542			}
2543		}
2544
2545		if (path->slots[0] == i)
2546			push_space += data_size;
2547
2548		this_item_size = btrfs_item_size(right, item);
2549		if (this_item_size + sizeof(*item) + push_space > free_space)
2550			break;
2551
2552		push_items++;
2553		push_space += this_item_size + sizeof(*item);
2554	}
2555
2556	if (push_items == 0) {
2557		ret = 1;
2558		goto out;
2559	}
2560	if (!empty && push_items == btrfs_header_nritems(right))
2561		WARN_ON(1);
2562
2563	/* push data from right to left */
2564	copy_extent_buffer(left, right,
2565			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2566			   btrfs_item_nr_offset(0),
2567			   push_items * sizeof(struct btrfs_item));
2568
2569	push_space = BTRFS_LEAF_DATA_SIZE(root) -
2570		     btrfs_item_offset_nr(right, push_items - 1);
2571
2572	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2573		     leaf_data_end(root, left) - push_space,
2574		     btrfs_leaf_data(right) +
2575		     btrfs_item_offset_nr(right, push_items - 1),
2576		     push_space);
2577	old_left_nritems = btrfs_header_nritems(left);
2578	BUG_ON(old_left_nritems <= 0);
2579
2580	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2581	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2582		u32 ioff;
2583
2584		item = btrfs_item_nr(left, i);
2585
2586		ioff = btrfs_item_offset(left, item);
2587		btrfs_set_item_offset(left, item,
2588		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
 
2589	}
2590	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2591
2592	/* fixup right node */
2593	if (push_items > right_nritems) {
2594		printk(KERN_CRIT "push items %d nr %u\n", push_items,
2595		       right_nritems);
2596		WARN_ON(1);
2597	}
2598
2599	if (push_items < right_nritems) {
2600		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2601						  leaf_data_end(root, right);
2602		memmove_extent_buffer(right, btrfs_leaf_data(right) +
2603				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2604				      btrfs_leaf_data(right) +
2605				      leaf_data_end(root, right), push_space);
2606
2607		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2608			      btrfs_item_nr_offset(push_items),
2609			     (btrfs_header_nritems(right) - push_items) *
2610			     sizeof(struct btrfs_item));
2611	}
2612	right_nritems -= push_items;
2613	btrfs_set_header_nritems(right, right_nritems);
2614	push_space = BTRFS_LEAF_DATA_SIZE(root);
2615	for (i = 0; i < right_nritems; i++) {
2616		item = btrfs_item_nr(right, i);
2617
2618		push_space = push_space - btrfs_item_size(right, item);
2619		btrfs_set_item_offset(right, item, push_space);
 
2620	}
2621
2622	btrfs_mark_buffer_dirty(left);
2623	if (right_nritems)
2624		btrfs_mark_buffer_dirty(right);
2625	else
2626		clean_tree_block(trans, root, right);
2627
2628	btrfs_item_key(right, &disk_key, 0);
2629	wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2630	if (wret)
2631		ret = wret;
2632
2633	/* then fixup the leaf pointer in the path */
2634	if (path->slots[0] < push_items) {
2635		path->slots[0] += old_left_nritems;
2636		btrfs_tree_unlock(path->nodes[0]);
2637		free_extent_buffer(path->nodes[0]);
2638		path->nodes[0] = left;
2639		path->slots[1] -= 1;
2640	} else {
2641		btrfs_tree_unlock(left);
2642		free_extent_buffer(left);
2643		path->slots[0] -= push_items;
2644	}
2645	BUG_ON(path->slots[0] < 0);
2646	return ret;
2647out:
2648	btrfs_tree_unlock(left);
2649	free_extent_buffer(left);
2650	return ret;
2651}
2652
2653/*
2654 * push some data in the path leaf to the left, trying to free up at
2655 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2656 *
2657 * max_slot can put a limit on how far into the leaf we'll push items.  The
2658 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
2659 * items
2660 */
2661static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2662			  *root, struct btrfs_path *path, int min_data_size,
2663			  int data_size, int empty, u32 max_slot)
2664{
 
2665	struct extent_buffer *right = path->nodes[0];
2666	struct extent_buffer *left;
2667	int slot;
2668	int free_space;
2669	u32 right_nritems;
2670	int ret = 0;
2671
2672	slot = path->slots[1];
2673	if (slot == 0)
2674		return 1;
2675	if (!path->nodes[1])
2676		return 1;
2677
2678	right_nritems = btrfs_header_nritems(right);
2679	if (right_nritems == 0)
2680		return 1;
2681
2682	btrfs_assert_tree_locked(path->nodes[1]);
2683
2684	left = read_node_slot(root, path->nodes[1], slot - 1);
2685	if (left == NULL)
 
 
 
 
2686		return 1;
2687
2688	btrfs_tree_lock(left);
2689	btrfs_set_lock_blocking(left);
2690
2691	free_space = btrfs_leaf_free_space(root, left);
2692	if (free_space < data_size) {
2693		ret = 1;
2694		goto out;
2695	}
2696
2697	/* cow and double check */
2698	ret = btrfs_cow_block(trans, root, left,
2699			      path->nodes[1], slot - 1, &left);
2700	if (ret) {
2701		/* we hit -ENOSPC, but it isn't fatal here */
2702		ret = 1;
 
2703		goto out;
2704	}
2705
2706	free_space = btrfs_leaf_free_space(root, left);
2707	if (free_space < data_size) {
2708		ret = 1;
2709		goto out;
2710	}
2711
2712	return __push_leaf_left(trans, root, path, min_data_size,
2713			       empty, left, free_space, right_nritems,
2714			       max_slot);
2715out:
2716	btrfs_tree_unlock(left);
2717	free_extent_buffer(left);
2718	return ret;
2719}
2720
2721/*
2722 * split the path's leaf in two, making sure there is at least data_size
2723 * available for the resulting leaf level of the path.
2724 *
2725 * returns 0 if all went well and < 0 on failure.
2726 */
2727static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2728			       struct btrfs_root *root,
2729			       struct btrfs_path *path,
2730			       struct extent_buffer *l,
2731			       struct extent_buffer *right,
2732			       int slot, int mid, int nritems)
2733{
2734	int data_copy_size;
2735	int rt_data_off;
2736	int i;
2737	int ret = 0;
2738	int wret;
2739	struct btrfs_disk_key disk_key;
 
 
 
2740
2741	nritems = nritems - mid;
2742	btrfs_set_header_nritems(right, nritems);
2743	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2744
2745	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2746			   btrfs_item_nr_offset(mid),
2747			   nritems * sizeof(struct btrfs_item));
2748
2749	copy_extent_buffer(right, l,
2750		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2751		     data_copy_size, btrfs_leaf_data(l) +
2752		     leaf_data_end(root, l), data_copy_size);
2753
2754	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2755		      btrfs_item_end_nr(l, mid);
2756
2757	for (i = 0; i < nritems; i++) {
2758		struct btrfs_item *item = btrfs_item_nr(right, i);
2759		u32 ioff;
2760
2761		ioff = btrfs_item_offset(right, item);
2762		btrfs_set_item_offset(right, item, ioff + rt_data_off);
 
2763	}
2764
2765	btrfs_set_header_nritems(l, mid);
2766	ret = 0;
2767	btrfs_item_key(right, &disk_key, 0);
2768	wret = insert_ptr(trans, root, path, &disk_key, right->start,
2769			  path->slots[1] + 1, 1);
2770	if (wret)
2771		ret = wret;
2772
2773	btrfs_mark_buffer_dirty(right);
2774	btrfs_mark_buffer_dirty(l);
2775	BUG_ON(path->slots[0] != slot);
2776
2777	if (mid <= slot) {
2778		btrfs_tree_unlock(path->nodes[0]);
2779		free_extent_buffer(path->nodes[0]);
2780		path->nodes[0] = right;
2781		path->slots[0] -= mid;
2782		path->slots[1] += 1;
2783	} else {
2784		btrfs_tree_unlock(right);
2785		free_extent_buffer(right);
2786	}
2787
2788	BUG_ON(path->slots[0] < 0);
2789
2790	return ret;
2791}
2792
2793/*
2794 * double splits happen when we need to insert a big item in the middle
2795 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
2796 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2797 *          A                 B                 C
2798 *
2799 * We avoid this by trying to push the items on either side of our target
2800 * into the adjacent leaves.  If all goes well we can avoid the double split
2801 * completely.
2802 */
2803static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2804					  struct btrfs_root *root,
2805					  struct btrfs_path *path,
2806					  int data_size)
2807{
 
2808	int ret;
2809	int progress = 0;
2810	int slot;
2811	u32 nritems;
 
2812
2813	slot = path->slots[0];
 
 
2814
2815	/*
2816	 * try to push all the items after our slot into the
2817	 * right leaf
2818	 */
2819	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2820	if (ret < 0)
2821		return ret;
2822
2823	if (ret == 0)
2824		progress++;
2825
2826	nritems = btrfs_header_nritems(path->nodes[0]);
2827	/*
2828	 * our goal is to get our slot at the start or end of a leaf.  If
2829	 * we've done so we're done
2830	 */
2831	if (path->slots[0] == 0 || path->slots[0] == nritems)
2832		return 0;
2833
2834	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2835		return 0;
2836
2837	/* try to push all the items before our slot into the next leaf */
2838	slot = path->slots[0];
2839	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2840	if (ret < 0)
2841		return ret;
2842
2843	if (ret == 0)
2844		progress++;
2845
2846	if (progress)
2847		return 0;
2848	return 1;
2849}
2850
2851/*
2852 * split the path's leaf in two, making sure there is at least data_size
2853 * available for the resulting leaf level of the path.
2854 *
2855 * returns 0 if all went well and < 0 on failure.
2856 */
2857static noinline int split_leaf(struct btrfs_trans_handle *trans,
2858			       struct btrfs_root *root,
2859			       struct btrfs_key *ins_key,
2860			       struct btrfs_path *path, int data_size,
2861			       int extend)
2862{
2863	struct btrfs_disk_key disk_key;
2864	struct extent_buffer *l;
2865	u32 nritems;
2866	int mid;
2867	int slot;
2868	struct extent_buffer *right;
 
2869	int ret = 0;
2870	int wret;
2871	int split;
2872	int num_doubles = 0;
2873	int tried_avoid_double = 0;
2874
2875	l = path->nodes[0];
2876	slot = path->slots[0];
2877	if (extend && data_size + btrfs_item_size_nr(l, slot) +
2878	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2879		return -EOVERFLOW;
2880
2881	/* first try to make some room by pushing left and right */
2882	if (data_size) {
2883		wret = push_leaf_right(trans, root, path, data_size,
2884				       data_size, 0, 0);
 
 
 
 
 
2885		if (wret < 0)
2886			return wret;
2887		if (wret) {
2888			wret = push_leaf_left(trans, root, path, data_size,
2889					      data_size, 0, (u32)-1);
2890			if (wret < 0)
2891				return wret;
2892		}
2893		l = path->nodes[0];
2894
2895		/* did the pushes work? */
2896		if (btrfs_leaf_free_space(root, l) >= data_size)
2897			return 0;
2898	}
2899
2900	if (!path->nodes[1]) {
2901		ret = insert_new_root(trans, root, path, 1);
2902		if (ret)
2903			return ret;
2904	}
2905again:
2906	split = 1;
2907	l = path->nodes[0];
2908	slot = path->slots[0];
2909	nritems = btrfs_header_nritems(l);
2910	mid = (nritems + 1) / 2;
2911
2912	if (mid <= slot) {
2913		if (nritems == 1 ||
2914		    leaf_space_used(l, mid, nritems - mid) + data_size >
2915			BTRFS_LEAF_DATA_SIZE(root)) {
2916			if (slot >= nritems) {
2917				split = 0;
2918			} else {
2919				mid = slot;
2920				if (mid != nritems &&
2921				    leaf_space_used(l, mid, nritems - mid) +
2922				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2923					if (data_size && !tried_avoid_double)
2924						goto push_for_double;
2925					split = 2;
2926				}
2927			}
2928		}
2929	} else {
2930		if (leaf_space_used(l, 0, mid) + data_size >
2931			BTRFS_LEAF_DATA_SIZE(root)) {
2932			if (!extend && data_size && slot == 0) {
2933				split = 0;
2934			} else if ((extend || !data_size) && slot == 0) {
2935				mid = 1;
2936			} else {
2937				mid = slot;
2938				if (mid != nritems &&
2939				    leaf_space_used(l, mid, nritems - mid) +
2940				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2941					if (data_size && !tried_avoid_double)
2942						goto push_for_double;
2943					split = 2 ;
2944				}
2945			}
2946		}
2947	}
2948
2949	if (split == 0)
2950		btrfs_cpu_key_to_disk(&disk_key, ins_key);
2951	else
2952		btrfs_item_key(l, &disk_key, mid);
2953
2954	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2955					root->root_key.objectid,
2956					&disk_key, 0, l->start, 0);
2957	if (IS_ERR(right))
2958		return PTR_ERR(right);
2959
2960	root_add_used(root, root->leafsize);
2961
2962	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2963	btrfs_set_header_bytenr(right, right->start);
2964	btrfs_set_header_generation(right, trans->transid);
2965	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2966	btrfs_set_header_owner(right, root->root_key.objectid);
2967	btrfs_set_header_level(right, 0);
2968	write_extent_buffer(right, root->fs_info->fsid,
2969			    (unsigned long)btrfs_header_fsid(right),
2970			    BTRFS_FSID_SIZE);
2971
2972	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2973			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
2974			    BTRFS_UUID_SIZE);
2975
2976	if (split == 0) {
2977		if (mid <= slot) {
2978			btrfs_set_header_nritems(right, 0);
2979			wret = insert_ptr(trans, root, path,
2980					  &disk_key, right->start,
2981					  path->slots[1] + 1, 1);
2982			if (wret)
2983				ret = wret;
2984
2985			btrfs_tree_unlock(path->nodes[0]);
2986			free_extent_buffer(path->nodes[0]);
2987			path->nodes[0] = right;
2988			path->slots[0] = 0;
2989			path->slots[1] += 1;
2990		} else {
2991			btrfs_set_header_nritems(right, 0);
2992			wret = insert_ptr(trans, root, path,
2993					  &disk_key,
2994					  right->start,
2995					  path->slots[1], 1);
2996			if (wret)
2997				ret = wret;
2998			btrfs_tree_unlock(path->nodes[0]);
2999			free_extent_buffer(path->nodes[0]);
3000			path->nodes[0] = right;
3001			path->slots[0] = 0;
3002			if (path->slots[1] == 0) {
3003				wret = fixup_low_keys(trans, root,
3004						path, &disk_key, 1);
3005				if (wret)
3006					ret = wret;
3007			}
3008		}
3009		btrfs_mark_buffer_dirty(right);
 
 
 
 
3010		return ret;
3011	}
3012
3013	ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3014	BUG_ON(ret);
3015
3016	if (split == 2) {
3017		BUG_ON(num_doubles != 0);
3018		num_doubles++;
3019		goto again;
3020	}
3021
3022	return ret;
3023
3024push_for_double:
3025	push_for_double_split(trans, root, path, data_size);
3026	tried_avoid_double = 1;
3027	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3028		return 0;
3029	goto again;
3030}
3031
3032static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3033					 struct btrfs_root *root,
3034					 struct btrfs_path *path, int ins_len)
3035{
 
3036	struct btrfs_key key;
3037	struct extent_buffer *leaf;
3038	struct btrfs_file_extent_item *fi;
3039	u64 extent_len = 0;
3040	u32 item_size;
3041	int ret;
3042
3043	leaf = path->nodes[0];
3044	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3045
3046	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3047	       key.type != BTRFS_EXTENT_CSUM_KEY);
3048
3049	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3050		return 0;
3051
3052	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3053	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3054		fi = btrfs_item_ptr(leaf, path->slots[0],
3055				    struct btrfs_file_extent_item);
3056		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3057	}
3058	btrfs_release_path(path);
3059
3060	path->keep_locks = 1;
3061	path->search_for_split = 1;
3062	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3063	path->search_for_split = 0;
 
 
3064	if (ret < 0)
3065		goto err;
3066
3067	ret = -EAGAIN;
3068	leaf = path->nodes[0];
3069	/* if our item isn't there or got smaller, return now */
3070	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3071		goto err;
3072
3073	/* the leaf has  changed, it now has room.  return now */
3074	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3075		goto err;
3076
3077	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3078		fi = btrfs_item_ptr(leaf, path->slots[0],
3079				    struct btrfs_file_extent_item);
3080		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3081			goto err;
3082	}
3083
3084	btrfs_set_path_blocking(path);
3085	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3086	if (ret)
3087		goto err;
3088
3089	path->keep_locks = 0;
3090	btrfs_unlock_up_safe(path, 1);
3091	return 0;
3092err:
3093	path->keep_locks = 0;
3094	return ret;
3095}
3096
3097static noinline int split_item(struct btrfs_trans_handle *trans,
3098			       struct btrfs_root *root,
3099			       struct btrfs_path *path,
3100			       struct btrfs_key *new_key,
3101			       unsigned long split_offset)
3102{
3103	struct extent_buffer *leaf;
3104	struct btrfs_item *item;
3105	struct btrfs_item *new_item;
3106	int slot;
3107	char *buf;
3108	u32 nritems;
3109	u32 item_size;
3110	u32 orig_offset;
3111	struct btrfs_disk_key disk_key;
3112
3113	leaf = path->nodes[0];
3114	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3115
3116	btrfs_set_path_blocking(path);
3117
3118	item = btrfs_item_nr(leaf, path->slots[0]);
3119	orig_offset = btrfs_item_offset(leaf, item);
3120	item_size = btrfs_item_size(leaf, item);
3121
3122	buf = kmalloc(item_size, GFP_NOFS);
3123	if (!buf)
3124		return -ENOMEM;
3125
3126	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3127			    path->slots[0]), item_size);
3128
3129	slot = path->slots[0] + 1;
3130	nritems = btrfs_header_nritems(leaf);
3131	if (slot != nritems) {
3132		/* shift the items */
3133		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3134				btrfs_item_nr_offset(slot),
3135				(nritems - slot) * sizeof(struct btrfs_item));
3136	}
3137
3138	btrfs_cpu_key_to_disk(&disk_key, new_key);
3139	btrfs_set_item_key(leaf, &disk_key, slot);
3140
3141	new_item = btrfs_item_nr(leaf, slot);
3142
3143	btrfs_set_item_offset(leaf, new_item, orig_offset);
3144	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3145
3146	btrfs_set_item_offset(leaf, item,
3147			      orig_offset + item_size - split_offset);
3148	btrfs_set_item_size(leaf, item, split_offset);
3149
3150	btrfs_set_header_nritems(leaf, nritems + 1);
3151
3152	/* write the data for the start of the original item */
3153	write_extent_buffer(leaf, buf,
3154			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3155			    split_offset);
3156
3157	/* write the data for the new item */
3158	write_extent_buffer(leaf, buf + split_offset,
3159			    btrfs_item_ptr_offset(leaf, slot),
3160			    item_size - split_offset);
3161	btrfs_mark_buffer_dirty(leaf);
3162
3163	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3164	kfree(buf);
3165	return 0;
3166}
3167
3168/*
3169 * This function splits a single item into two items,
3170 * giving 'new_key' to the new item and splitting the
3171 * old one at split_offset (from the start of the item).
3172 *
3173 * The path may be released by this operation.  After
3174 * the split, the path is pointing to the old item.  The
3175 * new item is going to be in the same node as the old one.
3176 *
3177 * Note, the item being split must be smaller enough to live alone on
3178 * a tree block with room for one extra struct btrfs_item
3179 *
3180 * This allows us to split the item in place, keeping a lock on the
3181 * leaf the entire time.
3182 */
3183int btrfs_split_item(struct btrfs_trans_handle *trans,
3184		     struct btrfs_root *root,
3185		     struct btrfs_path *path,
3186		     struct btrfs_key *new_key,
3187		     unsigned long split_offset)
3188{
3189	int ret;
3190	ret = setup_leaf_for_split(trans, root, path,
3191				   sizeof(struct btrfs_item));
3192	if (ret)
3193		return ret;
3194
3195	ret = split_item(trans, root, path, new_key, split_offset);
3196	return ret;
3197}
3198
3199/*
3200 * This function duplicate a item, giving 'new_key' to the new item.
3201 * It guarantees both items live in the same tree leaf and the new item
3202 * is contiguous with the original item.
3203 *
3204 * This allows us to split file extent in place, keeping a lock on the
3205 * leaf the entire time.
3206 */
3207int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3208			 struct btrfs_root *root,
3209			 struct btrfs_path *path,
3210			 struct btrfs_key *new_key)
3211{
3212	struct extent_buffer *leaf;
3213	int ret;
3214	u32 item_size;
3215
3216	leaf = path->nodes[0];
3217	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3218	ret = setup_leaf_for_split(trans, root, path,
3219				   item_size + sizeof(struct btrfs_item));
3220	if (ret)
3221		return ret;
3222
3223	path->slots[0]++;
3224	ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3225				     item_size, item_size +
3226				     sizeof(struct btrfs_item), 1);
3227	BUG_ON(ret);
3228
3229	leaf = path->nodes[0];
3230	memcpy_extent_buffer(leaf,
3231			     btrfs_item_ptr_offset(leaf, path->slots[0]),
3232			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3233			     item_size);
3234	return 0;
3235}
3236
3237/*
3238 * make the item pointed to by the path smaller.  new_size indicates
3239 * how small to make it, and from_end tells us if we just chop bytes
3240 * off the end of the item or if we shift the item to chop bytes off
3241 * the front.
3242 */
3243int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3244			struct btrfs_root *root,
3245			struct btrfs_path *path,
3246			u32 new_size, int from_end)
3247{
3248	int slot;
3249	struct extent_buffer *leaf;
3250	struct btrfs_item *item;
3251	u32 nritems;
3252	unsigned int data_end;
3253	unsigned int old_data_start;
3254	unsigned int old_size;
3255	unsigned int size_diff;
3256	int i;
 
 
 
3257
3258	leaf = path->nodes[0];
3259	slot = path->slots[0];
3260
3261	old_size = btrfs_item_size_nr(leaf, slot);
3262	if (old_size == new_size)
3263		return 0;
3264
3265	nritems = btrfs_header_nritems(leaf);
3266	data_end = leaf_data_end(root, leaf);
3267
3268	old_data_start = btrfs_item_offset_nr(leaf, slot);
3269
3270	size_diff = old_size - new_size;
3271
3272	BUG_ON(slot < 0);
3273	BUG_ON(slot >= nritems);
3274
3275	/*
3276	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3277	 */
3278	/* first correct the data pointers */
3279	for (i = slot; i < nritems; i++) {
3280		u32 ioff;
3281		item = btrfs_item_nr(leaf, i);
3282
3283		ioff = btrfs_item_offset(leaf, item);
3284		btrfs_set_item_offset(leaf, item, ioff + size_diff);
 
3285	}
3286
3287	/* shift the data */
3288	if (from_end) {
3289		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3290			      data_end + size_diff, btrfs_leaf_data(leaf) +
3291			      data_end, old_data_start + new_size - data_end);
3292	} else {
3293		struct btrfs_disk_key disk_key;
3294		u64 offset;
3295
3296		btrfs_item_key(leaf, &disk_key, slot);
3297
3298		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3299			unsigned long ptr;
3300			struct btrfs_file_extent_item *fi;
3301
3302			fi = btrfs_item_ptr(leaf, slot,
3303					    struct btrfs_file_extent_item);
3304			fi = (struct btrfs_file_extent_item *)(
3305			     (unsigned long)fi - size_diff);
3306
3307			if (btrfs_file_extent_type(leaf, fi) ==
3308			    BTRFS_FILE_EXTENT_INLINE) {
3309				ptr = btrfs_item_ptr_offset(leaf, slot);
3310				memmove_extent_buffer(leaf, ptr,
3311				      (unsigned long)fi,
3312				      offsetof(struct btrfs_file_extent_item,
3313						 disk_bytenr));
3314			}
3315		}
3316
3317		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3318			      data_end + size_diff, btrfs_leaf_data(leaf) +
3319			      data_end, old_data_start - data_end);
3320
3321		offset = btrfs_disk_key_offset(&disk_key);
3322		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3323		btrfs_set_item_key(leaf, &disk_key, slot);
3324		if (slot == 0)
3325			fixup_low_keys(trans, root, path, &disk_key, 1);
3326	}
3327
3328	item = btrfs_item_nr(leaf, slot);
3329	btrfs_set_item_size(leaf, item, new_size);
3330	btrfs_mark_buffer_dirty(leaf);
3331
3332	if (btrfs_leaf_free_space(root, leaf) < 0) {
3333		btrfs_print_leaf(root, leaf);
3334		BUG();
3335	}
3336	return 0;
3337}
3338
3339/*
3340 * make the item pointed to by the path bigger, data_size is the new size.
3341 */
3342int btrfs_extend_item(struct btrfs_trans_handle *trans,
3343		      struct btrfs_root *root, struct btrfs_path *path,
3344		      u32 data_size)
3345{
3346	int slot;
3347	struct extent_buffer *leaf;
3348	struct btrfs_item *item;
3349	u32 nritems;
3350	unsigned int data_end;
3351	unsigned int old_data;
3352	unsigned int old_size;
3353	int i;
 
 
 
3354
3355	leaf = path->nodes[0];
3356
3357	nritems = btrfs_header_nritems(leaf);
3358	data_end = leaf_data_end(root, leaf);
3359
3360	if (btrfs_leaf_free_space(root, leaf) < data_size) {
3361		btrfs_print_leaf(root, leaf);
3362		BUG();
3363	}
3364	slot = path->slots[0];
3365	old_data = btrfs_item_end_nr(leaf, slot);
3366
3367	BUG_ON(slot < 0);
3368	if (slot >= nritems) {
3369		btrfs_print_leaf(root, leaf);
3370		printk(KERN_CRIT "slot %d too large, nritems %d\n",
3371		       slot, nritems);
3372		BUG_ON(1);
3373	}
3374
3375	/*
3376	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3377	 */
3378	/* first correct the data pointers */
3379	for (i = slot; i < nritems; i++) {
3380		u32 ioff;
3381		item = btrfs_item_nr(leaf, i);
3382
3383		ioff = btrfs_item_offset(leaf, item);
3384		btrfs_set_item_offset(leaf, item, ioff - data_size);
 
3385	}
3386
3387	/* shift the data */
3388	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3389		      data_end - data_size, btrfs_leaf_data(leaf) +
3390		      data_end, old_data - data_end);
3391
3392	data_end = old_data;
3393	old_size = btrfs_item_size_nr(leaf, slot);
3394	item = btrfs_item_nr(leaf, slot);
3395	btrfs_set_item_size(leaf, item, old_size + data_size);
3396	btrfs_mark_buffer_dirty(leaf);
3397
3398	if (btrfs_leaf_free_space(root, leaf) < 0) {
3399		btrfs_print_leaf(root, leaf);
3400		BUG();
3401	}
3402	return 0;
3403}
3404
3405/*
3406 * Given a key and some data, insert items into the tree.
3407 * This does all the path init required, making room in the tree if needed.
3408 * Returns the number of keys that were inserted.
3409 */
3410int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3411			    struct btrfs_root *root,
3412			    struct btrfs_path *path,
3413			    struct btrfs_key *cpu_key, u32 *data_size,
3414			    int nr)
3415{
3416	struct extent_buffer *leaf;
3417	struct btrfs_item *item;
3418	int ret = 0;
3419	int slot;
3420	int i;
3421	u32 nritems;
3422	u32 total_data = 0;
3423	u32 total_size = 0;
3424	unsigned int data_end;
3425	struct btrfs_disk_key disk_key;
3426	struct btrfs_key found_key;
3427
3428	for (i = 0; i < nr; i++) {
3429		if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3430		    BTRFS_LEAF_DATA_SIZE(root)) {
3431			break;
3432			nr = i;
3433		}
3434		total_data += data_size[i];
3435		total_size += data_size[i] + sizeof(struct btrfs_item);
3436	}
3437	BUG_ON(nr == 0);
3438
3439	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3440	if (ret == 0)
3441		return -EEXIST;
3442	if (ret < 0)
3443		goto out;
3444
3445	leaf = path->nodes[0];
3446
3447	nritems = btrfs_header_nritems(leaf);
3448	data_end = leaf_data_end(root, leaf);
3449
3450	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3451		for (i = nr; i >= 0; i--) {
3452			total_data -= data_size[i];
3453			total_size -= data_size[i] + sizeof(struct btrfs_item);
3454			if (total_size < btrfs_leaf_free_space(root, leaf))
3455				break;
3456		}
3457		nr = i;
3458	}
3459
3460	slot = path->slots[0];
3461	BUG_ON(slot < 0);
3462
3463	if (slot != nritems) {
3464		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3465
3466		item = btrfs_item_nr(leaf, slot);
3467		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3468
3469		/* figure out how many keys we can insert in here */
3470		total_data = data_size[0];
3471		for (i = 1; i < nr; i++) {
3472			if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3473				break;
3474			total_data += data_size[i];
3475		}
3476		nr = i;
3477
3478		if (old_data < data_end) {
3479			btrfs_print_leaf(root, leaf);
3480			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3481			       slot, old_data, data_end);
3482			BUG_ON(1);
3483		}
3484		/*
3485		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3486		 */
3487		/* first correct the data pointers */
3488		for (i = slot; i < nritems; i++) {
3489			u32 ioff;
3490
3491			item = btrfs_item_nr(leaf, i);
3492			ioff = btrfs_item_offset(leaf, item);
3493			btrfs_set_item_offset(leaf, item, ioff - total_data);
3494		}
3495		/* shift the items */
3496		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3497			      btrfs_item_nr_offset(slot),
3498			      (nritems - slot) * sizeof(struct btrfs_item));
3499
3500		/* shift the data */
3501		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3502			      data_end - total_data, btrfs_leaf_data(leaf) +
3503			      data_end, old_data - data_end);
3504		data_end = old_data;
3505	} else {
3506		/*
3507		 * this sucks but it has to be done, if we are inserting at
3508		 * the end of the leaf only insert 1 of the items, since we
3509		 * have no way of knowing whats on the next leaf and we'd have
3510		 * to drop our current locks to figure it out
3511		 */
3512		nr = 1;
3513	}
3514
3515	/* setup the item for the new data */
3516	for (i = 0; i < nr; i++) {
3517		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3518		btrfs_set_item_key(leaf, &disk_key, slot + i);
3519		item = btrfs_item_nr(leaf, slot + i);
3520		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3521		data_end -= data_size[i];
3522		btrfs_set_item_size(leaf, item, data_size[i]);
3523	}
3524	btrfs_set_header_nritems(leaf, nritems + nr);
3525	btrfs_mark_buffer_dirty(leaf);
3526
3527	ret = 0;
3528	if (slot == 0) {
3529		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3530		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3531	}
3532
3533	if (btrfs_leaf_free_space(root, leaf) < 0) {
3534		btrfs_print_leaf(root, leaf);
3535		BUG();
3536	}
3537out:
3538	if (!ret)
3539		ret = nr;
3540	return ret;
3541}
3542
3543/*
3544 * this is a helper for btrfs_insert_empty_items, the main goal here is
3545 * to save stack depth by doing the bulk of the work in a function
3546 * that doesn't call btrfs_search_slot
3547 */
3548int setup_items_for_insert(struct btrfs_trans_handle *trans,
3549			   struct btrfs_root *root, struct btrfs_path *path,
3550			   struct btrfs_key *cpu_key, u32 *data_size,
3551			   u32 total_data, u32 total_size, int nr)
3552{
 
3553	struct btrfs_item *item;
3554	int i;
3555	u32 nritems;
3556	unsigned int data_end;
3557	struct btrfs_disk_key disk_key;
3558	int ret;
3559	struct extent_buffer *leaf;
3560	int slot;
 
 
 
 
 
 
 
 
 
3561
3562	leaf = path->nodes[0];
3563	slot = path->slots[0];
3564
3565	nritems = btrfs_header_nritems(leaf);
3566	data_end = leaf_data_end(root, leaf);
3567
3568	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3569		btrfs_print_leaf(root, leaf);
3570		printk(KERN_CRIT "not enough freespace need %u have %d\n",
3571		       total_size, btrfs_leaf_free_space(root, leaf));
3572		BUG();
3573	}
3574
3575	if (slot != nritems) {
3576		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3577
3578		if (old_data < data_end) {
3579			btrfs_print_leaf(root, leaf);
3580			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3581			       slot, old_data, data_end);
3582			BUG_ON(1);
3583		}
3584		/*
3585		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3586		 */
3587		/* first correct the data pointers */
3588		for (i = slot; i < nritems; i++) {
3589			u32 ioff;
3590
3591			item = btrfs_item_nr(leaf, i);
3592			ioff = btrfs_item_offset(leaf, item);
3593			btrfs_set_item_offset(leaf, item, ioff - total_data);
 
3594		}
3595		/* shift the items */
3596		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3597			      btrfs_item_nr_offset(slot),
3598			      (nritems - slot) * sizeof(struct btrfs_item));
3599
3600		/* shift the data */
3601		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3602			      data_end - total_data, btrfs_leaf_data(leaf) +
3603			      data_end, old_data - data_end);
3604		data_end = old_data;
3605	}
3606
3607	/* setup the item for the new data */
3608	for (i = 0; i < nr; i++) {
3609		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3610		btrfs_set_item_key(leaf, &disk_key, slot + i);
3611		item = btrfs_item_nr(leaf, slot + i);
3612		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
 
3613		data_end -= data_size[i];
3614		btrfs_set_item_size(leaf, item, data_size[i]);
3615	}
3616
3617	btrfs_set_header_nritems(leaf, nritems + nr);
3618
3619	ret = 0;
3620	if (slot == 0) {
3621		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3622		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3623	}
3624	btrfs_unlock_up_safe(path, 1);
3625	btrfs_mark_buffer_dirty(leaf);
3626
3627	if (btrfs_leaf_free_space(root, leaf) < 0) {
3628		btrfs_print_leaf(root, leaf);
3629		BUG();
3630	}
3631	return ret;
3632}
3633
3634/*
3635 * Given a key and some data, insert items into the tree.
3636 * This does all the path init required, making room in the tree if needed.
3637 */
3638int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3639			    struct btrfs_root *root,
3640			    struct btrfs_path *path,
3641			    struct btrfs_key *cpu_key, u32 *data_size,
3642			    int nr)
3643{
3644	int ret = 0;
3645	int slot;
3646	int i;
3647	u32 total_size = 0;
3648	u32 total_data = 0;
3649
3650	for (i = 0; i < nr; i++)
3651		total_data += data_size[i];
3652
3653	total_size = total_data + (nr * sizeof(struct btrfs_item));
3654	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3655	if (ret == 0)
3656		return -EEXIST;
3657	if (ret < 0)
3658		goto out;
3659
3660	slot = path->slots[0];
3661	BUG_ON(slot < 0);
3662
3663	ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3664			       total_data, total_size, nr);
3665
3666out:
3667	return ret;
3668}
3669
3670/*
3671 * Given a key and some data, insert an item into the tree.
3672 * This does all the path init required, making room in the tree if needed.
3673 */
3674int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3675		      *root, struct btrfs_key *cpu_key, void *data, u32
3676		      data_size)
3677{
3678	int ret = 0;
3679	struct btrfs_path *path;
3680	struct extent_buffer *leaf;
3681	unsigned long ptr;
3682
3683	path = btrfs_alloc_path();
3684	if (!path)
3685		return -ENOMEM;
3686	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3687	if (!ret) {
3688		leaf = path->nodes[0];
3689		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3690		write_extent_buffer(leaf, data, ptr, data_size);
3691		btrfs_mark_buffer_dirty(leaf);
3692	}
3693	btrfs_free_path(path);
3694	return ret;
3695}
3696
3697/*
3698 * delete the pointer from a given node.
3699 *
3700 * the tree should have been previously balanced so the deletion does not
3701 * empty a node.
3702 */
3703static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3704		   struct btrfs_path *path, int level, int slot)
3705{
 
3706	struct extent_buffer *parent = path->nodes[level];
3707	u32 nritems;
3708	int ret = 0;
3709	int wret;
3710
3711	nritems = btrfs_header_nritems(parent);
3712	if (slot != nritems - 1) {
 
 
 
3713		memmove_extent_buffer(parent,
3714			      btrfs_node_key_ptr_offset(slot),
3715			      btrfs_node_key_ptr_offset(slot + 1),
3716			      sizeof(struct btrfs_key_ptr) *
3717			      (nritems - slot - 1));
 
 
 
 
3718	}
 
3719	nritems--;
3720	btrfs_set_header_nritems(parent, nritems);
3721	if (nritems == 0 && parent == root->node) {
3722		BUG_ON(btrfs_header_level(root->node) != 1);
3723		/* just turn the root into a leaf and break */
3724		btrfs_set_header_level(root->node, 0);
3725	} else if (slot == 0) {
3726		struct btrfs_disk_key disk_key;
3727
3728		btrfs_node_key(parent, &disk_key, 0);
3729		wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3730		if (wret)
3731			ret = wret;
3732	}
3733	btrfs_mark_buffer_dirty(parent);
3734	return ret;
3735}
3736
3737/*
3738 * a helper function to delete the leaf pointed to by path->slots[1] and
3739 * path->nodes[1].
3740 *
3741 * This deletes the pointer in path->nodes[1] and frees the leaf
3742 * block extent.  zero is returned if it all worked out, < 0 otherwise.
3743 *
3744 * The path must have already been setup for deleting the leaf, including
3745 * all the proper balancing.  path->nodes[1] must be locked.
3746 */
3747static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3748				   struct btrfs_root *root,
3749				   struct btrfs_path *path,
3750				   struct extent_buffer *leaf)
3751{
3752	int ret;
3753
3754	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3755	ret = del_ptr(trans, root, path, 1, path->slots[1]);
3756	if (ret)
3757		return ret;
3758
3759	/*
3760	 * btrfs_free_extent is expensive, we want to make sure we
3761	 * aren't holding any locks when we call it
3762	 */
3763	btrfs_unlock_up_safe(path, 0);
3764
3765	root_sub_used(root, leaf->len);
3766
 
3767	btrfs_free_tree_block(trans, root, leaf, 0, 1);
3768	return 0;
3769}
3770/*
3771 * delete the item at the leaf level in path.  If that empties
3772 * the leaf, remove it from the tree
3773 */
3774int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3775		    struct btrfs_path *path, int slot, int nr)
3776{
 
3777	struct extent_buffer *leaf;
3778	struct btrfs_item *item;
3779	int last_off;
3780	int dsize = 0;
3781	int ret = 0;
3782	int wret;
3783	int i;
3784	u32 nritems;
 
 
 
3785
3786	leaf = path->nodes[0];
3787	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3788
3789	for (i = 0; i < nr; i++)
3790		dsize += btrfs_item_size_nr(leaf, slot + i);
3791
3792	nritems = btrfs_header_nritems(leaf);
3793
3794	if (slot + nr != nritems) {
3795		int data_end = leaf_data_end(root, leaf);
3796
3797		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3798			      data_end + dsize,
3799			      btrfs_leaf_data(leaf) + data_end,
3800			      last_off - data_end);
3801
3802		for (i = slot + nr; i < nritems; i++) {
3803			u32 ioff;
3804
3805			item = btrfs_item_nr(leaf, i);
3806			ioff = btrfs_item_offset(leaf, item);
3807			btrfs_set_item_offset(leaf, item, ioff + dsize);
 
3808		}
3809
3810		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3811			      btrfs_item_nr_offset(slot + nr),
3812			      sizeof(struct btrfs_item) *
3813			      (nritems - slot - nr));
3814	}
3815	btrfs_set_header_nritems(leaf, nritems - nr);
3816	nritems -= nr;
3817
3818	/* delete the leaf if we've emptied it */
3819	if (nritems == 0) {
3820		if (leaf == root->node) {
3821			btrfs_set_header_level(leaf, 0);
3822		} else {
3823			btrfs_set_path_blocking(path);
3824			clean_tree_block(trans, root, leaf);
3825			ret = btrfs_del_leaf(trans, root, path, leaf);
3826			BUG_ON(ret);
3827		}
3828	} else {
3829		int used = leaf_space_used(leaf, 0, nritems);
3830		if (slot == 0) {
3831			struct btrfs_disk_key disk_key;
3832
3833			btrfs_item_key(leaf, &disk_key, 0);
3834			wret = fixup_low_keys(trans, root, path,
3835					      &disk_key, 1);
3836			if (wret)
3837				ret = wret;
3838		}
3839
3840		/* delete the leaf if it is mostly empty */
3841		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3842			/* push_leaf_left fixes the path.
3843			 * make sure the path still points to our leaf
3844			 * for possible call to del_ptr below
3845			 */
3846			slot = path->slots[1];
3847			extent_buffer_get(leaf);
3848
3849			btrfs_set_path_blocking(path);
3850			wret = push_leaf_left(trans, root, path, 1, 1,
3851					      1, (u32)-1);
3852			if (wret < 0 && wret != -ENOSPC)
3853				ret = wret;
3854
3855			if (path->nodes[0] == leaf &&
3856			    btrfs_header_nritems(leaf)) {
3857				wret = push_leaf_right(trans, root, path, 1,
3858						       1, 1, 0);
3859				if (wret < 0 && wret != -ENOSPC)
3860					ret = wret;
3861			}
3862
3863			if (btrfs_header_nritems(leaf) == 0) {
3864				path->slots[1] = slot;
3865				ret = btrfs_del_leaf(trans, root, path, leaf);
3866				BUG_ON(ret);
3867				free_extent_buffer(leaf);
 
3868			} else {
3869				/* if we're still in the path, make sure
3870				 * we're dirty.  Otherwise, one of the
3871				 * push_leaf functions must have already
3872				 * dirtied this buffer
3873				 */
3874				if (path->nodes[0] == leaf)
3875					btrfs_mark_buffer_dirty(leaf);
3876				free_extent_buffer(leaf);
3877			}
3878		} else {
3879			btrfs_mark_buffer_dirty(leaf);
3880		}
3881	}
3882	return ret;
3883}
3884
3885/*
3886 * search the tree again to find a leaf with lesser keys
3887 * returns 0 if it found something or 1 if there are no lesser leaves.
3888 * returns < 0 on io errors.
3889 *
3890 * This may release the path, and so you may lose any locks held at the
3891 * time you call it.
3892 */
3893int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3894{
3895	struct btrfs_key key;
3896	struct btrfs_disk_key found_key;
3897	int ret;
3898
3899	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3900
3901	if (key.offset > 0)
3902		key.offset--;
3903	else if (key.type > 0)
3904		key.type--;
3905	else if (key.objectid > 0)
 
3906		key.objectid--;
3907	else
 
 
3908		return 1;
 
3909
3910	btrfs_release_path(path);
3911	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3912	if (ret < 0)
3913		return ret;
3914	btrfs_item_key(path->nodes[0], &found_key, 0);
3915	ret = comp_keys(&found_key, &key);
3916	if (ret < 0)
 
 
 
 
 
 
 
 
 
 
3917		return 0;
3918	return 1;
3919}
3920
3921/*
3922 * A helper function to walk down the tree starting at min_key, and looking
3923 * for nodes or leaves that are either in cache or have a minimum
3924 * transaction id.  This is used by the btree defrag code, and tree logging
3925 *
3926 * This does not cow, but it does stuff the starting key it finds back
3927 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3928 * key and get a writable path.
3929 *
3930 * This does lock as it descends, and path->keep_locks should be set
3931 * to 1 by the caller.
3932 *
3933 * This honors path->lowest_level to prevent descent past a given level
3934 * of the tree.
3935 *
3936 * min_trans indicates the oldest transaction that you are interested
3937 * in walking through.  Any nodes or leaves older than min_trans are
3938 * skipped over (without reading them).
3939 *
3940 * returns zero if something useful was found, < 0 on error and 1 if there
3941 * was nothing in the tree that matched the search criteria.
3942 */
3943int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3944			 struct btrfs_key *max_key,
3945			 struct btrfs_path *path, int cache_only,
3946			 u64 min_trans)
3947{
 
3948	struct extent_buffer *cur;
3949	struct btrfs_key found_key;
3950	int slot;
3951	int sret;
3952	u32 nritems;
3953	int level;
3954	int ret = 1;
 
3955
3956	WARN_ON(!path->keep_locks);
3957again:
3958	cur = btrfs_read_lock_root_node(root);
3959	level = btrfs_header_level(cur);
3960	WARN_ON(path->nodes[level]);
3961	path->nodes[level] = cur;
3962	path->locks[level] = BTRFS_READ_LOCK;
3963
3964	if (btrfs_header_generation(cur) < min_trans) {
3965		ret = 1;
3966		goto out;
3967	}
3968	while (1) {
3969		nritems = btrfs_header_nritems(cur);
3970		level = btrfs_header_level(cur);
3971		sret = bin_search(cur, min_key, level, &slot);
3972
3973		/* at the lowest level, we're done, setup the path and exit */
3974		if (level == path->lowest_level) {
3975			if (slot >= nritems)
3976				goto find_next_key;
3977			ret = 0;
3978			path->slots[level] = slot;
3979			btrfs_item_key_to_cpu(cur, &found_key, slot);
3980			goto out;
3981		}
3982		if (sret && slot > 0)
3983			slot--;
3984		/*
3985		 * check this node pointer against the cache_only and
3986		 * min_trans parameters.  If it isn't in cache or is too
3987		 * old, skip to the next one.
3988		 */
3989		while (slot < nritems) {
3990			u64 blockptr;
3991			u64 gen;
3992			struct extent_buffer *tmp;
3993			struct btrfs_disk_key disk_key;
3994
3995			blockptr = btrfs_node_blockptr(cur, slot);
3996			gen = btrfs_node_ptr_generation(cur, slot);
3997			if (gen < min_trans) {
3998				slot++;
3999				continue;
4000			}
4001			if (!cache_only)
4002				break;
4003
4004			if (max_key) {
4005				btrfs_node_key(cur, &disk_key, slot);
4006				if (comp_keys(&disk_key, max_key) >= 0) {
4007					ret = 1;
4008					goto out;
4009				}
4010			}
4011
4012			tmp = btrfs_find_tree_block(root, blockptr,
4013					    btrfs_level_size(root, level - 1));
4014
4015			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4016				free_extent_buffer(tmp);
4017				break;
4018			}
4019			if (tmp)
4020				free_extent_buffer(tmp);
4021			slot++;
4022		}
4023find_next_key:
4024		/*
4025		 * we didn't find a candidate key in this node, walk forward
4026		 * and find another one
4027		 */
4028		if (slot >= nritems) {
4029			path->slots[level] = slot;
4030			btrfs_set_path_blocking(path);
4031			sret = btrfs_find_next_key(root, path, min_key, level,
4032						  cache_only, min_trans);
4033			if (sret == 0) {
4034				btrfs_release_path(path);
4035				goto again;
4036			} else {
4037				goto out;
4038			}
4039		}
4040		/* save our key for returning back */
4041		btrfs_node_key_to_cpu(cur, &found_key, slot);
4042		path->slots[level] = slot;
4043		if (level == path->lowest_level) {
4044			ret = 0;
4045			unlock_up(path, level, 1);
4046			goto out;
4047		}
4048		btrfs_set_path_blocking(path);
4049		cur = read_node_slot(root, cur, slot);
4050		BUG_ON(!cur);
 
 
 
4051
4052		btrfs_tree_read_lock(cur);
4053
4054		path->locks[level - 1] = BTRFS_READ_LOCK;
4055		path->nodes[level - 1] = cur;
4056		unlock_up(path, level, 1);
4057		btrfs_clear_path_blocking(path, NULL, 0);
4058	}
4059out:
4060	if (ret == 0)
 
 
 
4061		memcpy(min_key, &found_key, sizeof(found_key));
4062	btrfs_set_path_blocking(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4063	return ret;
4064}
4065
4066/*
4067 * this is similar to btrfs_next_leaf, but does not try to preserve
4068 * and fixup the path.  It looks for and returns the next key in the
4069 * tree based on the current path and the cache_only and min_trans
4070 * parameters.
4071 *
4072 * 0 is returned if another key is found, < 0 if there are any errors
4073 * and 1 is returned if there are no higher keys in the tree
4074 *
4075 * path->keep_locks should be set to 1 on the search made before
4076 * calling this function.
4077 */
4078int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4079			struct btrfs_key *key, int level,
4080			int cache_only, u64 min_trans)
4081{
4082	int slot;
4083	struct extent_buffer *c;
4084
4085	WARN_ON(!path->keep_locks);
4086	while (level < BTRFS_MAX_LEVEL) {
4087		if (!path->nodes[level])
4088			return 1;
4089
4090		slot = path->slots[level] + 1;
4091		c = path->nodes[level];
4092next:
4093		if (slot >= btrfs_header_nritems(c)) {
4094			int ret;
4095			int orig_lowest;
4096			struct btrfs_key cur_key;
4097			if (level + 1 >= BTRFS_MAX_LEVEL ||
4098			    !path->nodes[level + 1])
4099				return 1;
4100
4101			if (path->locks[level + 1]) {
4102				level++;
4103				continue;
4104			}
4105
4106			slot = btrfs_header_nritems(c) - 1;
4107			if (level == 0)
4108				btrfs_item_key_to_cpu(c, &cur_key, slot);
4109			else
4110				btrfs_node_key_to_cpu(c, &cur_key, slot);
4111
4112			orig_lowest = path->lowest_level;
4113			btrfs_release_path(path);
4114			path->lowest_level = level;
4115			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4116						0, 0);
4117			path->lowest_level = orig_lowest;
4118			if (ret < 0)
4119				return ret;
4120
4121			c = path->nodes[level];
4122			slot = path->slots[level];
4123			if (ret == 0)
4124				slot++;
4125			goto next;
4126		}
4127
4128		if (level == 0)
4129			btrfs_item_key_to_cpu(c, key, slot);
4130		else {
4131			u64 blockptr = btrfs_node_blockptr(c, slot);
4132			u64 gen = btrfs_node_ptr_generation(c, slot);
4133
4134			if (cache_only) {
4135				struct extent_buffer *cur;
4136				cur = btrfs_find_tree_block(root, blockptr,
4137					    btrfs_level_size(root, level - 1));
4138				if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4139					slot++;
4140					if (cur)
4141						free_extent_buffer(cur);
4142					goto next;
4143				}
4144				free_extent_buffer(cur);
4145			}
4146			if (gen < min_trans) {
4147				slot++;
4148				goto next;
4149			}
4150			btrfs_node_key_to_cpu(c, key, slot);
4151		}
4152		return 0;
4153	}
4154	return 1;
4155}
4156
4157/*
4158 * search the tree again to find a leaf with greater keys
4159 * returns 0 if it found something or 1 if there are no greater leaves.
4160 * returns < 0 on io errors.
4161 */
4162int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4163{
 
 
 
 
 
 
4164	int slot;
4165	int level;
4166	struct extent_buffer *c;
4167	struct extent_buffer *next;
4168	struct btrfs_key key;
4169	u32 nritems;
4170	int ret;
4171	int old_spinning = path->leave_spinning;
4172	int next_rw_lock = 0;
4173
4174	nritems = btrfs_header_nritems(path->nodes[0]);
4175	if (nritems == 0)
4176		return 1;
4177
4178	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4179again:
4180	level = 1;
4181	next = NULL;
4182	next_rw_lock = 0;
4183	btrfs_release_path(path);
4184
4185	path->keep_locks = 1;
4186	path->leave_spinning = 1;
4187
4188	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 
 
 
4189	path->keep_locks = 0;
4190
4191	if (ret < 0)
4192		return ret;
4193
4194	nritems = btrfs_header_nritems(path->nodes[0]);
4195	/*
4196	 * by releasing the path above we dropped all our locks.  A balance
4197	 * could have added more items next to the key that used to be
4198	 * at the very end of the block.  So, check again here and
4199	 * advance the path if there are now more items available.
4200	 */
4201	if (nritems > 0 && path->slots[0] < nritems - 1) {
4202		if (ret == 0)
4203			path->slots[0]++;
4204		ret = 0;
4205		goto done;
4206	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4207
4208	while (level < BTRFS_MAX_LEVEL) {
4209		if (!path->nodes[level]) {
4210			ret = 1;
4211			goto done;
4212		}
4213
4214		slot = path->slots[level] + 1;
4215		c = path->nodes[level];
4216		if (slot >= btrfs_header_nritems(c)) {
4217			level++;
4218			if (level == BTRFS_MAX_LEVEL) {
4219				ret = 1;
4220				goto done;
4221			}
4222			continue;
4223		}
4224
4225		if (next) {
4226			btrfs_tree_unlock_rw(next, next_rw_lock);
4227			free_extent_buffer(next);
4228		}
4229
4230		next = c;
4231		next_rw_lock = path->locks[level];
4232		ret = read_block_for_search(NULL, root, path, &next, level,
4233					    slot, &key);
4234		if (ret == -EAGAIN)
4235			goto again;
4236
4237		if (ret < 0) {
4238			btrfs_release_path(path);
4239			goto done;
4240		}
4241
4242		if (!path->skip_locking) {
4243			ret = btrfs_try_tree_read_lock(next);
 
 
 
 
 
 
 
 
 
 
 
 
 
4244			if (!ret) {
4245				btrfs_set_path_blocking(path);
4246				btrfs_tree_read_lock(next);
4247				btrfs_clear_path_blocking(path, next,
4248							  BTRFS_READ_LOCK);
4249			}
4250			next_rw_lock = BTRFS_READ_LOCK;
4251		}
4252		break;
4253	}
4254	path->slots[level] = slot;
4255	while (1) {
4256		level--;
4257		c = path->nodes[level];
4258		if (path->locks[level])
4259			btrfs_tree_unlock_rw(c, path->locks[level]);
4260
4261		free_extent_buffer(c);
4262		path->nodes[level] = next;
4263		path->slots[level] = 0;
4264		if (!path->skip_locking)
4265			path->locks[level] = next_rw_lock;
4266		if (!level)
4267			break;
4268
4269		ret = read_block_for_search(NULL, root, path, &next, level,
4270					    0, &key);
4271		if (ret == -EAGAIN)
4272			goto again;
4273
4274		if (ret < 0) {
4275			btrfs_release_path(path);
4276			goto done;
4277		}
4278
4279		if (!path->skip_locking) {
4280			ret = btrfs_try_tree_read_lock(next);
4281			if (!ret) {
4282				btrfs_set_path_blocking(path);
4283				btrfs_tree_read_lock(next);
4284				btrfs_clear_path_blocking(path, next,
4285							  BTRFS_READ_LOCK);
4286			}
4287			next_rw_lock = BTRFS_READ_LOCK;
4288		}
4289	}
4290	ret = 0;
4291done:
4292	unlock_up(path, 0, 1);
4293	path->leave_spinning = old_spinning;
4294	if (!old_spinning)
4295		btrfs_set_path_blocking(path);
4296
4297	return ret;
4298}
4299
4300/*
4301 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4302 * searching until it gets past min_objectid or finds an item of 'type'
4303 *
4304 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4305 */
4306int btrfs_previous_item(struct btrfs_root *root,
4307			struct btrfs_path *path, u64 min_objectid,
4308			int type)
4309{
4310	struct btrfs_key found_key;
4311	struct extent_buffer *leaf;
4312	u32 nritems;
4313	int ret;
4314
4315	while (1) {
4316		if (path->slots[0] == 0) {
4317			btrfs_set_path_blocking(path);
4318			ret = btrfs_prev_leaf(root, path);
4319			if (ret != 0)
4320				return ret;
4321		} else {
4322			path->slots[0]--;
4323		}
4324		leaf = path->nodes[0];
4325		nritems = btrfs_header_nritems(leaf);
4326		if (nritems == 0)
4327			return 1;
4328		if (path->slots[0] == nritems)
4329			path->slots[0]--;
4330
4331		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4332		if (found_key.objectid < min_objectid)
4333			break;
4334		if (found_key.type == type)
4335			return 0;
4336		if (found_key.objectid == min_objectid &&
4337		    found_key.type < type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4338			break;
4339	}
4340	return 1;
4341}
v4.10.11
   1/*
   2 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/rbtree.h>
  22#include <linux/vmalloc.h>
  23#include "ctree.h"
  24#include "disk-io.h"
  25#include "transaction.h"
  26#include "print-tree.h"
  27#include "locking.h"
  28
  29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  30		      *root, struct btrfs_path *path, int level);
  31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  32		      *root, struct btrfs_key *ins_key,
  33		      struct btrfs_path *path, int data_size, int extend);
  34static int push_node_left(struct btrfs_trans_handle *trans,
  35			  struct btrfs_fs_info *fs_info,
  36			  struct extent_buffer *dst,
  37			  struct extent_buffer *src, int empty);
  38static int balance_node_right(struct btrfs_trans_handle *trans,
  39			      struct btrfs_fs_info *fs_info,
  40			      struct extent_buffer *dst_buf,
  41			      struct extent_buffer *src_buf);
  42static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  43		    int level, int slot);
  44static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
  45				 struct extent_buffer *eb);
  46
  47struct btrfs_path *btrfs_alloc_path(void)
  48{
  49	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
 
 
  50}
  51
  52/*
  53 * set all locked nodes in the path to blocking locks.  This should
  54 * be done before scheduling
  55 */
  56noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  57{
  58	int i;
  59	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  60		if (!p->nodes[i] || !p->locks[i])
  61			continue;
  62		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  63		if (p->locks[i] == BTRFS_READ_LOCK)
  64			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  65		else if (p->locks[i] == BTRFS_WRITE_LOCK)
  66			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  67	}
  68}
  69
  70/*
  71 * reset all the locked nodes in the patch to spinning locks.
  72 *
  73 * held is used to keep lockdep happy, when lockdep is enabled
  74 * we set held to a blocking lock before we go around and
  75 * retake all the spinlocks in the path.  You can safely use NULL
  76 * for held
  77 */
  78noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  79					struct extent_buffer *held, int held_rw)
  80{
  81	int i;
  82
 
 
 
 
 
 
 
  83	if (held) {
  84		btrfs_set_lock_blocking_rw(held, held_rw);
  85		if (held_rw == BTRFS_WRITE_LOCK)
  86			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  87		else if (held_rw == BTRFS_READ_LOCK)
  88			held_rw = BTRFS_READ_LOCK_BLOCKING;
  89	}
  90	btrfs_set_path_blocking(p);
 
  91
  92	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  93		if (p->nodes[i] && p->locks[i]) {
  94			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  95			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  96				p->locks[i] = BTRFS_WRITE_LOCK;
  97			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  98				p->locks[i] = BTRFS_READ_LOCK;
  99		}
 100	}
 101
 
 102	if (held)
 103		btrfs_clear_lock_blocking_rw(held, held_rw);
 
 104}
 105
 106/* this also releases the path */
 107void btrfs_free_path(struct btrfs_path *p)
 108{
 109	if (!p)
 110		return;
 111	btrfs_release_path(p);
 112	kmem_cache_free(btrfs_path_cachep, p);
 113}
 114
 115/*
 116 * path release drops references on the extent buffers in the path
 117 * and it drops any locks held by this path
 118 *
 119 * It is safe to call this on paths that no locks or extent buffers held.
 120 */
 121noinline void btrfs_release_path(struct btrfs_path *p)
 122{
 123	int i;
 124
 125	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 126		p->slots[i] = 0;
 127		if (!p->nodes[i])
 128			continue;
 129		if (p->locks[i]) {
 130			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 131			p->locks[i] = 0;
 132		}
 133		free_extent_buffer(p->nodes[i]);
 134		p->nodes[i] = NULL;
 135	}
 136}
 137
 138/*
 139 * safely gets a reference on the root node of a tree.  A lock
 140 * is not taken, so a concurrent writer may put a different node
 141 * at the root of the tree.  See btrfs_lock_root_node for the
 142 * looping required.
 143 *
 144 * The extent buffer returned by this has a reference taken, so
 145 * it won't disappear.  It may stop being the root of the tree
 146 * at any time because there are no locks held.
 147 */
 148struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 149{
 150	struct extent_buffer *eb;
 151
 152	while (1) {
 153		rcu_read_lock();
 154		eb = rcu_dereference(root->node);
 155
 156		/*
 157		 * RCU really hurts here, we could free up the root node because
 158		 * it was COWed but we may not get the new root node yet so do
 159		 * the inc_not_zero dance and if it doesn't work then
 160		 * synchronize_rcu and try again.
 161		 */
 162		if (atomic_inc_not_zero(&eb->refs)) {
 163			rcu_read_unlock();
 164			break;
 165		}
 166		rcu_read_unlock();
 167		synchronize_rcu();
 168	}
 169	return eb;
 170}
 171
 172/* loop around taking references on and locking the root node of the
 173 * tree until you end up with a lock on the root.  A locked buffer
 174 * is returned, with a reference held.
 175 */
 176struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 177{
 178	struct extent_buffer *eb;
 179
 180	while (1) {
 181		eb = btrfs_root_node(root);
 182		btrfs_tree_lock(eb);
 183		if (eb == root->node)
 184			break;
 185		btrfs_tree_unlock(eb);
 186		free_extent_buffer(eb);
 187	}
 188	return eb;
 189}
 190
 191/* loop around taking references on and locking the root node of the
 192 * tree until you end up with a lock on the root.  A locked buffer
 193 * is returned, with a reference held.
 194 */
 195static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 196{
 197	struct extent_buffer *eb;
 198
 199	while (1) {
 200		eb = btrfs_root_node(root);
 201		btrfs_tree_read_lock(eb);
 202		if (eb == root->node)
 203			break;
 204		btrfs_tree_read_unlock(eb);
 205		free_extent_buffer(eb);
 206	}
 207	return eb;
 208}
 209
 210/* cowonly root (everything not a reference counted cow subvolume), just get
 211 * put onto a simple dirty list.  transaction.c walks this to make sure they
 212 * get properly updated on disk.
 213 */
 214static void add_root_to_dirty_list(struct btrfs_root *root)
 215{
 216	struct btrfs_fs_info *fs_info = root->fs_info;
 217
 218	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 219	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 220		return;
 221
 222	spin_lock(&fs_info->trans_lock);
 223	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 224		/* Want the extent tree to be the last on the list */
 225		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
 226			list_move_tail(&root->dirty_list,
 227				       &fs_info->dirty_cowonly_roots);
 228		else
 229			list_move(&root->dirty_list,
 230				  &fs_info->dirty_cowonly_roots);
 231	}
 232	spin_unlock(&fs_info->trans_lock);
 233}
 234
 235/*
 236 * used by snapshot creation to make a copy of a root for a tree with
 237 * a given objectid.  The buffer with the new root node is returned in
 238 * cow_ret, and this func returns zero on success or a negative error code.
 239 */
 240int btrfs_copy_root(struct btrfs_trans_handle *trans,
 241		      struct btrfs_root *root,
 242		      struct extent_buffer *buf,
 243		      struct extent_buffer **cow_ret, u64 new_root_objectid)
 244{
 245	struct btrfs_fs_info *fs_info = root->fs_info;
 246	struct extent_buffer *cow;
 247	int ret = 0;
 248	int level;
 249	struct btrfs_disk_key disk_key;
 250
 251	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 252		trans->transid != fs_info->running_transaction->transid);
 253	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 254		trans->transid != root->last_trans);
 255
 256	level = btrfs_header_level(buf);
 257	if (level == 0)
 258		btrfs_item_key(buf, &disk_key, 0);
 259	else
 260		btrfs_node_key(buf, &disk_key, 0);
 261
 262	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 263			&disk_key, level, buf->start, 0);
 
 264	if (IS_ERR(cow))
 265		return PTR_ERR(cow);
 266
 267	copy_extent_buffer_full(cow, buf);
 268	btrfs_set_header_bytenr(cow, cow->start);
 269	btrfs_set_header_generation(cow, trans->transid);
 270	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 271	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 272				     BTRFS_HEADER_FLAG_RELOC);
 273	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 274		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 275	else
 276		btrfs_set_header_owner(cow, new_root_objectid);
 277
 278	write_extent_buffer_fsid(cow, fs_info->fsid);
 
 
 279
 280	WARN_ON(btrfs_header_generation(buf) > trans->transid);
 281	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 282		ret = btrfs_inc_ref(trans, root, cow, 1);
 283	else
 284		ret = btrfs_inc_ref(trans, root, cow, 0);
 285
 286	if (ret)
 287		return ret;
 288
 289	btrfs_mark_buffer_dirty(cow);
 290	*cow_ret = cow;
 291	return 0;
 292}
 293
 294enum mod_log_op {
 295	MOD_LOG_KEY_REPLACE,
 296	MOD_LOG_KEY_ADD,
 297	MOD_LOG_KEY_REMOVE,
 298	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 299	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 300	MOD_LOG_MOVE_KEYS,
 301	MOD_LOG_ROOT_REPLACE,
 302};
 303
 304struct tree_mod_move {
 305	int dst_slot;
 306	int nr_items;
 307};
 308
 309struct tree_mod_root {
 310	u64 logical;
 311	u8 level;
 312};
 313
 314struct tree_mod_elem {
 315	struct rb_node node;
 316	u64 logical;
 317	u64 seq;
 318	enum mod_log_op op;
 319
 320	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 321	int slot;
 322
 323	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 324	u64 generation;
 325
 326	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 327	struct btrfs_disk_key key;
 328	u64 blockptr;
 329
 330	/* this is used for op == MOD_LOG_MOVE_KEYS */
 331	struct tree_mod_move move;
 332
 333	/* this is used for op == MOD_LOG_ROOT_REPLACE */
 334	struct tree_mod_root old_root;
 335};
 336
 337static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
 338{
 339	read_lock(&fs_info->tree_mod_log_lock);
 340}
 341
 342static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
 343{
 344	read_unlock(&fs_info->tree_mod_log_lock);
 345}
 346
 347static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
 348{
 349	write_lock(&fs_info->tree_mod_log_lock);
 350}
 351
 352static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
 353{
 354	write_unlock(&fs_info->tree_mod_log_lock);
 355}
 356
 357/*
 358 * Pull a new tree mod seq number for our operation.
 359 */
 360static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 361{
 362	return atomic64_inc_return(&fs_info->tree_mod_seq);
 363}
 364
 365/*
 366 * This adds a new blocker to the tree mod log's blocker list if the @elem
 367 * passed does not already have a sequence number set. So when a caller expects
 368 * to record tree modifications, it should ensure to set elem->seq to zero
 369 * before calling btrfs_get_tree_mod_seq.
 370 * Returns a fresh, unused tree log modification sequence number, even if no new
 371 * blocker was added.
 372 */
 373u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 374			   struct seq_list *elem)
 375{
 376	tree_mod_log_write_lock(fs_info);
 377	spin_lock(&fs_info->tree_mod_seq_lock);
 378	if (!elem->seq) {
 379		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 380		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 381	}
 382	spin_unlock(&fs_info->tree_mod_seq_lock);
 383	tree_mod_log_write_unlock(fs_info);
 384
 385	return elem->seq;
 386}
 387
 388void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 389			    struct seq_list *elem)
 390{
 391	struct rb_root *tm_root;
 392	struct rb_node *node;
 393	struct rb_node *next;
 394	struct seq_list *cur_elem;
 395	struct tree_mod_elem *tm;
 396	u64 min_seq = (u64)-1;
 397	u64 seq_putting = elem->seq;
 398
 399	if (!seq_putting)
 400		return;
 401
 402	spin_lock(&fs_info->tree_mod_seq_lock);
 403	list_del(&elem->list);
 404	elem->seq = 0;
 405
 406	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 407		if (cur_elem->seq < min_seq) {
 408			if (seq_putting > cur_elem->seq) {
 409				/*
 410				 * blocker with lower sequence number exists, we
 411				 * cannot remove anything from the log
 412				 */
 413				spin_unlock(&fs_info->tree_mod_seq_lock);
 414				return;
 415			}
 416			min_seq = cur_elem->seq;
 417		}
 418	}
 419	spin_unlock(&fs_info->tree_mod_seq_lock);
 420
 421	/*
 422	 * anything that's lower than the lowest existing (read: blocked)
 423	 * sequence number can be removed from the tree.
 424	 */
 425	tree_mod_log_write_lock(fs_info);
 426	tm_root = &fs_info->tree_mod_log;
 427	for (node = rb_first(tm_root); node; node = next) {
 428		next = rb_next(node);
 429		tm = container_of(node, struct tree_mod_elem, node);
 430		if (tm->seq > min_seq)
 431			continue;
 432		rb_erase(node, tm_root);
 433		kfree(tm);
 434	}
 435	tree_mod_log_write_unlock(fs_info);
 436}
 437
 438/*
 439 * key order of the log:
 440 *       node/leaf start address -> sequence
 441 *
 442 * The 'start address' is the logical address of the *new* root node
 443 * for root replace operations, or the logical address of the affected
 444 * block for all other operations.
 445 *
 446 * Note: must be called with write lock (tree_mod_log_write_lock).
 447 */
 448static noinline int
 449__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 450{
 451	struct rb_root *tm_root;
 452	struct rb_node **new;
 453	struct rb_node *parent = NULL;
 454	struct tree_mod_elem *cur;
 455
 456	BUG_ON(!tm);
 457
 458	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 459
 460	tm_root = &fs_info->tree_mod_log;
 461	new = &tm_root->rb_node;
 462	while (*new) {
 463		cur = container_of(*new, struct tree_mod_elem, node);
 464		parent = *new;
 465		if (cur->logical < tm->logical)
 466			new = &((*new)->rb_left);
 467		else if (cur->logical > tm->logical)
 468			new = &((*new)->rb_right);
 469		else if (cur->seq < tm->seq)
 470			new = &((*new)->rb_left);
 471		else if (cur->seq > tm->seq)
 472			new = &((*new)->rb_right);
 473		else
 474			return -EEXIST;
 475	}
 476
 477	rb_link_node(&tm->node, parent, new);
 478	rb_insert_color(&tm->node, tm_root);
 479	return 0;
 480}
 481
 482/*
 483 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 484 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 485 * this until all tree mod log insertions are recorded in the rb tree and then
 486 * call tree_mod_log_write_unlock() to release.
 487 */
 488static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 489				    struct extent_buffer *eb) {
 490	smp_mb();
 491	if (list_empty(&(fs_info)->tree_mod_seq_list))
 492		return 1;
 493	if (eb && btrfs_header_level(eb) == 0)
 494		return 1;
 495
 496	tree_mod_log_write_lock(fs_info);
 497	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 498		tree_mod_log_write_unlock(fs_info);
 499		return 1;
 500	}
 501
 502	return 0;
 503}
 504
 505/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 506static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 507				    struct extent_buffer *eb)
 508{
 509	smp_mb();
 510	if (list_empty(&(fs_info)->tree_mod_seq_list))
 511		return 0;
 512	if (eb && btrfs_header_level(eb) == 0)
 513		return 0;
 514
 515	return 1;
 516}
 517
 518static struct tree_mod_elem *
 519alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 520		    enum mod_log_op op, gfp_t flags)
 521{
 522	struct tree_mod_elem *tm;
 523
 524	tm = kzalloc(sizeof(*tm), flags);
 525	if (!tm)
 526		return NULL;
 527
 528	tm->logical = eb->start;
 529	if (op != MOD_LOG_KEY_ADD) {
 530		btrfs_node_key(eb, &tm->key, slot);
 531		tm->blockptr = btrfs_node_blockptr(eb, slot);
 532	}
 533	tm->op = op;
 534	tm->slot = slot;
 535	tm->generation = btrfs_node_ptr_generation(eb, slot);
 536	RB_CLEAR_NODE(&tm->node);
 537
 538	return tm;
 539}
 540
 541static noinline int
 542tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
 543			struct extent_buffer *eb, int slot,
 544			enum mod_log_op op, gfp_t flags)
 545{
 546	struct tree_mod_elem *tm;
 547	int ret;
 548
 549	if (!tree_mod_need_log(fs_info, eb))
 550		return 0;
 551
 552	tm = alloc_tree_mod_elem(eb, slot, op, flags);
 553	if (!tm)
 554		return -ENOMEM;
 555
 556	if (tree_mod_dont_log(fs_info, eb)) {
 557		kfree(tm);
 558		return 0;
 559	}
 560
 561	ret = __tree_mod_log_insert(fs_info, tm);
 562	tree_mod_log_write_unlock(fs_info);
 563	if (ret)
 564		kfree(tm);
 565
 566	return ret;
 567}
 568
 569static noinline int
 570tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
 571			 struct extent_buffer *eb, int dst_slot, int src_slot,
 572			 int nr_items, gfp_t flags)
 573{
 574	struct tree_mod_elem *tm = NULL;
 575	struct tree_mod_elem **tm_list = NULL;
 576	int ret = 0;
 577	int i;
 578	int locked = 0;
 579
 580	if (!tree_mod_need_log(fs_info, eb))
 581		return 0;
 582
 583	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
 584	if (!tm_list)
 585		return -ENOMEM;
 586
 587	tm = kzalloc(sizeof(*tm), flags);
 588	if (!tm) {
 589		ret = -ENOMEM;
 590		goto free_tms;
 591	}
 592
 593	tm->logical = eb->start;
 594	tm->slot = src_slot;
 595	tm->move.dst_slot = dst_slot;
 596	tm->move.nr_items = nr_items;
 597	tm->op = MOD_LOG_MOVE_KEYS;
 598
 599	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 600		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 601		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
 602		if (!tm_list[i]) {
 603			ret = -ENOMEM;
 604			goto free_tms;
 605		}
 606	}
 607
 608	if (tree_mod_dont_log(fs_info, eb))
 609		goto free_tms;
 610	locked = 1;
 611
 612	/*
 613	 * When we override something during the move, we log these removals.
 614	 * This can only happen when we move towards the beginning of the
 615	 * buffer, i.e. dst_slot < src_slot.
 616	 */
 617	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 618		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 619		if (ret)
 620			goto free_tms;
 621	}
 622
 623	ret = __tree_mod_log_insert(fs_info, tm);
 624	if (ret)
 625		goto free_tms;
 626	tree_mod_log_write_unlock(fs_info);
 627	kfree(tm_list);
 628
 629	return 0;
 630free_tms:
 631	for (i = 0; i < nr_items; i++) {
 632		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 633			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 634		kfree(tm_list[i]);
 635	}
 636	if (locked)
 637		tree_mod_log_write_unlock(fs_info);
 638	kfree(tm_list);
 639	kfree(tm);
 640
 641	return ret;
 642}
 643
 644static inline int
 645__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 646		       struct tree_mod_elem **tm_list,
 647		       int nritems)
 648{
 649	int i, j;
 650	int ret;
 651
 652	for (i = nritems - 1; i >= 0; i--) {
 653		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 654		if (ret) {
 655			for (j = nritems - 1; j > i; j--)
 656				rb_erase(&tm_list[j]->node,
 657					 &fs_info->tree_mod_log);
 658			return ret;
 659		}
 660	}
 661
 662	return 0;
 663}
 664
 665static noinline int
 666tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
 667			 struct extent_buffer *old_root,
 668			 struct extent_buffer *new_root, gfp_t flags,
 669			 int log_removal)
 670{
 671	struct tree_mod_elem *tm = NULL;
 672	struct tree_mod_elem **tm_list = NULL;
 673	int nritems = 0;
 674	int ret = 0;
 675	int i;
 676
 677	if (!tree_mod_need_log(fs_info, NULL))
 678		return 0;
 679
 680	if (log_removal && btrfs_header_level(old_root) > 0) {
 681		nritems = btrfs_header_nritems(old_root);
 682		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 683				  flags);
 684		if (!tm_list) {
 685			ret = -ENOMEM;
 686			goto free_tms;
 687		}
 688		for (i = 0; i < nritems; i++) {
 689			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 690			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
 691			if (!tm_list[i]) {
 692				ret = -ENOMEM;
 693				goto free_tms;
 694			}
 695		}
 696	}
 697
 698	tm = kzalloc(sizeof(*tm), flags);
 699	if (!tm) {
 700		ret = -ENOMEM;
 701		goto free_tms;
 702	}
 703
 704	tm->logical = new_root->start;
 705	tm->old_root.logical = old_root->start;
 706	tm->old_root.level = btrfs_header_level(old_root);
 707	tm->generation = btrfs_header_generation(old_root);
 708	tm->op = MOD_LOG_ROOT_REPLACE;
 709
 710	if (tree_mod_dont_log(fs_info, NULL))
 711		goto free_tms;
 712
 713	if (tm_list)
 714		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 715	if (!ret)
 716		ret = __tree_mod_log_insert(fs_info, tm);
 717
 718	tree_mod_log_write_unlock(fs_info);
 719	if (ret)
 720		goto free_tms;
 721	kfree(tm_list);
 722
 723	return ret;
 724
 725free_tms:
 726	if (tm_list) {
 727		for (i = 0; i < nritems; i++)
 728			kfree(tm_list[i]);
 729		kfree(tm_list);
 730	}
 731	kfree(tm);
 732
 733	return ret;
 734}
 735
 736static struct tree_mod_elem *
 737__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 738		      int smallest)
 739{
 740	struct rb_root *tm_root;
 741	struct rb_node *node;
 742	struct tree_mod_elem *cur = NULL;
 743	struct tree_mod_elem *found = NULL;
 744
 745	tree_mod_log_read_lock(fs_info);
 746	tm_root = &fs_info->tree_mod_log;
 747	node = tm_root->rb_node;
 748	while (node) {
 749		cur = container_of(node, struct tree_mod_elem, node);
 750		if (cur->logical < start) {
 751			node = node->rb_left;
 752		} else if (cur->logical > start) {
 753			node = node->rb_right;
 754		} else if (cur->seq < min_seq) {
 755			node = node->rb_left;
 756		} else if (!smallest) {
 757			/* we want the node with the highest seq */
 758			if (found)
 759				BUG_ON(found->seq > cur->seq);
 760			found = cur;
 761			node = node->rb_left;
 762		} else if (cur->seq > min_seq) {
 763			/* we want the node with the smallest seq */
 764			if (found)
 765				BUG_ON(found->seq < cur->seq);
 766			found = cur;
 767			node = node->rb_right;
 768		} else {
 769			found = cur;
 770			break;
 771		}
 772	}
 773	tree_mod_log_read_unlock(fs_info);
 774
 775	return found;
 776}
 777
 778/*
 779 * this returns the element from the log with the smallest time sequence
 780 * value that's in the log (the oldest log item). any element with a time
 781 * sequence lower than min_seq will be ignored.
 782 */
 783static struct tree_mod_elem *
 784tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 785			   u64 min_seq)
 786{
 787	return __tree_mod_log_search(fs_info, start, min_seq, 1);
 788}
 789
 790/*
 791 * this returns the element from the log with the largest time sequence
 792 * value that's in the log (the most recent log item). any element with
 793 * a time sequence lower than min_seq will be ignored.
 794 */
 795static struct tree_mod_elem *
 796tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 797{
 798	return __tree_mod_log_search(fs_info, start, min_seq, 0);
 799}
 800
 801static noinline int
 802tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 803		     struct extent_buffer *src, unsigned long dst_offset,
 804		     unsigned long src_offset, int nr_items)
 805{
 806	int ret = 0;
 807	struct tree_mod_elem **tm_list = NULL;
 808	struct tree_mod_elem **tm_list_add, **tm_list_rem;
 809	int i;
 810	int locked = 0;
 811
 812	if (!tree_mod_need_log(fs_info, NULL))
 813		return 0;
 814
 815	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 816		return 0;
 817
 818	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 819			  GFP_NOFS);
 820	if (!tm_list)
 821		return -ENOMEM;
 822
 823	tm_list_add = tm_list;
 824	tm_list_rem = tm_list + nr_items;
 825	for (i = 0; i < nr_items; i++) {
 826		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 827		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 828		if (!tm_list_rem[i]) {
 829			ret = -ENOMEM;
 830			goto free_tms;
 831		}
 832
 833		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 834		    MOD_LOG_KEY_ADD, GFP_NOFS);
 835		if (!tm_list_add[i]) {
 836			ret = -ENOMEM;
 837			goto free_tms;
 838		}
 839	}
 840
 841	if (tree_mod_dont_log(fs_info, NULL))
 842		goto free_tms;
 843	locked = 1;
 844
 845	for (i = 0; i < nr_items; i++) {
 846		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 847		if (ret)
 848			goto free_tms;
 849		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 850		if (ret)
 851			goto free_tms;
 852	}
 853
 854	tree_mod_log_write_unlock(fs_info);
 855	kfree(tm_list);
 856
 857	return 0;
 858
 859free_tms:
 860	for (i = 0; i < nr_items * 2; i++) {
 861		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 862			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 863		kfree(tm_list[i]);
 864	}
 865	if (locked)
 866		tree_mod_log_write_unlock(fs_info);
 867	kfree(tm_list);
 868
 869	return ret;
 870}
 871
 872static inline void
 873tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 874		     int dst_offset, int src_offset, int nr_items)
 875{
 876	int ret;
 877	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
 878				       nr_items, GFP_NOFS);
 879	BUG_ON(ret < 0);
 880}
 881
 882static noinline void
 883tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
 884			  struct extent_buffer *eb, int slot, int atomic)
 885{
 886	int ret;
 887
 888	ret = tree_mod_log_insert_key(fs_info, eb, slot,
 889					MOD_LOG_KEY_REPLACE,
 890					atomic ? GFP_ATOMIC : GFP_NOFS);
 891	BUG_ON(ret < 0);
 892}
 893
 894static noinline int
 895tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
 896{
 897	struct tree_mod_elem **tm_list = NULL;
 898	int nritems = 0;
 899	int i;
 900	int ret = 0;
 901
 902	if (btrfs_header_level(eb) == 0)
 903		return 0;
 904
 905	if (!tree_mod_need_log(fs_info, NULL))
 906		return 0;
 907
 908	nritems = btrfs_header_nritems(eb);
 909	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 910	if (!tm_list)
 911		return -ENOMEM;
 912
 913	for (i = 0; i < nritems; i++) {
 914		tm_list[i] = alloc_tree_mod_elem(eb, i,
 915		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 916		if (!tm_list[i]) {
 917			ret = -ENOMEM;
 918			goto free_tms;
 919		}
 920	}
 921
 922	if (tree_mod_dont_log(fs_info, eb))
 923		goto free_tms;
 924
 925	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 926	tree_mod_log_write_unlock(fs_info);
 927	if (ret)
 928		goto free_tms;
 929	kfree(tm_list);
 930
 931	return 0;
 932
 933free_tms:
 934	for (i = 0; i < nritems; i++)
 935		kfree(tm_list[i]);
 936	kfree(tm_list);
 937
 938	return ret;
 939}
 940
 941static noinline void
 942tree_mod_log_set_root_pointer(struct btrfs_root *root,
 943			      struct extent_buffer *new_root_node,
 944			      int log_removal)
 945{
 946	int ret;
 947	ret = tree_mod_log_insert_root(root->fs_info, root->node,
 948				       new_root_node, GFP_NOFS, log_removal);
 949	BUG_ON(ret < 0);
 950}
 951
 952/*
 953 * check if the tree block can be shared by multiple trees
 954 */
 955int btrfs_block_can_be_shared(struct btrfs_root *root,
 956			      struct extent_buffer *buf)
 957{
 958	/*
 959	 * Tree blocks not in reference counted trees and tree roots
 960	 * are never shared. If a block was allocated after the last
 961	 * snapshot and the block was not allocated by tree relocation,
 962	 * we know the block is not shared.
 963	 */
 964	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 965	    buf != root->node && buf != root->commit_root &&
 966	    (btrfs_header_generation(buf) <=
 967	     btrfs_root_last_snapshot(&root->root_item) ||
 968	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 969		return 1;
 970#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 971	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 972	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 973		return 1;
 974#endif
 975	return 0;
 976}
 977
 978static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 979				       struct btrfs_root *root,
 980				       struct extent_buffer *buf,
 981				       struct extent_buffer *cow,
 982				       int *last_ref)
 983{
 984	struct btrfs_fs_info *fs_info = root->fs_info;
 985	u64 refs;
 986	u64 owner;
 987	u64 flags;
 988	u64 new_flags = 0;
 989	int ret;
 990
 991	/*
 992	 * Backrefs update rules:
 993	 *
 994	 * Always use full backrefs for extent pointers in tree block
 995	 * allocated by tree relocation.
 996	 *
 997	 * If a shared tree block is no longer referenced by its owner
 998	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 999	 * use full backrefs for extent pointers in tree block.
1000	 *
1001	 * If a tree block is been relocating
1002	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1003	 * use full backrefs for extent pointers in tree block.
1004	 * The reason for this is some operations (such as drop tree)
1005	 * are only allowed for blocks use full backrefs.
1006	 */
1007
1008	if (btrfs_block_can_be_shared(root, buf)) {
1009		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
1010					       btrfs_header_level(buf), 1,
1011					       &refs, &flags);
1012		if (ret)
1013			return ret;
1014		if (refs == 0) {
1015			ret = -EROFS;
1016			btrfs_handle_fs_error(fs_info, ret, NULL);
1017			return ret;
1018		}
1019	} else {
1020		refs = 1;
1021		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1022		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1023			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1024		else
1025			flags = 0;
1026	}
1027
1028	owner = btrfs_header_owner(buf);
1029	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1030	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1031
1032	if (refs > 1) {
1033		if ((owner == root->root_key.objectid ||
1034		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1035		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1036			ret = btrfs_inc_ref(trans, root, buf, 1);
1037			BUG_ON(ret); /* -ENOMEM */
1038
1039			if (root->root_key.objectid ==
1040			    BTRFS_TREE_RELOC_OBJECTID) {
1041				ret = btrfs_dec_ref(trans, root, buf, 0);
1042				BUG_ON(ret); /* -ENOMEM */
1043				ret = btrfs_inc_ref(trans, root, cow, 1);
1044				BUG_ON(ret); /* -ENOMEM */
1045			}
1046			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1047		} else {
1048
1049			if (root->root_key.objectid ==
1050			    BTRFS_TREE_RELOC_OBJECTID)
1051				ret = btrfs_inc_ref(trans, root, cow, 1);
1052			else
1053				ret = btrfs_inc_ref(trans, root, cow, 0);
1054			BUG_ON(ret); /* -ENOMEM */
1055		}
1056		if (new_flags != 0) {
1057			int level = btrfs_header_level(buf);
1058
1059			ret = btrfs_set_disk_extent_flags(trans, fs_info,
1060							  buf->start,
1061							  buf->len,
1062							  new_flags, level, 0);
1063			if (ret)
1064				return ret;
1065		}
1066	} else {
1067		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1068			if (root->root_key.objectid ==
1069			    BTRFS_TREE_RELOC_OBJECTID)
1070				ret = btrfs_inc_ref(trans, root, cow, 1);
1071			else
1072				ret = btrfs_inc_ref(trans, root, cow, 0);
1073			BUG_ON(ret); /* -ENOMEM */
1074			ret = btrfs_dec_ref(trans, root, buf, 1);
1075			BUG_ON(ret); /* -ENOMEM */
1076		}
1077		clean_tree_block(trans, fs_info, buf);
1078		*last_ref = 1;
1079	}
1080	return 0;
1081}
1082
1083/*
1084 * does the dirty work in cow of a single block.  The parent block (if
1085 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1086 * dirty and returned locked.  If you modify the block it needs to be marked
1087 * dirty again.
1088 *
1089 * search_start -- an allocation hint for the new block
1090 *
1091 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1092 * bytes the allocator should try to find free next to the block it returns.
1093 * This is just a hint and may be ignored by the allocator.
1094 */
1095static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1096			     struct btrfs_root *root,
1097			     struct extent_buffer *buf,
1098			     struct extent_buffer *parent, int parent_slot,
1099			     struct extent_buffer **cow_ret,
1100			     u64 search_start, u64 empty_size)
1101{
1102	struct btrfs_fs_info *fs_info = root->fs_info;
1103	struct btrfs_disk_key disk_key;
1104	struct extent_buffer *cow;
1105	int level, ret;
1106	int last_ref = 0;
1107	int unlock_orig = 0;
1108	u64 parent_start = 0;
1109
1110	if (*cow_ret == buf)
1111		unlock_orig = 1;
1112
1113	btrfs_assert_tree_locked(buf);
1114
1115	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1116		trans->transid != fs_info->running_transaction->transid);
1117	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1118		trans->transid != root->last_trans);
1119
1120	level = btrfs_header_level(buf);
1121
1122	if (level == 0)
1123		btrfs_item_key(buf, &disk_key, 0);
1124	else
1125		btrfs_node_key(buf, &disk_key, 0);
1126
1127	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1128		parent_start = parent->start;
 
 
 
 
 
1129
1130	cow = btrfs_alloc_tree_block(trans, root, parent_start,
1131			root->root_key.objectid, &disk_key, level,
1132			search_start, empty_size);
1133	if (IS_ERR(cow))
1134		return PTR_ERR(cow);
1135
1136	/* cow is set to blocking by btrfs_init_new_buffer */
1137
1138	copy_extent_buffer_full(cow, buf);
1139	btrfs_set_header_bytenr(cow, cow->start);
1140	btrfs_set_header_generation(cow, trans->transid);
1141	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1142	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1143				     BTRFS_HEADER_FLAG_RELOC);
1144	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1145		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1146	else
1147		btrfs_set_header_owner(cow, root->root_key.objectid);
1148
1149	write_extent_buffer_fsid(cow, fs_info->fsid);
 
 
1150
1151	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1152	if (ret) {
1153		btrfs_abort_transaction(trans, ret);
1154		return ret;
1155	}
1156
1157	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1158		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1159		if (ret) {
1160			btrfs_abort_transaction(trans, ret);
1161			return ret;
1162		}
1163	}
1164
1165	if (buf == root->node) {
1166		WARN_ON(parent && parent != buf);
1167		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1168		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1169			parent_start = buf->start;
 
 
1170
1171		extent_buffer_get(cow);
1172		tree_mod_log_set_root_pointer(root, cow, 1);
1173		rcu_assign_pointer(root->node, cow);
1174
1175		btrfs_free_tree_block(trans, root, buf, parent_start,
1176				      last_ref);
1177		free_extent_buffer(buf);
1178		add_root_to_dirty_list(root);
1179	} else {
 
 
 
 
 
1180		WARN_ON(trans->transid != btrfs_header_generation(parent));
1181		tree_mod_log_insert_key(fs_info, parent, parent_slot,
1182					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1183		btrfs_set_node_blockptr(parent, parent_slot,
1184					cow->start);
1185		btrfs_set_node_ptr_generation(parent, parent_slot,
1186					      trans->transid);
1187		btrfs_mark_buffer_dirty(parent);
1188		if (last_ref) {
1189			ret = tree_mod_log_free_eb(fs_info, buf);
1190			if (ret) {
1191				btrfs_abort_transaction(trans, ret);
1192				return ret;
1193			}
1194		}
1195		btrfs_free_tree_block(trans, root, buf, parent_start,
1196				      last_ref);
1197	}
1198	if (unlock_orig)
1199		btrfs_tree_unlock(buf);
1200	free_extent_buffer_stale(buf);
1201	btrfs_mark_buffer_dirty(cow);
1202	*cow_ret = cow;
1203	return 0;
1204}
1205
1206/*
1207 * returns the logical address of the oldest predecessor of the given root.
1208 * entries older than time_seq are ignored.
1209 */
1210static struct tree_mod_elem *
1211__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1212			   struct extent_buffer *eb_root, u64 time_seq)
1213{
1214	struct tree_mod_elem *tm;
1215	struct tree_mod_elem *found = NULL;
1216	u64 root_logical = eb_root->start;
1217	int looped = 0;
1218
1219	if (!time_seq)
1220		return NULL;
1221
1222	/*
1223	 * the very last operation that's logged for a root is the
1224	 * replacement operation (if it is replaced at all). this has
1225	 * the logical address of the *new* root, making it the very
1226	 * first operation that's logged for this root.
1227	 */
1228	while (1) {
1229		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1230						time_seq);
1231		if (!looped && !tm)
1232			return NULL;
1233		/*
1234		 * if there are no tree operation for the oldest root, we simply
1235		 * return it. this should only happen if that (old) root is at
1236		 * level 0.
1237		 */
1238		if (!tm)
1239			break;
1240
1241		/*
1242		 * if there's an operation that's not a root replacement, we
1243		 * found the oldest version of our root. normally, we'll find a
1244		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1245		 */
1246		if (tm->op != MOD_LOG_ROOT_REPLACE)
1247			break;
1248
1249		found = tm;
1250		root_logical = tm->old_root.logical;
1251		looped = 1;
1252	}
1253
1254	/* if there's no old root to return, return what we found instead */
1255	if (!found)
1256		found = tm;
1257
1258	return found;
1259}
1260
1261/*
1262 * tm is a pointer to the first operation to rewind within eb. then, all
1263 * previous operations will be rewound (until we reach something older than
1264 * time_seq).
1265 */
1266static void
1267__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1268		      u64 time_seq, struct tree_mod_elem *first_tm)
1269{
1270	u32 n;
1271	struct rb_node *next;
1272	struct tree_mod_elem *tm = first_tm;
1273	unsigned long o_dst;
1274	unsigned long o_src;
1275	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1276
1277	n = btrfs_header_nritems(eb);
1278	tree_mod_log_read_lock(fs_info);
1279	while (tm && tm->seq >= time_seq) {
1280		/*
1281		 * all the operations are recorded with the operator used for
1282		 * the modification. as we're going backwards, we do the
1283		 * opposite of each operation here.
1284		 */
1285		switch (tm->op) {
1286		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1287			BUG_ON(tm->slot < n);
1288			/* Fallthrough */
1289		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1290		case MOD_LOG_KEY_REMOVE:
1291			btrfs_set_node_key(eb, &tm->key, tm->slot);
1292			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1293			btrfs_set_node_ptr_generation(eb, tm->slot,
1294						      tm->generation);
1295			n++;
1296			break;
1297		case MOD_LOG_KEY_REPLACE:
1298			BUG_ON(tm->slot >= n);
1299			btrfs_set_node_key(eb, &tm->key, tm->slot);
1300			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1301			btrfs_set_node_ptr_generation(eb, tm->slot,
1302						      tm->generation);
1303			break;
1304		case MOD_LOG_KEY_ADD:
1305			/* if a move operation is needed it's in the log */
1306			n--;
1307			break;
1308		case MOD_LOG_MOVE_KEYS:
1309			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1310			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1311			memmove_extent_buffer(eb, o_dst, o_src,
1312					      tm->move.nr_items * p_size);
1313			break;
1314		case MOD_LOG_ROOT_REPLACE:
1315			/*
1316			 * this operation is special. for roots, this must be
1317			 * handled explicitly before rewinding.
1318			 * for non-roots, this operation may exist if the node
1319			 * was a root: root A -> child B; then A gets empty and
1320			 * B is promoted to the new root. in the mod log, we'll
1321			 * have a root-replace operation for B, a tree block
1322			 * that is no root. we simply ignore that operation.
1323			 */
1324			break;
1325		}
1326		next = rb_next(&tm->node);
1327		if (!next)
1328			break;
1329		tm = container_of(next, struct tree_mod_elem, node);
1330		if (tm->logical != first_tm->logical)
1331			break;
1332	}
1333	tree_mod_log_read_unlock(fs_info);
1334	btrfs_set_header_nritems(eb, n);
1335}
1336
1337/*
1338 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1339 * is returned. If rewind operations happen, a fresh buffer is returned. The
1340 * returned buffer is always read-locked. If the returned buffer is not the
1341 * input buffer, the lock on the input buffer is released and the input buffer
1342 * is freed (its refcount is decremented).
1343 */
1344static struct extent_buffer *
1345tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1346		    struct extent_buffer *eb, u64 time_seq)
1347{
1348	struct extent_buffer *eb_rewin;
1349	struct tree_mod_elem *tm;
1350
1351	if (!time_seq)
1352		return eb;
1353
1354	if (btrfs_header_level(eb) == 0)
1355		return eb;
1356
1357	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1358	if (!tm)
1359		return eb;
1360
1361	btrfs_set_path_blocking(path);
1362	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1363
1364	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1365		BUG_ON(tm->slot != 0);
1366		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1367		if (!eb_rewin) {
1368			btrfs_tree_read_unlock_blocking(eb);
1369			free_extent_buffer(eb);
1370			return NULL;
1371		}
1372		btrfs_set_header_bytenr(eb_rewin, eb->start);
1373		btrfs_set_header_backref_rev(eb_rewin,
1374					     btrfs_header_backref_rev(eb));
1375		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1376		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1377	} else {
1378		eb_rewin = btrfs_clone_extent_buffer(eb);
1379		if (!eb_rewin) {
1380			btrfs_tree_read_unlock_blocking(eb);
1381			free_extent_buffer(eb);
1382			return NULL;
1383		}
1384	}
1385
1386	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1387	btrfs_tree_read_unlock_blocking(eb);
1388	free_extent_buffer(eb);
1389
1390	extent_buffer_get(eb_rewin);
1391	btrfs_tree_read_lock(eb_rewin);
1392	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1393	WARN_ON(btrfs_header_nritems(eb_rewin) >
1394		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1395
1396	return eb_rewin;
1397}
1398
1399/*
1400 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1401 * value. If there are no changes, the current root->root_node is returned. If
1402 * anything changed in between, there's a fresh buffer allocated on which the
1403 * rewind operations are done. In any case, the returned buffer is read locked.
1404 * Returns NULL on error (with no locks held).
1405 */
1406static inline struct extent_buffer *
1407get_old_root(struct btrfs_root *root, u64 time_seq)
1408{
1409	struct btrfs_fs_info *fs_info = root->fs_info;
1410	struct tree_mod_elem *tm;
1411	struct extent_buffer *eb = NULL;
1412	struct extent_buffer *eb_root;
1413	struct extent_buffer *old;
1414	struct tree_mod_root *old_root = NULL;
1415	u64 old_generation = 0;
1416	u64 logical;
1417
1418	eb_root = btrfs_read_lock_root_node(root);
1419	tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
1420	if (!tm)
1421		return eb_root;
1422
1423	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1424		old_root = &tm->old_root;
1425		old_generation = tm->generation;
1426		logical = old_root->logical;
1427	} else {
1428		logical = eb_root->start;
1429	}
1430
1431	tm = tree_mod_log_search(fs_info, logical, time_seq);
1432	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1433		btrfs_tree_read_unlock(eb_root);
1434		free_extent_buffer(eb_root);
1435		old = read_tree_block(fs_info, logical, 0);
1436		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1437			if (!IS_ERR(old))
1438				free_extent_buffer(old);
1439			btrfs_warn(fs_info,
1440				   "failed to read tree block %llu from get_old_root",
1441				   logical);
1442		} else {
1443			eb = btrfs_clone_extent_buffer(old);
1444			free_extent_buffer(old);
1445		}
1446	} else if (old_root) {
1447		btrfs_tree_read_unlock(eb_root);
1448		free_extent_buffer(eb_root);
1449		eb = alloc_dummy_extent_buffer(fs_info, logical);
1450	} else {
1451		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1452		eb = btrfs_clone_extent_buffer(eb_root);
1453		btrfs_tree_read_unlock_blocking(eb_root);
1454		free_extent_buffer(eb_root);
1455	}
1456
1457	if (!eb)
1458		return NULL;
1459	extent_buffer_get(eb);
1460	btrfs_tree_read_lock(eb);
1461	if (old_root) {
1462		btrfs_set_header_bytenr(eb, eb->start);
1463		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1464		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1465		btrfs_set_header_level(eb, old_root->level);
1466		btrfs_set_header_generation(eb, old_generation);
1467	}
1468	if (tm)
1469		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1470	else
1471		WARN_ON(btrfs_header_level(eb) != 0);
1472	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1473
1474	return eb;
1475}
1476
1477int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1478{
1479	struct tree_mod_elem *tm;
1480	int level;
1481	struct extent_buffer *eb_root = btrfs_root_node(root);
1482
1483	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1484	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1485		level = tm->old_root.level;
1486	} else {
1487		level = btrfs_header_level(eb_root);
1488	}
1489	free_extent_buffer(eb_root);
1490
1491	return level;
1492}
1493
1494static inline int should_cow_block(struct btrfs_trans_handle *trans,
1495				   struct btrfs_root *root,
1496				   struct extent_buffer *buf)
1497{
1498	if (btrfs_is_testing(root->fs_info))
1499		return 0;
1500
1501	/* ensure we can see the force_cow */
1502	smp_rmb();
1503
1504	/*
1505	 * We do not need to cow a block if
1506	 * 1) this block is not created or changed in this transaction;
1507	 * 2) this block does not belong to TREE_RELOC tree;
1508	 * 3) the root is not forced COW.
1509	 *
1510	 * What is forced COW:
1511	 *    when we create snapshot during committing the transaction,
1512	 *    after we've finished coping src root, we must COW the shared
1513	 *    block to ensure the metadata consistency.
1514	 */
1515	if (btrfs_header_generation(buf) == trans->transid &&
1516	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1517	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1518	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1519	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1520		return 0;
1521	return 1;
1522}
1523
1524/*
1525 * cows a single block, see __btrfs_cow_block for the real work.
1526 * This version of it has extra checks so that a block isn't COWed more than
1527 * once per transaction, as long as it hasn't been written yet
1528 */
1529noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1530		    struct btrfs_root *root, struct extent_buffer *buf,
1531		    struct extent_buffer *parent, int parent_slot,
1532		    struct extent_buffer **cow_ret)
1533{
1534	struct btrfs_fs_info *fs_info = root->fs_info;
1535	u64 search_start;
1536	int ret;
1537
1538	if (trans->transaction != fs_info->running_transaction)
1539		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1540		       trans->transid,
1541		       fs_info->running_transaction->transid);
1542
1543	if (trans->transid != fs_info->generation)
1544		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1545		       trans->transid, fs_info->generation);
 
 
 
 
 
1546
1547	if (!should_cow_block(trans, root, buf)) {
1548		trans->dirty = true;
1549		*cow_ret = buf;
1550		return 0;
1551	}
1552
1553	search_start = buf->start & ~((u64)SZ_1G - 1);
1554
1555	if (parent)
1556		btrfs_set_lock_blocking(parent);
1557	btrfs_set_lock_blocking(buf);
1558
1559	ret = __btrfs_cow_block(trans, root, buf, parent,
1560				 parent_slot, cow_ret, search_start, 0);
1561
1562	trace_btrfs_cow_block(root, buf, *cow_ret);
1563
1564	return ret;
1565}
1566
1567/*
1568 * helper function for defrag to decide if two blocks pointed to by a
1569 * node are actually close by
1570 */
1571static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1572{
1573	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1574		return 1;
1575	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1576		return 1;
1577	return 0;
1578}
1579
1580/*
1581 * compare two keys in a memcmp fashion
1582 */
1583static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1584{
1585	struct btrfs_key k1;
1586
1587	btrfs_disk_key_to_cpu(&k1, disk);
1588
1589	return btrfs_comp_cpu_keys(&k1, k2);
1590}
1591
1592/*
1593 * same as comp_keys only with two btrfs_key's
1594 */
1595int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1596{
1597	if (k1->objectid > k2->objectid)
1598		return 1;
1599	if (k1->objectid < k2->objectid)
1600		return -1;
1601	if (k1->type > k2->type)
1602		return 1;
1603	if (k1->type < k2->type)
1604		return -1;
1605	if (k1->offset > k2->offset)
1606		return 1;
1607	if (k1->offset < k2->offset)
1608		return -1;
1609	return 0;
1610}
1611
1612/*
1613 * this is used by the defrag code to go through all the
1614 * leaves pointed to by a node and reallocate them so that
1615 * disk order is close to key order
1616 */
1617int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1618		       struct btrfs_root *root, struct extent_buffer *parent,
1619		       int start_slot, u64 *last_ret,
1620		       struct btrfs_key *progress)
1621{
1622	struct btrfs_fs_info *fs_info = root->fs_info;
1623	struct extent_buffer *cur;
1624	u64 blocknr;
1625	u64 gen;
1626	u64 search_start = *last_ret;
1627	u64 last_block = 0;
1628	u64 other;
1629	u32 parent_nritems;
1630	int end_slot;
1631	int i;
1632	int err = 0;
1633	int parent_level;
1634	int uptodate;
1635	u32 blocksize;
1636	int progress_passed = 0;
1637	struct btrfs_disk_key disk_key;
1638
1639	parent_level = btrfs_header_level(parent);
 
 
1640
1641	WARN_ON(trans->transaction != fs_info->running_transaction);
1642	WARN_ON(trans->transid != fs_info->generation);
 
 
1643
1644	parent_nritems = btrfs_header_nritems(parent);
1645	blocksize = fs_info->nodesize;
1646	end_slot = parent_nritems - 1;
1647
1648	if (parent_nritems <= 1)
1649		return 0;
1650
1651	btrfs_set_lock_blocking(parent);
1652
1653	for (i = start_slot; i <= end_slot; i++) {
1654		int close = 1;
1655
1656		btrfs_node_key(parent, &disk_key, i);
1657		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1658			continue;
1659
1660		progress_passed = 1;
1661		blocknr = btrfs_node_blockptr(parent, i);
1662		gen = btrfs_node_ptr_generation(parent, i);
1663		if (last_block == 0)
1664			last_block = blocknr;
1665
1666		if (i > 0) {
1667			other = btrfs_node_blockptr(parent, i - 1);
1668			close = close_blocks(blocknr, other, blocksize);
1669		}
1670		if (!close && i < end_slot) {
1671			other = btrfs_node_blockptr(parent, i + 1);
1672			close = close_blocks(blocknr, other, blocksize);
1673		}
1674		if (close) {
1675			last_block = blocknr;
1676			continue;
1677		}
1678
1679		cur = find_extent_buffer(fs_info, blocknr);
1680		if (cur)
1681			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1682		else
1683			uptodate = 0;
1684		if (!cur || !uptodate) {
 
 
 
 
1685			if (!cur) {
1686				cur = read_tree_block(fs_info, blocknr, gen);
1687				if (IS_ERR(cur)) {
1688					return PTR_ERR(cur);
1689				} else if (!extent_buffer_uptodate(cur)) {
1690					free_extent_buffer(cur);
1691					return -EIO;
1692				}
1693			} else if (!uptodate) {
1694				err = btrfs_read_buffer(cur, gen);
1695				if (err) {
1696					free_extent_buffer(cur);
1697					return err;
1698				}
1699			}
1700		}
1701		if (search_start == 0)
1702			search_start = last_block;
1703
1704		btrfs_tree_lock(cur);
1705		btrfs_set_lock_blocking(cur);
1706		err = __btrfs_cow_block(trans, root, cur, parent, i,
1707					&cur, search_start,
1708					min(16 * blocksize,
1709					    (end_slot - i) * blocksize));
1710		if (err) {
1711			btrfs_tree_unlock(cur);
1712			free_extent_buffer(cur);
1713			break;
1714		}
1715		search_start = cur->start;
1716		last_block = cur->start;
1717		*last_ret = search_start;
1718		btrfs_tree_unlock(cur);
1719		free_extent_buffer(cur);
1720	}
1721	return err;
1722}
1723
1724/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1725 * search for key in the extent_buffer.  The items start at offset p,
1726 * and they are item_size apart.  There are 'max' items in p.
1727 *
1728 * the slot in the array is returned via slot, and it points to
1729 * the place where you would insert key if it is not found in
1730 * the array.
1731 *
1732 * slot may point to max if the key is bigger than all of the keys
1733 */
1734static noinline int generic_bin_search(struct extent_buffer *eb,
1735				       unsigned long p,
1736				       int item_size, struct btrfs_key *key,
1737				       int max, int *slot)
1738{
1739	int low = 0;
1740	int high = max;
1741	int mid;
1742	int ret;
1743	struct btrfs_disk_key *tmp = NULL;
1744	struct btrfs_disk_key unaligned;
1745	unsigned long offset;
1746	char *kaddr = NULL;
1747	unsigned long map_start = 0;
1748	unsigned long map_len = 0;
1749	int err;
1750
1751	if (low > high) {
1752		btrfs_err(eb->fs_info,
1753		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1754			  __func__, low, high, eb->start,
1755			  btrfs_header_owner(eb), btrfs_header_level(eb));
1756		return -EINVAL;
1757	}
1758
1759	while (low < high) {
1760		mid = (low + high) / 2;
1761		offset = p + mid * item_size;
1762
1763		if (!kaddr || offset < map_start ||
1764		    (offset + sizeof(struct btrfs_disk_key)) >
1765		    map_start + map_len) {
1766
1767			err = map_private_extent_buffer(eb, offset,
1768						sizeof(struct btrfs_disk_key),
1769						&kaddr, &map_start, &map_len);
1770
1771			if (!err) {
1772				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1773							map_start);
1774			} else if (err == 1) {
1775				read_extent_buffer(eb, &unaligned,
1776						   offset, sizeof(unaligned));
1777				tmp = &unaligned;
1778			} else {
1779				return err;
1780			}
1781
1782		} else {
1783			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1784							map_start);
1785		}
1786		ret = comp_keys(tmp, key);
1787
1788		if (ret < 0)
1789			low = mid + 1;
1790		else if (ret > 0)
1791			high = mid;
1792		else {
1793			*slot = mid;
1794			return 0;
1795		}
1796	}
1797	*slot = low;
1798	return 1;
1799}
1800
1801/*
1802 * simple bin_search frontend that does the right thing for
1803 * leaves vs nodes
1804 */
1805static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1806		      int level, int *slot)
1807{
1808	if (level == 0)
1809		return generic_bin_search(eb,
1810					  offsetof(struct btrfs_leaf, items),
1811					  sizeof(struct btrfs_item),
1812					  key, btrfs_header_nritems(eb),
1813					  slot);
1814	else
1815		return generic_bin_search(eb,
1816					  offsetof(struct btrfs_node, ptrs),
1817					  sizeof(struct btrfs_key_ptr),
1818					  key, btrfs_header_nritems(eb),
1819					  slot);
 
 
1820}
1821
1822int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1823		     int level, int *slot)
1824{
1825	return bin_search(eb, key, level, slot);
1826}
1827
1828static void root_add_used(struct btrfs_root *root, u32 size)
1829{
1830	spin_lock(&root->accounting_lock);
1831	btrfs_set_root_used(&root->root_item,
1832			    btrfs_root_used(&root->root_item) + size);
1833	spin_unlock(&root->accounting_lock);
1834}
1835
1836static void root_sub_used(struct btrfs_root *root, u32 size)
1837{
1838	spin_lock(&root->accounting_lock);
1839	btrfs_set_root_used(&root->root_item,
1840			    btrfs_root_used(&root->root_item) - size);
1841	spin_unlock(&root->accounting_lock);
1842}
1843
1844/* given a node and slot number, this reads the blocks it points to.  The
1845 * extent buffer is returned with a reference taken (but unlocked).
 
1846 */
1847static noinline struct extent_buffer *
1848read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1849	       int slot)
1850{
1851	int level = btrfs_header_level(parent);
1852	struct extent_buffer *eb;
1853
1854	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1855		return ERR_PTR(-ENOENT);
1856
1857	BUG_ON(level == 0);
1858
1859	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1860			     btrfs_node_ptr_generation(parent, slot));
1861	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1862		free_extent_buffer(eb);
1863		eb = ERR_PTR(-EIO);
1864	}
1865
1866	return eb;
1867}
1868
1869/*
1870 * node level balancing, used to make sure nodes are in proper order for
1871 * item deletion.  We balance from the top down, so we have to make sure
1872 * that a deletion won't leave an node completely empty later on.
1873 */
1874static noinline int balance_level(struct btrfs_trans_handle *trans,
1875			 struct btrfs_root *root,
1876			 struct btrfs_path *path, int level)
1877{
1878	struct btrfs_fs_info *fs_info = root->fs_info;
1879	struct extent_buffer *right = NULL;
1880	struct extent_buffer *mid;
1881	struct extent_buffer *left = NULL;
1882	struct extent_buffer *parent = NULL;
1883	int ret = 0;
1884	int wret;
1885	int pslot;
1886	int orig_slot = path->slots[level];
1887	u64 orig_ptr;
1888
1889	if (level == 0)
1890		return 0;
1891
1892	mid = path->nodes[level];
1893
1894	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1895		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1896	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1897
1898	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1899
1900	if (level < BTRFS_MAX_LEVEL - 1) {
1901		parent = path->nodes[level + 1];
1902		pslot = path->slots[level + 1];
1903	}
1904
1905	/*
1906	 * deal with the case where there is only one pointer in the root
1907	 * by promoting the node below to a root
1908	 */
1909	if (!parent) {
1910		struct extent_buffer *child;
1911
1912		if (btrfs_header_nritems(mid) != 1)
1913			return 0;
1914
1915		/* promote the child to a root */
1916		child = read_node_slot(fs_info, mid, 0);
1917		if (IS_ERR(child)) {
1918			ret = PTR_ERR(child);
1919			btrfs_handle_fs_error(fs_info, ret, NULL);
1920			goto enospc;
1921		}
1922
1923		btrfs_tree_lock(child);
1924		btrfs_set_lock_blocking(child);
1925		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1926		if (ret) {
1927			btrfs_tree_unlock(child);
1928			free_extent_buffer(child);
1929			goto enospc;
1930		}
1931
1932		tree_mod_log_set_root_pointer(root, child, 1);
1933		rcu_assign_pointer(root->node, child);
1934
1935		add_root_to_dirty_list(root);
1936		btrfs_tree_unlock(child);
1937
1938		path->locks[level] = 0;
1939		path->nodes[level] = NULL;
1940		clean_tree_block(trans, fs_info, mid);
1941		btrfs_tree_unlock(mid);
1942		/* once for the path */
1943		free_extent_buffer(mid);
1944
1945		root_sub_used(root, mid->len);
1946		btrfs_free_tree_block(trans, root, mid, 0, 1);
1947		/* once for the root ptr */
1948		free_extent_buffer_stale(mid);
1949		return 0;
1950	}
1951	if (btrfs_header_nritems(mid) >
1952	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1953		return 0;
1954
1955	left = read_node_slot(fs_info, parent, pslot - 1);
1956	if (IS_ERR(left))
1957		left = NULL;
1958
 
1959	if (left) {
1960		btrfs_tree_lock(left);
1961		btrfs_set_lock_blocking(left);
1962		wret = btrfs_cow_block(trans, root, left,
1963				       parent, pslot - 1, &left);
1964		if (wret) {
1965			ret = wret;
1966			goto enospc;
1967		}
1968	}
1969
1970	right = read_node_slot(fs_info, parent, pslot + 1);
1971	if (IS_ERR(right))
1972		right = NULL;
1973
1974	if (right) {
1975		btrfs_tree_lock(right);
1976		btrfs_set_lock_blocking(right);
1977		wret = btrfs_cow_block(trans, root, right,
1978				       parent, pslot + 1, &right);
1979		if (wret) {
1980			ret = wret;
1981			goto enospc;
1982		}
1983	}
1984
1985	/* first, try to make some room in the middle buffer */
1986	if (left) {
1987		orig_slot += btrfs_header_nritems(left);
1988		wret = push_node_left(trans, fs_info, left, mid, 1);
1989		if (wret < 0)
1990			ret = wret;
 
1991	}
1992
1993	/*
1994	 * then try to empty the right most buffer into the middle
1995	 */
1996	if (right) {
1997		wret = push_node_left(trans, fs_info, mid, right, 1);
1998		if (wret < 0 && wret != -ENOSPC)
1999			ret = wret;
2000		if (btrfs_header_nritems(right) == 0) {
2001			clean_tree_block(trans, fs_info, right);
2002			btrfs_tree_unlock(right);
2003			del_ptr(root, path, level + 1, pslot + 1);
 
 
 
2004			root_sub_used(root, right->len);
2005			btrfs_free_tree_block(trans, root, right, 0, 1);
2006			free_extent_buffer_stale(right);
2007			right = NULL;
2008		} else {
2009			struct btrfs_disk_key right_key;
2010			btrfs_node_key(right, &right_key, 0);
2011			tree_mod_log_set_node_key(fs_info, parent,
2012						  pslot + 1, 0);
2013			btrfs_set_node_key(parent, &right_key, pslot + 1);
2014			btrfs_mark_buffer_dirty(parent);
2015		}
2016	}
2017	if (btrfs_header_nritems(mid) == 1) {
2018		/*
2019		 * we're not allowed to leave a node with one item in the
2020		 * tree during a delete.  A deletion from lower in the tree
2021		 * could try to delete the only pointer in this node.
2022		 * So, pull some keys from the left.
2023		 * There has to be a left pointer at this point because
2024		 * otherwise we would have pulled some pointers from the
2025		 * right
2026		 */
2027		if (!left) {
2028			ret = -EROFS;
2029			btrfs_handle_fs_error(fs_info, ret, NULL);
2030			goto enospc;
2031		}
2032		wret = balance_node_right(trans, fs_info, mid, left);
2033		if (wret < 0) {
2034			ret = wret;
2035			goto enospc;
2036		}
2037		if (wret == 1) {
2038			wret = push_node_left(trans, fs_info, left, mid, 1);
2039			if (wret < 0)
2040				ret = wret;
2041		}
2042		BUG_ON(wret == 1);
2043	}
2044	if (btrfs_header_nritems(mid) == 0) {
2045		clean_tree_block(trans, fs_info, mid);
2046		btrfs_tree_unlock(mid);
2047		del_ptr(root, path, level + 1, pslot);
 
 
2048		root_sub_used(root, mid->len);
2049		btrfs_free_tree_block(trans, root, mid, 0, 1);
2050		free_extent_buffer_stale(mid);
2051		mid = NULL;
2052	} else {
2053		/* update the parent key to reflect our changes */
2054		struct btrfs_disk_key mid_key;
2055		btrfs_node_key(mid, &mid_key, 0);
2056		tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2057		btrfs_set_node_key(parent, &mid_key, pslot);
2058		btrfs_mark_buffer_dirty(parent);
2059	}
2060
2061	/* update the path */
2062	if (left) {
2063		if (btrfs_header_nritems(left) > orig_slot) {
2064			extent_buffer_get(left);
2065			/* left was locked after cow */
2066			path->nodes[level] = left;
2067			path->slots[level + 1] -= 1;
2068			path->slots[level] = orig_slot;
2069			if (mid) {
2070				btrfs_tree_unlock(mid);
2071				free_extent_buffer(mid);
2072			}
2073		} else {
2074			orig_slot -= btrfs_header_nritems(left);
2075			path->slots[level] = orig_slot;
2076		}
2077	}
2078	/* double check we haven't messed things up */
2079	if (orig_ptr !=
2080	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2081		BUG();
2082enospc:
2083	if (right) {
2084		btrfs_tree_unlock(right);
2085		free_extent_buffer(right);
2086	}
2087	if (left) {
2088		if (path->nodes[level] != left)
2089			btrfs_tree_unlock(left);
2090		free_extent_buffer(left);
2091	}
2092	return ret;
2093}
2094
2095/* Node balancing for insertion.  Here we only split or push nodes around
2096 * when they are completely full.  This is also done top down, so we
2097 * have to be pessimistic.
2098 */
2099static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2100					  struct btrfs_root *root,
2101					  struct btrfs_path *path, int level)
2102{
2103	struct btrfs_fs_info *fs_info = root->fs_info;
2104	struct extent_buffer *right = NULL;
2105	struct extent_buffer *mid;
2106	struct extent_buffer *left = NULL;
2107	struct extent_buffer *parent = NULL;
2108	int ret = 0;
2109	int wret;
2110	int pslot;
2111	int orig_slot = path->slots[level];
2112
2113	if (level == 0)
2114		return 1;
2115
2116	mid = path->nodes[level];
2117	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2118
2119	if (level < BTRFS_MAX_LEVEL - 1) {
2120		parent = path->nodes[level + 1];
2121		pslot = path->slots[level + 1];
2122	}
2123
2124	if (!parent)
2125		return 1;
2126
2127	left = read_node_slot(fs_info, parent, pslot - 1);
2128	if (IS_ERR(left))
2129		left = NULL;
2130
2131	/* first, try to make some room in the middle buffer */
2132	if (left) {
2133		u32 left_nr;
2134
2135		btrfs_tree_lock(left);
2136		btrfs_set_lock_blocking(left);
2137
2138		left_nr = btrfs_header_nritems(left);
2139		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2140			wret = 1;
2141		} else {
2142			ret = btrfs_cow_block(trans, root, left, parent,
2143					      pslot - 1, &left);
2144			if (ret)
2145				wret = 1;
2146			else {
2147				wret = push_node_left(trans, fs_info,
2148						      left, mid, 0);
2149			}
2150		}
2151		if (wret < 0)
2152			ret = wret;
2153		if (wret == 0) {
2154			struct btrfs_disk_key disk_key;
2155			orig_slot += left_nr;
2156			btrfs_node_key(mid, &disk_key, 0);
2157			tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2158			btrfs_set_node_key(parent, &disk_key, pslot);
2159			btrfs_mark_buffer_dirty(parent);
2160			if (btrfs_header_nritems(left) > orig_slot) {
2161				path->nodes[level] = left;
2162				path->slots[level + 1] -= 1;
2163				path->slots[level] = orig_slot;
2164				btrfs_tree_unlock(mid);
2165				free_extent_buffer(mid);
2166			} else {
2167				orig_slot -=
2168					btrfs_header_nritems(left);
2169				path->slots[level] = orig_slot;
2170				btrfs_tree_unlock(left);
2171				free_extent_buffer(left);
2172			}
2173			return 0;
2174		}
2175		btrfs_tree_unlock(left);
2176		free_extent_buffer(left);
2177	}
2178	right = read_node_slot(fs_info, parent, pslot + 1);
2179	if (IS_ERR(right))
2180		right = NULL;
2181
2182	/*
2183	 * then try to empty the right most buffer into the middle
2184	 */
2185	if (right) {
2186		u32 right_nr;
2187
2188		btrfs_tree_lock(right);
2189		btrfs_set_lock_blocking(right);
2190
2191		right_nr = btrfs_header_nritems(right);
2192		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2193			wret = 1;
2194		} else {
2195			ret = btrfs_cow_block(trans, root, right,
2196					      parent, pslot + 1,
2197					      &right);
2198			if (ret)
2199				wret = 1;
2200			else {
2201				wret = balance_node_right(trans, fs_info,
2202							  right, mid);
2203			}
2204		}
2205		if (wret < 0)
2206			ret = wret;
2207		if (wret == 0) {
2208			struct btrfs_disk_key disk_key;
2209
2210			btrfs_node_key(right, &disk_key, 0);
2211			tree_mod_log_set_node_key(fs_info, parent,
2212						  pslot + 1, 0);
2213			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2214			btrfs_mark_buffer_dirty(parent);
2215
2216			if (btrfs_header_nritems(mid) <= orig_slot) {
2217				path->nodes[level] = right;
2218				path->slots[level + 1] += 1;
2219				path->slots[level] = orig_slot -
2220					btrfs_header_nritems(mid);
2221				btrfs_tree_unlock(mid);
2222				free_extent_buffer(mid);
2223			} else {
2224				btrfs_tree_unlock(right);
2225				free_extent_buffer(right);
2226			}
2227			return 0;
2228		}
2229		btrfs_tree_unlock(right);
2230		free_extent_buffer(right);
2231	}
2232	return 1;
2233}
2234
2235/*
2236 * readahead one full node of leaves, finding things that are close
2237 * to the block in 'slot', and triggering ra on them.
2238 */
2239static void reada_for_search(struct btrfs_fs_info *fs_info,
2240			     struct btrfs_path *path,
2241			     int level, int slot, u64 objectid)
2242{
2243	struct extent_buffer *node;
2244	struct btrfs_disk_key disk_key;
2245	u32 nritems;
2246	u64 search;
2247	u64 target;
2248	u64 nread = 0;
 
 
2249	struct extent_buffer *eb;
2250	u32 nr;
2251	u32 blocksize;
2252	u32 nscan = 0;
2253
2254	if (level != 1)
2255		return;
2256
2257	if (!path->nodes[level])
2258		return;
2259
2260	node = path->nodes[level];
2261
2262	search = btrfs_node_blockptr(node, slot);
2263	blocksize = fs_info->nodesize;
2264	eb = find_extent_buffer(fs_info, search);
2265	if (eb) {
2266		free_extent_buffer(eb);
2267		return;
2268	}
2269
2270	target = search;
2271
2272	nritems = btrfs_header_nritems(node);
2273	nr = slot;
2274
2275	while (1) {
2276		if (path->reada == READA_BACK) {
2277			if (nr == 0)
2278				break;
2279			nr--;
2280		} else if (path->reada == READA_FORWARD) {
2281			nr++;
2282			if (nr >= nritems)
2283				break;
2284		}
2285		if (path->reada == READA_BACK && objectid) {
2286			btrfs_node_key(node, &disk_key, nr);
2287			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2288				break;
2289		}
2290		search = btrfs_node_blockptr(node, nr);
2291		if ((search <= target && target - search <= 65536) ||
2292		    (search > target && search - target <= 65536)) {
2293			readahead_tree_block(fs_info, search);
 
2294			nread += blocksize;
2295		}
2296		nscan++;
2297		if ((nread > 65536 || nscan > 32))
2298			break;
2299	}
2300}
2301
2302static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2303				       struct btrfs_path *path, int level)
 
 
 
 
2304{
2305	int slot;
2306	int nritems;
2307	struct extent_buffer *parent;
2308	struct extent_buffer *eb;
2309	u64 gen;
2310	u64 block1 = 0;
2311	u64 block2 = 0;
 
 
2312
2313	parent = path->nodes[level + 1];
2314	if (!parent)
2315		return;
2316
2317	nritems = btrfs_header_nritems(parent);
2318	slot = path->slots[level + 1];
 
2319
2320	if (slot > 0) {
2321		block1 = btrfs_node_blockptr(parent, slot - 1);
2322		gen = btrfs_node_ptr_generation(parent, slot - 1);
2323		eb = find_extent_buffer(fs_info, block1);
2324		/*
2325		 * if we get -eagain from btrfs_buffer_uptodate, we
2326		 * don't want to return eagain here.  That will loop
2327		 * forever
2328		 */
2329		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2330			block1 = 0;
2331		free_extent_buffer(eb);
2332	}
2333	if (slot + 1 < nritems) {
2334		block2 = btrfs_node_blockptr(parent, slot + 1);
2335		gen = btrfs_node_ptr_generation(parent, slot + 1);
2336		eb = find_extent_buffer(fs_info, block2);
2337		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2338			block2 = 0;
2339		free_extent_buffer(eb);
2340	}
 
 
 
 
 
2341
2342	if (block1)
2343		readahead_tree_block(fs_info, block1);
2344	if (block2)
2345		readahead_tree_block(fs_info, block2);
 
 
 
 
 
 
 
 
 
 
 
 
2346}
2347
2348
2349/*
2350 * when we walk down the tree, it is usually safe to unlock the higher layers
2351 * in the tree.  The exceptions are when our path goes through slot 0, because
2352 * operations on the tree might require changing key pointers higher up in the
2353 * tree.
2354 *
2355 * callers might also have set path->keep_locks, which tells this code to keep
2356 * the lock if the path points to the last slot in the block.  This is part of
2357 * walking through the tree, and selecting the next slot in the higher block.
2358 *
2359 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2360 * if lowest_unlock is 1, level 0 won't be unlocked
2361 */
2362static noinline void unlock_up(struct btrfs_path *path, int level,
2363			       int lowest_unlock, int min_write_lock_level,
2364			       int *write_lock_level)
2365{
2366	int i;
2367	int skip_level = level;
2368	int no_skips = 0;
2369	struct extent_buffer *t;
2370
2371	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2372		if (!path->nodes[i])
2373			break;
2374		if (!path->locks[i])
2375			break;
2376		if (!no_skips && path->slots[i] == 0) {
2377			skip_level = i + 1;
2378			continue;
2379		}
2380		if (!no_skips && path->keep_locks) {
2381			u32 nritems;
2382			t = path->nodes[i];
2383			nritems = btrfs_header_nritems(t);
2384			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2385				skip_level = i + 1;
2386				continue;
2387			}
2388		}
2389		if (skip_level < i && i >= lowest_unlock)
2390			no_skips = 1;
2391
2392		t = path->nodes[i];
2393		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2394			btrfs_tree_unlock_rw(t, path->locks[i]);
2395			path->locks[i] = 0;
2396			if (write_lock_level &&
2397			    i > min_write_lock_level &&
2398			    i <= *write_lock_level) {
2399				*write_lock_level = i - 1;
2400			}
2401		}
2402	}
2403}
2404
2405/*
2406 * This releases any locks held in the path starting at level and
2407 * going all the way up to the root.
2408 *
2409 * btrfs_search_slot will keep the lock held on higher nodes in a few
2410 * corner cases, such as COW of the block at slot zero in the node.  This
2411 * ignores those rules, and it should only be called when there are no
2412 * more updates to be done higher up in the tree.
2413 */
2414noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2415{
2416	int i;
2417
2418	if (path->keep_locks)
2419		return;
2420
2421	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2422		if (!path->nodes[i])
2423			continue;
2424		if (!path->locks[i])
2425			continue;
2426		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2427		path->locks[i] = 0;
2428	}
2429}
2430
2431/*
2432 * helper function for btrfs_search_slot.  The goal is to find a block
2433 * in cache without setting the path to blocking.  If we find the block
2434 * we return zero and the path is unchanged.
2435 *
2436 * If we can't find the block, we set the path blocking and do some
2437 * reada.  -EAGAIN is returned and the search must be repeated.
2438 */
2439static int
2440read_block_for_search(struct btrfs_trans_handle *trans,
2441		       struct btrfs_root *root, struct btrfs_path *p,
2442		       struct extent_buffer **eb_ret, int level, int slot,
2443		       struct btrfs_key *key, u64 time_seq)
2444{
2445	struct btrfs_fs_info *fs_info = root->fs_info;
2446	u64 blocknr;
2447	u64 gen;
 
2448	struct extent_buffer *b = *eb_ret;
2449	struct extent_buffer *tmp;
2450	int ret;
2451
2452	blocknr = btrfs_node_blockptr(b, slot);
2453	gen = btrfs_node_ptr_generation(b, slot);
 
2454
2455	tmp = find_extent_buffer(fs_info, blocknr);
2456	if (tmp) {
2457		/* first we do an atomic uptodate check */
2458		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2459			*eb_ret = tmp;
2460			return 0;
2461		}
 
 
 
 
 
 
 
 
 
 
 
 
 
2462
2463		/* the pages were up to date, but we failed
2464		 * the generation number check.  Do a full
2465		 * read for the generation number that is correct.
2466		 * We must do this without dropping locks so
2467		 * we can trust our generation number
2468		 */
2469		btrfs_set_path_blocking(p);
2470
2471		/* now we're allowed to do a blocking uptodate check */
2472		ret = btrfs_read_buffer(tmp, gen);
2473		if (!ret) {
2474			*eb_ret = tmp;
2475			return 0;
2476		}
2477		free_extent_buffer(tmp);
2478		btrfs_release_path(p);
2479		return -EIO;
2480	}
2481
2482	/*
2483	 * reduce lock contention at high levels
2484	 * of the btree by dropping locks before
2485	 * we read.  Don't release the lock on the current
2486	 * level because we need to walk this node to figure
2487	 * out which blocks to read.
2488	 */
2489	btrfs_unlock_up_safe(p, level + 1);
2490	btrfs_set_path_blocking(p);
2491
2492	free_extent_buffer(tmp);
2493	if (p->reada != READA_NONE)
2494		reada_for_search(fs_info, p, level, slot, key->objectid);
2495
2496	btrfs_release_path(p);
2497
2498	ret = -EAGAIN;
2499	tmp = read_tree_block(fs_info, blocknr, 0);
2500	if (!IS_ERR(tmp)) {
2501		/*
2502		 * If the read above didn't mark this buffer up to date,
2503		 * it will never end up being up to date.  Set ret to EIO now
2504		 * and give up so that our caller doesn't loop forever
2505		 * on our EAGAINs.
2506		 */
2507		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2508			ret = -EIO;
2509		free_extent_buffer(tmp);
2510	} else {
2511		ret = PTR_ERR(tmp);
2512	}
2513	return ret;
2514}
2515
2516/*
2517 * helper function for btrfs_search_slot.  This does all of the checks
2518 * for node-level blocks and does any balancing required based on
2519 * the ins_len.
2520 *
2521 * If no extra work was required, zero is returned.  If we had to
2522 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2523 * start over
2524 */
2525static int
2526setup_nodes_for_search(struct btrfs_trans_handle *trans,
2527		       struct btrfs_root *root, struct btrfs_path *p,
2528		       struct extent_buffer *b, int level, int ins_len,
2529		       int *write_lock_level)
2530{
2531	struct btrfs_fs_info *fs_info = root->fs_info;
2532	int ret;
2533
2534	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2535	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2536		int sret;
2537
2538		if (*write_lock_level < level + 1) {
2539			*write_lock_level = level + 1;
2540			btrfs_release_path(p);
2541			goto again;
2542		}
2543
 
 
 
 
2544		btrfs_set_path_blocking(p);
2545		reada_for_balance(fs_info, p, level);
2546		sret = split_node(trans, root, p, level);
2547		btrfs_clear_path_blocking(p, NULL, 0);
2548
2549		BUG_ON(sret > 0);
2550		if (sret) {
2551			ret = sret;
2552			goto done;
2553		}
2554		b = p->nodes[level];
2555	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2556		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2557		int sret;
2558
2559		if (*write_lock_level < level + 1) {
2560			*write_lock_level = level + 1;
2561			btrfs_release_path(p);
2562			goto again;
2563		}
2564
 
 
 
 
2565		btrfs_set_path_blocking(p);
2566		reada_for_balance(fs_info, p, level);
2567		sret = balance_level(trans, root, p, level);
2568		btrfs_clear_path_blocking(p, NULL, 0);
2569
2570		if (sret) {
2571			ret = sret;
2572			goto done;
2573		}
2574		b = p->nodes[level];
2575		if (!b) {
2576			btrfs_release_path(p);
2577			goto again;
2578		}
2579		BUG_ON(btrfs_header_nritems(b) == 1);
2580	}
2581	return 0;
2582
2583again:
2584	ret = -EAGAIN;
2585done:
2586	return ret;
2587}
2588
2589static void key_search_validate(struct extent_buffer *b,
2590				struct btrfs_key *key,
2591				int level)
2592{
2593#ifdef CONFIG_BTRFS_ASSERT
2594	struct btrfs_disk_key disk_key;
2595
2596	btrfs_cpu_key_to_disk(&disk_key, key);
2597
2598	if (level == 0)
2599		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2600		    offsetof(struct btrfs_leaf, items[0].key),
2601		    sizeof(disk_key)));
2602	else
2603		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2604		    offsetof(struct btrfs_node, ptrs[0].key),
2605		    sizeof(disk_key)));
2606#endif
2607}
2608
2609static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2610		      int level, int *prev_cmp, int *slot)
2611{
2612	if (*prev_cmp != 0) {
2613		*prev_cmp = bin_search(b, key, level, slot);
2614		return *prev_cmp;
2615	}
2616
2617	key_search_validate(b, key, level);
2618	*slot = 0;
2619
2620	return 0;
2621}
2622
2623int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2624		u64 iobjectid, u64 ioff, u8 key_type,
2625		struct btrfs_key *found_key)
2626{
2627	int ret;
2628	struct btrfs_key key;
2629	struct extent_buffer *eb;
2630
2631	ASSERT(path);
2632	ASSERT(found_key);
2633
2634	key.type = key_type;
2635	key.objectid = iobjectid;
2636	key.offset = ioff;
2637
2638	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2639	if (ret < 0)
2640		return ret;
2641
2642	eb = path->nodes[0];
2643	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2644		ret = btrfs_next_leaf(fs_root, path);
2645		if (ret)
2646			return ret;
2647		eb = path->nodes[0];
2648	}
2649
2650	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2651	if (found_key->type != key.type ||
2652			found_key->objectid != key.objectid)
2653		return 1;
2654
2655	return 0;
2656}
2657
2658/*
2659 * look for key in the tree.  path is filled in with nodes along the way
2660 * if key is found, we return zero and you can find the item in the leaf
2661 * level of the path (level 0)
2662 *
2663 * If the key isn't found, the path points to the slot where it should
2664 * be inserted, and 1 is returned.  If there are other errors during the
2665 * search a negative error number is returned.
2666 *
2667 * if ins_len > 0, nodes and leaves will be split as we walk down the
2668 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2669 * possible)
2670 */
2671int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2672		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2673		      ins_len, int cow)
2674{
2675	struct btrfs_fs_info *fs_info = root->fs_info;
2676	struct extent_buffer *b;
2677	int slot;
2678	int ret;
2679	int err;
2680	int level;
2681	int lowest_unlock = 1;
2682	int root_lock;
2683	/* everything at write_lock_level or lower must be write locked */
2684	int write_lock_level = 0;
2685	u8 lowest_level = 0;
2686	int min_write_lock_level;
2687	int prev_cmp;
2688
2689	lowest_level = p->lowest_level;
2690	WARN_ON(lowest_level && ins_len > 0);
2691	WARN_ON(p->nodes[0] != NULL);
2692	BUG_ON(!cow && ins_len);
2693
2694	if (ins_len < 0) {
2695		lowest_unlock = 2;
2696
2697		/* when we are removing items, we might have to go up to level
2698		 * two as we update tree pointers  Make sure we keep write
2699		 * for those levels as well
2700		 */
2701		write_lock_level = 2;
2702	} else if (ins_len > 0) {
2703		/*
2704		 * for inserting items, make sure we have a write lock on
2705		 * level 1 so we can update keys
2706		 */
2707		write_lock_level = 1;
2708	}
2709
2710	if (!cow)
2711		write_lock_level = -1;
2712
2713	if (cow && (p->keep_locks || p->lowest_level))
2714		write_lock_level = BTRFS_MAX_LEVEL;
2715
2716	min_write_lock_level = write_lock_level;
2717
2718again:
2719	prev_cmp = -1;
2720	/*
2721	 * we try very hard to do read locks on the root
2722	 */
2723	root_lock = BTRFS_READ_LOCK;
2724	level = 0;
2725	if (p->search_commit_root) {
2726		/*
2727		 * the commit roots are read only
2728		 * so we always do read locks
2729		 */
2730		if (p->need_commit_sem)
2731			down_read(&fs_info->commit_root_sem);
2732		b = root->commit_root;
2733		extent_buffer_get(b);
2734		level = btrfs_header_level(b);
2735		if (p->need_commit_sem)
2736			up_read(&fs_info->commit_root_sem);
2737		if (!p->skip_locking)
2738			btrfs_tree_read_lock(b);
2739	} else {
2740		if (p->skip_locking) {
2741			b = btrfs_root_node(root);
2742			level = btrfs_header_level(b);
2743		} else {
2744			/* we don't know the level of the root node
2745			 * until we actually have it read locked
2746			 */
2747			b = btrfs_read_lock_root_node(root);
2748			level = btrfs_header_level(b);
2749			if (level <= write_lock_level) {
2750				/* whoops, must trade for write lock */
2751				btrfs_tree_read_unlock(b);
2752				free_extent_buffer(b);
2753				b = btrfs_lock_root_node(root);
2754				root_lock = BTRFS_WRITE_LOCK;
2755
2756				/* the level might have changed, check again */
2757				level = btrfs_header_level(b);
2758			}
2759		}
2760	}
2761	p->nodes[level] = b;
2762	if (!p->skip_locking)
2763		p->locks[level] = root_lock;
2764
2765	while (b) {
2766		level = btrfs_header_level(b);
2767
2768		/*
2769		 * setup the path here so we can release it under lock
2770		 * contention with the cow code
2771		 */
2772		if (cow) {
2773			/*
2774			 * if we don't really need to cow this block
2775			 * then we don't want to set the path blocking,
2776			 * so we test it here
2777			 */
2778			if (!should_cow_block(trans, root, b)) {
2779				trans->dirty = true;
2780				goto cow_done;
2781			}
 
2782
2783			/*
2784			 * must have write locks on this node and the
2785			 * parent
2786			 */
2787			if (level > write_lock_level ||
2788			    (level + 1 > write_lock_level &&
2789			    level + 1 < BTRFS_MAX_LEVEL &&
2790			    p->nodes[level + 1])) {
2791				write_lock_level = level + 1;
2792				btrfs_release_path(p);
2793				goto again;
2794			}
2795
2796			btrfs_set_path_blocking(p);
2797			err = btrfs_cow_block(trans, root, b,
2798					      p->nodes[level + 1],
2799					      p->slots[level + 1], &b);
2800			if (err) {
2801				ret = err;
2802				goto done;
2803			}
2804		}
2805cow_done:
 
 
2806		p->nodes[level] = b;
2807		btrfs_clear_path_blocking(p, NULL, 0);
2808
2809		/*
2810		 * we have a lock on b and as long as we aren't changing
2811		 * the tree, there is no way to for the items in b to change.
2812		 * It is safe to drop the lock on our parent before we
2813		 * go through the expensive btree search on b.
2814		 *
2815		 * If we're inserting or deleting (ins_len != 0), then we might
2816		 * be changing slot zero, which may require changing the parent.
2817		 * So, we can't drop the lock until after we know which slot
2818		 * we're operating on.
2819		 */
2820		if (!ins_len && !p->keep_locks) {
2821			int u = level + 1;
2822
2823			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2824				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2825				p->locks[u] = 0;
2826			}
2827		}
2828
2829		ret = key_search(b, key, level, &prev_cmp, &slot);
2830		if (ret < 0)
2831			goto done;
2832
2833		if (level != 0) {
2834			int dec = 0;
2835			if (ret && slot > 0) {
2836				dec = 1;
2837				slot -= 1;
2838			}
2839			p->slots[level] = slot;
2840			err = setup_nodes_for_search(trans, root, p, b, level,
2841					     ins_len, &write_lock_level);
2842			if (err == -EAGAIN)
2843				goto again;
2844			if (err) {
2845				ret = err;
2846				goto done;
2847			}
2848			b = p->nodes[level];
2849			slot = p->slots[level];
2850
2851			/*
2852			 * slot 0 is special, if we change the key
2853			 * we have to update the parent pointer
2854			 * which means we must have a write lock
2855			 * on the parent
2856			 */
2857			if (slot == 0 && ins_len &&
2858			    write_lock_level < level + 1) {
2859				write_lock_level = level + 1;
2860				btrfs_release_path(p);
2861				goto again;
2862			}
2863
2864			unlock_up(p, level, lowest_unlock,
2865				  min_write_lock_level, &write_lock_level);
2866
2867			if (level == lowest_level) {
2868				if (dec)
2869					p->slots[level]++;
2870				goto done;
2871			}
2872
2873			err = read_block_for_search(trans, root, p,
2874						    &b, level, slot, key, 0);
2875			if (err == -EAGAIN)
2876				goto again;
2877			if (err) {
2878				ret = err;
2879				goto done;
2880			}
2881
2882			if (!p->skip_locking) {
2883				level = btrfs_header_level(b);
2884				if (level <= write_lock_level) {
2885					err = btrfs_try_tree_write_lock(b);
2886					if (!err) {
2887						btrfs_set_path_blocking(p);
2888						btrfs_tree_lock(b);
2889						btrfs_clear_path_blocking(p, b,
2890								  BTRFS_WRITE_LOCK);
2891					}
2892					p->locks[level] = BTRFS_WRITE_LOCK;
2893				} else {
2894					err = btrfs_tree_read_lock_atomic(b);
2895					if (!err) {
2896						btrfs_set_path_blocking(p);
2897						btrfs_tree_read_lock(b);
2898						btrfs_clear_path_blocking(p, b,
2899								  BTRFS_READ_LOCK);
2900					}
2901					p->locks[level] = BTRFS_READ_LOCK;
2902				}
2903				p->nodes[level] = b;
2904			}
2905		} else {
2906			p->slots[level] = slot;
2907			if (ins_len > 0 &&
2908			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2909				if (write_lock_level < 1) {
2910					write_lock_level = 1;
2911					btrfs_release_path(p);
2912					goto again;
2913				}
2914
2915				btrfs_set_path_blocking(p);
2916				err = split_leaf(trans, root, key,
2917						 p, ins_len, ret == 0);
2918				btrfs_clear_path_blocking(p, NULL, 0);
2919
2920				BUG_ON(err > 0);
2921				if (err) {
2922					ret = err;
2923					goto done;
2924				}
2925			}
2926			if (!p->search_for_split)
2927				unlock_up(p, level, lowest_unlock,
2928					  min_write_lock_level, &write_lock_level);
2929			goto done;
2930		}
2931	}
2932	ret = 1;
2933done:
2934	/*
2935	 * we don't really know what they plan on doing with the path
2936	 * from here on, so for now just mark it as blocking
2937	 */
2938	if (!p->leave_spinning)
2939		btrfs_set_path_blocking(p);
2940	if (ret < 0 && !p->skip_release_on_error)
2941		btrfs_release_path(p);
2942	return ret;
2943}
2944
2945/*
2946 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2947 * current state of the tree together with the operations recorded in the tree
2948 * modification log to search for the key in a previous version of this tree, as
2949 * denoted by the time_seq parameter.
2950 *
2951 * Naturally, there is no support for insert, delete or cow operations.
2952 *
2953 * The resulting path and return value will be set up as if we called
2954 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2955 */
2956int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2957			  struct btrfs_path *p, u64 time_seq)
2958{
2959	struct btrfs_fs_info *fs_info = root->fs_info;
2960	struct extent_buffer *b;
2961	int slot;
2962	int ret;
2963	int err;
2964	int level;
2965	int lowest_unlock = 1;
2966	u8 lowest_level = 0;
2967	int prev_cmp = -1;
2968
2969	lowest_level = p->lowest_level;
2970	WARN_ON(p->nodes[0] != NULL);
2971
2972	if (p->search_commit_root) {
2973		BUG_ON(time_seq);
2974		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2975	}
2976
2977again:
2978	b = get_old_root(root, time_seq);
2979	level = btrfs_header_level(b);
2980	p->locks[level] = BTRFS_READ_LOCK;
2981
2982	while (b) {
2983		level = btrfs_header_level(b);
2984		p->nodes[level] = b;
2985		btrfs_clear_path_blocking(p, NULL, 0);
2986
2987		/*
2988		 * we have a lock on b and as long as we aren't changing
2989		 * the tree, there is no way to for the items in b to change.
2990		 * It is safe to drop the lock on our parent before we
2991		 * go through the expensive btree search on b.
2992		 */
2993		btrfs_unlock_up_safe(p, level + 1);
2994
2995		/*
2996		 * Since we can unwind ebs we want to do a real search every
2997		 * time.
2998		 */
2999		prev_cmp = -1;
3000		ret = key_search(b, key, level, &prev_cmp, &slot);
3001
3002		if (level != 0) {
3003			int dec = 0;
3004			if (ret && slot > 0) {
3005				dec = 1;
3006				slot -= 1;
3007			}
3008			p->slots[level] = slot;
3009			unlock_up(p, level, lowest_unlock, 0, NULL);
3010
3011			if (level == lowest_level) {
3012				if (dec)
3013					p->slots[level]++;
3014				goto done;
3015			}
3016
3017			err = read_block_for_search(NULL, root, p, &b, level,
3018						    slot, key, time_seq);
3019			if (err == -EAGAIN)
3020				goto again;
3021			if (err) {
3022				ret = err;
3023				goto done;
3024			}
3025
3026			level = btrfs_header_level(b);
3027			err = btrfs_tree_read_lock_atomic(b);
3028			if (!err) {
3029				btrfs_set_path_blocking(p);
3030				btrfs_tree_read_lock(b);
3031				btrfs_clear_path_blocking(p, b,
3032							  BTRFS_READ_LOCK);
3033			}
3034			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3035			if (!b) {
3036				ret = -ENOMEM;
3037				goto done;
3038			}
3039			p->locks[level] = BTRFS_READ_LOCK;
3040			p->nodes[level] = b;
3041		} else {
3042			p->slots[level] = slot;
3043			unlock_up(p, level, lowest_unlock, 0, NULL);
3044			goto done;
3045		}
3046	}
3047	ret = 1;
3048done:
3049	if (!p->leave_spinning)
3050		btrfs_set_path_blocking(p);
3051	if (ret < 0)
3052		btrfs_release_path(p);
3053
3054	return ret;
3055}
3056
3057/*
3058 * helper to use instead of search slot if no exact match is needed but
3059 * instead the next or previous item should be returned.
3060 * When find_higher is true, the next higher item is returned, the next lower
3061 * otherwise.
3062 * When return_any and find_higher are both true, and no higher item is found,
3063 * return the next lower instead.
3064 * When return_any is true and find_higher is false, and no lower item is found,
3065 * return the next higher instead.
3066 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3067 * < 0 on error
3068 */
3069int btrfs_search_slot_for_read(struct btrfs_root *root,
3070			       struct btrfs_key *key, struct btrfs_path *p,
3071			       int find_higher, int return_any)
3072{
3073	int ret;
3074	struct extent_buffer *leaf;
3075
3076again:
3077	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3078	if (ret <= 0)
3079		return ret;
3080	/*
3081	 * a return value of 1 means the path is at the position where the
3082	 * item should be inserted. Normally this is the next bigger item,
3083	 * but in case the previous item is the last in a leaf, path points
3084	 * to the first free slot in the previous leaf, i.e. at an invalid
3085	 * item.
3086	 */
3087	leaf = p->nodes[0];
3088
3089	if (find_higher) {
3090		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3091			ret = btrfs_next_leaf(root, p);
3092			if (ret <= 0)
3093				return ret;
3094			if (!return_any)
3095				return 1;
3096			/*
3097			 * no higher item found, return the next
3098			 * lower instead
3099			 */
3100			return_any = 0;
3101			find_higher = 0;
3102			btrfs_release_path(p);
3103			goto again;
3104		}
3105	} else {
3106		if (p->slots[0] == 0) {
3107			ret = btrfs_prev_leaf(root, p);
3108			if (ret < 0)
3109				return ret;
3110			if (!ret) {
3111				leaf = p->nodes[0];
3112				if (p->slots[0] == btrfs_header_nritems(leaf))
3113					p->slots[0]--;
3114				return 0;
3115			}
3116			if (!return_any)
3117				return 1;
3118			/*
3119			 * no lower item found, return the next
3120			 * higher instead
3121			 */
3122			return_any = 0;
3123			find_higher = 1;
3124			btrfs_release_path(p);
3125			goto again;
3126		} else {
3127			--p->slots[0];
3128		}
3129	}
3130	return 0;
3131}
3132
3133/*
3134 * adjust the pointers going up the tree, starting at level
3135 * making sure the right key of each node is points to 'key'.
3136 * This is used after shifting pointers to the left, so it stops
3137 * fixing up pointers when a given leaf/node is not in slot 0 of the
3138 * higher levels
3139 *
 
 
3140 */
3141static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3142			   struct btrfs_path *path,
3143			   struct btrfs_disk_key *key, int level)
3144{
3145	int i;
 
3146	struct extent_buffer *t;
3147
3148	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3149		int tslot = path->slots[i];
3150		if (!path->nodes[i])
3151			break;
3152		t = path->nodes[i];
3153		tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3154		btrfs_set_node_key(t, key, tslot);
3155		btrfs_mark_buffer_dirty(path->nodes[i]);
3156		if (tslot != 0)
3157			break;
3158	}
 
3159}
3160
3161/*
3162 * update item key.
3163 *
3164 * This function isn't completely safe. It's the caller's responsibility
3165 * that the new key won't break the order
3166 */
3167void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3168			     struct btrfs_path *path,
3169			     struct btrfs_key *new_key)
3170{
3171	struct btrfs_disk_key disk_key;
3172	struct extent_buffer *eb;
3173	int slot;
3174
3175	eb = path->nodes[0];
3176	slot = path->slots[0];
3177	if (slot > 0) {
3178		btrfs_item_key(eb, &disk_key, slot - 1);
3179		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
 
3180	}
3181	if (slot < btrfs_header_nritems(eb) - 1) {
3182		btrfs_item_key(eb, &disk_key, slot + 1);
3183		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
 
3184	}
3185
3186	btrfs_cpu_key_to_disk(&disk_key, new_key);
3187	btrfs_set_item_key(eb, &disk_key, slot);
3188	btrfs_mark_buffer_dirty(eb);
3189	if (slot == 0)
3190		fixup_low_keys(fs_info, path, &disk_key, 1);
 
3191}
3192
3193/*
3194 * try to push data from one node into the next node left in the
3195 * tree.
3196 *
3197 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3198 * error, and > 0 if there was no room in the left hand block.
3199 */
3200static int push_node_left(struct btrfs_trans_handle *trans,
3201			  struct btrfs_fs_info *fs_info,
3202			  struct extent_buffer *dst,
3203			  struct extent_buffer *src, int empty)
3204{
3205	int push_items = 0;
3206	int src_nritems;
3207	int dst_nritems;
3208	int ret = 0;
3209
3210	src_nritems = btrfs_header_nritems(src);
3211	dst_nritems = btrfs_header_nritems(dst);
3212	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3213	WARN_ON(btrfs_header_generation(src) != trans->transid);
3214	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3215
3216	if (!empty && src_nritems <= 8)
3217		return 1;
3218
3219	if (push_items <= 0)
3220		return 1;
3221
3222	if (empty) {
3223		push_items = min(src_nritems, push_items);
3224		if (push_items < src_nritems) {
3225			/* leave at least 8 pointers in the node if
3226			 * we aren't going to empty it
3227			 */
3228			if (src_nritems - push_items < 8) {
3229				if (push_items <= 8)
3230					return 1;
3231				push_items -= 8;
3232			}
3233		}
3234	} else
3235		push_items = min(src_nritems - 8, push_items);
3236
3237	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3238				   push_items);
3239	if (ret) {
3240		btrfs_abort_transaction(trans, ret);
3241		return ret;
3242	}
3243	copy_extent_buffer(dst, src,
3244			   btrfs_node_key_ptr_offset(dst_nritems),
3245			   btrfs_node_key_ptr_offset(0),
3246			   push_items * sizeof(struct btrfs_key_ptr));
3247
3248	if (push_items < src_nritems) {
3249		/*
3250		 * don't call tree_mod_log_eb_move here, key removal was already
3251		 * fully logged by tree_mod_log_eb_copy above.
3252		 */
3253		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3254				      btrfs_node_key_ptr_offset(push_items),
3255				      (src_nritems - push_items) *
3256				      sizeof(struct btrfs_key_ptr));
3257	}
3258	btrfs_set_header_nritems(src, src_nritems - push_items);
3259	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3260	btrfs_mark_buffer_dirty(src);
3261	btrfs_mark_buffer_dirty(dst);
3262
3263	return ret;
3264}
3265
3266/*
3267 * try to push data from one node into the next node right in the
3268 * tree.
3269 *
3270 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3271 * error, and > 0 if there was no room in the right hand block.
3272 *
3273 * this will  only push up to 1/2 the contents of the left node over
3274 */
3275static int balance_node_right(struct btrfs_trans_handle *trans,
3276			      struct btrfs_fs_info *fs_info,
3277			      struct extent_buffer *dst,
3278			      struct extent_buffer *src)
3279{
3280	int push_items = 0;
3281	int max_push;
3282	int src_nritems;
3283	int dst_nritems;
3284	int ret = 0;
3285
3286	WARN_ON(btrfs_header_generation(src) != trans->transid);
3287	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3288
3289	src_nritems = btrfs_header_nritems(src);
3290	dst_nritems = btrfs_header_nritems(dst);
3291	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3292	if (push_items <= 0)
3293		return 1;
3294
3295	if (src_nritems < 4)
3296		return 1;
3297
3298	max_push = src_nritems / 2 + 1;
3299	/* don't try to empty the node */
3300	if (max_push >= src_nritems)
3301		return 1;
3302
3303	if (max_push < push_items)
3304		push_items = max_push;
3305
3306	tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
3307	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3308				      btrfs_node_key_ptr_offset(0),
3309				      (dst_nritems) *
3310				      sizeof(struct btrfs_key_ptr));
3311
3312	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3313				   src_nritems - push_items, push_items);
3314	if (ret) {
3315		btrfs_abort_transaction(trans, ret);
3316		return ret;
3317	}
3318	copy_extent_buffer(dst, src,
3319			   btrfs_node_key_ptr_offset(0),
3320			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3321			   push_items * sizeof(struct btrfs_key_ptr));
3322
3323	btrfs_set_header_nritems(src, src_nritems - push_items);
3324	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3325
3326	btrfs_mark_buffer_dirty(src);
3327	btrfs_mark_buffer_dirty(dst);
3328
3329	return ret;
3330}
3331
3332/*
3333 * helper function to insert a new root level in the tree.
3334 * A new node is allocated, and a single item is inserted to
3335 * point to the existing root
3336 *
3337 * returns zero on success or < 0 on failure.
3338 */
3339static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3340			   struct btrfs_root *root,
3341			   struct btrfs_path *path, int level)
3342{
3343	struct btrfs_fs_info *fs_info = root->fs_info;
3344	u64 lower_gen;
3345	struct extent_buffer *lower;
3346	struct extent_buffer *c;
3347	struct extent_buffer *old;
3348	struct btrfs_disk_key lower_key;
3349
3350	BUG_ON(path->nodes[level]);
3351	BUG_ON(path->nodes[level-1] != root->node);
3352
3353	lower = path->nodes[level-1];
3354	if (level == 1)
3355		btrfs_item_key(lower, &lower_key, 0);
3356	else
3357		btrfs_node_key(lower, &lower_key, 0);
3358
3359	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3360				   &lower_key, level, root->node->start, 0);
 
3361	if (IS_ERR(c))
3362		return PTR_ERR(c);
3363
3364	root_add_used(root, fs_info->nodesize);
3365
3366	memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3367	btrfs_set_header_nritems(c, 1);
3368	btrfs_set_header_level(c, level);
3369	btrfs_set_header_bytenr(c, c->start);
3370	btrfs_set_header_generation(c, trans->transid);
3371	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3372	btrfs_set_header_owner(c, root->root_key.objectid);
3373
3374	write_extent_buffer_fsid(c, fs_info->fsid);
3375	write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
 
 
 
 
 
3376
3377	btrfs_set_node_key(c, &lower_key, 0);
3378	btrfs_set_node_blockptr(c, 0, lower->start);
3379	lower_gen = btrfs_header_generation(lower);
3380	WARN_ON(lower_gen != trans->transid);
3381
3382	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3383
3384	btrfs_mark_buffer_dirty(c);
3385
3386	old = root->node;
3387	tree_mod_log_set_root_pointer(root, c, 0);
3388	rcu_assign_pointer(root->node, c);
3389
3390	/* the super has an extra ref to root->node */
3391	free_extent_buffer(old);
3392
3393	add_root_to_dirty_list(root);
3394	extent_buffer_get(c);
3395	path->nodes[level] = c;
3396	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3397	path->slots[level] = 0;
3398	return 0;
3399}
3400
3401/*
3402 * worker function to insert a single pointer in a node.
3403 * the node should have enough room for the pointer already
3404 *
3405 * slot and level indicate where you want the key to go, and
3406 * blocknr is the block the key points to.
 
 
3407 */
3408static void insert_ptr(struct btrfs_trans_handle *trans,
3409		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3410		       struct btrfs_disk_key *key, u64 bytenr,
3411		       int slot, int level)
3412{
3413	struct extent_buffer *lower;
3414	int nritems;
3415	int ret;
3416
3417	BUG_ON(!path->nodes[level]);
3418	btrfs_assert_tree_locked(path->nodes[level]);
3419	lower = path->nodes[level];
3420	nritems = btrfs_header_nritems(lower);
3421	BUG_ON(slot > nritems);
3422	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
 
3423	if (slot != nritems) {
3424		if (level)
3425			tree_mod_log_eb_move(fs_info, lower, slot + 1,
3426					     slot, nritems - slot);
3427		memmove_extent_buffer(lower,
3428			      btrfs_node_key_ptr_offset(slot + 1),
3429			      btrfs_node_key_ptr_offset(slot),
3430			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3431	}
3432	if (level) {
3433		ret = tree_mod_log_insert_key(fs_info, lower, slot,
3434					      MOD_LOG_KEY_ADD, GFP_NOFS);
3435		BUG_ON(ret < 0);
3436	}
3437	btrfs_set_node_key(lower, key, slot);
3438	btrfs_set_node_blockptr(lower, slot, bytenr);
3439	WARN_ON(trans->transid == 0);
3440	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3441	btrfs_set_header_nritems(lower, nritems + 1);
3442	btrfs_mark_buffer_dirty(lower);
 
3443}
3444
3445/*
3446 * split the node at the specified level in path in two.
3447 * The path is corrected to point to the appropriate node after the split
3448 *
3449 * Before splitting this tries to make some room in the node by pushing
3450 * left and right, if either one works, it returns right away.
3451 *
3452 * returns 0 on success and < 0 on failure
3453 */
3454static noinline int split_node(struct btrfs_trans_handle *trans,
3455			       struct btrfs_root *root,
3456			       struct btrfs_path *path, int level)
3457{
3458	struct btrfs_fs_info *fs_info = root->fs_info;
3459	struct extent_buffer *c;
3460	struct extent_buffer *split;
3461	struct btrfs_disk_key disk_key;
3462	int mid;
3463	int ret;
 
3464	u32 c_nritems;
3465
3466	c = path->nodes[level];
3467	WARN_ON(btrfs_header_generation(c) != trans->transid);
3468	if (c == root->node) {
3469		/*
3470		 * trying to split the root, lets make a new one
3471		 *
3472		 * tree mod log: We don't log_removal old root in
3473		 * insert_new_root, because that root buffer will be kept as a
3474		 * normal node. We are going to log removal of half of the
3475		 * elements below with tree_mod_log_eb_copy. We're holding a
3476		 * tree lock on the buffer, which is why we cannot race with
3477		 * other tree_mod_log users.
3478		 */
3479		ret = insert_new_root(trans, root, path, level + 1);
3480		if (ret)
3481			return ret;
3482	} else {
3483		ret = push_nodes_for_insert(trans, root, path, level);
3484		c = path->nodes[level];
3485		if (!ret && btrfs_header_nritems(c) <
3486		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3487			return 0;
3488		if (ret < 0)
3489			return ret;
3490	}
3491
3492	c_nritems = btrfs_header_nritems(c);
3493	mid = (c_nritems + 1) / 2;
3494	btrfs_node_key(c, &disk_key, mid);
3495
3496	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3497			&disk_key, level, c->start, 0);
 
3498	if (IS_ERR(split))
3499		return PTR_ERR(split);
3500
3501	root_add_used(root, fs_info->nodesize);
3502
3503	memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3504	btrfs_set_header_level(split, btrfs_header_level(c));
3505	btrfs_set_header_bytenr(split, split->start);
3506	btrfs_set_header_generation(split, trans->transid);
3507	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3508	btrfs_set_header_owner(split, root->root_key.objectid);
3509	write_extent_buffer_fsid(split, fs_info->fsid);
3510	write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
 
 
 
 
 
3511
3512	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3513	if (ret) {
3514		btrfs_abort_transaction(trans, ret);
3515		return ret;
3516	}
3517	copy_extent_buffer(split, c,
3518			   btrfs_node_key_ptr_offset(0),
3519			   btrfs_node_key_ptr_offset(mid),
3520			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3521	btrfs_set_header_nritems(split, c_nritems - mid);
3522	btrfs_set_header_nritems(c, mid);
3523	ret = 0;
3524
3525	btrfs_mark_buffer_dirty(c);
3526	btrfs_mark_buffer_dirty(split);
3527
3528	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3529		   path->slots[level + 1] + 1, level + 1);
 
 
 
3530
3531	if (path->slots[level] >= mid) {
3532		path->slots[level] -= mid;
3533		btrfs_tree_unlock(c);
3534		free_extent_buffer(c);
3535		path->nodes[level] = split;
3536		path->slots[level + 1] += 1;
3537	} else {
3538		btrfs_tree_unlock(split);
3539		free_extent_buffer(split);
3540	}
3541	return ret;
3542}
3543
3544/*
3545 * how many bytes are required to store the items in a leaf.  start
3546 * and nr indicate which items in the leaf to check.  This totals up the
3547 * space used both by the item structs and the item data
3548 */
3549static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3550{
3551	struct btrfs_item *start_item;
3552	struct btrfs_item *end_item;
3553	struct btrfs_map_token token;
3554	int data_len;
3555	int nritems = btrfs_header_nritems(l);
3556	int end = min(nritems, start + nr) - 1;
3557
3558	if (!nr)
3559		return 0;
3560	btrfs_init_map_token(&token);
3561	start_item = btrfs_item_nr(start);
3562	end_item = btrfs_item_nr(end);
3563	data_len = btrfs_token_item_offset(l, start_item, &token) +
3564		btrfs_token_item_size(l, start_item, &token);
3565	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3566	data_len += sizeof(struct btrfs_item) * nr;
3567	WARN_ON(data_len < 0);
3568	return data_len;
3569}
3570
3571/*
3572 * The space between the end of the leaf items and
3573 * the start of the leaf data.  IOW, how much room
3574 * the leaf has left for both items and data
3575 */
3576noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3577				   struct extent_buffer *leaf)
3578{
3579	int nritems = btrfs_header_nritems(leaf);
3580	int ret;
3581
3582	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3583	if (ret < 0) {
3584		btrfs_crit(fs_info,
3585			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3586			   ret,
3587			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3588			   leaf_space_used(leaf, 0, nritems), nritems);
3589	}
3590	return ret;
3591}
3592
3593/*
3594 * min slot controls the lowest index we're willing to push to the
3595 * right.  We'll push up to and including min_slot, but no lower
3596 */
3597static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3598				      struct btrfs_fs_info *fs_info,
3599				      struct btrfs_path *path,
3600				      int data_size, int empty,
3601				      struct extent_buffer *right,
3602				      int free_space, u32 left_nritems,
3603				      u32 min_slot)
3604{
3605	struct extent_buffer *left = path->nodes[0];
3606	struct extent_buffer *upper = path->nodes[1];
3607	struct btrfs_map_token token;
3608	struct btrfs_disk_key disk_key;
3609	int slot;
3610	u32 i;
3611	int push_space = 0;
3612	int push_items = 0;
3613	struct btrfs_item *item;
3614	u32 nr;
3615	u32 right_nritems;
3616	u32 data_end;
3617	u32 this_item_size;
3618
3619	btrfs_init_map_token(&token);
3620
3621	if (empty)
3622		nr = 0;
3623	else
3624		nr = max_t(u32, 1, min_slot);
3625
3626	if (path->slots[0] >= left_nritems)
3627		push_space += data_size;
3628
3629	slot = path->slots[1];
3630	i = left_nritems - 1;
3631	while (i >= nr) {
3632		item = btrfs_item_nr(i);
3633
3634		if (!empty && push_items > 0) {
3635			if (path->slots[0] > i)
3636				break;
3637			if (path->slots[0] == i) {
3638				int space = btrfs_leaf_free_space(fs_info, left);
3639				if (space + push_space * 2 > free_space)
3640					break;
3641			}
3642		}
3643
3644		if (path->slots[0] == i)
3645			push_space += data_size;
3646
3647		this_item_size = btrfs_item_size(left, item);
3648		if (this_item_size + sizeof(*item) + push_space > free_space)
3649			break;
3650
3651		push_items++;
3652		push_space += this_item_size + sizeof(*item);
3653		if (i == 0)
3654			break;
3655		i--;
3656	}
3657
3658	if (push_items == 0)
3659		goto out_unlock;
3660
3661	WARN_ON(!empty && push_items == left_nritems);
 
3662
3663	/* push left to right */
3664	right_nritems = btrfs_header_nritems(right);
3665
3666	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3667	push_space -= leaf_data_end(fs_info, left);
3668
3669	/* make room in the right data area */
3670	data_end = leaf_data_end(fs_info, right);
3671	memmove_extent_buffer(right,
3672			      btrfs_leaf_data(right) + data_end - push_space,
3673			      btrfs_leaf_data(right) + data_end,
3674			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3675
3676	/* copy from the left data area */
3677	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3678		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3679		     btrfs_leaf_data(left) + leaf_data_end(fs_info, left),
3680		     push_space);
3681
3682	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3683			      btrfs_item_nr_offset(0),
3684			      right_nritems * sizeof(struct btrfs_item));
3685
3686	/* copy the items from left to right */
3687	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3688		   btrfs_item_nr_offset(left_nritems - push_items),
3689		   push_items * sizeof(struct btrfs_item));
3690
3691	/* update the item pointers */
3692	right_nritems += push_items;
3693	btrfs_set_header_nritems(right, right_nritems);
3694	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3695	for (i = 0; i < right_nritems; i++) {
3696		item = btrfs_item_nr(i);
3697		push_space -= btrfs_token_item_size(right, item, &token);
3698		btrfs_set_token_item_offset(right, item, push_space, &token);
3699	}
3700
3701	left_nritems -= push_items;
3702	btrfs_set_header_nritems(left, left_nritems);
3703
3704	if (left_nritems)
3705		btrfs_mark_buffer_dirty(left);
3706	else
3707		clean_tree_block(trans, fs_info, left);
3708
3709	btrfs_mark_buffer_dirty(right);
3710
3711	btrfs_item_key(right, &disk_key, 0);
3712	btrfs_set_node_key(upper, &disk_key, slot + 1);
3713	btrfs_mark_buffer_dirty(upper);
3714
3715	/* then fixup the leaf pointer in the path */
3716	if (path->slots[0] >= left_nritems) {
3717		path->slots[0] -= left_nritems;
3718		if (btrfs_header_nritems(path->nodes[0]) == 0)
3719			clean_tree_block(trans, fs_info, path->nodes[0]);
3720		btrfs_tree_unlock(path->nodes[0]);
3721		free_extent_buffer(path->nodes[0]);
3722		path->nodes[0] = right;
3723		path->slots[1] += 1;
3724	} else {
3725		btrfs_tree_unlock(right);
3726		free_extent_buffer(right);
3727	}
3728	return 0;
3729
3730out_unlock:
3731	btrfs_tree_unlock(right);
3732	free_extent_buffer(right);
3733	return 1;
3734}
3735
3736/*
3737 * push some data in the path leaf to the right, trying to free up at
3738 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3739 *
3740 * returns 1 if the push failed because the other node didn't have enough
3741 * room, 0 if everything worked out and < 0 if there were major errors.
3742 *
3743 * this will push starting from min_slot to the end of the leaf.  It won't
3744 * push any slot lower than min_slot
3745 */
3746static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3747			   *root, struct btrfs_path *path,
3748			   int min_data_size, int data_size,
3749			   int empty, u32 min_slot)
3750{
3751	struct btrfs_fs_info *fs_info = root->fs_info;
3752	struct extent_buffer *left = path->nodes[0];
3753	struct extent_buffer *right;
3754	struct extent_buffer *upper;
3755	int slot;
3756	int free_space;
3757	u32 left_nritems;
3758	int ret;
3759
3760	if (!path->nodes[1])
3761		return 1;
3762
3763	slot = path->slots[1];
3764	upper = path->nodes[1];
3765	if (slot >= btrfs_header_nritems(upper) - 1)
3766		return 1;
3767
3768	btrfs_assert_tree_locked(path->nodes[1]);
3769
3770	right = read_node_slot(fs_info, upper, slot + 1);
3771	/*
3772	 * slot + 1 is not valid or we fail to read the right node,
3773	 * no big deal, just return.
3774	 */
3775	if (IS_ERR(right))
3776		return 1;
3777
3778	btrfs_tree_lock(right);
3779	btrfs_set_lock_blocking(right);
3780
3781	free_space = btrfs_leaf_free_space(fs_info, right);
3782	if (free_space < data_size)
3783		goto out_unlock;
3784
3785	/* cow and double check */
3786	ret = btrfs_cow_block(trans, root, right, upper,
3787			      slot + 1, &right);
3788	if (ret)
3789		goto out_unlock;
3790
3791	free_space = btrfs_leaf_free_space(fs_info, right);
3792	if (free_space < data_size)
3793		goto out_unlock;
3794
3795	left_nritems = btrfs_header_nritems(left);
3796	if (left_nritems == 0)
3797		goto out_unlock;
3798
3799	if (path->slots[0] == left_nritems && !empty) {
3800		/* Key greater than all keys in the leaf, right neighbor has
3801		 * enough room for it and we're not emptying our leaf to delete
3802		 * it, therefore use right neighbor to insert the new item and
3803		 * no need to touch/dirty our left leaft. */
3804		btrfs_tree_unlock(left);
3805		free_extent_buffer(left);
3806		path->nodes[0] = right;
3807		path->slots[0] = 0;
3808		path->slots[1]++;
3809		return 0;
3810	}
3811
3812	return __push_leaf_right(trans, fs_info, path, min_data_size, empty,
3813				right, free_space, left_nritems, min_slot);
3814out_unlock:
3815	btrfs_tree_unlock(right);
3816	free_extent_buffer(right);
3817	return 1;
3818}
3819
3820/*
3821 * push some data in the path leaf to the left, trying to free up at
3822 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3823 *
3824 * max_slot can put a limit on how far into the leaf we'll push items.  The
3825 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3826 * items
3827 */
3828static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3829				     struct btrfs_fs_info *fs_info,
3830				     struct btrfs_path *path, int data_size,
3831				     int empty, struct extent_buffer *left,
3832				     int free_space, u32 right_nritems,
3833				     u32 max_slot)
3834{
3835	struct btrfs_disk_key disk_key;
3836	struct extent_buffer *right = path->nodes[0];
3837	int i;
3838	int push_space = 0;
3839	int push_items = 0;
3840	struct btrfs_item *item;
3841	u32 old_left_nritems;
3842	u32 nr;
3843	int ret = 0;
 
3844	u32 this_item_size;
3845	u32 old_left_item_size;
3846	struct btrfs_map_token token;
3847
3848	btrfs_init_map_token(&token);
3849
3850	if (empty)
3851		nr = min(right_nritems, max_slot);
3852	else
3853		nr = min(right_nritems - 1, max_slot);
3854
3855	for (i = 0; i < nr; i++) {
3856		item = btrfs_item_nr(i);
3857
3858		if (!empty && push_items > 0) {
3859			if (path->slots[0] < i)
3860				break;
3861			if (path->slots[0] == i) {
3862				int space = btrfs_leaf_free_space(fs_info, right);
3863				if (space + push_space * 2 > free_space)
3864					break;
3865			}
3866		}
3867
3868		if (path->slots[0] == i)
3869			push_space += data_size;
3870
3871		this_item_size = btrfs_item_size(right, item);
3872		if (this_item_size + sizeof(*item) + push_space > free_space)
3873			break;
3874
3875		push_items++;
3876		push_space += this_item_size + sizeof(*item);
3877	}
3878
3879	if (push_items == 0) {
3880		ret = 1;
3881		goto out;
3882	}
3883	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
 
3884
3885	/* push data from right to left */
3886	copy_extent_buffer(left, right,
3887			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3888			   btrfs_item_nr_offset(0),
3889			   push_items * sizeof(struct btrfs_item));
3890
3891	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3892		     btrfs_item_offset_nr(right, push_items - 1);
3893
3894	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3895		     leaf_data_end(fs_info, left) - push_space,
3896		     btrfs_leaf_data(right) +
3897		     btrfs_item_offset_nr(right, push_items - 1),
3898		     push_space);
3899	old_left_nritems = btrfs_header_nritems(left);
3900	BUG_ON(old_left_nritems <= 0);
3901
3902	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3903	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3904		u32 ioff;
3905
3906		item = btrfs_item_nr(i);
3907
3908		ioff = btrfs_token_item_offset(left, item, &token);
3909		btrfs_set_token_item_offset(left, item,
3910		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3911		      &token);
3912	}
3913	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3914
3915	/* fixup right node */
3916	if (push_items > right_nritems)
3917		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3918		       right_nritems);
 
 
3919
3920	if (push_items < right_nritems) {
3921		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3922						  leaf_data_end(fs_info, right);
3923		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3924				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3925				      btrfs_leaf_data(right) +
3926				      leaf_data_end(fs_info, right), push_space);
3927
3928		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3929			      btrfs_item_nr_offset(push_items),
3930			     (btrfs_header_nritems(right) - push_items) *
3931			     sizeof(struct btrfs_item));
3932	}
3933	right_nritems -= push_items;
3934	btrfs_set_header_nritems(right, right_nritems);
3935	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3936	for (i = 0; i < right_nritems; i++) {
3937		item = btrfs_item_nr(i);
3938
3939		push_space = push_space - btrfs_token_item_size(right,
3940								item, &token);
3941		btrfs_set_token_item_offset(right, item, push_space, &token);
3942	}
3943
3944	btrfs_mark_buffer_dirty(left);
3945	if (right_nritems)
3946		btrfs_mark_buffer_dirty(right);
3947	else
3948		clean_tree_block(trans, fs_info, right);
3949
3950	btrfs_item_key(right, &disk_key, 0);
3951	fixup_low_keys(fs_info, path, &disk_key, 1);
 
 
3952
3953	/* then fixup the leaf pointer in the path */
3954	if (path->slots[0] < push_items) {
3955		path->slots[0] += old_left_nritems;
3956		btrfs_tree_unlock(path->nodes[0]);
3957		free_extent_buffer(path->nodes[0]);
3958		path->nodes[0] = left;
3959		path->slots[1] -= 1;
3960	} else {
3961		btrfs_tree_unlock(left);
3962		free_extent_buffer(left);
3963		path->slots[0] -= push_items;
3964	}
3965	BUG_ON(path->slots[0] < 0);
3966	return ret;
3967out:
3968	btrfs_tree_unlock(left);
3969	free_extent_buffer(left);
3970	return ret;
3971}
3972
3973/*
3974 * push some data in the path leaf to the left, trying to free up at
3975 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3976 *
3977 * max_slot can put a limit on how far into the leaf we'll push items.  The
3978 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3979 * items
3980 */
3981static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3982			  *root, struct btrfs_path *path, int min_data_size,
3983			  int data_size, int empty, u32 max_slot)
3984{
3985	struct btrfs_fs_info *fs_info = root->fs_info;
3986	struct extent_buffer *right = path->nodes[0];
3987	struct extent_buffer *left;
3988	int slot;
3989	int free_space;
3990	u32 right_nritems;
3991	int ret = 0;
3992
3993	slot = path->slots[1];
3994	if (slot == 0)
3995		return 1;
3996	if (!path->nodes[1])
3997		return 1;
3998
3999	right_nritems = btrfs_header_nritems(right);
4000	if (right_nritems == 0)
4001		return 1;
4002
4003	btrfs_assert_tree_locked(path->nodes[1]);
4004
4005	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
4006	/*
4007	 * slot - 1 is not valid or we fail to read the left node,
4008	 * no big deal, just return.
4009	 */
4010	if (IS_ERR(left))
4011		return 1;
4012
4013	btrfs_tree_lock(left);
4014	btrfs_set_lock_blocking(left);
4015
4016	free_space = btrfs_leaf_free_space(fs_info, left);
4017	if (free_space < data_size) {
4018		ret = 1;
4019		goto out;
4020	}
4021
4022	/* cow and double check */
4023	ret = btrfs_cow_block(trans, root, left,
4024			      path->nodes[1], slot - 1, &left);
4025	if (ret) {
4026		/* we hit -ENOSPC, but it isn't fatal here */
4027		if (ret == -ENOSPC)
4028			ret = 1;
4029		goto out;
4030	}
4031
4032	free_space = btrfs_leaf_free_space(fs_info, left);
4033	if (free_space < data_size) {
4034		ret = 1;
4035		goto out;
4036	}
4037
4038	return __push_leaf_left(trans, fs_info, path, min_data_size,
4039			       empty, left, free_space, right_nritems,
4040			       max_slot);
4041out:
4042	btrfs_tree_unlock(left);
4043	free_extent_buffer(left);
4044	return ret;
4045}
4046
4047/*
4048 * split the path's leaf in two, making sure there is at least data_size
4049 * available for the resulting leaf level of the path.
 
 
4050 */
4051static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4052				    struct btrfs_fs_info *fs_info,
4053				    struct btrfs_path *path,
4054				    struct extent_buffer *l,
4055				    struct extent_buffer *right,
4056				    int slot, int mid, int nritems)
4057{
4058	int data_copy_size;
4059	int rt_data_off;
4060	int i;
 
 
4061	struct btrfs_disk_key disk_key;
4062	struct btrfs_map_token token;
4063
4064	btrfs_init_map_token(&token);
4065
4066	nritems = nritems - mid;
4067	btrfs_set_header_nritems(right, nritems);
4068	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4069
4070	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4071			   btrfs_item_nr_offset(mid),
4072			   nritems * sizeof(struct btrfs_item));
4073
4074	copy_extent_buffer(right, l,
4075		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(fs_info) -
4076		     data_copy_size, btrfs_leaf_data(l) +
4077		     leaf_data_end(fs_info, l), data_copy_size);
4078
4079	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
 
4080
4081	for (i = 0; i < nritems; i++) {
4082		struct btrfs_item *item = btrfs_item_nr(i);
4083		u32 ioff;
4084
4085		ioff = btrfs_token_item_offset(right, item, &token);
4086		btrfs_set_token_item_offset(right, item,
4087					    ioff + rt_data_off, &token);
4088	}
4089
4090	btrfs_set_header_nritems(l, mid);
 
4091	btrfs_item_key(right, &disk_key, 0);
4092	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4093		   path->slots[1] + 1, 1);
 
 
4094
4095	btrfs_mark_buffer_dirty(right);
4096	btrfs_mark_buffer_dirty(l);
4097	BUG_ON(path->slots[0] != slot);
4098
4099	if (mid <= slot) {
4100		btrfs_tree_unlock(path->nodes[0]);
4101		free_extent_buffer(path->nodes[0]);
4102		path->nodes[0] = right;
4103		path->slots[0] -= mid;
4104		path->slots[1] += 1;
4105	} else {
4106		btrfs_tree_unlock(right);
4107		free_extent_buffer(right);
4108	}
4109
4110	BUG_ON(path->slots[0] < 0);
 
 
4111}
4112
4113/*
4114 * double splits happen when we need to insert a big item in the middle
4115 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4116 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4117 *          A                 B                 C
4118 *
4119 * We avoid this by trying to push the items on either side of our target
4120 * into the adjacent leaves.  If all goes well we can avoid the double split
4121 * completely.
4122 */
4123static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4124					  struct btrfs_root *root,
4125					  struct btrfs_path *path,
4126					  int data_size)
4127{
4128	struct btrfs_fs_info *fs_info = root->fs_info;
4129	int ret;
4130	int progress = 0;
4131	int slot;
4132	u32 nritems;
4133	int space_needed = data_size;
4134
4135	slot = path->slots[0];
4136	if (slot < btrfs_header_nritems(path->nodes[0]))
4137		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4138
4139	/*
4140	 * try to push all the items after our slot into the
4141	 * right leaf
4142	 */
4143	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4144	if (ret < 0)
4145		return ret;
4146
4147	if (ret == 0)
4148		progress++;
4149
4150	nritems = btrfs_header_nritems(path->nodes[0]);
4151	/*
4152	 * our goal is to get our slot at the start or end of a leaf.  If
4153	 * we've done so we're done
4154	 */
4155	if (path->slots[0] == 0 || path->slots[0] == nritems)
4156		return 0;
4157
4158	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4159		return 0;
4160
4161	/* try to push all the items before our slot into the next leaf */
4162	slot = path->slots[0];
4163	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4164	if (ret < 0)
4165		return ret;
4166
4167	if (ret == 0)
4168		progress++;
4169
4170	if (progress)
4171		return 0;
4172	return 1;
4173}
4174
4175/*
4176 * split the path's leaf in two, making sure there is at least data_size
4177 * available for the resulting leaf level of the path.
4178 *
4179 * returns 0 if all went well and < 0 on failure.
4180 */
4181static noinline int split_leaf(struct btrfs_trans_handle *trans,
4182			       struct btrfs_root *root,
4183			       struct btrfs_key *ins_key,
4184			       struct btrfs_path *path, int data_size,
4185			       int extend)
4186{
4187	struct btrfs_disk_key disk_key;
4188	struct extent_buffer *l;
4189	u32 nritems;
4190	int mid;
4191	int slot;
4192	struct extent_buffer *right;
4193	struct btrfs_fs_info *fs_info = root->fs_info;
4194	int ret = 0;
4195	int wret;
4196	int split;
4197	int num_doubles = 0;
4198	int tried_avoid_double = 0;
4199
4200	l = path->nodes[0];
4201	slot = path->slots[0];
4202	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4203	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4204		return -EOVERFLOW;
4205
4206	/* first try to make some room by pushing left and right */
4207	if (data_size && path->nodes[1]) {
4208		int space_needed = data_size;
4209
4210		if (slot < btrfs_header_nritems(l))
4211			space_needed -= btrfs_leaf_free_space(fs_info, l);
4212
4213		wret = push_leaf_right(trans, root, path, space_needed,
4214				       space_needed, 0, 0);
4215		if (wret < 0)
4216			return wret;
4217		if (wret) {
4218			wret = push_leaf_left(trans, root, path, space_needed,
4219					      space_needed, 0, (u32)-1);
4220			if (wret < 0)
4221				return wret;
4222		}
4223		l = path->nodes[0];
4224
4225		/* did the pushes work? */
4226		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4227			return 0;
4228	}
4229
4230	if (!path->nodes[1]) {
4231		ret = insert_new_root(trans, root, path, 1);
4232		if (ret)
4233			return ret;
4234	}
4235again:
4236	split = 1;
4237	l = path->nodes[0];
4238	slot = path->slots[0];
4239	nritems = btrfs_header_nritems(l);
4240	mid = (nritems + 1) / 2;
4241
4242	if (mid <= slot) {
4243		if (nritems == 1 ||
4244		    leaf_space_used(l, mid, nritems - mid) + data_size >
4245			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4246			if (slot >= nritems) {
4247				split = 0;
4248			} else {
4249				mid = slot;
4250				if (mid != nritems &&
4251				    leaf_space_used(l, mid, nritems - mid) +
4252				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4253					if (data_size && !tried_avoid_double)
4254						goto push_for_double;
4255					split = 2;
4256				}
4257			}
4258		}
4259	} else {
4260		if (leaf_space_used(l, 0, mid) + data_size >
4261			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4262			if (!extend && data_size && slot == 0) {
4263				split = 0;
4264			} else if ((extend || !data_size) && slot == 0) {
4265				mid = 1;
4266			} else {
4267				mid = slot;
4268				if (mid != nritems &&
4269				    leaf_space_used(l, mid, nritems - mid) +
4270				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4271					if (data_size && !tried_avoid_double)
4272						goto push_for_double;
4273					split = 2;
4274				}
4275			}
4276		}
4277	}
4278
4279	if (split == 0)
4280		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4281	else
4282		btrfs_item_key(l, &disk_key, mid);
4283
4284	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4285			&disk_key, 0, l->start, 0);
 
4286	if (IS_ERR(right))
4287		return PTR_ERR(right);
4288
4289	root_add_used(root, fs_info->nodesize);
4290
4291	memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4292	btrfs_set_header_bytenr(right, right->start);
4293	btrfs_set_header_generation(right, trans->transid);
4294	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4295	btrfs_set_header_owner(right, root->root_key.objectid);
4296	btrfs_set_header_level(right, 0);
4297	write_extent_buffer_fsid(right, fs_info->fsid);
4298	write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
 
 
 
 
 
4299
4300	if (split == 0) {
4301		if (mid <= slot) {
4302			btrfs_set_header_nritems(right, 0);
4303			insert_ptr(trans, fs_info, path, &disk_key,
4304				   right->start, path->slots[1] + 1, 1);
 
 
 
 
4305			btrfs_tree_unlock(path->nodes[0]);
4306			free_extent_buffer(path->nodes[0]);
4307			path->nodes[0] = right;
4308			path->slots[0] = 0;
4309			path->slots[1] += 1;
4310		} else {
4311			btrfs_set_header_nritems(right, 0);
4312			insert_ptr(trans, fs_info, path, &disk_key,
4313				   right->start, path->slots[1], 1);
 
 
 
 
4314			btrfs_tree_unlock(path->nodes[0]);
4315			free_extent_buffer(path->nodes[0]);
4316			path->nodes[0] = right;
4317			path->slots[0] = 0;
4318			if (path->slots[1] == 0)
4319				fixup_low_keys(fs_info, path, &disk_key, 1);
 
 
 
 
4320		}
4321		/*
4322		 * We create a new leaf 'right' for the required ins_len and
4323		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4324		 * the content of ins_len to 'right'.
4325		 */
4326		return ret;
4327	}
4328
4329	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
 
4330
4331	if (split == 2) {
4332		BUG_ON(num_doubles != 0);
4333		num_doubles++;
4334		goto again;
4335	}
4336
4337	return 0;
4338
4339push_for_double:
4340	push_for_double_split(trans, root, path, data_size);
4341	tried_avoid_double = 1;
4342	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4343		return 0;
4344	goto again;
4345}
4346
4347static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4348					 struct btrfs_root *root,
4349					 struct btrfs_path *path, int ins_len)
4350{
4351	struct btrfs_fs_info *fs_info = root->fs_info;
4352	struct btrfs_key key;
4353	struct extent_buffer *leaf;
4354	struct btrfs_file_extent_item *fi;
4355	u64 extent_len = 0;
4356	u32 item_size;
4357	int ret;
4358
4359	leaf = path->nodes[0];
4360	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4361
4362	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4363	       key.type != BTRFS_EXTENT_CSUM_KEY);
4364
4365	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4366		return 0;
4367
4368	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4369	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4370		fi = btrfs_item_ptr(leaf, path->slots[0],
4371				    struct btrfs_file_extent_item);
4372		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4373	}
4374	btrfs_release_path(path);
4375
4376	path->keep_locks = 1;
4377	path->search_for_split = 1;
4378	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4379	path->search_for_split = 0;
4380	if (ret > 0)
4381		ret = -EAGAIN;
4382	if (ret < 0)
4383		goto err;
4384
4385	ret = -EAGAIN;
4386	leaf = path->nodes[0];
4387	/* if our item isn't there, return now */
4388	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4389		goto err;
4390
4391	/* the leaf has  changed, it now has room.  return now */
4392	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4393		goto err;
4394
4395	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4396		fi = btrfs_item_ptr(leaf, path->slots[0],
4397				    struct btrfs_file_extent_item);
4398		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4399			goto err;
4400	}
4401
4402	btrfs_set_path_blocking(path);
4403	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4404	if (ret)
4405		goto err;
4406
4407	path->keep_locks = 0;
4408	btrfs_unlock_up_safe(path, 1);
4409	return 0;
4410err:
4411	path->keep_locks = 0;
4412	return ret;
4413}
4414
4415static noinline int split_item(struct btrfs_trans_handle *trans,
4416			       struct btrfs_fs_info *fs_info,
4417			       struct btrfs_path *path,
4418			       struct btrfs_key *new_key,
4419			       unsigned long split_offset)
4420{
4421	struct extent_buffer *leaf;
4422	struct btrfs_item *item;
4423	struct btrfs_item *new_item;
4424	int slot;
4425	char *buf;
4426	u32 nritems;
4427	u32 item_size;
4428	u32 orig_offset;
4429	struct btrfs_disk_key disk_key;
4430
4431	leaf = path->nodes[0];
4432	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4433
4434	btrfs_set_path_blocking(path);
4435
4436	item = btrfs_item_nr(path->slots[0]);
4437	orig_offset = btrfs_item_offset(leaf, item);
4438	item_size = btrfs_item_size(leaf, item);
4439
4440	buf = kmalloc(item_size, GFP_NOFS);
4441	if (!buf)
4442		return -ENOMEM;
4443
4444	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4445			    path->slots[0]), item_size);
4446
4447	slot = path->slots[0] + 1;
4448	nritems = btrfs_header_nritems(leaf);
4449	if (slot != nritems) {
4450		/* shift the items */
4451		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4452				btrfs_item_nr_offset(slot),
4453				(nritems - slot) * sizeof(struct btrfs_item));
4454	}
4455
4456	btrfs_cpu_key_to_disk(&disk_key, new_key);
4457	btrfs_set_item_key(leaf, &disk_key, slot);
4458
4459	new_item = btrfs_item_nr(slot);
4460
4461	btrfs_set_item_offset(leaf, new_item, orig_offset);
4462	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4463
4464	btrfs_set_item_offset(leaf, item,
4465			      orig_offset + item_size - split_offset);
4466	btrfs_set_item_size(leaf, item, split_offset);
4467
4468	btrfs_set_header_nritems(leaf, nritems + 1);
4469
4470	/* write the data for the start of the original item */
4471	write_extent_buffer(leaf, buf,
4472			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4473			    split_offset);
4474
4475	/* write the data for the new item */
4476	write_extent_buffer(leaf, buf + split_offset,
4477			    btrfs_item_ptr_offset(leaf, slot),
4478			    item_size - split_offset);
4479	btrfs_mark_buffer_dirty(leaf);
4480
4481	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4482	kfree(buf);
4483	return 0;
4484}
4485
4486/*
4487 * This function splits a single item into two items,
4488 * giving 'new_key' to the new item and splitting the
4489 * old one at split_offset (from the start of the item).
4490 *
4491 * The path may be released by this operation.  After
4492 * the split, the path is pointing to the old item.  The
4493 * new item is going to be in the same node as the old one.
4494 *
4495 * Note, the item being split must be smaller enough to live alone on
4496 * a tree block with room for one extra struct btrfs_item
4497 *
4498 * This allows us to split the item in place, keeping a lock on the
4499 * leaf the entire time.
4500 */
4501int btrfs_split_item(struct btrfs_trans_handle *trans,
4502		     struct btrfs_root *root,
4503		     struct btrfs_path *path,
4504		     struct btrfs_key *new_key,
4505		     unsigned long split_offset)
4506{
4507	int ret;
4508	ret = setup_leaf_for_split(trans, root, path,
4509				   sizeof(struct btrfs_item));
4510	if (ret)
4511		return ret;
4512
4513	ret = split_item(trans, root->fs_info, path, new_key, split_offset);
4514	return ret;
4515}
4516
4517/*
4518 * This function duplicate a item, giving 'new_key' to the new item.
4519 * It guarantees both items live in the same tree leaf and the new item
4520 * is contiguous with the original item.
4521 *
4522 * This allows us to split file extent in place, keeping a lock on the
4523 * leaf the entire time.
4524 */
4525int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4526			 struct btrfs_root *root,
4527			 struct btrfs_path *path,
4528			 struct btrfs_key *new_key)
4529{
4530	struct extent_buffer *leaf;
4531	int ret;
4532	u32 item_size;
4533
4534	leaf = path->nodes[0];
4535	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4536	ret = setup_leaf_for_split(trans, root, path,
4537				   item_size + sizeof(struct btrfs_item));
4538	if (ret)
4539		return ret;
4540
4541	path->slots[0]++;
4542	setup_items_for_insert(root, path, new_key, &item_size,
4543			       item_size, item_size +
4544			       sizeof(struct btrfs_item), 1);
 
 
4545	leaf = path->nodes[0];
4546	memcpy_extent_buffer(leaf,
4547			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4548			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4549			     item_size);
4550	return 0;
4551}
4552
4553/*
4554 * make the item pointed to by the path smaller.  new_size indicates
4555 * how small to make it, and from_end tells us if we just chop bytes
4556 * off the end of the item or if we shift the item to chop bytes off
4557 * the front.
4558 */
4559void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4560			 struct btrfs_path *path, u32 new_size, int from_end)
 
 
4561{
4562	int slot;
4563	struct extent_buffer *leaf;
4564	struct btrfs_item *item;
4565	u32 nritems;
4566	unsigned int data_end;
4567	unsigned int old_data_start;
4568	unsigned int old_size;
4569	unsigned int size_diff;
4570	int i;
4571	struct btrfs_map_token token;
4572
4573	btrfs_init_map_token(&token);
4574
4575	leaf = path->nodes[0];
4576	slot = path->slots[0];
4577
4578	old_size = btrfs_item_size_nr(leaf, slot);
4579	if (old_size == new_size)
4580		return;
4581
4582	nritems = btrfs_header_nritems(leaf);
4583	data_end = leaf_data_end(fs_info, leaf);
4584
4585	old_data_start = btrfs_item_offset_nr(leaf, slot);
4586
4587	size_diff = old_size - new_size;
4588
4589	BUG_ON(slot < 0);
4590	BUG_ON(slot >= nritems);
4591
4592	/*
4593	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4594	 */
4595	/* first correct the data pointers */
4596	for (i = slot; i < nritems; i++) {
4597		u32 ioff;
4598		item = btrfs_item_nr(i);
4599
4600		ioff = btrfs_token_item_offset(leaf, item, &token);
4601		btrfs_set_token_item_offset(leaf, item,
4602					    ioff + size_diff, &token);
4603	}
4604
4605	/* shift the data */
4606	if (from_end) {
4607		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4608			      data_end + size_diff, btrfs_leaf_data(leaf) +
4609			      data_end, old_data_start + new_size - data_end);
4610	} else {
4611		struct btrfs_disk_key disk_key;
4612		u64 offset;
4613
4614		btrfs_item_key(leaf, &disk_key, slot);
4615
4616		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4617			unsigned long ptr;
4618			struct btrfs_file_extent_item *fi;
4619
4620			fi = btrfs_item_ptr(leaf, slot,
4621					    struct btrfs_file_extent_item);
4622			fi = (struct btrfs_file_extent_item *)(
4623			     (unsigned long)fi - size_diff);
4624
4625			if (btrfs_file_extent_type(leaf, fi) ==
4626			    BTRFS_FILE_EXTENT_INLINE) {
4627				ptr = btrfs_item_ptr_offset(leaf, slot);
4628				memmove_extent_buffer(leaf, ptr,
4629				      (unsigned long)fi,
4630				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
 
4631			}
4632		}
4633
4634		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4635			      data_end + size_diff, btrfs_leaf_data(leaf) +
4636			      data_end, old_data_start - data_end);
4637
4638		offset = btrfs_disk_key_offset(&disk_key);
4639		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4640		btrfs_set_item_key(leaf, &disk_key, slot);
4641		if (slot == 0)
4642			fixup_low_keys(fs_info, path, &disk_key, 1);
4643	}
4644
4645	item = btrfs_item_nr(slot);
4646	btrfs_set_item_size(leaf, item, new_size);
4647	btrfs_mark_buffer_dirty(leaf);
4648
4649	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4650		btrfs_print_leaf(fs_info, leaf);
4651		BUG();
4652	}
 
4653}
4654
4655/*
4656 * make the item pointed to by the path bigger, data_size is the added size.
4657 */
4658void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4659		       u32 data_size)
 
4660{
4661	int slot;
4662	struct extent_buffer *leaf;
4663	struct btrfs_item *item;
4664	u32 nritems;
4665	unsigned int data_end;
4666	unsigned int old_data;
4667	unsigned int old_size;
4668	int i;
4669	struct btrfs_map_token token;
4670
4671	btrfs_init_map_token(&token);
4672
4673	leaf = path->nodes[0];
4674
4675	nritems = btrfs_header_nritems(leaf);
4676	data_end = leaf_data_end(fs_info, leaf);
4677
4678	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4679		btrfs_print_leaf(fs_info, leaf);
4680		BUG();
4681	}
4682	slot = path->slots[0];
4683	old_data = btrfs_item_end_nr(leaf, slot);
4684
4685	BUG_ON(slot < 0);
4686	if (slot >= nritems) {
4687		btrfs_print_leaf(fs_info, leaf);
4688		btrfs_crit(fs_info, "slot %d too large, nritems %d",
4689			   slot, nritems);
4690		BUG_ON(1);
4691	}
4692
4693	/*
4694	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4695	 */
4696	/* first correct the data pointers */
4697	for (i = slot; i < nritems; i++) {
4698		u32 ioff;
4699		item = btrfs_item_nr(i);
4700
4701		ioff = btrfs_token_item_offset(leaf, item, &token);
4702		btrfs_set_token_item_offset(leaf, item,
4703					    ioff - data_size, &token);
4704	}
4705
4706	/* shift the data */
4707	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4708		      data_end - data_size, btrfs_leaf_data(leaf) +
4709		      data_end, old_data - data_end);
4710
4711	data_end = old_data;
4712	old_size = btrfs_item_size_nr(leaf, slot);
4713	item = btrfs_item_nr(slot);
4714	btrfs_set_item_size(leaf, item, old_size + data_size);
4715	btrfs_mark_buffer_dirty(leaf);
4716
4717	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4718		btrfs_print_leaf(fs_info, leaf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4719		BUG();
4720	}
 
 
 
 
4721}
4722
4723/*
4724 * this is a helper for btrfs_insert_empty_items, the main goal here is
4725 * to save stack depth by doing the bulk of the work in a function
4726 * that doesn't call btrfs_search_slot
4727 */
4728void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4729			    struct btrfs_key *cpu_key, u32 *data_size,
4730			    u32 total_data, u32 total_size, int nr)
 
4731{
4732	struct btrfs_fs_info *fs_info = root->fs_info;
4733	struct btrfs_item *item;
4734	int i;
4735	u32 nritems;
4736	unsigned int data_end;
4737	struct btrfs_disk_key disk_key;
 
4738	struct extent_buffer *leaf;
4739	int slot;
4740	struct btrfs_map_token token;
4741
4742	if (path->slots[0] == 0) {
4743		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4744		fixup_low_keys(fs_info, path, &disk_key, 1);
4745	}
4746	btrfs_unlock_up_safe(path, 1);
4747
4748	btrfs_init_map_token(&token);
4749
4750	leaf = path->nodes[0];
4751	slot = path->slots[0];
4752
4753	nritems = btrfs_header_nritems(leaf);
4754	data_end = leaf_data_end(fs_info, leaf);
4755
4756	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4757		btrfs_print_leaf(fs_info, leaf);
4758		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4759			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4760		BUG();
4761	}
4762
4763	if (slot != nritems) {
4764		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4765
4766		if (old_data < data_end) {
4767			btrfs_print_leaf(fs_info, leaf);
4768			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4769				   slot, old_data, data_end);
4770			BUG_ON(1);
4771		}
4772		/*
4773		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4774		 */
4775		/* first correct the data pointers */
4776		for (i = slot; i < nritems; i++) {
4777			u32 ioff;
4778
4779			item = btrfs_item_nr(i);
4780			ioff = btrfs_token_item_offset(leaf, item, &token);
4781			btrfs_set_token_item_offset(leaf, item,
4782						    ioff - total_data, &token);
4783		}
4784		/* shift the items */
4785		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4786			      btrfs_item_nr_offset(slot),
4787			      (nritems - slot) * sizeof(struct btrfs_item));
4788
4789		/* shift the data */
4790		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4791			      data_end - total_data, btrfs_leaf_data(leaf) +
4792			      data_end, old_data - data_end);
4793		data_end = old_data;
4794	}
4795
4796	/* setup the item for the new data */
4797	for (i = 0; i < nr; i++) {
4798		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4799		btrfs_set_item_key(leaf, &disk_key, slot + i);
4800		item = btrfs_item_nr(slot + i);
4801		btrfs_set_token_item_offset(leaf, item,
4802					    data_end - data_size[i], &token);
4803		data_end -= data_size[i];
4804		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4805	}
4806
4807	btrfs_set_header_nritems(leaf, nritems + nr);
 
 
 
 
 
 
 
4808	btrfs_mark_buffer_dirty(leaf);
4809
4810	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4811		btrfs_print_leaf(fs_info, leaf);
4812		BUG();
4813	}
 
4814}
4815
4816/*
4817 * Given a key and some data, insert items into the tree.
4818 * This does all the path init required, making room in the tree if needed.
4819 */
4820int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4821			    struct btrfs_root *root,
4822			    struct btrfs_path *path,
4823			    struct btrfs_key *cpu_key, u32 *data_size,
4824			    int nr)
4825{
4826	int ret = 0;
4827	int slot;
4828	int i;
4829	u32 total_size = 0;
4830	u32 total_data = 0;
4831
4832	for (i = 0; i < nr; i++)
4833		total_data += data_size[i];
4834
4835	total_size = total_data + (nr * sizeof(struct btrfs_item));
4836	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4837	if (ret == 0)
4838		return -EEXIST;
4839	if (ret < 0)
4840		return ret;
4841
4842	slot = path->slots[0];
4843	BUG_ON(slot < 0);
4844
4845	setup_items_for_insert(root, path, cpu_key, data_size,
4846			       total_data, total_size, nr);
4847	return 0;
 
 
4848}
4849
4850/*
4851 * Given a key and some data, insert an item into the tree.
4852 * This does all the path init required, making room in the tree if needed.
4853 */
4854int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4855		      *root, struct btrfs_key *cpu_key, void *data, u32
4856		      data_size)
4857{
4858	int ret = 0;
4859	struct btrfs_path *path;
4860	struct extent_buffer *leaf;
4861	unsigned long ptr;
4862
4863	path = btrfs_alloc_path();
4864	if (!path)
4865		return -ENOMEM;
4866	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4867	if (!ret) {
4868		leaf = path->nodes[0];
4869		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4870		write_extent_buffer(leaf, data, ptr, data_size);
4871		btrfs_mark_buffer_dirty(leaf);
4872	}
4873	btrfs_free_path(path);
4874	return ret;
4875}
4876
4877/*
4878 * delete the pointer from a given node.
4879 *
4880 * the tree should have been previously balanced so the deletion does not
4881 * empty a node.
4882 */
4883static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4884		    int level, int slot)
4885{
4886	struct btrfs_fs_info *fs_info = root->fs_info;
4887	struct extent_buffer *parent = path->nodes[level];
4888	u32 nritems;
4889	int ret;
 
4890
4891	nritems = btrfs_header_nritems(parent);
4892	if (slot != nritems - 1) {
4893		if (level)
4894			tree_mod_log_eb_move(fs_info, parent, slot,
4895					     slot + 1, nritems - slot - 1);
4896		memmove_extent_buffer(parent,
4897			      btrfs_node_key_ptr_offset(slot),
4898			      btrfs_node_key_ptr_offset(slot + 1),
4899			      sizeof(struct btrfs_key_ptr) *
4900			      (nritems - slot - 1));
4901	} else if (level) {
4902		ret = tree_mod_log_insert_key(fs_info, parent, slot,
4903					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4904		BUG_ON(ret < 0);
4905	}
4906
4907	nritems--;
4908	btrfs_set_header_nritems(parent, nritems);
4909	if (nritems == 0 && parent == root->node) {
4910		BUG_ON(btrfs_header_level(root->node) != 1);
4911		/* just turn the root into a leaf and break */
4912		btrfs_set_header_level(root->node, 0);
4913	} else if (slot == 0) {
4914		struct btrfs_disk_key disk_key;
4915
4916		btrfs_node_key(parent, &disk_key, 0);
4917		fixup_low_keys(fs_info, path, &disk_key, level + 1);
 
 
4918	}
4919	btrfs_mark_buffer_dirty(parent);
 
4920}
4921
4922/*
4923 * a helper function to delete the leaf pointed to by path->slots[1] and
4924 * path->nodes[1].
4925 *
4926 * This deletes the pointer in path->nodes[1] and frees the leaf
4927 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4928 *
4929 * The path must have already been setup for deleting the leaf, including
4930 * all the proper balancing.  path->nodes[1] must be locked.
4931 */
4932static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4933				    struct btrfs_root *root,
4934				    struct btrfs_path *path,
4935				    struct extent_buffer *leaf)
4936{
 
 
4937	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4938	del_ptr(root, path, 1, path->slots[1]);
 
 
4939
4940	/*
4941	 * btrfs_free_extent is expensive, we want to make sure we
4942	 * aren't holding any locks when we call it
4943	 */
4944	btrfs_unlock_up_safe(path, 0);
4945
4946	root_sub_used(root, leaf->len);
4947
4948	extent_buffer_get(leaf);
4949	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4950	free_extent_buffer_stale(leaf);
4951}
4952/*
4953 * delete the item at the leaf level in path.  If that empties
4954 * the leaf, remove it from the tree
4955 */
4956int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4957		    struct btrfs_path *path, int slot, int nr)
4958{
4959	struct btrfs_fs_info *fs_info = root->fs_info;
4960	struct extent_buffer *leaf;
4961	struct btrfs_item *item;
4962	u32 last_off;
4963	u32 dsize = 0;
4964	int ret = 0;
4965	int wret;
4966	int i;
4967	u32 nritems;
4968	struct btrfs_map_token token;
4969
4970	btrfs_init_map_token(&token);
4971
4972	leaf = path->nodes[0];
4973	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4974
4975	for (i = 0; i < nr; i++)
4976		dsize += btrfs_item_size_nr(leaf, slot + i);
4977
4978	nritems = btrfs_header_nritems(leaf);
4979
4980	if (slot + nr != nritems) {
4981		int data_end = leaf_data_end(fs_info, leaf);
4982
4983		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4984			      data_end + dsize,
4985			      btrfs_leaf_data(leaf) + data_end,
4986			      last_off - data_end);
4987
4988		for (i = slot + nr; i < nritems; i++) {
4989			u32 ioff;
4990
4991			item = btrfs_item_nr(i);
4992			ioff = btrfs_token_item_offset(leaf, item, &token);
4993			btrfs_set_token_item_offset(leaf, item,
4994						    ioff + dsize, &token);
4995		}
4996
4997		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4998			      btrfs_item_nr_offset(slot + nr),
4999			      sizeof(struct btrfs_item) *
5000			      (nritems - slot - nr));
5001	}
5002	btrfs_set_header_nritems(leaf, nritems - nr);
5003	nritems -= nr;
5004
5005	/* delete the leaf if we've emptied it */
5006	if (nritems == 0) {
5007		if (leaf == root->node) {
5008			btrfs_set_header_level(leaf, 0);
5009		} else {
5010			btrfs_set_path_blocking(path);
5011			clean_tree_block(trans, fs_info, leaf);
5012			btrfs_del_leaf(trans, root, path, leaf);
 
5013		}
5014	} else {
5015		int used = leaf_space_used(leaf, 0, nritems);
5016		if (slot == 0) {
5017			struct btrfs_disk_key disk_key;
5018
5019			btrfs_item_key(leaf, &disk_key, 0);
5020			fixup_low_keys(fs_info, path, &disk_key, 1);
 
 
 
5021		}
5022
5023		/* delete the leaf if it is mostly empty */
5024		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5025			/* push_leaf_left fixes the path.
5026			 * make sure the path still points to our leaf
5027			 * for possible call to del_ptr below
5028			 */
5029			slot = path->slots[1];
5030			extent_buffer_get(leaf);
5031
5032			btrfs_set_path_blocking(path);
5033			wret = push_leaf_left(trans, root, path, 1, 1,
5034					      1, (u32)-1);
5035			if (wret < 0 && wret != -ENOSPC)
5036				ret = wret;
5037
5038			if (path->nodes[0] == leaf &&
5039			    btrfs_header_nritems(leaf)) {
5040				wret = push_leaf_right(trans, root, path, 1,
5041						       1, 1, 0);
5042				if (wret < 0 && wret != -ENOSPC)
5043					ret = wret;
5044			}
5045
5046			if (btrfs_header_nritems(leaf) == 0) {
5047				path->slots[1] = slot;
5048				btrfs_del_leaf(trans, root, path, leaf);
 
5049				free_extent_buffer(leaf);
5050				ret = 0;
5051			} else {
5052				/* if we're still in the path, make sure
5053				 * we're dirty.  Otherwise, one of the
5054				 * push_leaf functions must have already
5055				 * dirtied this buffer
5056				 */
5057				if (path->nodes[0] == leaf)
5058					btrfs_mark_buffer_dirty(leaf);
5059				free_extent_buffer(leaf);
5060			}
5061		} else {
5062			btrfs_mark_buffer_dirty(leaf);
5063		}
5064	}
5065	return ret;
5066}
5067
5068/*
5069 * search the tree again to find a leaf with lesser keys
5070 * returns 0 if it found something or 1 if there are no lesser leaves.
5071 * returns < 0 on io errors.
5072 *
5073 * This may release the path, and so you may lose any locks held at the
5074 * time you call it.
5075 */
5076int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5077{
5078	struct btrfs_key key;
5079	struct btrfs_disk_key found_key;
5080	int ret;
5081
5082	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5083
5084	if (key.offset > 0) {
5085		key.offset--;
5086	} else if (key.type > 0) {
5087		key.type--;
5088		key.offset = (u64)-1;
5089	} else if (key.objectid > 0) {
5090		key.objectid--;
5091		key.type = (u8)-1;
5092		key.offset = (u64)-1;
5093	} else {
5094		return 1;
5095	}
5096
5097	btrfs_release_path(path);
5098	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5099	if (ret < 0)
5100		return ret;
5101	btrfs_item_key(path->nodes[0], &found_key, 0);
5102	ret = comp_keys(&found_key, &key);
5103	/*
5104	 * We might have had an item with the previous key in the tree right
5105	 * before we released our path. And after we released our path, that
5106	 * item might have been pushed to the first slot (0) of the leaf we
5107	 * were holding due to a tree balance. Alternatively, an item with the
5108	 * previous key can exist as the only element of a leaf (big fat item).
5109	 * Therefore account for these 2 cases, so that our callers (like
5110	 * btrfs_previous_item) don't miss an existing item with a key matching
5111	 * the previous key we computed above.
5112	 */
5113	if (ret <= 0)
5114		return 0;
5115	return 1;
5116}
5117
5118/*
5119 * A helper function to walk down the tree starting at min_key, and looking
5120 * for nodes or leaves that are have a minimum transaction id.
5121 * This is used by the btree defrag code, and tree logging
5122 *
5123 * This does not cow, but it does stuff the starting key it finds back
5124 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5125 * key and get a writable path.
5126 *
5127 * This does lock as it descends, and path->keep_locks should be set
5128 * to 1 by the caller.
5129 *
5130 * This honors path->lowest_level to prevent descent past a given level
5131 * of the tree.
5132 *
5133 * min_trans indicates the oldest transaction that you are interested
5134 * in walking through.  Any nodes or leaves older than min_trans are
5135 * skipped over (without reading them).
5136 *
5137 * returns zero if something useful was found, < 0 on error and 1 if there
5138 * was nothing in the tree that matched the search criteria.
5139 */
5140int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5141			 struct btrfs_path *path,
 
5142			 u64 min_trans)
5143{
5144	struct btrfs_fs_info *fs_info = root->fs_info;
5145	struct extent_buffer *cur;
5146	struct btrfs_key found_key;
5147	int slot;
5148	int sret;
5149	u32 nritems;
5150	int level;
5151	int ret = 1;
5152	int keep_locks = path->keep_locks;
5153
5154	path->keep_locks = 1;
5155again:
5156	cur = btrfs_read_lock_root_node(root);
5157	level = btrfs_header_level(cur);
5158	WARN_ON(path->nodes[level]);
5159	path->nodes[level] = cur;
5160	path->locks[level] = BTRFS_READ_LOCK;
5161
5162	if (btrfs_header_generation(cur) < min_trans) {
5163		ret = 1;
5164		goto out;
5165	}
5166	while (1) {
5167		nritems = btrfs_header_nritems(cur);
5168		level = btrfs_header_level(cur);
5169		sret = bin_search(cur, min_key, level, &slot);
5170
5171		/* at the lowest level, we're done, setup the path and exit */
5172		if (level == path->lowest_level) {
5173			if (slot >= nritems)
5174				goto find_next_key;
5175			ret = 0;
5176			path->slots[level] = slot;
5177			btrfs_item_key_to_cpu(cur, &found_key, slot);
5178			goto out;
5179		}
5180		if (sret && slot > 0)
5181			slot--;
5182		/*
5183		 * check this node pointer against the min_trans parameters.
5184		 * If it is too old, old, skip to the next one.
 
5185		 */
5186		while (slot < nritems) {
 
5187			u64 gen;
 
 
5188
 
5189			gen = btrfs_node_ptr_generation(cur, slot);
5190			if (gen < min_trans) {
5191				slot++;
5192				continue;
5193			}
5194			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5195		}
5196find_next_key:
5197		/*
5198		 * we didn't find a candidate key in this node, walk forward
5199		 * and find another one
5200		 */
5201		if (slot >= nritems) {
5202			path->slots[level] = slot;
5203			btrfs_set_path_blocking(path);
5204			sret = btrfs_find_next_key(root, path, min_key, level,
5205						  min_trans);
5206			if (sret == 0) {
5207				btrfs_release_path(path);
5208				goto again;
5209			} else {
5210				goto out;
5211			}
5212		}
5213		/* save our key for returning back */
5214		btrfs_node_key_to_cpu(cur, &found_key, slot);
5215		path->slots[level] = slot;
5216		if (level == path->lowest_level) {
5217			ret = 0;
 
5218			goto out;
5219		}
5220		btrfs_set_path_blocking(path);
5221		cur = read_node_slot(fs_info, cur, slot);
5222		if (IS_ERR(cur)) {
5223			ret = PTR_ERR(cur);
5224			goto out;
5225		}
5226
5227		btrfs_tree_read_lock(cur);
5228
5229		path->locks[level - 1] = BTRFS_READ_LOCK;
5230		path->nodes[level - 1] = cur;
5231		unlock_up(path, level, 1, 0, NULL);
5232		btrfs_clear_path_blocking(path, NULL, 0);
5233	}
5234out:
5235	path->keep_locks = keep_locks;
5236	if (ret == 0) {
5237		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5238		btrfs_set_path_blocking(path);
5239		memcpy(min_key, &found_key, sizeof(found_key));
5240	}
5241	return ret;
5242}
5243
5244static int tree_move_down(struct btrfs_fs_info *fs_info,
5245			   struct btrfs_path *path,
5246			   int *level, int root_level)
5247{
5248	struct extent_buffer *eb;
5249
5250	BUG_ON(*level == 0);
5251	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5252	if (IS_ERR(eb))
5253		return PTR_ERR(eb);
5254
5255	path->nodes[*level - 1] = eb;
5256	path->slots[*level - 1] = 0;
5257	(*level)--;
5258	return 0;
5259}
5260
5261static int tree_move_next_or_upnext(struct btrfs_fs_info *fs_info,
5262				    struct btrfs_path *path,
5263				    int *level, int root_level)
5264{
5265	int ret = 0;
5266	int nritems;
5267	nritems = btrfs_header_nritems(path->nodes[*level]);
5268
5269	path->slots[*level]++;
5270
5271	while (path->slots[*level] >= nritems) {
5272		if (*level == root_level)
5273			return -1;
5274
5275		/* move upnext */
5276		path->slots[*level] = 0;
5277		free_extent_buffer(path->nodes[*level]);
5278		path->nodes[*level] = NULL;
5279		(*level)++;
5280		path->slots[*level]++;
5281
5282		nritems = btrfs_header_nritems(path->nodes[*level]);
5283		ret = 1;
5284	}
5285	return ret;
5286}
5287
5288/*
5289 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5290 * or down.
5291 */
5292static int tree_advance(struct btrfs_fs_info *fs_info,
5293			struct btrfs_path *path,
5294			int *level, int root_level,
5295			int allow_down,
5296			struct btrfs_key *key)
5297{
5298	int ret;
5299
5300	if (*level == 0 || !allow_down) {
5301		ret = tree_move_next_or_upnext(fs_info, path, level,
5302					       root_level);
5303	} else {
5304		ret = tree_move_down(fs_info, path, level, root_level);
5305	}
5306	if (ret >= 0) {
5307		if (*level == 0)
5308			btrfs_item_key_to_cpu(path->nodes[*level], key,
5309					path->slots[*level]);
5310		else
5311			btrfs_node_key_to_cpu(path->nodes[*level], key,
5312					path->slots[*level]);
5313	}
5314	return ret;
5315}
5316
5317static int tree_compare_item(struct btrfs_path *left_path,
5318			     struct btrfs_path *right_path,
5319			     char *tmp_buf)
5320{
5321	int cmp;
5322	int len1, len2;
5323	unsigned long off1, off2;
5324
5325	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5326	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5327	if (len1 != len2)
5328		return 1;
5329
5330	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5331	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5332				right_path->slots[0]);
5333
5334	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5335
5336	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5337	if (cmp)
5338		return 1;
5339	return 0;
5340}
5341
5342#define ADVANCE 1
5343#define ADVANCE_ONLY_NEXT -1
5344
5345/*
5346 * This function compares two trees and calls the provided callback for
5347 * every changed/new/deleted item it finds.
5348 * If shared tree blocks are encountered, whole subtrees are skipped, making
5349 * the compare pretty fast on snapshotted subvolumes.
5350 *
5351 * This currently works on commit roots only. As commit roots are read only,
5352 * we don't do any locking. The commit roots are protected with transactions.
5353 * Transactions are ended and rejoined when a commit is tried in between.
5354 *
5355 * This function checks for modifications done to the trees while comparing.
5356 * If it detects a change, it aborts immediately.
5357 */
5358int btrfs_compare_trees(struct btrfs_root *left_root,
5359			struct btrfs_root *right_root,
5360			btrfs_changed_cb_t changed_cb, void *ctx)
5361{
5362	struct btrfs_fs_info *fs_info = left_root->fs_info;
5363	int ret;
5364	int cmp;
5365	struct btrfs_path *left_path = NULL;
5366	struct btrfs_path *right_path = NULL;
5367	struct btrfs_key left_key;
5368	struct btrfs_key right_key;
5369	char *tmp_buf = NULL;
5370	int left_root_level;
5371	int right_root_level;
5372	int left_level;
5373	int right_level;
5374	int left_end_reached;
5375	int right_end_reached;
5376	int advance_left;
5377	int advance_right;
5378	u64 left_blockptr;
5379	u64 right_blockptr;
5380	u64 left_gen;
5381	u64 right_gen;
5382
5383	left_path = btrfs_alloc_path();
5384	if (!left_path) {
5385		ret = -ENOMEM;
5386		goto out;
5387	}
5388	right_path = btrfs_alloc_path();
5389	if (!right_path) {
5390		ret = -ENOMEM;
5391		goto out;
5392	}
5393
5394	tmp_buf = kmalloc(fs_info->nodesize, GFP_KERNEL | __GFP_NOWARN);
5395	if (!tmp_buf) {
5396		tmp_buf = vmalloc(fs_info->nodesize);
5397		if (!tmp_buf) {
5398			ret = -ENOMEM;
5399			goto out;
5400		}
5401	}
5402
5403	left_path->search_commit_root = 1;
5404	left_path->skip_locking = 1;
5405	right_path->search_commit_root = 1;
5406	right_path->skip_locking = 1;
5407
5408	/*
5409	 * Strategy: Go to the first items of both trees. Then do
5410	 *
5411	 * If both trees are at level 0
5412	 *   Compare keys of current items
5413	 *     If left < right treat left item as new, advance left tree
5414	 *       and repeat
5415	 *     If left > right treat right item as deleted, advance right tree
5416	 *       and repeat
5417	 *     If left == right do deep compare of items, treat as changed if
5418	 *       needed, advance both trees and repeat
5419	 * If both trees are at the same level but not at level 0
5420	 *   Compare keys of current nodes/leafs
5421	 *     If left < right advance left tree and repeat
5422	 *     If left > right advance right tree and repeat
5423	 *     If left == right compare blockptrs of the next nodes/leafs
5424	 *       If they match advance both trees but stay at the same level
5425	 *         and repeat
5426	 *       If they don't match advance both trees while allowing to go
5427	 *         deeper and repeat
5428	 * If tree levels are different
5429	 *   Advance the tree that needs it and repeat
5430	 *
5431	 * Advancing a tree means:
5432	 *   If we are at level 0, try to go to the next slot. If that's not
5433	 *   possible, go one level up and repeat. Stop when we found a level
5434	 *   where we could go to the next slot. We may at this point be on a
5435	 *   node or a leaf.
5436	 *
5437	 *   If we are not at level 0 and not on shared tree blocks, go one
5438	 *   level deeper.
5439	 *
5440	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5441	 *   the right if possible or go up and right.
5442	 */
5443
5444	down_read(&fs_info->commit_root_sem);
5445	left_level = btrfs_header_level(left_root->commit_root);
5446	left_root_level = left_level;
5447	left_path->nodes[left_level] = left_root->commit_root;
5448	extent_buffer_get(left_path->nodes[left_level]);
5449
5450	right_level = btrfs_header_level(right_root->commit_root);
5451	right_root_level = right_level;
5452	right_path->nodes[right_level] = right_root->commit_root;
5453	extent_buffer_get(right_path->nodes[right_level]);
5454	up_read(&fs_info->commit_root_sem);
5455
5456	if (left_level == 0)
5457		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5458				&left_key, left_path->slots[left_level]);
5459	else
5460		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5461				&left_key, left_path->slots[left_level]);
5462	if (right_level == 0)
5463		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5464				&right_key, right_path->slots[right_level]);
5465	else
5466		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5467				&right_key, right_path->slots[right_level]);
5468
5469	left_end_reached = right_end_reached = 0;
5470	advance_left = advance_right = 0;
5471
5472	while (1) {
5473		if (advance_left && !left_end_reached) {
5474			ret = tree_advance(fs_info, left_path, &left_level,
5475					left_root_level,
5476					advance_left != ADVANCE_ONLY_NEXT,
5477					&left_key);
5478			if (ret == -1)
5479				left_end_reached = ADVANCE;
5480			else if (ret < 0)
5481				goto out;
5482			advance_left = 0;
5483		}
5484		if (advance_right && !right_end_reached) {
5485			ret = tree_advance(fs_info, right_path, &right_level,
5486					right_root_level,
5487					advance_right != ADVANCE_ONLY_NEXT,
5488					&right_key);
5489			if (ret == -1)
5490				right_end_reached = ADVANCE;
5491			else if (ret < 0)
5492				goto out;
5493			advance_right = 0;
5494		}
5495
5496		if (left_end_reached && right_end_reached) {
5497			ret = 0;
5498			goto out;
5499		} else if (left_end_reached) {
5500			if (right_level == 0) {
5501				ret = changed_cb(left_root, right_root,
5502						left_path, right_path,
5503						&right_key,
5504						BTRFS_COMPARE_TREE_DELETED,
5505						ctx);
5506				if (ret < 0)
5507					goto out;
5508			}
5509			advance_right = ADVANCE;
5510			continue;
5511		} else if (right_end_reached) {
5512			if (left_level == 0) {
5513				ret = changed_cb(left_root, right_root,
5514						left_path, right_path,
5515						&left_key,
5516						BTRFS_COMPARE_TREE_NEW,
5517						ctx);
5518				if (ret < 0)
5519					goto out;
5520			}
5521			advance_left = ADVANCE;
5522			continue;
5523		}
5524
5525		if (left_level == 0 && right_level == 0) {
5526			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5527			if (cmp < 0) {
5528				ret = changed_cb(left_root, right_root,
5529						left_path, right_path,
5530						&left_key,
5531						BTRFS_COMPARE_TREE_NEW,
5532						ctx);
5533				if (ret < 0)
5534					goto out;
5535				advance_left = ADVANCE;
5536			} else if (cmp > 0) {
5537				ret = changed_cb(left_root, right_root,
5538						left_path, right_path,
5539						&right_key,
5540						BTRFS_COMPARE_TREE_DELETED,
5541						ctx);
5542				if (ret < 0)
5543					goto out;
5544				advance_right = ADVANCE;
5545			} else {
5546				enum btrfs_compare_tree_result result;
5547
5548				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5549				ret = tree_compare_item(left_path, right_path,
5550							tmp_buf);
5551				if (ret)
5552					result = BTRFS_COMPARE_TREE_CHANGED;
5553				else
5554					result = BTRFS_COMPARE_TREE_SAME;
5555				ret = changed_cb(left_root, right_root,
5556						 left_path, right_path,
5557						 &left_key, result, ctx);
5558				if (ret < 0)
5559					goto out;
5560				advance_left = ADVANCE;
5561				advance_right = ADVANCE;
5562			}
5563		} else if (left_level == right_level) {
5564			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5565			if (cmp < 0) {
5566				advance_left = ADVANCE;
5567			} else if (cmp > 0) {
5568				advance_right = ADVANCE;
5569			} else {
5570				left_blockptr = btrfs_node_blockptr(
5571						left_path->nodes[left_level],
5572						left_path->slots[left_level]);
5573				right_blockptr = btrfs_node_blockptr(
5574						right_path->nodes[right_level],
5575						right_path->slots[right_level]);
5576				left_gen = btrfs_node_ptr_generation(
5577						left_path->nodes[left_level],
5578						left_path->slots[left_level]);
5579				right_gen = btrfs_node_ptr_generation(
5580						right_path->nodes[right_level],
5581						right_path->slots[right_level]);
5582				if (left_blockptr == right_blockptr &&
5583				    left_gen == right_gen) {
5584					/*
5585					 * As we're on a shared block, don't
5586					 * allow to go deeper.
5587					 */
5588					advance_left = ADVANCE_ONLY_NEXT;
5589					advance_right = ADVANCE_ONLY_NEXT;
5590				} else {
5591					advance_left = ADVANCE;
5592					advance_right = ADVANCE;
5593				}
5594			}
5595		} else if (left_level < right_level) {
5596			advance_right = ADVANCE;
5597		} else {
5598			advance_left = ADVANCE;
5599		}
5600	}
5601
5602out:
5603	btrfs_free_path(left_path);
5604	btrfs_free_path(right_path);
5605	kvfree(tmp_buf);
5606	return ret;
5607}
5608
5609/*
5610 * this is similar to btrfs_next_leaf, but does not try to preserve
5611 * and fixup the path.  It looks for and returns the next key in the
5612 * tree based on the current path and the min_trans parameters.
 
5613 *
5614 * 0 is returned if another key is found, < 0 if there are any errors
5615 * and 1 is returned if there are no higher keys in the tree
5616 *
5617 * path->keep_locks should be set to 1 on the search made before
5618 * calling this function.
5619 */
5620int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5621			struct btrfs_key *key, int level, u64 min_trans)
 
5622{
5623	int slot;
5624	struct extent_buffer *c;
5625
5626	WARN_ON(!path->keep_locks);
5627	while (level < BTRFS_MAX_LEVEL) {
5628		if (!path->nodes[level])
5629			return 1;
5630
5631		slot = path->slots[level] + 1;
5632		c = path->nodes[level];
5633next:
5634		if (slot >= btrfs_header_nritems(c)) {
5635			int ret;
5636			int orig_lowest;
5637			struct btrfs_key cur_key;
5638			if (level + 1 >= BTRFS_MAX_LEVEL ||
5639			    !path->nodes[level + 1])
5640				return 1;
5641
5642			if (path->locks[level + 1]) {
5643				level++;
5644				continue;
5645			}
5646
5647			slot = btrfs_header_nritems(c) - 1;
5648			if (level == 0)
5649				btrfs_item_key_to_cpu(c, &cur_key, slot);
5650			else
5651				btrfs_node_key_to_cpu(c, &cur_key, slot);
5652
5653			orig_lowest = path->lowest_level;
5654			btrfs_release_path(path);
5655			path->lowest_level = level;
5656			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5657						0, 0);
5658			path->lowest_level = orig_lowest;
5659			if (ret < 0)
5660				return ret;
5661
5662			c = path->nodes[level];
5663			slot = path->slots[level];
5664			if (ret == 0)
5665				slot++;
5666			goto next;
5667		}
5668
5669		if (level == 0)
5670			btrfs_item_key_to_cpu(c, key, slot);
5671		else {
 
5672			u64 gen = btrfs_node_ptr_generation(c, slot);
5673
 
 
 
 
 
 
 
 
 
 
 
 
5674			if (gen < min_trans) {
5675				slot++;
5676				goto next;
5677			}
5678			btrfs_node_key_to_cpu(c, key, slot);
5679		}
5680		return 0;
5681	}
5682	return 1;
5683}
5684
5685/*
5686 * search the tree again to find a leaf with greater keys
5687 * returns 0 if it found something or 1 if there are no greater leaves.
5688 * returns < 0 on io errors.
5689 */
5690int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5691{
5692	return btrfs_next_old_leaf(root, path, 0);
5693}
5694
5695int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5696			u64 time_seq)
5697{
5698	int slot;
5699	int level;
5700	struct extent_buffer *c;
5701	struct extent_buffer *next;
5702	struct btrfs_key key;
5703	u32 nritems;
5704	int ret;
5705	int old_spinning = path->leave_spinning;
5706	int next_rw_lock = 0;
5707
5708	nritems = btrfs_header_nritems(path->nodes[0]);
5709	if (nritems == 0)
5710		return 1;
5711
5712	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5713again:
5714	level = 1;
5715	next = NULL;
5716	next_rw_lock = 0;
5717	btrfs_release_path(path);
5718
5719	path->keep_locks = 1;
5720	path->leave_spinning = 1;
5721
5722	if (time_seq)
5723		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5724	else
5725		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5726	path->keep_locks = 0;
5727
5728	if (ret < 0)
5729		return ret;
5730
5731	nritems = btrfs_header_nritems(path->nodes[0]);
5732	/*
5733	 * by releasing the path above we dropped all our locks.  A balance
5734	 * could have added more items next to the key that used to be
5735	 * at the very end of the block.  So, check again here and
5736	 * advance the path if there are now more items available.
5737	 */
5738	if (nritems > 0 && path->slots[0] < nritems - 1) {
5739		if (ret == 0)
5740			path->slots[0]++;
5741		ret = 0;
5742		goto done;
5743	}
5744	/*
5745	 * So the above check misses one case:
5746	 * - after releasing the path above, someone has removed the item that
5747	 *   used to be at the very end of the block, and balance between leafs
5748	 *   gets another one with bigger key.offset to replace it.
5749	 *
5750	 * This one should be returned as well, or we can get leaf corruption
5751	 * later(esp. in __btrfs_drop_extents()).
5752	 *
5753	 * And a bit more explanation about this check,
5754	 * with ret > 0, the key isn't found, the path points to the slot
5755	 * where it should be inserted, so the path->slots[0] item must be the
5756	 * bigger one.
5757	 */
5758	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5759		ret = 0;
5760		goto done;
5761	}
5762
5763	while (level < BTRFS_MAX_LEVEL) {
5764		if (!path->nodes[level]) {
5765			ret = 1;
5766			goto done;
5767		}
5768
5769		slot = path->slots[level] + 1;
5770		c = path->nodes[level];
5771		if (slot >= btrfs_header_nritems(c)) {
5772			level++;
5773			if (level == BTRFS_MAX_LEVEL) {
5774				ret = 1;
5775				goto done;
5776			}
5777			continue;
5778		}
5779
5780		if (next) {
5781			btrfs_tree_unlock_rw(next, next_rw_lock);
5782			free_extent_buffer(next);
5783		}
5784
5785		next = c;
5786		next_rw_lock = path->locks[level];
5787		ret = read_block_for_search(NULL, root, path, &next, level,
5788					    slot, &key, 0);
5789		if (ret == -EAGAIN)
5790			goto again;
5791
5792		if (ret < 0) {
5793			btrfs_release_path(path);
5794			goto done;
5795		}
5796
5797		if (!path->skip_locking) {
5798			ret = btrfs_try_tree_read_lock(next);
5799			if (!ret && time_seq) {
5800				/*
5801				 * If we don't get the lock, we may be racing
5802				 * with push_leaf_left, holding that lock while
5803				 * itself waiting for the leaf we've currently
5804				 * locked. To solve this situation, we give up
5805				 * on our lock and cycle.
5806				 */
5807				free_extent_buffer(next);
5808				btrfs_release_path(path);
5809				cond_resched();
5810				goto again;
5811			}
5812			if (!ret) {
5813				btrfs_set_path_blocking(path);
5814				btrfs_tree_read_lock(next);
5815				btrfs_clear_path_blocking(path, next,
5816							  BTRFS_READ_LOCK);
5817			}
5818			next_rw_lock = BTRFS_READ_LOCK;
5819		}
5820		break;
5821	}
5822	path->slots[level] = slot;
5823	while (1) {
5824		level--;
5825		c = path->nodes[level];
5826		if (path->locks[level])
5827			btrfs_tree_unlock_rw(c, path->locks[level]);
5828
5829		free_extent_buffer(c);
5830		path->nodes[level] = next;
5831		path->slots[level] = 0;
5832		if (!path->skip_locking)
5833			path->locks[level] = next_rw_lock;
5834		if (!level)
5835			break;
5836
5837		ret = read_block_for_search(NULL, root, path, &next, level,
5838					    0, &key, 0);
5839		if (ret == -EAGAIN)
5840			goto again;
5841
5842		if (ret < 0) {
5843			btrfs_release_path(path);
5844			goto done;
5845		}
5846
5847		if (!path->skip_locking) {
5848			ret = btrfs_try_tree_read_lock(next);
5849			if (!ret) {
5850				btrfs_set_path_blocking(path);
5851				btrfs_tree_read_lock(next);
5852				btrfs_clear_path_blocking(path, next,
5853							  BTRFS_READ_LOCK);
5854			}
5855			next_rw_lock = BTRFS_READ_LOCK;
5856		}
5857	}
5858	ret = 0;
5859done:
5860	unlock_up(path, 0, 1, 0, NULL);
5861	path->leave_spinning = old_spinning;
5862	if (!old_spinning)
5863		btrfs_set_path_blocking(path);
5864
5865	return ret;
5866}
5867
5868/*
5869 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5870 * searching until it gets past min_objectid or finds an item of 'type'
5871 *
5872 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5873 */
5874int btrfs_previous_item(struct btrfs_root *root,
5875			struct btrfs_path *path, u64 min_objectid,
5876			int type)
5877{
5878	struct btrfs_key found_key;
5879	struct extent_buffer *leaf;
5880	u32 nritems;
5881	int ret;
5882
5883	while (1) {
5884		if (path->slots[0] == 0) {
5885			btrfs_set_path_blocking(path);
5886			ret = btrfs_prev_leaf(root, path);
5887			if (ret != 0)
5888				return ret;
5889		} else {
5890			path->slots[0]--;
5891		}
5892		leaf = path->nodes[0];
5893		nritems = btrfs_header_nritems(leaf);
5894		if (nritems == 0)
5895			return 1;
5896		if (path->slots[0] == nritems)
5897			path->slots[0]--;
5898
5899		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5900		if (found_key.objectid < min_objectid)
5901			break;
5902		if (found_key.type == type)
5903			return 0;
5904		if (found_key.objectid == min_objectid &&
5905		    found_key.type < type)
5906			break;
5907	}
5908	return 1;
5909}
5910
5911/*
5912 * search in extent tree to find a previous Metadata/Data extent item with
5913 * min objecitd.
5914 *
5915 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5916 */
5917int btrfs_previous_extent_item(struct btrfs_root *root,
5918			struct btrfs_path *path, u64 min_objectid)
5919{
5920	struct btrfs_key found_key;
5921	struct extent_buffer *leaf;
5922	u32 nritems;
5923	int ret;
5924
5925	while (1) {
5926		if (path->slots[0] == 0) {
5927			btrfs_set_path_blocking(path);
5928			ret = btrfs_prev_leaf(root, path);
5929			if (ret != 0)
5930				return ret;
5931		} else {
5932			path->slots[0]--;
5933		}
5934		leaf = path->nodes[0];
5935		nritems = btrfs_header_nritems(leaf);
5936		if (nritems == 0)
5937			return 1;
5938		if (path->slots[0] == nritems)
5939			path->slots[0]--;
5940
5941		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5942		if (found_key.objectid < min_objectid)
5943			break;
5944		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5945		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5946			return 0;
5947		if (found_key.objectid == min_objectid &&
5948		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5949			break;
5950	}
5951	return 1;
5952}