Loading...
1/*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/slab.h>
21#include "ctree.h"
22#include "disk-io.h"
23#include "transaction.h"
24#include "print-tree.h"
25#include "locking.h"
26
27static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28 *root, struct btrfs_path *path, int level);
29static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_key *ins_key,
31 struct btrfs_path *path, int data_size, int extend);
32static int push_node_left(struct btrfs_trans_handle *trans,
33 struct btrfs_root *root, struct extent_buffer *dst,
34 struct extent_buffer *src, int empty);
35static int balance_node_right(struct btrfs_trans_handle *trans,
36 struct btrfs_root *root,
37 struct extent_buffer *dst_buf,
38 struct extent_buffer *src_buf);
39static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40 struct btrfs_path *path, int level, int slot);
41
42struct btrfs_path *btrfs_alloc_path(void)
43{
44 struct btrfs_path *path;
45 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
46 return path;
47}
48
49/*
50 * set all locked nodes in the path to blocking locks. This should
51 * be done before scheduling
52 */
53noinline void btrfs_set_path_blocking(struct btrfs_path *p)
54{
55 int i;
56 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
57 if (!p->nodes[i] || !p->locks[i])
58 continue;
59 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
60 if (p->locks[i] == BTRFS_READ_LOCK)
61 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
62 else if (p->locks[i] == BTRFS_WRITE_LOCK)
63 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
64 }
65}
66
67/*
68 * reset all the locked nodes in the patch to spinning locks.
69 *
70 * held is used to keep lockdep happy, when lockdep is enabled
71 * we set held to a blocking lock before we go around and
72 * retake all the spinlocks in the path. You can safely use NULL
73 * for held
74 */
75noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
76 struct extent_buffer *held, int held_rw)
77{
78 int i;
79
80#ifdef CONFIG_DEBUG_LOCK_ALLOC
81 /* lockdep really cares that we take all of these spinlocks
82 * in the right order. If any of the locks in the path are not
83 * currently blocking, it is going to complain. So, make really
84 * really sure by forcing the path to blocking before we clear
85 * the path blocking.
86 */
87 if (held) {
88 btrfs_set_lock_blocking_rw(held, held_rw);
89 if (held_rw == BTRFS_WRITE_LOCK)
90 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
91 else if (held_rw == BTRFS_READ_LOCK)
92 held_rw = BTRFS_READ_LOCK_BLOCKING;
93 }
94 btrfs_set_path_blocking(p);
95#endif
96
97 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
98 if (p->nodes[i] && p->locks[i]) {
99 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
100 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
101 p->locks[i] = BTRFS_WRITE_LOCK;
102 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
103 p->locks[i] = BTRFS_READ_LOCK;
104 }
105 }
106
107#ifdef CONFIG_DEBUG_LOCK_ALLOC
108 if (held)
109 btrfs_clear_lock_blocking_rw(held, held_rw);
110#endif
111}
112
113/* this also releases the path */
114void btrfs_free_path(struct btrfs_path *p)
115{
116 if (!p)
117 return;
118 btrfs_release_path(p);
119 kmem_cache_free(btrfs_path_cachep, p);
120}
121
122/*
123 * path release drops references on the extent buffers in the path
124 * and it drops any locks held by this path
125 *
126 * It is safe to call this on paths that no locks or extent buffers held.
127 */
128noinline void btrfs_release_path(struct btrfs_path *p)
129{
130 int i;
131
132 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
133 p->slots[i] = 0;
134 if (!p->nodes[i])
135 continue;
136 if (p->locks[i]) {
137 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
138 p->locks[i] = 0;
139 }
140 free_extent_buffer(p->nodes[i]);
141 p->nodes[i] = NULL;
142 }
143}
144
145/*
146 * safely gets a reference on the root node of a tree. A lock
147 * is not taken, so a concurrent writer may put a different node
148 * at the root of the tree. See btrfs_lock_root_node for the
149 * looping required.
150 *
151 * The extent buffer returned by this has a reference taken, so
152 * it won't disappear. It may stop being the root of the tree
153 * at any time because there are no locks held.
154 */
155struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
156{
157 struct extent_buffer *eb;
158
159 rcu_read_lock();
160 eb = rcu_dereference(root->node);
161 extent_buffer_get(eb);
162 rcu_read_unlock();
163 return eb;
164}
165
166/* loop around taking references on and locking the root node of the
167 * tree until you end up with a lock on the root. A locked buffer
168 * is returned, with a reference held.
169 */
170struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
171{
172 struct extent_buffer *eb;
173
174 while (1) {
175 eb = btrfs_root_node(root);
176 btrfs_tree_lock(eb);
177 if (eb == root->node)
178 break;
179 btrfs_tree_unlock(eb);
180 free_extent_buffer(eb);
181 }
182 return eb;
183}
184
185/* loop around taking references on and locking the root node of the
186 * tree until you end up with a lock on the root. A locked buffer
187 * is returned, with a reference held.
188 */
189struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
190{
191 struct extent_buffer *eb;
192
193 while (1) {
194 eb = btrfs_root_node(root);
195 btrfs_tree_read_lock(eb);
196 if (eb == root->node)
197 break;
198 btrfs_tree_read_unlock(eb);
199 free_extent_buffer(eb);
200 }
201 return eb;
202}
203
204/* cowonly root (everything not a reference counted cow subvolume), just get
205 * put onto a simple dirty list. transaction.c walks this to make sure they
206 * get properly updated on disk.
207 */
208static void add_root_to_dirty_list(struct btrfs_root *root)
209{
210 if (root->track_dirty && list_empty(&root->dirty_list)) {
211 list_add(&root->dirty_list,
212 &root->fs_info->dirty_cowonly_roots);
213 }
214}
215
216/*
217 * used by snapshot creation to make a copy of a root for a tree with
218 * a given objectid. The buffer with the new root node is returned in
219 * cow_ret, and this func returns zero on success or a negative error code.
220 */
221int btrfs_copy_root(struct btrfs_trans_handle *trans,
222 struct btrfs_root *root,
223 struct extent_buffer *buf,
224 struct extent_buffer **cow_ret, u64 new_root_objectid)
225{
226 struct extent_buffer *cow;
227 int ret = 0;
228 int level;
229 struct btrfs_disk_key disk_key;
230
231 WARN_ON(root->ref_cows && trans->transid !=
232 root->fs_info->running_transaction->transid);
233 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
234
235 level = btrfs_header_level(buf);
236 if (level == 0)
237 btrfs_item_key(buf, &disk_key, 0);
238 else
239 btrfs_node_key(buf, &disk_key, 0);
240
241 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
242 new_root_objectid, &disk_key, level,
243 buf->start, 0);
244 if (IS_ERR(cow))
245 return PTR_ERR(cow);
246
247 copy_extent_buffer(cow, buf, 0, 0, cow->len);
248 btrfs_set_header_bytenr(cow, cow->start);
249 btrfs_set_header_generation(cow, trans->transid);
250 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
251 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
252 BTRFS_HEADER_FLAG_RELOC);
253 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
254 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
255 else
256 btrfs_set_header_owner(cow, new_root_objectid);
257
258 write_extent_buffer(cow, root->fs_info->fsid,
259 (unsigned long)btrfs_header_fsid(cow),
260 BTRFS_FSID_SIZE);
261
262 WARN_ON(btrfs_header_generation(buf) > trans->transid);
263 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
264 ret = btrfs_inc_ref(trans, root, cow, 1);
265 else
266 ret = btrfs_inc_ref(trans, root, cow, 0);
267
268 if (ret)
269 return ret;
270
271 btrfs_mark_buffer_dirty(cow);
272 *cow_ret = cow;
273 return 0;
274}
275
276/*
277 * check if the tree block can be shared by multiple trees
278 */
279int btrfs_block_can_be_shared(struct btrfs_root *root,
280 struct extent_buffer *buf)
281{
282 /*
283 * Tree blocks not in refernece counted trees and tree roots
284 * are never shared. If a block was allocated after the last
285 * snapshot and the block was not allocated by tree relocation,
286 * we know the block is not shared.
287 */
288 if (root->ref_cows &&
289 buf != root->node && buf != root->commit_root &&
290 (btrfs_header_generation(buf) <=
291 btrfs_root_last_snapshot(&root->root_item) ||
292 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
293 return 1;
294#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
295 if (root->ref_cows &&
296 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
297 return 1;
298#endif
299 return 0;
300}
301
302static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
303 struct btrfs_root *root,
304 struct extent_buffer *buf,
305 struct extent_buffer *cow,
306 int *last_ref)
307{
308 u64 refs;
309 u64 owner;
310 u64 flags;
311 u64 new_flags = 0;
312 int ret;
313
314 /*
315 * Backrefs update rules:
316 *
317 * Always use full backrefs for extent pointers in tree block
318 * allocated by tree relocation.
319 *
320 * If a shared tree block is no longer referenced by its owner
321 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
322 * use full backrefs for extent pointers in tree block.
323 *
324 * If a tree block is been relocating
325 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
326 * use full backrefs for extent pointers in tree block.
327 * The reason for this is some operations (such as drop tree)
328 * are only allowed for blocks use full backrefs.
329 */
330
331 if (btrfs_block_can_be_shared(root, buf)) {
332 ret = btrfs_lookup_extent_info(trans, root, buf->start,
333 buf->len, &refs, &flags);
334 BUG_ON(ret);
335 BUG_ON(refs == 0);
336 } else {
337 refs = 1;
338 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
339 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
340 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
341 else
342 flags = 0;
343 }
344
345 owner = btrfs_header_owner(buf);
346 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
347 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
348
349 if (refs > 1) {
350 if ((owner == root->root_key.objectid ||
351 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
352 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
353 ret = btrfs_inc_ref(trans, root, buf, 1);
354 BUG_ON(ret);
355
356 if (root->root_key.objectid ==
357 BTRFS_TREE_RELOC_OBJECTID) {
358 ret = btrfs_dec_ref(trans, root, buf, 0);
359 BUG_ON(ret);
360 ret = btrfs_inc_ref(trans, root, cow, 1);
361 BUG_ON(ret);
362 }
363 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
364 } else {
365
366 if (root->root_key.objectid ==
367 BTRFS_TREE_RELOC_OBJECTID)
368 ret = btrfs_inc_ref(trans, root, cow, 1);
369 else
370 ret = btrfs_inc_ref(trans, root, cow, 0);
371 BUG_ON(ret);
372 }
373 if (new_flags != 0) {
374 ret = btrfs_set_disk_extent_flags(trans, root,
375 buf->start,
376 buf->len,
377 new_flags, 0);
378 BUG_ON(ret);
379 }
380 } else {
381 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
382 if (root->root_key.objectid ==
383 BTRFS_TREE_RELOC_OBJECTID)
384 ret = btrfs_inc_ref(trans, root, cow, 1);
385 else
386 ret = btrfs_inc_ref(trans, root, cow, 0);
387 BUG_ON(ret);
388 ret = btrfs_dec_ref(trans, root, buf, 1);
389 BUG_ON(ret);
390 }
391 clean_tree_block(trans, root, buf);
392 *last_ref = 1;
393 }
394 return 0;
395}
396
397/*
398 * does the dirty work in cow of a single block. The parent block (if
399 * supplied) is updated to point to the new cow copy. The new buffer is marked
400 * dirty and returned locked. If you modify the block it needs to be marked
401 * dirty again.
402 *
403 * search_start -- an allocation hint for the new block
404 *
405 * empty_size -- a hint that you plan on doing more cow. This is the size in
406 * bytes the allocator should try to find free next to the block it returns.
407 * This is just a hint and may be ignored by the allocator.
408 */
409static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
410 struct btrfs_root *root,
411 struct extent_buffer *buf,
412 struct extent_buffer *parent, int parent_slot,
413 struct extent_buffer **cow_ret,
414 u64 search_start, u64 empty_size)
415{
416 struct btrfs_disk_key disk_key;
417 struct extent_buffer *cow;
418 int level;
419 int last_ref = 0;
420 int unlock_orig = 0;
421 u64 parent_start;
422
423 if (*cow_ret == buf)
424 unlock_orig = 1;
425
426 btrfs_assert_tree_locked(buf);
427
428 WARN_ON(root->ref_cows && trans->transid !=
429 root->fs_info->running_transaction->transid);
430 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
431
432 level = btrfs_header_level(buf);
433
434 if (level == 0)
435 btrfs_item_key(buf, &disk_key, 0);
436 else
437 btrfs_node_key(buf, &disk_key, 0);
438
439 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
440 if (parent)
441 parent_start = parent->start;
442 else
443 parent_start = 0;
444 } else
445 parent_start = 0;
446
447 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
448 root->root_key.objectid, &disk_key,
449 level, search_start, empty_size);
450 if (IS_ERR(cow))
451 return PTR_ERR(cow);
452
453 /* cow is set to blocking by btrfs_init_new_buffer */
454
455 copy_extent_buffer(cow, buf, 0, 0, cow->len);
456 btrfs_set_header_bytenr(cow, cow->start);
457 btrfs_set_header_generation(cow, trans->transid);
458 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
459 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
460 BTRFS_HEADER_FLAG_RELOC);
461 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
462 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
463 else
464 btrfs_set_header_owner(cow, root->root_key.objectid);
465
466 write_extent_buffer(cow, root->fs_info->fsid,
467 (unsigned long)btrfs_header_fsid(cow),
468 BTRFS_FSID_SIZE);
469
470 update_ref_for_cow(trans, root, buf, cow, &last_ref);
471
472 if (root->ref_cows)
473 btrfs_reloc_cow_block(trans, root, buf, cow);
474
475 if (buf == root->node) {
476 WARN_ON(parent && parent != buf);
477 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
478 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
479 parent_start = buf->start;
480 else
481 parent_start = 0;
482
483 extent_buffer_get(cow);
484 rcu_assign_pointer(root->node, cow);
485
486 btrfs_free_tree_block(trans, root, buf, parent_start,
487 last_ref);
488 free_extent_buffer(buf);
489 add_root_to_dirty_list(root);
490 } else {
491 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
492 parent_start = parent->start;
493 else
494 parent_start = 0;
495
496 WARN_ON(trans->transid != btrfs_header_generation(parent));
497 btrfs_set_node_blockptr(parent, parent_slot,
498 cow->start);
499 btrfs_set_node_ptr_generation(parent, parent_slot,
500 trans->transid);
501 btrfs_mark_buffer_dirty(parent);
502 btrfs_free_tree_block(trans, root, buf, parent_start,
503 last_ref);
504 }
505 if (unlock_orig)
506 btrfs_tree_unlock(buf);
507 free_extent_buffer(buf);
508 btrfs_mark_buffer_dirty(cow);
509 *cow_ret = cow;
510 return 0;
511}
512
513static inline int should_cow_block(struct btrfs_trans_handle *trans,
514 struct btrfs_root *root,
515 struct extent_buffer *buf)
516{
517 if (btrfs_header_generation(buf) == trans->transid &&
518 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
519 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
520 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
521 return 0;
522 return 1;
523}
524
525/*
526 * cows a single block, see __btrfs_cow_block for the real work.
527 * This version of it has extra checks so that a block isn't cow'd more than
528 * once per transaction, as long as it hasn't been written yet
529 */
530noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
531 struct btrfs_root *root, struct extent_buffer *buf,
532 struct extent_buffer *parent, int parent_slot,
533 struct extent_buffer **cow_ret)
534{
535 u64 search_start;
536 int ret;
537
538 if (trans->transaction != root->fs_info->running_transaction) {
539 printk(KERN_CRIT "trans %llu running %llu\n",
540 (unsigned long long)trans->transid,
541 (unsigned long long)
542 root->fs_info->running_transaction->transid);
543 WARN_ON(1);
544 }
545 if (trans->transid != root->fs_info->generation) {
546 printk(KERN_CRIT "trans %llu running %llu\n",
547 (unsigned long long)trans->transid,
548 (unsigned long long)root->fs_info->generation);
549 WARN_ON(1);
550 }
551
552 if (!should_cow_block(trans, root, buf)) {
553 *cow_ret = buf;
554 return 0;
555 }
556
557 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
558
559 if (parent)
560 btrfs_set_lock_blocking(parent);
561 btrfs_set_lock_blocking(buf);
562
563 ret = __btrfs_cow_block(trans, root, buf, parent,
564 parent_slot, cow_ret, search_start, 0);
565
566 trace_btrfs_cow_block(root, buf, *cow_ret);
567
568 return ret;
569}
570
571/*
572 * helper function for defrag to decide if two blocks pointed to by a
573 * node are actually close by
574 */
575static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
576{
577 if (blocknr < other && other - (blocknr + blocksize) < 32768)
578 return 1;
579 if (blocknr > other && blocknr - (other + blocksize) < 32768)
580 return 1;
581 return 0;
582}
583
584/*
585 * compare two keys in a memcmp fashion
586 */
587static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
588{
589 struct btrfs_key k1;
590
591 btrfs_disk_key_to_cpu(&k1, disk);
592
593 return btrfs_comp_cpu_keys(&k1, k2);
594}
595
596/*
597 * same as comp_keys only with two btrfs_key's
598 */
599int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
600{
601 if (k1->objectid > k2->objectid)
602 return 1;
603 if (k1->objectid < k2->objectid)
604 return -1;
605 if (k1->type > k2->type)
606 return 1;
607 if (k1->type < k2->type)
608 return -1;
609 if (k1->offset > k2->offset)
610 return 1;
611 if (k1->offset < k2->offset)
612 return -1;
613 return 0;
614}
615
616/*
617 * this is used by the defrag code to go through all the
618 * leaves pointed to by a node and reallocate them so that
619 * disk order is close to key order
620 */
621int btrfs_realloc_node(struct btrfs_trans_handle *trans,
622 struct btrfs_root *root, struct extent_buffer *parent,
623 int start_slot, int cache_only, u64 *last_ret,
624 struct btrfs_key *progress)
625{
626 struct extent_buffer *cur;
627 u64 blocknr;
628 u64 gen;
629 u64 search_start = *last_ret;
630 u64 last_block = 0;
631 u64 other;
632 u32 parent_nritems;
633 int end_slot;
634 int i;
635 int err = 0;
636 int parent_level;
637 int uptodate;
638 u32 blocksize;
639 int progress_passed = 0;
640 struct btrfs_disk_key disk_key;
641
642 parent_level = btrfs_header_level(parent);
643 if (cache_only && parent_level != 1)
644 return 0;
645
646 if (trans->transaction != root->fs_info->running_transaction)
647 WARN_ON(1);
648 if (trans->transid != root->fs_info->generation)
649 WARN_ON(1);
650
651 parent_nritems = btrfs_header_nritems(parent);
652 blocksize = btrfs_level_size(root, parent_level - 1);
653 end_slot = parent_nritems;
654
655 if (parent_nritems == 1)
656 return 0;
657
658 btrfs_set_lock_blocking(parent);
659
660 for (i = start_slot; i < end_slot; i++) {
661 int close = 1;
662
663 btrfs_node_key(parent, &disk_key, i);
664 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
665 continue;
666
667 progress_passed = 1;
668 blocknr = btrfs_node_blockptr(parent, i);
669 gen = btrfs_node_ptr_generation(parent, i);
670 if (last_block == 0)
671 last_block = blocknr;
672
673 if (i > 0) {
674 other = btrfs_node_blockptr(parent, i - 1);
675 close = close_blocks(blocknr, other, blocksize);
676 }
677 if (!close && i < end_slot - 2) {
678 other = btrfs_node_blockptr(parent, i + 1);
679 close = close_blocks(blocknr, other, blocksize);
680 }
681 if (close) {
682 last_block = blocknr;
683 continue;
684 }
685
686 cur = btrfs_find_tree_block(root, blocknr, blocksize);
687 if (cur)
688 uptodate = btrfs_buffer_uptodate(cur, gen);
689 else
690 uptodate = 0;
691 if (!cur || !uptodate) {
692 if (cache_only) {
693 free_extent_buffer(cur);
694 continue;
695 }
696 if (!cur) {
697 cur = read_tree_block(root, blocknr,
698 blocksize, gen);
699 if (!cur)
700 return -EIO;
701 } else if (!uptodate) {
702 btrfs_read_buffer(cur, gen);
703 }
704 }
705 if (search_start == 0)
706 search_start = last_block;
707
708 btrfs_tree_lock(cur);
709 btrfs_set_lock_blocking(cur);
710 err = __btrfs_cow_block(trans, root, cur, parent, i,
711 &cur, search_start,
712 min(16 * blocksize,
713 (end_slot - i) * blocksize));
714 if (err) {
715 btrfs_tree_unlock(cur);
716 free_extent_buffer(cur);
717 break;
718 }
719 search_start = cur->start;
720 last_block = cur->start;
721 *last_ret = search_start;
722 btrfs_tree_unlock(cur);
723 free_extent_buffer(cur);
724 }
725 return err;
726}
727
728/*
729 * The leaf data grows from end-to-front in the node.
730 * this returns the address of the start of the last item,
731 * which is the stop of the leaf data stack
732 */
733static inline unsigned int leaf_data_end(struct btrfs_root *root,
734 struct extent_buffer *leaf)
735{
736 u32 nr = btrfs_header_nritems(leaf);
737 if (nr == 0)
738 return BTRFS_LEAF_DATA_SIZE(root);
739 return btrfs_item_offset_nr(leaf, nr - 1);
740}
741
742
743/*
744 * search for key in the extent_buffer. The items start at offset p,
745 * and they are item_size apart. There are 'max' items in p.
746 *
747 * the slot in the array is returned via slot, and it points to
748 * the place where you would insert key if it is not found in
749 * the array.
750 *
751 * slot may point to max if the key is bigger than all of the keys
752 */
753static noinline int generic_bin_search(struct extent_buffer *eb,
754 unsigned long p,
755 int item_size, struct btrfs_key *key,
756 int max, int *slot)
757{
758 int low = 0;
759 int high = max;
760 int mid;
761 int ret;
762 struct btrfs_disk_key *tmp = NULL;
763 struct btrfs_disk_key unaligned;
764 unsigned long offset;
765 char *kaddr = NULL;
766 unsigned long map_start = 0;
767 unsigned long map_len = 0;
768 int err;
769
770 while (low < high) {
771 mid = (low + high) / 2;
772 offset = p + mid * item_size;
773
774 if (!kaddr || offset < map_start ||
775 (offset + sizeof(struct btrfs_disk_key)) >
776 map_start + map_len) {
777
778 err = map_private_extent_buffer(eb, offset,
779 sizeof(struct btrfs_disk_key),
780 &kaddr, &map_start, &map_len);
781
782 if (!err) {
783 tmp = (struct btrfs_disk_key *)(kaddr + offset -
784 map_start);
785 } else {
786 read_extent_buffer(eb, &unaligned,
787 offset, sizeof(unaligned));
788 tmp = &unaligned;
789 }
790
791 } else {
792 tmp = (struct btrfs_disk_key *)(kaddr + offset -
793 map_start);
794 }
795 ret = comp_keys(tmp, key);
796
797 if (ret < 0)
798 low = mid + 1;
799 else if (ret > 0)
800 high = mid;
801 else {
802 *slot = mid;
803 return 0;
804 }
805 }
806 *slot = low;
807 return 1;
808}
809
810/*
811 * simple bin_search frontend that does the right thing for
812 * leaves vs nodes
813 */
814static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
815 int level, int *slot)
816{
817 if (level == 0) {
818 return generic_bin_search(eb,
819 offsetof(struct btrfs_leaf, items),
820 sizeof(struct btrfs_item),
821 key, btrfs_header_nritems(eb),
822 slot);
823 } else {
824 return generic_bin_search(eb,
825 offsetof(struct btrfs_node, ptrs),
826 sizeof(struct btrfs_key_ptr),
827 key, btrfs_header_nritems(eb),
828 slot);
829 }
830 return -1;
831}
832
833int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
834 int level, int *slot)
835{
836 return bin_search(eb, key, level, slot);
837}
838
839static void root_add_used(struct btrfs_root *root, u32 size)
840{
841 spin_lock(&root->accounting_lock);
842 btrfs_set_root_used(&root->root_item,
843 btrfs_root_used(&root->root_item) + size);
844 spin_unlock(&root->accounting_lock);
845}
846
847static void root_sub_used(struct btrfs_root *root, u32 size)
848{
849 spin_lock(&root->accounting_lock);
850 btrfs_set_root_used(&root->root_item,
851 btrfs_root_used(&root->root_item) - size);
852 spin_unlock(&root->accounting_lock);
853}
854
855/* given a node and slot number, this reads the blocks it points to. The
856 * extent buffer is returned with a reference taken (but unlocked).
857 * NULL is returned on error.
858 */
859static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
860 struct extent_buffer *parent, int slot)
861{
862 int level = btrfs_header_level(parent);
863 if (slot < 0)
864 return NULL;
865 if (slot >= btrfs_header_nritems(parent))
866 return NULL;
867
868 BUG_ON(level == 0);
869
870 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
871 btrfs_level_size(root, level - 1),
872 btrfs_node_ptr_generation(parent, slot));
873}
874
875/*
876 * node level balancing, used to make sure nodes are in proper order for
877 * item deletion. We balance from the top down, so we have to make sure
878 * that a deletion won't leave an node completely empty later on.
879 */
880static noinline int balance_level(struct btrfs_trans_handle *trans,
881 struct btrfs_root *root,
882 struct btrfs_path *path, int level)
883{
884 struct extent_buffer *right = NULL;
885 struct extent_buffer *mid;
886 struct extent_buffer *left = NULL;
887 struct extent_buffer *parent = NULL;
888 int ret = 0;
889 int wret;
890 int pslot;
891 int orig_slot = path->slots[level];
892 u64 orig_ptr;
893
894 if (level == 0)
895 return 0;
896
897 mid = path->nodes[level];
898
899 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
900 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
901 WARN_ON(btrfs_header_generation(mid) != trans->transid);
902
903 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
904
905 if (level < BTRFS_MAX_LEVEL - 1)
906 parent = path->nodes[level + 1];
907 pslot = path->slots[level + 1];
908
909 /*
910 * deal with the case where there is only one pointer in the root
911 * by promoting the node below to a root
912 */
913 if (!parent) {
914 struct extent_buffer *child;
915
916 if (btrfs_header_nritems(mid) != 1)
917 return 0;
918
919 /* promote the child to a root */
920 child = read_node_slot(root, mid, 0);
921 BUG_ON(!child);
922 btrfs_tree_lock(child);
923 btrfs_set_lock_blocking(child);
924 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
925 if (ret) {
926 btrfs_tree_unlock(child);
927 free_extent_buffer(child);
928 goto enospc;
929 }
930
931 rcu_assign_pointer(root->node, child);
932
933 add_root_to_dirty_list(root);
934 btrfs_tree_unlock(child);
935
936 path->locks[level] = 0;
937 path->nodes[level] = NULL;
938 clean_tree_block(trans, root, mid);
939 btrfs_tree_unlock(mid);
940 /* once for the path */
941 free_extent_buffer(mid);
942
943 root_sub_used(root, mid->len);
944 btrfs_free_tree_block(trans, root, mid, 0, 1);
945 /* once for the root ptr */
946 free_extent_buffer(mid);
947 return 0;
948 }
949 if (btrfs_header_nritems(mid) >
950 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
951 return 0;
952
953 btrfs_header_nritems(mid);
954
955 left = read_node_slot(root, parent, pslot - 1);
956 if (left) {
957 btrfs_tree_lock(left);
958 btrfs_set_lock_blocking(left);
959 wret = btrfs_cow_block(trans, root, left,
960 parent, pslot - 1, &left);
961 if (wret) {
962 ret = wret;
963 goto enospc;
964 }
965 }
966 right = read_node_slot(root, parent, pslot + 1);
967 if (right) {
968 btrfs_tree_lock(right);
969 btrfs_set_lock_blocking(right);
970 wret = btrfs_cow_block(trans, root, right,
971 parent, pslot + 1, &right);
972 if (wret) {
973 ret = wret;
974 goto enospc;
975 }
976 }
977
978 /* first, try to make some room in the middle buffer */
979 if (left) {
980 orig_slot += btrfs_header_nritems(left);
981 wret = push_node_left(trans, root, left, mid, 1);
982 if (wret < 0)
983 ret = wret;
984 btrfs_header_nritems(mid);
985 }
986
987 /*
988 * then try to empty the right most buffer into the middle
989 */
990 if (right) {
991 wret = push_node_left(trans, root, mid, right, 1);
992 if (wret < 0 && wret != -ENOSPC)
993 ret = wret;
994 if (btrfs_header_nritems(right) == 0) {
995 clean_tree_block(trans, root, right);
996 btrfs_tree_unlock(right);
997 wret = del_ptr(trans, root, path, level + 1, pslot +
998 1);
999 if (wret)
1000 ret = wret;
1001 root_sub_used(root, right->len);
1002 btrfs_free_tree_block(trans, root, right, 0, 1);
1003 free_extent_buffer(right);
1004 right = NULL;
1005 } else {
1006 struct btrfs_disk_key right_key;
1007 btrfs_node_key(right, &right_key, 0);
1008 btrfs_set_node_key(parent, &right_key, pslot + 1);
1009 btrfs_mark_buffer_dirty(parent);
1010 }
1011 }
1012 if (btrfs_header_nritems(mid) == 1) {
1013 /*
1014 * we're not allowed to leave a node with one item in the
1015 * tree during a delete. A deletion from lower in the tree
1016 * could try to delete the only pointer in this node.
1017 * So, pull some keys from the left.
1018 * There has to be a left pointer at this point because
1019 * otherwise we would have pulled some pointers from the
1020 * right
1021 */
1022 BUG_ON(!left);
1023 wret = balance_node_right(trans, root, mid, left);
1024 if (wret < 0) {
1025 ret = wret;
1026 goto enospc;
1027 }
1028 if (wret == 1) {
1029 wret = push_node_left(trans, root, left, mid, 1);
1030 if (wret < 0)
1031 ret = wret;
1032 }
1033 BUG_ON(wret == 1);
1034 }
1035 if (btrfs_header_nritems(mid) == 0) {
1036 clean_tree_block(trans, root, mid);
1037 btrfs_tree_unlock(mid);
1038 wret = del_ptr(trans, root, path, level + 1, pslot);
1039 if (wret)
1040 ret = wret;
1041 root_sub_used(root, mid->len);
1042 btrfs_free_tree_block(trans, root, mid, 0, 1);
1043 free_extent_buffer(mid);
1044 mid = NULL;
1045 } else {
1046 /* update the parent key to reflect our changes */
1047 struct btrfs_disk_key mid_key;
1048 btrfs_node_key(mid, &mid_key, 0);
1049 btrfs_set_node_key(parent, &mid_key, pslot);
1050 btrfs_mark_buffer_dirty(parent);
1051 }
1052
1053 /* update the path */
1054 if (left) {
1055 if (btrfs_header_nritems(left) > orig_slot) {
1056 extent_buffer_get(left);
1057 /* left was locked after cow */
1058 path->nodes[level] = left;
1059 path->slots[level + 1] -= 1;
1060 path->slots[level] = orig_slot;
1061 if (mid) {
1062 btrfs_tree_unlock(mid);
1063 free_extent_buffer(mid);
1064 }
1065 } else {
1066 orig_slot -= btrfs_header_nritems(left);
1067 path->slots[level] = orig_slot;
1068 }
1069 }
1070 /* double check we haven't messed things up */
1071 if (orig_ptr !=
1072 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1073 BUG();
1074enospc:
1075 if (right) {
1076 btrfs_tree_unlock(right);
1077 free_extent_buffer(right);
1078 }
1079 if (left) {
1080 if (path->nodes[level] != left)
1081 btrfs_tree_unlock(left);
1082 free_extent_buffer(left);
1083 }
1084 return ret;
1085}
1086
1087/* Node balancing for insertion. Here we only split or push nodes around
1088 * when they are completely full. This is also done top down, so we
1089 * have to be pessimistic.
1090 */
1091static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1092 struct btrfs_root *root,
1093 struct btrfs_path *path, int level)
1094{
1095 struct extent_buffer *right = NULL;
1096 struct extent_buffer *mid;
1097 struct extent_buffer *left = NULL;
1098 struct extent_buffer *parent = NULL;
1099 int ret = 0;
1100 int wret;
1101 int pslot;
1102 int orig_slot = path->slots[level];
1103
1104 if (level == 0)
1105 return 1;
1106
1107 mid = path->nodes[level];
1108 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1109
1110 if (level < BTRFS_MAX_LEVEL - 1)
1111 parent = path->nodes[level + 1];
1112 pslot = path->slots[level + 1];
1113
1114 if (!parent)
1115 return 1;
1116
1117 left = read_node_slot(root, parent, pslot - 1);
1118
1119 /* first, try to make some room in the middle buffer */
1120 if (left) {
1121 u32 left_nr;
1122
1123 btrfs_tree_lock(left);
1124 btrfs_set_lock_blocking(left);
1125
1126 left_nr = btrfs_header_nritems(left);
1127 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1128 wret = 1;
1129 } else {
1130 ret = btrfs_cow_block(trans, root, left, parent,
1131 pslot - 1, &left);
1132 if (ret)
1133 wret = 1;
1134 else {
1135 wret = push_node_left(trans, root,
1136 left, mid, 0);
1137 }
1138 }
1139 if (wret < 0)
1140 ret = wret;
1141 if (wret == 0) {
1142 struct btrfs_disk_key disk_key;
1143 orig_slot += left_nr;
1144 btrfs_node_key(mid, &disk_key, 0);
1145 btrfs_set_node_key(parent, &disk_key, pslot);
1146 btrfs_mark_buffer_dirty(parent);
1147 if (btrfs_header_nritems(left) > orig_slot) {
1148 path->nodes[level] = left;
1149 path->slots[level + 1] -= 1;
1150 path->slots[level] = orig_slot;
1151 btrfs_tree_unlock(mid);
1152 free_extent_buffer(mid);
1153 } else {
1154 orig_slot -=
1155 btrfs_header_nritems(left);
1156 path->slots[level] = orig_slot;
1157 btrfs_tree_unlock(left);
1158 free_extent_buffer(left);
1159 }
1160 return 0;
1161 }
1162 btrfs_tree_unlock(left);
1163 free_extent_buffer(left);
1164 }
1165 right = read_node_slot(root, parent, pslot + 1);
1166
1167 /*
1168 * then try to empty the right most buffer into the middle
1169 */
1170 if (right) {
1171 u32 right_nr;
1172
1173 btrfs_tree_lock(right);
1174 btrfs_set_lock_blocking(right);
1175
1176 right_nr = btrfs_header_nritems(right);
1177 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1178 wret = 1;
1179 } else {
1180 ret = btrfs_cow_block(trans, root, right,
1181 parent, pslot + 1,
1182 &right);
1183 if (ret)
1184 wret = 1;
1185 else {
1186 wret = balance_node_right(trans, root,
1187 right, mid);
1188 }
1189 }
1190 if (wret < 0)
1191 ret = wret;
1192 if (wret == 0) {
1193 struct btrfs_disk_key disk_key;
1194
1195 btrfs_node_key(right, &disk_key, 0);
1196 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1197 btrfs_mark_buffer_dirty(parent);
1198
1199 if (btrfs_header_nritems(mid) <= orig_slot) {
1200 path->nodes[level] = right;
1201 path->slots[level + 1] += 1;
1202 path->slots[level] = orig_slot -
1203 btrfs_header_nritems(mid);
1204 btrfs_tree_unlock(mid);
1205 free_extent_buffer(mid);
1206 } else {
1207 btrfs_tree_unlock(right);
1208 free_extent_buffer(right);
1209 }
1210 return 0;
1211 }
1212 btrfs_tree_unlock(right);
1213 free_extent_buffer(right);
1214 }
1215 return 1;
1216}
1217
1218/*
1219 * readahead one full node of leaves, finding things that are close
1220 * to the block in 'slot', and triggering ra on them.
1221 */
1222static void reada_for_search(struct btrfs_root *root,
1223 struct btrfs_path *path,
1224 int level, int slot, u64 objectid)
1225{
1226 struct extent_buffer *node;
1227 struct btrfs_disk_key disk_key;
1228 u32 nritems;
1229 u64 search;
1230 u64 target;
1231 u64 nread = 0;
1232 u64 gen;
1233 int direction = path->reada;
1234 struct extent_buffer *eb;
1235 u32 nr;
1236 u32 blocksize;
1237 u32 nscan = 0;
1238
1239 if (level != 1)
1240 return;
1241
1242 if (!path->nodes[level])
1243 return;
1244
1245 node = path->nodes[level];
1246
1247 search = btrfs_node_blockptr(node, slot);
1248 blocksize = btrfs_level_size(root, level - 1);
1249 eb = btrfs_find_tree_block(root, search, blocksize);
1250 if (eb) {
1251 free_extent_buffer(eb);
1252 return;
1253 }
1254
1255 target = search;
1256
1257 nritems = btrfs_header_nritems(node);
1258 nr = slot;
1259
1260 while (1) {
1261 if (direction < 0) {
1262 if (nr == 0)
1263 break;
1264 nr--;
1265 } else if (direction > 0) {
1266 nr++;
1267 if (nr >= nritems)
1268 break;
1269 }
1270 if (path->reada < 0 && objectid) {
1271 btrfs_node_key(node, &disk_key, nr);
1272 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1273 break;
1274 }
1275 search = btrfs_node_blockptr(node, nr);
1276 if ((search <= target && target - search <= 65536) ||
1277 (search > target && search - target <= 65536)) {
1278 gen = btrfs_node_ptr_generation(node, nr);
1279 readahead_tree_block(root, search, blocksize, gen);
1280 nread += blocksize;
1281 }
1282 nscan++;
1283 if ((nread > 65536 || nscan > 32))
1284 break;
1285 }
1286}
1287
1288/*
1289 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1290 * cache
1291 */
1292static noinline int reada_for_balance(struct btrfs_root *root,
1293 struct btrfs_path *path, int level)
1294{
1295 int slot;
1296 int nritems;
1297 struct extent_buffer *parent;
1298 struct extent_buffer *eb;
1299 u64 gen;
1300 u64 block1 = 0;
1301 u64 block2 = 0;
1302 int ret = 0;
1303 int blocksize;
1304
1305 parent = path->nodes[level + 1];
1306 if (!parent)
1307 return 0;
1308
1309 nritems = btrfs_header_nritems(parent);
1310 slot = path->slots[level + 1];
1311 blocksize = btrfs_level_size(root, level);
1312
1313 if (slot > 0) {
1314 block1 = btrfs_node_blockptr(parent, slot - 1);
1315 gen = btrfs_node_ptr_generation(parent, slot - 1);
1316 eb = btrfs_find_tree_block(root, block1, blocksize);
1317 if (eb && btrfs_buffer_uptodate(eb, gen))
1318 block1 = 0;
1319 free_extent_buffer(eb);
1320 }
1321 if (slot + 1 < nritems) {
1322 block2 = btrfs_node_blockptr(parent, slot + 1);
1323 gen = btrfs_node_ptr_generation(parent, slot + 1);
1324 eb = btrfs_find_tree_block(root, block2, blocksize);
1325 if (eb && btrfs_buffer_uptodate(eb, gen))
1326 block2 = 0;
1327 free_extent_buffer(eb);
1328 }
1329 if (block1 || block2) {
1330 ret = -EAGAIN;
1331
1332 /* release the whole path */
1333 btrfs_release_path(path);
1334
1335 /* read the blocks */
1336 if (block1)
1337 readahead_tree_block(root, block1, blocksize, 0);
1338 if (block2)
1339 readahead_tree_block(root, block2, blocksize, 0);
1340
1341 if (block1) {
1342 eb = read_tree_block(root, block1, blocksize, 0);
1343 free_extent_buffer(eb);
1344 }
1345 if (block2) {
1346 eb = read_tree_block(root, block2, blocksize, 0);
1347 free_extent_buffer(eb);
1348 }
1349 }
1350 return ret;
1351}
1352
1353
1354/*
1355 * when we walk down the tree, it is usually safe to unlock the higher layers
1356 * in the tree. The exceptions are when our path goes through slot 0, because
1357 * operations on the tree might require changing key pointers higher up in the
1358 * tree.
1359 *
1360 * callers might also have set path->keep_locks, which tells this code to keep
1361 * the lock if the path points to the last slot in the block. This is part of
1362 * walking through the tree, and selecting the next slot in the higher block.
1363 *
1364 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1365 * if lowest_unlock is 1, level 0 won't be unlocked
1366 */
1367static noinline void unlock_up(struct btrfs_path *path, int level,
1368 int lowest_unlock)
1369{
1370 int i;
1371 int skip_level = level;
1372 int no_skips = 0;
1373 struct extent_buffer *t;
1374
1375 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1376 if (!path->nodes[i])
1377 break;
1378 if (!path->locks[i])
1379 break;
1380 if (!no_skips && path->slots[i] == 0) {
1381 skip_level = i + 1;
1382 continue;
1383 }
1384 if (!no_skips && path->keep_locks) {
1385 u32 nritems;
1386 t = path->nodes[i];
1387 nritems = btrfs_header_nritems(t);
1388 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1389 skip_level = i + 1;
1390 continue;
1391 }
1392 }
1393 if (skip_level < i && i >= lowest_unlock)
1394 no_skips = 1;
1395
1396 t = path->nodes[i];
1397 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1398 btrfs_tree_unlock_rw(t, path->locks[i]);
1399 path->locks[i] = 0;
1400 }
1401 }
1402}
1403
1404/*
1405 * This releases any locks held in the path starting at level and
1406 * going all the way up to the root.
1407 *
1408 * btrfs_search_slot will keep the lock held on higher nodes in a few
1409 * corner cases, such as COW of the block at slot zero in the node. This
1410 * ignores those rules, and it should only be called when there are no
1411 * more updates to be done higher up in the tree.
1412 */
1413noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1414{
1415 int i;
1416
1417 if (path->keep_locks)
1418 return;
1419
1420 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1421 if (!path->nodes[i])
1422 continue;
1423 if (!path->locks[i])
1424 continue;
1425 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1426 path->locks[i] = 0;
1427 }
1428}
1429
1430/*
1431 * helper function for btrfs_search_slot. The goal is to find a block
1432 * in cache without setting the path to blocking. If we find the block
1433 * we return zero and the path is unchanged.
1434 *
1435 * If we can't find the block, we set the path blocking and do some
1436 * reada. -EAGAIN is returned and the search must be repeated.
1437 */
1438static int
1439read_block_for_search(struct btrfs_trans_handle *trans,
1440 struct btrfs_root *root, struct btrfs_path *p,
1441 struct extent_buffer **eb_ret, int level, int slot,
1442 struct btrfs_key *key)
1443{
1444 u64 blocknr;
1445 u64 gen;
1446 u32 blocksize;
1447 struct extent_buffer *b = *eb_ret;
1448 struct extent_buffer *tmp;
1449 int ret;
1450
1451 blocknr = btrfs_node_blockptr(b, slot);
1452 gen = btrfs_node_ptr_generation(b, slot);
1453 blocksize = btrfs_level_size(root, level - 1);
1454
1455 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1456 if (tmp) {
1457 if (btrfs_buffer_uptodate(tmp, 0)) {
1458 if (btrfs_buffer_uptodate(tmp, gen)) {
1459 /*
1460 * we found an up to date block without
1461 * sleeping, return
1462 * right away
1463 */
1464 *eb_ret = tmp;
1465 return 0;
1466 }
1467 /* the pages were up to date, but we failed
1468 * the generation number check. Do a full
1469 * read for the generation number that is correct.
1470 * We must do this without dropping locks so
1471 * we can trust our generation number
1472 */
1473 free_extent_buffer(tmp);
1474 btrfs_set_path_blocking(p);
1475
1476 tmp = read_tree_block(root, blocknr, blocksize, gen);
1477 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1478 *eb_ret = tmp;
1479 return 0;
1480 }
1481 free_extent_buffer(tmp);
1482 btrfs_release_path(p);
1483 return -EIO;
1484 }
1485 }
1486
1487 /*
1488 * reduce lock contention at high levels
1489 * of the btree by dropping locks before
1490 * we read. Don't release the lock on the current
1491 * level because we need to walk this node to figure
1492 * out which blocks to read.
1493 */
1494 btrfs_unlock_up_safe(p, level + 1);
1495 btrfs_set_path_blocking(p);
1496
1497 free_extent_buffer(tmp);
1498 if (p->reada)
1499 reada_for_search(root, p, level, slot, key->objectid);
1500
1501 btrfs_release_path(p);
1502
1503 ret = -EAGAIN;
1504 tmp = read_tree_block(root, blocknr, blocksize, 0);
1505 if (tmp) {
1506 /*
1507 * If the read above didn't mark this buffer up to date,
1508 * it will never end up being up to date. Set ret to EIO now
1509 * and give up so that our caller doesn't loop forever
1510 * on our EAGAINs.
1511 */
1512 if (!btrfs_buffer_uptodate(tmp, 0))
1513 ret = -EIO;
1514 free_extent_buffer(tmp);
1515 }
1516 return ret;
1517}
1518
1519/*
1520 * helper function for btrfs_search_slot. This does all of the checks
1521 * for node-level blocks and does any balancing required based on
1522 * the ins_len.
1523 *
1524 * If no extra work was required, zero is returned. If we had to
1525 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1526 * start over
1527 */
1528static int
1529setup_nodes_for_search(struct btrfs_trans_handle *trans,
1530 struct btrfs_root *root, struct btrfs_path *p,
1531 struct extent_buffer *b, int level, int ins_len,
1532 int *write_lock_level)
1533{
1534 int ret;
1535 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1536 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1537 int sret;
1538
1539 if (*write_lock_level < level + 1) {
1540 *write_lock_level = level + 1;
1541 btrfs_release_path(p);
1542 goto again;
1543 }
1544
1545 sret = reada_for_balance(root, p, level);
1546 if (sret)
1547 goto again;
1548
1549 btrfs_set_path_blocking(p);
1550 sret = split_node(trans, root, p, level);
1551 btrfs_clear_path_blocking(p, NULL, 0);
1552
1553 BUG_ON(sret > 0);
1554 if (sret) {
1555 ret = sret;
1556 goto done;
1557 }
1558 b = p->nodes[level];
1559 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1560 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1561 int sret;
1562
1563 if (*write_lock_level < level + 1) {
1564 *write_lock_level = level + 1;
1565 btrfs_release_path(p);
1566 goto again;
1567 }
1568
1569 sret = reada_for_balance(root, p, level);
1570 if (sret)
1571 goto again;
1572
1573 btrfs_set_path_blocking(p);
1574 sret = balance_level(trans, root, p, level);
1575 btrfs_clear_path_blocking(p, NULL, 0);
1576
1577 if (sret) {
1578 ret = sret;
1579 goto done;
1580 }
1581 b = p->nodes[level];
1582 if (!b) {
1583 btrfs_release_path(p);
1584 goto again;
1585 }
1586 BUG_ON(btrfs_header_nritems(b) == 1);
1587 }
1588 return 0;
1589
1590again:
1591 ret = -EAGAIN;
1592done:
1593 return ret;
1594}
1595
1596/*
1597 * look for key in the tree. path is filled in with nodes along the way
1598 * if key is found, we return zero and you can find the item in the leaf
1599 * level of the path (level 0)
1600 *
1601 * If the key isn't found, the path points to the slot where it should
1602 * be inserted, and 1 is returned. If there are other errors during the
1603 * search a negative error number is returned.
1604 *
1605 * if ins_len > 0, nodes and leaves will be split as we walk down the
1606 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1607 * possible)
1608 */
1609int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1610 *root, struct btrfs_key *key, struct btrfs_path *p, int
1611 ins_len, int cow)
1612{
1613 struct extent_buffer *b;
1614 int slot;
1615 int ret;
1616 int err;
1617 int level;
1618 int lowest_unlock = 1;
1619 int root_lock;
1620 /* everything at write_lock_level or lower must be write locked */
1621 int write_lock_level = 0;
1622 u8 lowest_level = 0;
1623
1624 lowest_level = p->lowest_level;
1625 WARN_ON(lowest_level && ins_len > 0);
1626 WARN_ON(p->nodes[0] != NULL);
1627
1628 if (ins_len < 0) {
1629 lowest_unlock = 2;
1630
1631 /* when we are removing items, we might have to go up to level
1632 * two as we update tree pointers Make sure we keep write
1633 * for those levels as well
1634 */
1635 write_lock_level = 2;
1636 } else if (ins_len > 0) {
1637 /*
1638 * for inserting items, make sure we have a write lock on
1639 * level 1 so we can update keys
1640 */
1641 write_lock_level = 1;
1642 }
1643
1644 if (!cow)
1645 write_lock_level = -1;
1646
1647 if (cow && (p->keep_locks || p->lowest_level))
1648 write_lock_level = BTRFS_MAX_LEVEL;
1649
1650again:
1651 /*
1652 * we try very hard to do read locks on the root
1653 */
1654 root_lock = BTRFS_READ_LOCK;
1655 level = 0;
1656 if (p->search_commit_root) {
1657 /*
1658 * the commit roots are read only
1659 * so we always do read locks
1660 */
1661 b = root->commit_root;
1662 extent_buffer_get(b);
1663 level = btrfs_header_level(b);
1664 if (!p->skip_locking)
1665 btrfs_tree_read_lock(b);
1666 } else {
1667 if (p->skip_locking) {
1668 b = btrfs_root_node(root);
1669 level = btrfs_header_level(b);
1670 } else {
1671 /* we don't know the level of the root node
1672 * until we actually have it read locked
1673 */
1674 b = btrfs_read_lock_root_node(root);
1675 level = btrfs_header_level(b);
1676 if (level <= write_lock_level) {
1677 /* whoops, must trade for write lock */
1678 btrfs_tree_read_unlock(b);
1679 free_extent_buffer(b);
1680 b = btrfs_lock_root_node(root);
1681 root_lock = BTRFS_WRITE_LOCK;
1682
1683 /* the level might have changed, check again */
1684 level = btrfs_header_level(b);
1685 }
1686 }
1687 }
1688 p->nodes[level] = b;
1689 if (!p->skip_locking)
1690 p->locks[level] = root_lock;
1691
1692 while (b) {
1693 level = btrfs_header_level(b);
1694
1695 /*
1696 * setup the path here so we can release it under lock
1697 * contention with the cow code
1698 */
1699 if (cow) {
1700 /*
1701 * if we don't really need to cow this block
1702 * then we don't want to set the path blocking,
1703 * so we test it here
1704 */
1705 if (!should_cow_block(trans, root, b))
1706 goto cow_done;
1707
1708 btrfs_set_path_blocking(p);
1709
1710 /*
1711 * must have write locks on this node and the
1712 * parent
1713 */
1714 if (level + 1 > write_lock_level) {
1715 write_lock_level = level + 1;
1716 btrfs_release_path(p);
1717 goto again;
1718 }
1719
1720 err = btrfs_cow_block(trans, root, b,
1721 p->nodes[level + 1],
1722 p->slots[level + 1], &b);
1723 if (err) {
1724 ret = err;
1725 goto done;
1726 }
1727 }
1728cow_done:
1729 BUG_ON(!cow && ins_len);
1730
1731 p->nodes[level] = b;
1732 btrfs_clear_path_blocking(p, NULL, 0);
1733
1734 /*
1735 * we have a lock on b and as long as we aren't changing
1736 * the tree, there is no way to for the items in b to change.
1737 * It is safe to drop the lock on our parent before we
1738 * go through the expensive btree search on b.
1739 *
1740 * If cow is true, then we might be changing slot zero,
1741 * which may require changing the parent. So, we can't
1742 * drop the lock until after we know which slot we're
1743 * operating on.
1744 */
1745 if (!cow)
1746 btrfs_unlock_up_safe(p, level + 1);
1747
1748 ret = bin_search(b, key, level, &slot);
1749
1750 if (level != 0) {
1751 int dec = 0;
1752 if (ret && slot > 0) {
1753 dec = 1;
1754 slot -= 1;
1755 }
1756 p->slots[level] = slot;
1757 err = setup_nodes_for_search(trans, root, p, b, level,
1758 ins_len, &write_lock_level);
1759 if (err == -EAGAIN)
1760 goto again;
1761 if (err) {
1762 ret = err;
1763 goto done;
1764 }
1765 b = p->nodes[level];
1766 slot = p->slots[level];
1767
1768 /*
1769 * slot 0 is special, if we change the key
1770 * we have to update the parent pointer
1771 * which means we must have a write lock
1772 * on the parent
1773 */
1774 if (slot == 0 && cow &&
1775 write_lock_level < level + 1) {
1776 write_lock_level = level + 1;
1777 btrfs_release_path(p);
1778 goto again;
1779 }
1780
1781 unlock_up(p, level, lowest_unlock);
1782
1783 if (level == lowest_level) {
1784 if (dec)
1785 p->slots[level]++;
1786 goto done;
1787 }
1788
1789 err = read_block_for_search(trans, root, p,
1790 &b, level, slot, key);
1791 if (err == -EAGAIN)
1792 goto again;
1793 if (err) {
1794 ret = err;
1795 goto done;
1796 }
1797
1798 if (!p->skip_locking) {
1799 level = btrfs_header_level(b);
1800 if (level <= write_lock_level) {
1801 err = btrfs_try_tree_write_lock(b);
1802 if (!err) {
1803 btrfs_set_path_blocking(p);
1804 btrfs_tree_lock(b);
1805 btrfs_clear_path_blocking(p, b,
1806 BTRFS_WRITE_LOCK);
1807 }
1808 p->locks[level] = BTRFS_WRITE_LOCK;
1809 } else {
1810 err = btrfs_try_tree_read_lock(b);
1811 if (!err) {
1812 btrfs_set_path_blocking(p);
1813 btrfs_tree_read_lock(b);
1814 btrfs_clear_path_blocking(p, b,
1815 BTRFS_READ_LOCK);
1816 }
1817 p->locks[level] = BTRFS_READ_LOCK;
1818 }
1819 p->nodes[level] = b;
1820 }
1821 } else {
1822 p->slots[level] = slot;
1823 if (ins_len > 0 &&
1824 btrfs_leaf_free_space(root, b) < ins_len) {
1825 if (write_lock_level < 1) {
1826 write_lock_level = 1;
1827 btrfs_release_path(p);
1828 goto again;
1829 }
1830
1831 btrfs_set_path_blocking(p);
1832 err = split_leaf(trans, root, key,
1833 p, ins_len, ret == 0);
1834 btrfs_clear_path_blocking(p, NULL, 0);
1835
1836 BUG_ON(err > 0);
1837 if (err) {
1838 ret = err;
1839 goto done;
1840 }
1841 }
1842 if (!p->search_for_split)
1843 unlock_up(p, level, lowest_unlock);
1844 goto done;
1845 }
1846 }
1847 ret = 1;
1848done:
1849 /*
1850 * we don't really know what they plan on doing with the path
1851 * from here on, so for now just mark it as blocking
1852 */
1853 if (!p->leave_spinning)
1854 btrfs_set_path_blocking(p);
1855 if (ret < 0)
1856 btrfs_release_path(p);
1857 return ret;
1858}
1859
1860/*
1861 * adjust the pointers going up the tree, starting at level
1862 * making sure the right key of each node is points to 'key'.
1863 * This is used after shifting pointers to the left, so it stops
1864 * fixing up pointers when a given leaf/node is not in slot 0 of the
1865 * higher levels
1866 *
1867 * If this fails to write a tree block, it returns -1, but continues
1868 * fixing up the blocks in ram so the tree is consistent.
1869 */
1870static int fixup_low_keys(struct btrfs_trans_handle *trans,
1871 struct btrfs_root *root, struct btrfs_path *path,
1872 struct btrfs_disk_key *key, int level)
1873{
1874 int i;
1875 int ret = 0;
1876 struct extent_buffer *t;
1877
1878 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1879 int tslot = path->slots[i];
1880 if (!path->nodes[i])
1881 break;
1882 t = path->nodes[i];
1883 btrfs_set_node_key(t, key, tslot);
1884 btrfs_mark_buffer_dirty(path->nodes[i]);
1885 if (tslot != 0)
1886 break;
1887 }
1888 return ret;
1889}
1890
1891/*
1892 * update item key.
1893 *
1894 * This function isn't completely safe. It's the caller's responsibility
1895 * that the new key won't break the order
1896 */
1897int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1898 struct btrfs_root *root, struct btrfs_path *path,
1899 struct btrfs_key *new_key)
1900{
1901 struct btrfs_disk_key disk_key;
1902 struct extent_buffer *eb;
1903 int slot;
1904
1905 eb = path->nodes[0];
1906 slot = path->slots[0];
1907 if (slot > 0) {
1908 btrfs_item_key(eb, &disk_key, slot - 1);
1909 if (comp_keys(&disk_key, new_key) >= 0)
1910 return -1;
1911 }
1912 if (slot < btrfs_header_nritems(eb) - 1) {
1913 btrfs_item_key(eb, &disk_key, slot + 1);
1914 if (comp_keys(&disk_key, new_key) <= 0)
1915 return -1;
1916 }
1917
1918 btrfs_cpu_key_to_disk(&disk_key, new_key);
1919 btrfs_set_item_key(eb, &disk_key, slot);
1920 btrfs_mark_buffer_dirty(eb);
1921 if (slot == 0)
1922 fixup_low_keys(trans, root, path, &disk_key, 1);
1923 return 0;
1924}
1925
1926/*
1927 * try to push data from one node into the next node left in the
1928 * tree.
1929 *
1930 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1931 * error, and > 0 if there was no room in the left hand block.
1932 */
1933static int push_node_left(struct btrfs_trans_handle *trans,
1934 struct btrfs_root *root, struct extent_buffer *dst,
1935 struct extent_buffer *src, int empty)
1936{
1937 int push_items = 0;
1938 int src_nritems;
1939 int dst_nritems;
1940 int ret = 0;
1941
1942 src_nritems = btrfs_header_nritems(src);
1943 dst_nritems = btrfs_header_nritems(dst);
1944 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1945 WARN_ON(btrfs_header_generation(src) != trans->transid);
1946 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1947
1948 if (!empty && src_nritems <= 8)
1949 return 1;
1950
1951 if (push_items <= 0)
1952 return 1;
1953
1954 if (empty) {
1955 push_items = min(src_nritems, push_items);
1956 if (push_items < src_nritems) {
1957 /* leave at least 8 pointers in the node if
1958 * we aren't going to empty it
1959 */
1960 if (src_nritems - push_items < 8) {
1961 if (push_items <= 8)
1962 return 1;
1963 push_items -= 8;
1964 }
1965 }
1966 } else
1967 push_items = min(src_nritems - 8, push_items);
1968
1969 copy_extent_buffer(dst, src,
1970 btrfs_node_key_ptr_offset(dst_nritems),
1971 btrfs_node_key_ptr_offset(0),
1972 push_items * sizeof(struct btrfs_key_ptr));
1973
1974 if (push_items < src_nritems) {
1975 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1976 btrfs_node_key_ptr_offset(push_items),
1977 (src_nritems - push_items) *
1978 sizeof(struct btrfs_key_ptr));
1979 }
1980 btrfs_set_header_nritems(src, src_nritems - push_items);
1981 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1982 btrfs_mark_buffer_dirty(src);
1983 btrfs_mark_buffer_dirty(dst);
1984
1985 return ret;
1986}
1987
1988/*
1989 * try to push data from one node into the next node right in the
1990 * tree.
1991 *
1992 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1993 * error, and > 0 if there was no room in the right hand block.
1994 *
1995 * this will only push up to 1/2 the contents of the left node over
1996 */
1997static int balance_node_right(struct btrfs_trans_handle *trans,
1998 struct btrfs_root *root,
1999 struct extent_buffer *dst,
2000 struct extent_buffer *src)
2001{
2002 int push_items = 0;
2003 int max_push;
2004 int src_nritems;
2005 int dst_nritems;
2006 int ret = 0;
2007
2008 WARN_ON(btrfs_header_generation(src) != trans->transid);
2009 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2010
2011 src_nritems = btrfs_header_nritems(src);
2012 dst_nritems = btrfs_header_nritems(dst);
2013 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2014 if (push_items <= 0)
2015 return 1;
2016
2017 if (src_nritems < 4)
2018 return 1;
2019
2020 max_push = src_nritems / 2 + 1;
2021 /* don't try to empty the node */
2022 if (max_push >= src_nritems)
2023 return 1;
2024
2025 if (max_push < push_items)
2026 push_items = max_push;
2027
2028 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2029 btrfs_node_key_ptr_offset(0),
2030 (dst_nritems) *
2031 sizeof(struct btrfs_key_ptr));
2032
2033 copy_extent_buffer(dst, src,
2034 btrfs_node_key_ptr_offset(0),
2035 btrfs_node_key_ptr_offset(src_nritems - push_items),
2036 push_items * sizeof(struct btrfs_key_ptr));
2037
2038 btrfs_set_header_nritems(src, src_nritems - push_items);
2039 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2040
2041 btrfs_mark_buffer_dirty(src);
2042 btrfs_mark_buffer_dirty(dst);
2043
2044 return ret;
2045}
2046
2047/*
2048 * helper function to insert a new root level in the tree.
2049 * A new node is allocated, and a single item is inserted to
2050 * point to the existing root
2051 *
2052 * returns zero on success or < 0 on failure.
2053 */
2054static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2055 struct btrfs_root *root,
2056 struct btrfs_path *path, int level)
2057{
2058 u64 lower_gen;
2059 struct extent_buffer *lower;
2060 struct extent_buffer *c;
2061 struct extent_buffer *old;
2062 struct btrfs_disk_key lower_key;
2063
2064 BUG_ON(path->nodes[level]);
2065 BUG_ON(path->nodes[level-1] != root->node);
2066
2067 lower = path->nodes[level-1];
2068 if (level == 1)
2069 btrfs_item_key(lower, &lower_key, 0);
2070 else
2071 btrfs_node_key(lower, &lower_key, 0);
2072
2073 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2074 root->root_key.objectid, &lower_key,
2075 level, root->node->start, 0);
2076 if (IS_ERR(c))
2077 return PTR_ERR(c);
2078
2079 root_add_used(root, root->nodesize);
2080
2081 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2082 btrfs_set_header_nritems(c, 1);
2083 btrfs_set_header_level(c, level);
2084 btrfs_set_header_bytenr(c, c->start);
2085 btrfs_set_header_generation(c, trans->transid);
2086 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2087 btrfs_set_header_owner(c, root->root_key.objectid);
2088
2089 write_extent_buffer(c, root->fs_info->fsid,
2090 (unsigned long)btrfs_header_fsid(c),
2091 BTRFS_FSID_SIZE);
2092
2093 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2094 (unsigned long)btrfs_header_chunk_tree_uuid(c),
2095 BTRFS_UUID_SIZE);
2096
2097 btrfs_set_node_key(c, &lower_key, 0);
2098 btrfs_set_node_blockptr(c, 0, lower->start);
2099 lower_gen = btrfs_header_generation(lower);
2100 WARN_ON(lower_gen != trans->transid);
2101
2102 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2103
2104 btrfs_mark_buffer_dirty(c);
2105
2106 old = root->node;
2107 rcu_assign_pointer(root->node, c);
2108
2109 /* the super has an extra ref to root->node */
2110 free_extent_buffer(old);
2111
2112 add_root_to_dirty_list(root);
2113 extent_buffer_get(c);
2114 path->nodes[level] = c;
2115 path->locks[level] = BTRFS_WRITE_LOCK;
2116 path->slots[level] = 0;
2117 return 0;
2118}
2119
2120/*
2121 * worker function to insert a single pointer in a node.
2122 * the node should have enough room for the pointer already
2123 *
2124 * slot and level indicate where you want the key to go, and
2125 * blocknr is the block the key points to.
2126 *
2127 * returns zero on success and < 0 on any error
2128 */
2129static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2130 *root, struct btrfs_path *path, struct btrfs_disk_key
2131 *key, u64 bytenr, int slot, int level)
2132{
2133 struct extent_buffer *lower;
2134 int nritems;
2135
2136 BUG_ON(!path->nodes[level]);
2137 btrfs_assert_tree_locked(path->nodes[level]);
2138 lower = path->nodes[level];
2139 nritems = btrfs_header_nritems(lower);
2140 BUG_ON(slot > nritems);
2141 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2142 BUG();
2143 if (slot != nritems) {
2144 memmove_extent_buffer(lower,
2145 btrfs_node_key_ptr_offset(slot + 1),
2146 btrfs_node_key_ptr_offset(slot),
2147 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2148 }
2149 btrfs_set_node_key(lower, key, slot);
2150 btrfs_set_node_blockptr(lower, slot, bytenr);
2151 WARN_ON(trans->transid == 0);
2152 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2153 btrfs_set_header_nritems(lower, nritems + 1);
2154 btrfs_mark_buffer_dirty(lower);
2155 return 0;
2156}
2157
2158/*
2159 * split the node at the specified level in path in two.
2160 * The path is corrected to point to the appropriate node after the split
2161 *
2162 * Before splitting this tries to make some room in the node by pushing
2163 * left and right, if either one works, it returns right away.
2164 *
2165 * returns 0 on success and < 0 on failure
2166 */
2167static noinline int split_node(struct btrfs_trans_handle *trans,
2168 struct btrfs_root *root,
2169 struct btrfs_path *path, int level)
2170{
2171 struct extent_buffer *c;
2172 struct extent_buffer *split;
2173 struct btrfs_disk_key disk_key;
2174 int mid;
2175 int ret;
2176 int wret;
2177 u32 c_nritems;
2178
2179 c = path->nodes[level];
2180 WARN_ON(btrfs_header_generation(c) != trans->transid);
2181 if (c == root->node) {
2182 /* trying to split the root, lets make a new one */
2183 ret = insert_new_root(trans, root, path, level + 1);
2184 if (ret)
2185 return ret;
2186 } else {
2187 ret = push_nodes_for_insert(trans, root, path, level);
2188 c = path->nodes[level];
2189 if (!ret && btrfs_header_nritems(c) <
2190 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2191 return 0;
2192 if (ret < 0)
2193 return ret;
2194 }
2195
2196 c_nritems = btrfs_header_nritems(c);
2197 mid = (c_nritems + 1) / 2;
2198 btrfs_node_key(c, &disk_key, mid);
2199
2200 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2201 root->root_key.objectid,
2202 &disk_key, level, c->start, 0);
2203 if (IS_ERR(split))
2204 return PTR_ERR(split);
2205
2206 root_add_used(root, root->nodesize);
2207
2208 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2209 btrfs_set_header_level(split, btrfs_header_level(c));
2210 btrfs_set_header_bytenr(split, split->start);
2211 btrfs_set_header_generation(split, trans->transid);
2212 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2213 btrfs_set_header_owner(split, root->root_key.objectid);
2214 write_extent_buffer(split, root->fs_info->fsid,
2215 (unsigned long)btrfs_header_fsid(split),
2216 BTRFS_FSID_SIZE);
2217 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2218 (unsigned long)btrfs_header_chunk_tree_uuid(split),
2219 BTRFS_UUID_SIZE);
2220
2221
2222 copy_extent_buffer(split, c,
2223 btrfs_node_key_ptr_offset(0),
2224 btrfs_node_key_ptr_offset(mid),
2225 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2226 btrfs_set_header_nritems(split, c_nritems - mid);
2227 btrfs_set_header_nritems(c, mid);
2228 ret = 0;
2229
2230 btrfs_mark_buffer_dirty(c);
2231 btrfs_mark_buffer_dirty(split);
2232
2233 wret = insert_ptr(trans, root, path, &disk_key, split->start,
2234 path->slots[level + 1] + 1,
2235 level + 1);
2236 if (wret)
2237 ret = wret;
2238
2239 if (path->slots[level] >= mid) {
2240 path->slots[level] -= mid;
2241 btrfs_tree_unlock(c);
2242 free_extent_buffer(c);
2243 path->nodes[level] = split;
2244 path->slots[level + 1] += 1;
2245 } else {
2246 btrfs_tree_unlock(split);
2247 free_extent_buffer(split);
2248 }
2249 return ret;
2250}
2251
2252/*
2253 * how many bytes are required to store the items in a leaf. start
2254 * and nr indicate which items in the leaf to check. This totals up the
2255 * space used both by the item structs and the item data
2256 */
2257static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2258{
2259 int data_len;
2260 int nritems = btrfs_header_nritems(l);
2261 int end = min(nritems, start + nr) - 1;
2262
2263 if (!nr)
2264 return 0;
2265 data_len = btrfs_item_end_nr(l, start);
2266 data_len = data_len - btrfs_item_offset_nr(l, end);
2267 data_len += sizeof(struct btrfs_item) * nr;
2268 WARN_ON(data_len < 0);
2269 return data_len;
2270}
2271
2272/*
2273 * The space between the end of the leaf items and
2274 * the start of the leaf data. IOW, how much room
2275 * the leaf has left for both items and data
2276 */
2277noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2278 struct extent_buffer *leaf)
2279{
2280 int nritems = btrfs_header_nritems(leaf);
2281 int ret;
2282 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2283 if (ret < 0) {
2284 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2285 "used %d nritems %d\n",
2286 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2287 leaf_space_used(leaf, 0, nritems), nritems);
2288 }
2289 return ret;
2290}
2291
2292/*
2293 * min slot controls the lowest index we're willing to push to the
2294 * right. We'll push up to and including min_slot, but no lower
2295 */
2296static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2297 struct btrfs_root *root,
2298 struct btrfs_path *path,
2299 int data_size, int empty,
2300 struct extent_buffer *right,
2301 int free_space, u32 left_nritems,
2302 u32 min_slot)
2303{
2304 struct extent_buffer *left = path->nodes[0];
2305 struct extent_buffer *upper = path->nodes[1];
2306 struct btrfs_disk_key disk_key;
2307 int slot;
2308 u32 i;
2309 int push_space = 0;
2310 int push_items = 0;
2311 struct btrfs_item *item;
2312 u32 nr;
2313 u32 right_nritems;
2314 u32 data_end;
2315 u32 this_item_size;
2316
2317 if (empty)
2318 nr = 0;
2319 else
2320 nr = max_t(u32, 1, min_slot);
2321
2322 if (path->slots[0] >= left_nritems)
2323 push_space += data_size;
2324
2325 slot = path->slots[1];
2326 i = left_nritems - 1;
2327 while (i >= nr) {
2328 item = btrfs_item_nr(left, i);
2329
2330 if (!empty && push_items > 0) {
2331 if (path->slots[0] > i)
2332 break;
2333 if (path->slots[0] == i) {
2334 int space = btrfs_leaf_free_space(root, left);
2335 if (space + push_space * 2 > free_space)
2336 break;
2337 }
2338 }
2339
2340 if (path->slots[0] == i)
2341 push_space += data_size;
2342
2343 this_item_size = btrfs_item_size(left, item);
2344 if (this_item_size + sizeof(*item) + push_space > free_space)
2345 break;
2346
2347 push_items++;
2348 push_space += this_item_size + sizeof(*item);
2349 if (i == 0)
2350 break;
2351 i--;
2352 }
2353
2354 if (push_items == 0)
2355 goto out_unlock;
2356
2357 if (!empty && push_items == left_nritems)
2358 WARN_ON(1);
2359
2360 /* push left to right */
2361 right_nritems = btrfs_header_nritems(right);
2362
2363 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2364 push_space -= leaf_data_end(root, left);
2365
2366 /* make room in the right data area */
2367 data_end = leaf_data_end(root, right);
2368 memmove_extent_buffer(right,
2369 btrfs_leaf_data(right) + data_end - push_space,
2370 btrfs_leaf_data(right) + data_end,
2371 BTRFS_LEAF_DATA_SIZE(root) - data_end);
2372
2373 /* copy from the left data area */
2374 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2375 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2376 btrfs_leaf_data(left) + leaf_data_end(root, left),
2377 push_space);
2378
2379 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2380 btrfs_item_nr_offset(0),
2381 right_nritems * sizeof(struct btrfs_item));
2382
2383 /* copy the items from left to right */
2384 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2385 btrfs_item_nr_offset(left_nritems - push_items),
2386 push_items * sizeof(struct btrfs_item));
2387
2388 /* update the item pointers */
2389 right_nritems += push_items;
2390 btrfs_set_header_nritems(right, right_nritems);
2391 push_space = BTRFS_LEAF_DATA_SIZE(root);
2392 for (i = 0; i < right_nritems; i++) {
2393 item = btrfs_item_nr(right, i);
2394 push_space -= btrfs_item_size(right, item);
2395 btrfs_set_item_offset(right, item, push_space);
2396 }
2397
2398 left_nritems -= push_items;
2399 btrfs_set_header_nritems(left, left_nritems);
2400
2401 if (left_nritems)
2402 btrfs_mark_buffer_dirty(left);
2403 else
2404 clean_tree_block(trans, root, left);
2405
2406 btrfs_mark_buffer_dirty(right);
2407
2408 btrfs_item_key(right, &disk_key, 0);
2409 btrfs_set_node_key(upper, &disk_key, slot + 1);
2410 btrfs_mark_buffer_dirty(upper);
2411
2412 /* then fixup the leaf pointer in the path */
2413 if (path->slots[0] >= left_nritems) {
2414 path->slots[0] -= left_nritems;
2415 if (btrfs_header_nritems(path->nodes[0]) == 0)
2416 clean_tree_block(trans, root, path->nodes[0]);
2417 btrfs_tree_unlock(path->nodes[0]);
2418 free_extent_buffer(path->nodes[0]);
2419 path->nodes[0] = right;
2420 path->slots[1] += 1;
2421 } else {
2422 btrfs_tree_unlock(right);
2423 free_extent_buffer(right);
2424 }
2425 return 0;
2426
2427out_unlock:
2428 btrfs_tree_unlock(right);
2429 free_extent_buffer(right);
2430 return 1;
2431}
2432
2433/*
2434 * push some data in the path leaf to the right, trying to free up at
2435 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2436 *
2437 * returns 1 if the push failed because the other node didn't have enough
2438 * room, 0 if everything worked out and < 0 if there were major errors.
2439 *
2440 * this will push starting from min_slot to the end of the leaf. It won't
2441 * push any slot lower than min_slot
2442 */
2443static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2444 *root, struct btrfs_path *path,
2445 int min_data_size, int data_size,
2446 int empty, u32 min_slot)
2447{
2448 struct extent_buffer *left = path->nodes[0];
2449 struct extent_buffer *right;
2450 struct extent_buffer *upper;
2451 int slot;
2452 int free_space;
2453 u32 left_nritems;
2454 int ret;
2455
2456 if (!path->nodes[1])
2457 return 1;
2458
2459 slot = path->slots[1];
2460 upper = path->nodes[1];
2461 if (slot >= btrfs_header_nritems(upper) - 1)
2462 return 1;
2463
2464 btrfs_assert_tree_locked(path->nodes[1]);
2465
2466 right = read_node_slot(root, upper, slot + 1);
2467 if (right == NULL)
2468 return 1;
2469
2470 btrfs_tree_lock(right);
2471 btrfs_set_lock_blocking(right);
2472
2473 free_space = btrfs_leaf_free_space(root, right);
2474 if (free_space < data_size)
2475 goto out_unlock;
2476
2477 /* cow and double check */
2478 ret = btrfs_cow_block(trans, root, right, upper,
2479 slot + 1, &right);
2480 if (ret)
2481 goto out_unlock;
2482
2483 free_space = btrfs_leaf_free_space(root, right);
2484 if (free_space < data_size)
2485 goto out_unlock;
2486
2487 left_nritems = btrfs_header_nritems(left);
2488 if (left_nritems == 0)
2489 goto out_unlock;
2490
2491 return __push_leaf_right(trans, root, path, min_data_size, empty,
2492 right, free_space, left_nritems, min_slot);
2493out_unlock:
2494 btrfs_tree_unlock(right);
2495 free_extent_buffer(right);
2496 return 1;
2497}
2498
2499/*
2500 * push some data in the path leaf to the left, trying to free up at
2501 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2502 *
2503 * max_slot can put a limit on how far into the leaf we'll push items. The
2504 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
2505 * items
2506 */
2507static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2508 struct btrfs_root *root,
2509 struct btrfs_path *path, int data_size,
2510 int empty, struct extent_buffer *left,
2511 int free_space, u32 right_nritems,
2512 u32 max_slot)
2513{
2514 struct btrfs_disk_key disk_key;
2515 struct extent_buffer *right = path->nodes[0];
2516 int i;
2517 int push_space = 0;
2518 int push_items = 0;
2519 struct btrfs_item *item;
2520 u32 old_left_nritems;
2521 u32 nr;
2522 int ret = 0;
2523 int wret;
2524 u32 this_item_size;
2525 u32 old_left_item_size;
2526
2527 if (empty)
2528 nr = min(right_nritems, max_slot);
2529 else
2530 nr = min(right_nritems - 1, max_slot);
2531
2532 for (i = 0; i < nr; i++) {
2533 item = btrfs_item_nr(right, i);
2534
2535 if (!empty && push_items > 0) {
2536 if (path->slots[0] < i)
2537 break;
2538 if (path->slots[0] == i) {
2539 int space = btrfs_leaf_free_space(root, right);
2540 if (space + push_space * 2 > free_space)
2541 break;
2542 }
2543 }
2544
2545 if (path->slots[0] == i)
2546 push_space += data_size;
2547
2548 this_item_size = btrfs_item_size(right, item);
2549 if (this_item_size + sizeof(*item) + push_space > free_space)
2550 break;
2551
2552 push_items++;
2553 push_space += this_item_size + sizeof(*item);
2554 }
2555
2556 if (push_items == 0) {
2557 ret = 1;
2558 goto out;
2559 }
2560 if (!empty && push_items == btrfs_header_nritems(right))
2561 WARN_ON(1);
2562
2563 /* push data from right to left */
2564 copy_extent_buffer(left, right,
2565 btrfs_item_nr_offset(btrfs_header_nritems(left)),
2566 btrfs_item_nr_offset(0),
2567 push_items * sizeof(struct btrfs_item));
2568
2569 push_space = BTRFS_LEAF_DATA_SIZE(root) -
2570 btrfs_item_offset_nr(right, push_items - 1);
2571
2572 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2573 leaf_data_end(root, left) - push_space,
2574 btrfs_leaf_data(right) +
2575 btrfs_item_offset_nr(right, push_items - 1),
2576 push_space);
2577 old_left_nritems = btrfs_header_nritems(left);
2578 BUG_ON(old_left_nritems <= 0);
2579
2580 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2581 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2582 u32 ioff;
2583
2584 item = btrfs_item_nr(left, i);
2585
2586 ioff = btrfs_item_offset(left, item);
2587 btrfs_set_item_offset(left, item,
2588 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2589 }
2590 btrfs_set_header_nritems(left, old_left_nritems + push_items);
2591
2592 /* fixup right node */
2593 if (push_items > right_nritems) {
2594 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2595 right_nritems);
2596 WARN_ON(1);
2597 }
2598
2599 if (push_items < right_nritems) {
2600 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2601 leaf_data_end(root, right);
2602 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2603 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2604 btrfs_leaf_data(right) +
2605 leaf_data_end(root, right), push_space);
2606
2607 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2608 btrfs_item_nr_offset(push_items),
2609 (btrfs_header_nritems(right) - push_items) *
2610 sizeof(struct btrfs_item));
2611 }
2612 right_nritems -= push_items;
2613 btrfs_set_header_nritems(right, right_nritems);
2614 push_space = BTRFS_LEAF_DATA_SIZE(root);
2615 for (i = 0; i < right_nritems; i++) {
2616 item = btrfs_item_nr(right, i);
2617
2618 push_space = push_space - btrfs_item_size(right, item);
2619 btrfs_set_item_offset(right, item, push_space);
2620 }
2621
2622 btrfs_mark_buffer_dirty(left);
2623 if (right_nritems)
2624 btrfs_mark_buffer_dirty(right);
2625 else
2626 clean_tree_block(trans, root, right);
2627
2628 btrfs_item_key(right, &disk_key, 0);
2629 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2630 if (wret)
2631 ret = wret;
2632
2633 /* then fixup the leaf pointer in the path */
2634 if (path->slots[0] < push_items) {
2635 path->slots[0] += old_left_nritems;
2636 btrfs_tree_unlock(path->nodes[0]);
2637 free_extent_buffer(path->nodes[0]);
2638 path->nodes[0] = left;
2639 path->slots[1] -= 1;
2640 } else {
2641 btrfs_tree_unlock(left);
2642 free_extent_buffer(left);
2643 path->slots[0] -= push_items;
2644 }
2645 BUG_ON(path->slots[0] < 0);
2646 return ret;
2647out:
2648 btrfs_tree_unlock(left);
2649 free_extent_buffer(left);
2650 return ret;
2651}
2652
2653/*
2654 * push some data in the path leaf to the left, trying to free up at
2655 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2656 *
2657 * max_slot can put a limit on how far into the leaf we'll push items. The
2658 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
2659 * items
2660 */
2661static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2662 *root, struct btrfs_path *path, int min_data_size,
2663 int data_size, int empty, u32 max_slot)
2664{
2665 struct extent_buffer *right = path->nodes[0];
2666 struct extent_buffer *left;
2667 int slot;
2668 int free_space;
2669 u32 right_nritems;
2670 int ret = 0;
2671
2672 slot = path->slots[1];
2673 if (slot == 0)
2674 return 1;
2675 if (!path->nodes[1])
2676 return 1;
2677
2678 right_nritems = btrfs_header_nritems(right);
2679 if (right_nritems == 0)
2680 return 1;
2681
2682 btrfs_assert_tree_locked(path->nodes[1]);
2683
2684 left = read_node_slot(root, path->nodes[1], slot - 1);
2685 if (left == NULL)
2686 return 1;
2687
2688 btrfs_tree_lock(left);
2689 btrfs_set_lock_blocking(left);
2690
2691 free_space = btrfs_leaf_free_space(root, left);
2692 if (free_space < data_size) {
2693 ret = 1;
2694 goto out;
2695 }
2696
2697 /* cow and double check */
2698 ret = btrfs_cow_block(trans, root, left,
2699 path->nodes[1], slot - 1, &left);
2700 if (ret) {
2701 /* we hit -ENOSPC, but it isn't fatal here */
2702 ret = 1;
2703 goto out;
2704 }
2705
2706 free_space = btrfs_leaf_free_space(root, left);
2707 if (free_space < data_size) {
2708 ret = 1;
2709 goto out;
2710 }
2711
2712 return __push_leaf_left(trans, root, path, min_data_size,
2713 empty, left, free_space, right_nritems,
2714 max_slot);
2715out:
2716 btrfs_tree_unlock(left);
2717 free_extent_buffer(left);
2718 return ret;
2719}
2720
2721/*
2722 * split the path's leaf in two, making sure there is at least data_size
2723 * available for the resulting leaf level of the path.
2724 *
2725 * returns 0 if all went well and < 0 on failure.
2726 */
2727static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2728 struct btrfs_root *root,
2729 struct btrfs_path *path,
2730 struct extent_buffer *l,
2731 struct extent_buffer *right,
2732 int slot, int mid, int nritems)
2733{
2734 int data_copy_size;
2735 int rt_data_off;
2736 int i;
2737 int ret = 0;
2738 int wret;
2739 struct btrfs_disk_key disk_key;
2740
2741 nritems = nritems - mid;
2742 btrfs_set_header_nritems(right, nritems);
2743 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2744
2745 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2746 btrfs_item_nr_offset(mid),
2747 nritems * sizeof(struct btrfs_item));
2748
2749 copy_extent_buffer(right, l,
2750 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2751 data_copy_size, btrfs_leaf_data(l) +
2752 leaf_data_end(root, l), data_copy_size);
2753
2754 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2755 btrfs_item_end_nr(l, mid);
2756
2757 for (i = 0; i < nritems; i++) {
2758 struct btrfs_item *item = btrfs_item_nr(right, i);
2759 u32 ioff;
2760
2761 ioff = btrfs_item_offset(right, item);
2762 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2763 }
2764
2765 btrfs_set_header_nritems(l, mid);
2766 ret = 0;
2767 btrfs_item_key(right, &disk_key, 0);
2768 wret = insert_ptr(trans, root, path, &disk_key, right->start,
2769 path->slots[1] + 1, 1);
2770 if (wret)
2771 ret = wret;
2772
2773 btrfs_mark_buffer_dirty(right);
2774 btrfs_mark_buffer_dirty(l);
2775 BUG_ON(path->slots[0] != slot);
2776
2777 if (mid <= slot) {
2778 btrfs_tree_unlock(path->nodes[0]);
2779 free_extent_buffer(path->nodes[0]);
2780 path->nodes[0] = right;
2781 path->slots[0] -= mid;
2782 path->slots[1] += 1;
2783 } else {
2784 btrfs_tree_unlock(right);
2785 free_extent_buffer(right);
2786 }
2787
2788 BUG_ON(path->slots[0] < 0);
2789
2790 return ret;
2791}
2792
2793/*
2794 * double splits happen when we need to insert a big item in the middle
2795 * of a leaf. A double split can leave us with 3 mostly empty leaves:
2796 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2797 * A B C
2798 *
2799 * We avoid this by trying to push the items on either side of our target
2800 * into the adjacent leaves. If all goes well we can avoid the double split
2801 * completely.
2802 */
2803static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2804 struct btrfs_root *root,
2805 struct btrfs_path *path,
2806 int data_size)
2807{
2808 int ret;
2809 int progress = 0;
2810 int slot;
2811 u32 nritems;
2812
2813 slot = path->slots[0];
2814
2815 /*
2816 * try to push all the items after our slot into the
2817 * right leaf
2818 */
2819 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2820 if (ret < 0)
2821 return ret;
2822
2823 if (ret == 0)
2824 progress++;
2825
2826 nritems = btrfs_header_nritems(path->nodes[0]);
2827 /*
2828 * our goal is to get our slot at the start or end of a leaf. If
2829 * we've done so we're done
2830 */
2831 if (path->slots[0] == 0 || path->slots[0] == nritems)
2832 return 0;
2833
2834 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2835 return 0;
2836
2837 /* try to push all the items before our slot into the next leaf */
2838 slot = path->slots[0];
2839 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2840 if (ret < 0)
2841 return ret;
2842
2843 if (ret == 0)
2844 progress++;
2845
2846 if (progress)
2847 return 0;
2848 return 1;
2849}
2850
2851/*
2852 * split the path's leaf in two, making sure there is at least data_size
2853 * available for the resulting leaf level of the path.
2854 *
2855 * returns 0 if all went well and < 0 on failure.
2856 */
2857static noinline int split_leaf(struct btrfs_trans_handle *trans,
2858 struct btrfs_root *root,
2859 struct btrfs_key *ins_key,
2860 struct btrfs_path *path, int data_size,
2861 int extend)
2862{
2863 struct btrfs_disk_key disk_key;
2864 struct extent_buffer *l;
2865 u32 nritems;
2866 int mid;
2867 int slot;
2868 struct extent_buffer *right;
2869 int ret = 0;
2870 int wret;
2871 int split;
2872 int num_doubles = 0;
2873 int tried_avoid_double = 0;
2874
2875 l = path->nodes[0];
2876 slot = path->slots[0];
2877 if (extend && data_size + btrfs_item_size_nr(l, slot) +
2878 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2879 return -EOVERFLOW;
2880
2881 /* first try to make some room by pushing left and right */
2882 if (data_size) {
2883 wret = push_leaf_right(trans, root, path, data_size,
2884 data_size, 0, 0);
2885 if (wret < 0)
2886 return wret;
2887 if (wret) {
2888 wret = push_leaf_left(trans, root, path, data_size,
2889 data_size, 0, (u32)-1);
2890 if (wret < 0)
2891 return wret;
2892 }
2893 l = path->nodes[0];
2894
2895 /* did the pushes work? */
2896 if (btrfs_leaf_free_space(root, l) >= data_size)
2897 return 0;
2898 }
2899
2900 if (!path->nodes[1]) {
2901 ret = insert_new_root(trans, root, path, 1);
2902 if (ret)
2903 return ret;
2904 }
2905again:
2906 split = 1;
2907 l = path->nodes[0];
2908 slot = path->slots[0];
2909 nritems = btrfs_header_nritems(l);
2910 mid = (nritems + 1) / 2;
2911
2912 if (mid <= slot) {
2913 if (nritems == 1 ||
2914 leaf_space_used(l, mid, nritems - mid) + data_size >
2915 BTRFS_LEAF_DATA_SIZE(root)) {
2916 if (slot >= nritems) {
2917 split = 0;
2918 } else {
2919 mid = slot;
2920 if (mid != nritems &&
2921 leaf_space_used(l, mid, nritems - mid) +
2922 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2923 if (data_size && !tried_avoid_double)
2924 goto push_for_double;
2925 split = 2;
2926 }
2927 }
2928 }
2929 } else {
2930 if (leaf_space_used(l, 0, mid) + data_size >
2931 BTRFS_LEAF_DATA_SIZE(root)) {
2932 if (!extend && data_size && slot == 0) {
2933 split = 0;
2934 } else if ((extend || !data_size) && slot == 0) {
2935 mid = 1;
2936 } else {
2937 mid = slot;
2938 if (mid != nritems &&
2939 leaf_space_used(l, mid, nritems - mid) +
2940 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2941 if (data_size && !tried_avoid_double)
2942 goto push_for_double;
2943 split = 2 ;
2944 }
2945 }
2946 }
2947 }
2948
2949 if (split == 0)
2950 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2951 else
2952 btrfs_item_key(l, &disk_key, mid);
2953
2954 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2955 root->root_key.objectid,
2956 &disk_key, 0, l->start, 0);
2957 if (IS_ERR(right))
2958 return PTR_ERR(right);
2959
2960 root_add_used(root, root->leafsize);
2961
2962 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2963 btrfs_set_header_bytenr(right, right->start);
2964 btrfs_set_header_generation(right, trans->transid);
2965 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2966 btrfs_set_header_owner(right, root->root_key.objectid);
2967 btrfs_set_header_level(right, 0);
2968 write_extent_buffer(right, root->fs_info->fsid,
2969 (unsigned long)btrfs_header_fsid(right),
2970 BTRFS_FSID_SIZE);
2971
2972 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2973 (unsigned long)btrfs_header_chunk_tree_uuid(right),
2974 BTRFS_UUID_SIZE);
2975
2976 if (split == 0) {
2977 if (mid <= slot) {
2978 btrfs_set_header_nritems(right, 0);
2979 wret = insert_ptr(trans, root, path,
2980 &disk_key, right->start,
2981 path->slots[1] + 1, 1);
2982 if (wret)
2983 ret = wret;
2984
2985 btrfs_tree_unlock(path->nodes[0]);
2986 free_extent_buffer(path->nodes[0]);
2987 path->nodes[0] = right;
2988 path->slots[0] = 0;
2989 path->slots[1] += 1;
2990 } else {
2991 btrfs_set_header_nritems(right, 0);
2992 wret = insert_ptr(trans, root, path,
2993 &disk_key,
2994 right->start,
2995 path->slots[1], 1);
2996 if (wret)
2997 ret = wret;
2998 btrfs_tree_unlock(path->nodes[0]);
2999 free_extent_buffer(path->nodes[0]);
3000 path->nodes[0] = right;
3001 path->slots[0] = 0;
3002 if (path->slots[1] == 0) {
3003 wret = fixup_low_keys(trans, root,
3004 path, &disk_key, 1);
3005 if (wret)
3006 ret = wret;
3007 }
3008 }
3009 btrfs_mark_buffer_dirty(right);
3010 return ret;
3011 }
3012
3013 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3014 BUG_ON(ret);
3015
3016 if (split == 2) {
3017 BUG_ON(num_doubles != 0);
3018 num_doubles++;
3019 goto again;
3020 }
3021
3022 return ret;
3023
3024push_for_double:
3025 push_for_double_split(trans, root, path, data_size);
3026 tried_avoid_double = 1;
3027 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3028 return 0;
3029 goto again;
3030}
3031
3032static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3033 struct btrfs_root *root,
3034 struct btrfs_path *path, int ins_len)
3035{
3036 struct btrfs_key key;
3037 struct extent_buffer *leaf;
3038 struct btrfs_file_extent_item *fi;
3039 u64 extent_len = 0;
3040 u32 item_size;
3041 int ret;
3042
3043 leaf = path->nodes[0];
3044 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3045
3046 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3047 key.type != BTRFS_EXTENT_CSUM_KEY);
3048
3049 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3050 return 0;
3051
3052 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3053 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3054 fi = btrfs_item_ptr(leaf, path->slots[0],
3055 struct btrfs_file_extent_item);
3056 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3057 }
3058 btrfs_release_path(path);
3059
3060 path->keep_locks = 1;
3061 path->search_for_split = 1;
3062 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3063 path->search_for_split = 0;
3064 if (ret < 0)
3065 goto err;
3066
3067 ret = -EAGAIN;
3068 leaf = path->nodes[0];
3069 /* if our item isn't there or got smaller, return now */
3070 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3071 goto err;
3072
3073 /* the leaf has changed, it now has room. return now */
3074 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3075 goto err;
3076
3077 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3078 fi = btrfs_item_ptr(leaf, path->slots[0],
3079 struct btrfs_file_extent_item);
3080 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3081 goto err;
3082 }
3083
3084 btrfs_set_path_blocking(path);
3085 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3086 if (ret)
3087 goto err;
3088
3089 path->keep_locks = 0;
3090 btrfs_unlock_up_safe(path, 1);
3091 return 0;
3092err:
3093 path->keep_locks = 0;
3094 return ret;
3095}
3096
3097static noinline int split_item(struct btrfs_trans_handle *trans,
3098 struct btrfs_root *root,
3099 struct btrfs_path *path,
3100 struct btrfs_key *new_key,
3101 unsigned long split_offset)
3102{
3103 struct extent_buffer *leaf;
3104 struct btrfs_item *item;
3105 struct btrfs_item *new_item;
3106 int slot;
3107 char *buf;
3108 u32 nritems;
3109 u32 item_size;
3110 u32 orig_offset;
3111 struct btrfs_disk_key disk_key;
3112
3113 leaf = path->nodes[0];
3114 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3115
3116 btrfs_set_path_blocking(path);
3117
3118 item = btrfs_item_nr(leaf, path->slots[0]);
3119 orig_offset = btrfs_item_offset(leaf, item);
3120 item_size = btrfs_item_size(leaf, item);
3121
3122 buf = kmalloc(item_size, GFP_NOFS);
3123 if (!buf)
3124 return -ENOMEM;
3125
3126 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3127 path->slots[0]), item_size);
3128
3129 slot = path->slots[0] + 1;
3130 nritems = btrfs_header_nritems(leaf);
3131 if (slot != nritems) {
3132 /* shift the items */
3133 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3134 btrfs_item_nr_offset(slot),
3135 (nritems - slot) * sizeof(struct btrfs_item));
3136 }
3137
3138 btrfs_cpu_key_to_disk(&disk_key, new_key);
3139 btrfs_set_item_key(leaf, &disk_key, slot);
3140
3141 new_item = btrfs_item_nr(leaf, slot);
3142
3143 btrfs_set_item_offset(leaf, new_item, orig_offset);
3144 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3145
3146 btrfs_set_item_offset(leaf, item,
3147 orig_offset + item_size - split_offset);
3148 btrfs_set_item_size(leaf, item, split_offset);
3149
3150 btrfs_set_header_nritems(leaf, nritems + 1);
3151
3152 /* write the data for the start of the original item */
3153 write_extent_buffer(leaf, buf,
3154 btrfs_item_ptr_offset(leaf, path->slots[0]),
3155 split_offset);
3156
3157 /* write the data for the new item */
3158 write_extent_buffer(leaf, buf + split_offset,
3159 btrfs_item_ptr_offset(leaf, slot),
3160 item_size - split_offset);
3161 btrfs_mark_buffer_dirty(leaf);
3162
3163 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3164 kfree(buf);
3165 return 0;
3166}
3167
3168/*
3169 * This function splits a single item into two items,
3170 * giving 'new_key' to the new item and splitting the
3171 * old one at split_offset (from the start of the item).
3172 *
3173 * The path may be released by this operation. After
3174 * the split, the path is pointing to the old item. The
3175 * new item is going to be in the same node as the old one.
3176 *
3177 * Note, the item being split must be smaller enough to live alone on
3178 * a tree block with room for one extra struct btrfs_item
3179 *
3180 * This allows us to split the item in place, keeping a lock on the
3181 * leaf the entire time.
3182 */
3183int btrfs_split_item(struct btrfs_trans_handle *trans,
3184 struct btrfs_root *root,
3185 struct btrfs_path *path,
3186 struct btrfs_key *new_key,
3187 unsigned long split_offset)
3188{
3189 int ret;
3190 ret = setup_leaf_for_split(trans, root, path,
3191 sizeof(struct btrfs_item));
3192 if (ret)
3193 return ret;
3194
3195 ret = split_item(trans, root, path, new_key, split_offset);
3196 return ret;
3197}
3198
3199/*
3200 * This function duplicate a item, giving 'new_key' to the new item.
3201 * It guarantees both items live in the same tree leaf and the new item
3202 * is contiguous with the original item.
3203 *
3204 * This allows us to split file extent in place, keeping a lock on the
3205 * leaf the entire time.
3206 */
3207int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3208 struct btrfs_root *root,
3209 struct btrfs_path *path,
3210 struct btrfs_key *new_key)
3211{
3212 struct extent_buffer *leaf;
3213 int ret;
3214 u32 item_size;
3215
3216 leaf = path->nodes[0];
3217 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3218 ret = setup_leaf_for_split(trans, root, path,
3219 item_size + sizeof(struct btrfs_item));
3220 if (ret)
3221 return ret;
3222
3223 path->slots[0]++;
3224 ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3225 item_size, item_size +
3226 sizeof(struct btrfs_item), 1);
3227 BUG_ON(ret);
3228
3229 leaf = path->nodes[0];
3230 memcpy_extent_buffer(leaf,
3231 btrfs_item_ptr_offset(leaf, path->slots[0]),
3232 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3233 item_size);
3234 return 0;
3235}
3236
3237/*
3238 * make the item pointed to by the path smaller. new_size indicates
3239 * how small to make it, and from_end tells us if we just chop bytes
3240 * off the end of the item or if we shift the item to chop bytes off
3241 * the front.
3242 */
3243int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3244 struct btrfs_root *root,
3245 struct btrfs_path *path,
3246 u32 new_size, int from_end)
3247{
3248 int slot;
3249 struct extent_buffer *leaf;
3250 struct btrfs_item *item;
3251 u32 nritems;
3252 unsigned int data_end;
3253 unsigned int old_data_start;
3254 unsigned int old_size;
3255 unsigned int size_diff;
3256 int i;
3257
3258 leaf = path->nodes[0];
3259 slot = path->slots[0];
3260
3261 old_size = btrfs_item_size_nr(leaf, slot);
3262 if (old_size == new_size)
3263 return 0;
3264
3265 nritems = btrfs_header_nritems(leaf);
3266 data_end = leaf_data_end(root, leaf);
3267
3268 old_data_start = btrfs_item_offset_nr(leaf, slot);
3269
3270 size_diff = old_size - new_size;
3271
3272 BUG_ON(slot < 0);
3273 BUG_ON(slot >= nritems);
3274
3275 /*
3276 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3277 */
3278 /* first correct the data pointers */
3279 for (i = slot; i < nritems; i++) {
3280 u32 ioff;
3281 item = btrfs_item_nr(leaf, i);
3282
3283 ioff = btrfs_item_offset(leaf, item);
3284 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3285 }
3286
3287 /* shift the data */
3288 if (from_end) {
3289 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3290 data_end + size_diff, btrfs_leaf_data(leaf) +
3291 data_end, old_data_start + new_size - data_end);
3292 } else {
3293 struct btrfs_disk_key disk_key;
3294 u64 offset;
3295
3296 btrfs_item_key(leaf, &disk_key, slot);
3297
3298 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3299 unsigned long ptr;
3300 struct btrfs_file_extent_item *fi;
3301
3302 fi = btrfs_item_ptr(leaf, slot,
3303 struct btrfs_file_extent_item);
3304 fi = (struct btrfs_file_extent_item *)(
3305 (unsigned long)fi - size_diff);
3306
3307 if (btrfs_file_extent_type(leaf, fi) ==
3308 BTRFS_FILE_EXTENT_INLINE) {
3309 ptr = btrfs_item_ptr_offset(leaf, slot);
3310 memmove_extent_buffer(leaf, ptr,
3311 (unsigned long)fi,
3312 offsetof(struct btrfs_file_extent_item,
3313 disk_bytenr));
3314 }
3315 }
3316
3317 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3318 data_end + size_diff, btrfs_leaf_data(leaf) +
3319 data_end, old_data_start - data_end);
3320
3321 offset = btrfs_disk_key_offset(&disk_key);
3322 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3323 btrfs_set_item_key(leaf, &disk_key, slot);
3324 if (slot == 0)
3325 fixup_low_keys(trans, root, path, &disk_key, 1);
3326 }
3327
3328 item = btrfs_item_nr(leaf, slot);
3329 btrfs_set_item_size(leaf, item, new_size);
3330 btrfs_mark_buffer_dirty(leaf);
3331
3332 if (btrfs_leaf_free_space(root, leaf) < 0) {
3333 btrfs_print_leaf(root, leaf);
3334 BUG();
3335 }
3336 return 0;
3337}
3338
3339/*
3340 * make the item pointed to by the path bigger, data_size is the new size.
3341 */
3342int btrfs_extend_item(struct btrfs_trans_handle *trans,
3343 struct btrfs_root *root, struct btrfs_path *path,
3344 u32 data_size)
3345{
3346 int slot;
3347 struct extent_buffer *leaf;
3348 struct btrfs_item *item;
3349 u32 nritems;
3350 unsigned int data_end;
3351 unsigned int old_data;
3352 unsigned int old_size;
3353 int i;
3354
3355 leaf = path->nodes[0];
3356
3357 nritems = btrfs_header_nritems(leaf);
3358 data_end = leaf_data_end(root, leaf);
3359
3360 if (btrfs_leaf_free_space(root, leaf) < data_size) {
3361 btrfs_print_leaf(root, leaf);
3362 BUG();
3363 }
3364 slot = path->slots[0];
3365 old_data = btrfs_item_end_nr(leaf, slot);
3366
3367 BUG_ON(slot < 0);
3368 if (slot >= nritems) {
3369 btrfs_print_leaf(root, leaf);
3370 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3371 slot, nritems);
3372 BUG_ON(1);
3373 }
3374
3375 /*
3376 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3377 */
3378 /* first correct the data pointers */
3379 for (i = slot; i < nritems; i++) {
3380 u32 ioff;
3381 item = btrfs_item_nr(leaf, i);
3382
3383 ioff = btrfs_item_offset(leaf, item);
3384 btrfs_set_item_offset(leaf, item, ioff - data_size);
3385 }
3386
3387 /* shift the data */
3388 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3389 data_end - data_size, btrfs_leaf_data(leaf) +
3390 data_end, old_data - data_end);
3391
3392 data_end = old_data;
3393 old_size = btrfs_item_size_nr(leaf, slot);
3394 item = btrfs_item_nr(leaf, slot);
3395 btrfs_set_item_size(leaf, item, old_size + data_size);
3396 btrfs_mark_buffer_dirty(leaf);
3397
3398 if (btrfs_leaf_free_space(root, leaf) < 0) {
3399 btrfs_print_leaf(root, leaf);
3400 BUG();
3401 }
3402 return 0;
3403}
3404
3405/*
3406 * Given a key and some data, insert items into the tree.
3407 * This does all the path init required, making room in the tree if needed.
3408 * Returns the number of keys that were inserted.
3409 */
3410int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3411 struct btrfs_root *root,
3412 struct btrfs_path *path,
3413 struct btrfs_key *cpu_key, u32 *data_size,
3414 int nr)
3415{
3416 struct extent_buffer *leaf;
3417 struct btrfs_item *item;
3418 int ret = 0;
3419 int slot;
3420 int i;
3421 u32 nritems;
3422 u32 total_data = 0;
3423 u32 total_size = 0;
3424 unsigned int data_end;
3425 struct btrfs_disk_key disk_key;
3426 struct btrfs_key found_key;
3427
3428 for (i = 0; i < nr; i++) {
3429 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3430 BTRFS_LEAF_DATA_SIZE(root)) {
3431 break;
3432 nr = i;
3433 }
3434 total_data += data_size[i];
3435 total_size += data_size[i] + sizeof(struct btrfs_item);
3436 }
3437 BUG_ON(nr == 0);
3438
3439 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3440 if (ret == 0)
3441 return -EEXIST;
3442 if (ret < 0)
3443 goto out;
3444
3445 leaf = path->nodes[0];
3446
3447 nritems = btrfs_header_nritems(leaf);
3448 data_end = leaf_data_end(root, leaf);
3449
3450 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3451 for (i = nr; i >= 0; i--) {
3452 total_data -= data_size[i];
3453 total_size -= data_size[i] + sizeof(struct btrfs_item);
3454 if (total_size < btrfs_leaf_free_space(root, leaf))
3455 break;
3456 }
3457 nr = i;
3458 }
3459
3460 slot = path->slots[0];
3461 BUG_ON(slot < 0);
3462
3463 if (slot != nritems) {
3464 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3465
3466 item = btrfs_item_nr(leaf, slot);
3467 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3468
3469 /* figure out how many keys we can insert in here */
3470 total_data = data_size[0];
3471 for (i = 1; i < nr; i++) {
3472 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3473 break;
3474 total_data += data_size[i];
3475 }
3476 nr = i;
3477
3478 if (old_data < data_end) {
3479 btrfs_print_leaf(root, leaf);
3480 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3481 slot, old_data, data_end);
3482 BUG_ON(1);
3483 }
3484 /*
3485 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3486 */
3487 /* first correct the data pointers */
3488 for (i = slot; i < nritems; i++) {
3489 u32 ioff;
3490
3491 item = btrfs_item_nr(leaf, i);
3492 ioff = btrfs_item_offset(leaf, item);
3493 btrfs_set_item_offset(leaf, item, ioff - total_data);
3494 }
3495 /* shift the items */
3496 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3497 btrfs_item_nr_offset(slot),
3498 (nritems - slot) * sizeof(struct btrfs_item));
3499
3500 /* shift the data */
3501 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3502 data_end - total_data, btrfs_leaf_data(leaf) +
3503 data_end, old_data - data_end);
3504 data_end = old_data;
3505 } else {
3506 /*
3507 * this sucks but it has to be done, if we are inserting at
3508 * the end of the leaf only insert 1 of the items, since we
3509 * have no way of knowing whats on the next leaf and we'd have
3510 * to drop our current locks to figure it out
3511 */
3512 nr = 1;
3513 }
3514
3515 /* setup the item for the new data */
3516 for (i = 0; i < nr; i++) {
3517 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3518 btrfs_set_item_key(leaf, &disk_key, slot + i);
3519 item = btrfs_item_nr(leaf, slot + i);
3520 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3521 data_end -= data_size[i];
3522 btrfs_set_item_size(leaf, item, data_size[i]);
3523 }
3524 btrfs_set_header_nritems(leaf, nritems + nr);
3525 btrfs_mark_buffer_dirty(leaf);
3526
3527 ret = 0;
3528 if (slot == 0) {
3529 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3530 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3531 }
3532
3533 if (btrfs_leaf_free_space(root, leaf) < 0) {
3534 btrfs_print_leaf(root, leaf);
3535 BUG();
3536 }
3537out:
3538 if (!ret)
3539 ret = nr;
3540 return ret;
3541}
3542
3543/*
3544 * this is a helper for btrfs_insert_empty_items, the main goal here is
3545 * to save stack depth by doing the bulk of the work in a function
3546 * that doesn't call btrfs_search_slot
3547 */
3548int setup_items_for_insert(struct btrfs_trans_handle *trans,
3549 struct btrfs_root *root, struct btrfs_path *path,
3550 struct btrfs_key *cpu_key, u32 *data_size,
3551 u32 total_data, u32 total_size, int nr)
3552{
3553 struct btrfs_item *item;
3554 int i;
3555 u32 nritems;
3556 unsigned int data_end;
3557 struct btrfs_disk_key disk_key;
3558 int ret;
3559 struct extent_buffer *leaf;
3560 int slot;
3561
3562 leaf = path->nodes[0];
3563 slot = path->slots[0];
3564
3565 nritems = btrfs_header_nritems(leaf);
3566 data_end = leaf_data_end(root, leaf);
3567
3568 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3569 btrfs_print_leaf(root, leaf);
3570 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3571 total_size, btrfs_leaf_free_space(root, leaf));
3572 BUG();
3573 }
3574
3575 if (slot != nritems) {
3576 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3577
3578 if (old_data < data_end) {
3579 btrfs_print_leaf(root, leaf);
3580 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3581 slot, old_data, data_end);
3582 BUG_ON(1);
3583 }
3584 /*
3585 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3586 */
3587 /* first correct the data pointers */
3588 for (i = slot; i < nritems; i++) {
3589 u32 ioff;
3590
3591 item = btrfs_item_nr(leaf, i);
3592 ioff = btrfs_item_offset(leaf, item);
3593 btrfs_set_item_offset(leaf, item, ioff - total_data);
3594 }
3595 /* shift the items */
3596 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3597 btrfs_item_nr_offset(slot),
3598 (nritems - slot) * sizeof(struct btrfs_item));
3599
3600 /* shift the data */
3601 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3602 data_end - total_data, btrfs_leaf_data(leaf) +
3603 data_end, old_data - data_end);
3604 data_end = old_data;
3605 }
3606
3607 /* setup the item for the new data */
3608 for (i = 0; i < nr; i++) {
3609 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3610 btrfs_set_item_key(leaf, &disk_key, slot + i);
3611 item = btrfs_item_nr(leaf, slot + i);
3612 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3613 data_end -= data_size[i];
3614 btrfs_set_item_size(leaf, item, data_size[i]);
3615 }
3616
3617 btrfs_set_header_nritems(leaf, nritems + nr);
3618
3619 ret = 0;
3620 if (slot == 0) {
3621 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3622 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3623 }
3624 btrfs_unlock_up_safe(path, 1);
3625 btrfs_mark_buffer_dirty(leaf);
3626
3627 if (btrfs_leaf_free_space(root, leaf) < 0) {
3628 btrfs_print_leaf(root, leaf);
3629 BUG();
3630 }
3631 return ret;
3632}
3633
3634/*
3635 * Given a key and some data, insert items into the tree.
3636 * This does all the path init required, making room in the tree if needed.
3637 */
3638int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3639 struct btrfs_root *root,
3640 struct btrfs_path *path,
3641 struct btrfs_key *cpu_key, u32 *data_size,
3642 int nr)
3643{
3644 int ret = 0;
3645 int slot;
3646 int i;
3647 u32 total_size = 0;
3648 u32 total_data = 0;
3649
3650 for (i = 0; i < nr; i++)
3651 total_data += data_size[i];
3652
3653 total_size = total_data + (nr * sizeof(struct btrfs_item));
3654 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3655 if (ret == 0)
3656 return -EEXIST;
3657 if (ret < 0)
3658 goto out;
3659
3660 slot = path->slots[0];
3661 BUG_ON(slot < 0);
3662
3663 ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3664 total_data, total_size, nr);
3665
3666out:
3667 return ret;
3668}
3669
3670/*
3671 * Given a key and some data, insert an item into the tree.
3672 * This does all the path init required, making room in the tree if needed.
3673 */
3674int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3675 *root, struct btrfs_key *cpu_key, void *data, u32
3676 data_size)
3677{
3678 int ret = 0;
3679 struct btrfs_path *path;
3680 struct extent_buffer *leaf;
3681 unsigned long ptr;
3682
3683 path = btrfs_alloc_path();
3684 if (!path)
3685 return -ENOMEM;
3686 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3687 if (!ret) {
3688 leaf = path->nodes[0];
3689 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3690 write_extent_buffer(leaf, data, ptr, data_size);
3691 btrfs_mark_buffer_dirty(leaf);
3692 }
3693 btrfs_free_path(path);
3694 return ret;
3695}
3696
3697/*
3698 * delete the pointer from a given node.
3699 *
3700 * the tree should have been previously balanced so the deletion does not
3701 * empty a node.
3702 */
3703static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3704 struct btrfs_path *path, int level, int slot)
3705{
3706 struct extent_buffer *parent = path->nodes[level];
3707 u32 nritems;
3708 int ret = 0;
3709 int wret;
3710
3711 nritems = btrfs_header_nritems(parent);
3712 if (slot != nritems - 1) {
3713 memmove_extent_buffer(parent,
3714 btrfs_node_key_ptr_offset(slot),
3715 btrfs_node_key_ptr_offset(slot + 1),
3716 sizeof(struct btrfs_key_ptr) *
3717 (nritems - slot - 1));
3718 }
3719 nritems--;
3720 btrfs_set_header_nritems(parent, nritems);
3721 if (nritems == 0 && parent == root->node) {
3722 BUG_ON(btrfs_header_level(root->node) != 1);
3723 /* just turn the root into a leaf and break */
3724 btrfs_set_header_level(root->node, 0);
3725 } else if (slot == 0) {
3726 struct btrfs_disk_key disk_key;
3727
3728 btrfs_node_key(parent, &disk_key, 0);
3729 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3730 if (wret)
3731 ret = wret;
3732 }
3733 btrfs_mark_buffer_dirty(parent);
3734 return ret;
3735}
3736
3737/*
3738 * a helper function to delete the leaf pointed to by path->slots[1] and
3739 * path->nodes[1].
3740 *
3741 * This deletes the pointer in path->nodes[1] and frees the leaf
3742 * block extent. zero is returned if it all worked out, < 0 otherwise.
3743 *
3744 * The path must have already been setup for deleting the leaf, including
3745 * all the proper balancing. path->nodes[1] must be locked.
3746 */
3747static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3748 struct btrfs_root *root,
3749 struct btrfs_path *path,
3750 struct extent_buffer *leaf)
3751{
3752 int ret;
3753
3754 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3755 ret = del_ptr(trans, root, path, 1, path->slots[1]);
3756 if (ret)
3757 return ret;
3758
3759 /*
3760 * btrfs_free_extent is expensive, we want to make sure we
3761 * aren't holding any locks when we call it
3762 */
3763 btrfs_unlock_up_safe(path, 0);
3764
3765 root_sub_used(root, leaf->len);
3766
3767 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3768 return 0;
3769}
3770/*
3771 * delete the item at the leaf level in path. If that empties
3772 * the leaf, remove it from the tree
3773 */
3774int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3775 struct btrfs_path *path, int slot, int nr)
3776{
3777 struct extent_buffer *leaf;
3778 struct btrfs_item *item;
3779 int last_off;
3780 int dsize = 0;
3781 int ret = 0;
3782 int wret;
3783 int i;
3784 u32 nritems;
3785
3786 leaf = path->nodes[0];
3787 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3788
3789 for (i = 0; i < nr; i++)
3790 dsize += btrfs_item_size_nr(leaf, slot + i);
3791
3792 nritems = btrfs_header_nritems(leaf);
3793
3794 if (slot + nr != nritems) {
3795 int data_end = leaf_data_end(root, leaf);
3796
3797 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3798 data_end + dsize,
3799 btrfs_leaf_data(leaf) + data_end,
3800 last_off - data_end);
3801
3802 for (i = slot + nr; i < nritems; i++) {
3803 u32 ioff;
3804
3805 item = btrfs_item_nr(leaf, i);
3806 ioff = btrfs_item_offset(leaf, item);
3807 btrfs_set_item_offset(leaf, item, ioff + dsize);
3808 }
3809
3810 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3811 btrfs_item_nr_offset(slot + nr),
3812 sizeof(struct btrfs_item) *
3813 (nritems - slot - nr));
3814 }
3815 btrfs_set_header_nritems(leaf, nritems - nr);
3816 nritems -= nr;
3817
3818 /* delete the leaf if we've emptied it */
3819 if (nritems == 0) {
3820 if (leaf == root->node) {
3821 btrfs_set_header_level(leaf, 0);
3822 } else {
3823 btrfs_set_path_blocking(path);
3824 clean_tree_block(trans, root, leaf);
3825 ret = btrfs_del_leaf(trans, root, path, leaf);
3826 BUG_ON(ret);
3827 }
3828 } else {
3829 int used = leaf_space_used(leaf, 0, nritems);
3830 if (slot == 0) {
3831 struct btrfs_disk_key disk_key;
3832
3833 btrfs_item_key(leaf, &disk_key, 0);
3834 wret = fixup_low_keys(trans, root, path,
3835 &disk_key, 1);
3836 if (wret)
3837 ret = wret;
3838 }
3839
3840 /* delete the leaf if it is mostly empty */
3841 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3842 /* push_leaf_left fixes the path.
3843 * make sure the path still points to our leaf
3844 * for possible call to del_ptr below
3845 */
3846 slot = path->slots[1];
3847 extent_buffer_get(leaf);
3848
3849 btrfs_set_path_blocking(path);
3850 wret = push_leaf_left(trans, root, path, 1, 1,
3851 1, (u32)-1);
3852 if (wret < 0 && wret != -ENOSPC)
3853 ret = wret;
3854
3855 if (path->nodes[0] == leaf &&
3856 btrfs_header_nritems(leaf)) {
3857 wret = push_leaf_right(trans, root, path, 1,
3858 1, 1, 0);
3859 if (wret < 0 && wret != -ENOSPC)
3860 ret = wret;
3861 }
3862
3863 if (btrfs_header_nritems(leaf) == 0) {
3864 path->slots[1] = slot;
3865 ret = btrfs_del_leaf(trans, root, path, leaf);
3866 BUG_ON(ret);
3867 free_extent_buffer(leaf);
3868 } else {
3869 /* if we're still in the path, make sure
3870 * we're dirty. Otherwise, one of the
3871 * push_leaf functions must have already
3872 * dirtied this buffer
3873 */
3874 if (path->nodes[0] == leaf)
3875 btrfs_mark_buffer_dirty(leaf);
3876 free_extent_buffer(leaf);
3877 }
3878 } else {
3879 btrfs_mark_buffer_dirty(leaf);
3880 }
3881 }
3882 return ret;
3883}
3884
3885/*
3886 * search the tree again to find a leaf with lesser keys
3887 * returns 0 if it found something or 1 if there are no lesser leaves.
3888 * returns < 0 on io errors.
3889 *
3890 * This may release the path, and so you may lose any locks held at the
3891 * time you call it.
3892 */
3893int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3894{
3895 struct btrfs_key key;
3896 struct btrfs_disk_key found_key;
3897 int ret;
3898
3899 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3900
3901 if (key.offset > 0)
3902 key.offset--;
3903 else if (key.type > 0)
3904 key.type--;
3905 else if (key.objectid > 0)
3906 key.objectid--;
3907 else
3908 return 1;
3909
3910 btrfs_release_path(path);
3911 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3912 if (ret < 0)
3913 return ret;
3914 btrfs_item_key(path->nodes[0], &found_key, 0);
3915 ret = comp_keys(&found_key, &key);
3916 if (ret < 0)
3917 return 0;
3918 return 1;
3919}
3920
3921/*
3922 * A helper function to walk down the tree starting at min_key, and looking
3923 * for nodes or leaves that are either in cache or have a minimum
3924 * transaction id. This is used by the btree defrag code, and tree logging
3925 *
3926 * This does not cow, but it does stuff the starting key it finds back
3927 * into min_key, so you can call btrfs_search_slot with cow=1 on the
3928 * key and get a writable path.
3929 *
3930 * This does lock as it descends, and path->keep_locks should be set
3931 * to 1 by the caller.
3932 *
3933 * This honors path->lowest_level to prevent descent past a given level
3934 * of the tree.
3935 *
3936 * min_trans indicates the oldest transaction that you are interested
3937 * in walking through. Any nodes or leaves older than min_trans are
3938 * skipped over (without reading them).
3939 *
3940 * returns zero if something useful was found, < 0 on error and 1 if there
3941 * was nothing in the tree that matched the search criteria.
3942 */
3943int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3944 struct btrfs_key *max_key,
3945 struct btrfs_path *path, int cache_only,
3946 u64 min_trans)
3947{
3948 struct extent_buffer *cur;
3949 struct btrfs_key found_key;
3950 int slot;
3951 int sret;
3952 u32 nritems;
3953 int level;
3954 int ret = 1;
3955
3956 WARN_ON(!path->keep_locks);
3957again:
3958 cur = btrfs_read_lock_root_node(root);
3959 level = btrfs_header_level(cur);
3960 WARN_ON(path->nodes[level]);
3961 path->nodes[level] = cur;
3962 path->locks[level] = BTRFS_READ_LOCK;
3963
3964 if (btrfs_header_generation(cur) < min_trans) {
3965 ret = 1;
3966 goto out;
3967 }
3968 while (1) {
3969 nritems = btrfs_header_nritems(cur);
3970 level = btrfs_header_level(cur);
3971 sret = bin_search(cur, min_key, level, &slot);
3972
3973 /* at the lowest level, we're done, setup the path and exit */
3974 if (level == path->lowest_level) {
3975 if (slot >= nritems)
3976 goto find_next_key;
3977 ret = 0;
3978 path->slots[level] = slot;
3979 btrfs_item_key_to_cpu(cur, &found_key, slot);
3980 goto out;
3981 }
3982 if (sret && slot > 0)
3983 slot--;
3984 /*
3985 * check this node pointer against the cache_only and
3986 * min_trans parameters. If it isn't in cache or is too
3987 * old, skip to the next one.
3988 */
3989 while (slot < nritems) {
3990 u64 blockptr;
3991 u64 gen;
3992 struct extent_buffer *tmp;
3993 struct btrfs_disk_key disk_key;
3994
3995 blockptr = btrfs_node_blockptr(cur, slot);
3996 gen = btrfs_node_ptr_generation(cur, slot);
3997 if (gen < min_trans) {
3998 slot++;
3999 continue;
4000 }
4001 if (!cache_only)
4002 break;
4003
4004 if (max_key) {
4005 btrfs_node_key(cur, &disk_key, slot);
4006 if (comp_keys(&disk_key, max_key) >= 0) {
4007 ret = 1;
4008 goto out;
4009 }
4010 }
4011
4012 tmp = btrfs_find_tree_block(root, blockptr,
4013 btrfs_level_size(root, level - 1));
4014
4015 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4016 free_extent_buffer(tmp);
4017 break;
4018 }
4019 if (tmp)
4020 free_extent_buffer(tmp);
4021 slot++;
4022 }
4023find_next_key:
4024 /*
4025 * we didn't find a candidate key in this node, walk forward
4026 * and find another one
4027 */
4028 if (slot >= nritems) {
4029 path->slots[level] = slot;
4030 btrfs_set_path_blocking(path);
4031 sret = btrfs_find_next_key(root, path, min_key, level,
4032 cache_only, min_trans);
4033 if (sret == 0) {
4034 btrfs_release_path(path);
4035 goto again;
4036 } else {
4037 goto out;
4038 }
4039 }
4040 /* save our key for returning back */
4041 btrfs_node_key_to_cpu(cur, &found_key, slot);
4042 path->slots[level] = slot;
4043 if (level == path->lowest_level) {
4044 ret = 0;
4045 unlock_up(path, level, 1);
4046 goto out;
4047 }
4048 btrfs_set_path_blocking(path);
4049 cur = read_node_slot(root, cur, slot);
4050 BUG_ON(!cur);
4051
4052 btrfs_tree_read_lock(cur);
4053
4054 path->locks[level - 1] = BTRFS_READ_LOCK;
4055 path->nodes[level - 1] = cur;
4056 unlock_up(path, level, 1);
4057 btrfs_clear_path_blocking(path, NULL, 0);
4058 }
4059out:
4060 if (ret == 0)
4061 memcpy(min_key, &found_key, sizeof(found_key));
4062 btrfs_set_path_blocking(path);
4063 return ret;
4064}
4065
4066/*
4067 * this is similar to btrfs_next_leaf, but does not try to preserve
4068 * and fixup the path. It looks for and returns the next key in the
4069 * tree based on the current path and the cache_only and min_trans
4070 * parameters.
4071 *
4072 * 0 is returned if another key is found, < 0 if there are any errors
4073 * and 1 is returned if there are no higher keys in the tree
4074 *
4075 * path->keep_locks should be set to 1 on the search made before
4076 * calling this function.
4077 */
4078int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4079 struct btrfs_key *key, int level,
4080 int cache_only, u64 min_trans)
4081{
4082 int slot;
4083 struct extent_buffer *c;
4084
4085 WARN_ON(!path->keep_locks);
4086 while (level < BTRFS_MAX_LEVEL) {
4087 if (!path->nodes[level])
4088 return 1;
4089
4090 slot = path->slots[level] + 1;
4091 c = path->nodes[level];
4092next:
4093 if (slot >= btrfs_header_nritems(c)) {
4094 int ret;
4095 int orig_lowest;
4096 struct btrfs_key cur_key;
4097 if (level + 1 >= BTRFS_MAX_LEVEL ||
4098 !path->nodes[level + 1])
4099 return 1;
4100
4101 if (path->locks[level + 1]) {
4102 level++;
4103 continue;
4104 }
4105
4106 slot = btrfs_header_nritems(c) - 1;
4107 if (level == 0)
4108 btrfs_item_key_to_cpu(c, &cur_key, slot);
4109 else
4110 btrfs_node_key_to_cpu(c, &cur_key, slot);
4111
4112 orig_lowest = path->lowest_level;
4113 btrfs_release_path(path);
4114 path->lowest_level = level;
4115 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4116 0, 0);
4117 path->lowest_level = orig_lowest;
4118 if (ret < 0)
4119 return ret;
4120
4121 c = path->nodes[level];
4122 slot = path->slots[level];
4123 if (ret == 0)
4124 slot++;
4125 goto next;
4126 }
4127
4128 if (level == 0)
4129 btrfs_item_key_to_cpu(c, key, slot);
4130 else {
4131 u64 blockptr = btrfs_node_blockptr(c, slot);
4132 u64 gen = btrfs_node_ptr_generation(c, slot);
4133
4134 if (cache_only) {
4135 struct extent_buffer *cur;
4136 cur = btrfs_find_tree_block(root, blockptr,
4137 btrfs_level_size(root, level - 1));
4138 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4139 slot++;
4140 if (cur)
4141 free_extent_buffer(cur);
4142 goto next;
4143 }
4144 free_extent_buffer(cur);
4145 }
4146 if (gen < min_trans) {
4147 slot++;
4148 goto next;
4149 }
4150 btrfs_node_key_to_cpu(c, key, slot);
4151 }
4152 return 0;
4153 }
4154 return 1;
4155}
4156
4157/*
4158 * search the tree again to find a leaf with greater keys
4159 * returns 0 if it found something or 1 if there are no greater leaves.
4160 * returns < 0 on io errors.
4161 */
4162int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4163{
4164 int slot;
4165 int level;
4166 struct extent_buffer *c;
4167 struct extent_buffer *next;
4168 struct btrfs_key key;
4169 u32 nritems;
4170 int ret;
4171 int old_spinning = path->leave_spinning;
4172 int next_rw_lock = 0;
4173
4174 nritems = btrfs_header_nritems(path->nodes[0]);
4175 if (nritems == 0)
4176 return 1;
4177
4178 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4179again:
4180 level = 1;
4181 next = NULL;
4182 next_rw_lock = 0;
4183 btrfs_release_path(path);
4184
4185 path->keep_locks = 1;
4186 path->leave_spinning = 1;
4187
4188 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4189 path->keep_locks = 0;
4190
4191 if (ret < 0)
4192 return ret;
4193
4194 nritems = btrfs_header_nritems(path->nodes[0]);
4195 /*
4196 * by releasing the path above we dropped all our locks. A balance
4197 * could have added more items next to the key that used to be
4198 * at the very end of the block. So, check again here and
4199 * advance the path if there are now more items available.
4200 */
4201 if (nritems > 0 && path->slots[0] < nritems - 1) {
4202 if (ret == 0)
4203 path->slots[0]++;
4204 ret = 0;
4205 goto done;
4206 }
4207
4208 while (level < BTRFS_MAX_LEVEL) {
4209 if (!path->nodes[level]) {
4210 ret = 1;
4211 goto done;
4212 }
4213
4214 slot = path->slots[level] + 1;
4215 c = path->nodes[level];
4216 if (slot >= btrfs_header_nritems(c)) {
4217 level++;
4218 if (level == BTRFS_MAX_LEVEL) {
4219 ret = 1;
4220 goto done;
4221 }
4222 continue;
4223 }
4224
4225 if (next) {
4226 btrfs_tree_unlock_rw(next, next_rw_lock);
4227 free_extent_buffer(next);
4228 }
4229
4230 next = c;
4231 next_rw_lock = path->locks[level];
4232 ret = read_block_for_search(NULL, root, path, &next, level,
4233 slot, &key);
4234 if (ret == -EAGAIN)
4235 goto again;
4236
4237 if (ret < 0) {
4238 btrfs_release_path(path);
4239 goto done;
4240 }
4241
4242 if (!path->skip_locking) {
4243 ret = btrfs_try_tree_read_lock(next);
4244 if (!ret) {
4245 btrfs_set_path_blocking(path);
4246 btrfs_tree_read_lock(next);
4247 btrfs_clear_path_blocking(path, next,
4248 BTRFS_READ_LOCK);
4249 }
4250 next_rw_lock = BTRFS_READ_LOCK;
4251 }
4252 break;
4253 }
4254 path->slots[level] = slot;
4255 while (1) {
4256 level--;
4257 c = path->nodes[level];
4258 if (path->locks[level])
4259 btrfs_tree_unlock_rw(c, path->locks[level]);
4260
4261 free_extent_buffer(c);
4262 path->nodes[level] = next;
4263 path->slots[level] = 0;
4264 if (!path->skip_locking)
4265 path->locks[level] = next_rw_lock;
4266 if (!level)
4267 break;
4268
4269 ret = read_block_for_search(NULL, root, path, &next, level,
4270 0, &key);
4271 if (ret == -EAGAIN)
4272 goto again;
4273
4274 if (ret < 0) {
4275 btrfs_release_path(path);
4276 goto done;
4277 }
4278
4279 if (!path->skip_locking) {
4280 ret = btrfs_try_tree_read_lock(next);
4281 if (!ret) {
4282 btrfs_set_path_blocking(path);
4283 btrfs_tree_read_lock(next);
4284 btrfs_clear_path_blocking(path, next,
4285 BTRFS_READ_LOCK);
4286 }
4287 next_rw_lock = BTRFS_READ_LOCK;
4288 }
4289 }
4290 ret = 0;
4291done:
4292 unlock_up(path, 0, 1);
4293 path->leave_spinning = old_spinning;
4294 if (!old_spinning)
4295 btrfs_set_path_blocking(path);
4296
4297 return ret;
4298}
4299
4300/*
4301 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4302 * searching until it gets past min_objectid or finds an item of 'type'
4303 *
4304 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4305 */
4306int btrfs_previous_item(struct btrfs_root *root,
4307 struct btrfs_path *path, u64 min_objectid,
4308 int type)
4309{
4310 struct btrfs_key found_key;
4311 struct extent_buffer *leaf;
4312 u32 nritems;
4313 int ret;
4314
4315 while (1) {
4316 if (path->slots[0] == 0) {
4317 btrfs_set_path_blocking(path);
4318 ret = btrfs_prev_leaf(root, path);
4319 if (ret != 0)
4320 return ret;
4321 } else {
4322 path->slots[0]--;
4323 }
4324 leaf = path->nodes[0];
4325 nritems = btrfs_header_nritems(leaf);
4326 if (nritems == 0)
4327 return 1;
4328 if (path->slots[0] == nritems)
4329 path->slots[0]--;
4330
4331 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4332 if (found_key.objectid < min_objectid)
4333 break;
4334 if (found_key.type == type)
4335 return 0;
4336 if (found_key.objectid == min_objectid &&
4337 found_key.type < type)
4338 break;
4339 }
4340 return 1;
4341}
1/*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/slab.h>
21#include <linux/rbtree.h>
22#include <linux/vmalloc.h>
23#include "ctree.h"
24#include "disk-io.h"
25#include "transaction.h"
26#include "print-tree.h"
27#include "locking.h"
28
29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32 *root, struct btrfs_key *ins_key,
33 struct btrfs_path *path, int data_size, int extend);
34static int push_node_left(struct btrfs_trans_handle *trans,
35 struct btrfs_fs_info *fs_info,
36 struct extent_buffer *dst,
37 struct extent_buffer *src, int empty);
38static int balance_node_right(struct btrfs_trans_handle *trans,
39 struct btrfs_fs_info *fs_info,
40 struct extent_buffer *dst_buf,
41 struct extent_buffer *src_buf);
42static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
43 int level, int slot);
44static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
45 struct extent_buffer *eb);
46
47struct btrfs_path *btrfs_alloc_path(void)
48{
49 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50}
51
52/*
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
55 */
56noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57{
58 int i;
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60 if (!p->nodes[i] || !p->locks[i])
61 continue;
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67 }
68}
69
70/*
71 * reset all the locked nodes in the patch to spinning locks.
72 *
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
76 * for held
77 */
78noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79 struct extent_buffer *held, int held_rw)
80{
81 int i;
82
83 if (held) {
84 btrfs_set_lock_blocking_rw(held, held_rw);
85 if (held_rw == BTRFS_WRITE_LOCK)
86 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 else if (held_rw == BTRFS_READ_LOCK)
88 held_rw = BTRFS_READ_LOCK_BLOCKING;
89 }
90 btrfs_set_path_blocking(p);
91
92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
93 if (p->nodes[i] && p->locks[i]) {
94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 p->locks[i] = BTRFS_WRITE_LOCK;
97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 p->locks[i] = BTRFS_READ_LOCK;
99 }
100 }
101
102 if (held)
103 btrfs_clear_lock_blocking_rw(held, held_rw);
104}
105
106/* this also releases the path */
107void btrfs_free_path(struct btrfs_path *p)
108{
109 if (!p)
110 return;
111 btrfs_release_path(p);
112 kmem_cache_free(btrfs_path_cachep, p);
113}
114
115/*
116 * path release drops references on the extent buffers in the path
117 * and it drops any locks held by this path
118 *
119 * It is safe to call this on paths that no locks or extent buffers held.
120 */
121noinline void btrfs_release_path(struct btrfs_path *p)
122{
123 int i;
124
125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
126 p->slots[i] = 0;
127 if (!p->nodes[i])
128 continue;
129 if (p->locks[i]) {
130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
131 p->locks[i] = 0;
132 }
133 free_extent_buffer(p->nodes[i]);
134 p->nodes[i] = NULL;
135 }
136}
137
138/*
139 * safely gets a reference on the root node of a tree. A lock
140 * is not taken, so a concurrent writer may put a different node
141 * at the root of the tree. See btrfs_lock_root_node for the
142 * looping required.
143 *
144 * The extent buffer returned by this has a reference taken, so
145 * it won't disappear. It may stop being the root of the tree
146 * at any time because there are no locks held.
147 */
148struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149{
150 struct extent_buffer *eb;
151
152 while (1) {
153 rcu_read_lock();
154 eb = rcu_dereference(root->node);
155
156 /*
157 * RCU really hurts here, we could free up the root node because
158 * it was COWed but we may not get the new root node yet so do
159 * the inc_not_zero dance and if it doesn't work then
160 * synchronize_rcu and try again.
161 */
162 if (atomic_inc_not_zero(&eb->refs)) {
163 rcu_read_unlock();
164 break;
165 }
166 rcu_read_unlock();
167 synchronize_rcu();
168 }
169 return eb;
170}
171
172/* loop around taking references on and locking the root node of the
173 * tree until you end up with a lock on the root. A locked buffer
174 * is returned, with a reference held.
175 */
176struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177{
178 struct extent_buffer *eb;
179
180 while (1) {
181 eb = btrfs_root_node(root);
182 btrfs_tree_lock(eb);
183 if (eb == root->node)
184 break;
185 btrfs_tree_unlock(eb);
186 free_extent_buffer(eb);
187 }
188 return eb;
189}
190
191/* loop around taking references on and locking the root node of the
192 * tree until you end up with a lock on the root. A locked buffer
193 * is returned, with a reference held.
194 */
195static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
196{
197 struct extent_buffer *eb;
198
199 while (1) {
200 eb = btrfs_root_node(root);
201 btrfs_tree_read_lock(eb);
202 if (eb == root->node)
203 break;
204 btrfs_tree_read_unlock(eb);
205 free_extent_buffer(eb);
206 }
207 return eb;
208}
209
210/* cowonly root (everything not a reference counted cow subvolume), just get
211 * put onto a simple dirty list. transaction.c walks this to make sure they
212 * get properly updated on disk.
213 */
214static void add_root_to_dirty_list(struct btrfs_root *root)
215{
216 struct btrfs_fs_info *fs_info = root->fs_info;
217
218 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
219 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
220 return;
221
222 spin_lock(&fs_info->trans_lock);
223 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
224 /* Want the extent tree to be the last on the list */
225 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
226 list_move_tail(&root->dirty_list,
227 &fs_info->dirty_cowonly_roots);
228 else
229 list_move(&root->dirty_list,
230 &fs_info->dirty_cowonly_roots);
231 }
232 spin_unlock(&fs_info->trans_lock);
233}
234
235/*
236 * used by snapshot creation to make a copy of a root for a tree with
237 * a given objectid. The buffer with the new root node is returned in
238 * cow_ret, and this func returns zero on success or a negative error code.
239 */
240int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 struct btrfs_root *root,
242 struct extent_buffer *buf,
243 struct extent_buffer **cow_ret, u64 new_root_objectid)
244{
245 struct btrfs_fs_info *fs_info = root->fs_info;
246 struct extent_buffer *cow;
247 int ret = 0;
248 int level;
249 struct btrfs_disk_key disk_key;
250
251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252 trans->transid != fs_info->running_transaction->transid);
253 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
254 trans->transid != root->last_trans);
255
256 level = btrfs_header_level(buf);
257 if (level == 0)
258 btrfs_item_key(buf, &disk_key, 0);
259 else
260 btrfs_node_key(buf, &disk_key, 0);
261
262 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
263 &disk_key, level, buf->start, 0);
264 if (IS_ERR(cow))
265 return PTR_ERR(cow);
266
267 copy_extent_buffer_full(cow, buf);
268 btrfs_set_header_bytenr(cow, cow->start);
269 btrfs_set_header_generation(cow, trans->transid);
270 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
271 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
272 BTRFS_HEADER_FLAG_RELOC);
273 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
274 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
275 else
276 btrfs_set_header_owner(cow, new_root_objectid);
277
278 write_extent_buffer_fsid(cow, fs_info->fsid);
279
280 WARN_ON(btrfs_header_generation(buf) > trans->transid);
281 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
282 ret = btrfs_inc_ref(trans, root, cow, 1);
283 else
284 ret = btrfs_inc_ref(trans, root, cow, 0);
285
286 if (ret)
287 return ret;
288
289 btrfs_mark_buffer_dirty(cow);
290 *cow_ret = cow;
291 return 0;
292}
293
294enum mod_log_op {
295 MOD_LOG_KEY_REPLACE,
296 MOD_LOG_KEY_ADD,
297 MOD_LOG_KEY_REMOVE,
298 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300 MOD_LOG_MOVE_KEYS,
301 MOD_LOG_ROOT_REPLACE,
302};
303
304struct tree_mod_move {
305 int dst_slot;
306 int nr_items;
307};
308
309struct tree_mod_root {
310 u64 logical;
311 u8 level;
312};
313
314struct tree_mod_elem {
315 struct rb_node node;
316 u64 logical;
317 u64 seq;
318 enum mod_log_op op;
319
320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
321 int slot;
322
323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
324 u64 generation;
325
326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327 struct btrfs_disk_key key;
328 u64 blockptr;
329
330 /* this is used for op == MOD_LOG_MOVE_KEYS */
331 struct tree_mod_move move;
332
333 /* this is used for op == MOD_LOG_ROOT_REPLACE */
334 struct tree_mod_root old_root;
335};
336
337static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
338{
339 read_lock(&fs_info->tree_mod_log_lock);
340}
341
342static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343{
344 read_unlock(&fs_info->tree_mod_log_lock);
345}
346
347static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348{
349 write_lock(&fs_info->tree_mod_log_lock);
350}
351
352static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353{
354 write_unlock(&fs_info->tree_mod_log_lock);
355}
356
357/*
358 * Pull a new tree mod seq number for our operation.
359 */
360static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
361{
362 return atomic64_inc_return(&fs_info->tree_mod_seq);
363}
364
365/*
366 * This adds a new blocker to the tree mod log's blocker list if the @elem
367 * passed does not already have a sequence number set. So when a caller expects
368 * to record tree modifications, it should ensure to set elem->seq to zero
369 * before calling btrfs_get_tree_mod_seq.
370 * Returns a fresh, unused tree log modification sequence number, even if no new
371 * blocker was added.
372 */
373u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
374 struct seq_list *elem)
375{
376 tree_mod_log_write_lock(fs_info);
377 spin_lock(&fs_info->tree_mod_seq_lock);
378 if (!elem->seq) {
379 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 }
382 spin_unlock(&fs_info->tree_mod_seq_lock);
383 tree_mod_log_write_unlock(fs_info);
384
385 return elem->seq;
386}
387
388void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
389 struct seq_list *elem)
390{
391 struct rb_root *tm_root;
392 struct rb_node *node;
393 struct rb_node *next;
394 struct seq_list *cur_elem;
395 struct tree_mod_elem *tm;
396 u64 min_seq = (u64)-1;
397 u64 seq_putting = elem->seq;
398
399 if (!seq_putting)
400 return;
401
402 spin_lock(&fs_info->tree_mod_seq_lock);
403 list_del(&elem->list);
404 elem->seq = 0;
405
406 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
407 if (cur_elem->seq < min_seq) {
408 if (seq_putting > cur_elem->seq) {
409 /*
410 * blocker with lower sequence number exists, we
411 * cannot remove anything from the log
412 */
413 spin_unlock(&fs_info->tree_mod_seq_lock);
414 return;
415 }
416 min_seq = cur_elem->seq;
417 }
418 }
419 spin_unlock(&fs_info->tree_mod_seq_lock);
420
421 /*
422 * anything that's lower than the lowest existing (read: blocked)
423 * sequence number can be removed from the tree.
424 */
425 tree_mod_log_write_lock(fs_info);
426 tm_root = &fs_info->tree_mod_log;
427 for (node = rb_first(tm_root); node; node = next) {
428 next = rb_next(node);
429 tm = container_of(node, struct tree_mod_elem, node);
430 if (tm->seq > min_seq)
431 continue;
432 rb_erase(node, tm_root);
433 kfree(tm);
434 }
435 tree_mod_log_write_unlock(fs_info);
436}
437
438/*
439 * key order of the log:
440 * node/leaf start address -> sequence
441 *
442 * The 'start address' is the logical address of the *new* root node
443 * for root replace operations, or the logical address of the affected
444 * block for all other operations.
445 *
446 * Note: must be called with write lock (tree_mod_log_write_lock).
447 */
448static noinline int
449__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450{
451 struct rb_root *tm_root;
452 struct rb_node **new;
453 struct rb_node *parent = NULL;
454 struct tree_mod_elem *cur;
455
456 BUG_ON(!tm);
457
458 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
459
460 tm_root = &fs_info->tree_mod_log;
461 new = &tm_root->rb_node;
462 while (*new) {
463 cur = container_of(*new, struct tree_mod_elem, node);
464 parent = *new;
465 if (cur->logical < tm->logical)
466 new = &((*new)->rb_left);
467 else if (cur->logical > tm->logical)
468 new = &((*new)->rb_right);
469 else if (cur->seq < tm->seq)
470 new = &((*new)->rb_left);
471 else if (cur->seq > tm->seq)
472 new = &((*new)->rb_right);
473 else
474 return -EEXIST;
475 }
476
477 rb_link_node(&tm->node, parent, new);
478 rb_insert_color(&tm->node, tm_root);
479 return 0;
480}
481
482/*
483 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
484 * returns zero with the tree_mod_log_lock acquired. The caller must hold
485 * this until all tree mod log insertions are recorded in the rb tree and then
486 * call tree_mod_log_write_unlock() to release.
487 */
488static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
489 struct extent_buffer *eb) {
490 smp_mb();
491 if (list_empty(&(fs_info)->tree_mod_seq_list))
492 return 1;
493 if (eb && btrfs_header_level(eb) == 0)
494 return 1;
495
496 tree_mod_log_write_lock(fs_info);
497 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
498 tree_mod_log_write_unlock(fs_info);
499 return 1;
500 }
501
502 return 0;
503}
504
505/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
506static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
507 struct extent_buffer *eb)
508{
509 smp_mb();
510 if (list_empty(&(fs_info)->tree_mod_seq_list))
511 return 0;
512 if (eb && btrfs_header_level(eb) == 0)
513 return 0;
514
515 return 1;
516}
517
518static struct tree_mod_elem *
519alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
520 enum mod_log_op op, gfp_t flags)
521{
522 struct tree_mod_elem *tm;
523
524 tm = kzalloc(sizeof(*tm), flags);
525 if (!tm)
526 return NULL;
527
528 tm->logical = eb->start;
529 if (op != MOD_LOG_KEY_ADD) {
530 btrfs_node_key(eb, &tm->key, slot);
531 tm->blockptr = btrfs_node_blockptr(eb, slot);
532 }
533 tm->op = op;
534 tm->slot = slot;
535 tm->generation = btrfs_node_ptr_generation(eb, slot);
536 RB_CLEAR_NODE(&tm->node);
537
538 return tm;
539}
540
541static noinline int
542tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
543 struct extent_buffer *eb, int slot,
544 enum mod_log_op op, gfp_t flags)
545{
546 struct tree_mod_elem *tm;
547 int ret;
548
549 if (!tree_mod_need_log(fs_info, eb))
550 return 0;
551
552 tm = alloc_tree_mod_elem(eb, slot, op, flags);
553 if (!tm)
554 return -ENOMEM;
555
556 if (tree_mod_dont_log(fs_info, eb)) {
557 kfree(tm);
558 return 0;
559 }
560
561 ret = __tree_mod_log_insert(fs_info, tm);
562 tree_mod_log_write_unlock(fs_info);
563 if (ret)
564 kfree(tm);
565
566 return ret;
567}
568
569static noinline int
570tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
571 struct extent_buffer *eb, int dst_slot, int src_slot,
572 int nr_items, gfp_t flags)
573{
574 struct tree_mod_elem *tm = NULL;
575 struct tree_mod_elem **tm_list = NULL;
576 int ret = 0;
577 int i;
578 int locked = 0;
579
580 if (!tree_mod_need_log(fs_info, eb))
581 return 0;
582
583 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
584 if (!tm_list)
585 return -ENOMEM;
586
587 tm = kzalloc(sizeof(*tm), flags);
588 if (!tm) {
589 ret = -ENOMEM;
590 goto free_tms;
591 }
592
593 tm->logical = eb->start;
594 tm->slot = src_slot;
595 tm->move.dst_slot = dst_slot;
596 tm->move.nr_items = nr_items;
597 tm->op = MOD_LOG_MOVE_KEYS;
598
599 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
600 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
601 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
602 if (!tm_list[i]) {
603 ret = -ENOMEM;
604 goto free_tms;
605 }
606 }
607
608 if (tree_mod_dont_log(fs_info, eb))
609 goto free_tms;
610 locked = 1;
611
612 /*
613 * When we override something during the move, we log these removals.
614 * This can only happen when we move towards the beginning of the
615 * buffer, i.e. dst_slot < src_slot.
616 */
617 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
618 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
619 if (ret)
620 goto free_tms;
621 }
622
623 ret = __tree_mod_log_insert(fs_info, tm);
624 if (ret)
625 goto free_tms;
626 tree_mod_log_write_unlock(fs_info);
627 kfree(tm_list);
628
629 return 0;
630free_tms:
631 for (i = 0; i < nr_items; i++) {
632 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
633 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
634 kfree(tm_list[i]);
635 }
636 if (locked)
637 tree_mod_log_write_unlock(fs_info);
638 kfree(tm_list);
639 kfree(tm);
640
641 return ret;
642}
643
644static inline int
645__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
646 struct tree_mod_elem **tm_list,
647 int nritems)
648{
649 int i, j;
650 int ret;
651
652 for (i = nritems - 1; i >= 0; i--) {
653 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
654 if (ret) {
655 for (j = nritems - 1; j > i; j--)
656 rb_erase(&tm_list[j]->node,
657 &fs_info->tree_mod_log);
658 return ret;
659 }
660 }
661
662 return 0;
663}
664
665static noinline int
666tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
667 struct extent_buffer *old_root,
668 struct extent_buffer *new_root, gfp_t flags,
669 int log_removal)
670{
671 struct tree_mod_elem *tm = NULL;
672 struct tree_mod_elem **tm_list = NULL;
673 int nritems = 0;
674 int ret = 0;
675 int i;
676
677 if (!tree_mod_need_log(fs_info, NULL))
678 return 0;
679
680 if (log_removal && btrfs_header_level(old_root) > 0) {
681 nritems = btrfs_header_nritems(old_root);
682 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
683 flags);
684 if (!tm_list) {
685 ret = -ENOMEM;
686 goto free_tms;
687 }
688 for (i = 0; i < nritems; i++) {
689 tm_list[i] = alloc_tree_mod_elem(old_root, i,
690 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
691 if (!tm_list[i]) {
692 ret = -ENOMEM;
693 goto free_tms;
694 }
695 }
696 }
697
698 tm = kzalloc(sizeof(*tm), flags);
699 if (!tm) {
700 ret = -ENOMEM;
701 goto free_tms;
702 }
703
704 tm->logical = new_root->start;
705 tm->old_root.logical = old_root->start;
706 tm->old_root.level = btrfs_header_level(old_root);
707 tm->generation = btrfs_header_generation(old_root);
708 tm->op = MOD_LOG_ROOT_REPLACE;
709
710 if (tree_mod_dont_log(fs_info, NULL))
711 goto free_tms;
712
713 if (tm_list)
714 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
715 if (!ret)
716 ret = __tree_mod_log_insert(fs_info, tm);
717
718 tree_mod_log_write_unlock(fs_info);
719 if (ret)
720 goto free_tms;
721 kfree(tm_list);
722
723 return ret;
724
725free_tms:
726 if (tm_list) {
727 for (i = 0; i < nritems; i++)
728 kfree(tm_list[i]);
729 kfree(tm_list);
730 }
731 kfree(tm);
732
733 return ret;
734}
735
736static struct tree_mod_elem *
737__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
738 int smallest)
739{
740 struct rb_root *tm_root;
741 struct rb_node *node;
742 struct tree_mod_elem *cur = NULL;
743 struct tree_mod_elem *found = NULL;
744
745 tree_mod_log_read_lock(fs_info);
746 tm_root = &fs_info->tree_mod_log;
747 node = tm_root->rb_node;
748 while (node) {
749 cur = container_of(node, struct tree_mod_elem, node);
750 if (cur->logical < start) {
751 node = node->rb_left;
752 } else if (cur->logical > start) {
753 node = node->rb_right;
754 } else if (cur->seq < min_seq) {
755 node = node->rb_left;
756 } else if (!smallest) {
757 /* we want the node with the highest seq */
758 if (found)
759 BUG_ON(found->seq > cur->seq);
760 found = cur;
761 node = node->rb_left;
762 } else if (cur->seq > min_seq) {
763 /* we want the node with the smallest seq */
764 if (found)
765 BUG_ON(found->seq < cur->seq);
766 found = cur;
767 node = node->rb_right;
768 } else {
769 found = cur;
770 break;
771 }
772 }
773 tree_mod_log_read_unlock(fs_info);
774
775 return found;
776}
777
778/*
779 * this returns the element from the log with the smallest time sequence
780 * value that's in the log (the oldest log item). any element with a time
781 * sequence lower than min_seq will be ignored.
782 */
783static struct tree_mod_elem *
784tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
785 u64 min_seq)
786{
787 return __tree_mod_log_search(fs_info, start, min_seq, 1);
788}
789
790/*
791 * this returns the element from the log with the largest time sequence
792 * value that's in the log (the most recent log item). any element with
793 * a time sequence lower than min_seq will be ignored.
794 */
795static struct tree_mod_elem *
796tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
797{
798 return __tree_mod_log_search(fs_info, start, min_seq, 0);
799}
800
801static noinline int
802tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
803 struct extent_buffer *src, unsigned long dst_offset,
804 unsigned long src_offset, int nr_items)
805{
806 int ret = 0;
807 struct tree_mod_elem **tm_list = NULL;
808 struct tree_mod_elem **tm_list_add, **tm_list_rem;
809 int i;
810 int locked = 0;
811
812 if (!tree_mod_need_log(fs_info, NULL))
813 return 0;
814
815 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
816 return 0;
817
818 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
819 GFP_NOFS);
820 if (!tm_list)
821 return -ENOMEM;
822
823 tm_list_add = tm_list;
824 tm_list_rem = tm_list + nr_items;
825 for (i = 0; i < nr_items; i++) {
826 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
827 MOD_LOG_KEY_REMOVE, GFP_NOFS);
828 if (!tm_list_rem[i]) {
829 ret = -ENOMEM;
830 goto free_tms;
831 }
832
833 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
834 MOD_LOG_KEY_ADD, GFP_NOFS);
835 if (!tm_list_add[i]) {
836 ret = -ENOMEM;
837 goto free_tms;
838 }
839 }
840
841 if (tree_mod_dont_log(fs_info, NULL))
842 goto free_tms;
843 locked = 1;
844
845 for (i = 0; i < nr_items; i++) {
846 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
847 if (ret)
848 goto free_tms;
849 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
850 if (ret)
851 goto free_tms;
852 }
853
854 tree_mod_log_write_unlock(fs_info);
855 kfree(tm_list);
856
857 return 0;
858
859free_tms:
860 for (i = 0; i < nr_items * 2; i++) {
861 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
862 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
863 kfree(tm_list[i]);
864 }
865 if (locked)
866 tree_mod_log_write_unlock(fs_info);
867 kfree(tm_list);
868
869 return ret;
870}
871
872static inline void
873tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
874 int dst_offset, int src_offset, int nr_items)
875{
876 int ret;
877 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
878 nr_items, GFP_NOFS);
879 BUG_ON(ret < 0);
880}
881
882static noinline void
883tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
884 struct extent_buffer *eb, int slot, int atomic)
885{
886 int ret;
887
888 ret = tree_mod_log_insert_key(fs_info, eb, slot,
889 MOD_LOG_KEY_REPLACE,
890 atomic ? GFP_ATOMIC : GFP_NOFS);
891 BUG_ON(ret < 0);
892}
893
894static noinline int
895tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
896{
897 struct tree_mod_elem **tm_list = NULL;
898 int nritems = 0;
899 int i;
900 int ret = 0;
901
902 if (btrfs_header_level(eb) == 0)
903 return 0;
904
905 if (!tree_mod_need_log(fs_info, NULL))
906 return 0;
907
908 nritems = btrfs_header_nritems(eb);
909 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
910 if (!tm_list)
911 return -ENOMEM;
912
913 for (i = 0; i < nritems; i++) {
914 tm_list[i] = alloc_tree_mod_elem(eb, i,
915 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
916 if (!tm_list[i]) {
917 ret = -ENOMEM;
918 goto free_tms;
919 }
920 }
921
922 if (tree_mod_dont_log(fs_info, eb))
923 goto free_tms;
924
925 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
926 tree_mod_log_write_unlock(fs_info);
927 if (ret)
928 goto free_tms;
929 kfree(tm_list);
930
931 return 0;
932
933free_tms:
934 for (i = 0; i < nritems; i++)
935 kfree(tm_list[i]);
936 kfree(tm_list);
937
938 return ret;
939}
940
941static noinline void
942tree_mod_log_set_root_pointer(struct btrfs_root *root,
943 struct extent_buffer *new_root_node,
944 int log_removal)
945{
946 int ret;
947 ret = tree_mod_log_insert_root(root->fs_info, root->node,
948 new_root_node, GFP_NOFS, log_removal);
949 BUG_ON(ret < 0);
950}
951
952/*
953 * check if the tree block can be shared by multiple trees
954 */
955int btrfs_block_can_be_shared(struct btrfs_root *root,
956 struct extent_buffer *buf)
957{
958 /*
959 * Tree blocks not in reference counted trees and tree roots
960 * are never shared. If a block was allocated after the last
961 * snapshot and the block was not allocated by tree relocation,
962 * we know the block is not shared.
963 */
964 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
965 buf != root->node && buf != root->commit_root &&
966 (btrfs_header_generation(buf) <=
967 btrfs_root_last_snapshot(&root->root_item) ||
968 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
969 return 1;
970#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
971 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
972 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
973 return 1;
974#endif
975 return 0;
976}
977
978static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
979 struct btrfs_root *root,
980 struct extent_buffer *buf,
981 struct extent_buffer *cow,
982 int *last_ref)
983{
984 struct btrfs_fs_info *fs_info = root->fs_info;
985 u64 refs;
986 u64 owner;
987 u64 flags;
988 u64 new_flags = 0;
989 int ret;
990
991 /*
992 * Backrefs update rules:
993 *
994 * Always use full backrefs for extent pointers in tree block
995 * allocated by tree relocation.
996 *
997 * If a shared tree block is no longer referenced by its owner
998 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
999 * use full backrefs for extent pointers in tree block.
1000 *
1001 * If a tree block is been relocating
1002 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1003 * use full backrefs for extent pointers in tree block.
1004 * The reason for this is some operations (such as drop tree)
1005 * are only allowed for blocks use full backrefs.
1006 */
1007
1008 if (btrfs_block_can_be_shared(root, buf)) {
1009 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
1010 btrfs_header_level(buf), 1,
1011 &refs, &flags);
1012 if (ret)
1013 return ret;
1014 if (refs == 0) {
1015 ret = -EROFS;
1016 btrfs_handle_fs_error(fs_info, ret, NULL);
1017 return ret;
1018 }
1019 } else {
1020 refs = 1;
1021 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1022 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1023 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1024 else
1025 flags = 0;
1026 }
1027
1028 owner = btrfs_header_owner(buf);
1029 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1030 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1031
1032 if (refs > 1) {
1033 if ((owner == root->root_key.objectid ||
1034 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1035 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1036 ret = btrfs_inc_ref(trans, root, buf, 1);
1037 BUG_ON(ret); /* -ENOMEM */
1038
1039 if (root->root_key.objectid ==
1040 BTRFS_TREE_RELOC_OBJECTID) {
1041 ret = btrfs_dec_ref(trans, root, buf, 0);
1042 BUG_ON(ret); /* -ENOMEM */
1043 ret = btrfs_inc_ref(trans, root, cow, 1);
1044 BUG_ON(ret); /* -ENOMEM */
1045 }
1046 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1047 } else {
1048
1049 if (root->root_key.objectid ==
1050 BTRFS_TREE_RELOC_OBJECTID)
1051 ret = btrfs_inc_ref(trans, root, cow, 1);
1052 else
1053 ret = btrfs_inc_ref(trans, root, cow, 0);
1054 BUG_ON(ret); /* -ENOMEM */
1055 }
1056 if (new_flags != 0) {
1057 int level = btrfs_header_level(buf);
1058
1059 ret = btrfs_set_disk_extent_flags(trans, fs_info,
1060 buf->start,
1061 buf->len,
1062 new_flags, level, 0);
1063 if (ret)
1064 return ret;
1065 }
1066 } else {
1067 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1068 if (root->root_key.objectid ==
1069 BTRFS_TREE_RELOC_OBJECTID)
1070 ret = btrfs_inc_ref(trans, root, cow, 1);
1071 else
1072 ret = btrfs_inc_ref(trans, root, cow, 0);
1073 BUG_ON(ret); /* -ENOMEM */
1074 ret = btrfs_dec_ref(trans, root, buf, 1);
1075 BUG_ON(ret); /* -ENOMEM */
1076 }
1077 clean_tree_block(trans, fs_info, buf);
1078 *last_ref = 1;
1079 }
1080 return 0;
1081}
1082
1083/*
1084 * does the dirty work in cow of a single block. The parent block (if
1085 * supplied) is updated to point to the new cow copy. The new buffer is marked
1086 * dirty and returned locked. If you modify the block it needs to be marked
1087 * dirty again.
1088 *
1089 * search_start -- an allocation hint for the new block
1090 *
1091 * empty_size -- a hint that you plan on doing more cow. This is the size in
1092 * bytes the allocator should try to find free next to the block it returns.
1093 * This is just a hint and may be ignored by the allocator.
1094 */
1095static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct extent_buffer *buf,
1098 struct extent_buffer *parent, int parent_slot,
1099 struct extent_buffer **cow_ret,
1100 u64 search_start, u64 empty_size)
1101{
1102 struct btrfs_fs_info *fs_info = root->fs_info;
1103 struct btrfs_disk_key disk_key;
1104 struct extent_buffer *cow;
1105 int level, ret;
1106 int last_ref = 0;
1107 int unlock_orig = 0;
1108 u64 parent_start = 0;
1109
1110 if (*cow_ret == buf)
1111 unlock_orig = 1;
1112
1113 btrfs_assert_tree_locked(buf);
1114
1115 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1116 trans->transid != fs_info->running_transaction->transid);
1117 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1118 trans->transid != root->last_trans);
1119
1120 level = btrfs_header_level(buf);
1121
1122 if (level == 0)
1123 btrfs_item_key(buf, &disk_key, 0);
1124 else
1125 btrfs_node_key(buf, &disk_key, 0);
1126
1127 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1128 parent_start = parent->start;
1129
1130 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1131 root->root_key.objectid, &disk_key, level,
1132 search_start, empty_size);
1133 if (IS_ERR(cow))
1134 return PTR_ERR(cow);
1135
1136 /* cow is set to blocking by btrfs_init_new_buffer */
1137
1138 copy_extent_buffer_full(cow, buf);
1139 btrfs_set_header_bytenr(cow, cow->start);
1140 btrfs_set_header_generation(cow, trans->transid);
1141 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1142 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1143 BTRFS_HEADER_FLAG_RELOC);
1144 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1145 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1146 else
1147 btrfs_set_header_owner(cow, root->root_key.objectid);
1148
1149 write_extent_buffer_fsid(cow, fs_info->fsid);
1150
1151 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1152 if (ret) {
1153 btrfs_abort_transaction(trans, ret);
1154 return ret;
1155 }
1156
1157 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1158 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1159 if (ret) {
1160 btrfs_abort_transaction(trans, ret);
1161 return ret;
1162 }
1163 }
1164
1165 if (buf == root->node) {
1166 WARN_ON(parent && parent != buf);
1167 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1168 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1169 parent_start = buf->start;
1170
1171 extent_buffer_get(cow);
1172 tree_mod_log_set_root_pointer(root, cow, 1);
1173 rcu_assign_pointer(root->node, cow);
1174
1175 btrfs_free_tree_block(trans, root, buf, parent_start,
1176 last_ref);
1177 free_extent_buffer(buf);
1178 add_root_to_dirty_list(root);
1179 } else {
1180 WARN_ON(trans->transid != btrfs_header_generation(parent));
1181 tree_mod_log_insert_key(fs_info, parent, parent_slot,
1182 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1183 btrfs_set_node_blockptr(parent, parent_slot,
1184 cow->start);
1185 btrfs_set_node_ptr_generation(parent, parent_slot,
1186 trans->transid);
1187 btrfs_mark_buffer_dirty(parent);
1188 if (last_ref) {
1189 ret = tree_mod_log_free_eb(fs_info, buf);
1190 if (ret) {
1191 btrfs_abort_transaction(trans, ret);
1192 return ret;
1193 }
1194 }
1195 btrfs_free_tree_block(trans, root, buf, parent_start,
1196 last_ref);
1197 }
1198 if (unlock_orig)
1199 btrfs_tree_unlock(buf);
1200 free_extent_buffer_stale(buf);
1201 btrfs_mark_buffer_dirty(cow);
1202 *cow_ret = cow;
1203 return 0;
1204}
1205
1206/*
1207 * returns the logical address of the oldest predecessor of the given root.
1208 * entries older than time_seq are ignored.
1209 */
1210static struct tree_mod_elem *
1211__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1212 struct extent_buffer *eb_root, u64 time_seq)
1213{
1214 struct tree_mod_elem *tm;
1215 struct tree_mod_elem *found = NULL;
1216 u64 root_logical = eb_root->start;
1217 int looped = 0;
1218
1219 if (!time_seq)
1220 return NULL;
1221
1222 /*
1223 * the very last operation that's logged for a root is the
1224 * replacement operation (if it is replaced at all). this has
1225 * the logical address of the *new* root, making it the very
1226 * first operation that's logged for this root.
1227 */
1228 while (1) {
1229 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1230 time_seq);
1231 if (!looped && !tm)
1232 return NULL;
1233 /*
1234 * if there are no tree operation for the oldest root, we simply
1235 * return it. this should only happen if that (old) root is at
1236 * level 0.
1237 */
1238 if (!tm)
1239 break;
1240
1241 /*
1242 * if there's an operation that's not a root replacement, we
1243 * found the oldest version of our root. normally, we'll find a
1244 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1245 */
1246 if (tm->op != MOD_LOG_ROOT_REPLACE)
1247 break;
1248
1249 found = tm;
1250 root_logical = tm->old_root.logical;
1251 looped = 1;
1252 }
1253
1254 /* if there's no old root to return, return what we found instead */
1255 if (!found)
1256 found = tm;
1257
1258 return found;
1259}
1260
1261/*
1262 * tm is a pointer to the first operation to rewind within eb. then, all
1263 * previous operations will be rewound (until we reach something older than
1264 * time_seq).
1265 */
1266static void
1267__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1268 u64 time_seq, struct tree_mod_elem *first_tm)
1269{
1270 u32 n;
1271 struct rb_node *next;
1272 struct tree_mod_elem *tm = first_tm;
1273 unsigned long o_dst;
1274 unsigned long o_src;
1275 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1276
1277 n = btrfs_header_nritems(eb);
1278 tree_mod_log_read_lock(fs_info);
1279 while (tm && tm->seq >= time_seq) {
1280 /*
1281 * all the operations are recorded with the operator used for
1282 * the modification. as we're going backwards, we do the
1283 * opposite of each operation here.
1284 */
1285 switch (tm->op) {
1286 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1287 BUG_ON(tm->slot < n);
1288 /* Fallthrough */
1289 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1290 case MOD_LOG_KEY_REMOVE:
1291 btrfs_set_node_key(eb, &tm->key, tm->slot);
1292 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1293 btrfs_set_node_ptr_generation(eb, tm->slot,
1294 tm->generation);
1295 n++;
1296 break;
1297 case MOD_LOG_KEY_REPLACE:
1298 BUG_ON(tm->slot >= n);
1299 btrfs_set_node_key(eb, &tm->key, tm->slot);
1300 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1301 btrfs_set_node_ptr_generation(eb, tm->slot,
1302 tm->generation);
1303 break;
1304 case MOD_LOG_KEY_ADD:
1305 /* if a move operation is needed it's in the log */
1306 n--;
1307 break;
1308 case MOD_LOG_MOVE_KEYS:
1309 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1310 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1311 memmove_extent_buffer(eb, o_dst, o_src,
1312 tm->move.nr_items * p_size);
1313 break;
1314 case MOD_LOG_ROOT_REPLACE:
1315 /*
1316 * this operation is special. for roots, this must be
1317 * handled explicitly before rewinding.
1318 * for non-roots, this operation may exist if the node
1319 * was a root: root A -> child B; then A gets empty and
1320 * B is promoted to the new root. in the mod log, we'll
1321 * have a root-replace operation for B, a tree block
1322 * that is no root. we simply ignore that operation.
1323 */
1324 break;
1325 }
1326 next = rb_next(&tm->node);
1327 if (!next)
1328 break;
1329 tm = container_of(next, struct tree_mod_elem, node);
1330 if (tm->logical != first_tm->logical)
1331 break;
1332 }
1333 tree_mod_log_read_unlock(fs_info);
1334 btrfs_set_header_nritems(eb, n);
1335}
1336
1337/*
1338 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1339 * is returned. If rewind operations happen, a fresh buffer is returned. The
1340 * returned buffer is always read-locked. If the returned buffer is not the
1341 * input buffer, the lock on the input buffer is released and the input buffer
1342 * is freed (its refcount is decremented).
1343 */
1344static struct extent_buffer *
1345tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1346 struct extent_buffer *eb, u64 time_seq)
1347{
1348 struct extent_buffer *eb_rewin;
1349 struct tree_mod_elem *tm;
1350
1351 if (!time_seq)
1352 return eb;
1353
1354 if (btrfs_header_level(eb) == 0)
1355 return eb;
1356
1357 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1358 if (!tm)
1359 return eb;
1360
1361 btrfs_set_path_blocking(path);
1362 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1363
1364 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1365 BUG_ON(tm->slot != 0);
1366 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1367 if (!eb_rewin) {
1368 btrfs_tree_read_unlock_blocking(eb);
1369 free_extent_buffer(eb);
1370 return NULL;
1371 }
1372 btrfs_set_header_bytenr(eb_rewin, eb->start);
1373 btrfs_set_header_backref_rev(eb_rewin,
1374 btrfs_header_backref_rev(eb));
1375 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1376 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1377 } else {
1378 eb_rewin = btrfs_clone_extent_buffer(eb);
1379 if (!eb_rewin) {
1380 btrfs_tree_read_unlock_blocking(eb);
1381 free_extent_buffer(eb);
1382 return NULL;
1383 }
1384 }
1385
1386 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1387 btrfs_tree_read_unlock_blocking(eb);
1388 free_extent_buffer(eb);
1389
1390 extent_buffer_get(eb_rewin);
1391 btrfs_tree_read_lock(eb_rewin);
1392 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1393 WARN_ON(btrfs_header_nritems(eb_rewin) >
1394 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1395
1396 return eb_rewin;
1397}
1398
1399/*
1400 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1401 * value. If there are no changes, the current root->root_node is returned. If
1402 * anything changed in between, there's a fresh buffer allocated on which the
1403 * rewind operations are done. In any case, the returned buffer is read locked.
1404 * Returns NULL on error (with no locks held).
1405 */
1406static inline struct extent_buffer *
1407get_old_root(struct btrfs_root *root, u64 time_seq)
1408{
1409 struct btrfs_fs_info *fs_info = root->fs_info;
1410 struct tree_mod_elem *tm;
1411 struct extent_buffer *eb = NULL;
1412 struct extent_buffer *eb_root;
1413 struct extent_buffer *old;
1414 struct tree_mod_root *old_root = NULL;
1415 u64 old_generation = 0;
1416 u64 logical;
1417
1418 eb_root = btrfs_read_lock_root_node(root);
1419 tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
1420 if (!tm)
1421 return eb_root;
1422
1423 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1424 old_root = &tm->old_root;
1425 old_generation = tm->generation;
1426 logical = old_root->logical;
1427 } else {
1428 logical = eb_root->start;
1429 }
1430
1431 tm = tree_mod_log_search(fs_info, logical, time_seq);
1432 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1433 btrfs_tree_read_unlock(eb_root);
1434 free_extent_buffer(eb_root);
1435 old = read_tree_block(fs_info, logical, 0);
1436 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1437 if (!IS_ERR(old))
1438 free_extent_buffer(old);
1439 btrfs_warn(fs_info,
1440 "failed to read tree block %llu from get_old_root",
1441 logical);
1442 } else {
1443 eb = btrfs_clone_extent_buffer(old);
1444 free_extent_buffer(old);
1445 }
1446 } else if (old_root) {
1447 btrfs_tree_read_unlock(eb_root);
1448 free_extent_buffer(eb_root);
1449 eb = alloc_dummy_extent_buffer(fs_info, logical);
1450 } else {
1451 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1452 eb = btrfs_clone_extent_buffer(eb_root);
1453 btrfs_tree_read_unlock_blocking(eb_root);
1454 free_extent_buffer(eb_root);
1455 }
1456
1457 if (!eb)
1458 return NULL;
1459 extent_buffer_get(eb);
1460 btrfs_tree_read_lock(eb);
1461 if (old_root) {
1462 btrfs_set_header_bytenr(eb, eb->start);
1463 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1464 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1465 btrfs_set_header_level(eb, old_root->level);
1466 btrfs_set_header_generation(eb, old_generation);
1467 }
1468 if (tm)
1469 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1470 else
1471 WARN_ON(btrfs_header_level(eb) != 0);
1472 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1473
1474 return eb;
1475}
1476
1477int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1478{
1479 struct tree_mod_elem *tm;
1480 int level;
1481 struct extent_buffer *eb_root = btrfs_root_node(root);
1482
1483 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1484 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1485 level = tm->old_root.level;
1486 } else {
1487 level = btrfs_header_level(eb_root);
1488 }
1489 free_extent_buffer(eb_root);
1490
1491 return level;
1492}
1493
1494static inline int should_cow_block(struct btrfs_trans_handle *trans,
1495 struct btrfs_root *root,
1496 struct extent_buffer *buf)
1497{
1498 if (btrfs_is_testing(root->fs_info))
1499 return 0;
1500
1501 /* ensure we can see the force_cow */
1502 smp_rmb();
1503
1504 /*
1505 * We do not need to cow a block if
1506 * 1) this block is not created or changed in this transaction;
1507 * 2) this block does not belong to TREE_RELOC tree;
1508 * 3) the root is not forced COW.
1509 *
1510 * What is forced COW:
1511 * when we create snapshot during committing the transaction,
1512 * after we've finished coping src root, we must COW the shared
1513 * block to ensure the metadata consistency.
1514 */
1515 if (btrfs_header_generation(buf) == trans->transid &&
1516 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1517 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1518 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1519 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1520 return 0;
1521 return 1;
1522}
1523
1524/*
1525 * cows a single block, see __btrfs_cow_block for the real work.
1526 * This version of it has extra checks so that a block isn't COWed more than
1527 * once per transaction, as long as it hasn't been written yet
1528 */
1529noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1530 struct btrfs_root *root, struct extent_buffer *buf,
1531 struct extent_buffer *parent, int parent_slot,
1532 struct extent_buffer **cow_ret)
1533{
1534 struct btrfs_fs_info *fs_info = root->fs_info;
1535 u64 search_start;
1536 int ret;
1537
1538 if (trans->transaction != fs_info->running_transaction)
1539 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1540 trans->transid,
1541 fs_info->running_transaction->transid);
1542
1543 if (trans->transid != fs_info->generation)
1544 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1545 trans->transid, fs_info->generation);
1546
1547 if (!should_cow_block(trans, root, buf)) {
1548 trans->dirty = true;
1549 *cow_ret = buf;
1550 return 0;
1551 }
1552
1553 search_start = buf->start & ~((u64)SZ_1G - 1);
1554
1555 if (parent)
1556 btrfs_set_lock_blocking(parent);
1557 btrfs_set_lock_blocking(buf);
1558
1559 ret = __btrfs_cow_block(trans, root, buf, parent,
1560 parent_slot, cow_ret, search_start, 0);
1561
1562 trace_btrfs_cow_block(root, buf, *cow_ret);
1563
1564 return ret;
1565}
1566
1567/*
1568 * helper function for defrag to decide if two blocks pointed to by a
1569 * node are actually close by
1570 */
1571static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1572{
1573 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1574 return 1;
1575 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1576 return 1;
1577 return 0;
1578}
1579
1580/*
1581 * compare two keys in a memcmp fashion
1582 */
1583static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1584{
1585 struct btrfs_key k1;
1586
1587 btrfs_disk_key_to_cpu(&k1, disk);
1588
1589 return btrfs_comp_cpu_keys(&k1, k2);
1590}
1591
1592/*
1593 * same as comp_keys only with two btrfs_key's
1594 */
1595int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1596{
1597 if (k1->objectid > k2->objectid)
1598 return 1;
1599 if (k1->objectid < k2->objectid)
1600 return -1;
1601 if (k1->type > k2->type)
1602 return 1;
1603 if (k1->type < k2->type)
1604 return -1;
1605 if (k1->offset > k2->offset)
1606 return 1;
1607 if (k1->offset < k2->offset)
1608 return -1;
1609 return 0;
1610}
1611
1612/*
1613 * this is used by the defrag code to go through all the
1614 * leaves pointed to by a node and reallocate them so that
1615 * disk order is close to key order
1616 */
1617int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1618 struct btrfs_root *root, struct extent_buffer *parent,
1619 int start_slot, u64 *last_ret,
1620 struct btrfs_key *progress)
1621{
1622 struct btrfs_fs_info *fs_info = root->fs_info;
1623 struct extent_buffer *cur;
1624 u64 blocknr;
1625 u64 gen;
1626 u64 search_start = *last_ret;
1627 u64 last_block = 0;
1628 u64 other;
1629 u32 parent_nritems;
1630 int end_slot;
1631 int i;
1632 int err = 0;
1633 int parent_level;
1634 int uptodate;
1635 u32 blocksize;
1636 int progress_passed = 0;
1637 struct btrfs_disk_key disk_key;
1638
1639 parent_level = btrfs_header_level(parent);
1640
1641 WARN_ON(trans->transaction != fs_info->running_transaction);
1642 WARN_ON(trans->transid != fs_info->generation);
1643
1644 parent_nritems = btrfs_header_nritems(parent);
1645 blocksize = fs_info->nodesize;
1646 end_slot = parent_nritems - 1;
1647
1648 if (parent_nritems <= 1)
1649 return 0;
1650
1651 btrfs_set_lock_blocking(parent);
1652
1653 for (i = start_slot; i <= end_slot; i++) {
1654 int close = 1;
1655
1656 btrfs_node_key(parent, &disk_key, i);
1657 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1658 continue;
1659
1660 progress_passed = 1;
1661 blocknr = btrfs_node_blockptr(parent, i);
1662 gen = btrfs_node_ptr_generation(parent, i);
1663 if (last_block == 0)
1664 last_block = blocknr;
1665
1666 if (i > 0) {
1667 other = btrfs_node_blockptr(parent, i - 1);
1668 close = close_blocks(blocknr, other, blocksize);
1669 }
1670 if (!close && i < end_slot) {
1671 other = btrfs_node_blockptr(parent, i + 1);
1672 close = close_blocks(blocknr, other, blocksize);
1673 }
1674 if (close) {
1675 last_block = blocknr;
1676 continue;
1677 }
1678
1679 cur = find_extent_buffer(fs_info, blocknr);
1680 if (cur)
1681 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1682 else
1683 uptodate = 0;
1684 if (!cur || !uptodate) {
1685 if (!cur) {
1686 cur = read_tree_block(fs_info, blocknr, gen);
1687 if (IS_ERR(cur)) {
1688 return PTR_ERR(cur);
1689 } else if (!extent_buffer_uptodate(cur)) {
1690 free_extent_buffer(cur);
1691 return -EIO;
1692 }
1693 } else if (!uptodate) {
1694 err = btrfs_read_buffer(cur, gen);
1695 if (err) {
1696 free_extent_buffer(cur);
1697 return err;
1698 }
1699 }
1700 }
1701 if (search_start == 0)
1702 search_start = last_block;
1703
1704 btrfs_tree_lock(cur);
1705 btrfs_set_lock_blocking(cur);
1706 err = __btrfs_cow_block(trans, root, cur, parent, i,
1707 &cur, search_start,
1708 min(16 * blocksize,
1709 (end_slot - i) * blocksize));
1710 if (err) {
1711 btrfs_tree_unlock(cur);
1712 free_extent_buffer(cur);
1713 break;
1714 }
1715 search_start = cur->start;
1716 last_block = cur->start;
1717 *last_ret = search_start;
1718 btrfs_tree_unlock(cur);
1719 free_extent_buffer(cur);
1720 }
1721 return err;
1722}
1723
1724/*
1725 * search for key in the extent_buffer. The items start at offset p,
1726 * and they are item_size apart. There are 'max' items in p.
1727 *
1728 * the slot in the array is returned via slot, and it points to
1729 * the place where you would insert key if it is not found in
1730 * the array.
1731 *
1732 * slot may point to max if the key is bigger than all of the keys
1733 */
1734static noinline int generic_bin_search(struct extent_buffer *eb,
1735 unsigned long p,
1736 int item_size, struct btrfs_key *key,
1737 int max, int *slot)
1738{
1739 int low = 0;
1740 int high = max;
1741 int mid;
1742 int ret;
1743 struct btrfs_disk_key *tmp = NULL;
1744 struct btrfs_disk_key unaligned;
1745 unsigned long offset;
1746 char *kaddr = NULL;
1747 unsigned long map_start = 0;
1748 unsigned long map_len = 0;
1749 int err;
1750
1751 if (low > high) {
1752 btrfs_err(eb->fs_info,
1753 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1754 __func__, low, high, eb->start,
1755 btrfs_header_owner(eb), btrfs_header_level(eb));
1756 return -EINVAL;
1757 }
1758
1759 while (low < high) {
1760 mid = (low + high) / 2;
1761 offset = p + mid * item_size;
1762
1763 if (!kaddr || offset < map_start ||
1764 (offset + sizeof(struct btrfs_disk_key)) >
1765 map_start + map_len) {
1766
1767 err = map_private_extent_buffer(eb, offset,
1768 sizeof(struct btrfs_disk_key),
1769 &kaddr, &map_start, &map_len);
1770
1771 if (!err) {
1772 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1773 map_start);
1774 } else if (err == 1) {
1775 read_extent_buffer(eb, &unaligned,
1776 offset, sizeof(unaligned));
1777 tmp = &unaligned;
1778 } else {
1779 return err;
1780 }
1781
1782 } else {
1783 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1784 map_start);
1785 }
1786 ret = comp_keys(tmp, key);
1787
1788 if (ret < 0)
1789 low = mid + 1;
1790 else if (ret > 0)
1791 high = mid;
1792 else {
1793 *slot = mid;
1794 return 0;
1795 }
1796 }
1797 *slot = low;
1798 return 1;
1799}
1800
1801/*
1802 * simple bin_search frontend that does the right thing for
1803 * leaves vs nodes
1804 */
1805static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1806 int level, int *slot)
1807{
1808 if (level == 0)
1809 return generic_bin_search(eb,
1810 offsetof(struct btrfs_leaf, items),
1811 sizeof(struct btrfs_item),
1812 key, btrfs_header_nritems(eb),
1813 slot);
1814 else
1815 return generic_bin_search(eb,
1816 offsetof(struct btrfs_node, ptrs),
1817 sizeof(struct btrfs_key_ptr),
1818 key, btrfs_header_nritems(eb),
1819 slot);
1820}
1821
1822int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1823 int level, int *slot)
1824{
1825 return bin_search(eb, key, level, slot);
1826}
1827
1828static void root_add_used(struct btrfs_root *root, u32 size)
1829{
1830 spin_lock(&root->accounting_lock);
1831 btrfs_set_root_used(&root->root_item,
1832 btrfs_root_used(&root->root_item) + size);
1833 spin_unlock(&root->accounting_lock);
1834}
1835
1836static void root_sub_used(struct btrfs_root *root, u32 size)
1837{
1838 spin_lock(&root->accounting_lock);
1839 btrfs_set_root_used(&root->root_item,
1840 btrfs_root_used(&root->root_item) - size);
1841 spin_unlock(&root->accounting_lock);
1842}
1843
1844/* given a node and slot number, this reads the blocks it points to. The
1845 * extent buffer is returned with a reference taken (but unlocked).
1846 */
1847static noinline struct extent_buffer *
1848read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1849 int slot)
1850{
1851 int level = btrfs_header_level(parent);
1852 struct extent_buffer *eb;
1853
1854 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1855 return ERR_PTR(-ENOENT);
1856
1857 BUG_ON(level == 0);
1858
1859 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1860 btrfs_node_ptr_generation(parent, slot));
1861 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1862 free_extent_buffer(eb);
1863 eb = ERR_PTR(-EIO);
1864 }
1865
1866 return eb;
1867}
1868
1869/*
1870 * node level balancing, used to make sure nodes are in proper order for
1871 * item deletion. We balance from the top down, so we have to make sure
1872 * that a deletion won't leave an node completely empty later on.
1873 */
1874static noinline int balance_level(struct btrfs_trans_handle *trans,
1875 struct btrfs_root *root,
1876 struct btrfs_path *path, int level)
1877{
1878 struct btrfs_fs_info *fs_info = root->fs_info;
1879 struct extent_buffer *right = NULL;
1880 struct extent_buffer *mid;
1881 struct extent_buffer *left = NULL;
1882 struct extent_buffer *parent = NULL;
1883 int ret = 0;
1884 int wret;
1885 int pslot;
1886 int orig_slot = path->slots[level];
1887 u64 orig_ptr;
1888
1889 if (level == 0)
1890 return 0;
1891
1892 mid = path->nodes[level];
1893
1894 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1895 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1896 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1897
1898 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1899
1900 if (level < BTRFS_MAX_LEVEL - 1) {
1901 parent = path->nodes[level + 1];
1902 pslot = path->slots[level + 1];
1903 }
1904
1905 /*
1906 * deal with the case where there is only one pointer in the root
1907 * by promoting the node below to a root
1908 */
1909 if (!parent) {
1910 struct extent_buffer *child;
1911
1912 if (btrfs_header_nritems(mid) != 1)
1913 return 0;
1914
1915 /* promote the child to a root */
1916 child = read_node_slot(fs_info, mid, 0);
1917 if (IS_ERR(child)) {
1918 ret = PTR_ERR(child);
1919 btrfs_handle_fs_error(fs_info, ret, NULL);
1920 goto enospc;
1921 }
1922
1923 btrfs_tree_lock(child);
1924 btrfs_set_lock_blocking(child);
1925 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1926 if (ret) {
1927 btrfs_tree_unlock(child);
1928 free_extent_buffer(child);
1929 goto enospc;
1930 }
1931
1932 tree_mod_log_set_root_pointer(root, child, 1);
1933 rcu_assign_pointer(root->node, child);
1934
1935 add_root_to_dirty_list(root);
1936 btrfs_tree_unlock(child);
1937
1938 path->locks[level] = 0;
1939 path->nodes[level] = NULL;
1940 clean_tree_block(trans, fs_info, mid);
1941 btrfs_tree_unlock(mid);
1942 /* once for the path */
1943 free_extent_buffer(mid);
1944
1945 root_sub_used(root, mid->len);
1946 btrfs_free_tree_block(trans, root, mid, 0, 1);
1947 /* once for the root ptr */
1948 free_extent_buffer_stale(mid);
1949 return 0;
1950 }
1951 if (btrfs_header_nritems(mid) >
1952 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1953 return 0;
1954
1955 left = read_node_slot(fs_info, parent, pslot - 1);
1956 if (IS_ERR(left))
1957 left = NULL;
1958
1959 if (left) {
1960 btrfs_tree_lock(left);
1961 btrfs_set_lock_blocking(left);
1962 wret = btrfs_cow_block(trans, root, left,
1963 parent, pslot - 1, &left);
1964 if (wret) {
1965 ret = wret;
1966 goto enospc;
1967 }
1968 }
1969
1970 right = read_node_slot(fs_info, parent, pslot + 1);
1971 if (IS_ERR(right))
1972 right = NULL;
1973
1974 if (right) {
1975 btrfs_tree_lock(right);
1976 btrfs_set_lock_blocking(right);
1977 wret = btrfs_cow_block(trans, root, right,
1978 parent, pslot + 1, &right);
1979 if (wret) {
1980 ret = wret;
1981 goto enospc;
1982 }
1983 }
1984
1985 /* first, try to make some room in the middle buffer */
1986 if (left) {
1987 orig_slot += btrfs_header_nritems(left);
1988 wret = push_node_left(trans, fs_info, left, mid, 1);
1989 if (wret < 0)
1990 ret = wret;
1991 }
1992
1993 /*
1994 * then try to empty the right most buffer into the middle
1995 */
1996 if (right) {
1997 wret = push_node_left(trans, fs_info, mid, right, 1);
1998 if (wret < 0 && wret != -ENOSPC)
1999 ret = wret;
2000 if (btrfs_header_nritems(right) == 0) {
2001 clean_tree_block(trans, fs_info, right);
2002 btrfs_tree_unlock(right);
2003 del_ptr(root, path, level + 1, pslot + 1);
2004 root_sub_used(root, right->len);
2005 btrfs_free_tree_block(trans, root, right, 0, 1);
2006 free_extent_buffer_stale(right);
2007 right = NULL;
2008 } else {
2009 struct btrfs_disk_key right_key;
2010 btrfs_node_key(right, &right_key, 0);
2011 tree_mod_log_set_node_key(fs_info, parent,
2012 pslot + 1, 0);
2013 btrfs_set_node_key(parent, &right_key, pslot + 1);
2014 btrfs_mark_buffer_dirty(parent);
2015 }
2016 }
2017 if (btrfs_header_nritems(mid) == 1) {
2018 /*
2019 * we're not allowed to leave a node with one item in the
2020 * tree during a delete. A deletion from lower in the tree
2021 * could try to delete the only pointer in this node.
2022 * So, pull some keys from the left.
2023 * There has to be a left pointer at this point because
2024 * otherwise we would have pulled some pointers from the
2025 * right
2026 */
2027 if (!left) {
2028 ret = -EROFS;
2029 btrfs_handle_fs_error(fs_info, ret, NULL);
2030 goto enospc;
2031 }
2032 wret = balance_node_right(trans, fs_info, mid, left);
2033 if (wret < 0) {
2034 ret = wret;
2035 goto enospc;
2036 }
2037 if (wret == 1) {
2038 wret = push_node_left(trans, fs_info, left, mid, 1);
2039 if (wret < 0)
2040 ret = wret;
2041 }
2042 BUG_ON(wret == 1);
2043 }
2044 if (btrfs_header_nritems(mid) == 0) {
2045 clean_tree_block(trans, fs_info, mid);
2046 btrfs_tree_unlock(mid);
2047 del_ptr(root, path, level + 1, pslot);
2048 root_sub_used(root, mid->len);
2049 btrfs_free_tree_block(trans, root, mid, 0, 1);
2050 free_extent_buffer_stale(mid);
2051 mid = NULL;
2052 } else {
2053 /* update the parent key to reflect our changes */
2054 struct btrfs_disk_key mid_key;
2055 btrfs_node_key(mid, &mid_key, 0);
2056 tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2057 btrfs_set_node_key(parent, &mid_key, pslot);
2058 btrfs_mark_buffer_dirty(parent);
2059 }
2060
2061 /* update the path */
2062 if (left) {
2063 if (btrfs_header_nritems(left) > orig_slot) {
2064 extent_buffer_get(left);
2065 /* left was locked after cow */
2066 path->nodes[level] = left;
2067 path->slots[level + 1] -= 1;
2068 path->slots[level] = orig_slot;
2069 if (mid) {
2070 btrfs_tree_unlock(mid);
2071 free_extent_buffer(mid);
2072 }
2073 } else {
2074 orig_slot -= btrfs_header_nritems(left);
2075 path->slots[level] = orig_slot;
2076 }
2077 }
2078 /* double check we haven't messed things up */
2079 if (orig_ptr !=
2080 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2081 BUG();
2082enospc:
2083 if (right) {
2084 btrfs_tree_unlock(right);
2085 free_extent_buffer(right);
2086 }
2087 if (left) {
2088 if (path->nodes[level] != left)
2089 btrfs_tree_unlock(left);
2090 free_extent_buffer(left);
2091 }
2092 return ret;
2093}
2094
2095/* Node balancing for insertion. Here we only split or push nodes around
2096 * when they are completely full. This is also done top down, so we
2097 * have to be pessimistic.
2098 */
2099static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
2101 struct btrfs_path *path, int level)
2102{
2103 struct btrfs_fs_info *fs_info = root->fs_info;
2104 struct extent_buffer *right = NULL;
2105 struct extent_buffer *mid;
2106 struct extent_buffer *left = NULL;
2107 struct extent_buffer *parent = NULL;
2108 int ret = 0;
2109 int wret;
2110 int pslot;
2111 int orig_slot = path->slots[level];
2112
2113 if (level == 0)
2114 return 1;
2115
2116 mid = path->nodes[level];
2117 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2118
2119 if (level < BTRFS_MAX_LEVEL - 1) {
2120 parent = path->nodes[level + 1];
2121 pslot = path->slots[level + 1];
2122 }
2123
2124 if (!parent)
2125 return 1;
2126
2127 left = read_node_slot(fs_info, parent, pslot - 1);
2128 if (IS_ERR(left))
2129 left = NULL;
2130
2131 /* first, try to make some room in the middle buffer */
2132 if (left) {
2133 u32 left_nr;
2134
2135 btrfs_tree_lock(left);
2136 btrfs_set_lock_blocking(left);
2137
2138 left_nr = btrfs_header_nritems(left);
2139 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2140 wret = 1;
2141 } else {
2142 ret = btrfs_cow_block(trans, root, left, parent,
2143 pslot - 1, &left);
2144 if (ret)
2145 wret = 1;
2146 else {
2147 wret = push_node_left(trans, fs_info,
2148 left, mid, 0);
2149 }
2150 }
2151 if (wret < 0)
2152 ret = wret;
2153 if (wret == 0) {
2154 struct btrfs_disk_key disk_key;
2155 orig_slot += left_nr;
2156 btrfs_node_key(mid, &disk_key, 0);
2157 tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2158 btrfs_set_node_key(parent, &disk_key, pslot);
2159 btrfs_mark_buffer_dirty(parent);
2160 if (btrfs_header_nritems(left) > orig_slot) {
2161 path->nodes[level] = left;
2162 path->slots[level + 1] -= 1;
2163 path->slots[level] = orig_slot;
2164 btrfs_tree_unlock(mid);
2165 free_extent_buffer(mid);
2166 } else {
2167 orig_slot -=
2168 btrfs_header_nritems(left);
2169 path->slots[level] = orig_slot;
2170 btrfs_tree_unlock(left);
2171 free_extent_buffer(left);
2172 }
2173 return 0;
2174 }
2175 btrfs_tree_unlock(left);
2176 free_extent_buffer(left);
2177 }
2178 right = read_node_slot(fs_info, parent, pslot + 1);
2179 if (IS_ERR(right))
2180 right = NULL;
2181
2182 /*
2183 * then try to empty the right most buffer into the middle
2184 */
2185 if (right) {
2186 u32 right_nr;
2187
2188 btrfs_tree_lock(right);
2189 btrfs_set_lock_blocking(right);
2190
2191 right_nr = btrfs_header_nritems(right);
2192 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2193 wret = 1;
2194 } else {
2195 ret = btrfs_cow_block(trans, root, right,
2196 parent, pslot + 1,
2197 &right);
2198 if (ret)
2199 wret = 1;
2200 else {
2201 wret = balance_node_right(trans, fs_info,
2202 right, mid);
2203 }
2204 }
2205 if (wret < 0)
2206 ret = wret;
2207 if (wret == 0) {
2208 struct btrfs_disk_key disk_key;
2209
2210 btrfs_node_key(right, &disk_key, 0);
2211 tree_mod_log_set_node_key(fs_info, parent,
2212 pslot + 1, 0);
2213 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2214 btrfs_mark_buffer_dirty(parent);
2215
2216 if (btrfs_header_nritems(mid) <= orig_slot) {
2217 path->nodes[level] = right;
2218 path->slots[level + 1] += 1;
2219 path->slots[level] = orig_slot -
2220 btrfs_header_nritems(mid);
2221 btrfs_tree_unlock(mid);
2222 free_extent_buffer(mid);
2223 } else {
2224 btrfs_tree_unlock(right);
2225 free_extent_buffer(right);
2226 }
2227 return 0;
2228 }
2229 btrfs_tree_unlock(right);
2230 free_extent_buffer(right);
2231 }
2232 return 1;
2233}
2234
2235/*
2236 * readahead one full node of leaves, finding things that are close
2237 * to the block in 'slot', and triggering ra on them.
2238 */
2239static void reada_for_search(struct btrfs_fs_info *fs_info,
2240 struct btrfs_path *path,
2241 int level, int slot, u64 objectid)
2242{
2243 struct extent_buffer *node;
2244 struct btrfs_disk_key disk_key;
2245 u32 nritems;
2246 u64 search;
2247 u64 target;
2248 u64 nread = 0;
2249 struct extent_buffer *eb;
2250 u32 nr;
2251 u32 blocksize;
2252 u32 nscan = 0;
2253
2254 if (level != 1)
2255 return;
2256
2257 if (!path->nodes[level])
2258 return;
2259
2260 node = path->nodes[level];
2261
2262 search = btrfs_node_blockptr(node, slot);
2263 blocksize = fs_info->nodesize;
2264 eb = find_extent_buffer(fs_info, search);
2265 if (eb) {
2266 free_extent_buffer(eb);
2267 return;
2268 }
2269
2270 target = search;
2271
2272 nritems = btrfs_header_nritems(node);
2273 nr = slot;
2274
2275 while (1) {
2276 if (path->reada == READA_BACK) {
2277 if (nr == 0)
2278 break;
2279 nr--;
2280 } else if (path->reada == READA_FORWARD) {
2281 nr++;
2282 if (nr >= nritems)
2283 break;
2284 }
2285 if (path->reada == READA_BACK && objectid) {
2286 btrfs_node_key(node, &disk_key, nr);
2287 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2288 break;
2289 }
2290 search = btrfs_node_blockptr(node, nr);
2291 if ((search <= target && target - search <= 65536) ||
2292 (search > target && search - target <= 65536)) {
2293 readahead_tree_block(fs_info, search);
2294 nread += blocksize;
2295 }
2296 nscan++;
2297 if ((nread > 65536 || nscan > 32))
2298 break;
2299 }
2300}
2301
2302static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2303 struct btrfs_path *path, int level)
2304{
2305 int slot;
2306 int nritems;
2307 struct extent_buffer *parent;
2308 struct extent_buffer *eb;
2309 u64 gen;
2310 u64 block1 = 0;
2311 u64 block2 = 0;
2312
2313 parent = path->nodes[level + 1];
2314 if (!parent)
2315 return;
2316
2317 nritems = btrfs_header_nritems(parent);
2318 slot = path->slots[level + 1];
2319
2320 if (slot > 0) {
2321 block1 = btrfs_node_blockptr(parent, slot - 1);
2322 gen = btrfs_node_ptr_generation(parent, slot - 1);
2323 eb = find_extent_buffer(fs_info, block1);
2324 /*
2325 * if we get -eagain from btrfs_buffer_uptodate, we
2326 * don't want to return eagain here. That will loop
2327 * forever
2328 */
2329 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2330 block1 = 0;
2331 free_extent_buffer(eb);
2332 }
2333 if (slot + 1 < nritems) {
2334 block2 = btrfs_node_blockptr(parent, slot + 1);
2335 gen = btrfs_node_ptr_generation(parent, slot + 1);
2336 eb = find_extent_buffer(fs_info, block2);
2337 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2338 block2 = 0;
2339 free_extent_buffer(eb);
2340 }
2341
2342 if (block1)
2343 readahead_tree_block(fs_info, block1);
2344 if (block2)
2345 readahead_tree_block(fs_info, block2);
2346}
2347
2348
2349/*
2350 * when we walk down the tree, it is usually safe to unlock the higher layers
2351 * in the tree. The exceptions are when our path goes through slot 0, because
2352 * operations on the tree might require changing key pointers higher up in the
2353 * tree.
2354 *
2355 * callers might also have set path->keep_locks, which tells this code to keep
2356 * the lock if the path points to the last slot in the block. This is part of
2357 * walking through the tree, and selecting the next slot in the higher block.
2358 *
2359 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2360 * if lowest_unlock is 1, level 0 won't be unlocked
2361 */
2362static noinline void unlock_up(struct btrfs_path *path, int level,
2363 int lowest_unlock, int min_write_lock_level,
2364 int *write_lock_level)
2365{
2366 int i;
2367 int skip_level = level;
2368 int no_skips = 0;
2369 struct extent_buffer *t;
2370
2371 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2372 if (!path->nodes[i])
2373 break;
2374 if (!path->locks[i])
2375 break;
2376 if (!no_skips && path->slots[i] == 0) {
2377 skip_level = i + 1;
2378 continue;
2379 }
2380 if (!no_skips && path->keep_locks) {
2381 u32 nritems;
2382 t = path->nodes[i];
2383 nritems = btrfs_header_nritems(t);
2384 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2385 skip_level = i + 1;
2386 continue;
2387 }
2388 }
2389 if (skip_level < i && i >= lowest_unlock)
2390 no_skips = 1;
2391
2392 t = path->nodes[i];
2393 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2394 btrfs_tree_unlock_rw(t, path->locks[i]);
2395 path->locks[i] = 0;
2396 if (write_lock_level &&
2397 i > min_write_lock_level &&
2398 i <= *write_lock_level) {
2399 *write_lock_level = i - 1;
2400 }
2401 }
2402 }
2403}
2404
2405/*
2406 * This releases any locks held in the path starting at level and
2407 * going all the way up to the root.
2408 *
2409 * btrfs_search_slot will keep the lock held on higher nodes in a few
2410 * corner cases, such as COW of the block at slot zero in the node. This
2411 * ignores those rules, and it should only be called when there are no
2412 * more updates to be done higher up in the tree.
2413 */
2414noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2415{
2416 int i;
2417
2418 if (path->keep_locks)
2419 return;
2420
2421 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2422 if (!path->nodes[i])
2423 continue;
2424 if (!path->locks[i])
2425 continue;
2426 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2427 path->locks[i] = 0;
2428 }
2429}
2430
2431/*
2432 * helper function for btrfs_search_slot. The goal is to find a block
2433 * in cache without setting the path to blocking. If we find the block
2434 * we return zero and the path is unchanged.
2435 *
2436 * If we can't find the block, we set the path blocking and do some
2437 * reada. -EAGAIN is returned and the search must be repeated.
2438 */
2439static int
2440read_block_for_search(struct btrfs_trans_handle *trans,
2441 struct btrfs_root *root, struct btrfs_path *p,
2442 struct extent_buffer **eb_ret, int level, int slot,
2443 struct btrfs_key *key, u64 time_seq)
2444{
2445 struct btrfs_fs_info *fs_info = root->fs_info;
2446 u64 blocknr;
2447 u64 gen;
2448 struct extent_buffer *b = *eb_ret;
2449 struct extent_buffer *tmp;
2450 int ret;
2451
2452 blocknr = btrfs_node_blockptr(b, slot);
2453 gen = btrfs_node_ptr_generation(b, slot);
2454
2455 tmp = find_extent_buffer(fs_info, blocknr);
2456 if (tmp) {
2457 /* first we do an atomic uptodate check */
2458 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2459 *eb_ret = tmp;
2460 return 0;
2461 }
2462
2463 /* the pages were up to date, but we failed
2464 * the generation number check. Do a full
2465 * read for the generation number that is correct.
2466 * We must do this without dropping locks so
2467 * we can trust our generation number
2468 */
2469 btrfs_set_path_blocking(p);
2470
2471 /* now we're allowed to do a blocking uptodate check */
2472 ret = btrfs_read_buffer(tmp, gen);
2473 if (!ret) {
2474 *eb_ret = tmp;
2475 return 0;
2476 }
2477 free_extent_buffer(tmp);
2478 btrfs_release_path(p);
2479 return -EIO;
2480 }
2481
2482 /*
2483 * reduce lock contention at high levels
2484 * of the btree by dropping locks before
2485 * we read. Don't release the lock on the current
2486 * level because we need to walk this node to figure
2487 * out which blocks to read.
2488 */
2489 btrfs_unlock_up_safe(p, level + 1);
2490 btrfs_set_path_blocking(p);
2491
2492 free_extent_buffer(tmp);
2493 if (p->reada != READA_NONE)
2494 reada_for_search(fs_info, p, level, slot, key->objectid);
2495
2496 btrfs_release_path(p);
2497
2498 ret = -EAGAIN;
2499 tmp = read_tree_block(fs_info, blocknr, 0);
2500 if (!IS_ERR(tmp)) {
2501 /*
2502 * If the read above didn't mark this buffer up to date,
2503 * it will never end up being up to date. Set ret to EIO now
2504 * and give up so that our caller doesn't loop forever
2505 * on our EAGAINs.
2506 */
2507 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2508 ret = -EIO;
2509 free_extent_buffer(tmp);
2510 } else {
2511 ret = PTR_ERR(tmp);
2512 }
2513 return ret;
2514}
2515
2516/*
2517 * helper function for btrfs_search_slot. This does all of the checks
2518 * for node-level blocks and does any balancing required based on
2519 * the ins_len.
2520 *
2521 * If no extra work was required, zero is returned. If we had to
2522 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2523 * start over
2524 */
2525static int
2526setup_nodes_for_search(struct btrfs_trans_handle *trans,
2527 struct btrfs_root *root, struct btrfs_path *p,
2528 struct extent_buffer *b, int level, int ins_len,
2529 int *write_lock_level)
2530{
2531 struct btrfs_fs_info *fs_info = root->fs_info;
2532 int ret;
2533
2534 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2535 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2536 int sret;
2537
2538 if (*write_lock_level < level + 1) {
2539 *write_lock_level = level + 1;
2540 btrfs_release_path(p);
2541 goto again;
2542 }
2543
2544 btrfs_set_path_blocking(p);
2545 reada_for_balance(fs_info, p, level);
2546 sret = split_node(trans, root, p, level);
2547 btrfs_clear_path_blocking(p, NULL, 0);
2548
2549 BUG_ON(sret > 0);
2550 if (sret) {
2551 ret = sret;
2552 goto done;
2553 }
2554 b = p->nodes[level];
2555 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2556 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2557 int sret;
2558
2559 if (*write_lock_level < level + 1) {
2560 *write_lock_level = level + 1;
2561 btrfs_release_path(p);
2562 goto again;
2563 }
2564
2565 btrfs_set_path_blocking(p);
2566 reada_for_balance(fs_info, p, level);
2567 sret = balance_level(trans, root, p, level);
2568 btrfs_clear_path_blocking(p, NULL, 0);
2569
2570 if (sret) {
2571 ret = sret;
2572 goto done;
2573 }
2574 b = p->nodes[level];
2575 if (!b) {
2576 btrfs_release_path(p);
2577 goto again;
2578 }
2579 BUG_ON(btrfs_header_nritems(b) == 1);
2580 }
2581 return 0;
2582
2583again:
2584 ret = -EAGAIN;
2585done:
2586 return ret;
2587}
2588
2589static void key_search_validate(struct extent_buffer *b,
2590 struct btrfs_key *key,
2591 int level)
2592{
2593#ifdef CONFIG_BTRFS_ASSERT
2594 struct btrfs_disk_key disk_key;
2595
2596 btrfs_cpu_key_to_disk(&disk_key, key);
2597
2598 if (level == 0)
2599 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2600 offsetof(struct btrfs_leaf, items[0].key),
2601 sizeof(disk_key)));
2602 else
2603 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2604 offsetof(struct btrfs_node, ptrs[0].key),
2605 sizeof(disk_key)));
2606#endif
2607}
2608
2609static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2610 int level, int *prev_cmp, int *slot)
2611{
2612 if (*prev_cmp != 0) {
2613 *prev_cmp = bin_search(b, key, level, slot);
2614 return *prev_cmp;
2615 }
2616
2617 key_search_validate(b, key, level);
2618 *slot = 0;
2619
2620 return 0;
2621}
2622
2623int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2624 u64 iobjectid, u64 ioff, u8 key_type,
2625 struct btrfs_key *found_key)
2626{
2627 int ret;
2628 struct btrfs_key key;
2629 struct extent_buffer *eb;
2630
2631 ASSERT(path);
2632 ASSERT(found_key);
2633
2634 key.type = key_type;
2635 key.objectid = iobjectid;
2636 key.offset = ioff;
2637
2638 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2639 if (ret < 0)
2640 return ret;
2641
2642 eb = path->nodes[0];
2643 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2644 ret = btrfs_next_leaf(fs_root, path);
2645 if (ret)
2646 return ret;
2647 eb = path->nodes[0];
2648 }
2649
2650 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2651 if (found_key->type != key.type ||
2652 found_key->objectid != key.objectid)
2653 return 1;
2654
2655 return 0;
2656}
2657
2658/*
2659 * look for key in the tree. path is filled in with nodes along the way
2660 * if key is found, we return zero and you can find the item in the leaf
2661 * level of the path (level 0)
2662 *
2663 * If the key isn't found, the path points to the slot where it should
2664 * be inserted, and 1 is returned. If there are other errors during the
2665 * search a negative error number is returned.
2666 *
2667 * if ins_len > 0, nodes and leaves will be split as we walk down the
2668 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2669 * possible)
2670 */
2671int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2672 *root, struct btrfs_key *key, struct btrfs_path *p, int
2673 ins_len, int cow)
2674{
2675 struct btrfs_fs_info *fs_info = root->fs_info;
2676 struct extent_buffer *b;
2677 int slot;
2678 int ret;
2679 int err;
2680 int level;
2681 int lowest_unlock = 1;
2682 int root_lock;
2683 /* everything at write_lock_level or lower must be write locked */
2684 int write_lock_level = 0;
2685 u8 lowest_level = 0;
2686 int min_write_lock_level;
2687 int prev_cmp;
2688
2689 lowest_level = p->lowest_level;
2690 WARN_ON(lowest_level && ins_len > 0);
2691 WARN_ON(p->nodes[0] != NULL);
2692 BUG_ON(!cow && ins_len);
2693
2694 if (ins_len < 0) {
2695 lowest_unlock = 2;
2696
2697 /* when we are removing items, we might have to go up to level
2698 * two as we update tree pointers Make sure we keep write
2699 * for those levels as well
2700 */
2701 write_lock_level = 2;
2702 } else if (ins_len > 0) {
2703 /*
2704 * for inserting items, make sure we have a write lock on
2705 * level 1 so we can update keys
2706 */
2707 write_lock_level = 1;
2708 }
2709
2710 if (!cow)
2711 write_lock_level = -1;
2712
2713 if (cow && (p->keep_locks || p->lowest_level))
2714 write_lock_level = BTRFS_MAX_LEVEL;
2715
2716 min_write_lock_level = write_lock_level;
2717
2718again:
2719 prev_cmp = -1;
2720 /*
2721 * we try very hard to do read locks on the root
2722 */
2723 root_lock = BTRFS_READ_LOCK;
2724 level = 0;
2725 if (p->search_commit_root) {
2726 /*
2727 * the commit roots are read only
2728 * so we always do read locks
2729 */
2730 if (p->need_commit_sem)
2731 down_read(&fs_info->commit_root_sem);
2732 b = root->commit_root;
2733 extent_buffer_get(b);
2734 level = btrfs_header_level(b);
2735 if (p->need_commit_sem)
2736 up_read(&fs_info->commit_root_sem);
2737 if (!p->skip_locking)
2738 btrfs_tree_read_lock(b);
2739 } else {
2740 if (p->skip_locking) {
2741 b = btrfs_root_node(root);
2742 level = btrfs_header_level(b);
2743 } else {
2744 /* we don't know the level of the root node
2745 * until we actually have it read locked
2746 */
2747 b = btrfs_read_lock_root_node(root);
2748 level = btrfs_header_level(b);
2749 if (level <= write_lock_level) {
2750 /* whoops, must trade for write lock */
2751 btrfs_tree_read_unlock(b);
2752 free_extent_buffer(b);
2753 b = btrfs_lock_root_node(root);
2754 root_lock = BTRFS_WRITE_LOCK;
2755
2756 /* the level might have changed, check again */
2757 level = btrfs_header_level(b);
2758 }
2759 }
2760 }
2761 p->nodes[level] = b;
2762 if (!p->skip_locking)
2763 p->locks[level] = root_lock;
2764
2765 while (b) {
2766 level = btrfs_header_level(b);
2767
2768 /*
2769 * setup the path here so we can release it under lock
2770 * contention with the cow code
2771 */
2772 if (cow) {
2773 /*
2774 * if we don't really need to cow this block
2775 * then we don't want to set the path blocking,
2776 * so we test it here
2777 */
2778 if (!should_cow_block(trans, root, b)) {
2779 trans->dirty = true;
2780 goto cow_done;
2781 }
2782
2783 /*
2784 * must have write locks on this node and the
2785 * parent
2786 */
2787 if (level > write_lock_level ||
2788 (level + 1 > write_lock_level &&
2789 level + 1 < BTRFS_MAX_LEVEL &&
2790 p->nodes[level + 1])) {
2791 write_lock_level = level + 1;
2792 btrfs_release_path(p);
2793 goto again;
2794 }
2795
2796 btrfs_set_path_blocking(p);
2797 err = btrfs_cow_block(trans, root, b,
2798 p->nodes[level + 1],
2799 p->slots[level + 1], &b);
2800 if (err) {
2801 ret = err;
2802 goto done;
2803 }
2804 }
2805cow_done:
2806 p->nodes[level] = b;
2807 btrfs_clear_path_blocking(p, NULL, 0);
2808
2809 /*
2810 * we have a lock on b and as long as we aren't changing
2811 * the tree, there is no way to for the items in b to change.
2812 * It is safe to drop the lock on our parent before we
2813 * go through the expensive btree search on b.
2814 *
2815 * If we're inserting or deleting (ins_len != 0), then we might
2816 * be changing slot zero, which may require changing the parent.
2817 * So, we can't drop the lock until after we know which slot
2818 * we're operating on.
2819 */
2820 if (!ins_len && !p->keep_locks) {
2821 int u = level + 1;
2822
2823 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2824 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2825 p->locks[u] = 0;
2826 }
2827 }
2828
2829 ret = key_search(b, key, level, &prev_cmp, &slot);
2830 if (ret < 0)
2831 goto done;
2832
2833 if (level != 0) {
2834 int dec = 0;
2835 if (ret && slot > 0) {
2836 dec = 1;
2837 slot -= 1;
2838 }
2839 p->slots[level] = slot;
2840 err = setup_nodes_for_search(trans, root, p, b, level,
2841 ins_len, &write_lock_level);
2842 if (err == -EAGAIN)
2843 goto again;
2844 if (err) {
2845 ret = err;
2846 goto done;
2847 }
2848 b = p->nodes[level];
2849 slot = p->slots[level];
2850
2851 /*
2852 * slot 0 is special, if we change the key
2853 * we have to update the parent pointer
2854 * which means we must have a write lock
2855 * on the parent
2856 */
2857 if (slot == 0 && ins_len &&
2858 write_lock_level < level + 1) {
2859 write_lock_level = level + 1;
2860 btrfs_release_path(p);
2861 goto again;
2862 }
2863
2864 unlock_up(p, level, lowest_unlock,
2865 min_write_lock_level, &write_lock_level);
2866
2867 if (level == lowest_level) {
2868 if (dec)
2869 p->slots[level]++;
2870 goto done;
2871 }
2872
2873 err = read_block_for_search(trans, root, p,
2874 &b, level, slot, key, 0);
2875 if (err == -EAGAIN)
2876 goto again;
2877 if (err) {
2878 ret = err;
2879 goto done;
2880 }
2881
2882 if (!p->skip_locking) {
2883 level = btrfs_header_level(b);
2884 if (level <= write_lock_level) {
2885 err = btrfs_try_tree_write_lock(b);
2886 if (!err) {
2887 btrfs_set_path_blocking(p);
2888 btrfs_tree_lock(b);
2889 btrfs_clear_path_blocking(p, b,
2890 BTRFS_WRITE_LOCK);
2891 }
2892 p->locks[level] = BTRFS_WRITE_LOCK;
2893 } else {
2894 err = btrfs_tree_read_lock_atomic(b);
2895 if (!err) {
2896 btrfs_set_path_blocking(p);
2897 btrfs_tree_read_lock(b);
2898 btrfs_clear_path_blocking(p, b,
2899 BTRFS_READ_LOCK);
2900 }
2901 p->locks[level] = BTRFS_READ_LOCK;
2902 }
2903 p->nodes[level] = b;
2904 }
2905 } else {
2906 p->slots[level] = slot;
2907 if (ins_len > 0 &&
2908 btrfs_leaf_free_space(fs_info, b) < ins_len) {
2909 if (write_lock_level < 1) {
2910 write_lock_level = 1;
2911 btrfs_release_path(p);
2912 goto again;
2913 }
2914
2915 btrfs_set_path_blocking(p);
2916 err = split_leaf(trans, root, key,
2917 p, ins_len, ret == 0);
2918 btrfs_clear_path_blocking(p, NULL, 0);
2919
2920 BUG_ON(err > 0);
2921 if (err) {
2922 ret = err;
2923 goto done;
2924 }
2925 }
2926 if (!p->search_for_split)
2927 unlock_up(p, level, lowest_unlock,
2928 min_write_lock_level, &write_lock_level);
2929 goto done;
2930 }
2931 }
2932 ret = 1;
2933done:
2934 /*
2935 * we don't really know what they plan on doing with the path
2936 * from here on, so for now just mark it as blocking
2937 */
2938 if (!p->leave_spinning)
2939 btrfs_set_path_blocking(p);
2940 if (ret < 0 && !p->skip_release_on_error)
2941 btrfs_release_path(p);
2942 return ret;
2943}
2944
2945/*
2946 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2947 * current state of the tree together with the operations recorded in the tree
2948 * modification log to search for the key in a previous version of this tree, as
2949 * denoted by the time_seq parameter.
2950 *
2951 * Naturally, there is no support for insert, delete or cow operations.
2952 *
2953 * The resulting path and return value will be set up as if we called
2954 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2955 */
2956int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2957 struct btrfs_path *p, u64 time_seq)
2958{
2959 struct btrfs_fs_info *fs_info = root->fs_info;
2960 struct extent_buffer *b;
2961 int slot;
2962 int ret;
2963 int err;
2964 int level;
2965 int lowest_unlock = 1;
2966 u8 lowest_level = 0;
2967 int prev_cmp = -1;
2968
2969 lowest_level = p->lowest_level;
2970 WARN_ON(p->nodes[0] != NULL);
2971
2972 if (p->search_commit_root) {
2973 BUG_ON(time_seq);
2974 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2975 }
2976
2977again:
2978 b = get_old_root(root, time_seq);
2979 level = btrfs_header_level(b);
2980 p->locks[level] = BTRFS_READ_LOCK;
2981
2982 while (b) {
2983 level = btrfs_header_level(b);
2984 p->nodes[level] = b;
2985 btrfs_clear_path_blocking(p, NULL, 0);
2986
2987 /*
2988 * we have a lock on b and as long as we aren't changing
2989 * the tree, there is no way to for the items in b to change.
2990 * It is safe to drop the lock on our parent before we
2991 * go through the expensive btree search on b.
2992 */
2993 btrfs_unlock_up_safe(p, level + 1);
2994
2995 /*
2996 * Since we can unwind ebs we want to do a real search every
2997 * time.
2998 */
2999 prev_cmp = -1;
3000 ret = key_search(b, key, level, &prev_cmp, &slot);
3001
3002 if (level != 0) {
3003 int dec = 0;
3004 if (ret && slot > 0) {
3005 dec = 1;
3006 slot -= 1;
3007 }
3008 p->slots[level] = slot;
3009 unlock_up(p, level, lowest_unlock, 0, NULL);
3010
3011 if (level == lowest_level) {
3012 if (dec)
3013 p->slots[level]++;
3014 goto done;
3015 }
3016
3017 err = read_block_for_search(NULL, root, p, &b, level,
3018 slot, key, time_seq);
3019 if (err == -EAGAIN)
3020 goto again;
3021 if (err) {
3022 ret = err;
3023 goto done;
3024 }
3025
3026 level = btrfs_header_level(b);
3027 err = btrfs_tree_read_lock_atomic(b);
3028 if (!err) {
3029 btrfs_set_path_blocking(p);
3030 btrfs_tree_read_lock(b);
3031 btrfs_clear_path_blocking(p, b,
3032 BTRFS_READ_LOCK);
3033 }
3034 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3035 if (!b) {
3036 ret = -ENOMEM;
3037 goto done;
3038 }
3039 p->locks[level] = BTRFS_READ_LOCK;
3040 p->nodes[level] = b;
3041 } else {
3042 p->slots[level] = slot;
3043 unlock_up(p, level, lowest_unlock, 0, NULL);
3044 goto done;
3045 }
3046 }
3047 ret = 1;
3048done:
3049 if (!p->leave_spinning)
3050 btrfs_set_path_blocking(p);
3051 if (ret < 0)
3052 btrfs_release_path(p);
3053
3054 return ret;
3055}
3056
3057/*
3058 * helper to use instead of search slot if no exact match is needed but
3059 * instead the next or previous item should be returned.
3060 * When find_higher is true, the next higher item is returned, the next lower
3061 * otherwise.
3062 * When return_any and find_higher are both true, and no higher item is found,
3063 * return the next lower instead.
3064 * When return_any is true and find_higher is false, and no lower item is found,
3065 * return the next higher instead.
3066 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3067 * < 0 on error
3068 */
3069int btrfs_search_slot_for_read(struct btrfs_root *root,
3070 struct btrfs_key *key, struct btrfs_path *p,
3071 int find_higher, int return_any)
3072{
3073 int ret;
3074 struct extent_buffer *leaf;
3075
3076again:
3077 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3078 if (ret <= 0)
3079 return ret;
3080 /*
3081 * a return value of 1 means the path is at the position where the
3082 * item should be inserted. Normally this is the next bigger item,
3083 * but in case the previous item is the last in a leaf, path points
3084 * to the first free slot in the previous leaf, i.e. at an invalid
3085 * item.
3086 */
3087 leaf = p->nodes[0];
3088
3089 if (find_higher) {
3090 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3091 ret = btrfs_next_leaf(root, p);
3092 if (ret <= 0)
3093 return ret;
3094 if (!return_any)
3095 return 1;
3096 /*
3097 * no higher item found, return the next
3098 * lower instead
3099 */
3100 return_any = 0;
3101 find_higher = 0;
3102 btrfs_release_path(p);
3103 goto again;
3104 }
3105 } else {
3106 if (p->slots[0] == 0) {
3107 ret = btrfs_prev_leaf(root, p);
3108 if (ret < 0)
3109 return ret;
3110 if (!ret) {
3111 leaf = p->nodes[0];
3112 if (p->slots[0] == btrfs_header_nritems(leaf))
3113 p->slots[0]--;
3114 return 0;
3115 }
3116 if (!return_any)
3117 return 1;
3118 /*
3119 * no lower item found, return the next
3120 * higher instead
3121 */
3122 return_any = 0;
3123 find_higher = 1;
3124 btrfs_release_path(p);
3125 goto again;
3126 } else {
3127 --p->slots[0];
3128 }
3129 }
3130 return 0;
3131}
3132
3133/*
3134 * adjust the pointers going up the tree, starting at level
3135 * making sure the right key of each node is points to 'key'.
3136 * This is used after shifting pointers to the left, so it stops
3137 * fixing up pointers when a given leaf/node is not in slot 0 of the
3138 * higher levels
3139 *
3140 */
3141static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3142 struct btrfs_path *path,
3143 struct btrfs_disk_key *key, int level)
3144{
3145 int i;
3146 struct extent_buffer *t;
3147
3148 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3149 int tslot = path->slots[i];
3150 if (!path->nodes[i])
3151 break;
3152 t = path->nodes[i];
3153 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3154 btrfs_set_node_key(t, key, tslot);
3155 btrfs_mark_buffer_dirty(path->nodes[i]);
3156 if (tslot != 0)
3157 break;
3158 }
3159}
3160
3161/*
3162 * update item key.
3163 *
3164 * This function isn't completely safe. It's the caller's responsibility
3165 * that the new key won't break the order
3166 */
3167void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3168 struct btrfs_path *path,
3169 struct btrfs_key *new_key)
3170{
3171 struct btrfs_disk_key disk_key;
3172 struct extent_buffer *eb;
3173 int slot;
3174
3175 eb = path->nodes[0];
3176 slot = path->slots[0];
3177 if (slot > 0) {
3178 btrfs_item_key(eb, &disk_key, slot - 1);
3179 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3180 }
3181 if (slot < btrfs_header_nritems(eb) - 1) {
3182 btrfs_item_key(eb, &disk_key, slot + 1);
3183 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3184 }
3185
3186 btrfs_cpu_key_to_disk(&disk_key, new_key);
3187 btrfs_set_item_key(eb, &disk_key, slot);
3188 btrfs_mark_buffer_dirty(eb);
3189 if (slot == 0)
3190 fixup_low_keys(fs_info, path, &disk_key, 1);
3191}
3192
3193/*
3194 * try to push data from one node into the next node left in the
3195 * tree.
3196 *
3197 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3198 * error, and > 0 if there was no room in the left hand block.
3199 */
3200static int push_node_left(struct btrfs_trans_handle *trans,
3201 struct btrfs_fs_info *fs_info,
3202 struct extent_buffer *dst,
3203 struct extent_buffer *src, int empty)
3204{
3205 int push_items = 0;
3206 int src_nritems;
3207 int dst_nritems;
3208 int ret = 0;
3209
3210 src_nritems = btrfs_header_nritems(src);
3211 dst_nritems = btrfs_header_nritems(dst);
3212 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3213 WARN_ON(btrfs_header_generation(src) != trans->transid);
3214 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3215
3216 if (!empty && src_nritems <= 8)
3217 return 1;
3218
3219 if (push_items <= 0)
3220 return 1;
3221
3222 if (empty) {
3223 push_items = min(src_nritems, push_items);
3224 if (push_items < src_nritems) {
3225 /* leave at least 8 pointers in the node if
3226 * we aren't going to empty it
3227 */
3228 if (src_nritems - push_items < 8) {
3229 if (push_items <= 8)
3230 return 1;
3231 push_items -= 8;
3232 }
3233 }
3234 } else
3235 push_items = min(src_nritems - 8, push_items);
3236
3237 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3238 push_items);
3239 if (ret) {
3240 btrfs_abort_transaction(trans, ret);
3241 return ret;
3242 }
3243 copy_extent_buffer(dst, src,
3244 btrfs_node_key_ptr_offset(dst_nritems),
3245 btrfs_node_key_ptr_offset(0),
3246 push_items * sizeof(struct btrfs_key_ptr));
3247
3248 if (push_items < src_nritems) {
3249 /*
3250 * don't call tree_mod_log_eb_move here, key removal was already
3251 * fully logged by tree_mod_log_eb_copy above.
3252 */
3253 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3254 btrfs_node_key_ptr_offset(push_items),
3255 (src_nritems - push_items) *
3256 sizeof(struct btrfs_key_ptr));
3257 }
3258 btrfs_set_header_nritems(src, src_nritems - push_items);
3259 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3260 btrfs_mark_buffer_dirty(src);
3261 btrfs_mark_buffer_dirty(dst);
3262
3263 return ret;
3264}
3265
3266/*
3267 * try to push data from one node into the next node right in the
3268 * tree.
3269 *
3270 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3271 * error, and > 0 if there was no room in the right hand block.
3272 *
3273 * this will only push up to 1/2 the contents of the left node over
3274 */
3275static int balance_node_right(struct btrfs_trans_handle *trans,
3276 struct btrfs_fs_info *fs_info,
3277 struct extent_buffer *dst,
3278 struct extent_buffer *src)
3279{
3280 int push_items = 0;
3281 int max_push;
3282 int src_nritems;
3283 int dst_nritems;
3284 int ret = 0;
3285
3286 WARN_ON(btrfs_header_generation(src) != trans->transid);
3287 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3288
3289 src_nritems = btrfs_header_nritems(src);
3290 dst_nritems = btrfs_header_nritems(dst);
3291 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3292 if (push_items <= 0)
3293 return 1;
3294
3295 if (src_nritems < 4)
3296 return 1;
3297
3298 max_push = src_nritems / 2 + 1;
3299 /* don't try to empty the node */
3300 if (max_push >= src_nritems)
3301 return 1;
3302
3303 if (max_push < push_items)
3304 push_items = max_push;
3305
3306 tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
3307 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3308 btrfs_node_key_ptr_offset(0),
3309 (dst_nritems) *
3310 sizeof(struct btrfs_key_ptr));
3311
3312 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3313 src_nritems - push_items, push_items);
3314 if (ret) {
3315 btrfs_abort_transaction(trans, ret);
3316 return ret;
3317 }
3318 copy_extent_buffer(dst, src,
3319 btrfs_node_key_ptr_offset(0),
3320 btrfs_node_key_ptr_offset(src_nritems - push_items),
3321 push_items * sizeof(struct btrfs_key_ptr));
3322
3323 btrfs_set_header_nritems(src, src_nritems - push_items);
3324 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3325
3326 btrfs_mark_buffer_dirty(src);
3327 btrfs_mark_buffer_dirty(dst);
3328
3329 return ret;
3330}
3331
3332/*
3333 * helper function to insert a new root level in the tree.
3334 * A new node is allocated, and a single item is inserted to
3335 * point to the existing root
3336 *
3337 * returns zero on success or < 0 on failure.
3338 */
3339static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3340 struct btrfs_root *root,
3341 struct btrfs_path *path, int level)
3342{
3343 struct btrfs_fs_info *fs_info = root->fs_info;
3344 u64 lower_gen;
3345 struct extent_buffer *lower;
3346 struct extent_buffer *c;
3347 struct extent_buffer *old;
3348 struct btrfs_disk_key lower_key;
3349
3350 BUG_ON(path->nodes[level]);
3351 BUG_ON(path->nodes[level-1] != root->node);
3352
3353 lower = path->nodes[level-1];
3354 if (level == 1)
3355 btrfs_item_key(lower, &lower_key, 0);
3356 else
3357 btrfs_node_key(lower, &lower_key, 0);
3358
3359 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3360 &lower_key, level, root->node->start, 0);
3361 if (IS_ERR(c))
3362 return PTR_ERR(c);
3363
3364 root_add_used(root, fs_info->nodesize);
3365
3366 memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3367 btrfs_set_header_nritems(c, 1);
3368 btrfs_set_header_level(c, level);
3369 btrfs_set_header_bytenr(c, c->start);
3370 btrfs_set_header_generation(c, trans->transid);
3371 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3372 btrfs_set_header_owner(c, root->root_key.objectid);
3373
3374 write_extent_buffer_fsid(c, fs_info->fsid);
3375 write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3376
3377 btrfs_set_node_key(c, &lower_key, 0);
3378 btrfs_set_node_blockptr(c, 0, lower->start);
3379 lower_gen = btrfs_header_generation(lower);
3380 WARN_ON(lower_gen != trans->transid);
3381
3382 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3383
3384 btrfs_mark_buffer_dirty(c);
3385
3386 old = root->node;
3387 tree_mod_log_set_root_pointer(root, c, 0);
3388 rcu_assign_pointer(root->node, c);
3389
3390 /* the super has an extra ref to root->node */
3391 free_extent_buffer(old);
3392
3393 add_root_to_dirty_list(root);
3394 extent_buffer_get(c);
3395 path->nodes[level] = c;
3396 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3397 path->slots[level] = 0;
3398 return 0;
3399}
3400
3401/*
3402 * worker function to insert a single pointer in a node.
3403 * the node should have enough room for the pointer already
3404 *
3405 * slot and level indicate where you want the key to go, and
3406 * blocknr is the block the key points to.
3407 */
3408static void insert_ptr(struct btrfs_trans_handle *trans,
3409 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3410 struct btrfs_disk_key *key, u64 bytenr,
3411 int slot, int level)
3412{
3413 struct extent_buffer *lower;
3414 int nritems;
3415 int ret;
3416
3417 BUG_ON(!path->nodes[level]);
3418 btrfs_assert_tree_locked(path->nodes[level]);
3419 lower = path->nodes[level];
3420 nritems = btrfs_header_nritems(lower);
3421 BUG_ON(slot > nritems);
3422 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3423 if (slot != nritems) {
3424 if (level)
3425 tree_mod_log_eb_move(fs_info, lower, slot + 1,
3426 slot, nritems - slot);
3427 memmove_extent_buffer(lower,
3428 btrfs_node_key_ptr_offset(slot + 1),
3429 btrfs_node_key_ptr_offset(slot),
3430 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3431 }
3432 if (level) {
3433 ret = tree_mod_log_insert_key(fs_info, lower, slot,
3434 MOD_LOG_KEY_ADD, GFP_NOFS);
3435 BUG_ON(ret < 0);
3436 }
3437 btrfs_set_node_key(lower, key, slot);
3438 btrfs_set_node_blockptr(lower, slot, bytenr);
3439 WARN_ON(trans->transid == 0);
3440 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3441 btrfs_set_header_nritems(lower, nritems + 1);
3442 btrfs_mark_buffer_dirty(lower);
3443}
3444
3445/*
3446 * split the node at the specified level in path in two.
3447 * The path is corrected to point to the appropriate node after the split
3448 *
3449 * Before splitting this tries to make some room in the node by pushing
3450 * left and right, if either one works, it returns right away.
3451 *
3452 * returns 0 on success and < 0 on failure
3453 */
3454static noinline int split_node(struct btrfs_trans_handle *trans,
3455 struct btrfs_root *root,
3456 struct btrfs_path *path, int level)
3457{
3458 struct btrfs_fs_info *fs_info = root->fs_info;
3459 struct extent_buffer *c;
3460 struct extent_buffer *split;
3461 struct btrfs_disk_key disk_key;
3462 int mid;
3463 int ret;
3464 u32 c_nritems;
3465
3466 c = path->nodes[level];
3467 WARN_ON(btrfs_header_generation(c) != trans->transid);
3468 if (c == root->node) {
3469 /*
3470 * trying to split the root, lets make a new one
3471 *
3472 * tree mod log: We don't log_removal old root in
3473 * insert_new_root, because that root buffer will be kept as a
3474 * normal node. We are going to log removal of half of the
3475 * elements below with tree_mod_log_eb_copy. We're holding a
3476 * tree lock on the buffer, which is why we cannot race with
3477 * other tree_mod_log users.
3478 */
3479 ret = insert_new_root(trans, root, path, level + 1);
3480 if (ret)
3481 return ret;
3482 } else {
3483 ret = push_nodes_for_insert(trans, root, path, level);
3484 c = path->nodes[level];
3485 if (!ret && btrfs_header_nritems(c) <
3486 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3487 return 0;
3488 if (ret < 0)
3489 return ret;
3490 }
3491
3492 c_nritems = btrfs_header_nritems(c);
3493 mid = (c_nritems + 1) / 2;
3494 btrfs_node_key(c, &disk_key, mid);
3495
3496 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3497 &disk_key, level, c->start, 0);
3498 if (IS_ERR(split))
3499 return PTR_ERR(split);
3500
3501 root_add_used(root, fs_info->nodesize);
3502
3503 memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3504 btrfs_set_header_level(split, btrfs_header_level(c));
3505 btrfs_set_header_bytenr(split, split->start);
3506 btrfs_set_header_generation(split, trans->transid);
3507 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3508 btrfs_set_header_owner(split, root->root_key.objectid);
3509 write_extent_buffer_fsid(split, fs_info->fsid);
3510 write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3511
3512 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3513 if (ret) {
3514 btrfs_abort_transaction(trans, ret);
3515 return ret;
3516 }
3517 copy_extent_buffer(split, c,
3518 btrfs_node_key_ptr_offset(0),
3519 btrfs_node_key_ptr_offset(mid),
3520 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3521 btrfs_set_header_nritems(split, c_nritems - mid);
3522 btrfs_set_header_nritems(c, mid);
3523 ret = 0;
3524
3525 btrfs_mark_buffer_dirty(c);
3526 btrfs_mark_buffer_dirty(split);
3527
3528 insert_ptr(trans, fs_info, path, &disk_key, split->start,
3529 path->slots[level + 1] + 1, level + 1);
3530
3531 if (path->slots[level] >= mid) {
3532 path->slots[level] -= mid;
3533 btrfs_tree_unlock(c);
3534 free_extent_buffer(c);
3535 path->nodes[level] = split;
3536 path->slots[level + 1] += 1;
3537 } else {
3538 btrfs_tree_unlock(split);
3539 free_extent_buffer(split);
3540 }
3541 return ret;
3542}
3543
3544/*
3545 * how many bytes are required to store the items in a leaf. start
3546 * and nr indicate which items in the leaf to check. This totals up the
3547 * space used both by the item structs and the item data
3548 */
3549static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3550{
3551 struct btrfs_item *start_item;
3552 struct btrfs_item *end_item;
3553 struct btrfs_map_token token;
3554 int data_len;
3555 int nritems = btrfs_header_nritems(l);
3556 int end = min(nritems, start + nr) - 1;
3557
3558 if (!nr)
3559 return 0;
3560 btrfs_init_map_token(&token);
3561 start_item = btrfs_item_nr(start);
3562 end_item = btrfs_item_nr(end);
3563 data_len = btrfs_token_item_offset(l, start_item, &token) +
3564 btrfs_token_item_size(l, start_item, &token);
3565 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3566 data_len += sizeof(struct btrfs_item) * nr;
3567 WARN_ON(data_len < 0);
3568 return data_len;
3569}
3570
3571/*
3572 * The space between the end of the leaf items and
3573 * the start of the leaf data. IOW, how much room
3574 * the leaf has left for both items and data
3575 */
3576noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3577 struct extent_buffer *leaf)
3578{
3579 int nritems = btrfs_header_nritems(leaf);
3580 int ret;
3581
3582 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3583 if (ret < 0) {
3584 btrfs_crit(fs_info,
3585 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3586 ret,
3587 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3588 leaf_space_used(leaf, 0, nritems), nritems);
3589 }
3590 return ret;
3591}
3592
3593/*
3594 * min slot controls the lowest index we're willing to push to the
3595 * right. We'll push up to and including min_slot, but no lower
3596 */
3597static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3598 struct btrfs_fs_info *fs_info,
3599 struct btrfs_path *path,
3600 int data_size, int empty,
3601 struct extent_buffer *right,
3602 int free_space, u32 left_nritems,
3603 u32 min_slot)
3604{
3605 struct extent_buffer *left = path->nodes[0];
3606 struct extent_buffer *upper = path->nodes[1];
3607 struct btrfs_map_token token;
3608 struct btrfs_disk_key disk_key;
3609 int slot;
3610 u32 i;
3611 int push_space = 0;
3612 int push_items = 0;
3613 struct btrfs_item *item;
3614 u32 nr;
3615 u32 right_nritems;
3616 u32 data_end;
3617 u32 this_item_size;
3618
3619 btrfs_init_map_token(&token);
3620
3621 if (empty)
3622 nr = 0;
3623 else
3624 nr = max_t(u32, 1, min_slot);
3625
3626 if (path->slots[0] >= left_nritems)
3627 push_space += data_size;
3628
3629 slot = path->slots[1];
3630 i = left_nritems - 1;
3631 while (i >= nr) {
3632 item = btrfs_item_nr(i);
3633
3634 if (!empty && push_items > 0) {
3635 if (path->slots[0] > i)
3636 break;
3637 if (path->slots[0] == i) {
3638 int space = btrfs_leaf_free_space(fs_info, left);
3639 if (space + push_space * 2 > free_space)
3640 break;
3641 }
3642 }
3643
3644 if (path->slots[0] == i)
3645 push_space += data_size;
3646
3647 this_item_size = btrfs_item_size(left, item);
3648 if (this_item_size + sizeof(*item) + push_space > free_space)
3649 break;
3650
3651 push_items++;
3652 push_space += this_item_size + sizeof(*item);
3653 if (i == 0)
3654 break;
3655 i--;
3656 }
3657
3658 if (push_items == 0)
3659 goto out_unlock;
3660
3661 WARN_ON(!empty && push_items == left_nritems);
3662
3663 /* push left to right */
3664 right_nritems = btrfs_header_nritems(right);
3665
3666 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3667 push_space -= leaf_data_end(fs_info, left);
3668
3669 /* make room in the right data area */
3670 data_end = leaf_data_end(fs_info, right);
3671 memmove_extent_buffer(right,
3672 btrfs_leaf_data(right) + data_end - push_space,
3673 btrfs_leaf_data(right) + data_end,
3674 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3675
3676 /* copy from the left data area */
3677 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3678 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3679 btrfs_leaf_data(left) + leaf_data_end(fs_info, left),
3680 push_space);
3681
3682 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3683 btrfs_item_nr_offset(0),
3684 right_nritems * sizeof(struct btrfs_item));
3685
3686 /* copy the items from left to right */
3687 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3688 btrfs_item_nr_offset(left_nritems - push_items),
3689 push_items * sizeof(struct btrfs_item));
3690
3691 /* update the item pointers */
3692 right_nritems += push_items;
3693 btrfs_set_header_nritems(right, right_nritems);
3694 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3695 for (i = 0; i < right_nritems; i++) {
3696 item = btrfs_item_nr(i);
3697 push_space -= btrfs_token_item_size(right, item, &token);
3698 btrfs_set_token_item_offset(right, item, push_space, &token);
3699 }
3700
3701 left_nritems -= push_items;
3702 btrfs_set_header_nritems(left, left_nritems);
3703
3704 if (left_nritems)
3705 btrfs_mark_buffer_dirty(left);
3706 else
3707 clean_tree_block(trans, fs_info, left);
3708
3709 btrfs_mark_buffer_dirty(right);
3710
3711 btrfs_item_key(right, &disk_key, 0);
3712 btrfs_set_node_key(upper, &disk_key, slot + 1);
3713 btrfs_mark_buffer_dirty(upper);
3714
3715 /* then fixup the leaf pointer in the path */
3716 if (path->slots[0] >= left_nritems) {
3717 path->slots[0] -= left_nritems;
3718 if (btrfs_header_nritems(path->nodes[0]) == 0)
3719 clean_tree_block(trans, fs_info, path->nodes[0]);
3720 btrfs_tree_unlock(path->nodes[0]);
3721 free_extent_buffer(path->nodes[0]);
3722 path->nodes[0] = right;
3723 path->slots[1] += 1;
3724 } else {
3725 btrfs_tree_unlock(right);
3726 free_extent_buffer(right);
3727 }
3728 return 0;
3729
3730out_unlock:
3731 btrfs_tree_unlock(right);
3732 free_extent_buffer(right);
3733 return 1;
3734}
3735
3736/*
3737 * push some data in the path leaf to the right, trying to free up at
3738 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3739 *
3740 * returns 1 if the push failed because the other node didn't have enough
3741 * room, 0 if everything worked out and < 0 if there were major errors.
3742 *
3743 * this will push starting from min_slot to the end of the leaf. It won't
3744 * push any slot lower than min_slot
3745 */
3746static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3747 *root, struct btrfs_path *path,
3748 int min_data_size, int data_size,
3749 int empty, u32 min_slot)
3750{
3751 struct btrfs_fs_info *fs_info = root->fs_info;
3752 struct extent_buffer *left = path->nodes[0];
3753 struct extent_buffer *right;
3754 struct extent_buffer *upper;
3755 int slot;
3756 int free_space;
3757 u32 left_nritems;
3758 int ret;
3759
3760 if (!path->nodes[1])
3761 return 1;
3762
3763 slot = path->slots[1];
3764 upper = path->nodes[1];
3765 if (slot >= btrfs_header_nritems(upper) - 1)
3766 return 1;
3767
3768 btrfs_assert_tree_locked(path->nodes[1]);
3769
3770 right = read_node_slot(fs_info, upper, slot + 1);
3771 /*
3772 * slot + 1 is not valid or we fail to read the right node,
3773 * no big deal, just return.
3774 */
3775 if (IS_ERR(right))
3776 return 1;
3777
3778 btrfs_tree_lock(right);
3779 btrfs_set_lock_blocking(right);
3780
3781 free_space = btrfs_leaf_free_space(fs_info, right);
3782 if (free_space < data_size)
3783 goto out_unlock;
3784
3785 /* cow and double check */
3786 ret = btrfs_cow_block(trans, root, right, upper,
3787 slot + 1, &right);
3788 if (ret)
3789 goto out_unlock;
3790
3791 free_space = btrfs_leaf_free_space(fs_info, right);
3792 if (free_space < data_size)
3793 goto out_unlock;
3794
3795 left_nritems = btrfs_header_nritems(left);
3796 if (left_nritems == 0)
3797 goto out_unlock;
3798
3799 if (path->slots[0] == left_nritems && !empty) {
3800 /* Key greater than all keys in the leaf, right neighbor has
3801 * enough room for it and we're not emptying our leaf to delete
3802 * it, therefore use right neighbor to insert the new item and
3803 * no need to touch/dirty our left leaft. */
3804 btrfs_tree_unlock(left);
3805 free_extent_buffer(left);
3806 path->nodes[0] = right;
3807 path->slots[0] = 0;
3808 path->slots[1]++;
3809 return 0;
3810 }
3811
3812 return __push_leaf_right(trans, fs_info, path, min_data_size, empty,
3813 right, free_space, left_nritems, min_slot);
3814out_unlock:
3815 btrfs_tree_unlock(right);
3816 free_extent_buffer(right);
3817 return 1;
3818}
3819
3820/*
3821 * push some data in the path leaf to the left, trying to free up at
3822 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3823 *
3824 * max_slot can put a limit on how far into the leaf we'll push items. The
3825 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3826 * items
3827 */
3828static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3829 struct btrfs_fs_info *fs_info,
3830 struct btrfs_path *path, int data_size,
3831 int empty, struct extent_buffer *left,
3832 int free_space, u32 right_nritems,
3833 u32 max_slot)
3834{
3835 struct btrfs_disk_key disk_key;
3836 struct extent_buffer *right = path->nodes[0];
3837 int i;
3838 int push_space = 0;
3839 int push_items = 0;
3840 struct btrfs_item *item;
3841 u32 old_left_nritems;
3842 u32 nr;
3843 int ret = 0;
3844 u32 this_item_size;
3845 u32 old_left_item_size;
3846 struct btrfs_map_token token;
3847
3848 btrfs_init_map_token(&token);
3849
3850 if (empty)
3851 nr = min(right_nritems, max_slot);
3852 else
3853 nr = min(right_nritems - 1, max_slot);
3854
3855 for (i = 0; i < nr; i++) {
3856 item = btrfs_item_nr(i);
3857
3858 if (!empty && push_items > 0) {
3859 if (path->slots[0] < i)
3860 break;
3861 if (path->slots[0] == i) {
3862 int space = btrfs_leaf_free_space(fs_info, right);
3863 if (space + push_space * 2 > free_space)
3864 break;
3865 }
3866 }
3867
3868 if (path->slots[0] == i)
3869 push_space += data_size;
3870
3871 this_item_size = btrfs_item_size(right, item);
3872 if (this_item_size + sizeof(*item) + push_space > free_space)
3873 break;
3874
3875 push_items++;
3876 push_space += this_item_size + sizeof(*item);
3877 }
3878
3879 if (push_items == 0) {
3880 ret = 1;
3881 goto out;
3882 }
3883 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3884
3885 /* push data from right to left */
3886 copy_extent_buffer(left, right,
3887 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3888 btrfs_item_nr_offset(0),
3889 push_items * sizeof(struct btrfs_item));
3890
3891 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3892 btrfs_item_offset_nr(right, push_items - 1);
3893
3894 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3895 leaf_data_end(fs_info, left) - push_space,
3896 btrfs_leaf_data(right) +
3897 btrfs_item_offset_nr(right, push_items - 1),
3898 push_space);
3899 old_left_nritems = btrfs_header_nritems(left);
3900 BUG_ON(old_left_nritems <= 0);
3901
3902 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3903 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3904 u32 ioff;
3905
3906 item = btrfs_item_nr(i);
3907
3908 ioff = btrfs_token_item_offset(left, item, &token);
3909 btrfs_set_token_item_offset(left, item,
3910 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3911 &token);
3912 }
3913 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3914
3915 /* fixup right node */
3916 if (push_items > right_nritems)
3917 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3918 right_nritems);
3919
3920 if (push_items < right_nritems) {
3921 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3922 leaf_data_end(fs_info, right);
3923 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3924 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3925 btrfs_leaf_data(right) +
3926 leaf_data_end(fs_info, right), push_space);
3927
3928 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3929 btrfs_item_nr_offset(push_items),
3930 (btrfs_header_nritems(right) - push_items) *
3931 sizeof(struct btrfs_item));
3932 }
3933 right_nritems -= push_items;
3934 btrfs_set_header_nritems(right, right_nritems);
3935 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3936 for (i = 0; i < right_nritems; i++) {
3937 item = btrfs_item_nr(i);
3938
3939 push_space = push_space - btrfs_token_item_size(right,
3940 item, &token);
3941 btrfs_set_token_item_offset(right, item, push_space, &token);
3942 }
3943
3944 btrfs_mark_buffer_dirty(left);
3945 if (right_nritems)
3946 btrfs_mark_buffer_dirty(right);
3947 else
3948 clean_tree_block(trans, fs_info, right);
3949
3950 btrfs_item_key(right, &disk_key, 0);
3951 fixup_low_keys(fs_info, path, &disk_key, 1);
3952
3953 /* then fixup the leaf pointer in the path */
3954 if (path->slots[0] < push_items) {
3955 path->slots[0] += old_left_nritems;
3956 btrfs_tree_unlock(path->nodes[0]);
3957 free_extent_buffer(path->nodes[0]);
3958 path->nodes[0] = left;
3959 path->slots[1] -= 1;
3960 } else {
3961 btrfs_tree_unlock(left);
3962 free_extent_buffer(left);
3963 path->slots[0] -= push_items;
3964 }
3965 BUG_ON(path->slots[0] < 0);
3966 return ret;
3967out:
3968 btrfs_tree_unlock(left);
3969 free_extent_buffer(left);
3970 return ret;
3971}
3972
3973/*
3974 * push some data in the path leaf to the left, trying to free up at
3975 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3976 *
3977 * max_slot can put a limit on how far into the leaf we'll push items. The
3978 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3979 * items
3980 */
3981static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3982 *root, struct btrfs_path *path, int min_data_size,
3983 int data_size, int empty, u32 max_slot)
3984{
3985 struct btrfs_fs_info *fs_info = root->fs_info;
3986 struct extent_buffer *right = path->nodes[0];
3987 struct extent_buffer *left;
3988 int slot;
3989 int free_space;
3990 u32 right_nritems;
3991 int ret = 0;
3992
3993 slot = path->slots[1];
3994 if (slot == 0)
3995 return 1;
3996 if (!path->nodes[1])
3997 return 1;
3998
3999 right_nritems = btrfs_header_nritems(right);
4000 if (right_nritems == 0)
4001 return 1;
4002
4003 btrfs_assert_tree_locked(path->nodes[1]);
4004
4005 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
4006 /*
4007 * slot - 1 is not valid or we fail to read the left node,
4008 * no big deal, just return.
4009 */
4010 if (IS_ERR(left))
4011 return 1;
4012
4013 btrfs_tree_lock(left);
4014 btrfs_set_lock_blocking(left);
4015
4016 free_space = btrfs_leaf_free_space(fs_info, left);
4017 if (free_space < data_size) {
4018 ret = 1;
4019 goto out;
4020 }
4021
4022 /* cow and double check */
4023 ret = btrfs_cow_block(trans, root, left,
4024 path->nodes[1], slot - 1, &left);
4025 if (ret) {
4026 /* we hit -ENOSPC, but it isn't fatal here */
4027 if (ret == -ENOSPC)
4028 ret = 1;
4029 goto out;
4030 }
4031
4032 free_space = btrfs_leaf_free_space(fs_info, left);
4033 if (free_space < data_size) {
4034 ret = 1;
4035 goto out;
4036 }
4037
4038 return __push_leaf_left(trans, fs_info, path, min_data_size,
4039 empty, left, free_space, right_nritems,
4040 max_slot);
4041out:
4042 btrfs_tree_unlock(left);
4043 free_extent_buffer(left);
4044 return ret;
4045}
4046
4047/*
4048 * split the path's leaf in two, making sure there is at least data_size
4049 * available for the resulting leaf level of the path.
4050 */
4051static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4052 struct btrfs_fs_info *fs_info,
4053 struct btrfs_path *path,
4054 struct extent_buffer *l,
4055 struct extent_buffer *right,
4056 int slot, int mid, int nritems)
4057{
4058 int data_copy_size;
4059 int rt_data_off;
4060 int i;
4061 struct btrfs_disk_key disk_key;
4062 struct btrfs_map_token token;
4063
4064 btrfs_init_map_token(&token);
4065
4066 nritems = nritems - mid;
4067 btrfs_set_header_nritems(right, nritems);
4068 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4069
4070 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4071 btrfs_item_nr_offset(mid),
4072 nritems * sizeof(struct btrfs_item));
4073
4074 copy_extent_buffer(right, l,
4075 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(fs_info) -
4076 data_copy_size, btrfs_leaf_data(l) +
4077 leaf_data_end(fs_info, l), data_copy_size);
4078
4079 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4080
4081 for (i = 0; i < nritems; i++) {
4082 struct btrfs_item *item = btrfs_item_nr(i);
4083 u32 ioff;
4084
4085 ioff = btrfs_token_item_offset(right, item, &token);
4086 btrfs_set_token_item_offset(right, item,
4087 ioff + rt_data_off, &token);
4088 }
4089
4090 btrfs_set_header_nritems(l, mid);
4091 btrfs_item_key(right, &disk_key, 0);
4092 insert_ptr(trans, fs_info, path, &disk_key, right->start,
4093 path->slots[1] + 1, 1);
4094
4095 btrfs_mark_buffer_dirty(right);
4096 btrfs_mark_buffer_dirty(l);
4097 BUG_ON(path->slots[0] != slot);
4098
4099 if (mid <= slot) {
4100 btrfs_tree_unlock(path->nodes[0]);
4101 free_extent_buffer(path->nodes[0]);
4102 path->nodes[0] = right;
4103 path->slots[0] -= mid;
4104 path->slots[1] += 1;
4105 } else {
4106 btrfs_tree_unlock(right);
4107 free_extent_buffer(right);
4108 }
4109
4110 BUG_ON(path->slots[0] < 0);
4111}
4112
4113/*
4114 * double splits happen when we need to insert a big item in the middle
4115 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4116 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4117 * A B C
4118 *
4119 * We avoid this by trying to push the items on either side of our target
4120 * into the adjacent leaves. If all goes well we can avoid the double split
4121 * completely.
4122 */
4123static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4124 struct btrfs_root *root,
4125 struct btrfs_path *path,
4126 int data_size)
4127{
4128 struct btrfs_fs_info *fs_info = root->fs_info;
4129 int ret;
4130 int progress = 0;
4131 int slot;
4132 u32 nritems;
4133 int space_needed = data_size;
4134
4135 slot = path->slots[0];
4136 if (slot < btrfs_header_nritems(path->nodes[0]))
4137 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4138
4139 /*
4140 * try to push all the items after our slot into the
4141 * right leaf
4142 */
4143 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4144 if (ret < 0)
4145 return ret;
4146
4147 if (ret == 0)
4148 progress++;
4149
4150 nritems = btrfs_header_nritems(path->nodes[0]);
4151 /*
4152 * our goal is to get our slot at the start or end of a leaf. If
4153 * we've done so we're done
4154 */
4155 if (path->slots[0] == 0 || path->slots[0] == nritems)
4156 return 0;
4157
4158 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4159 return 0;
4160
4161 /* try to push all the items before our slot into the next leaf */
4162 slot = path->slots[0];
4163 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4164 if (ret < 0)
4165 return ret;
4166
4167 if (ret == 0)
4168 progress++;
4169
4170 if (progress)
4171 return 0;
4172 return 1;
4173}
4174
4175/*
4176 * split the path's leaf in two, making sure there is at least data_size
4177 * available for the resulting leaf level of the path.
4178 *
4179 * returns 0 if all went well and < 0 on failure.
4180 */
4181static noinline int split_leaf(struct btrfs_trans_handle *trans,
4182 struct btrfs_root *root,
4183 struct btrfs_key *ins_key,
4184 struct btrfs_path *path, int data_size,
4185 int extend)
4186{
4187 struct btrfs_disk_key disk_key;
4188 struct extent_buffer *l;
4189 u32 nritems;
4190 int mid;
4191 int slot;
4192 struct extent_buffer *right;
4193 struct btrfs_fs_info *fs_info = root->fs_info;
4194 int ret = 0;
4195 int wret;
4196 int split;
4197 int num_doubles = 0;
4198 int tried_avoid_double = 0;
4199
4200 l = path->nodes[0];
4201 slot = path->slots[0];
4202 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4203 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4204 return -EOVERFLOW;
4205
4206 /* first try to make some room by pushing left and right */
4207 if (data_size && path->nodes[1]) {
4208 int space_needed = data_size;
4209
4210 if (slot < btrfs_header_nritems(l))
4211 space_needed -= btrfs_leaf_free_space(fs_info, l);
4212
4213 wret = push_leaf_right(trans, root, path, space_needed,
4214 space_needed, 0, 0);
4215 if (wret < 0)
4216 return wret;
4217 if (wret) {
4218 wret = push_leaf_left(trans, root, path, space_needed,
4219 space_needed, 0, (u32)-1);
4220 if (wret < 0)
4221 return wret;
4222 }
4223 l = path->nodes[0];
4224
4225 /* did the pushes work? */
4226 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4227 return 0;
4228 }
4229
4230 if (!path->nodes[1]) {
4231 ret = insert_new_root(trans, root, path, 1);
4232 if (ret)
4233 return ret;
4234 }
4235again:
4236 split = 1;
4237 l = path->nodes[0];
4238 slot = path->slots[0];
4239 nritems = btrfs_header_nritems(l);
4240 mid = (nritems + 1) / 2;
4241
4242 if (mid <= slot) {
4243 if (nritems == 1 ||
4244 leaf_space_used(l, mid, nritems - mid) + data_size >
4245 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4246 if (slot >= nritems) {
4247 split = 0;
4248 } else {
4249 mid = slot;
4250 if (mid != nritems &&
4251 leaf_space_used(l, mid, nritems - mid) +
4252 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4253 if (data_size && !tried_avoid_double)
4254 goto push_for_double;
4255 split = 2;
4256 }
4257 }
4258 }
4259 } else {
4260 if (leaf_space_used(l, 0, mid) + data_size >
4261 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4262 if (!extend && data_size && slot == 0) {
4263 split = 0;
4264 } else if ((extend || !data_size) && slot == 0) {
4265 mid = 1;
4266 } else {
4267 mid = slot;
4268 if (mid != nritems &&
4269 leaf_space_used(l, mid, nritems - mid) +
4270 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4271 if (data_size && !tried_avoid_double)
4272 goto push_for_double;
4273 split = 2;
4274 }
4275 }
4276 }
4277 }
4278
4279 if (split == 0)
4280 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4281 else
4282 btrfs_item_key(l, &disk_key, mid);
4283
4284 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4285 &disk_key, 0, l->start, 0);
4286 if (IS_ERR(right))
4287 return PTR_ERR(right);
4288
4289 root_add_used(root, fs_info->nodesize);
4290
4291 memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4292 btrfs_set_header_bytenr(right, right->start);
4293 btrfs_set_header_generation(right, trans->transid);
4294 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4295 btrfs_set_header_owner(right, root->root_key.objectid);
4296 btrfs_set_header_level(right, 0);
4297 write_extent_buffer_fsid(right, fs_info->fsid);
4298 write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4299
4300 if (split == 0) {
4301 if (mid <= slot) {
4302 btrfs_set_header_nritems(right, 0);
4303 insert_ptr(trans, fs_info, path, &disk_key,
4304 right->start, path->slots[1] + 1, 1);
4305 btrfs_tree_unlock(path->nodes[0]);
4306 free_extent_buffer(path->nodes[0]);
4307 path->nodes[0] = right;
4308 path->slots[0] = 0;
4309 path->slots[1] += 1;
4310 } else {
4311 btrfs_set_header_nritems(right, 0);
4312 insert_ptr(trans, fs_info, path, &disk_key,
4313 right->start, path->slots[1], 1);
4314 btrfs_tree_unlock(path->nodes[0]);
4315 free_extent_buffer(path->nodes[0]);
4316 path->nodes[0] = right;
4317 path->slots[0] = 0;
4318 if (path->slots[1] == 0)
4319 fixup_low_keys(fs_info, path, &disk_key, 1);
4320 }
4321 /*
4322 * We create a new leaf 'right' for the required ins_len and
4323 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4324 * the content of ins_len to 'right'.
4325 */
4326 return ret;
4327 }
4328
4329 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4330
4331 if (split == 2) {
4332 BUG_ON(num_doubles != 0);
4333 num_doubles++;
4334 goto again;
4335 }
4336
4337 return 0;
4338
4339push_for_double:
4340 push_for_double_split(trans, root, path, data_size);
4341 tried_avoid_double = 1;
4342 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4343 return 0;
4344 goto again;
4345}
4346
4347static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4348 struct btrfs_root *root,
4349 struct btrfs_path *path, int ins_len)
4350{
4351 struct btrfs_fs_info *fs_info = root->fs_info;
4352 struct btrfs_key key;
4353 struct extent_buffer *leaf;
4354 struct btrfs_file_extent_item *fi;
4355 u64 extent_len = 0;
4356 u32 item_size;
4357 int ret;
4358
4359 leaf = path->nodes[0];
4360 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4361
4362 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4363 key.type != BTRFS_EXTENT_CSUM_KEY);
4364
4365 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4366 return 0;
4367
4368 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4369 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4370 fi = btrfs_item_ptr(leaf, path->slots[0],
4371 struct btrfs_file_extent_item);
4372 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4373 }
4374 btrfs_release_path(path);
4375
4376 path->keep_locks = 1;
4377 path->search_for_split = 1;
4378 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4379 path->search_for_split = 0;
4380 if (ret > 0)
4381 ret = -EAGAIN;
4382 if (ret < 0)
4383 goto err;
4384
4385 ret = -EAGAIN;
4386 leaf = path->nodes[0];
4387 /* if our item isn't there, return now */
4388 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4389 goto err;
4390
4391 /* the leaf has changed, it now has room. return now */
4392 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4393 goto err;
4394
4395 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4396 fi = btrfs_item_ptr(leaf, path->slots[0],
4397 struct btrfs_file_extent_item);
4398 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4399 goto err;
4400 }
4401
4402 btrfs_set_path_blocking(path);
4403 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4404 if (ret)
4405 goto err;
4406
4407 path->keep_locks = 0;
4408 btrfs_unlock_up_safe(path, 1);
4409 return 0;
4410err:
4411 path->keep_locks = 0;
4412 return ret;
4413}
4414
4415static noinline int split_item(struct btrfs_trans_handle *trans,
4416 struct btrfs_fs_info *fs_info,
4417 struct btrfs_path *path,
4418 struct btrfs_key *new_key,
4419 unsigned long split_offset)
4420{
4421 struct extent_buffer *leaf;
4422 struct btrfs_item *item;
4423 struct btrfs_item *new_item;
4424 int slot;
4425 char *buf;
4426 u32 nritems;
4427 u32 item_size;
4428 u32 orig_offset;
4429 struct btrfs_disk_key disk_key;
4430
4431 leaf = path->nodes[0];
4432 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4433
4434 btrfs_set_path_blocking(path);
4435
4436 item = btrfs_item_nr(path->slots[0]);
4437 orig_offset = btrfs_item_offset(leaf, item);
4438 item_size = btrfs_item_size(leaf, item);
4439
4440 buf = kmalloc(item_size, GFP_NOFS);
4441 if (!buf)
4442 return -ENOMEM;
4443
4444 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4445 path->slots[0]), item_size);
4446
4447 slot = path->slots[0] + 1;
4448 nritems = btrfs_header_nritems(leaf);
4449 if (slot != nritems) {
4450 /* shift the items */
4451 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4452 btrfs_item_nr_offset(slot),
4453 (nritems - slot) * sizeof(struct btrfs_item));
4454 }
4455
4456 btrfs_cpu_key_to_disk(&disk_key, new_key);
4457 btrfs_set_item_key(leaf, &disk_key, slot);
4458
4459 new_item = btrfs_item_nr(slot);
4460
4461 btrfs_set_item_offset(leaf, new_item, orig_offset);
4462 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4463
4464 btrfs_set_item_offset(leaf, item,
4465 orig_offset + item_size - split_offset);
4466 btrfs_set_item_size(leaf, item, split_offset);
4467
4468 btrfs_set_header_nritems(leaf, nritems + 1);
4469
4470 /* write the data for the start of the original item */
4471 write_extent_buffer(leaf, buf,
4472 btrfs_item_ptr_offset(leaf, path->slots[0]),
4473 split_offset);
4474
4475 /* write the data for the new item */
4476 write_extent_buffer(leaf, buf + split_offset,
4477 btrfs_item_ptr_offset(leaf, slot),
4478 item_size - split_offset);
4479 btrfs_mark_buffer_dirty(leaf);
4480
4481 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4482 kfree(buf);
4483 return 0;
4484}
4485
4486/*
4487 * This function splits a single item into two items,
4488 * giving 'new_key' to the new item and splitting the
4489 * old one at split_offset (from the start of the item).
4490 *
4491 * The path may be released by this operation. After
4492 * the split, the path is pointing to the old item. The
4493 * new item is going to be in the same node as the old one.
4494 *
4495 * Note, the item being split must be smaller enough to live alone on
4496 * a tree block with room for one extra struct btrfs_item
4497 *
4498 * This allows us to split the item in place, keeping a lock on the
4499 * leaf the entire time.
4500 */
4501int btrfs_split_item(struct btrfs_trans_handle *trans,
4502 struct btrfs_root *root,
4503 struct btrfs_path *path,
4504 struct btrfs_key *new_key,
4505 unsigned long split_offset)
4506{
4507 int ret;
4508 ret = setup_leaf_for_split(trans, root, path,
4509 sizeof(struct btrfs_item));
4510 if (ret)
4511 return ret;
4512
4513 ret = split_item(trans, root->fs_info, path, new_key, split_offset);
4514 return ret;
4515}
4516
4517/*
4518 * This function duplicate a item, giving 'new_key' to the new item.
4519 * It guarantees both items live in the same tree leaf and the new item
4520 * is contiguous with the original item.
4521 *
4522 * This allows us to split file extent in place, keeping a lock on the
4523 * leaf the entire time.
4524 */
4525int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4526 struct btrfs_root *root,
4527 struct btrfs_path *path,
4528 struct btrfs_key *new_key)
4529{
4530 struct extent_buffer *leaf;
4531 int ret;
4532 u32 item_size;
4533
4534 leaf = path->nodes[0];
4535 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4536 ret = setup_leaf_for_split(trans, root, path,
4537 item_size + sizeof(struct btrfs_item));
4538 if (ret)
4539 return ret;
4540
4541 path->slots[0]++;
4542 setup_items_for_insert(root, path, new_key, &item_size,
4543 item_size, item_size +
4544 sizeof(struct btrfs_item), 1);
4545 leaf = path->nodes[0];
4546 memcpy_extent_buffer(leaf,
4547 btrfs_item_ptr_offset(leaf, path->slots[0]),
4548 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4549 item_size);
4550 return 0;
4551}
4552
4553/*
4554 * make the item pointed to by the path smaller. new_size indicates
4555 * how small to make it, and from_end tells us if we just chop bytes
4556 * off the end of the item or if we shift the item to chop bytes off
4557 * the front.
4558 */
4559void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4560 struct btrfs_path *path, u32 new_size, int from_end)
4561{
4562 int slot;
4563 struct extent_buffer *leaf;
4564 struct btrfs_item *item;
4565 u32 nritems;
4566 unsigned int data_end;
4567 unsigned int old_data_start;
4568 unsigned int old_size;
4569 unsigned int size_diff;
4570 int i;
4571 struct btrfs_map_token token;
4572
4573 btrfs_init_map_token(&token);
4574
4575 leaf = path->nodes[0];
4576 slot = path->slots[0];
4577
4578 old_size = btrfs_item_size_nr(leaf, slot);
4579 if (old_size == new_size)
4580 return;
4581
4582 nritems = btrfs_header_nritems(leaf);
4583 data_end = leaf_data_end(fs_info, leaf);
4584
4585 old_data_start = btrfs_item_offset_nr(leaf, slot);
4586
4587 size_diff = old_size - new_size;
4588
4589 BUG_ON(slot < 0);
4590 BUG_ON(slot >= nritems);
4591
4592 /*
4593 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4594 */
4595 /* first correct the data pointers */
4596 for (i = slot; i < nritems; i++) {
4597 u32 ioff;
4598 item = btrfs_item_nr(i);
4599
4600 ioff = btrfs_token_item_offset(leaf, item, &token);
4601 btrfs_set_token_item_offset(leaf, item,
4602 ioff + size_diff, &token);
4603 }
4604
4605 /* shift the data */
4606 if (from_end) {
4607 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4608 data_end + size_diff, btrfs_leaf_data(leaf) +
4609 data_end, old_data_start + new_size - data_end);
4610 } else {
4611 struct btrfs_disk_key disk_key;
4612 u64 offset;
4613
4614 btrfs_item_key(leaf, &disk_key, slot);
4615
4616 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4617 unsigned long ptr;
4618 struct btrfs_file_extent_item *fi;
4619
4620 fi = btrfs_item_ptr(leaf, slot,
4621 struct btrfs_file_extent_item);
4622 fi = (struct btrfs_file_extent_item *)(
4623 (unsigned long)fi - size_diff);
4624
4625 if (btrfs_file_extent_type(leaf, fi) ==
4626 BTRFS_FILE_EXTENT_INLINE) {
4627 ptr = btrfs_item_ptr_offset(leaf, slot);
4628 memmove_extent_buffer(leaf, ptr,
4629 (unsigned long)fi,
4630 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4631 }
4632 }
4633
4634 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4635 data_end + size_diff, btrfs_leaf_data(leaf) +
4636 data_end, old_data_start - data_end);
4637
4638 offset = btrfs_disk_key_offset(&disk_key);
4639 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4640 btrfs_set_item_key(leaf, &disk_key, slot);
4641 if (slot == 0)
4642 fixup_low_keys(fs_info, path, &disk_key, 1);
4643 }
4644
4645 item = btrfs_item_nr(slot);
4646 btrfs_set_item_size(leaf, item, new_size);
4647 btrfs_mark_buffer_dirty(leaf);
4648
4649 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4650 btrfs_print_leaf(fs_info, leaf);
4651 BUG();
4652 }
4653}
4654
4655/*
4656 * make the item pointed to by the path bigger, data_size is the added size.
4657 */
4658void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4659 u32 data_size)
4660{
4661 int slot;
4662 struct extent_buffer *leaf;
4663 struct btrfs_item *item;
4664 u32 nritems;
4665 unsigned int data_end;
4666 unsigned int old_data;
4667 unsigned int old_size;
4668 int i;
4669 struct btrfs_map_token token;
4670
4671 btrfs_init_map_token(&token);
4672
4673 leaf = path->nodes[0];
4674
4675 nritems = btrfs_header_nritems(leaf);
4676 data_end = leaf_data_end(fs_info, leaf);
4677
4678 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4679 btrfs_print_leaf(fs_info, leaf);
4680 BUG();
4681 }
4682 slot = path->slots[0];
4683 old_data = btrfs_item_end_nr(leaf, slot);
4684
4685 BUG_ON(slot < 0);
4686 if (slot >= nritems) {
4687 btrfs_print_leaf(fs_info, leaf);
4688 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4689 slot, nritems);
4690 BUG_ON(1);
4691 }
4692
4693 /*
4694 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4695 */
4696 /* first correct the data pointers */
4697 for (i = slot; i < nritems; i++) {
4698 u32 ioff;
4699 item = btrfs_item_nr(i);
4700
4701 ioff = btrfs_token_item_offset(leaf, item, &token);
4702 btrfs_set_token_item_offset(leaf, item,
4703 ioff - data_size, &token);
4704 }
4705
4706 /* shift the data */
4707 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4708 data_end - data_size, btrfs_leaf_data(leaf) +
4709 data_end, old_data - data_end);
4710
4711 data_end = old_data;
4712 old_size = btrfs_item_size_nr(leaf, slot);
4713 item = btrfs_item_nr(slot);
4714 btrfs_set_item_size(leaf, item, old_size + data_size);
4715 btrfs_mark_buffer_dirty(leaf);
4716
4717 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4718 btrfs_print_leaf(fs_info, leaf);
4719 BUG();
4720 }
4721}
4722
4723/*
4724 * this is a helper for btrfs_insert_empty_items, the main goal here is
4725 * to save stack depth by doing the bulk of the work in a function
4726 * that doesn't call btrfs_search_slot
4727 */
4728void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4729 struct btrfs_key *cpu_key, u32 *data_size,
4730 u32 total_data, u32 total_size, int nr)
4731{
4732 struct btrfs_fs_info *fs_info = root->fs_info;
4733 struct btrfs_item *item;
4734 int i;
4735 u32 nritems;
4736 unsigned int data_end;
4737 struct btrfs_disk_key disk_key;
4738 struct extent_buffer *leaf;
4739 int slot;
4740 struct btrfs_map_token token;
4741
4742 if (path->slots[0] == 0) {
4743 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4744 fixup_low_keys(fs_info, path, &disk_key, 1);
4745 }
4746 btrfs_unlock_up_safe(path, 1);
4747
4748 btrfs_init_map_token(&token);
4749
4750 leaf = path->nodes[0];
4751 slot = path->slots[0];
4752
4753 nritems = btrfs_header_nritems(leaf);
4754 data_end = leaf_data_end(fs_info, leaf);
4755
4756 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4757 btrfs_print_leaf(fs_info, leaf);
4758 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4759 total_size, btrfs_leaf_free_space(fs_info, leaf));
4760 BUG();
4761 }
4762
4763 if (slot != nritems) {
4764 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4765
4766 if (old_data < data_end) {
4767 btrfs_print_leaf(fs_info, leaf);
4768 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4769 slot, old_data, data_end);
4770 BUG_ON(1);
4771 }
4772 /*
4773 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4774 */
4775 /* first correct the data pointers */
4776 for (i = slot; i < nritems; i++) {
4777 u32 ioff;
4778
4779 item = btrfs_item_nr(i);
4780 ioff = btrfs_token_item_offset(leaf, item, &token);
4781 btrfs_set_token_item_offset(leaf, item,
4782 ioff - total_data, &token);
4783 }
4784 /* shift the items */
4785 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4786 btrfs_item_nr_offset(slot),
4787 (nritems - slot) * sizeof(struct btrfs_item));
4788
4789 /* shift the data */
4790 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4791 data_end - total_data, btrfs_leaf_data(leaf) +
4792 data_end, old_data - data_end);
4793 data_end = old_data;
4794 }
4795
4796 /* setup the item for the new data */
4797 for (i = 0; i < nr; i++) {
4798 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4799 btrfs_set_item_key(leaf, &disk_key, slot + i);
4800 item = btrfs_item_nr(slot + i);
4801 btrfs_set_token_item_offset(leaf, item,
4802 data_end - data_size[i], &token);
4803 data_end -= data_size[i];
4804 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4805 }
4806
4807 btrfs_set_header_nritems(leaf, nritems + nr);
4808 btrfs_mark_buffer_dirty(leaf);
4809
4810 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4811 btrfs_print_leaf(fs_info, leaf);
4812 BUG();
4813 }
4814}
4815
4816/*
4817 * Given a key and some data, insert items into the tree.
4818 * This does all the path init required, making room in the tree if needed.
4819 */
4820int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4821 struct btrfs_root *root,
4822 struct btrfs_path *path,
4823 struct btrfs_key *cpu_key, u32 *data_size,
4824 int nr)
4825{
4826 int ret = 0;
4827 int slot;
4828 int i;
4829 u32 total_size = 0;
4830 u32 total_data = 0;
4831
4832 for (i = 0; i < nr; i++)
4833 total_data += data_size[i];
4834
4835 total_size = total_data + (nr * sizeof(struct btrfs_item));
4836 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4837 if (ret == 0)
4838 return -EEXIST;
4839 if (ret < 0)
4840 return ret;
4841
4842 slot = path->slots[0];
4843 BUG_ON(slot < 0);
4844
4845 setup_items_for_insert(root, path, cpu_key, data_size,
4846 total_data, total_size, nr);
4847 return 0;
4848}
4849
4850/*
4851 * Given a key and some data, insert an item into the tree.
4852 * This does all the path init required, making room in the tree if needed.
4853 */
4854int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4855 *root, struct btrfs_key *cpu_key, void *data, u32
4856 data_size)
4857{
4858 int ret = 0;
4859 struct btrfs_path *path;
4860 struct extent_buffer *leaf;
4861 unsigned long ptr;
4862
4863 path = btrfs_alloc_path();
4864 if (!path)
4865 return -ENOMEM;
4866 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4867 if (!ret) {
4868 leaf = path->nodes[0];
4869 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4870 write_extent_buffer(leaf, data, ptr, data_size);
4871 btrfs_mark_buffer_dirty(leaf);
4872 }
4873 btrfs_free_path(path);
4874 return ret;
4875}
4876
4877/*
4878 * delete the pointer from a given node.
4879 *
4880 * the tree should have been previously balanced so the deletion does not
4881 * empty a node.
4882 */
4883static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4884 int level, int slot)
4885{
4886 struct btrfs_fs_info *fs_info = root->fs_info;
4887 struct extent_buffer *parent = path->nodes[level];
4888 u32 nritems;
4889 int ret;
4890
4891 nritems = btrfs_header_nritems(parent);
4892 if (slot != nritems - 1) {
4893 if (level)
4894 tree_mod_log_eb_move(fs_info, parent, slot,
4895 slot + 1, nritems - slot - 1);
4896 memmove_extent_buffer(parent,
4897 btrfs_node_key_ptr_offset(slot),
4898 btrfs_node_key_ptr_offset(slot + 1),
4899 sizeof(struct btrfs_key_ptr) *
4900 (nritems - slot - 1));
4901 } else if (level) {
4902 ret = tree_mod_log_insert_key(fs_info, parent, slot,
4903 MOD_LOG_KEY_REMOVE, GFP_NOFS);
4904 BUG_ON(ret < 0);
4905 }
4906
4907 nritems--;
4908 btrfs_set_header_nritems(parent, nritems);
4909 if (nritems == 0 && parent == root->node) {
4910 BUG_ON(btrfs_header_level(root->node) != 1);
4911 /* just turn the root into a leaf and break */
4912 btrfs_set_header_level(root->node, 0);
4913 } else if (slot == 0) {
4914 struct btrfs_disk_key disk_key;
4915
4916 btrfs_node_key(parent, &disk_key, 0);
4917 fixup_low_keys(fs_info, path, &disk_key, level + 1);
4918 }
4919 btrfs_mark_buffer_dirty(parent);
4920}
4921
4922/*
4923 * a helper function to delete the leaf pointed to by path->slots[1] and
4924 * path->nodes[1].
4925 *
4926 * This deletes the pointer in path->nodes[1] and frees the leaf
4927 * block extent. zero is returned if it all worked out, < 0 otherwise.
4928 *
4929 * The path must have already been setup for deleting the leaf, including
4930 * all the proper balancing. path->nodes[1] must be locked.
4931 */
4932static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4933 struct btrfs_root *root,
4934 struct btrfs_path *path,
4935 struct extent_buffer *leaf)
4936{
4937 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4938 del_ptr(root, path, 1, path->slots[1]);
4939
4940 /*
4941 * btrfs_free_extent is expensive, we want to make sure we
4942 * aren't holding any locks when we call it
4943 */
4944 btrfs_unlock_up_safe(path, 0);
4945
4946 root_sub_used(root, leaf->len);
4947
4948 extent_buffer_get(leaf);
4949 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4950 free_extent_buffer_stale(leaf);
4951}
4952/*
4953 * delete the item at the leaf level in path. If that empties
4954 * the leaf, remove it from the tree
4955 */
4956int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4957 struct btrfs_path *path, int slot, int nr)
4958{
4959 struct btrfs_fs_info *fs_info = root->fs_info;
4960 struct extent_buffer *leaf;
4961 struct btrfs_item *item;
4962 u32 last_off;
4963 u32 dsize = 0;
4964 int ret = 0;
4965 int wret;
4966 int i;
4967 u32 nritems;
4968 struct btrfs_map_token token;
4969
4970 btrfs_init_map_token(&token);
4971
4972 leaf = path->nodes[0];
4973 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4974
4975 for (i = 0; i < nr; i++)
4976 dsize += btrfs_item_size_nr(leaf, slot + i);
4977
4978 nritems = btrfs_header_nritems(leaf);
4979
4980 if (slot + nr != nritems) {
4981 int data_end = leaf_data_end(fs_info, leaf);
4982
4983 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4984 data_end + dsize,
4985 btrfs_leaf_data(leaf) + data_end,
4986 last_off - data_end);
4987
4988 for (i = slot + nr; i < nritems; i++) {
4989 u32 ioff;
4990
4991 item = btrfs_item_nr(i);
4992 ioff = btrfs_token_item_offset(leaf, item, &token);
4993 btrfs_set_token_item_offset(leaf, item,
4994 ioff + dsize, &token);
4995 }
4996
4997 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4998 btrfs_item_nr_offset(slot + nr),
4999 sizeof(struct btrfs_item) *
5000 (nritems - slot - nr));
5001 }
5002 btrfs_set_header_nritems(leaf, nritems - nr);
5003 nritems -= nr;
5004
5005 /* delete the leaf if we've emptied it */
5006 if (nritems == 0) {
5007 if (leaf == root->node) {
5008 btrfs_set_header_level(leaf, 0);
5009 } else {
5010 btrfs_set_path_blocking(path);
5011 clean_tree_block(trans, fs_info, leaf);
5012 btrfs_del_leaf(trans, root, path, leaf);
5013 }
5014 } else {
5015 int used = leaf_space_used(leaf, 0, nritems);
5016 if (slot == 0) {
5017 struct btrfs_disk_key disk_key;
5018
5019 btrfs_item_key(leaf, &disk_key, 0);
5020 fixup_low_keys(fs_info, path, &disk_key, 1);
5021 }
5022
5023 /* delete the leaf if it is mostly empty */
5024 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5025 /* push_leaf_left fixes the path.
5026 * make sure the path still points to our leaf
5027 * for possible call to del_ptr below
5028 */
5029 slot = path->slots[1];
5030 extent_buffer_get(leaf);
5031
5032 btrfs_set_path_blocking(path);
5033 wret = push_leaf_left(trans, root, path, 1, 1,
5034 1, (u32)-1);
5035 if (wret < 0 && wret != -ENOSPC)
5036 ret = wret;
5037
5038 if (path->nodes[0] == leaf &&
5039 btrfs_header_nritems(leaf)) {
5040 wret = push_leaf_right(trans, root, path, 1,
5041 1, 1, 0);
5042 if (wret < 0 && wret != -ENOSPC)
5043 ret = wret;
5044 }
5045
5046 if (btrfs_header_nritems(leaf) == 0) {
5047 path->slots[1] = slot;
5048 btrfs_del_leaf(trans, root, path, leaf);
5049 free_extent_buffer(leaf);
5050 ret = 0;
5051 } else {
5052 /* if we're still in the path, make sure
5053 * we're dirty. Otherwise, one of the
5054 * push_leaf functions must have already
5055 * dirtied this buffer
5056 */
5057 if (path->nodes[0] == leaf)
5058 btrfs_mark_buffer_dirty(leaf);
5059 free_extent_buffer(leaf);
5060 }
5061 } else {
5062 btrfs_mark_buffer_dirty(leaf);
5063 }
5064 }
5065 return ret;
5066}
5067
5068/*
5069 * search the tree again to find a leaf with lesser keys
5070 * returns 0 if it found something or 1 if there are no lesser leaves.
5071 * returns < 0 on io errors.
5072 *
5073 * This may release the path, and so you may lose any locks held at the
5074 * time you call it.
5075 */
5076int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5077{
5078 struct btrfs_key key;
5079 struct btrfs_disk_key found_key;
5080 int ret;
5081
5082 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5083
5084 if (key.offset > 0) {
5085 key.offset--;
5086 } else if (key.type > 0) {
5087 key.type--;
5088 key.offset = (u64)-1;
5089 } else if (key.objectid > 0) {
5090 key.objectid--;
5091 key.type = (u8)-1;
5092 key.offset = (u64)-1;
5093 } else {
5094 return 1;
5095 }
5096
5097 btrfs_release_path(path);
5098 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5099 if (ret < 0)
5100 return ret;
5101 btrfs_item_key(path->nodes[0], &found_key, 0);
5102 ret = comp_keys(&found_key, &key);
5103 /*
5104 * We might have had an item with the previous key in the tree right
5105 * before we released our path. And after we released our path, that
5106 * item might have been pushed to the first slot (0) of the leaf we
5107 * were holding due to a tree balance. Alternatively, an item with the
5108 * previous key can exist as the only element of a leaf (big fat item).
5109 * Therefore account for these 2 cases, so that our callers (like
5110 * btrfs_previous_item) don't miss an existing item with a key matching
5111 * the previous key we computed above.
5112 */
5113 if (ret <= 0)
5114 return 0;
5115 return 1;
5116}
5117
5118/*
5119 * A helper function to walk down the tree starting at min_key, and looking
5120 * for nodes or leaves that are have a minimum transaction id.
5121 * This is used by the btree defrag code, and tree logging
5122 *
5123 * This does not cow, but it does stuff the starting key it finds back
5124 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5125 * key and get a writable path.
5126 *
5127 * This does lock as it descends, and path->keep_locks should be set
5128 * to 1 by the caller.
5129 *
5130 * This honors path->lowest_level to prevent descent past a given level
5131 * of the tree.
5132 *
5133 * min_trans indicates the oldest transaction that you are interested
5134 * in walking through. Any nodes or leaves older than min_trans are
5135 * skipped over (without reading them).
5136 *
5137 * returns zero if something useful was found, < 0 on error and 1 if there
5138 * was nothing in the tree that matched the search criteria.
5139 */
5140int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5141 struct btrfs_path *path,
5142 u64 min_trans)
5143{
5144 struct btrfs_fs_info *fs_info = root->fs_info;
5145 struct extent_buffer *cur;
5146 struct btrfs_key found_key;
5147 int slot;
5148 int sret;
5149 u32 nritems;
5150 int level;
5151 int ret = 1;
5152 int keep_locks = path->keep_locks;
5153
5154 path->keep_locks = 1;
5155again:
5156 cur = btrfs_read_lock_root_node(root);
5157 level = btrfs_header_level(cur);
5158 WARN_ON(path->nodes[level]);
5159 path->nodes[level] = cur;
5160 path->locks[level] = BTRFS_READ_LOCK;
5161
5162 if (btrfs_header_generation(cur) < min_trans) {
5163 ret = 1;
5164 goto out;
5165 }
5166 while (1) {
5167 nritems = btrfs_header_nritems(cur);
5168 level = btrfs_header_level(cur);
5169 sret = bin_search(cur, min_key, level, &slot);
5170
5171 /* at the lowest level, we're done, setup the path and exit */
5172 if (level == path->lowest_level) {
5173 if (slot >= nritems)
5174 goto find_next_key;
5175 ret = 0;
5176 path->slots[level] = slot;
5177 btrfs_item_key_to_cpu(cur, &found_key, slot);
5178 goto out;
5179 }
5180 if (sret && slot > 0)
5181 slot--;
5182 /*
5183 * check this node pointer against the min_trans parameters.
5184 * If it is too old, old, skip to the next one.
5185 */
5186 while (slot < nritems) {
5187 u64 gen;
5188
5189 gen = btrfs_node_ptr_generation(cur, slot);
5190 if (gen < min_trans) {
5191 slot++;
5192 continue;
5193 }
5194 break;
5195 }
5196find_next_key:
5197 /*
5198 * we didn't find a candidate key in this node, walk forward
5199 * and find another one
5200 */
5201 if (slot >= nritems) {
5202 path->slots[level] = slot;
5203 btrfs_set_path_blocking(path);
5204 sret = btrfs_find_next_key(root, path, min_key, level,
5205 min_trans);
5206 if (sret == 0) {
5207 btrfs_release_path(path);
5208 goto again;
5209 } else {
5210 goto out;
5211 }
5212 }
5213 /* save our key for returning back */
5214 btrfs_node_key_to_cpu(cur, &found_key, slot);
5215 path->slots[level] = slot;
5216 if (level == path->lowest_level) {
5217 ret = 0;
5218 goto out;
5219 }
5220 btrfs_set_path_blocking(path);
5221 cur = read_node_slot(fs_info, cur, slot);
5222 if (IS_ERR(cur)) {
5223 ret = PTR_ERR(cur);
5224 goto out;
5225 }
5226
5227 btrfs_tree_read_lock(cur);
5228
5229 path->locks[level - 1] = BTRFS_READ_LOCK;
5230 path->nodes[level - 1] = cur;
5231 unlock_up(path, level, 1, 0, NULL);
5232 btrfs_clear_path_blocking(path, NULL, 0);
5233 }
5234out:
5235 path->keep_locks = keep_locks;
5236 if (ret == 0) {
5237 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5238 btrfs_set_path_blocking(path);
5239 memcpy(min_key, &found_key, sizeof(found_key));
5240 }
5241 return ret;
5242}
5243
5244static int tree_move_down(struct btrfs_fs_info *fs_info,
5245 struct btrfs_path *path,
5246 int *level, int root_level)
5247{
5248 struct extent_buffer *eb;
5249
5250 BUG_ON(*level == 0);
5251 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5252 if (IS_ERR(eb))
5253 return PTR_ERR(eb);
5254
5255 path->nodes[*level - 1] = eb;
5256 path->slots[*level - 1] = 0;
5257 (*level)--;
5258 return 0;
5259}
5260
5261static int tree_move_next_or_upnext(struct btrfs_fs_info *fs_info,
5262 struct btrfs_path *path,
5263 int *level, int root_level)
5264{
5265 int ret = 0;
5266 int nritems;
5267 nritems = btrfs_header_nritems(path->nodes[*level]);
5268
5269 path->slots[*level]++;
5270
5271 while (path->slots[*level] >= nritems) {
5272 if (*level == root_level)
5273 return -1;
5274
5275 /* move upnext */
5276 path->slots[*level] = 0;
5277 free_extent_buffer(path->nodes[*level]);
5278 path->nodes[*level] = NULL;
5279 (*level)++;
5280 path->slots[*level]++;
5281
5282 nritems = btrfs_header_nritems(path->nodes[*level]);
5283 ret = 1;
5284 }
5285 return ret;
5286}
5287
5288/*
5289 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5290 * or down.
5291 */
5292static int tree_advance(struct btrfs_fs_info *fs_info,
5293 struct btrfs_path *path,
5294 int *level, int root_level,
5295 int allow_down,
5296 struct btrfs_key *key)
5297{
5298 int ret;
5299
5300 if (*level == 0 || !allow_down) {
5301 ret = tree_move_next_or_upnext(fs_info, path, level,
5302 root_level);
5303 } else {
5304 ret = tree_move_down(fs_info, path, level, root_level);
5305 }
5306 if (ret >= 0) {
5307 if (*level == 0)
5308 btrfs_item_key_to_cpu(path->nodes[*level], key,
5309 path->slots[*level]);
5310 else
5311 btrfs_node_key_to_cpu(path->nodes[*level], key,
5312 path->slots[*level]);
5313 }
5314 return ret;
5315}
5316
5317static int tree_compare_item(struct btrfs_path *left_path,
5318 struct btrfs_path *right_path,
5319 char *tmp_buf)
5320{
5321 int cmp;
5322 int len1, len2;
5323 unsigned long off1, off2;
5324
5325 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5326 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5327 if (len1 != len2)
5328 return 1;
5329
5330 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5331 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5332 right_path->slots[0]);
5333
5334 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5335
5336 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5337 if (cmp)
5338 return 1;
5339 return 0;
5340}
5341
5342#define ADVANCE 1
5343#define ADVANCE_ONLY_NEXT -1
5344
5345/*
5346 * This function compares two trees and calls the provided callback for
5347 * every changed/new/deleted item it finds.
5348 * If shared tree blocks are encountered, whole subtrees are skipped, making
5349 * the compare pretty fast on snapshotted subvolumes.
5350 *
5351 * This currently works on commit roots only. As commit roots are read only,
5352 * we don't do any locking. The commit roots are protected with transactions.
5353 * Transactions are ended and rejoined when a commit is tried in between.
5354 *
5355 * This function checks for modifications done to the trees while comparing.
5356 * If it detects a change, it aborts immediately.
5357 */
5358int btrfs_compare_trees(struct btrfs_root *left_root,
5359 struct btrfs_root *right_root,
5360 btrfs_changed_cb_t changed_cb, void *ctx)
5361{
5362 struct btrfs_fs_info *fs_info = left_root->fs_info;
5363 int ret;
5364 int cmp;
5365 struct btrfs_path *left_path = NULL;
5366 struct btrfs_path *right_path = NULL;
5367 struct btrfs_key left_key;
5368 struct btrfs_key right_key;
5369 char *tmp_buf = NULL;
5370 int left_root_level;
5371 int right_root_level;
5372 int left_level;
5373 int right_level;
5374 int left_end_reached;
5375 int right_end_reached;
5376 int advance_left;
5377 int advance_right;
5378 u64 left_blockptr;
5379 u64 right_blockptr;
5380 u64 left_gen;
5381 u64 right_gen;
5382
5383 left_path = btrfs_alloc_path();
5384 if (!left_path) {
5385 ret = -ENOMEM;
5386 goto out;
5387 }
5388 right_path = btrfs_alloc_path();
5389 if (!right_path) {
5390 ret = -ENOMEM;
5391 goto out;
5392 }
5393
5394 tmp_buf = kmalloc(fs_info->nodesize, GFP_KERNEL | __GFP_NOWARN);
5395 if (!tmp_buf) {
5396 tmp_buf = vmalloc(fs_info->nodesize);
5397 if (!tmp_buf) {
5398 ret = -ENOMEM;
5399 goto out;
5400 }
5401 }
5402
5403 left_path->search_commit_root = 1;
5404 left_path->skip_locking = 1;
5405 right_path->search_commit_root = 1;
5406 right_path->skip_locking = 1;
5407
5408 /*
5409 * Strategy: Go to the first items of both trees. Then do
5410 *
5411 * If both trees are at level 0
5412 * Compare keys of current items
5413 * If left < right treat left item as new, advance left tree
5414 * and repeat
5415 * If left > right treat right item as deleted, advance right tree
5416 * and repeat
5417 * If left == right do deep compare of items, treat as changed if
5418 * needed, advance both trees and repeat
5419 * If both trees are at the same level but not at level 0
5420 * Compare keys of current nodes/leafs
5421 * If left < right advance left tree and repeat
5422 * If left > right advance right tree and repeat
5423 * If left == right compare blockptrs of the next nodes/leafs
5424 * If they match advance both trees but stay at the same level
5425 * and repeat
5426 * If they don't match advance both trees while allowing to go
5427 * deeper and repeat
5428 * If tree levels are different
5429 * Advance the tree that needs it and repeat
5430 *
5431 * Advancing a tree means:
5432 * If we are at level 0, try to go to the next slot. If that's not
5433 * possible, go one level up and repeat. Stop when we found a level
5434 * where we could go to the next slot. We may at this point be on a
5435 * node or a leaf.
5436 *
5437 * If we are not at level 0 and not on shared tree blocks, go one
5438 * level deeper.
5439 *
5440 * If we are not at level 0 and on shared tree blocks, go one slot to
5441 * the right if possible or go up and right.
5442 */
5443
5444 down_read(&fs_info->commit_root_sem);
5445 left_level = btrfs_header_level(left_root->commit_root);
5446 left_root_level = left_level;
5447 left_path->nodes[left_level] = left_root->commit_root;
5448 extent_buffer_get(left_path->nodes[left_level]);
5449
5450 right_level = btrfs_header_level(right_root->commit_root);
5451 right_root_level = right_level;
5452 right_path->nodes[right_level] = right_root->commit_root;
5453 extent_buffer_get(right_path->nodes[right_level]);
5454 up_read(&fs_info->commit_root_sem);
5455
5456 if (left_level == 0)
5457 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5458 &left_key, left_path->slots[left_level]);
5459 else
5460 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5461 &left_key, left_path->slots[left_level]);
5462 if (right_level == 0)
5463 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5464 &right_key, right_path->slots[right_level]);
5465 else
5466 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5467 &right_key, right_path->slots[right_level]);
5468
5469 left_end_reached = right_end_reached = 0;
5470 advance_left = advance_right = 0;
5471
5472 while (1) {
5473 if (advance_left && !left_end_reached) {
5474 ret = tree_advance(fs_info, left_path, &left_level,
5475 left_root_level,
5476 advance_left != ADVANCE_ONLY_NEXT,
5477 &left_key);
5478 if (ret == -1)
5479 left_end_reached = ADVANCE;
5480 else if (ret < 0)
5481 goto out;
5482 advance_left = 0;
5483 }
5484 if (advance_right && !right_end_reached) {
5485 ret = tree_advance(fs_info, right_path, &right_level,
5486 right_root_level,
5487 advance_right != ADVANCE_ONLY_NEXT,
5488 &right_key);
5489 if (ret == -1)
5490 right_end_reached = ADVANCE;
5491 else if (ret < 0)
5492 goto out;
5493 advance_right = 0;
5494 }
5495
5496 if (left_end_reached && right_end_reached) {
5497 ret = 0;
5498 goto out;
5499 } else if (left_end_reached) {
5500 if (right_level == 0) {
5501 ret = changed_cb(left_root, right_root,
5502 left_path, right_path,
5503 &right_key,
5504 BTRFS_COMPARE_TREE_DELETED,
5505 ctx);
5506 if (ret < 0)
5507 goto out;
5508 }
5509 advance_right = ADVANCE;
5510 continue;
5511 } else if (right_end_reached) {
5512 if (left_level == 0) {
5513 ret = changed_cb(left_root, right_root,
5514 left_path, right_path,
5515 &left_key,
5516 BTRFS_COMPARE_TREE_NEW,
5517 ctx);
5518 if (ret < 0)
5519 goto out;
5520 }
5521 advance_left = ADVANCE;
5522 continue;
5523 }
5524
5525 if (left_level == 0 && right_level == 0) {
5526 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5527 if (cmp < 0) {
5528 ret = changed_cb(left_root, right_root,
5529 left_path, right_path,
5530 &left_key,
5531 BTRFS_COMPARE_TREE_NEW,
5532 ctx);
5533 if (ret < 0)
5534 goto out;
5535 advance_left = ADVANCE;
5536 } else if (cmp > 0) {
5537 ret = changed_cb(left_root, right_root,
5538 left_path, right_path,
5539 &right_key,
5540 BTRFS_COMPARE_TREE_DELETED,
5541 ctx);
5542 if (ret < 0)
5543 goto out;
5544 advance_right = ADVANCE;
5545 } else {
5546 enum btrfs_compare_tree_result result;
5547
5548 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5549 ret = tree_compare_item(left_path, right_path,
5550 tmp_buf);
5551 if (ret)
5552 result = BTRFS_COMPARE_TREE_CHANGED;
5553 else
5554 result = BTRFS_COMPARE_TREE_SAME;
5555 ret = changed_cb(left_root, right_root,
5556 left_path, right_path,
5557 &left_key, result, ctx);
5558 if (ret < 0)
5559 goto out;
5560 advance_left = ADVANCE;
5561 advance_right = ADVANCE;
5562 }
5563 } else if (left_level == right_level) {
5564 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5565 if (cmp < 0) {
5566 advance_left = ADVANCE;
5567 } else if (cmp > 0) {
5568 advance_right = ADVANCE;
5569 } else {
5570 left_blockptr = btrfs_node_blockptr(
5571 left_path->nodes[left_level],
5572 left_path->slots[left_level]);
5573 right_blockptr = btrfs_node_blockptr(
5574 right_path->nodes[right_level],
5575 right_path->slots[right_level]);
5576 left_gen = btrfs_node_ptr_generation(
5577 left_path->nodes[left_level],
5578 left_path->slots[left_level]);
5579 right_gen = btrfs_node_ptr_generation(
5580 right_path->nodes[right_level],
5581 right_path->slots[right_level]);
5582 if (left_blockptr == right_blockptr &&
5583 left_gen == right_gen) {
5584 /*
5585 * As we're on a shared block, don't
5586 * allow to go deeper.
5587 */
5588 advance_left = ADVANCE_ONLY_NEXT;
5589 advance_right = ADVANCE_ONLY_NEXT;
5590 } else {
5591 advance_left = ADVANCE;
5592 advance_right = ADVANCE;
5593 }
5594 }
5595 } else if (left_level < right_level) {
5596 advance_right = ADVANCE;
5597 } else {
5598 advance_left = ADVANCE;
5599 }
5600 }
5601
5602out:
5603 btrfs_free_path(left_path);
5604 btrfs_free_path(right_path);
5605 kvfree(tmp_buf);
5606 return ret;
5607}
5608
5609/*
5610 * this is similar to btrfs_next_leaf, but does not try to preserve
5611 * and fixup the path. It looks for and returns the next key in the
5612 * tree based on the current path and the min_trans parameters.
5613 *
5614 * 0 is returned if another key is found, < 0 if there are any errors
5615 * and 1 is returned if there are no higher keys in the tree
5616 *
5617 * path->keep_locks should be set to 1 on the search made before
5618 * calling this function.
5619 */
5620int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5621 struct btrfs_key *key, int level, u64 min_trans)
5622{
5623 int slot;
5624 struct extent_buffer *c;
5625
5626 WARN_ON(!path->keep_locks);
5627 while (level < BTRFS_MAX_LEVEL) {
5628 if (!path->nodes[level])
5629 return 1;
5630
5631 slot = path->slots[level] + 1;
5632 c = path->nodes[level];
5633next:
5634 if (slot >= btrfs_header_nritems(c)) {
5635 int ret;
5636 int orig_lowest;
5637 struct btrfs_key cur_key;
5638 if (level + 1 >= BTRFS_MAX_LEVEL ||
5639 !path->nodes[level + 1])
5640 return 1;
5641
5642 if (path->locks[level + 1]) {
5643 level++;
5644 continue;
5645 }
5646
5647 slot = btrfs_header_nritems(c) - 1;
5648 if (level == 0)
5649 btrfs_item_key_to_cpu(c, &cur_key, slot);
5650 else
5651 btrfs_node_key_to_cpu(c, &cur_key, slot);
5652
5653 orig_lowest = path->lowest_level;
5654 btrfs_release_path(path);
5655 path->lowest_level = level;
5656 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5657 0, 0);
5658 path->lowest_level = orig_lowest;
5659 if (ret < 0)
5660 return ret;
5661
5662 c = path->nodes[level];
5663 slot = path->slots[level];
5664 if (ret == 0)
5665 slot++;
5666 goto next;
5667 }
5668
5669 if (level == 0)
5670 btrfs_item_key_to_cpu(c, key, slot);
5671 else {
5672 u64 gen = btrfs_node_ptr_generation(c, slot);
5673
5674 if (gen < min_trans) {
5675 slot++;
5676 goto next;
5677 }
5678 btrfs_node_key_to_cpu(c, key, slot);
5679 }
5680 return 0;
5681 }
5682 return 1;
5683}
5684
5685/*
5686 * search the tree again to find a leaf with greater keys
5687 * returns 0 if it found something or 1 if there are no greater leaves.
5688 * returns < 0 on io errors.
5689 */
5690int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5691{
5692 return btrfs_next_old_leaf(root, path, 0);
5693}
5694
5695int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5696 u64 time_seq)
5697{
5698 int slot;
5699 int level;
5700 struct extent_buffer *c;
5701 struct extent_buffer *next;
5702 struct btrfs_key key;
5703 u32 nritems;
5704 int ret;
5705 int old_spinning = path->leave_spinning;
5706 int next_rw_lock = 0;
5707
5708 nritems = btrfs_header_nritems(path->nodes[0]);
5709 if (nritems == 0)
5710 return 1;
5711
5712 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5713again:
5714 level = 1;
5715 next = NULL;
5716 next_rw_lock = 0;
5717 btrfs_release_path(path);
5718
5719 path->keep_locks = 1;
5720 path->leave_spinning = 1;
5721
5722 if (time_seq)
5723 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5724 else
5725 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5726 path->keep_locks = 0;
5727
5728 if (ret < 0)
5729 return ret;
5730
5731 nritems = btrfs_header_nritems(path->nodes[0]);
5732 /*
5733 * by releasing the path above we dropped all our locks. A balance
5734 * could have added more items next to the key that used to be
5735 * at the very end of the block. So, check again here and
5736 * advance the path if there are now more items available.
5737 */
5738 if (nritems > 0 && path->slots[0] < nritems - 1) {
5739 if (ret == 0)
5740 path->slots[0]++;
5741 ret = 0;
5742 goto done;
5743 }
5744 /*
5745 * So the above check misses one case:
5746 * - after releasing the path above, someone has removed the item that
5747 * used to be at the very end of the block, and balance between leafs
5748 * gets another one with bigger key.offset to replace it.
5749 *
5750 * This one should be returned as well, or we can get leaf corruption
5751 * later(esp. in __btrfs_drop_extents()).
5752 *
5753 * And a bit more explanation about this check,
5754 * with ret > 0, the key isn't found, the path points to the slot
5755 * where it should be inserted, so the path->slots[0] item must be the
5756 * bigger one.
5757 */
5758 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5759 ret = 0;
5760 goto done;
5761 }
5762
5763 while (level < BTRFS_MAX_LEVEL) {
5764 if (!path->nodes[level]) {
5765 ret = 1;
5766 goto done;
5767 }
5768
5769 slot = path->slots[level] + 1;
5770 c = path->nodes[level];
5771 if (slot >= btrfs_header_nritems(c)) {
5772 level++;
5773 if (level == BTRFS_MAX_LEVEL) {
5774 ret = 1;
5775 goto done;
5776 }
5777 continue;
5778 }
5779
5780 if (next) {
5781 btrfs_tree_unlock_rw(next, next_rw_lock);
5782 free_extent_buffer(next);
5783 }
5784
5785 next = c;
5786 next_rw_lock = path->locks[level];
5787 ret = read_block_for_search(NULL, root, path, &next, level,
5788 slot, &key, 0);
5789 if (ret == -EAGAIN)
5790 goto again;
5791
5792 if (ret < 0) {
5793 btrfs_release_path(path);
5794 goto done;
5795 }
5796
5797 if (!path->skip_locking) {
5798 ret = btrfs_try_tree_read_lock(next);
5799 if (!ret && time_seq) {
5800 /*
5801 * If we don't get the lock, we may be racing
5802 * with push_leaf_left, holding that lock while
5803 * itself waiting for the leaf we've currently
5804 * locked. To solve this situation, we give up
5805 * on our lock and cycle.
5806 */
5807 free_extent_buffer(next);
5808 btrfs_release_path(path);
5809 cond_resched();
5810 goto again;
5811 }
5812 if (!ret) {
5813 btrfs_set_path_blocking(path);
5814 btrfs_tree_read_lock(next);
5815 btrfs_clear_path_blocking(path, next,
5816 BTRFS_READ_LOCK);
5817 }
5818 next_rw_lock = BTRFS_READ_LOCK;
5819 }
5820 break;
5821 }
5822 path->slots[level] = slot;
5823 while (1) {
5824 level--;
5825 c = path->nodes[level];
5826 if (path->locks[level])
5827 btrfs_tree_unlock_rw(c, path->locks[level]);
5828
5829 free_extent_buffer(c);
5830 path->nodes[level] = next;
5831 path->slots[level] = 0;
5832 if (!path->skip_locking)
5833 path->locks[level] = next_rw_lock;
5834 if (!level)
5835 break;
5836
5837 ret = read_block_for_search(NULL, root, path, &next, level,
5838 0, &key, 0);
5839 if (ret == -EAGAIN)
5840 goto again;
5841
5842 if (ret < 0) {
5843 btrfs_release_path(path);
5844 goto done;
5845 }
5846
5847 if (!path->skip_locking) {
5848 ret = btrfs_try_tree_read_lock(next);
5849 if (!ret) {
5850 btrfs_set_path_blocking(path);
5851 btrfs_tree_read_lock(next);
5852 btrfs_clear_path_blocking(path, next,
5853 BTRFS_READ_LOCK);
5854 }
5855 next_rw_lock = BTRFS_READ_LOCK;
5856 }
5857 }
5858 ret = 0;
5859done:
5860 unlock_up(path, 0, 1, 0, NULL);
5861 path->leave_spinning = old_spinning;
5862 if (!old_spinning)
5863 btrfs_set_path_blocking(path);
5864
5865 return ret;
5866}
5867
5868/*
5869 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5870 * searching until it gets past min_objectid or finds an item of 'type'
5871 *
5872 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5873 */
5874int btrfs_previous_item(struct btrfs_root *root,
5875 struct btrfs_path *path, u64 min_objectid,
5876 int type)
5877{
5878 struct btrfs_key found_key;
5879 struct extent_buffer *leaf;
5880 u32 nritems;
5881 int ret;
5882
5883 while (1) {
5884 if (path->slots[0] == 0) {
5885 btrfs_set_path_blocking(path);
5886 ret = btrfs_prev_leaf(root, path);
5887 if (ret != 0)
5888 return ret;
5889 } else {
5890 path->slots[0]--;
5891 }
5892 leaf = path->nodes[0];
5893 nritems = btrfs_header_nritems(leaf);
5894 if (nritems == 0)
5895 return 1;
5896 if (path->slots[0] == nritems)
5897 path->slots[0]--;
5898
5899 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5900 if (found_key.objectid < min_objectid)
5901 break;
5902 if (found_key.type == type)
5903 return 0;
5904 if (found_key.objectid == min_objectid &&
5905 found_key.type < type)
5906 break;
5907 }
5908 return 1;
5909}
5910
5911/*
5912 * search in extent tree to find a previous Metadata/Data extent item with
5913 * min objecitd.
5914 *
5915 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5916 */
5917int btrfs_previous_extent_item(struct btrfs_root *root,
5918 struct btrfs_path *path, u64 min_objectid)
5919{
5920 struct btrfs_key found_key;
5921 struct extent_buffer *leaf;
5922 u32 nritems;
5923 int ret;
5924
5925 while (1) {
5926 if (path->slots[0] == 0) {
5927 btrfs_set_path_blocking(path);
5928 ret = btrfs_prev_leaf(root, path);
5929 if (ret != 0)
5930 return ret;
5931 } else {
5932 path->slots[0]--;
5933 }
5934 leaf = path->nodes[0];
5935 nritems = btrfs_header_nritems(leaf);
5936 if (nritems == 0)
5937 return 1;
5938 if (path->slots[0] == nritems)
5939 path->slots[0]--;
5940
5941 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5942 if (found_key.objectid < min_objectid)
5943 break;
5944 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5945 found_key.type == BTRFS_METADATA_ITEM_KEY)
5946 return 0;
5947 if (found_key.objectid == min_objectid &&
5948 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5949 break;
5950 }
5951 return 1;
5952}